
Optimization techniques for fine-grained
communication in PGAS environments

Michail Alvanos

Submitted in in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Architecture

Universitat Politècnica de Catalunya
October 2013

Barcelona, Spain

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33345276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer Architecture
Universitat Politècnica de Catalunya

Optimization techniques for fine-grained communication in PGAS
environments

Author: Michail Alvanos

Supervisors : Xavier Martorell
Associate Professor

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

José Nelson Amaral
Professor

Department of Computing Science

University of Alberta

Montse Farreras
Professor Collaborator

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Barcelona, August 2013

Abstract

Partitioned Global Address Space (PGAS) languages promise to deliver improved
programmer productivity and good performance in large-scale parallel machines.
However, adequate performance for applications that rely on fine-grained com-
munication without compromising their programmability is difficult to achieve.
Manual or compiler assistance code optimization is required in order to avoid fine-
grained accesses. The downsides to manually applying code transformations are
the increased program complexity and hindrance of the programmer’s productiv-
ity. On the other hand, compiler optimizations of fine-grained accesses require
knowledge of physical data mapping and the use of parallel loop constructs.

This thesis presents optimizations for solving the three main challenges of the
fine-grained communication: (i) low network communication efficiency; (ii) large
number of runtime calls; and (iii) network hotspot creation for the non-uniform
distribution of network communication. To solve these problems, the dissertation
presents three candidate solutions. It presents first an inspector-executor transfor-
mation for improving the network efficiency through runtime aggregation. Second,
it presents incremental optimizations to the inspector-executor loop transforma-
tion to automatically remove the runtime calls. Finally, the thesis presents a loop
scheduling transformation for avoiding network hotspots and the over-subscription
of nodes. In contrast to previous work that use static coalescing, prefetching, lim-
ited privatization, and caching, the solutions presented in this thesis focus cover
all aspects of fine-grained communication, including reducing the number of calls
generated by the compiler and minimizing the overhead of the inspector-executor
optimization.

A performance evaluation that uses various microbenchmarks and benchmarks,
and presenting scaling and absolute performance numbers of a Power 775 machine,
indicates that applications with regular accesses can achieve up to 180% of the
performance of hand-optimized versions. In contrast, the transformations yield
from 1.12X up to 6.3X speedup in applications with irregular accesses. The loop
scheduling shows performance gains between +3% and +25% for NAS FT and
bucket-sort benchmarks, and up to 3.4X speedup for the microbenchmarks.

i

Acknowledgments

When you set sail for Ithaca, wish for the road to be long, full of adventures,
full of knowledge. – Ithaca, Constantine P. Cavafy

During the journey of the thesis, I have been fortunate to enjoy the advice,
support, and friendship of a number of extraordinary people. I would like to thank
each and every one of them. First of all, i would like to thank my supervisors
Xavier Martorell, Montse Farreras, and José Nelson Amaral for their assistance
and guidance during this work. They have offered me guidance and support in
various ways. I started working with Xavier Martorell and Montse Farreras in the
first stages of the thesis. Later Nelson offered some help with the compiler aspects
of one paper and from that moment he stayed until the end. He acted as a catalyst
during the process of the thesis.

I would like to thank many people from the IBM Toronto software lab and IBM
T.J. Watson Research Center. First of all, i would like to thank Ettore Tiotto.
Despite the time constraints and all the burden of managing the XL UPC compiler
and runtime group, he was always available to help, not only for the administrative
work, but also for technical level. His advices saved precious time and effort and
provided guidance for the fast completion of the project. Furthermore, i would like
to thank Nancy Wang for testing of the code and reporting bugs. Yaxun Liu for the
setting environment and running the benchmarks in large scale. Gheorge Almasi,
Ilie Gabriel Tanase, and Barnaby Dalton for their patience and support during
the runtime developing. We had plenty and helpful discussions with Ilie Gabriel
Tanase regarding the performance of the XL UPC compiler, especially in the last
part of the thesis. I would like also to thank Patricia Clark and Debra A Domack
for the access to Power 775 machines. Anny Ly for the interesting discussions
about the performance of the Power 775 machines. Yaoqing Gao for reviewing the
papers due to Canada Lab Publishing Process. I would like to thanks the people
working on the Center of Advanced Studies (CAS) that helped during my stage
on IBM Toronto: Jimmy Lo, Debbie Kilbride, and Emillia Tung. I would like to
extend my gratitude to all the people of the IBM Toronto Software laboratory and
IBM T.J Watson Research Center that help me during the various stages of this
work.

I would like also to thank the IBM CAS students and Canadian friends: Car-
olina Simoes Gomes, Maria Attarian, Marios Fokaefs, Bo Wu, Joan Guisado
Gòmez, Thomas Reidemeister, Norha M. Villegas, Michalis Athanasopoulos, and
Mary Christmas (Maria Tsimpoukelli). These people make my stay in IBM
Canada easier by having a lot of fun. My friends in Barcelona Supercomput-
ing Center that all surrounded these years: Ivan Tanasic, Javier Cabezas, Marc
Jorda, Lluc Alvarez, Lluis Vilanova, Thomas Grass, Xavier Teruel, Javier Bueno,

iii

and Leonidas Kosmidis. Special thanks to Thanos Makatos, Dagalaki Efsevia,
Vicky Antoniadou, George Nikiforos, Kallia Chronaki, Nohelia Meza, and Angely
Bahamón because they were there when needed them most! I would also like to
thank all of my old friends for the encouragement: Matthaios Kavalakis, Yan-
nis Klonatos, Nikiforos Manalis, Billy Vassilaras, John Aparadektos Manousakis,
Christos Margiolas, Maria Zaharaki, and Maria Psaraki. After so many years and
living in different parts of the world, we always find some time to speak to each
other! Last but not least, I would like to thank my family for their support in
many aspects.

This work is supported by the IBM Centers for Advanced Studies Fellowship
contracts no.CAS2011-057 / CAS2012-069 / CAS2013-12, by the Spanish Min-
istry of Science and Innovation through the grant CAN13001-779, and the Defense
Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily reflect the views of the funding
agencies.

Michail Alvanos
Barcelona, 2013

iv

Στην μνήμη της γιαγιάς μου Νικολέτας.

Στην μνήμη του Ιωάννη Γιαννέζου.

Στους γονείς μου Νικολαος και Χρυσοπηγή.

Στον αδερφό μου Ιωάννη.

To the memory of my grandmother Nikoleta.
To the memory of Ioannis Yiannezos.
To my parents Nikolaos and Chrysopigi.
To my brother John.

v

Contents

1 Introduction 1

1.1 Objective of the thesis . 2

1.1.1 Dynamic Data Coalescing . 2

1.1.2 Reducing the overhead of inspector-loops 3

1.1.3 Improving the all-to-all communication pattern 4

1.2 Contributions . 5

1.3 Outline . 5

2 Background 7

2.1 Partitioned Global Address Space Languages 7

2.2 Unified Parallel C . 7

2.3 Overheads of fine-grained accesses . 11

2.4 The IBM UPC Compiler and Runtime System 14

2.4.1 XL UPC Compiler Framework . 14

2.4.2 Runtime . 18

3 Experimental Setup 21

3.1 The hardware environment . 21

3.2 Available Benchmarks . 25

3.2.1 Micro Benchmarks . 25

3.2.2 Applications . 26

4 Dynamic Data Aggregation 33

4.1 Approaches and solutions . 33

4.1.1 Inspector-executor strategy . 34

4.1.2 Double buffering . 35

4.1.3 Loop versioning . 36

4.2 Implementation . 36

4.2.1 Transformation algorithm . 36

4.2.2 Runtime support . 40

4.2.3 Resolving Data Dependencies . 42

4.3 Experimental Results . 43

4.3.1 Benchmark versions . 44

vii

4.3.2 Microbencmarks Performance . 45

4.3.3 Applications Performance . 49

4.3.4 Where does the time go? . 53

4.3.5 Cost of the optimization . 53

4.4 Chapter Summary and Discussion . 54

5 Reducing the Runtime Calls 57

5.1 Inspector-executor Optimizations . 57

5.1.1 Constant Stride Linear Memory Descriptors 58

5.1.2 CSLMADs in dynamic environments 59

5.1.3 Usage of vectors . 60

5.1.4 Combining Dynamic with Static Coalescing 60

5.1.5 Inline checks . 63

5.1.6 Optimization Integration . 64

5.2 Shared-reference-aware loop-invariant code motion and privatization for
PGAS languages . 65

5.3 Experimental Results . 66

5.3.1 Methodology . 66

5.3.2 Microbenchmark Performance . 68

5.3.3 UPC Single-Threaded Slowdown 69

5.3.4 Applications Performance . 70

5.3.5 Parameter exploration . 74

5.3.6 Overhead Analysis . 75

5.3.7 Compilation Time and Code Length 76

5.4 Chapter Summary and Discussion . 77

6 Loop Scheduling 79

6.1 Loop scheduling . 80

6.1.1 Approaches . 80

6.1.2 Compiler-assisted loop transformation 81

6.2 Experimental results . 83

6.2.1 Methodology . 83

6.2.2 Limit study . 84

6.2.3 Compiler-assisted loop transformation 86

6.3 Chapter Summary and Discussion . 89

7 Related Work 91

7.1 Prefetching . 91

7.2 Inspector-executor approaches . 91

7.3 Compile-time Optimizations . 92

7.3.1 Code simplification . 93

7.3.2 Shared-Pointer Privatization . 93

7.3.3 Shared Object Coalescing . 94

7.3.4 Overlapping of communication and computation 95

viii

7.4 Runtime optimizations . 96
7.4.1 Software caching . 96
7.4.2 Hybrid environments . 97

7.5 Loop Scheduling . 97
7.6 Language Extensions . 98
7.7 Application specific optimizations . 98
7.8 Array Access Analysis . 99

8 Conclusions and Future Work 101
8.1 Publications . 102
8.2 Productization . 104
8.3 Future Work . 104
8.4 Survival of the UPC language . 105

Appendix 121

A Terminology 121

ix

List of Figures

2.1 Comparison of parallel programming models 8

2.2 Comparison of different data blocking possibilities. 10

2.3 Normalized execution time breakdown of gravitational fish and sobel
benchmarks using 2 and 16 processes. 11

2.4 XL UPC compiler framework. 14

2.5 Example of privatization optimization. 16

2.6 Example using the array idiom recognition. 17

3.1 Architecture of the machine. 22

3.2 UPC benchmark ping-pong for one (left) and two (right) supernodes. 23

3.3 Unidirectional point-to-point bandwidth between different two cores. 24

3.4 WaTor benchmark: architecture (left), smell update (middle), and
force calculation (right). 28

4.1 Final version after the loop versioning. 38

4.2 Runtime internal implementation. 41

4.3 The runtime resolves dependencies with the help of the compiler. . 43

4.4 Performance in GB/s for the microbenchmark reading four fields
from the same data structure in streaming and random fashion. . . 45

4.5 Achieved speedup for the two microbenchmark variations. 45

4.6 Achieved speedup for the two microbenchmark variations compared
with the number of messages aggregated (left), and speedup com-
pared with the memory consumption of the runtime (right). 47

4.7 Performance numbers for the sobel benchmark using different versions. 49

4.8 Performance numbers for the gravitational fish benchmark using
different versions. 50

4.9 Performance numbers for the WaTor benchmark using different ver-
sions. 51

4.10 Performance numbers for the Guppie benchmark. 52

4.11 Performance numbers for the MCop benchmark. 52

4.12 Normalized execution time breakdown of the benchmarks using 128
UPC threads. 53

xi

5.1 Examples of array accesses that Linear Memory Access Descriptors
can represent. The CSLMADs can represent (a), (b), and (c) but
not (d). 58

5.2 The shared address translation problem. The program access the
data range from 5 up to 19. 59

5.3 Example of Static data coalescing: native UPC source code (left),
and physical data mapping (right). 62

5.4 Final code modification and a high level implementation of the run-
time. 63

5.5 Improvements for the for the inspector-executor compiler transfor-
mation. 64

5.6 Performance in GB/s for the microbenchmark reading four fields
from the same data structure reading four fields. 68

5.7 Performance numbers for the Sobel benchmark for different versions. 70

5.8 Performance numbers for the fish benchmark for different versions. 71

5.9 Performance numbers for the WaTor benchmark for different ver-
sions. 72

5.10 Performance numbers for the Guppie benchmark for different ver-
sions. 72

5.11 Performance numbers for MCop benchmark for different versions. 73

5.12 Speedup and cache misses for Sobel (a) and Guppie (b) using dif-
ferent number of iterations to inspect and aggregation levels. . . . 74

5.13 Normalized execution time breakdown of the benchmarks using 32
UPC threads. 76

6.1 Different schemes of accessing a shared array. The shared object is
allocating in blocked form. Each row represents data residing in one
UPC thread and each box is an array element. The different access
types are: (a) baseline: all UPC threads access the same data; (b)
‘Skewed’: each UPC thread access elements from a different UPC
thread; (c) ‘Skewed plus’: each UPC thread access elements from a
different thread and from a different point inside the block. 82

6.2 Automatic compiler loop scheduling. 84

6.3 Effect of loop scheduling policies on performance for upc memput. 85

6.4 Effect of loop scheduling policies on performance for fine-grained
get (b) and fine-grained put (c). 86

6.5 Comparison of compiler-transformed and hand-optimized code: upc memput
(a), fine-grained get (b), and fine-grained put (c). 87

6.6 Comparison of baseline and compiler-transformed code for fish (a),
Sobel (b), and NAS FT (c). 88

6.7 Comparison of baseline and compiler-transformed code for bucket-
sort (a) and bucket-sort with only the communication pattern (b). 88

A.1 Example of common subexpression elimination. 122

xii

A.2 Example of constant propagation optimization. 123
A.3 Example of loop blocking transformation. 125

xiii

List of Tables

3.1 Theoretical peak uniform all-to-all bandwidth versus measured band-
width for different machine configurations. 24

3.2 Overview of micro-benchmarks. 31
3.3 Overview of available benchmarks. We provide the source code line

number for reference. 31

4.1 Percentage of traffic that uses remote and local links. 49
4.2 Object file increase in bytes. We consider only the transformed file. 54

5.1 Benchmarks compared with the serial C non-instrumented version
and UPC version in execution time, measured in seconds. 69

5.2 Benchmarks and different cost metrics. Object file sizes are in bytes
and for the object files only. 77

6.1 Local cache miss ratio using 256 Cores for Sobel benchmark using
256 UPC threads. Results are the average from each of 256 cores.
Local miss ratio is calculated by diving misses in this cache the total
number of memory accesses to this level of cache. 87

7.1 Example using the pointer arithmetic optimization. 94
7.2 Example using the coalescing optimization. 94
7.3 Example using the splitting optimization. 95

xv

Acronyms

API Application Programming Interface

BF Blocking Factor

CPU Central Processing Unit

CSLMAD Constant-Stride Linear Memory Access Descriptor

DSM Distributed Memory System

FFT Fast Fourier Transformation

GAS Global Address Space

GPU Graphics Processing Unit

LMAD Linear Memory Access Descriptor

MPI Message Passing Interface

PF Prefetch Factor

PGAS Partitioned Global Address Space Languages

SVD Shared Variable Directory

TPO Toronto Portable Optimizer

UPC Unified Parallel C

xvii

Chapter 1

Introduction

Next-generation architectures and large-scale parallel machines are increasing in
size and in complexity. In this context, programming productivity is becoming
crucial for software developers. Parallel languages and programming models need
to provide simple means for developing applications that can run on parallel sys-
tems without sacrificing performance. New programming models provide attrac-
tive alternative ways of programming complex and parallel architectures. The
programming model should provide a transparent method for effectively moving
data without any efficiency loss relative to memory management.

The “automatic” memory management is becoming increasingly important for
the compiler developer. The memory management must be transparent to the
programmer, in a similar manner as the virtual memory in modern computers.
High performance machines with attractive performance/price ratio are not enough
to attract talented programmers into the High Performance Computing (HPC) due
to complex programming. The productivity gap between distributed memory and
shared memory machines is increasing especially with the standardization of the
OpenMP [1] programming model.

A popular programming model for distributed systems is the Distributed Shared
Memory systems (DSMs) [2, 3, 4, 5, 6]. Distributed Shared Memory (DSM) sys-
tems refer to a wide class of software and hardware implementations, in which
each node of a cluster has access to shared memory in addition to each node’s
non-shared private memory. However, most of the DSM systems rely on the page
fault mechanism with page prefetching and often have poor performance on fine-
grained communication [7]. Partitioned Global Address Space (PGAS) [8, 9, 10,
11, 12, 13, 14, 15] languages introduce some complexity through the partitioning of
data, due to low performance of the Global Address Space languages and software
distributed shared memory systems. PGAS languages extend existing languages
or create new ones with constructs to express parallelism and data distribution.

Partitioned Global Address Space programming languages provide a uniform
programming model for local, shared and distributed memory hardware. The
programmer sees a single coherent shared address space, where variables may be

1

2 CHAPTER 1. INTRODUCTION

directly read and written by any thread, but each variable is physically associated
with a single thread. These languages provide a simple, shared-memory-like pro-
gramming model, where the address space is partitioned and the programmer has
control over the data layout. They boost programmer productivity by using shared
variables for inter-process communication instead of message passing [16, 17, 18].

1.1 Objective of the thesis

The key insight that motivates PGAS languages is that accessing data using in-
dividual reads and writes to the shared space, just as any programmer would do
in a serial application increases programmer productivity. In a distributed envi-
ronment, however, this coding style translates into fine-grained communication,
which has poor efficiency and hinders performance of PGAS applications. The low
communication efficiency of fine-grained data accesses has been identified by many
researchers [19, 20] as one of the main bottlenecks of PGAS languages.

Regardless of all research community efforts, the de facto programming model
for distributed memory architectures is still the Message Passing Interface (MPI) [21].
One reason is that PGAS programs deliver scalable performance only when they
are carefully tuned. Often, after initial coding, the programmer tunes the source
code to produce a more scalable version. However, the reality is that, at the
end of these modifications, the PGAS code resembles very much his MPI equiv-
alent, often nullifying the ease-of-coding advantage of these languages. In PGAS
languages, the programmer accesses the data using individual reads and writes
to the shared space. However, in a distributed environment this coding style
translates into fine-grained communication, which has poor efficiency and hinders
performance of PGAS applications [22, 20]. Due to the poor performance of fine-
grained accesses, PGAS programmers optimize their applications by using large
data transfers, whenever possible.

This dissertation tries to answer the following question: Can applications writ-
ten in the UPC programming model provide comparable performance with the hand-
tuned MPI versions ? The objective of this thesis is to improve performance of ap-
plications that use fine-grained communication, without hindering its programma-
bility. The optimizations achieve comparable performance to the equivalent man-
ual optimized versions. The thesis presents compiler and runtime optimizations
for solving the three major problems of the fine-grained communications: (i) low
efficiency of network communication; (ii) large number of runtime calls; and (iii)
network hotspot creation for the non-uniform distribution of network communica-
tion, especially in all-to-all patterns. The work was carried out Unified Parallel C
(UPC), although it can be applied to other PGAS languages as well.

1.1.1 Dynamic Data Coalescing

The first part of the thesis provides solutions to the problem of low network
efficiency created by fine-grained communication. The research community has

1.1. OBJECTIVE OF THE THESIS 3

proposed various techniques to decrease the performance penalty of fine-grained
communication. Previous approaches to optimize the inter-node communication
include the use of inspector-executor transformation [23, 24, 25, 26, 27, 28], static
coalescing [22, 29, 30, 31], limited privatization [32, 33], and software cache [34, 35].
However, the existing solutions have two important limitations: (i) they require
knowledge of physical data mapping at compilation time or the usage of a work-
sharing construct; (ii) they incur high overheads at runtime.

The programmer must specify the number of threads, the number of processing
nodes, and the data distribution at compile time in order the compiler to have
knowledge of physical data mapping at compile time (i). Also, the programmer
must use worksharing constructs (upc forall in UPC) to help the compiler to
optimize the accesses. Nevertheless, applications do not make extensive use of the
worksharing construct in practice. Thus, a substantial number of shared accesses
inside serial loops (for, while ...) are not optimized. In the second case (ii), the
inspector-loop optimizations and cache systems usually produce high overheads
that burden the application performance.

The first part of the thesis presents a compiler optimization with the proper
runtime support to tolerate the latency of fine-grained accesses, through prefetch-
ing and coalescing techniques [36]. The optimization uses loop transformations and
runtime support, to increase the communication efficiency and tolerate network la-
tencies. The transformation uses the inspector-executor approach [24, 23, 37, 26]
to discover the affinity between accesses and data allocation in the absence of ex-
plicit compile time affinity information, and thus to enable the runtime to coalesce
fine-grained accesses.

The aggregated network communication has three advantages. (i) It amortizes
the per-message overhead at the end-points over the large amount of data being
sent. (ii) It amortizes the per-packet routing and header information. (iii) Large
messages require only a single acknowledgement rather than one per message,
which contributes to reduction of traffic, end-point overhead, and possible network
contention.

However, this approach has two drawbacks. First, the inspector-executor trans-
formation inserts additional overhead for analyzing and aggregating at runtime the
shared data. To increase the efficiency of this optimization, the system uses double
buffering techniques to amortize the overhead. The second source of overhead is
the large number of runtime calls. The inspector-executor transformation injects
more runtime calls for collecting and inspecting elements. Thus, the number of
runtime calls is doubled. To solve this problem, the thesis proposes a number of
compiler optimizations for removing the calls as we discuss in the following section.

1.1.2 Reducing the overhead of inspector-loops

The inspector-executor transformation increases the network efficiency using large
messages over the network interconnect. However, the transformation has a big
disadvantage. The optimization increases the instrumentation overhead due to

4 CHAPTER 1. INTRODUCTION

additional runtime calls in the inspector loop. The second part of the thesis,
proposes different approaches to reduce the number of runtime calls. The thesis
presents a set of compiler optimizations [38] to increase the efficiency of UPC
language by removing runtime calls and addressing some of the weaknesses found
in traditional compiler optimizations in loops. The techniques include inspector-
executor improvements to decrease the overhead and a lightweight code invariant
loop motion.

The first technique employed involves the usage of Constant Stride Linear
Memory Address Descriptors (CSLMADs) [39], a restrictive form of Linear Mem-
ory Descriptors [40, 41]. CSLMADs constitute an efficient way to capture accurate
array access information. Thus, the compiler can effectively remove the calls from
the inspector and executor loops when the access pattern is regular. Furthermore,
the compiler uses a temporary vector to collect the shared indexes in the inspector
loops to improve performance on benchmarks with irregular access patterns.

The last part of this section presents a lightweight loop code motion. Loop-
invariant code motion is a traditional compiler optimization which performs this
movement automatically. The compiler automatically moves outside of the loop
main body statements and expressions that don’t affect the semantics of the pro-
gram. However, shared scalar and pointers can make the analysis hard, leaving
some shared accesses inside the body of the loop. The algorithm uses the reaching
definitions analysis through the Static Single Assignment (SSA) [42] representation
to detect and move the statements that use shared variables before the loop.

1.1.3 Improving the all-to-all communication pattern

The last part of the thesis presents optimizations for improving the network com-
munication and avoiding the creation of hotspots. In order to effectively avoid
congestion the programmer or the runtime must spread non-uniform traffic evenly
over the different links. Moreover, an important number of UPC applications
that require all-to-all communication can create hotspots during the communica-
tion without the awareness of the programmer. This pattern shows up in a large
number of scientific applications including FFT, Sort, and Graph 500. The UPC
programs can suffer from shared access conflicts on the same node and network
link congestion.

This section first explores the possible approaches to distributing the accesses
through the network by manually modifying the source code. Next, the thesis
presents a loop transformation technique that improves the performance of the all-
to-all communication without the programmer’s interference. The transformation
“skews” or randomly distributes the traffic using all the UPC threads to reduce the
possibility of hotspot creation on the interconnection network and overwhelming
of the nodes.

1.2. CONTRIBUTIONS 5

1.2 Contributions

This dissertation presents how new programming models provide comparable per-
formance with the message passing models, when using fine-grained communica-
tion. The thesis makes the following contributions:

• It presents coalescing and prefetching techniques that use loop transforma-
tions and runtime support to increase communication efficiency and tolerate
the network latencies [43, 36, 38]. It demonstrates that dynamic analy-
sis and coalescing at runtime can significantly improve the performance of
fine-grained accesses inside loops, without having to know the physical data
mapping or use the upc forall parallel structure.

• It proposes a number of optimizations to decrease the impact of library calls
that fine-grained communication produces [38]. The optimizations include an
analysis based on Constant-Stride Linear Memory Descriptors (CSLMADs),
insertion of inline checks for local data, and a new shared-reference-aware
loop-invariant code motion. This latter, is designed specifically for PGAS
languages, to deliver improved performance for benchmarks that rely on fine-
grained communication. This new approach to the compilation of PGAS
applications results in programs containing fine-grained access benchmarks
having comparable performance to that of coarse-grained benchmarks.

• It presents a compiler loop transformation that automatically schedules the
loop iterations to increase the applications performance by decreasing the
potential contention of the network [44, 45]. The evaluation shows that a
compilers can provide comparable performance to the manual modified loop.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the
Unified Parallel C programming language and the IBM XL UPC compiler frame-
work. Chapter 3 presents the hardware environment and the benchmarks used
for the evaluation. Chapter 4 demonstrates the inspector-executor transformation
and runtime dynamic aggregation of shared-objects. Chapter 5 presents compiler
transformations to reduce the overhead of the automatically compiler created calls.
Chapter 6 presents approaches and compiler transformations to improve the per-
formance of network using loop scheduling. The related work is reviewed in Chap-
ter 7. Chapter 8 draws conclusions based on the findings, and discusses future
research plans.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Partitioned Global Address Space Languages

Partitioned Global Address Space Languages (PGAS) programming languages pro-
vide a uniform programming model for local, shared and distributed memory hard-
ware. The programmer sees a single coherent shared address space, where variables
may be directly read and written by any thread, but each variable is physically
associated with a single thread. PGAS languages, such as Unified Parallel C [9],
Co-Array Fortran [10], Fortress [11], Chapel [12], X10 [13], Global Arrays [46], and
Titanium [14], extend existing languages with constructs to express parallelism and
data distribution.

The message passing models, such as MPI [21], use library calls for explicit
communication between processes. On the other hand, in PGAS languages, the
programmer can access each variable between processes without knowing if the
access is remote or local. Figure 2.1 presents the differences between the program-
ming models. Example implementations of shared memory programming model
are the OpenMP [1] and Pthreads [47]. The downside of this approach is that
the programmer is not always aware of the locality of data and can use remote
accesses that lead to performance degradation. Other popular alternative shared
memory programming models are for the Software Distributed Memory Systems
(DSMs)[2, 3], such as Nanos DSM [4], ThreadMarks [5] and ParaADE [6]. Simi-
larly to the PGAS, the programmer sees a global address space and the runtime
is responsible for the communication.

2.2 Unified Parallel C

The Unified Parallel C (UPC) [9] is an example of PGAS programming model as
an extension of the C programming language [48] designed for high performance
computing on large-scale parallel machines. UPC uses a Single Program Multiple
Data (SPMD) model of computation in which the amount of parallelism is fixed
at program startup time, typically with a single thread of execution per processor.

7

8 CHAPTER 2. BACKGROUND

...

Message

Passing
Shared Memory

Partitioned Global

Address Space

... ...

shared int *p2;

int *p1;

S
h
a
r
e
d

P
r
iv
a
t
e

int *p2;

int *p1;

P P P P P P P P P

Figure 2.1: Comparison of parallel programming models

In all cases, the compiler translates the shared remote access to runtime calls for
fetching and storing the data. The result is portable high-performance compilers
that run on a large variety of shared and distributed memory multiprocessors.

In order to better understand the concept of UPC programming model, this
section explains the basic C language extensions. In UPC, there are two new
keywords, the keyword ‘THREADS’ that describes the total number of threads and
the keyword ‘MYTHREAD’ that describes the thread identifier starting from 0. The
language defines two different types of variables, the shared and the private. The
shared variables must be explicitly declared by using the keyword shared or they
are considered private. The shared variables are used for communication between
threads because they are visible from any thread. The private variables can only
be accessed by a single thread. To access shared variables, the programmer must
specify the keyword shared to the pointer declaration.

1 int OUT[N][N];

2 int IN[N][N];

3
4 void stencil_kernel(){

5 int i,j;

6 for(i=1; i<N-1; i++){

7 for(j=1; j<N-1; j++){

8 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j] +

9 IN[i][j-1] + IN[i][j+1]);

10 }

11 }

12 }

Listing 2.1: Serial version of a stencil kernel.

Furthermore, in UPC there is a new type of for loop, the upc forall loop, in
which the iterations are executed in parallel, according to the language semantics.
Each thread executes a fraction of iterations concurrently with other threads. At

2.2. UNIFIED PARALLEL C 9

the header of the loop, there is an additional expression, called affinity expression.
The affinity expression specifies which executions of the loop will be performed by
a thread.

Listing 2.1 presents a serial version of a stencil benchmark. A straightforward
UPC parallel version is shown in Listing 2.2. Arrays IN and OUT are declared
as shared (lines 1-2), and their elements will be distributed cyclically among the
threads. The construct upc forall distributes loop iterations among the UPC
threads. The affinity expression (&OUT[i]) in the upc forall construct specifies
that the owner thread of the specified element &OUT[i] will execute the ith loop
iteration.

1 shared int OUT[N][N];

2 shared int IN[N][N];

3
4 void stencil_kernel(){

5 int i,j;

6 upc_forall(i=1; i<N-1; i++; &OUT[i]){

7 for(j=1; j<N-1; j++){

8 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j] +

9 IN[i][j-1] + IN[i][j+1]);

10 }

11 }

12 }

Listing 2.2: Parallel version of a stencil kernel.

In this example access locality to array OUT is developed through the use of the
affinity expression. Each runtime call may imply communication of one element of
the array, leading to fine-grained communication which leads to poor performance.
Communication traffic in this case is O(N × N) elements, with one access per
element.

1 #define B N*(N/THREADS)

2 shared [B] int OUT[N][N];

3 shared [B] int IN[N][N];

4
5 void stencil_kernel(){

6 int i,j;

7 upc_forall(i=1; i<N-1; i++; &OUT[i]){

8 for(j=1; j<N-1; j++){

9 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j] +

10 IN[i][j-1] + IN[i][j+1]);

11 }

12 }

13 }

Listing 2.3: Blocked parallel version of a stencil kernel.

A better distribution of the shared data can be achieved through the use of
layout modifiers. Listing 2.3 shows a distribution by rows, where each thread

10 CHAPTER 2. BACKGROUND

Threads

0

1

2

3 12 13 14 15

Data Threads

0

1

2

3

 0 4 8 12

 1 5 9 13

 2 6 10 14

 3 7 11 15

Data Threads

0

1

2

3

0 1 2 3 4 ...

Data

shared [1] int array[16]; or

shared int array[16];
shared [16/4] int array[16]; or

shared [*] int array[16];

shared [0] int array[16]; or

shared [] int array[16];

Figure 2.2: Comparison of different data blocking possibilities.

owns n consecutive rows. Where n = N/THREADS as specified by the [B]

blocking factor. The Blocking Factor (BF) is layout qualifier that dictates the
number of successive elements placed on the same UPC thread. This feature gives
the option to the programmer to select the data partitioning. The selection of
proper blocking scheme can significantly affect the performance of the application.
Programmers use two common blocking schemes: the ‘blocked’ or the ‘cycled’.
Figure 2.2 illustrates the different blocking schemes with the array declarations.
Note that the programmer has also the possibility to allocate shared objects or
arrays with affinity to only one UPC thread (Figure 2.2 right).

1 typedef struct {int r[N];} Row;

2 shared [*] Row IN[N+2*THREADS];

3 shared [*] Row OUT[N+2*THREADS];

4
5 void stencil_kernel(){

6 int i,j;

7 int lower, upper;

8 int rowspp;

9 rowspp = (N+2*THREADS)/THREADS;

10 lower = MYTHREAD*rowspp;

11 upper = (MYTHREAD+1)*rowspp -1;

12 /* exchange shadows - (code incomplete, no bounds check) */

13 /* shadow for lower boundary */

14 upc_memget(&IN[lower], &IN[lower-2], sizeof(Row));

15 /* shadow for upper boundary */

16 upc_memget(&IN[upper], &IN[upper+2], sizeof(Row));

17 for(i=lower; i<upper; i++){

18 for(j=1; j<N-1; j++){

19 OUT[i].r[j] = 0.25f * (IN[i-1].r[j] + IN[i+1].r[j] +

20 IN[i].r[j-1] + IN[i].r[j+1]);

21 }

22 }

23 }

Listing 2.4: Stencil optimized parallel version.

In this example, the non-local read memory accesses are reduced to O(2 ×

2.3. OVERHEADS OF FINE-GRAINED ACCESSES 11

2 Procs

Fish

16 Procs

Fish

2 Procs

Sobel

16 Procs

Sobel

0

20

40

60

80

100

 %
 T

im
e

Dereference

Computation

Queue Run

Ptr Arithmetic

Assign

Other

Figure 2.3: Normalized execution time breakdown of gravitational fish and sobel
benchmarks using 2 and 16 processes.

N × THREADS) because only computation of positions in the boundary of each
thread data access remote data. However, one access per element is still performed,
leading to fine-grained communication.

To avoid fine-grained communication the UPC language provides data move-
ment primitives: upc memget, upc memput, and upc memcpy. In listing 2.4, the
lower and upper boundary rows of the IN array on each thread are copied into
a shadow row which is local to that thread. The number of accesses decreases to
O(2 × THREADS), each access bringing a row of size N . This code has better
performance although, the programmability has been hindered. This contradicts
the philosophy of PGAS languages: ease of programming and productivity.

2.3 Overheads of fine-grained accesses

When the physical data mapping is unknown at compiler time, the compiler does
not apply most of the UPC specific optimizations. Two problems arise from these
codes with fine-grained accesses to shared data: (i) low communication efficiency
because of the use of small messages, and (ii) high overhead due to the large
number of runtime calls created.

Figure 2.3 presents the execution time breakdowns of two different bench-
marks: fish [49] and Sobel [50]. It shows that little time is spent on the actual
computation: 30% in fish and 35% in Sobel with 2 UPC threads. Several sources
of overhead are identified: (i) time spent in accessing shared data (dereference
phase) shows the impact of the communication latency for fine-grained accesses
where communication is necessary for each dereference call; (ii) Shared pointer

12 CHAPTER 2. BACKGROUND

arithmetic (Ptr Arithmetic) also has an impact since shared pointers contain more
information than plain pointers and operations with them are expensive. This im-
pact is greater in Sobel (20%) compared to gravitational fish because it contains
nine shared accesses per loop iteration. Overall, the communication latency and
the overhead from the large number of runtime calls burdens the performance of
applications and motivates the presented optimization.

Listing 2.5, presents the computation kernel of the gravitational fish bench-
mark. The benchmark emulates fish movements based on gravity. The benchmark
is an N-Body gravity simulation, using parallel ordinary differential equations [49].
Arrays fish and accel are declared as shared (lines 1-2). Shared arrays or shared
objects are accessible from all UPC threads. The layout qualifier [NFISH/THREADS]
specified that the shared object is distributed to different UPC threads in blocked
form. The construct upc forall (line 9) distributes loop iterations among the
UPC threads. The fourth expression in the upc forall construct is the affinity
expression. The affinity expression (&fish[i]) specifies that the owner thread of
the specified element executes the ith loop iteration.

1 typedef struct fh { double x; double vx;

2 double y; double vy; } fish_t;

3 typedef struct f_acc { double ax; double ay; } fish_accel_t;

4
5 shared [NFISH/THREADS] fish_t fish[NFISH];

6 shared [NFISH/THREADS] fish_accel_t acc[NFISH];

7
8 for each time step {

9 /* Phase 1: Force calculation */

10 upc_forall (i=0; i<NFISH; ++i; &fish[i]) {

11 tmpx = tmpy = 0;

12 for (j = 0; j < NFISH; ++j) {

13 dx = fish[j].x - fish[i].x;

14 dy = fish[j].y - fish[i].y;

15 a = calculate_force(dx,dy);

16 tmpx += a * dx / r; tmpy += a * dy / r;

17 }

18 acc[i].ax = tmpx; acc[i].ay = tmpy;

19 }

20 upc_barrier ();

21 ...

22 }

Listing 2.5: UPC version of gravitational Fish.

Runtime calls are responsible for fetching, or modifying, the requested data.
Each runtime call may imply communication of one element of the array, lead-
ing to fine-grained communication, which in turn leads to poor performance.
The compiler transforms each shared access to runtime calls. Read accesses are
translated into a ptr deref runtime call, while the write accesses translate into
ptr assign. Each runtime call can have various arguments, including the offset

2.3. OVERHEADS OF FINE-GRAINED ACCESSES 13

of shared variable and the element size. At its turn, internally a PGAS runtime
takes care of accessing the data, which can be in a remote node and so it may im-
ply communication, a get or a put, depending if you are reading or writing. Before
the accessing shared pointers, the compiler also creates calls for shared pointer
arithmetic (ptr arithmetic) as shown in Listing 2.6. The shared pointer is a fat
pointer that contains information about the offset, the thread, and the allocated
size. Note, that when the compiler knows the number of the UPC threads, it can
eliminate the pointer arithmetic call and replace it with shifts and masks.

1 for each time step {

2 ...

3 /* Phase 1: Force calculation */

4 upc_forall (i=0; i<NFISH; ++i; &fish[i]) {

5 tmpx = tmpy = 0;

6 for (j = 0; j < NFISH; ++j) {

7 __ptr1 = __ptr_arithmetic(&fish[j].x, ...);

8 __tmp1 = __ptr_dereference(ptr1, ...);

9 __ptr2 = __ptr_arithmetic(&fish[j].y, ...);

10 __tmp2 = __ptr_dereference(ptr2, ...);

11 __ptr3 = __ptr_arithmetic(&fish[i].x, ...);

12 __tmp3 = __ptr_dereference(ptr3, ...);

13 __ptr4 = __ptr_arithmetic(&fish[i].y, ...);

14 __tmp4 = __ptr_dereference(ptr4, ...);

15
16 dx = __tmp1 - __tmp3; dy = __tmp2 - __tmp4;

17 a = calculate_force(dx,dy);

18 tmpx += a * dx / r; tmpy += a * dy / r;

19 }

20 __tmp5 = tmpx;

21 __ptr5 = __ptr_arithmetic(&acc[i].ax, ...);

22 __ptr_assign(&__tmp5, ptr5, ...);

23 __tmp6 = tmpy;

24 __ptr6 = __ptr_arithmetic(&acc[i].ay, ...);

25 __ptr_assign(&__tmp6, ptr6, ...);

26 }

27 upc_barrier ();

28 ...

29 }

30 ...

Listing 2.6: Final form of the source code.

The PGAS programming model boosts programmer productivity by providing
shared variables for inter-process communication instead of message passing [16,
17, 18]. However, the performance of these emerging languages has room for
improvement. Today, PGAS programs deliver scalable performance on clusters
only when they are well written. In previous work, many researchers have pointed
out the bottlenecks of PGAS languages [19, 20, 51]. Some reasons for the limited
PGAS performance are:

14 CHAPTER 2. BACKGROUND

UPC Source

UPC Runtime

TPO

TOBEY

Front End

PAMI BGLMLPthreads

W-code (extended with UPC artifacts)

Binary

+

Linking

...

W-code (extended with UPC artifacts)

Figure 2.4: XL UPC compiler framework.

• The low communication efficiency of fine-grained accesses data accesses.

• The absence of non-blocking communication mechanisms on PGAS lan-
guages. Blocking communication mechanisms eliminate any possible oppor-
tunity for computation and communication overlap.

• The existence of function calls for accessing shared data and the absence of
inter-procedural analysis. They disable common compiler loop optimizations
because they reduce the scope of many data-flow optimizations such as copy
propagation and common sub-expression elimination.

• Transparency of shared accesses leads to possible hotspot creation on the
network.

2.4 The IBM UPC Compiler and Runtime System

This section presents the XL UPC compiler framework [52, 53] used to implement
the optimization. The XL UPC compiler has three main components: (i) the Front
End (FE); (ii) the Toronto Portable Optimizer (TPO) high-level optimizer; (iii)
a low-level optimizer (TOBEY). Figure 2.4 shows the role of each component in
the compilation of UPC programs.

2.4.1 XL UPC Compiler Framework

The XL UPC compiler has three main components: (i) the Front End (FE) trans-
forms the UPC source code to an intermediate representation (W-Code); (ii) the
Toronto Portable Optimizer (TPO) high-level optimizer performs machine in-
dependent optimizations for UPC and C/C++ languages; (iii) and a low-level
optimizer performs machine-dependent optimizations.

2.4. THE IBM UPC COMPILER AND RUNTIME SYSTEM 15

The compiler front end tokenizes and parses UPC source code, performs syn-
tactic and semantic analysis, and diagnoses violations of the Unified Parallel C
(v 1.2) language rules. It then generates an intermediate language representation
(IR) of the UPC program, augmented with UPC extensions such as the layout
of shared arrays, and the affinity expression of a upc forall loop, for example.
The augmented intermediate representation (W-Code + UPC extensions) is con-
sumed by the high-level optimizer, or TPO (Toronto Portable Optimizer). The
high-level optimizer component has been extended to perform UPC specific opti-
mizations; it also performs a subset of the traditional control-flow, data-flow and
loop optimizations designed for the C language on UPC source code.

The high-level optimizer interfaces with the PGAS runtime (or XL UPC run-
time) through an internal API that is used to translate operations on shared ob-
jects such as dereferencing (reading/writing) a pointer to a shared object (such as
a shared array for example) and performing pointer arithmetic operations. Finally,
the high-level optimizer produces a modified version of the IR (Optimized Wcode)
that lacks UPC-specific extensions (operations on UPC extensions are either trans-
lated to PGAS runtime calls or resolved to the base IR through optimizations).
The IR produced by the high-level optimizer is consumed by the low-level opti-
mizer (TOBEY), which performs further optimizations that are UPC unaware.
After optimizing the low level IR, TOBEY generates machine code for the target
architecture. This process is repeated for each compilation unit. To complete the
compilation process, the XL UPC compiler invokes the system linker, which links
compiler-generated objects and any required libraries (such as the PGAS runtime
library) to form an executable.

The XL UPC compiler provides a number of UPC specific optimizations. The
next part of this section examines the main high level UPC specific optimizations,
which are implemented in the XL UPC compiler.

Shared object access optimizations

The XL UPC compiler implements a set of performance optimizations on shared
array accesses. The compiler can partition shared array accesses performed in a
upc forall work-sharing loop into two categories: shared local accesses (accesses
that have affinity with the issuing thread) and shared remote accesses. Shared
array accesses that have been proven to have affinity with the issuing thread are
optimized by the compiler in such a way as to eliminate unnecessary runtime calls.
Shared array accesses that are remote can be coalesced by the compiler to reduce
the communication latency.

Shared object access privatization

In a typical scenario, the XL UPC compiler translates accesses to shared arrays
by generating an appropriate set of runtime function calls. In the context of
a upc forall loop the compiler can often prove that the memory read and/or

16 CHAPTER 2. BACKGROUND

written during an array access operation resides in the local address space of the
accessing thread; in such cases the compiler generates code that performs the in-
dexing (pointer arithmetic) operations required to access the shared array directly.
To do so, the compiler retrieves the address of the shared array partition in the
local address space (the private address space of the accessing thread) via a run-
time function call. It moves the runtime call outside the upc forall loop nest
containing the shared array access being translated. This is legal because the local
shared array address is loop-invariant. Finally, the compiler uses the local array
address to index the appropriate shared array element, doing any pointer arith-
metic operations that are necessary locally [54]. Figure 2.5 presents an example
of local shared accesses privatization.

Programmer’s Code After transformation

#define SCAL 3.0

shared double a [N] ;

shared double b [N] ;

shared double c [N] ;

void StreamTriad(){

int i ;

upc_forall (i=0; i<N; i++; &a[i]){

a[i] = b[i] + SCAL * c[i] ;

}

}

#define SCAL 3.0

shared double a [N] ;

shared double b [N] ;

shared double c [N] ;

void StreamTriad(){

int i ;

double *__aBase = __xlupc_base_addr(a) ;

double *__bBase = __xlupc_base_addr(b) ;

double *__cBase = __xlupc_base_addr(c) ;

upc_forall (i=0;i<N;i++; &a[i]){

*(__aBase + OFFSET(i)) =

*(__bBase + OFFSET(i)) +

SCAL * (*(__cBase + OFFSET(i)))

}

}

Figure 2.5: Example of privatization optimization.

Shared object access coalescing

Normally, the XL UPC compiler translates a remote shared array access by gen-
erating a call to the appropriate runtime function. For example, reading from (or
writing to) multiple shared array elements that have affinity to the same remote
thread causes the compiler to generate a runtime call for each of the array elements
read. In the context of a upc forall loop nest, the compiler can often determine
that several array elements are read from the same remote partition. In this case,
the compiler combines the read operations and generates a single call to the run-
time system to retrieve the necessary elements together, thus reducing the number
of communication messages between the accessing thread and the thread that has
affinity with the remote array partition [29].

2.4. THE IBM UPC COMPILER AND RUNTIME SYSTEM 17

Shared object remote updating

This optimization targets read-modify-write operations on a shared array element.
When translating a read operation followed by a write operation on the same
shared array element the compiler normally generates two runtime calls: one to
retrieve the shared array element and one to write the modified value back. When
the compiler can prove that the array elements being read and written have the
same index, it can generate a single runtime call, with which it instructs the
runtime system to perform the update operation on the thread that has affinity
with the array elements accessed. This optimization reduces the number of calls
required to translate the read-modify-write pattern from two to one, and therefore
reduces reducing the communication requirement associated with the operation.

Array idiom recognition

Unified Parallel C programs often include loops that simply copy all elements of
a shared array into a local array, or vice versa, or loops used to set all elements
of a shared array with an initial value. The XL UPC compiler is able to detect
these common initialization idioms and substitute the fine-grained communication
in such loops with coarser-grained communication. The compiler achieves this
goal by replacing the individual shared array accesses with calls to one of the UPC
string handling functions: upc memget, upc memset, upc memcpy, or upc memput.
Figure 2.6 provides an example of this optimization.

Programmer’s Code After transformation

#define N 16384

#define BF (N/THREADS)

shared [BF] int a[N];

int b[N];

int main () {

int i;

if (MYTHREAD==0) {

for (i=0; i<N; i++){

a[i]=b[i];

}

}

}

#define N 16384

#define BF (N/THREADS)

shared [BF] int a[N];

int b[N];

int main () {

int i;

if (MYTHREAD==0) {

for (i=0; i<N; i+=BF) {

upc_memput(&a[i], &b[i], BF*sizeof(b[i]));

}

}

}

Figure 2.6: Example using the array idiom recognition.

18 CHAPTER 2. BACKGROUND

Parallel loop optimizations

The XL UPC compiler implements a set of optimizations that remove the overhead
associated with the evaluation of the affinity expression in a upc forall loop. The
affinity expression in a upc forall loop could be naively translated by using a
branch to control the execution of the loop body. For example, an integer affinity
expression “i” could be translated by inserting the conditional expression (i ==

MYTHREAD) around the upc forall loop body. The compiler, on the other hand,
translates the upc forall loop into a for loop (or a for loop nest) using a strip-
mining transformation technique that avoids the insertion of the affinity branch
altogether, and removes a major obstacle to the parallel scalability of the loop.
For example, the parallel loop:

upc_forall (i =0; i<N; i ++; i){

a[i] = b[i] + scalar * c[i]

}

will be transformed to:

for (i =0; i < N; i ++){

if ((i % THREADS) == MYTHREAD)

a[i] = b[i] + scalar * c[i] ;

}

However after the optimization the final loop will not contain the affinity branch:

for (i =MYTHREAD; i<N; i +=THREADS){

a[i] = b[i] + scalar * c[i] ;

}

2.4.2 Runtime

The PGAS runtime provides a platform-independent interface that allows the ex-
ecutable to run in different machines and it is designed for scalability in large par-
allel machines [55, 54]. Currently supported platforms include: shared-memory
multiprocessors using the Pthreads library; Low-level Application Programming
Interface [56]; and Parallel Active Messaging Interface (PAMI) [57]. Experimental
ports of the UPC runtime also exists for other Messaging systems like Myrinet
Express [58], BlueGene/L message layer [59], and Deep Computing Messaging
Framework (DCMF) [60]. The PGAS runtime is designed for a hybrid mode of
operation on clusters of SMP nodes. For example, UPC threads communicate
through shared memory when possible, and they send messages to other nodes
through one of several available transports. A similar approach was followed in
the GASNet runtime system [61]. The runtime exposes to the compiler an Appli-
cation Program Interface for managing shared data and synchronization.

2.4. THE IBM UPC COMPILER AND RUNTIME SYSTEM 19

Memory Management

In UPC, there are two types of memory allocations: local memory allocations
performed using malloc and which are currently outside of the tracking capability
of the runtime, and shared memory allocated using UPC specific constructs such
as upc all alloc(), upc alloc() and upc global alloc().

Within the UPC specific family of allocation functions, the runtime currently
employs a set of optimizations to help both with remote memory address inference
with memory registration. The memory registration pins the memory (no memory
swap and no page movement) and notifies the network interface controller (NIC) of
the virtual-to-physical address mapping of this memory. The memory registration
is necessary to enable the Remote Direct Memory Access (RDMA) mechanisms
that are used in high performance machines. First, shared arrays allocated using
upc all alloc() are allocated symmetrically at the same virtual memory address
on all locations. In doing so, the XL UPC allocator creates a reserved area in the
virtual address space of each process called the symmetric partition. The starting
virtual address of each symmetric partition, called the origin, is identical across
all threads and distributed shared arrays are then stored in blocks of memory
located isomorphically in each symmetric partition. The READ and WRITE op-
erations on elements of a shared array allocated with upc all alloc, therefore,
know the virtual address in the remote locations. Shared memory allocated using
the upc global alloc primitive is handled in a similar fashion.

The users can declare shared arrays allocated in one thread’s address space us-
ing upc alloc. In this situation, other threads can only obtain references to these
arrays using another explicit data exchange. If such a reference is obtained, a re-
mote thread can perform remote reads or writes to the data of the shared array. In
the current XL UPC implementation, the memory allocated using upc alloc is not
registered with PAMI. If the upc memput access or upc memget access memory that
explicitly allocated with system malloc, then the runtime uses active messages.
For example, in upc memput call, the destination must always be a shared memory
array while the source can actually be from an array allocated with malloc.

Point to point data transfers

Point to point data transfers are employed by UPC whenever a remote array index
is accessed or whenever upc memput/upc memget are invoked. The underlying
network supports three modes of data transfer, which are referred to as active
messages with short, large data, and RDMA. The XL UPC runtime system exploits
all three modes.

The runtime enforces the ordering constraints imposed by the UPC memory
consistency model. The underlying interconnect and PAMI library do not preserve
the order of messages between a source and destination process. For this reason,
when mapping UPC constructs to PAMI primitives, the runtime explicitly waits
for a message to be remotely delivered before sending the next message to the same

20 CHAPTER 2. BACKGROUND

destination. However, the runtime can send a message to a different destination
without waiting for the acknowledgement of messages on previous destinations.
While this can be seen as a performance bottleneck, in practice this decision did
not affect the performance of most benchmarks. This is because often the threads
send to different destinations before sending again to a particular one.

Atomic Operations

The XL Unified Parallel C compiler implements the atomic extension of the Unified
Parallel C language as proposed by Berkeley UPC [62]. This extension, which is
on track to being adopted as part of the UPC 1.3 specification, allows users to
atomically read and write private and shared memory in a UPC program. With
atomic functions, you can update variables within a synchronization phase without
using a barrier. The atomic functions are included in List 2.7. The function
prototypes have different variants depending on the values of type, X, and RS. X
and type can take any pair of values in (I, int), (UI, unsigned int), (L, long), (UL,
unsigned long), (I64,int64 t), (U64,uint64 t), (I32,int32 t), (U32,uint32 t). RS can
be either ’strict’ or ’relaxed’.

type xlupc_atomicX_read_RS(shared void *ptr);

void xlupc_atomicX_set_RS(shared void *ptr,type val);

type xlupc_atomicX_swap_RS(shared void *ptr,type val);

type xlupc_atomicX_cswap_RS(shared void *ptr,type oldval,

type newval);

type xlupc_atomicX_fetchadd_RS(shared void *ptr,type op);

type xlupc_atomicX_fetchand_RS(shared void *ptr,type op);

type xlupc_atomicX_fetchor_RS(shared void *ptr,type op);

type xlupc_atomicX_fetchxor_RS(shared void *ptr,type op);

type xlupc_atomicX_fetchnot_RS(shared void *ptr);

Listing 2.7: XL UPC Atomics Interface.

Accelerated Collectives

UPC collectives are implemented completely within the runtime system. The
compiler redirects UPC calls to runtime entries with only some minimal analysis
in certain situations. In turn, the runtime transforms UPC pointers-to-shared to
regular pointers and calls appropriate collectives within PAMI.

Other Runtime Optimizations

On a platform that supports simultaneous multithreading, thread binding turns
out to be crucial. The runtime system provides flexible control on how to bind
UPC threads to hardware threads. By default, no binding is performed while a
specific mapping is performed with proper command line arguments. The auto-
binding option is recommended. Huge memory pages usage is another runtime
option, which instructs the memory allocator to use huge memory pages.

Chapter 3

Experimental Setup

This chapter explores characteristics of hardware environment, the benchmarks
used in the evaluation, and finally presents a performance characterization of two
benchmarks. The hardware description provides information about the hardware
in a single node and presents the interconnect network. Furthermore, this section
presents an evaluation of some key performance characteristics, such as latency,
all-to-all and point-to-point bandwidth. The benchmark section introduces the
available microbenchmarks and benchmarks used later in this work. The final
part of this chapter presents execution time breakdowns of two applications to
identify the performance bottlenecks.

3.1 The hardware environment

This dissertation uses the POWER7-IH (or Power 775) scalable High Performance
Computing platform [63] for the evaluation. This platform consists of a number of
Power7 [64, 65] nodes, connected using the Power7 Hub interconnect [66]. The en-
tire system, including the processors, memories, and interconnect, is water cooled.
The water dissipates the thermal waste by circulating components over the system
and it is exchanged with the facility’s chilled water.

Each node has four chips which constitute a 32-core Symmetric Multiprocessor
(SMP) node. Chips are directly connected to each other at a peak of 48 GB/s.
The Power7 processor has 32 KBytes instruction and 32 KBytes L1 data cache
per core, 256 KBytes 2nd level per core, and a 32 MByte 3rd level cache shared
per chip. Each core is equipped with four SMT threads and 12 execution units.
The peak performance of each P7-IH chip is 246 GFlops/s resulting in a peak
of 984 GFlops/s on each node. The Power7 processor implements efficient adap-
tive power management techniques compared to predecessors of PowerPC CPU
family [67]. The microarchitecture implements a set of integer and floating point
SIMD instructions, referred to as Vector Scalar eXtensions. Finally, each chip has
two memory controllers supporting a total of eight DDR-3 memory channels. The
size of available main memory is 128 GBytes per node.

21

22 CHAPTER 3. EXPERIMENTAL SETUP

Drawer 1

...

Drawer 0...
7 LL links

24GB/s/link Bidirectional

Node 7...

24 LR Links

5GB/s/link Bidirectional

.

.

.

10 GB/s/link

Bidir

D Links

Drawer 3

...

SuperNode 0

Drawer 0

...

SuperNode 1

...

...

Drawer 3

...

Drawer 2

Drawer 1

...

Drawer 0

...

SuperNode 2

...

Drawer 3

...

Drawer 2

... ...

...
...

DLinks

...

To other SNs

D Links

...
D Links

...

To other SNs

D Links

Figure 3.1: Architecture of the machine.

The machine is organized in drawers. Each drawer consists of eight nodes,
adding up one TByte of memory and 7,87 Tflop/s. Four drawers are connected
to create a supernode (1024 cores, 31.4flops/s). More supernodes can be added
to increase the capacity of the system. A critical part of the Power 775 system is
the custom interconnect chip that connects modules and expands the scalability
of the system. High network performance is achieved by using the Power7 Hub
interconnect or Torrent Chip. The Hub chip is connected with the four Power7
chips through four links, of 24GB/s each. The Hub chip contains seven links for
communication between different nodes on the same drawer (LL links), 24 links
for intra-supernode communication (LR links), and 16 links for inter-supernode
communication (D links). Links between nodes in the drawer are electrical and
intra/inter-supernode links are optical. Local drawer links have a combined band-
width of 336 GB/s, the inter-supernode 240 GB/s, and the inter-supernodes 320
GB/s. There is no additional communication hardware present in the system.
Figure 3.1 presents the architecture of the machine.

The Hub chip can achieve a bandwidth of 19GB/s per link and each node is
capable of injecting up to 50GB/s (unidirectional) or 32GB/s (bidirectional) into
the network [68]. Communication patterns that use single point-to-point messages
between nodes (one core) do not saturate any network link, but that aggregate
messaging from a single node (32 cores) to another can be bottlenecked by the use
of a single LL link. Figure 3.1 presents the bandwidth results for point to point
communication between nodes using the UPC language. The machine represents
a very effective architecture for High Performance Computing, with high single-
thread performance combined with a rich interconnection network, it provides high
performance for a variety of workloads [69]. A full Power 775 system may contain
up to 512 super nodes (524288 cores) with a peak performance of 16 Pflops/s. The
full system used for this dissertation consists of 56 supernodes (SNs), totaling 1742
nodes. Thus, two supernodes are connected using only eight D links.

3.1. THE HARDWARE ENVIRONMENT 23

0 1 2 3 4 5

Time (us)

0

1000

2000

3000

4000

C
o

u
n

t
(n

u
m

b
er

 o
f

p
in

g
-p

o
n

g
s)

1 SN latency

(a)

0 1 2 3 4 5

Time (us)

0

1000

2000

3000

4000

C
o
u

n
t

(n
u

m
b

er
 o

f
p

in
g
-p

o
n

g
s)

2 SN latency

(b)

Figure 3.2: UPC benchmark ping-pong for one (left) and two (right) supernodes.

One important feature of the Power 775 architecture is the availability of multi-
ple modes of data transfer, including optimized short message transfers (SHORT),
arbitrary size messages (FIFO), and Remote Direct Memory Access (RDMA).
SHORT data transfers are used for message sizes up to 128 bytes. FIFO data
transfers are used for messages larger than 128 bytes. In the RDMA mode a process
can read or write data on a remote compute node without involving its CPU. On
top of this hardware, PAMI provides short active messages, active messages with
large data transfers, and RDMA transfers. While the user doesn’t need to know
the effective remote address for active messages, active message performance is
often slower than RDMA due to CPU involvement on the remote side. In RDMA
mode, the data transfer is fast, but it requires that the thread which initiates the
transfer knows the remote memory address where data will be read or written.

Interconnect and Routing

The Hub Chip’s links are classified into two categories L, and D that allow the
system to be organized into a two-level direct-connect topology, known as Drag-
onfly topology [70]. The D links are used between supernodes and there is at least
one D link between two supernodes. The L links are used inside the supernode
and they are sufficient for point-to-point communication. The topology forces the
routes to be made up of small numbers of direct hops. Inside a supernode, any
compute node communicate switch any other compute node using a single point
to point L link. Across supernodes, a node inside the supernode that has direct
point to point link with the remote supernode, uses one L hop to get to the des-
tination node at the most. Finally, at the destination supernode, only one L hop
is sufficient to reach the final destination. Thus, the maximum path for direct
connections is L-D-L.

The system is capable of providing low latency communication down to 2

24 CHAPTER 3. EXPERIMENTAL SETUP

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
 K

B

2
 K

B

4
 K

B

8
 K

B

1
6
 K

B

3
2
 K

B

6
4
 K

B

1
2
8
 K

B

2
5
6
 K

B

5
1
2
 K

B

1
 M

B

Data granularity

2

4

6

8

G
B

/s

Same thread

Same process

Same Octant

Same Drawer

Same Supernode

Figure 3.3: Unidirectional point-to-point bandwidth between different two cores.

Scenario Links Max Links Max Hub Chip Measured Limited
(GB/s) (GB/s) (GB/s)

2 Nodes 1 LL 96 74.36 61.5 H Chip

1 Drawer 16 LL 1536 297.44 287.5 H Chip

1 supernode 256 LR 5120 1189.7 1046.25 H Chip

2 supernodes 8 DL 320 2379.5 187.5 Links

Table 3.1: Theoretical peak uniform all-to-all bandwidth versus measured band-
width for different machine configurations.

us intra-supernode and 2.3 us for inter-supernode communication. Figure 3.2
presents the round trip latency between two different nodes. Indirect routing be-
tween two nodes in different supernodes increases the latency. Table 3.1 presents
the uniform all-to-all bandwidth using an UPC benchmark. Notice the decrease
of the available bandwidth between one and two supernodes. The inter-supernode
links are likely to become the performance limit for various applications that re-
quire large number of nodes. Figure 3.3 shows the bandwidth achieved between
two UPC threads in different scenarios. Note that each core achieves less than the
size theoretical peak of the link.

3.2. AVAILABLE BENCHMARKS 25

Collectives Support

The Hub Chip provides specialized hardware to accelerate collective operations:
the Collectives Acceleration Unit (CAU) [66]. The CAU unit integrated in the
IBM Power 775 Hub provides offload and acceleration for broadcast and data
reduction up to 64 bytes of data. For reduction, it supports NO-OP, SUM, MIN,
MAX, AND, OR and XOR operations with 32-bit/64-bit signed/unsigned fixed-
point operands or single/double precision floating-point operands. The benefits of
deploying the CAUs are most evident in low latency operations. In the case of
operations that require large bandwidth, such as broadcast or reduction on large
data, the CAU unit may not perform better than the point to point versions.

UPC collectives are implemented entirely within the runtime system [55]. The
compiler redirects UPC calls to runtime entries with only some minimal analysis
in certain situations. The compiler transforms UPC pointers-to-shared to regular
pointers and calls appropriate collectives within PAMI. Reduction and barrier
collectives in XL UPC exploit the Collective Accelerated Unit (CAU) available on
Power 775 when low latency performance is crucial.

3.2 Available Benchmarks

This work uses a number of benchmarks to evaluate the effectiveness of the op-
timizations. The benchmarks are written by other researchers and represent a
variety of UPC programs that an UPC compiler can encounter in the real world.
Table 3.3 summarizes the benchmarks used in this dissertation. The column type
presents the computation type of the benchmarks, Lines of Code in terms of UPC
source code for each benchmark, and the granularity of the messages. Note that
most of the benchmarks contain communication with messages from one to eight
bytes. The NAS FT and the bucketsort benchmark contain coarse-grained com-
munication and they are used in the last part of the thesis.

3.2.1 Micro Benchmarks

This work uses microbenchmanks to demonstrate the effectiveness of the code
transformations, calculate the upper limit of performance gain, and identify possi-
ble bottlenecks. Two different categories of microbenchmarks are used. The first
category contains fine-grained communication. The evaluation uses these bench-
marks to measure the potential performance benefit of the inspector-executor op-
timization. The second category is a group of four microbenchmarks that con-
tain all-to-all communication patterns. The evaluation uses the second group of
benchmarks to first identify potential network overheads and measure the possible
benefits from the optimization.

The first category of microbenchmarks is based in a loop that accesses a shared
array of structures. There are two variations of the loop: (i) The loop accesses
consecutive array elements (stream like) and all four elements of the structure are

26 CHAPTER 3. EXPERIMENTAL SETUP

accessed; (ii) The loop accesses random elements of the array and all four structure
fields are accessed. Listing 3.1 presents the first microbenchmark variation.

The second category of microbenchmarks emulates the all-to-all communication
access shared array. There are four variations of this microbenchmark depending
of the granularity of shared accesses. In all versions, each UPC thread executes the
same code in the loop. In the upc memput microbenchmark, the loop contains
coarse-grained upc memput calls. The fine-grained get contains shared reads and
the fine-grained put contains shared writes.

1 typedef struct data{ double var0; double var1;

2 double var2; double var3;

3 } data_t;

4
5 #define SIZE (1<<31)

6 shared data_t Table[SIZE];

7
8 double bench_stream_4_fields(){

9 uint64_t i;

10 double result0 = 0.0, result1 = 0.0;

11
12 for (i=MYTHREAD; i<SIZE-1; i+=THREADS){

13 result0 = Table[i+1].var0 + Table[i+1].var1;

14 result1 = Table[i+1].var2 + Table[i+1].var3;

15 }

16 return result0 + result1;

17 }

Listing 3.1: Microbenchmark kernel that reads four structure fields from a shared
array.

3.2.2 Applications

Gravitational fish: The benchmark is a N-Body gravity simulation, using partial
ordinary differential equations [49], using Euler’s method. All the objects have the
same mass. The benchmark places the fishes evenly along a cycle. There are
three loops in the benchmark that access shared data, one for the computation
of acceleration between fishes, one for data reduction, and one responsible for the
calculation for the new position of fishes. The benchmark calculates the force for
each object using all other objects using this equation :

Fi = G×mi ×
N∑
i=1

dx×mj

(dx2 + dy2)3/2

The performance bottleneck of the baseline version is the first loop, the compu-
tation of the acceleration between fishes because it requires two shared accesses.
The final loop, which calculates the new position of the fish, has complex upper

3.2. AVAILABLE BENCHMARKS 27

1 typedef struct { uint8_t r[IMGSZ]; } RowOfBytes;

2 shared RowOfBytes orig[IMGSZ];

3 shared RowOfBytes edge[IMGSZ];

4
5 void Sobel_upc(void){

6 int i,j,d1,d2; double magn;

7 upc_forall(i=1; i<IMGSZ-1; i++; &edge[i].r[0]){

8 for (j=1; j<IMGSZ-1; j++){

9 d1 = ((int) orig[i-1].r[j+1] - orig[i-1].r[j-1]);

10 d1 += ((int) orig[i].r[j+1] - orig[i].r[j-1])<<1;

11 d1 += ((int) orig[i+1].r[j+1] - orig[i+1].r[j-1]);

12
13 d2 = ((int) orig[i-1].r[j-1] - orig[i+1].r[j-1]);

14 d2 += ((int) orig[i-1].r[j] - orig[i+1].r[j])<<1;

15 d2 += ((int) orig[i-1].r[j+1] - orig[i+1].r[j+1]);

16
17 magn=sqrt((double)(d1*d1+d2*d2));

18 edge[i].r[j] = (uint8_t) (magn>255) ? 255:magn;

19 }

20 }

21 }

Listing 3.2: Sobel: UPC version of the kernel.

bound expression and cannot be normalized. The application overhead has been
analyzed in the previous chapter in section 2.3.

Sobel: The Sobel benchmark computes an approximation of the gradient of
the image intensity function, performing a nine-point stencil operation. At each
point in the image, the result of the Sobel operator is stored on a second shared
array. In the UPC variation [71], the image is represented as a two-dimensional
shared array and the outer loop is a parallel upc forall loop using a pointer-to-
shared affinity test. The parallel implementation of the Sobel operator contains
both local and remote operations. Listing 3.2 presents the kernels of the Sobel
benchmark.

Mcop: The benchmark solves the matrix chain multiplication problem [72].
Matrix chain multiplication is an optimization problem that given a sequence of
matrices, the problem finds the most efficient way to multiply these matrices to-
gether. The problem is not to actually perform the multiplications, but rather
to decide the order in which the multiplications should be performed. The ma-
trix data is distributed along columns, and communication occurs in the form of
accesses to elements on the same row and column.

Fish-Predator: The benchmark simulates the evolution of predators and
preys in an ocean over time [73]. The ocean is represented by a 2D matrix where
each cell can either be empty or contain an individual predator (shark) or prey
(fish). In each time step predators and preys can, after a certain time period, move

28 CHAPTER 3. EXPERIMENTAL SETUP

Update ocean

Update Smell

Calculate Forces

Move Fishes and Sharks

Initialize

Print stats

While (timesteps>0);

(1)

(2)

(3)

(4)

(a)

......

...
...

(b)

......

...
...

(c)

Figure 3.4: WaTor benchmark: architecture (left), smell update (middle), and
force calculation (right).

or replicate themselves, to closer cells. The replication of preys and predators
occur randomly. Figure 3.4(a) presents the architecture of the application. The
benchmark uses four discrete steps to simulate the movement.

The collection of fish and sharks are in a doubly linked list that record their
position, velocity, and age. The fish and shark movements are determined by forces
that are calculated at each point of the two-dimensional grid that represents the
ocean. Each cell of the grid stores the number of fishes and sharks. Furthermore,
sharks have an additional field, the hunger level. Sharks need to eat or they will
starve to death after a number of timestep.

The first step is the update of all fishes and sharks counters stored in each
cells of the ocean (1). The next step involves the calculation of the smell of each
cell on the grid (2). The FishSmell and SharkSmell are the weighted sum of the
number of fish and sharks in a neighborhood of the grid point. At each time step
the application uses the “smell” to compute a “force” on fish and sharks at that
specific grid point. The fishes and sharks use the force to change their velocity.
Each fish or shark contributes a smell of +3 to its cell, a smell of +2 to the cells with
one cell distance and +1 to the grid with the distance of two cells. Figure 3.4(b)
presents the update of the neighboring cells of the grid.

To compute the force vectors, the application searches at the 5×5 neighborhood
grid points to find the fish and shark smell. Fish get a negative force from the
shark smell or a random force if there are no sharks. Sharks get a force towards
the fish smell if no fish smell is present (3). Figure 3.4(c) presents the calculation
of the force between objects. Final step of the simulation (4) is the interaction
between the fishes and the sharks. Sharks eat fishes if they share a grid point and
they satisfy their hunger. If the fishes and sharks survive, then the application uses
the forces to determine their new velocities and positions. Moving the fishes or
the sharks means updating this pointer to the grid. Furthermore, the application
also spawns fishes and sharks in this step.

3.2. AVAILABLE BENCHMARKS 29

1 #define TABSIZE (1L << LTABSIZE)

2 #define VLEN 512

3 #define NUPDATE (4L * TABSIZE)

4
5 shared [*] uint64 table[TABSIZE];

6
7 void calc(){

8 uint64_t ran[VLEN]; /* Random numbers */

9 uint64_t i, size = NUPDATE / THREADS;

10
11 for (i=0; i<size/VLEN; i++){

12 for (j=0; j<VLEN; j++) {

13 ran[j] = (ran[j] << 1) ^ ((int64) ran[j] < 0 ? POLY : 0);

14 }

15 for (j=0; j<VLEN; j++){

16 t1[j] = table[ran[j] & (tabsize-1)];

17 }

18 for (j=0; j<VLEN; j++) {

19 t1[j] ^= ran[j];

20 }

21 for (j=0; j<VLEN; j++){

22 table[ran[j] & (tabsize-1)] = t1[j];

23 }

24 }

25 }

Listing 3.3: Guppie kernel in UPC.

Guppie: The guppie benchmark performs random read/modify/write accesses
to a large distributed array. The benchmark uses a temporary buffer to fetch the
data, modify them, and write them back. The typical size of this buffer is 512
elements. The selected size of data is static and evenly distributed among different
UPC threads. The manual code modifications allow the compiler to optimize the
shared accesses using the remote update optimization. In the UPC hand optimized
version, the number of elements is set to one. Thus, the compiler collapses the loops
and applies the remote update optimization [54]. Listing 3.3 presents the kernel
code of the Guppie benchmark. The MPI version [74] of the Guppie benchmark
generates the data on all processors and distributes the global table uniformly to
achieve load balancing. The benchmark sends the addresses to the appropriate
processor the local process performs the updates.

Bucketsort: The benchmark perform a bucket sort [75, 76] on 16 bytes length
records. Each node generates its share of the records. Each thread uses a 17

16×2GB
buffer in order to hold records received from other threads. These threads are
destined to be sorted on this thread. Once this thread has generated all its share
of records, it distributes the remainder of each bucket to the corresponding thread.
Once this thread has received all appropriate data from each of the other threads,

30 CHAPTER 3. EXPERIMENTAL SETUP

it performs a sort on the local data. The benchmark contains coarse-grained
accesses.

FT: The benchmark is part of the NPB NAS [77] suite. The benchmark solves a
three-dimensional partial differential equation (PDE) using the Fast Fourier Trans-
form (FFT). The benchmark creates an all-to-all communication pattern over the
network. The benchmark contains coarse-grained accesses for communication be-
tween the UPC threads.

3
.2.

A
V
A
IL
A
B
L
E

B
E
N
C
H
M
A
R
K
S

31

Benchmark Type Lines of Code (kernel)

Streaming read Streaming read from next UPC threads Random updates 13

Random read Random reads across all the UPC threads 14

Fine-grained get All-to-all fine-grained reads 10

Fine-grained put All-to-all fine-grained writes 10

upc memget All-to-all coarse-grained reads 9

upc memput All-to-all coarse-grained writes 9

Table 3.2: Overview of micro-benchmarks.

Benchmark Type Communication Granularity Lines of Code

Sobel Sobel edge detection Stencil 1 Byte 160

Fish Grav N-Body gravity simulation using fishes All-to-all 8 Bytes 246

Guppie Random read/modify/write accesses to a large array Random 8 Bytes 176

Mcop Matrix chain multiplication problem All-to-All / Irregular 4 Bytes 171

WaTor Fish-Predator simulator Stencil / Random 4 Bytes 792

Bucketsort Integer sorting All-to-All 16 Bytes > 270

NAS FT FFT transformation All-to-All 32 MBytes > 1307

Table 3.3: Overview of available benchmarks. We provide the source code line number for reference.

32 CHAPTER 3. EXPERIMENTAL SETUP

Chapter 4

Dynamic Data Aggregation

This chapter proposes a strategy based on the inspector-executor technique which
aims to solve the problem of low efficient fine-grained accesses on shared variables.
The goal of the optimization is to decrease the overhead created from the fine-
grained accesses. The solution is to aggregate the shared references at runtime
with the help of compiler transformation, when physical data mapping is missing.
The optimization uses an improved inspector-executor loop transformation with
the assistance of the runtime.

The inspector-executor transformation is presented in Section 4.1 as a possi-
ble solution to address the problem of fine-grained communication. However, the
naive transformation introduces new problems to be addressed: (i) communication
is blocking (ii) memory consumption with large number of loop iterations. For this
reason, this section proposes to strip mine the loop (apply loop blocking) to ad-
dress these two issues. Furthermore, the compiler versions the loops to avoid the
runtime instrumentation overhead when the application runs with one process.
Next, Section 4.2 presents an explanation of the implementation. First, it ex-
plains the compiler side implementation and the runtime support. It also presents
how the implementation resolves the data dependencies and how the profitability
is calculated. The final part of this chapter presents an extensive evaluation of
the transformation using microbenchmarks and benchmarks (Section 4.3). The
evaluation presents results of the microbenchmarks in terms of speedup, absolute
performance numbers, and number of aggregated messages. Moreover, it presents
an overview about the cost of the optimization. Finally, Section 4.4 discuss and
concludes this chapter.

4.1 Approaches and solutions

The idea is to collect the shared addresses that are accessed in a loop, analyze,
coalesce, and fetch them ahead of time before the data are required. Thus, the
knowledge of the shared references before the execution of the loop is necessary in
order to enable the use of an inspector-executor strategy [24, 23, 37, 26]. The idea

33

34 CHAPTER 4. DYNAMIC DATA AGGREGATION

behind this is to collect the shared addresses that we want to access on the inspector
loop, analyze them, and fetch them before entering the main loop. The executor
loop reads the data from local buffers and makes the computation. Listing 4.1
presents the initial source code and Listing 4.2 illustrates the final form.

1 shared double B[N], A[N], C[N];

2

3 ...

4 // two remote reads

5 for(i=MYTHREAD; i<N-1; i+=THREADS)

6 A[i] = B[i+1]*C[i+1];

7 ...

Listing 4.1: Initial source code.

4.1.1 Inspector-executor strategy

The inspector-executor approach has two disadvantages: (i) the pause issue: the
execution of the actual program is paused to analyze shared accesses and to fetch
corresponding data. This pause creates artificial delays and unnecessary overhead
on the execution of the program; (ii) the resource issue: the number of iterations of
the loop may be high enough that leads the memory requirements to unacceptable
levels. One possible solution to this latter issue is to inspect elements for a limited
number of iterations. However, the performance gain in loops with large number
of iterations will be proportional to the fraction of the loop iterations.

1 shared double B[N], A[N], C[N];

2 ...

3 /* Inspector loop: describe remote accesses */

4 /* to the runtime system */

5 for(i=0; i<N; i++){

6 __xlupc_add_access(&B[i+1]);

7 __xlupc_add_access(&C[i+1]);

8 }

9

10 schedule(); /* Access analysis & prefetching */

11

12 /* Executor loop: retrieve prefetch data */

13 for(i=0; i<N; i++){

14 buff1 =__xlupc_sched_deref(&idx1,&B[i+1]);

15 buff2 =__xlupc_sched_deref(&idx2,&C[i+1]);

16 A[i] = buff1[idx1]*buff2[idx2];

17 }

18 __prefetch_reset();

19 ...

Listing 4.2: A simple inspector-executor approach

4.1. APPROACHES AND SOLUTIONS 35

4.1.2 Double buffering

In order to overcome the drawbacks of the simple loop inspector, the compiler strip
mines (or blocks) the main loop. The loop’s iteration space is partitioned into
smaller chunks or blocks. The inner loop is replicated and transformed into two
new loops: inspector and executor loops. The chunk size is the number of iterations
that will be collected and analyzed on each prologue execution, therefore we call
it the prefetch factor (PF). The runtime chooses the best PF to maximize the
benefit without exhausting the resources, solving the resource issue.

1 shared double B[N], A[N], C[N];

2

3 ...

4 /* Prologue loop: inspect the 1st block */

5 for(i=0; i<PF; i++) {

6 __xlupc_add_access(&B[i+1]);

7 __xlupc_add_access(&C[i+1]);

8 }

9 __schedule(); /* Schedule the accesses */

10

11 for(j=0;j<(N-N%PF);j+=PF){

12 /* Inner prologue: inspect next blk */

13 for(i=j+PF; i<MIN(N, j+2*PF); i++){

14 __xlupc_add_access(&B[i+1]);

15 __xlupc_add_access(&C[i+1]);

16 }

17 __schedule(...); /* Schedule the accesses */

18 for(i=0; (i<PF); i++){ /* Inner main loop */

19 buff1 =__xlupc_sched_deref(&idx1, &B[i+1]);

20 buff2 =__xlupc_sched_deref(&idx2, &C[i+1]);

21 A[i] = buff1[idx1]*buff2[idx2];

22 }

23 /* Reset internal buffers/counters */

24 __prefetch_reset();

25 }

26 __prefetch_wait(); /* Wait for the last iteration */

27

28 for(i=N-N%PF; i<N; i++){ /* Epilogue/Residue loop */

29 buff1 =__xlupc_sched_deref(&idx1, &B[i+1]);

30 buff2 =__xlupc_sched_deref(&idx2, &C[i+1]);

31 A[i] = buff1[idx1]*buff2[idx2];

32 }

33 __prefetch_reset();

34 ...

Listing 4.3: A more advanced variation of inspector-executor with loop strip min-
ing and double buffering technique.

To address the pause issue, the inspector loops are shifted one iteration block
to inspect the next block of iterations, thus creating a pipelining effect. The

36 CHAPTER 4. DYNAMIC DATA AGGREGATION

pipelining effect exploits the overlapping of block inspection/execution with the
transfer block using a double buffering technique. The inspector loop collects
the elements for the (i + 1)th block of iterations while the executor loop reads
the coalesced data from a local buffer of the ith block of iterations. The double
buffering allows the execution of the ith block of iterations during the transfer of
the (i+1)th block. The shared data are prefetched ahead of time and the main loop
executes the ith iteration without having to wait because the ith block of data is
ready in the local buffers. Finally, the blocking loop transformation automatically
creates a residual loop (epilogue) that executes the final iterations of the main
loop. Listing 4.3 presents the transformed loop structure.

4.1.3 Loop versioning

In the final transformation versions the loop creates two variants: the transformed
and the unmodified. The runtime is responsible for deciding whether it is profitable
to run the optimized version or not, and if so, decide on the best number of
iterations to prefetch (prefetch factor). The prefetch factor (PF) is the value that
is responsible for the branch condition. It is the result of runtime call and is also
used as blocking factor for the strip mined loop. For that purpose, the runtime
takes into account the number of shared accesses per iteration, the number of
iterations and the number or processes. Section 4.2.2 provides the implementation
details. For instance, in the case where there is only one node in the system and
all UPC threads are located in the same node, the benefits from the optimization
are very limited and not enough to compensate the overhead. Consequently, the
runtime will decide not to apply the optimization. Figure 4.1 presents the final
form of the transformed loop structure.

4.2 Implementation

This section presents a detailed explanation of the implementation of the opti-
mization proposed. First the compiler transformation is presented and then the
required runtime support. In short, the compiler applies the loop transformations
and inserts the proper calls between different parts of the loop structure. The
runtime is responsible for profitability analysis, for keeping the list of shared ref-
erences, for analyzing and coalescing them, and for retrieving the data from local
buffers.

4.2.1 Transformation algorithm

Algorithm 1 describes the steps of the compiler algorithm. First, the com-
piler checks the memory architecture and the consistency model. The architecture
must be either distributed memory or unknown during the compilation time and
the memory model must be relaxed. The compiler applies the transformation in
four phases: in the first phase, it does the gathering of loop candidates and the

4.2. IMPLEMENTATION 37

PrefetchAndCoalesceSharedRefs(Procedure p)
1: for each candidate loop structure Li in p do
2: RefList← ∅;
Phase 1 - Gather Candidates
3: for all Shared mem reference and is non-local Rs in Li do
4: RefList.Add(Rs);
5: end for
6: if RefList is ∅ then
7: continue;
8: end if
Phase 2 - Replicate and create loops
9: branchExpr ← prefetch factor call

10: {Li, nativeLoopi} ← Version(Li, branchExpr)
11: prologi ← Replicate(Li)
12: {residualLi, innerloopi} ← StripMine(Li)
13: innerprologi ← Replicate(innerloopi)
Phase 3 -Modify inspector loops
14: Preserve expr(prologi, innerprologi);
15: Preserve vars(prologi, innerprologi);
Phase 4 - Insertion of runtime calls
16: (prologBODYEND

i , innerprologBODYEND
i).Add(schedule)

17: LBODY END
i .Add(schedule wait)

18: (innerloopBODYEND
i , residualLBODYEND

i).Add(sched reset) ;
19: for each shared mem ref Rs in RefList do
20: stmts ← SHARED STATEMENT(RS)
21: for each statement stmt in prolog do
22: if stmt = stmts then
23: prologstmt

i .Add(add access call)
24: prologstmt

i .Remove()
25: break;
26: end if
27: end for
28: for each statement stmt in innerprolog do
29: if stmt = stmts then
30: innerprologstmt

i .Add(add access)
31: innerprologstmt

i .Remove()
32: break;
33: end if
34: end for
35: end for
36: for each shared mem ref Rs in RefList do
37: stmts ← SHARED STATEMENT(RS)
38: for each statement stmt in innerloopi do
39: if stmt = stmts then
40: innerloopstmt

i .Add(buf=deref)
41: innerloopstmt

i .Replace(stmtexprs , buf)
42: end if
43: end for
44: for each statement stmt in residualLi do
45: if stmt = stmts then
46: residualLstmt

i .Add(buf=deref)
47: residualLstmt

i .Replace(stmtexprs , buf)
48: end if
49: end for
50: end for
51: end for

Algorithm 1: Inspector-executor compiler algorithm.

38 CHAPTER 4. DYNAMIC DATA AGGREGATION

If (PF) {

}else{

}

Original

loop

Outer strip-mined

Main Loop

Optimized Loop Region

Prologue Loop (PL)
Inspector - (1st)

Main Loop (ML)

Residual Loop (EL)
Executor

Inner Prologue Loop
Inspector - (i+1)

Inner Strip-mined Loop
Executor - (i)

PF = __prefetch_factor();

Figure 4.1: Final version after the loop versioning.

collection of shared references. The second phase applies the loop transformations.
In the third phase, the compiler modifies the inspector loops to maintain only the
expressions that are responsible for creating the indexing value and for preserving
the values of the loop that is being modified. In the fourth and final phase, the
compiler inserts the proper runtime calls to support the optimization.

Phase 1: Gathering of candidates

Initially, the algorithm collects candidate loops containing shared array references.
The algorithm uses the following criteria to evaluate whether the loop is a can-
didate for prefetch analysis: (1) The loop must not contain any break/continue
statements, (2) it must be normalized, and must not have any (3) lexicographic
negative dependencies between iterations (line 1).

The first rule (1) ensures that the loop has a single entry and exit point.
This ensures the simplicity of the transformation. Implementing a more complex
version that supports these types of loops is possible. However, we have to take into
account the out-of-order execution of the runtime calls. This requires additional
checks at runtime that can decrease the application performance.

The second requirement, the normalized loop (2), is necessary to optimize
loops. There are two reasons for this requirement. First the loop dependence
analysis is simpler because the distance of dependency can be calculated easier
than the non-normalized loops. The second reason is to avoid loops that modify
data structures that are used for the exit condition. These loops are had to predict
and require again changes on the runtime for arbitrary library call execution.
Furthermore, this requirement ensures that the low/upper bound expression of
the loop and the iteration step are not a procedure call. In our implementation,

4.2. IMPLEMENTATION 39

the XL UPC compiler framework normalizes most of the loops before entering to
the presented transformation.

The final requirement, the loop must not have lexicographic negative depen-
dencies [78], ensures the good performance of the program. For example, assuming
the shared arrays ‘a’, we can have this loop:

for (i = 1; i<N; i++){

a[i] = a[i-1];

}

The transformation prefetches the accesses a[i-1]. However, the program will
read the wrong element on position a[i] on the next loop instance. Section 4.2.3
presents a solution for these types of loops, unfortunately with a drop in the
application’s performance.

Following this selection, the compiler further analyzes the candidate loops by
inspecting the shared references they contain. The algorithm collects the shared
references that are not local (line 3). If the collected list of prefetching elements
is empty then the algorithm continues with the analysis of the next loop (line 6).

Phase 2: Loop transformations

The compiler versions the loop in two new variants in line 10: the unoptimized
native version and the optimized version. In addition, it inserts a runtime call
before the two versions of the loop. This call will returns at runtime the number
of iterations to be prefetched: the prefetch factor (PF). This value is used as a
profitability condition to select the proper loop version.

In the optimized version, the loop is transformed into two new loops, a pro-
logue loop and a main loop (line 11). The main loop is strip mined, and its inner
and outer loops are replicated (line 13) resulting in the inner prologue loop and the
inner strip mined main loop (Figure 4.1). The prefetch factor (PF) is used as loop
strip size. In the inner prologue loop, the bounds are modified to prefetch the next
iteration of the inner main loop. The loop blocking transformation automatically
create a residual loop (or epilogue loop) to execute the last remaining iterations,
in case the PF doesn’t divide exactly the upper bound of the loop. Finally, the al-
gorithm examines the prologue loops to ensure that they do not contain procedure
calls with side effects.

Phase 3: Inspector loop adjustment

Two challenges must be addressed before the insertion of runtime calls. The first
challenge is to preserve the expressions that modify the index variables. In line 14,
the algorithm uses control and data flow graph analysis [42] to search for expres-
sions that modify the symbols used for the calculation of the index. The other
challenge is to preserve the variables that the inspector loop modifies during the
execution. In this case, we store the values to temporary variables before the body

40 CHAPTER 4. DYNAMIC DATA AGGREGATION

of the loop and then we restore them after the execution of the inspector loops
(line 15).

Phase 4: Runtime calls insertion

In the final step, the compiler inserts the following runtime calls:

• The schedule call is inserted before the main loop and between the start of the
inner loop and the inner prologue (line 16). These calls instruct the runtime
system to analyze, coalesce the accesses, and issue network communication.
Furthermore, the schedule call blocks until the transfer of the previous data
block is complete.

• A schedule wait call is inserted after the end of the main loop and before the
residual loop (line 17). If the PF does not divide the loop upper bound, then
the program must wait for the last block of data to be transferred before the
execution of the residual loop.

• The compiler inserts the schedule reset calls after the end of executor loops:
the inner loop and the residual loop (line 18) to recycle the internal runtime
data structures for the next prefetching phase.

• The add access call is inserted (lines 23, 30) in the body of inspector loops,
for each shared reference. These calls describe the shared references to the
runtime system. The compiler passes through the statements of the inspec-
tor loops, to replace the statements containing shared references with the
runtime call.

• For each shared reference, a dereference call is inserted inside the executor
loops: inner main loop and the residual loop (lines 40, 46). The dereference
call returns a buffer and sets the proper value on a temporary variable for
indexing the buffer. The compiler replaces each expression containing the
shared reference with a local access by using the aforementioned buffer and
index (lines 41, 47).

4.2.2 Runtime support

The optimization requires runtime support to perform prefetching and coalescing.
The runtime is responsible for four tasks: (a) decides if the optimization is prof-
itable, (b) stores information for the shared references, (c) analyzes the shared
references and tries to coalesced them, and finally (d) retrieves the data from the
local buffers. Thus, the proper selection of the algorithms and data structures
have significant impact on the performance of the application.

The first task is to decide whether the loop transformation is beneficial and
calculate prefetch factor. Algorithm 2 calculates the prefetch factor. The runtime
checks if the number of processes is more than one and if the number of UPC

4.2. IMPLEMENTATION 41

Key:

Var Index

Thread id

Entry

Local buffer

Type info (BF,ES,...)

Entry

Offsets

Entry

Entry

Entry

Create vector to fetch remote

shared data

T1:

T2:

T3:

Access data

with one message

Remote

Data

H

A

S

H

T

A

B

L

E

Figure 4.2: Runtime internal implementation.

threads is greater than the upper bound of the loop (line 1). If yes, then the runtime
will decide to execute the unmodified version of the loop. The unoptimized loop
does not use network communication: the runtime uses simple loads and stores
(memcpy) to transfer the data. The overhead using thread communication is less
than the overhead of scheduling optimization, which requires keeping information
about shared accesses and analyzing them. Furthermore, we put an upper limit
to the number of iterations that can be prefetched to avoid overconsumption of
memory resources(line 5). The runtime calculates the prefetch factor by dividing
the upper limit by the number of shared elements. The prefetch factor must be
the minimum between the upper bound minus one, and the calculated prefetch
factor. We use the upper bound minus one to ensure that the program will be
enter at least one time in the main loop. If the prefetch factor is less than two,
then the unoptimized version is used.

The second task is to collect and store information about shared accesses in

Prefetch factor(int num elems, int upper bound)

1: if XLPGAS NODES == 1 or upper bound ≤ XLPGAS NODES then
2: return 0;
3: end if
4: max loop← upper bound− 1;
5: PF ←MAX FETCH/num elems;
6: if PF ≥ max loop then
7: PF ←MAX;
8: end if
9: if PF ≤ 2 then

10: PF ← 0;
11: end if
12: return PF;

Algorithm 2: Calculation of Prefetch Factor.

42 CHAPTER 4. DYNAMIC DATA AGGREGATION

the inspector loops. For each shared access the runtime stores information about
the shared variable, the related offset, the blocking factor (BF) and element size
(ES) into a hash table. For each pair of variable and UPC thread identifier, the
runtime searches the hash table. If an entry exists, then the runtime inserts the
offset, otherwise the runtime creates a new entry and inserts it in the hash table.
On each entry of the hash table, the runtime maintains an array of the offsets
that the runtime collects. The runtime does not issue any communication request
during the collection phase. Moreover, the runtime uses a memory pool and buffer
recycling to avoid the dynamic memory allocation overhead. On each call of the
‘reset’ procedure, the runtime resets the internal data structures, including the
hash entries.

The third task is the ‘scheduling’ of accesses. A runtime call is responsible for
analyzing, coalescing and prefetching shared accesses. The runtime first sorts the
collected offsets using the quicksort algorithm, removes duplicates, and prepares
the vector of offsets to fetch. There are two reasons for sorting and removing dupli-
cates from the offset list. First, the sorting makes the translation from shared index
to local index faster. Second, removing duplicates decreases the transfer size in ap-
plications that have duplicates, such as stencil computation. Finally, the runtime
prepares a vector of offsets for fetching data. The transport library uses one-sided
communication to achieve high throughput with low overhead. Figure 4.2 presents
the internal structure and the analysis technique of the runtime.

The fourth task involves data retrieval from the local buffers. The runtime
call returns a pointer to the local buffer and stores the index variable with the
proper value. Internally the runtime first tries to calculate the index value directly
by using an auxiliary table. If this fails, searches the offset table using a binary
search algorithm. One of the key optimizations of the runtime is the handling
of shared data that belong to the same node. The runtime does not collect nor
analyze the shared references if they are locally accessible. In the dereference call,
the runtime simply returns a pointer to the local data.

4.2.3 Resolving Data Dependencies

1 #define N 8192

2

3 int compute(shared int *ptr1, shared int *ptr2){

4 int i;

5 for(i=0;i<N-1;i++){

6 ptr1[i] = ptr2[i];

7 }

8 }

Listing 4.4: Example of possible pointer aliasing.

In a parallel loop with loads and stores on shared objects, the compiler may
not be able to determine the data dependencies at compile time and must assume

4.3. EXPERIMENTAL RESULTS 43

void compute(shared int *ptr1, shared int *ptr2){
 int i;

 /* Executor body */

 for (i=0;i<N;i++){
 char * tmp = __schedule_deref(ptr1, i, &idx)

 tmp_local_ = *(int *) (tmp + idx);
 __schedule_assign(ptr2, &tmp_local, i, TRUE);

 }
 ...

}

Example Executor Code:
void __schedule_assign(shared void *ptr, void* local,
 size_t idx, bool update_local){

 /* Issue a remote store */
 __ptrassign_post(ptr2, &local, i);

 /* Update local bufferrs if necessery */
 if(update_local == TRUE){
 /* First search if we have the data locally */
 if ((data =__locate_data(gatherTable)) != NULL){
 __update_local_buffer(data, local)

 }
 }

 /* Run through the queues for the completions */
 __runqueues();

}

Schedule Assign Runtime Code:

Figure 4.3: The runtime resolves dependencies with the help of the compiler.

alias dependencies between the shared pointers. An example of this case is a loop
that has references and assignments using shared pointers and without any infor-
mation about the shared arrays. In this case, the compiler cannot determine the
dependencies and assumes that there are dependencies between the shared point-
ers. Listing 4.4 presents an example of possible alias dependencies: the compiler
is unable to determine if there is an overlap between the ptr1 and ptr2 pointers.

To guarantee memory consistency, the compiler creates the shared write calls
with an additional argument that notifies the runtime to make additional checks for
outstanding transfers. The compiler will set this flag to true if there is an overlap
between shared addresses or if the compiler fails to resolve the alias dependencies.
The runtime handles the shared data stores in one of the three following ways:

• Compiler signals that there is no overlap with other shared objects that ap-
plication modifies. In this case, the runtime does not execute any additional
code.

• Program writes on shared data and there is a copy of the shared data on a
local buffer. Runtime issues the remote store and updates the local buffer to
maintain the consistency.

• There is overlap between the shared stores and the transferred data from a
remote node. In this case, the runtime waits for the transfer to be completed
and overwrites the prefetched data.

Figure 4.3 presents the user’s code and the runtime implementation. If the
compiler fails to determine the dependencies between variables, it sets the variable
update local.

4.3 Experimental Results

This section presents experimental results using two microbenchmarks and five
benchmarks. First, the evaluation uses microbenchmarks to calculate an upper

44 CHAPTER 4. DYNAMIC DATA AGGREGATION

limit on the performance gain and identify possible bottlenecks. Next, the perfor-
mance of the benchmarks is presented. Moreover, this section provides an analysis
of the overheads by presenting application time breakdowns. Finally, we briefly
analyze the cost of the optimization in terms of code increase, compilation time,
and runtime memory requirements.

4.3.1 Benchmark versions

The evaluation uses five different benchmark versions:

• The Baseline version, compiled with dynamic number of threads and the
inspector-executor optimization disabled. The number of UPC optimizations
that the compiler applies without the physical mapping knowledge is limited
to privatization of some shared accesses inside the upc forall loops.

• The Aggregation version, where the compiler applies the inspector-executor
optimization that prefetches and coalesces shared references at runtime.

• The hand-optimized shows the performance of the benchmarks using coarse-
grained communication and manual pointer privatization. The manual work
focuses on strip mining the loops and the use of collective communication
mechanisms when possible.

• The MPI version contains coarse-grained communication. It uses collective
communication when possible and does not use the non-blocking mechanisms
for fairness.

When the optimization is unable to find any opportunities for coalescing shared
accesses, the algorithm returns without any modification on the program. In
other cases, the compiler applies the optimization, but the number of iterations at
execution time is low in order to benefit from the optimization. The runtime library
will detect this incidence at runtime and the program executes the unoptimized
version of the loop. In this case, the overhead incurred by calling the runtime for
loop selection, is relatively small compared with the fine-grained accesses.

All runs use one process per UPC thread and schedule one UPC thread per
Power7 core. The runtime prefetches at most 4096 iterations (MAX FETCH).
Each UPC thread communicates with other UPC threads through the network
interface or interprocess communication. The UPC threads are grouped in blocks
of 32 per node and each UPC thread is bound to its own core. The experimental
evaluation runs each benchmark five times. The results presented in this evaluation
are the average of the execution time for the five runs. In all experiments, the
execution time variation is less than 5%. We run one iteration of the optimized
loop before the actual measurement to warm-up the internal structures of the
runtime. All benchmarks are compiled using the ’-qarch=pwr7 -qtune=pwr7 -O3

-qprefetch’ compiler flags.

4.3. EXPERIMENTAL RESULTS 45

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

1000

10

0.1

0.001

B
a
n

d
w

id
th

 (
G

B
/s

)

Baseline

Aggregation

1000

10

0.1

0.001

Stream-like Random

Figure 4.4: Performance in GB/s for the microbenchmark reading four fields from
the same data structure in streaming and random fashion.

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

5

10

15

20

S
p

ee
d

u
p

 (
X

 t
im

es
)

Streaming Aggregation

Random Aggregation

Figure 4.5: Achieved speedup for the two microbenchmark variations.

4.3.2 Microbencmarks Performance

Microbenchmanks are used to demonstrate the effectiveness of the code transfor-
mations and identify pathological defects. Figure 4.4 presents the achieved perfor-
mance of the microbenchmark in GB/s, using different variations. The speedup
of the inspector-executor version (Aggregation) varies between 3.1x and 6.7x over
the baseline using the first variation of the microbenchmark (Figure 4.5). The first
microbenchmark reads data from the neighboring UPC threads. Thus, internally
the runtime creates one entry in the hash table and the memory overhead is lim-
ited. In this microbenchmark version, the runtime coalesces (or aggregates) on
average 4096 elements in one message. Moreover, we observe a slight increase in
the achieved speedup for more than 16384 UPC threads, most likely due to higher
latency and network contention. On the other hand, when reading elements in
a random way, the speedup varies from 3.2x up to 21.6x. In the case of random
access pattern, we analyze three irregularities: (i) benchmark with random access
pattern achieved better performance from the stream-like with 256 or less UPC

46 CHAPTER 4. DYNAMIC DATA AGGREGATION

benchmarks; (ii) the performance gain (speedup) decreases in random access when
the number of the UPC threads is increasing; (iii) the performance of random reads
decreases for more than 1024 UPC threads.

Performance of random access versus stream-like

The first interesting result is that the random access achieves better bandwidth
compared with the stream-like variation when the prefetching is enabled and we
run the benchmarks with 256 or less UPC threads. For example, in the stream-like
variation, the benchmark achieves 2.1 GB/s in contrast with the 4.5 GB/s in the
random access. The reason for that is the Hub chip architecture. The Hub chip
has 7 different links for connecting nodes on the same drawer. These links have
unidirectional bandwidth of 3 GB/s point-to-point between cores with a maximum
of 24 GB/s aggregated unidirectional bandwidth [79].

To investigate this behaviour we focus at the runs with 256 UPC threads. In the
case of the stream-like, the runtime fetches entries∗sizeof(field) = 4K∗8Bytes =
32KBytes packets from the neighbor UPC thread. The slowest part connects the
nodes: when thread #31 that belongs to node 0 fetches from thread #32 that
belongs to node 1. In this case, the unidirectional bandwidth will be around
2GB/s using 32 KByte packets. In the case of random access, we can calculate
the number of entries in the hash table, assuming uniform random accesses:

Entries =

MAX FETCH
#Elems loop

#UPC THREADS
=

4096
4

256
= 4.

That means that we need to fetch fields∗entries∗sizeof(field) = 4∗4∗8 = 128
Bytes packets per remote thread. That means that we have one request of 128
Bytes per remote thread, and we are going to use all the 7 links with other nodes.
We have 32 threads on the same node, so we will have 32 packets of 128 bytes
per link. In the best case scenario, the packets will arrive at the same time and
the hardware coalesces them creating one big packet of 4 KBytes. Packets of 4
KB have around 860 MB/s point-to-point unidirectional bandwidth. Thus, the
aggregate bandwidth can be up to 7 ∗ 0.86 = 6.02GB/s at best, which is much
higher than the 2 GB/s of the streaming-like variation. Although, the hardware
does not always coalesce the packets because they arrive at different time, when
the achieved aggregated bandwidth of the interconnection network increases.

Overall, in the streaming benchmark only one of the threads in the node com-
municates with the neighbor node and therefore, only one of the Hub links is used,
decreasing the bandwidth to the maximum that can be achieved. In contrast, the
random pattern benchmark all nodes communicate, assuming an average of 4 re-
mote accesses per thread. Thus, the traffic goes through the seven available links,
achieving higher effective bandwidth than the stream-like version.

4.3. EXPERIMENTAL RESULTS 47

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

25

20

15

10

5

S
p

ee
d

u
p

Speedup Rand

Speedup Stream

1024

128

24

4

M
essa

g
es A

g
g
reg

a
ted

Aggr Rand

Aggr Stream

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

25

20

15

10

5

S
p

ee
d

u
p

Speedup Rand

Speedup Stream

6000

600

M
em

o
ry

 (K
B

)

Mem Rand

Mem Stream

(b)

Figure 4.6: Achieved speedup for the two microbenchmark variations compared
with the number of messages aggregated (left), and speedup compared with the
memory consumption of the runtime (right).

Speedup decrease of random access

The second observation is that the performance gain (speedup) of the random
access decreases, but in stream-like remains constant. There are two reasons for
this outcome: (i) The memory consumption of the runtime system, and (ii) the
number of coalesced messages. Figure 4.6(a) presents the number of coalesced
messages per UPC thread compared with the number of threads running. We can
see the correlation between the speedup and the aggregation of the messages. The
problem is to be found in the iterations to inspect (prefetch factor). The maximum
prefetch factor is 4096, thus for random accesses using 1024 UPC threads, the
entries are: 4096/4

1024 = 1 access per thread, assuming uniform distribution. However,
the benchmark reads four elements of the structure using the same index. Thus,
the runtime coalesces four accesses in all cases. An additional factor that influences
negatively the performance is the impact of the memory allocation. Figure 4.6(b)
presents the memory consumption per UPC thread and the achieved speedup.
We observe that the memory consumptions increases on each doubling of UPC
threads. In this case, the runtime adds new entries in the hash table and allocates
a buffer for each UPC thread. The speedup decreases from 5.3x to 3.0x. On the
other hand, the memory consumption is constant in the stream-like benchmark
and the runtime aggregates always 1024 messages.

Random Reads Performance Decrease

The final observation is that the performance of the random reads decreases for
more than 1024 UPC threads, with or without prefetch. This decrease in perfor-
mance is due to the interconnection between supernodes. The network architecture

48 CHAPTER 4. DYNAMIC DATA AGGREGATION

has a two-level direct-connect interconnect topology that fully connects every ele-
ment in each of the two levels. With only two levels in the topology, the longest
direct route L-D-L (intra - inter - intra supernode) [63] can have three hops at
most which consist of no more than two L hops and at most one D hop maximum.
The advantage of this topology is that it improves the bisection bandwidth over
other topologies such as fat-tree interconnects and eliminates the need for external
switches. However, the architecture of the interconnection limits the performance
in the case of the random accesses pattern when most of the traffic is routed
through the remote links.

To prove that the interconnect is the bottleneck in the random access pattern,
we calculate for each node, how much of traffic will use the D links each supernode
for the communication. In all cases we assume uniform traffic distribution. In
order to calculate this value, we first detract the number of threads that belong to
the same supernode because there is direct connection between them. Secondly,
we detract the number threads that belong to other threads.

First we calculate with how many threads, that reside on different supernodes,
one thread can communicate using direct connection. In our setup, the cluster uses
eight inter-supernode (8D) links to communicate together [80]. Thus, the number
of links one supernode has with other supernodes is:

number of links = (#supernodes− 1)× 8

Because each supernode has 32 nodes, and each node contains one Hub chip. On
average each node has:

remote links per node =
(#supernodes− 1)× 8

32

In our experiments we use 32 UPC threads per node. The total number of
UPC threads that use direct connection are:

remote links per thread =
(#supernodes− 1)× 8× 32

32
= (#supernodes−1)×8

Moreover, each node has 31 direct connections with other nodes inside the supern-
ode. The total number of direct connections inside the thread are:

intra links = threads per node× nodes per supernode = 32× 31 = 992

Each node contains 32 UPC thread. Thus, we assume that all communication
between these threads are local (intra node threads). Combining all the equations
together, the amount of traffic that is using links with more than one hop is:

threads− remote links per thread− intra links− intra node threads

threads

Table 4.1 presents the percentage of traffic that uses more than one hope.
Overall, the interconnection of the supernodes burdens the performance in random
access patterns. This is due to the saturation of the remote links in more than
1024 UPC threads.

4.3. EXPERIMENTAL RESULTS 49

Number of UPC threads 1-hop Links (%) Links with > 1-hop (%)

1024 100% 0%

2048 50.39% 49.61%

4096 25.59% 74.41%

8192 13.18% 86.82%

16384 6.98% 93.02%

32768 3.88% 96.12%

Table 4.1: Percentage of traffic that uses remote and local links.

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

600000

60000

6000

600

60

M
p

ix
el

/s

Baseline

Aggregation

Hand Optimized

MPI

Figure 4.7: Performance numbers for the sobel benchmark using different versions.

4.3.3 Applications Performance

Sobel

The sobel benchmark communicates with neighboring UPC threads only at the
beginning and at the end of the computation. The kernel of the benchmark has nine
shared reads, and the compiler will create additional library calls in the inspector
loops. Figure 4.7 illustrates the performance numbers for the sobel benchmark
in mega-pixel/s1. The inspector-executor (aggregation) optimization achieves a
performance gain between +15% and +60%. The relatively low performance gain
compared with the microbenchmark and the gravitational fish benchmark, is due
to the good shared data locality. For example, only 1.6% of the shared accesses are
remote, running with 2048 UPC threads. The shared data has been distributed
by blocks of rows to minimize remote accesses. One interesting characteristic of
the sobel benchmark is that the runtime coalesced 258 packets into one remote
message, independently of the number of the UPC threads. Thus, the number
of memory consumption from the runtime is constant in all runs at 62 KBytes.

50 CHAPTER 4. DYNAMIC DATA AGGREGATION

3
2

1
2
8

5
1
2

2
0
4
8

8
1
9
2

UPC THREADS

400000

40000

4000

400

40

O
b

je
ct

s/
s

Baseline

Aggregation

Hand Optimized

MPI

Figure 4.8: Performance numbers for the gravitational fish benchmark using dif-
ferent versions.

Finally, and as expected, the manually optimized variation has better performance
than all other variations. The programmer is able to coalesce 65536 elements (one
row) in one transfer in the manually optimized version. Thus, the programmer
uses only local data inside the execution loop, avoiding the creation of runtime
calls from the compiler.

Gravitational Fish

The Fish benchmark has very low performance due to fine-grained accesses (Fig-
ure 4.8). The inspector-executor (aggregation) optimization gives a speedup be-
tween 6.3X up to 23.6X compared to the baseline, thus proving the usefulness of
the optimization. Furthermore, we observe that the performance drops signifi-
cantly for more than 1024 UPC threads. Figure 4.8 includes numbers only up to
8192 UPC threads because runs with 16K or more threads are not practical. There
are two sources that burden the performance of the application: (i) the limitations
resulting from the architecture of the interconnect network and (ii) the way the
data are stored and accessed. First, the benchmark saturates the inter-supernode
links for the same reasons that the second microbenchmark (random access) has
low performance for more than 1024 UPC threads, in a similar way fish saturates
the inter-supernode links. Secondly, all UPC threads access data in a streaming
fashion starting from the first UPC thread. Thus, for the first iterations of the
loop, all the UPC threads will try to access the data on the first UPC thread at
the same time. Moreover, the hand-optimized and MPI versions are not exhibit
this pathogenic behaviour for two reasons. First, they use collective communi-
cation (broadcast and reduction) to accelerate the transfers. Second, they use
coarse-grained communication that utilizes more efficient the network.

4.3. EXPERIMENTAL RESULTS 51

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

4000000

400000

40000

4000

K
B

/s

Baseline

Aggregation

Hand Optimized

MPI

Figure 4.9: Performance numbers for the WaTor benchmark using different ver-
sions.

WaTor

The aggregation and the static coalescing give a speedup from 3.8x up to 15.6x
compared with the baseline version in the WaTor benchmark (Figure 4.9). The
performance decreases for more than 1024 UPC threads because of the communi-
cation pattern. The benchmark reads 25 points of the neighboring cells of the grid,
in order to calculate the forces. The large number of remote shared references sat-
urates the remote links for more than 2048 UPC threads. The compiler optimizes
most of the remaining shared accesses using the remote update optimization [54].
The MPI version is faster but requires additional code before and after calculating
the force and moving objects. The compiler does not create additional calls for
accessing the data unlike with the UPC versions.

Guppie

The Guppie benchmark uses a 256 MByte array with one billion updates per UPC
thread. The random elements are selected for Guppie benchmark from a 64K ele-
ment array of indexes. The compiler optimizes the main kernel of the benchmark,
however the access pattern of shared data is randomly and thus, the performance
gain numbers have a variation of +/- 10%. In this benchmark, the runtime is able
to coalesce from two up to eight different messages, due to the dynamic nature
of the shared accesses. Figure 4.10 shows the performance numbers for the Gup-
pie benchmark in MegaUpdates/s using logarithmic scale. The aggregation gives
a speedup from 1.1x up to 7.5x compared to the baseline version. Furthermore,
manual code modifications allow the compiler to optimize using the remote up-
date optimization. The remote update optimization uses hardware acceleration.
Thus, the achieved performance for the manual optimized code is from 4.64x up to

52 CHAPTER 4. DYNAMIC DATA AGGREGATION

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

3
2
K

UPC THREADS

4

40

400

4000

40000

400000

M
e
g
a
U

P
/s

Baseline

Aggregation

Hand optimized

Figure 4.10: Performance numbers for the Guppie benchmark.

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

UPC THREADS

4

40

400

4000

M
e
g
a
O

P
/s

Baseline

Aggregation

Figure 4.11: Performance numbers for the MCop benchmark.

1270x times faster than the automatically optimized version. The hardware solu-
tion provides even more efficient solution than the inspect-executor optimization.
Moreover, the hardware packet aggregation give an additional performance gain
to the remote update.

MCop

The benchmark solves the matrix chain multiplication and contains irregular shared
references. Figure 4.11 presents the performance numbers for the MCop bench-
mark in Operations/s. The aggregation gives a speedup raging from 4.9X up
to 14.5X compared with the baseline version, due to the low performance of the
baseline. The automatic compiler optimization is faster due to a better overlap of
communication and computation.

4.3. EXPERIMENTAL RESULTS 53

4.3.4 Where does the time go?

A
g
g
re

g
at

e
S

o
b
el

A
g
g
re

g
at

e
F

is
h

A
g
g
re

g
at

e
W

aT
o
r

0

20

40

60

80

100

 %
 T

im
e

Inspector: Ptr Arithmetic

Inspector: Add

Executor: Ptr Arithmetic

Executor: Dereference

Executor: Calculation

Schedule

Other

Figure 4.12: Normalized execution time breakdown of
the benchmarks using 128 UPC threads.

An interesting question
arises: where does the
time go during the ex-
ecution of the applica-
tion. Figure 4.12 presents
the breakdown for the
three benchmarks. The
shared pointer arithmetic
(Ptr Arithmetic)
translates the offset to
the relative offset inside
the thread. The inspec-
tor loops take 31% and
18% of the execution time
in the Sobel and gravi-
tational fish benchmarks,
respectively. The trend
is similar for the gravi-
tational fish and WaTor
benchmarks. The com-
piler optimizes only the force calculation part in the WaTor benchmark. Thus,
the relative contribution of the other parts of the benchmark to the execution
time increases. One interesting characteristic of the fish benchmark is the poor
performance of the scheduling algorithm (Schedule) which is due to the all-to-all
communication pattern. Thus, a better scheduling algorithm that would exploit
collective communication is needed in order to achieve good performance in the
fish benchmark (Figure 4.8).

4.3.5 Cost of the optimization

The final part of the evaluation examines the transformation cost in compile time,
increase of code-size, and runtime memory increase. Applying the code trans-
formation has some costs: (a) compile time increase, (b) code increase, and (c)
runtime memory.

The increase in compilation time varies from 20% to 35%. The main reason
for such a large increase is the loop replication and the rebuilding of data and
control flows for the transformed loops. The factor that affects the compilation
time the most is the number of shared accesses. Compiler inserts runtime calls for
inspecting the elements and to use the data from the local buffers.

The second drawback of the transformation is the increase in code. The code-
size increase provides an insight about the glue code that compiler generates. The
transformation requires the creation of three additional loops and the strip mining

54 CHAPTER 4. DYNAMIC DATA AGGREGATION

Benchmark Baseline Aggr. Shared Accesses Num. Calls Cost per Access
Sobel 10332 16188 8 38 +732

Fish Grav 22175 28543 4 22 +1592
WaTor 129592 131736 2 14 +1072
Guppie 5022 7134 1 10 +2112
MCop 12188 19100 6 48 +1152

Table 4.2: Object file increase in bytes. We consider only the transformed file.

of the main loop. Moreover, it inserts some runtime calls to the end of inspecting
and managing the shared accesses. Table 4.2 illustrates the code increase for the
five benchmarks. The table also presents the number of calls created. The Sobel
benchmark has the biggest increase in code, due to its large number of shared
accesses. The number of calls can be calculated using this equation:

number of calls = number of accesses× 4 + loops optimized× 6

For example, in the Sobel benchmark, the compiler creates eight calls per inspector
loop and eight calls per executor loops. Moreover, the compiler creates two calls
for the schedule, two for the prefetch reset, one for prefetch wait, and
one for prefetch factor. Thus, the total number of calls are 8 × 4 + 1 × 6 =
32 + 6 = 38. On average, each prefetched shared access can add up to 2000 bytes
of additional code. The cost per call is higher in the Guppie benchmark because
the compiler optimizes prefetches only one element. On the other hand, MCop
has the biggest increase because the compiler optimized four different loops.

Finally, the optimization increases the memory requirements. The runtime
keeps information about the shared accesses and uses local buffers for fetching the
data. We are aware of the key role of memory usage in scaling to thousands of
UPC threads and also acknowledge that the increased memory requirements can
limit the performance gain of the application. To address this challenge, we limit
the value of the prefetch factor to avoid the allocation of large amounts of memory.
For the experiments that we presented, we limit the factor to 2048, although it
is configurable. However, large values of the prefetch factor increase the memory
footprint of the application and the overhead of analyzing the shared accesses. We
limit the additional allocated memory in less than four MBytes because we want
the local buffers and metadata to be in the cache hierarchy.

4.4 Chapter Summary and Discussion

This chapter described code transformations that improve the performance of fine-
grained communication using data aggregation (or coalescing) at runtime. The re-
sults presented indicate that the inspector-executor optimization dynamic commu-
nication coalescing is an effective technique decreasing the impact of fine-grained
accesses and increasing the network efficiency. This approach can provide better

4.4. CHAPTER SUMMARY AND DISCUSSION 55

performance and does not require knowledge of physical data mapping or the usage
of the upc forall loop structure.

Despite the high gain in performance that our approach ensures, there is still
room for improvements. First, there is the overhead of the inspector loop and
the analysis. Although, the transformation amortizes part of the overhead using
the double buffering, further improvements can be achieved. One of the overhead
sources is the increased number of runtime calls created by the inspector-executor
transformation. Second, the absence of collective communication limits the perfor-
mance in certain data-access patterns. The inability to discover collective access
patterns limits the performance in some benchmarks, such as the fish gravita-
tional. Finally, the performance of the random access pattern for more than 2048
UPC threads is limited by the characteristics of the interconnection network i.e.
the number of remote links that connect the supernodes. We will address these
shortcomings in the following chapters. The relative cost of the optimization, in
terms of compile time and code increase, is small compared with the performance
benefit.

56 CHAPTER 4. DYNAMIC DATA AGGREGATION

Chapter 5

Reducing the Runtime Calls

One of the inherited limitations of PGAS languages is the transparency provided
to the programmer. Accesses to shared memory lead to the automatic creation
of additional run-time calls and possible network communication. The automatic
transformation of the code by the compiler solves the problem, delivering the
promised ease-of-programming of PGAS language while also delivering the perfor-
mance expected from a parallel implementation of an application

The previous chapter presented an implementation of shared data aggregation
at runtime using the inspector-executor transformation. This chapter presents a
number of optimizations to decrease the number of runtime calls in the context
of the inspector-executor transformation. First, this chapter presents techniques
for decreasing the overhead of inspector and executor loops, include an analy-
sis based on Constant-Stride Linear Memory Descriptors (CSLMADs), usage of
a temporary vector to collect the shared indexes, and static coalescing of shared
structures. Furthermore, Section 5.1.5 presents the insertion of branches (inline
checks) for checking data locality. Section 5.2 presents a new shared-reference-
aware loop-invariant code motion, which is designed specifically for PGAS lan-
guages. Section 5.3 presents an extensive evaluation of the optimizations using
microbenchmarks and benchmarks. Finally, Section 5.4 summarizes previrous dis-
cussion and concludes the chapter.

5.1 Inspector-executor Optimizations

An important drawback of the inspector-executor transformation is the overhead
of function calls introduced by the compiler in order to inspect which data transfers
are amenable for coalescing. This section presents code transformations that help
to decrease the overhead of inspector-executor loops.

57

58 CHAPTER 5. REDUCING THE RUNTIME CALLS

A[i](a)
A[0] A[1] A[2] A[3] A[4] ...

...

(b) A[4 x i]...

A[0] A[4] A[8] A[12] A[16]

(c) A[2 x i + 3]
A[3] A[5] A[7] A[11] A[13] A[15]A[9] A[17] A[19]

...

(d) A[i x i]
A[0] A[1] A[4] A[16]A[9]

......

Figure 5.1: Examples of array accesses that Linear Memory Access Descriptors
can represent. The CSLMADs can represent (a), (b), and (c) but not (d).

5.1.1 Constant Stride Linear Memory Descriptors

The compiler first analyzes the type of accesses. If the compiler detects that the
access on a shared array are regular, it replaces the calls in the inspector loops
with a single call. Otherwise, irregular accesses are assumed. The identification of
the type of access is done through an array access analysis based on the Constant-
Stride Linear Memory Access Descriptors (CSLMADs) [39].

The CSLMADs is restrictive form of Linear Memory Descriptors [40, 41] used
on describing the array accesses. The reason we use the CSLMADs rather than
the general LMAD description is because the it is more practical to implement the
analysis pattern in the compiler. Figure 5.1 illustrates different types of accesses
that LMADs can represent. The biggest drawback for the CSLMADs is that they
cannot represent arrays array access such as B[i× i] (Figure 5.1(d)).

CSLMADs is an efficient way to capture accurate array access information.
Each array access can be expressed as:

f(x) = b + a× x

The constant a is the stride of the CSLMAD and the integer constant b is the
base of the CSLMAD (offset). Using the loop range information the compiler
transforms the descriptors to the following format:

〈a, local offset , low bound + b, upper bound + b〉

The constants (local offset) are used to access each referenced field of the structs.
When the regular access pattern is recognized, multiple calls in the inspector

loop can be replaced with a single call that describes the accesses (C.1). The
transformation requires a normalized loop with monotonically increasing loop in-
dex. Furthermore, if shared arrays were allocated in blocked fashion, then the
calls from the executor loops can be removed (C.1.1). In the UPC language, the

5.1. INSPECTOR-EXECUTOR OPTIMIZATIONS 59

compiler detects blocked allocation in two cases: (i) when the programmer speci-
fies the number of threads at compile time, and the blocking factor is the size of
the array divided by the number of UPC threads; and (ii) when the programmer
uses a structure that contains an array. If the array is allocated with an ‘ideal’
blocking factor (e.g. the size of the array divided by the number of threads), then
the fetched data are placed in order. Figure 5.2 presents an example of translating
shared addresses to a local buffer. The program fetches the range from 5 to 19.
In the top of the figure, the runtime fetches and places the data in order onto
the local buffer. Thus, the program reads the data in order. On the other hand,
when the blocking factor is two, the runtime fetches the data but the placement
is shuffled (bottom of the Figure 5.2).

Compact Runtime Representation

The runtime uses a compact form to keep track of shared accesses if the shared ar-
ray is allocated in blocked form. The runtime stores the shared accesses in the form
of: 〈stride, local offset, lower bound, upper bound〉. Hence, an additional benefit of
using the compact representation form in the runtime is that the accesses do not
require additional analysis. Furthermore, the runtime fetches the elements from
the remote UPC threads in order. Also, the runtime merges different CSLMADs
when the descriptors have the same shared base array and stride. Thus, there is
no duplication in the data transfers.

Moreover, the runtime reuses the internal data structures for subsequent iter-
ations. Thus, the overhead of the inspector loop range is an update of the block
ranges. The downside of this approach is that schedule calls are necessary in order
to wait for the data transfers to complete before the executor loops.

Threads

0

1

2

3

 0 1 2 3 4 5 6 7

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Data

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Blocking Factor = 32/4 = 8

Local buffer returned to program

Threads

0

1

2

3

 0 1 8 9 16 17 24 25

 2 3 10 11 18 19 26 27

 4 5 12 13 20 21 28 29

 6 7 14 15 22 23 30 31

Data

8 9 16 17 10 11 18 19 5 12 13 6 7 14 15

Blocking Factor = 2

Local buffer returned to program

Figure 5.2: The shared address translation problem. The program access the data
range from 5 up to 19.

5.1.2 CSLMADs in dynamic environments

Another challenge that the compiler must address is the usage of shared point-
ers with different blocking factor in dynamic environments, when the number of
threads is specified at runtime. In this case, the compiler versions the executor

60 CHAPTER 5. REDUCING THE RUNTIME CALLS

loops into two variations (C.1.2). The first assumes that the loop has blocked al-
location and the second that the loop has blocking factor different than the ideal.
A drawback is that the compiler must add checks in the version branch to verify
that all the arrays accessed are in blocked fashion. Thus, when any of the arrays
has a blocking factor, which is not the ideal, the program executes the loop with
the calls.

5.1.3 Usage of vectors

The compiler analyzes shared accesses that occur in an irregular fashion to check
if they access more complex structures, such as shared arrays contains structs.
For irregular accesses on shared arrays that do not contain structs, a temporary
array (vector) stored in the stack is used to collect the shared indexes (C.2). The
compiler inserts a call to inspect the elements at the end of the each inspector loop.
Internally the runtime processes the elements one by one. Thus, the performance
gain is limited compared to the previous approach. The main benefit of this
solution is the decrease of the number of calls in the inspector loop. The downside
of this approach is that it allocates space in the stack and, when the available
stack memory is low, the application can crash.

5.1.4 Combining Dynamic with Static Coalescing

The final check of the compiler involves the possibility that the loop contains shared
accesses on struct fields that have constant distance or stride. The algorithm coa-
lesces shared accesses when the compiler can prove that the remote data belongs to
the same thread. This is also possible when accessing members of shared structures
that belong to the same thread. Therefore, the compiler applies this optimization
(C.3.1) when the program uses shared arrays with data structures. The compiler
analyzes the accesses and detects possible patterns with constant-stride.

The static coalescing requires additional compiler analysis and runtime modifi-
cations. Algorithm 3 presents the analysis algorithm. First, the compiler analyzes
the shared accesses that are fields of shared structures. The compiler classifies the
shared addresses in buckets containing compatible shared addresses (line 6). A
shared reference is compatible with one bucket when the containing shared refer-
ences use the same base symbol (array), the same array index, same element access
size, but different offset inside the structure. If the compiler is not able to find
any compatible bucket, then it creates a new bucket and adds the shared reference
(line 14). Finally, the compiler sorts the shared references during the addition to
the bucket, based on the local offset.

Algorithm 4 presents the insertion of xlupc sched dereference calls. For each
bucket, the compiler inserts the dereference call on the first occurrence of a shared
reference of the bucket and replaces each shared reference with the local buffer, by
increasing the index of the local buffer based on the order of shared references.

5.1. INSPECTOR-EXECUTOR OPTIMIZATIONS 61

AnalyseSharedRefs(Procedure p)

1: RefList← collectSharedReferences();
2: BucketRefList← ∅;
3: for each shared mem ref Rs in RefList do
4: isInserted← FALSE;
5: for each shared Bucket bcks in BucketRefList do
6: if Rs is compatible with Bcks then
7: Bcks.Add(Rs);
8: isInserted← TRUE;
9: break;

10: end if
11: end for
12: if isInserted = FALSE then
13: Bcks ← newShrReferenceBucket();
14: Bcks.Add(Rs);
15: BucketRefList.Add(Bcks)
16: end if
17: end for

Algorithm 3: Analysis of shared references.

InsertSchedulerDereferenceCalls(Procedure p)

1: for each Shared Bucket bcks in BucketRefList do
2: Rbase ← bcks.getBaseSharedReference();
3: stmt← innerloopi.findLocation(Rbase);
4: innerloopstmt

i .Add(buffer = xlupc sched dereference, &index);
5: for each shared mem ref Rs in bcks do
6: stmts ← SHARED STATEMENT(RS);
7: for each statement stmt in innerloop do
8: if stmt = stmts then
9: innerloop.Replace(stmtexpr, buffer[index]);

10: end if
11: end for
12: index← index + 1;
13: end for
14: stmt← innerloopi.findLocation(Rbase);
15: innerloopstmt

i .Add(buffer = xlupc sched dereference);
16: for each shared mem ref Rs in bcks do
17: stmts ← SHARED STATEMENT(RS);
18: for each statement stmt in epilogloop do
19: if stmt = stmts then
20: epilogloop.Replace(stmtexpr, buffer[index])
21: end if
22: end for
23: index← index + 1;
24: end for
25: end for

Algorithm 4: Insertion of dereference calls.

62 CHAPTER 5. REDUCING THE RUNTIME CALLS

typedef struct data_s{

 int a; int b;

 int c; int d;

}data_t;

shared data_t A[128];

int comp(){

 int i; int result =0;

 for (i=0;i<128;i++){

 result += A[i].a;

 result += A[i].c;

 }

 return result;

}

Native UPC Code:

(a)

Physical data mapping waith 2 threads:

...A[0] A[1] A[2] A[3] A[4] A[5] A[7]A[6] A[8] A[9]

T0 T1 T0 T1 T0 T1 T1T0 T0 T1Thread:

Data after translation from global

address space to local.
data_t

16 Bytes

int a;

int b;

int c;

int d;

Buffer for

thread 0

A[0].a

A[0].c

A[2].a

A[2].c

A[4].a

A[4].c

A[6].a

A[6].c

...

Buffer for

thread 1

A[1].a

A[1].c

A[3].a

A[3].c

A[5].a

A[5].c

A[7].a

A[7].c

...

}
} 8 Bytes

(b)

Figure 5.3: Example of Static data coalescing: native UPC source code (left), and
physical data mapping (right).

Figure 5.3 exemplifies the static coalescing optimization. The example pro-
gram on the Figure 5.3(a) shows a simple reduction of the a and c struct fields,
from a shared array of structures written in UPC. Figure 5.3(b) presents the phys-
ical mapping of the shared array running with two UPC threads. The array is
distributed cyclically among the UPC threads. The transformation places the ac-
cesses on the a and c struct fields in the same bucket. Thus, it generates the
appropriate runtime call (add access strided) in the inspector loop to pass along
the information about the stride between these accesses and the number of ele-
ments in the bucket. At runtime, the runtime fetches the a and c fields and places
them in consecutive memory locations in the local buffer. On the other hand, if
two consecutive are accesses, then the compiler would still represent it a stride
with size of the element.

Local data optimization

One of the key optimizations of the runtime is the efficient access management of
shared data that belong to the same node. The runtime collects and analyzes the
remote shared references only. Furthermore, the runtime avoids copying the data
in local buffers in order to provide the same memory layout. In the dereference
call, the runtime simply returns a pointer to the local data.

However, this approach requires symmetrical physical data mapping between
buffers. To address this challenge, the dereference call returns to the program the
constant stride between the offsets. Figure 5.4 presents the generated code and
a part of the dereference call in the runtime. The compiler first sets the default
stride, if the data are local, before the call with the distance between accesses. In
the aforementioned example, the distance between the fields is eight bytes. The

5.1. INSPECTOR-EXECUTOR OPTIMIZATIONS 63

int comp(){

 int i; int result =0 ; size_t stride;

 for (i=0;i<128;i++){

 /* Compiler sets default stride */

 stride = 8;

 void * tmp = _schedule_deref(&stride, &A[i].a);

 /* Read A[i].a */

 result += *(int *) (tmp) ;

 /* Read A[i].c */

 result += *(int *) (tmp + 1*stride);

 }

 return result;

}

Final Transformed Code:

Relative offset

from the start of

the block

void *_schedule_deref(struct fat_ptr *ptr,

 int *stride){

 if (ptr->node == CURRENT_NODE){

 /* No need to change the stride */

 return __get_local_data(ptr);

 }

 /* Change the distance of elements */

 *stride = ptr->elem_size;

 return __get_prefetched_data(ptr);

}

Runtime Dereference Call

Figure 5.4: Final code modification and a high level implementation of the runtime.

runtime sets stride variable as the element stride when the data are prefetched and
stored in the local buffer. On the other hand, if the program access local data,
then the stride remains constant inside the runtime and the default is used. The
compiler multiplies the relative offset based on the order of shared references.

5.1.5 Inline checks

1 shared int A[128];

2

3 // Inspector loop. shared ptr is fat pointer

4 for (i=0;i<PF;i++){

5 ptr = __ptr_arithmetic(&A[i]);

6 if (ptr.thread != MYTHREAD){

7 __xlupc_add_access(ptr, ...);

8 }

9 }

10

11 __schedule();

12

13 // Similar approach in the executor loop:

14 for (i=0;i<PF;i++){

15 ptr = __ptr_arithmetic(&A[i],...):

16 if (ptr.thread != MYTHREAD){

17 local_ptr = __xlupc_sched_dereference(ptr, ...);

18 } else {

19 // Simple pointer additions

20 local_ptr = CALC_LOCAL(ptr);

21 }

22 ... = local_ptr;

23 }

Listing 5.1: Example of code modifications for the inline checks.

64 CHAPTER 5. REDUCING THE RUNTIME CALLS

Can CSLMAD

describe the

accesses

Candidate Loop

Regular Inspector

Executor

NO

NOYES

YES

Struct fields

Const stride

Regular

Accesses

Blocked

Allocation

YES

NO

YES

NO

YES

NO

Use Constant Stride Linear Memory

Access Descriptos in inspector loop
C.1

Use Constant Stride Linear Memory

Access Descriptos in executor loopC.1.1

Create a vector to collect

references in the inspector
C.2

Static Coalescing and

 Inspector-Executor
C.3.1

C.3.2

Version the loop:

with and without calls
C.1.2

Inline checks

Figure 5.5: Improvements for the for the inspector-executor compiler transforma-
tion.

A number of UPC applications have local shared references that cannot be
proven to be local shared references at compile time. In applications that have
good locality only a small proportion of shared accesses are remote. For instance,
in the Sobel benchmark [50] only 1.6% of the shared accesses are remote when
running with 2048 UPC threads.

The inline check optimization inserts a branch before two entry points of the
runtime: the sched add access and the xlupc sched dereference calls. These
branches check if the data accessed are remote or local. When the shared accesses
are local the runtime avoids collecting the accesses. Instead, the executor loops
use private pointers to read the local data. Listing 5.1 presents an example of the
code transformation.

5.1.6 Optimization Integration

Figure 5.5 presents the algorithm that compiler uses to optimize loops with fine-
grained accesses. The algorithm identifies the pattern of the accesses pattern
(regular or irregular) and uses compile time information to select the proper trans-
formation. If the accesses are regular, the compiler analyzes the accesses to detect
the format of access pattern (C.1) and removes the runtime calls from the inspector
loops. Next, based on the compile time information it removes completely (C.1.1)

5.2. SHARED-REFERENCE-AWARE LOOP-INVARIANT CODEMOTION AND PRIVATIZATION FOR PGAS LANGUAGES65

the runtime calls from the executor or versions the loop (C.1.2). In the case of
irregular accesses, the compiler creates a temporary array to collect the elements
(C.2). Finally, if the programmer uses structures with fields, the compiler tries
to apply static coalescing (C.3.1) or applies the simple form of inspector-executor
(C.3.2). Furthermore, the compiler inserts inline checks in some for the cases to
check for data locality. Next sections explore these cases in more detail.

5.2 Shared-reference-aware loop-invariant code motion
and privatization for PGAS languages

Loop-invariant code motion is a traditional compiler optimization that moves state-
ments and expressions that are not affected by the loop computations placing them
outside of the loop body. It is, however, often difficult to prove that statements
that use shared scalars and pointers are loop-invariant. As a result, some shared
accesses are left inside the body of the loop. Furthermore, copy propagation in-
terferes with loop-invariant code motion because the existence of shared variables
is often ignored. For instance, if a statement that uses a shared variable is prop-
agated and placed inside a loop, later the compiler replaces the shared accesses
with runtime calls.

1 #define SIZE 1024

2 struct OceanGrid{

3 int FishSmell;

4 int SharkSmell;

5 ...

6 };

7

8 shared [*] struct OceanGrid Ocean[SIZE][SIZE];

9 shared int MaxfishSmell;

10 shared int MaxsharkSmell;

11 ...

12 for(di=0; di<5; di++){

13 for(dj=0; dj<5; dj++){

14 int idx = (SIZE+i+di-2)%SIZE; int idy = (SIZE+j+dj-2)%SIZE;

15 if(Ocean[idx][idy].FishSmell > MaxfishSmell) {

16 MaxfishSmellPosX = di-2;

17 MaxfishSmellPosY = dj-2;

18 }

19 if(Ocean[idx][idy].SharkSmell > MaxsharkSmell) {

20 MaxsharkSmellPosX = di-2;

21 MaxsharkSmellPosY = dj-2;

22 }

23 }

24 }

25 ...

Listing 5.2: One of the Wator ocean simulation kernels.

66 CHAPTER 5. REDUCING THE RUNTIME CALLS

Listing 5.2 presents one of the kernels of the Wator [73] benchmark. The kernel
calculates the maximum smell of the fishes and sharks. The two branches (lines
15, 20) contain two different shared accesses each. The first access is on the shared
array of the Ocean and the indexes depend on the induction variables of the loops.
On the other hand, the scalar variables MaxfishSmell and MaxsharkSmell are
shared. The compiler assumes they are simple scalars, and it does not move them
outside of the loop, despite that they are shared.

There are two ways to solve this issue: (a) disable copy propagation; (b) imple-
ment an alternative code-invariant motion specific for PGAS languages. Disabling
copy propagation can have negative effects in performance because this copy prop-
agation may lead to dead code elimination. Thus, the implementation uses the
second approach to implement a lightweight version of loop-invariant code motion
in loops that have shared accesses.

Algorithm 5 presents this new loop-invariant code motion. First the algorithm
checks if the loop qualifies for this transformation. The loop must be normalized
and must contain shared references. For each shared reference, the algorithm uses
the reaching-definition analysis through the Static Single Assignment (SSA) [42]
representation. In addition, the algorithm also checks the upper bound of the
loop for possible shared references. Finally, the algorithm checks for possible
dependencies between loop iterations. For each independent shared reference, the
algorithm stores the shared value to a temporary scalar variable before the loop.
Then, the algorithm replaces all the occurrences of the shared references inside the
body of the loop.

5.3 Experimental Results

This experimental evaluation assesses the effectiveness of the modified code trans-
formations through the following: (1) the performance on microbenchmarks to
help understand the maximum speedup that can be achieved and the potential
performance bottlenecks; (2) the comparison with the sequential C version; (3)
the performance of real applications; (4) the impact of the number of iterations
examined; (5) an analysis of the overhead observed; (6) measurements of the code-
transformation cost in code increase, compilation time, and code length.

5.3.1 Methodology

All runs use one process per UPC thread and schedule one UPC thread per Power7
core. There are UPC threads in each node, and each UPC thread is bound to its
own core. The results presented in this evaluation are the average of the execution
time of five runs. The maximum execution time variation is less than 3% and oc-
curs only in runs with a high number of UPC threads. Due to the characteristics
of the Power 775 interconnect, the runs are isolated, and no other task is running
during the measurement. All benchmarks are compiled using the ’-qarch=pwr7
-qtune=pwr7 -O3 -qprefetch’ compiler flags in order to enable Power7-specific

5.3. EXPERIMENTAL RESULTS 67

UPCCodeInvariantMove(Procedure p)

1: for each candidate loop structure Li in p do
2: RefList← ∅;
Phase 1 - Check loop
3: if UPC STRICT then
4: return;
5: end if
Phase 2 - Gather Candidates
6: for all Shared reference Rs in Li do
7: if Rs is loop-invariant then
8: RefList.Add(Rs);
9: end if

10: end for
11: if RefList is ∅ then
12: continue;
13: end if
Phase 3 - Replace shared references in the loop
14: for each shared mem ref Rs in RefList do
15: stmts ← SHARED STATEMENT(RS)
16: LPROLOG

i .Add(tmp var = Rs.SharedExpr)
17: for each statement stmt in Li do do
18: if stmt = stmts then
19: innerloopstmt

i .Replace(stmtexprs , tmp var)
20: end if
21: end for
22: end for
23: end for

Algorithm 5: UPC loop-invariant code movement

code transformations. The evaluation tries to keep the computation constant per
UPC threads (weak scaling). In Sobel, Fish, and WaTor benchmarks, the evalua-
tion doubles the dataset every quadruplication of UPC threads. For this evalua-
tion, five different binaries were generated for each program:

Baseline: compiled with a dynamic number of threads and with the code trans-
formations described disabled.

Aggregation: compiled with the inspector-executor code-transformation that prefetches
and coalesces shared references at runtime.

Aggregation Optimized: combines the inspector-executor transformation with
the improvements presented in this chapter and with dynamic number of
threads.

Hand-optimized: uses coarse-grained communication, manual pointer privatiza-
tion, and collective communication whenever possible. This version also uses
dynamic number of threads.

68 CHAPTER 5. REDUCING THE RUNTIME CALLS

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

1000

10

0.1

0.001

B
a
n

d
w

id
th

 (
G

B
/s

)

Baseline

Aggregation

Aggregation + Coalescing

Aggregation + Coalescing + Inline

1000

10

0.1

0.001

Stream-like Random

Figure 5.6: Performance in GB/s for the microbenchmark reading four fields from
the same data structure reading four fields.

MPI: contains coarse-grained communication and uses collective communication
whenever possible. This version uses blocking calls for communication but
it does not use the one-side communication model introduced in MPI 2.0.

5.3.2 Microbenchmark Performance

Microbenchmanks are created to demonstrate the effectiveness of the code trans-
formations. Indeed, the results presented in Figure 5.6 — notice the log scale in the
graphs — confirm that, when applied to the code that they target, the code trans-
formations are very effective. In stream-like microbenchmarks, the bandwidth
increases close to linearly with the number of UPC threads for all versions includ-
ing the baseline. The speedup due to the code transformations vary between 3.1x
and 6.7x with the most significant gain due to prefetching. Adding static coalesc-
ing of struct fields to prefetching improves performance by 5-10%. The rightmost
bars indicate that the overhead due to the insertion of inline checks is around
1%, which is bellow the measurement error. The inline-check code transformation
inserts a branch before two entry points of the runtime: sched add access and

sched dereference. These branches check if the data accessed are remote or local,
and minimize the overhead of accessing local data as described in section 5.1.5.

Stream-like contains only remote shared references because it accesses the
next neighbor thread. Thus, the inline branch to avoid calls when the shared data
are local is always taken. In contrast, random-access results in a speedup between
3.2x and 21.6x from prefetch with an additional 4-8% due to struct-field coalescing.
In contrast with stream-like, the inline transformation gives an additional 2-5%
performance gain because it is able to improve local shared accesses.

An interesting observation emerging from the results is that random-access

achieves better bandwidth than stream-like when the code transformations are

5.3. EXPERIMENTAL RESULTS 69

App Dataset
Sequential UPC Single-Thread 32 UPC 256 UPC

C Static Dynamic Threads Threads

Sobel 64K x 64K Image 101.0 93.5 110.1 3.6 0.7
Fish 16K Objects 155.7 642.8 727.7 24.8 7.2

WaTor 4K x 4K Grid 9.8 48.3 791.3 98.2 28.1
Guppie 228 Elements 70.5 305.1 349.6 104.3 22.1
MCop 1024 Arrays 16.6 19.2 29.3 140.8 22.0

Table 5.1: Benchmarks compared with the serial C non-instrumented version and
UPC version in execution time, measured in seconds.

enabled. This results from the random traffic pattern in combination with the
high-radix interconnect when using direct routes. Previous research on the PERCS
interconnect architecture confirms the experimental results [81].

5.3.3 UPC Single-Threaded Slowdown

This section, prior to the scalability measurements, studies the performance of
UPC language compared with the serial version. Thus, this section examines the
single-thread overhead of an UPC program. The UPC language offers a program-
ming model for distributed systems and programs are designed to run in thousands
of cores. The single-thread overhead, shown in Table 5.1 compares the execution
time of the UPC version of the program running on a single thread with the exe-
cution time of a sequential C version of the code. For the serial version we use the
gcc version 4.3 that was available on the machine. The most important reason
that increases the single-thread overhead is the need to use fat pointers to access
data into distributed arrays. The runtime call for the address translation in a fat
pointer is needed because, without knowing the number of threads, the compiler
cannot determine whether the memory accesses are to the single local thread. The
runtime in the single-threaded dynamic column in Table 5.1 is obtained by run-
ning binaries where the number of threads is not known at compile time. The
numbers under the static column are the execution times when the compiler has
the information that the program will execute on a single thread, and thus can
eliminate the runtime calls for address translation. For instance, the single-thread
slowdown for WaTor is reduced from 81x to 5x. The runs with 32 and 256 UPC
threads are with the inspector-executor transformation and the other code trans-
formations presented in this paper. Some benchmarks, such as Fish and Guppie,
run much slower than the C version even with a large number of threads due to
the compiler limited ability to detect and simplify accesses that are local.

The large slowdown for the dynamic single-threaded UPC version of WaTor

can be explained by its large number of shared accesses for which the compiler
generates calls to the runtime system. On the other hand, the smaller single-
thread slowdown for Guppie can be explained by its irregular accesses that make
its serial C version slower because of poor cache utilization. Sobel has the best
potential compared with the other benchmarks for two reasons. Firstly, it has good

70 CHAPTER 5. REDUCING THE RUNTIME CALLS

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

60000

6000

600

60

M
p

ix
el

/s

Baseline

Aggregation

Aggregation Optimized

Hand Optimized

MPI

Figure 5.7: Performance numbers for the Sobel benchmark for different versions.

shared data locality; it fetches data only from the neighboring threads. Secondly,
the compiler removes the calls completely from the inspector and executor loops.
The low performance in the single-thread version is because the program executes
the unoptimized version of the loop to avoid the overhead of the shared accesses
analysis. Furthermore, the performance of the serial Sobel version is slightly slower
than the UPC version because we are using two different compilers with different
codebase.

These results indicate that one order of magnitude slowdown is typical when
converting a program from C to the UPC language. This slowdown underscores the
importance of the code transformations that remove unnecessary runtime calls au-
tomatically. The focus of this chapter is to combine the removal of these calls with
more traditional code transformations, such as the inspector-executor transforma-
tion and the loop-invariant code motion that was adapted to PGAS languages. A
point to take is that PGAS programmers and compilers should not focus only on
reducing the cost of communication, but also in reducing the overhead of runtime
calls.

5.3.4 Applications Performance

This section explores the performance of the code transformations when applied
to benchmarks. As described in Table 3.3, runtime calls can be removed only
in Sobel and Fish because those are the only benchmarks that contain regular
accesses. The compiler successfully removes some of the calls in MCop, but not all
of them. WaTor and Guppie have complex access patterns and the compiler uses
struct-field coalescing and the vector collection of elements in the inspector loop.
The compiler also applies the inline code transformation on all these benchmarks.

Sobel achieves a performance gain between 1.5X and 2X using the inspector-
executor (prefetch) code transformation as shown in Figure 5.7 The prefetch opti-

5.3. EXPERIMENTAL RESULTS 71

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

400000

40000

4000

400

40

O
b

je
ct

s/
s

Baseline

Aggregation

Aggregation Optimized

Hand Optimized

MPI

Figure 5.8: Performance numbers for the fish benchmark for different versions.

mized technique achieves from 9.2X up to 12.3X speedup over the baseline because
the CSLMAD representation completely removes the calls. The hand optimized
UPC version is faster than the MPI version due to the one-side communication.
However, the performance of the hand optimized and the MPI versions are con-
verging with more than 1024 UPC threads. One interesting observation is that
the prefetched optimized version is faster than the UPC hand-optimized one due
to double buffering. Unfortunately, the current version of UPC language does not
support asynchronous memget/memput calls. Thus, the advantage of compiler
transformations is the automatic overlapping communication and computation.

The fish benchmark exhibits high performance gains because the baseline is
inefficient as shown in Figure 5.8. The compiler uses the CSLMADs to remove
the runtime calls from the inspector and executor loops. However, the benchmark
achieves from 40% up to 80% of the performance of the hand optimized version of
the benchmark. The compiler successfully transforms one out of the two loops that
contain fine-grained communication. The second loop implements a data reduction
and becomes the bottleneck after the inspector-executor and loop-invariant code
motion transformations.

In comparison, the performance for the WaTor benchmark is lower: the
prefetch optimized version is 1.12X to 1.72X faster than the baseline (Figure 5.9).
The explanation for this result can be found in the transformation of a loop struc-
ture that has a constant number of iterations (25): the force calculation com-
putation. The force is calculated using a 25-point stencil, looking at the 5 × 5
neighborhood of each grid point. The benchmark uses the fish and shark smell to
calculate the force. The pray (fish) get a negative force from the grid point (cell)
that contain predator (shark) smell or a random force if no sharks are present.
Sharks get a positive force towards to the fish smell or towards to the center of
mass of the fish if no fish smell is present.

The compiler improves the performance of the remaining fine-grained shared

72 CHAPTER 5. REDUCING THE RUNTIME CALLS

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

4000000

400000

40000

4000

K
B

/s

Baseline

Aggregation

Aggregation Optimized

Hand Optimized

MPI

Figure 5.9: Performance numbers for the WaTor benchmark for different versions.

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

40000

4000

400

40

4

M
e
g
a
U

p
/s

Baseline

Aggregation

Aggregation Optimized

Hand Optimized

MPI

Figure 5.10: Performance numbers for the Guppie benchmark for different versions.

accesses by using the remote update runtime calls elimination [54]. The MPI ver-
sion is faster but requires additional code before and after the calculation of force
and movement of objects. The MPI programming model requires the privatiza-
tion of the accesses. Moreover, the programmer must explicitly express the data
transfers between different MPI processes or nodes. In the case of the WaTor
benchmark, the programmer inserts MPI communication primitives before and
after each phase of the simulation. The downside of this approach is that the
programmer must design carefully the data transfers taking account the physical
data mapping.

The Guppie benchmark uses remote updates across a large shared array
and calculates the performance in MegaUpdates/s. Due to irregular accesses, the
prefetch optimized version of the benchmark achieves between 1.6X and 2.53X
speedup over the baseline (Figure 5.10). The compiler manages to remove the
calls from the inspector loops thus decreases the overhead of function calls and

5.3. EXPERIMENTAL RESULTS 73

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

3000

300

30

3

0.3

M
e
g
a
O

p
/s

Baseline

Aggregation

Baseline Unroll

Aggregation Optimized + Unroll

Hand Optimized + Aggregation

MPI

Figure 5.11: Performance numbers for MCop benchmark for different versions.

shared-pointer arithmetic. It is known that manual code modifications to this
benchmark can allow a compiler to improve the performance be eliminating re-
mote updates [54]. The benchmark uses a temporary buffer to fetch the data,
modify them, and write them back. The typical size of this buffer is 512 ele-
ments. In the UPC hand optimized version, the number of elements is set to one.
Thus, the compiler collapses the loops and uses hardware acceleration including
packet aggregation to perform the updates. Thus, the achieved performance for
the manually modified code is one order of magnitude faster than the automatically
optimized version. The difference increases with the number of UPC threads.

The MPI version of the Guppie benchmark generates the data on all pro-
cessors and distributes the global table uniformly to achieve load balancing. The
benchmark sends the addresses to the appropriate processors, and the local pro-
cess performs the updates. The MPI version is faster than UPC versions for a
small number of threads. On the other hand, the manual UPC optimized version
is 46X times faster than the MPI version running with 2048 Threads. This result
provides strong evidence in support of the key role of the remote update code
transformation. The automatic compiler optimized version achieves from 22% up
to 48% the speed of the MPI version.

The prefetch code transformation gives a speedup from 1.6X up to 2.6X com-
pared with the baseline version in the MCop benchmark as shown in Figure 5.11.
Applying the code transformations and manual unroll the loops four times gives
a speedup from 4.9X up to .3X. Despite the removal of most calls in the loops,
there are still irregular references. The manual optimized version still contains
irregular remote shared references. Prefetching these references improves the per-
formance of the application. The hand optimized combined with the prefetching
is two orders in magnitude faster than the MPI version.

74 CHAPTER 5. REDUCING THE RUNTIME CALLS

3
2
 (

3
4
)

1
0
2
4
 (

1
0
2
6
)

2
0
4
8
 (

2
0
5
0
)

3
0
7
2
 (

3
0
7
4
)

4
0
9
6
 (

4
0
9
8
)

Iterations to inspect (aggregation)

15

10

5

S
p

ee
d

u
p

Speedup

5

4

3

2

1

M
iss R

a
tio

 (%
)

Level 1 Cache Miss Ratio

Level 2 Cache Miss Ratio

Level 3 Cache Miss Ratio

(a)

3
2
 (

1
)

3
2
 (

1
)

1
0
2
4
 (

8
)

2
0
4
8
 (

1
6
)

3
0
7
2
 (

2
4
)

4
0
9
6
 (

3
2
)

Iterations to inspect (aggregation)

2

1.5

1

0.5
S

p
ee

d
u

p

Speedup

40

30

20

10

M
iss R

a
tio

 (%
)

Level 1 Cache Miss Ratio

Level 2 Cache Miss Ratio

Level 3 Cache Miss Ratio

(b)

Figure 5.12: Speedup and cache misses for Sobel (a) and Guppie (b) using different
number of iterations to inspect and aggregation levels.

5.3.5 Parameter exploration

An important question is how many iterations the runtime should prefetch. Previ-
ous work using inspector-executor code transformations [38, 82] suggest that this
number should not be too large. The main problem with prefetching too many iter-
ations is the interference with the cache memory of the processors. Figures 5.12(a)
and 5.12(b) present the speedup and the local cache miss ratio 1 for different cache
levels using different number of prefetched iterations (Prefetch Factor). The runs
use 128 UPC threads (four nodes) and the IBM HPC Toolkit to obtain the per-
formance counter values. Sobel uses a 262144×262144 image (530 MB/ UPC
Thread) and 0.32% of the total accesses are remote. Guppie uses 134 MB per
UPC thread, each UPC thread makes 16777216 updates. In total 99.21% of the
shared accesses are remote. The figures also show the average number of aggre-
gated messages in the parenthesis of x-axis. The number of aggregated messages in
Sobel is the number of iterations to inspect plus two for the border of the image.
On the other hand, the number of the messages aggregated in Guppie is calcu-
lated using the equation: #Iterations to inspect/UPC THREADS, because of

1Local miss ratio is calculated by diving misses in this cache the total number of memory
accesses to this level of cache.

5.3. EXPERIMENTAL RESULTS 75

the random distribution.

For Sobel, the results indicate a correlation between the speedup and the cache
misses at different levels of the memory hierarchy. The speedup correlates with the
level two (L2) and level three (L3) cache misses. The most important observation
is that the speedup remains constant when inspecting more than 672 iterations.
Thus, the limit of the application is not the network communication as explained
in section 5.3.6.

In contrast, Guppie incurs high miss ratio due to the random access pattern
that it employs. In this case, despite the larger number of aggregated messages,
the speedup decreases for two reasons: (1) because there is an increase in the L3
miss ratio due to the allocated buffers; and (2) because the cost of translating
the shared addresses to local pointers increases with the number of prefetched
elements. The runtime translates the shared index of the shared pointer into the
index of the local buffer using a binary search algorithm.

5.3.6 Overhead Analysis

This section examines the remaining overheads of UPC applications and responds
to the previously asked question of ‘where does the time go’ during the execution of
the application. Two representative benchmarks are selected for this evaluation.
Namely, the Sobel, which contains regular access and Guppie, which contains
random accesses. Figure 5.13 presents a breakdown of the normalized execution
time before and after the code transformations. The runs use the Linux Perf
Tool [83] to collect performance counters.

Using the inspector-executor approach in Sobel, the time devoted to the com-
putation decreases significantly. One interesting characteristic of Sobel is that
it spends more than 55% of the time in the shared pointer arithmetic in the
Prefetch version, due to additional calls in the inspector loops. The shared pointer
arithmetic translates the shared index to the virtual address inside the thread.
Removing the calls from the inspector and executor loops decreases the overhead
to less than 8% of the application time.

On the other hand, the impact of the code transformations in Guppie is less
than Sobel, but is still important. The optimized inspector-executor transforma-
tion in Guppie removes the calls from the inspector loops, but retains the calls
in the executor loops. The improved inspector-executor transformation reduces
the communication overhead down to 57%. However, the overhead is transferred
to the shared references analysis, due to the irregular communication pattern.
Therefore, the improved transformation successfully hides the overhead from the
programmer’s code, but the runtime still processes the elements one by one. The
inline code transformation has a minor impact on the achieved performance, and
it is only visible for a lower number of threads.

76 CHAPTER 5. REDUCING THE RUNTIME CALLS

B
as

el
in

e
S

o
b
el

P
re

fe
tc

h

S
o
b
el

P
re

fe
tc

h
+

O
p
t

S
o
b
el

B
as

el
in

e
G

u
p
p
ie

P
re

fe
tc

h

G
u
p
p
ie

P
re

fe
tc

h
+

O
p
t

G
u
p
p
ie

0

20

40

60

80

100

 %
 T

im
e

Inspector: Ptr Arithmetic

Dereference

Assign

Inspector/Executor loop

Application

Schedule

Other

Figure 5.13: Normalized execution time breakdown of the benchmarks using 32
UPC threads.

5.3.7 Compilation Time and Code Length

This section examines the transformation cost in compile time, code-size increase,
and productivity in lines of code. Although, measuring lines of code is not always
the best metric of productivity cost [84], it provides a good indication about the
developing cost. The code-size increase provides an insight about the glue code
that the compiler generates. The compilation time is another important metric
that is of concern to the programmer. Table 5.2 presents the increase of the code,
the compilation time, and the number of lines of code for the five benchmarks.

The increase in compilation time varies and depends on the code transforma-
tions applied and on the number of potentially remote accesses in the benchmark.
The main reason for such a large increase is the rebuild of data and control flow
graph of the transformed loops. The number of shared accesses affects the com-
pilation time. The programmer can tolerate larger compilation times because the
cost is amortized with better runtime performance. However, three or four times
increase in the compilation time compared with the MPI version reveals the im-
mature state of the UPC compiler.

The second drawback of the inspector-executor transformation is the code in-
crease. The transformation requires the creation of additional loops and the strip
mining of the main loop. Moreover, it inserts runtime calls to inspect and manage
shared accesses. The Sobel benchmark with the modified inspector-executor code
transformation (prefetch) approach has the biggest code increase, due to its large
number of shared accesses. Although the evaluation uses the Power7 processor,
other architectures (e.g. embedded systems and GPUs) can also potentially ben-

5.4. CHAPTER SUMMARY AND DISCUSSION 77

Application Version Size Compile Time (s) Source Lines Of Code

Sobel

UPC Baseline 2240 10.818 160
UPC Prefetch 3977 16.066 160

UPC Hand Opt. 2596 12.298 220
MPI 1319 6.553 210

Fish

UPC Baseline 22879 6.049 246
UPC Prefetch 15979 6.948 246

UPC Hand Opt. 22439 5.742 252
MPI 12253 1.328 251

WaTor

UPC Baseline 42468 16.648 792
UPC Prefetch 44644 20.619 792

UPC Hand Opt. 43076 19.007 980
MPI 13447 2.901 761

Guppie

UPC Baseline 6274 1.816 176
UPC Prefetch 8210 2.468 176

UPC Hand Opt. 5218 1.702 176
MPI 4572 0.905 610

MCop

UPC Baseline 12524 3.011 171
UPC Prefetch 19324 5.145 171

UPC Hand Opt. 25820 8.587 204
MPI 16210 0.649 176

Table 5.2: Benchmarks and different cost metrics. Object file sizes are in bytes
and for the object files only.

efit from these code transformations. However, in such architectures the benefits
may be limited by memory constraints.

In terms of program length, the baseline versions are the smallest. The overall
trend is that the MPI version has the smallest compilation time and the small-
est binary output. On the other hand, the MPI programs are longer than the
UPC versions. Moreover, the hand-optimized UPC and MPI versions have similar
length. Overall, the UPC language provides acceptable performance using the code
transformations described in this paper, with reasonable programming effort. On
the other hand, achieving the hand-transformed performance for an UPC program
containing fine-grained communication requires effort similar to MPI.

5.4 Chapter Summary and Discussion

This chapter described code transformations that aggressively remove the automat-
ically generated runtime calls in order to improve the performance of fine-grained
communication. The current prototype implementation can be improved in several
ways.

This benchmark-based performance study allow us to predict that through the
new code transformations presented applications with regular accesses can achieve
between 60% and 180% of the hand-optimized UPC version. This improvement is
due to better overlap of computation and communication and advances previous
attempts to decrease the overheads of dealing with remote accesses. The evaluation

78 CHAPTER 5. REDUCING THE RUNTIME CALLS

results support the argument that code transformations should focus on removing
the calls completely rather than focusing simply on improving communication or
on applying limited privatization, coalescing, and shared-data caching.

On the other hand, there is still room for improvement for benchmarks that
contain irregular communication. In this case, the programmer can benefit by
expressing the accesses in the form of read-modify-write of data. The compiler
can then exploit the benefits of the remote update code transformation. Thus,
the effectiveness of the code transformation is high in hardware architectures that
support hardware acceleration of remote updates such as the Power 775 [63].

Applications with irregular accesses, which cannot be transformed into the
form of a read-modify-write, achieve better performance, but there is still room
to close the gap with the hand-transformed and MPI versions. In this case, the
programmer should manually privatize the globally shared array in order to achieve
good performance.

Chapter 6

Loop Scheduling

The last part of the thesis presents optimizations for improving the network com-
munication and avoid the creation of hotspots when using the UPC language.
A typical communication pattern in UPC programs is the concurrent access of
shared data allocated to each UPC thread by all the other threads. In addition,
for loops that contain all-to-all or reduction communication can overwhelm the
nodes and create network congestion. Listing 6.1 presents an example of a naive
reduction code executed by all the UPC threads. In this example, all the UPC
threads execute this part of the code, creating network hotspots. The array is
allocated in blocked form, thus the first N/THREADS elements belong to the first
UPC thread. The groups of optimizations presented in this chapter focus on code
transformations that decrease this effect.

The creation of hotspots has an even higher in high-radix networks such as the
PERCS interconnect [66]. High-radix network topologies are becoming common
approach [63, 85, 86, 87] to addressing the latency wall of the modern supercom-
puters, such as the Power 775. The high-radix networks provide low latency though
low hop count.

1 #define N 16384

2 shared [N/THREADS] int A[N];

3

4 long long int calc(){

5 int sum = 0, i;

6 for (i=0; i<N; i++) // Executed from all UPC threads

7 sum += A[i];

8 return sum;

9 }

Listing 6.1: Example of reduction in UPC.

Section 6.1 examines possible solutions to address the problem of hotspot
creation. Specifically, we exemplify four approaches to address these problems.
Namely, (i) skewing loops in order to start from a different point of loop iteration
space; (ii) using skew loops in order to start from a different point of loop iteration

79

80 CHAPTER 6. LOOP SCHEDULING

and inside the block; (iii) accesseses the elements with the constant stride; (iv)
randomly access the elements. Next, Section 6.1.2 proposes a number of compiler
transformations to resolve automatically the problems without the the program-
mer’s interference. Section 6.2 presents the experimental evaluation using (i) a
limit study with microbenchmarks to measure the effectiveness of different ap-
proaches and (ii) automatic compiler transformation compared with the manually
transformed loops.

6.1 Loop scheduling

A difficult communication pattern of UPC programs is the concurrent access of
shared data allocated to one UPC thread. In addition, the all-to-all communi-
cation is another pattern that stresses the interconnection network. In this case,
each thread communicates with all other UPC thread to exchange data. This com-
munication pattern is one of the most important metrics for the evaluation of the
bandwidth of the system. Moreover, this pattern shows up in a large number of
scientific applications including FFT, Sort, and Graph 500. Thus, it improves the
network’s efficiency by scheduling the loop iterations, and can significantly decrease
the communication overhead. This section examines four different approaches to
schedule loop iterations for either coarse-grained or fine-grained communication.
The transformations assumes that the programmer allocates the shared arrays in
blocked fashion. Furthermore, we assume that the number the loop upper bound
has the same value as the number of elements of the loop. This assumption is
not always true but it simplifies the presentation of the algorithms. Moreover, it
presents a solution to automatic loop transformation.

6.1.1 Approaches

The core idea is to schedule the accesses in such a way that each thread does not
access the same shared data. The programmer manually transforms the loop to
increase the performance. The loop scheduling transformations are grouped in
four categories as follows:

• Skew loops to start the iteration form a different point of the loop iteration
space. In UPC language, this is made possible by using the MYTHREAD key-
word in the equation that calculates the induction variable. To calculate the
new induction variable of the loop we use the following equation:

NEW IV = (IV + MY THREAD ×Block) % UB;

Where Block = SIZE OF ARRAY
THREADS and UB is the upper bound of the loop.

• Skew loops plus: The ‘plus’ is used to uniformly distribute the communication
among nodes. Each UPC thread starts from a different block of the shared
array and also from a different position inside the block. The new induction

6.1. LOOP SCHEDULING 81

variable is calculated as follows: NEW IV = (IV +MY THREAD×Block+
MY THREAD × Block

THREADS) % UB;

Figure 6.1 right shows differences between the two skewed versions. The
‘plus’ version access elements from other UPC threads in diagonal form. This
approach is expected to achieve better performance than the baseline because
it uniformly spreads the communication more than the ‘simple’ version.

• Strided accesses: Each thread starts from a different block. The loop in-
creases the induction variable by a constant number: the number of UPC
threads per node plus one. This approach requires the upper bound of the
loop to not be divisible by the constant number (stride) [88, 89, 90]. The
new induction variable is calculated by the following equation:

NEW IV = (IV × STRIDE + MY THREAD)%UB;

To ensure the non-divisibility of the loop upper bound we can use a simple
algorithm:

STRIDE = THREADS + 1;

while (UB%STRIDE == 0) STRIDE + +;

For example in the Power 775 architecture, when running with 32 UPC
threads per node and assuming that the upper bound of the loop is 2048,
the new induction variable is calculated by:

NEW IV = (IV × 33 + MY THREAD) % UB;

• Random shuffled : the loop uses a look-up array that contains the number
of threads randomly shuffled. This approach works only when the upper
bound of the loops is equivalent to the number of threads. This loop creates
an all-to-all communication pattern through the network. This optimiza-
tion is applicable to loops with both fine-grained and coarse-grained com-
munication. There are two downsides when applying this approach to loop
with fine-grained communication. First it requires SIZE OF ARRAY ×
NUM THREADS × sizeof(uint64 t) memory that cannot be allocated of
large arrays. The second drawback is that the runtime (or the compiler) has
to shuffle the array, wasting valuable time of the program execution.

6.1.2 Compiler-assisted loop transformation

The idea of compiler-assisted loop transformation is to conceal the complexity and
make the network more straightforward for the programmer. First, the compiler
collects normalized loops that contain shared references and have no loop carried
dependencies . Next, the compiler checks when the upper bound of the loop is
greater or equal to the number of UPC threads, and if it is not upc forall loop.

82 CHAPTER 6. LOOP SCHEDULING

...

...

...
...

P0:

P1:

P2:

...

(a)

...

...

...
...

P0:

P1:

P2:

...

(b)

...

...

...
...

P0:

P1:

P2:

...

(c)

Figure 6.1: Different schemes of accessing a shared array. The shared object is
allocating in blocked form. Each row represents data residing in one UPC thread
and each box is an array element. The different access types are: (a) baseline: all
UPC threads access the same data; (b) ‘Skewed’: each UPC thread access elements
from a different UPC thread; (c) ‘Skewed plus’: each UPC thread access elements
from a different thread and from a different point inside the block.

The compiler categorizes the loops in two categories based on the loop upper
bound and shared access type. The compiler applies the transformation depending
on the loop category. Figure 6.2 presents the compiler algorithm. The compiler
makes the decision based on the usage of upc memget and upc memput calls, and
the value of loop upper bound. This type of code is more likely to contain all-to-all
communication, thus making it ideal target for the random shuffled solution. The
compiler categorizes the loops in:

• Loops that have coarse-grained transfers and whose upper bound is the num-
ber of UPC threads. In this case, the runtime returns to the program a
look-up table with the number of UPC threads equal to the array size. The
contents of the look-up table are the randomly shuffled values for the induc-
tion variable. We use this technique only to loops with the upper bound
equal with the number of the threads. Thus, the range of shuffled values
range from 0 up to THREADS-1. To improve the performance of this ap-
proach, the runtime creates the shuffled array at the initialization phase.
Next, the compiler replaces the induction variable inside the body of the
loop with the return value of the look up table. Listing 6.2 presents the final
form of the transformed loop. The all-to-all communication pattern belongs
to this category.

• Loops that contain fine-grained communication or contain coarse-grained are
transfered but in these cases the upper bound of the loop is different from
the number of UPC threads. In this case, the compiler skews the itera-
tions in such a way that each UPC thread starts executing from a different
point in the shared array. The compiler uses the simple form to ‘skew’
the iterations to avoid the creation of additional runtime calls. Finally, the
compiler replaces the occurrences of the induction variable inside the loop
body. Listing 6.3 illustrates the final form of a loop containing fine-grained
communication.

6.2. EXPERIMENTAL RESULTS 83

1 shared [N/THREADS] double X[N];

2 shared [N/THREADS] double Y[N];

3

4 void memget_threads_rand(){

5 uint64_t i=0, block = N/THREADS;

6 double *lptr = (double *) &X[block*MYTHREAD];

7 uint64_t *tshuffle = __random_thread_array();

8 for (i=0;i<THREADS;i++){

9 uint64_t idx = tshuffle[i];

10 upc_memget(lptr, &Y[idx*block], block*sizeof(double));

11 }

12 }

Listing 6.2: Compiler transformed loop with coarse-grained access.

1 shared [N/THREADS] double X[N];

2

3 void memget_threads_rand(){

4 uint64_t i=0, block = N/THREADS;

5

6 for (i=0;i<THREADS;i++){

7 uint64_t idx = (i + MYTHREAD*block) % N;

8 ... = X[idx];

9 }

10 }

Listing 6.3: Compiler transformed loop with fine-grained access. We assume the
upper bound to be equal with the size of the array

When the compiler selects the simple form to skew the loop iterations the upper
bound of loop is not equal to the number of threads.

6.2 Experimental results

This experimental evaluation assesses the effectiveness of the loop transformation.
This assessment includes (1) the performance on microbenchmarks using manual
code modifications on a large number of UPC threads. This helps to understand
the maximum speedup that can be achieved and the potential performance bottle-
necks. Second this section presents (2) the performance of compiler transformed
microbenchmarks and real applications.

6.2.1 Methodology

The evaluation uses two different Power 775 machines. The first one has 1024
nodes and is used to evaluate the manual code modifications. The second system
contains 64 nodes. It allows runs with up to 2048 UPC threads and it is used to
evaluate the automatic compiler transformations.

84 CHAPTER 6. LOOP SCHEDULING

Candidate Loop

upc_mem*

calls ?

Is UB

THREADS ?

Skew loop iterations

Use a shuffled array with

the number of threads

NO

NOYES

YES

Figure 6.2: Automatic compiler loop scheduling.

We use one process per UPC thread and schedule one UPC thread per Power7
core. The UPC threads are grouped in blocks of 32 per node, and each UPC
thread is bound to its own core. The experimental evaluation runs each bench-
mark five times. The results presented in this evaluation are the average of the exe-
cution time for the five runs. All benchmarks are compiled using the ‘-qarch=pwr7
-qtune=pwr7 -O3 -qprefetch=aggressive’ compiler flags and with dynamic num-
ber of UPC threads. The baseline versions include all the optimizations presented
in Chapter 4 and Chapter 5, although they don’t optimize benchmarks that con-
tain coarse-grained data transfers. The evaluation varies the size of the data set
with the number of UPC threads (weak scaling).

Benchmarks and Datasets

The evaluation uses three microbenchmarks and four applications. The microbench-
mark is a loop that accesses a shared array of structures. There are three vari-
ations of this microbenchmark. In all versions, each UPC thread executes the
same code in the loop. In the upc memput microbenchmark, the loop contains
coarse-grained upc memput calls. Listing 6.4 presents the code used in upc memput

benchmarks. The fine-grained get contains shared reads and the fine-grained
put contains shared writes. The evaluation also uses a number of benchmarks: (i)
the Sobel 9-point stencil benchmark [50]; (ii) Gravitational N-Body Fish [49]; (iii)
Bucket-sort [76]; and (iv) NAS FT [77]. Section 3.2.2 provides detailed information
about the applications.

6.2.2 Limit study

6.2. EXPERIMENTAL RESULTS 85

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

UPC THREADS

32

320

3200

32000

G
B

/s

Baseline

Skewed

Stride

Random

Figure 6.3: Effect of loop scheduling policies on performance for upc memput.

1 #define N (1llu<<32)

2 shared [N/THREADS] double X[N];

3 shared [N/THREADS] double Y[N];

4

5 void memget_threads(){

6 uint64_t i=0; uint64_t block = N/THREADS;

7 double *lptr = (double *) &X[block*MYTHREAD];

8

9 for (i=0;i<THREADS;i++){

10 uint64_t idx = (i);

11 upc_memput(&Y[idx*block], lptr, block*sizeof(double));

12 }

13 }

Listing 6.4: Example of upc memget loop in UPC.

Figures 6.3 presents the results for the coarse-grained microbenchmark. The
drop of the performance when going from 512 to 1024 UPC threads is due to
the HUB link limits. The microbenchmarks use two supernodes when running
with 1024 UPC threads. Thus, a portion of communication between the UPC
threads uses the (remote) D-Links. Furthermore, the strided version has lower
performance than the random shuffled version. The traffic randomization balances
the use of global links reducing contention. In contrast, the strided version creates
less randomized traffic and created predicted traffic by using different node on each
loop iteration. Overall, performance for a coarse-grained communication pattern
is better when using random allocation. Note, that the is no skewed plus version
because the upc memget and upc memput calls always start from the beginning of
the block.

86 CHAPTER 6. LOOP SCHEDULING

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

UPC THREADS

90

900

G
B

/s

Baseline

Skewed

Skewed Plus

Stride

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

UPC THREADS

90

900

9000

G
B

/s

Baseline

Skewed

Skewed Plus

Stride

(b)

Figure 6.4: Effect of loop scheduling policies on performance for fine-grained get
(b) and fine-grained put (c).

Figure 6.4 illustrates the performance of the fine-grained microbenchmarks.
The skewed and skewed plus versions have similar performance, in fine-grained
category. Thus, using a different starting point inside the block has no real impact
in the performance. The strided version has worse performance than the skewed
version in fine-grained get version. On the other hand, the strided has better
performance using the fine-grained put version. This occurs because the runtime
issues in-order remote stores that target the same remote node.

Moreover, the performance of the fine-grained put is an order of magnitude
faster than the fine-grained get. This behaviour is noticeable especially in the
strided version. The main reason behind this is that the runtime allows overlapping
of store/put operations when the destination node is different. On the other hand,
in the read/get operations, the runtime blocks and waits the transfers to finish.

Overall, loops that contain coarse-grained memget/memput transfers, the com-
piler should use random shuffle. On the other hand, the compiler should use
skewing transformation for loops with fine-grained communication.

6.2.3 Compiler-assisted loop transformation

This section compares the automatic compiler transformation with the manual
transformation. The main difference is that the manual approach avoids additional
overhead by inserting runtime calls. Figure 6.5 compares the compiler-transformed
and hand-optimized code. While the performance of the manual and compiler-
transformed fine-grained microbenchmarks is similar, the compiler transformation
achieves slightly lower performance than the hand-optimized benchmark precisely
because of the insertion of runtime calls.

There are three different categories of performance patterns in the applications.
Figure 6.6 presents the application results. The first category includes applications
that have performance gain compared with the version without the scheduling
(baseline), such as the NAS FT benchmark. This benchmark achieves from 3%

6.2. EXPERIMENTAL RESULTS 87

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

600

60

6

G
B

/s

Baseline

Compiler

Hand Optimized

(a)
3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

UPC THREADS

40

4

0.4

G
B

/s

Baseline

Compiler

Hand Optimized

(b)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

UPC THREADS

1500

150

15

M
B

/s

Baseline

Compiler

Hand Optimized

(c)

Figure 6.5: Comparison of compiler-transformed and hand-optimized code:
upc memput (a), fine-grained get (b), and fine-grained put (c).

up to 15% performance gain, due to its all-to-all communication pattern. The
second category contains applications that have minimal performance gains, such
as the Gravitational Fish benchmark. The third category contains benchmarks
that exhibit performance decrease, such as the Sobel benchmark. The performance
of the Sobel benchmark decreases up to 20% compared with the baseline version,
because of poor cache locality. Table 6.1 presents the cache misses for different
cache levels in the case of the Sobel benchmark, using the hardware counters.

Cache level Cache Miss Ratio Baseline (%) Cache Miss Ratio Scheduling (%)

Level 1 0.14% 0.19%

Level 2 0.19% 24.49%

Level 3 0.32% 28.84%

Table 6.1: Local cache miss ratio using 256 Cores for Sobel benchmark using 256
UPC threads. Results are the average from each of 256 cores. Local miss ratio is
calculated by diving misses in this cache the total number of memory accesses to
this level of cache.

There are minor differences between the baseline and the transformed version
of bucket-sort when using the benchmarks with enabled the local sort. Figure 6.7
presents the results for bucket-sort with enabled and disabled local sort. How-
ever, the transformed version has better results — up to 25% performance gain
— than the baseline version when only the communication part is used. In Fig-
ure 6.7(b) the performance for 32 UPC threads is 40% lower than the baseline
because of the overhead of the additional runtime calls. The effectiveness of the
loop transformation is limited when running less than 32 UPC threads.

88 CHAPTER 6. LOOP SCHEDULING

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

UPC THREADS

80000

8000

800

O
b

je
ct

s/
s

Baseline

Compiler

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

UPC THREADS

20000

2000

200

M
P

ix
e
l/

s

Baseline

Compiler

(b)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

UPC THREADS

150

15

1.5

G
O

p
/s

Baseline

Compiler

(c)

Figure 6.6: Comparison of baseline and compiler-transformed code for fish (a),
Sobel (b), and NAS FT (c).

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

3000

300

30

3

M
 R

e
c
o
r
d

/s

Baseline

Compiler

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

UPC THREADS

10000

1000

100

G
O

p
/s

Baseline

Compiler

(b)

Figure 6.7: Comparison of baseline and compiler-transformed code for bucket-sort
(a) and bucket-sort with only the communication pattern (b).

6.3. CHAPTER SUMMARY AND DISCUSSION 89

6.3 Chapter Summary and Discussion

This chapter examines the problem of concurrent access of shared data from differ-
ent UPC threads and proposes different approaches solving the deficiency. Manual
and compiler transformations are presented and evaluated for their effectiveness.
The evaluation indicates that the compiler transformation is an effective technique
for increasing the network performance in UPC languages. The results show a per-
formance gain raging from 5% up to 25% compared to the baseline versions of the
applications. Moreover, microbenchmark results show even higher performance
gains of up to 3X. On the other hand, the loop transformation has a negative
effect on the cache locality in some benchmarks, such as Sobel. Nevertheless,
the compiler transformation is useful for a number of codes in order to improve
performance in languages like UPC, which can create bottlenecks by the the pro-
grammer.

90 CHAPTER 6. LOOP SCHEDULING

Chapter 7

Related Work

There has been extensive research in the area of parallel programming languages
and the optimization of fine-grained access. This chapter provides an overview of
the optimizations for improving the performance of the PGAS languages, made
available in the literature to date. Specifically, Section 7.1 presents the related
work for prefetching and Section 7.2 reports on the related work for inspector-
executor. Section 7.3 and Section 7.4 look at the compile time transformations and
the runtime optimizations, respectively. Section 7.5 presents the related work for
loop scheduling. Proposed language extensions to improve locality are presented
in Section 7.6. Section 7.7 describes application specific optimizations. Finally,
Section 7.8 presents representations that can describe array accesses.

7.1 Prefetching

Compiler transformation for reducing memory latency using the software prefetch-
ing with the inspector-executor approach, have been long investigated [91, 92].
A popular alternative shared memory programming model is the Software Dis-
tributed Memory Systems (DSMs), such as Nanos DSM [4], ThreadMarks [5] and
ParaADE [6]. Similarly to the PGAS programming model, the programmer sees
a global address space and the runtime is responsible for the communication. For
example, TreadMarks uses a runtime system to detect accesses to shared data and
to manages interprocess communication. These implementations include a form of
software prefetching. However, most of the optimized DSM systems are based on
the page fault mechanism with page prefetching and often have poor performance
on fine-grained communication [7].

7.2 Inspector-executor approaches

The inspector-executor strategy is a well know optimization technique for global
name space programs for distributed execution. Inspector loops were first intro-
duced to extract parallelism from loops with irregular data accesses [37] and later

91

92 CHAPTER 7. RELATED WORK

for the global name space programming model on distributed architectures [23, 82].
The inspector loop analyzes the communication pattern and the executor loop per-
forms the actual communication based on the results of the analysis carried out
by the inspector loop.

The Vienna Fortran Compilation System framework [24] implements tech-
niques similar to ours. The compiler creates sets of inspector and executor loops
for the High Performance Fortran FORALL loop construct. The inspector loop ana-
lyzes the communication pattern of the application and the executor loop performs
the actual communication based on the results of the analysis performed in the
inspector loop. In contrast, we apply the strip-mining transformation on the orig-
inal loop to achieve overlapping of communication with unrelated computation in
the loop, and our analysis is not limited to forall loops. Finally, their algorithm
requires the globalization and privatization of arrays referenced in the forall loop.
The algorithm requires that the local part of the array is copied to shared memory
and modified parts of this copy be copied back to the process private memory. In
contrast, our approach does not require neither of these steps.

Titanium language [14] use the inspector-executor execution model is the run-
time and compiler support for irregular computation. This work targets the built-
in foreach loops in Titanium language [26]. This is a major limitation which our
approach overcomes. In addition they do not apply any further loop transforma-
tion, such as to strip mine the loop. However, this approach causes the inspector
loop to capture every shared access present in the parallel loop and it will create
much higher runtime overhead. Also, the profitability of their loop transformation
in this paper is estimated at compile time. This is an unrefined approach that will
result in a program optimized for a specific architecture.

Other researchers use the inspector-executor approach for High Performance
Fortran (HPF) [25], but stumble upon the limitation of no overlapping commu-
nication with computation and they don’t limit the number of inspect elements.
Authors in [82] present general techniques for caching, data coalescing, and mes-
sage vectorization. The authors explore the potential benefit of these techniques
with irregular applications.

7.3 Compile-time Optimizations

Compile time optimizations focus on changing the provided source code to im-
prove the performance with limited or not at all help from the compiler. The
optimizations focus on simplification of the generated code, privatization of shared
pointer in upc forall loops, coalescing of shared objects, and automatic overlap
of communication and computation. The most relevant drawback of this approach
lies in that many compiler optimizations are based on the available information
at compile time. For example, the programmer that wants to develop portable
code, avoids specifying information at compile time, such as the number of nodes,
threads, and blocking factor. In this case a number of optimizations, such as the

7.3. COMPILE-TIME OPTIMIZATIONS 93

replacement of shared pointer with simple pointer (privatization) will fail because
the data distribution is not known at compile time.

7.3.1 Code simplification

The most common optimization is the upc forall loop simplification [32, 93].
The compiler optimizes the parallel loop by eliminating the branch inside the
loop, created by the affinity expression. For example, the parallel loop:

upc_forall (i =0; i<N; i ++; i){

a[i] = b[i] + scalar * c[i]

}

will be transformed to:

for (i =0; i < N; i ++){

if ((i % THREADS) == MYTHREAD)

a[i] = b[i] + scalar * c[i] ;

}

However after the optimization final loop will not contain the affinity branch:

for (i =MYTHREAD; i<N; i +=THREADS){

a[i] = b[i] + scalar * c[i] ;

}

Another optimization that the compiler can apply is the elimination of pointer
arithmetic on shared accesses [22]. Shared pointer arithmetic is expensive because
a runtime call is automatically created upon each access. When the compiler
replaces this runtime call with a simple pointer dereference the compiler can use
common subexpression elimination to avoid the creation of runtime calls. Table 7.1
illustrates an example of the optimization. Before the optimization the compiler
will replace each *(p+j) expression with runtime calls. After the optimization the
compiler will insert only one call before the usage of *(t) and it will replace the
other dereferences.

7.3.2 Shared-Pointer Privatization

The compiler uses information provided by the affinity expression of an upc forall

loop to privatize the shared accesses that are to the local partition of the mem-
ory [32, 33]. For instance, an affinity expression that is pointer-to-shared usually
indicates that the references are local memory. Thus, the compiler can transform
the fat shared pointer into a thin private pointer and save a runtime call. Un-
fortunately, this approach only works when the upc forall construct is used or
requires that the physical data placement be known at compile time.

94 CHAPTER 7. RELATED WORK

Before optimization After optimization

shared int *p = foo();

int i = ...

int j = f(i, ...);

... = *(p+j);

... = *(p+j);

shared int *p = foo();

int i = ...

int j = f(i, ...);

shared int *t = p + j

... = *(t);

... = *(t);

Table 7.1: Example using the pointer arithmetic optimization.

Before optimization After optimization

struct S {int x; int y;};

shared struct S *p;

... = __ptr_deref(&p->x, 4);

... = __ptr_deref(&p->y, 4);

struct S {int x; int y;};

shared struct S *p;

__ptr_deref_co(&t, p, 8)

...= t[0];

...= t[1];

Table 7.2: Example using the coalescing optimization.

7.3.3 Shared Object Coalescing

Optimizations for data coalescing using static analysis exists in Unified Parallel
C [29, 22] and High Performance Fortran [30, 31]. Table 7.2 presents an example of
the optimization. A compiler uses data and control flow analysis to identify shared
accesses to specific threads and creates one runtime call for accessing the data from
the same thread. However, the existing locality analysis algorithm is not applicable
to other constructs, such as a for loops or do/while loops. Furthermore, it requires
information for the physical data placement at compile time, even for upc forall
loops, to optimize the shared accesses. Finally, in practice many existing UPC
programs do not make extensive use of upc forall loop constructs, discounting a
substantial optimization opportunity. In contrast, we provide a generic approach
to coalesce data accesses at runtime that overcomes the necessity for prior knowl-
edge of physical data mapping and without the necessity to use the upc forall
loop structure. Other Fortran-like programming models also support static coa-
lescing and are described as message vectorization [94, 82, 95]. The X10 [27] and
Chapel [28] languages also support aggregation at compile time to improve the
performance.

7.3. COMPILE-TIME OPTIMIZATIONS 95

Before optimization After optimization

void foo (shared int *p){

m = ...

__ptr_assign(&m, ...);

__ptr_deref(&t, ...);

... = t;

}

void foo (shared int *p){

h1 = __ptr_deref(&t, ...);

m = ...

h2 = __ptr_assign(&m, ...);

__wait(h1);

... = t;

wait(h2);

}

Table 7.3: Example using the splitting optimization.

7.3.4 Overlapping of communication and computation

Another approach to minimize the communication latency in the PGAS program-
ming model is the split of the issuing shared accesses and the synchronization
points. In literature, this approach is referred to either as “split-phase commu-
nication” [22] or “scheduling” [32, 96, 31]. The compiler inserts runtime calls to
fetch the data as early possible inside the code and inserts a synchronization call
just before the use of the data. Other approaches delay the completion of a put
operation until either a synchronization point is reached or a procedure exists over
the data [97]. Table 7.3 presents an example of the optimization. However, these
approaches have limited opportunities for optimizing loop structures, due to the
complexity involved in data flow analysis. In contrast, we focus on optimizing
fine-grained shared accesses inside loops.

Researchers have also proposed techniques for overlapping computation with
communication techniques using a more sophisticated runtime. One approach
to exploiting computation and communication overlapping, is to decompose the
coarse-grained transfer segments, into strips and to store a handle for each strip [98].
Next, the runtime checks on each access, if the data have been arrived for the cur-
rent accessing strip. This optimization uses a combination of strip-mining and
message scheduling. They aim is to optimize coarse-grained data transfers by
using a pipeline approach. The runtime uses the mprotect call for each page asso-
ciated with the strip. The program will continue the execution until the point the
program accesses the shared data. At this point, the program receives a SIGSEGV

signal and executes the associated signal handler. The handler identifies that the
faulting address belongs to a transfer buffer, restores access rights and blocks the
execution until the transfer is completed. The same algorithm is repeated when
a new strip is accessed. The shortcoming of this implementation is the increased
overhead due to signal handler and the incompatibility with high speed network
controllers.

96 CHAPTER 7. RELATED WORK

Optimizing the upc memget runtime calls introduces a more complicated mech-
anism and dynamic access analysis. The runtime analyzes the accesses between
two synchronization statements. If the program enters again in the same code re-
gion the runtime tries to prefetch data. When the execution of the region between
two synchronization points finishes, the runtime creates a list of possible prefetches
and issues them after the exit of synchronization point to overlap communication
with computation. The optimization in cooperation with the data aggregation
improves significant the performance [97]. In this case, The runtime tries to aggre-
gate the shared access to more coarse-grained messages, to increase the efficiency
of the network. One aspect of this approach is the trade-off between aggregated
and pipelining messages. However, this approach has the drawback of increased
overhead of the runtime, due to access analysis and aggregation analysis.

Authors in [99] present an optimization framework that replaces common fine-
grained communication patterns with coarse-grained runtime calls. There runtime
calls can be either point to point or collective. The XL UPC compiler [52] is able to
detect common initialization idioms and substitute the fine-grained communication
in such loops with coarser-grained communication. Examples of these patterns
include loops that simply copy all elements of a shared array into a local array, or
vice versa, or loops used to set all elements of a shared array with an initial value.
The compiler classifies the operations based on the access pattern and replaces
the individual shared array accesses with calls to one of the UPC string handling
functions: upc memget, upc memset, upc memcpy, or upc memput.

7.4 Runtime optimizations

Runtime optimizations provide a way of reducing the impact of the network latency
without altering the source code of the program. This approach has the advantage
in case where the source code is not available for re-compilation.

7.4.1 Software caching

The MuPC [100, 34] and HP UPC [101, 102] runtime systems implement soft-
ware caching. The HP UPC runtime caches the operations on remote nodes and
prefetches nearby remote addresses. A four-way set associative cache method is
used. The cache block size is controlled by an environment variable. Finally, the
caching is disabled in SMP environments. The MuPC cache is a non-coherent,
direct mapped, write back cache. Each UPC thread maintains a non-coherent
cache for remote scalar references made by a thread. The total cache size scales
with the number of threads and each cache block holds cache lines only from the
corresponding remote thread. The cache line size is configurable with an environ-
ment variable. Caching greatly reduces the memory latency in the relaxed mode
by reducing the number of messages.

In other approaches, that use a distributed shared variable directory (SVD), an
address cache is implemented. The caching of remote addresses reduces the shared

7.5. LOOP SCHEDULING 97

access overhead and allows better overlap of communication and computation, by
avoiding the SVD remote access [35, 54]. Also, a software-cache mechanism creates
additional network traffic due to cache coherence.

Finally, the idea of shadowing or overlapping data [103] assumes that references
are in a contiguous space around the local data of a distributed array, which
normally belongs to a remote node.

7.4.2 Hybrid environments

Various optimizations have been applied to exploit hybrid environments. Most of
the work is focused on optimizations for multicore nodes [104], optimizing collective
communication on hybrid environments [105], over-subscription [106], and load
balancing [107] when using over-subscription.

Over-subscription [106] can improve the throughput of the benchmarks by up
to 27%. However, over-subscription is used when running multiple different com-
petitive benchmarks on the same node. Another problematic aspect of this ap-
proach is that the default Linux process scheduler decreases the performance when
the over-subscription is used. Furthermore, the proper scheduling of the tasks to
achieve load balancing is an active research topic [107].

Researchers proposed a number of optimizations in hybrid environments for
the collective calls [105, 55]. These optimizations exploit the heterogeneous envi-
ronment to minimize the overhead of data transfers. For example in the broadcast,
the task first exchange data inside the node through inter-process communication
or shared memory. Then, only one task will communicate with one of the tasks
on each node to propagate the data. Finally, the task responsible for receiving the
data, broadcast them inside the node.

Selection between different ways of transmitting data in the collectives of UPC
has been also investigated [104]. For example, the runtime can use flat algorithms
(the UPC threads communications with all other UPC threads) for small messages,
or tree algorithms for large messages. However, these approaches depend on the
characteristics of the networks and the machines.

7.5 Loop Scheduling

Overall, memory optimizations is a widely researched topic [108, 109]. Tradi-
tional loop transformations focus on increasing the cache performance and band-
width [110, 111]. Researchers also use loop scheduling techniques to improve the
performance of Non-Uniform Memory Access (NUMA) machines [112, 113] and
heterogeneous machines [114, 115].

Recent efforts on loop transformations focus on reducing the memory bank
conflicts [88, 89], especially in GPUs [116] and embedded systems [117]. Similarly,
our approach uses loop transformation by distributing the shared access across the
UPC threads aiming at increasing the network efficiency. Unlike the majority of

98 CHAPTER 7. RELATED WORK

the previous works, our approach employs a random distribution to improve the
performance.

The Dragonfly interconnect [70] uses randomized routing as an effective ap-
proach to reduce hotspots. What is more, this approach requires additional hard-
ware support. Instead we advocate moving the complexity to software. Our com-
piler transformation can offer comparable performance by randomizing the source
and destination pairs involved in communication.

Other approaches to increasing the similarity of a uniform random traffic pat-
tern include randomized task placement [118] and adaptive routing [90]. The au-
thors in [90] randomize the routing at runtime to achieve better performance based
on different patterns. Randomized task placement [118] can increase the amount
of randomized traffic and avoid traffic. However other researchers proved [119]
that despite the improved results, the performance of randomized uniform traffic
is still far from ideal.

7.6 Language Extensions

Multi-blocking allocation of shared data in UPC [120] and HPF+ Fortran [121] is
a common technique used to minimize the number of messages exchanged. How-
ever, these approaches are not part of the language standard and they still incur
overhead from a library call that is automatically creation. Some other proposals
made in literature are the following: First, the HPF+ Fortran [121] to achieve
better performance and address the limitations of the High Performance Fortran.
The proposed extensions include indirect and multiblock allocation. The arrays
are distributed dynamically depending on the phase of the algorithm — in con-
trast with the standard blocking allocation. Furthermore, the Researchers also
propose dynamic data distribution for adaptive memory allocations. The arrays
are distributed dynamically depending on the phase of the algorithm, in contrast
with the standard blocking allocation. The language also contains some extensions
for specifying that the data are local. Finally, the language supports shadow (for
regular) or “Halo” regions to specify the remote accesses. Second, researchers have
proposed some language extensions to make the Fortran 90 programs run in paral-
lel [122]. The main contribution is that the arrays are distributed among different
threads. The framework contains one pre-processor that transforms Fortran 90 to
Fortran 77 and one runtime for communication.

7.7 Application specific optimizations

Researchers have also proposed application specific optimizations that focus on
specific platforms. Unfortunately, these approaches are hard to generalize and are
application domain specific. Nevertheless, researchers should always explore these
efforts when optimizing similar applications.

7.8. ARRAY ACCESS ANALYSIS 99

An example of the above is the optimization of stencil computation in High
Performance Fortran [123] using communication unioning [124]. There are also
compilers that optimize stencil computation for specific machine architectures such
as the convolution compiler [125]. The compiler uses the polyshift [126] communi-
cation mechanism for CM-2 machine. The XL HPF compiler of IBM [127] utilizes
similar approach to decrease the number of messages.

Another example are code improvements for large-scale graph analysis. Pro-
grammers can easily map the shared-memory graph algorithms to PGAS envi-
ronments, although it is unlikely that naive implementations achieve high perfor-
mance for large datasets. Code improvements for increasing their performance
includes message coalescing and privatization in the context of distributed graph
algorithms [128].

Other researchers proposed algorithms for the HPCC RandomAccess Bench-
mark to increase the efficiency [129]. However, the authors focus the approaches to
optimize communication for the Red Storm Machine. The researchers use different
approaches to allocation and communication to exploit the hypercube architecture
for aggregating the messages.

7.8 Array Access Analysis

Linear Memory Access Descriptors (LMAD) [40, 41] is a well known representa-
tion that describes the accesses on a array. This representation is used for array
accesses analysis, coalescing of accesses, and for privatizing the array accesses on
various platforms. For instance, Xhu et al. use the LMAD representation to
translate program manually for distributed shared memory (DSM) systems [130].
Xunhao Li [131, 132] and Garg et al. [39] use a subset of LMAD, Restricted Con-
stant Strided Linear Memory Access Descriptor(RCSLMAD) to identify memory
locations of accessed array elements in Graphic Processor Units (GPUs).

Other alternative representations of arrays accesses is the Systems of Affine
Recurrence Equations (SAREs) over polyhedral domains [133]. Researchers cre-
ated various tools to automatize the privatization of the data in GPUs environ-
ments [134, 135, 136].

100 CHAPTER 7. RELATED WORK

Chapter 8

Conclusions and Future Work

This dissertation presented optimizations that increase the performance of UPC
applications containing fine-grained communication. In order to efficiently improve
the performance of this latter type of programs, the programmer or the compiler
framework must overcome three challenges: (i) the low network efficiency due to
the small messages; (ii) the large number of runtime calls; and (iii) network hotspot
creation for the non-uniform distribution of network communication, especially in
all-to-all patterns.

To address these deficiencies, this thesis suggested optimizations, which can be
grouped under three major categories. First, this thesis proposes the utilization of
an improved inspector-executor transformation (Chapter 4) [36] to solve the low
network efficiency. The compiler transforms the loop in the inspector-executor
form, and then it stripe-mines the loops iterations into smaller blocks to achieve
overlap of computation and communication. Between the inspector and executor
loop the runtime analyzes and aggregates the remote accesses into bigger messages.

Second, the thesis proposed optimizations to decrease the number of runtime
calls in the inspector-executor transformation (Chapter 5). The optimizations
employ a number of techniques to successfully remove the calls. Namely, the
use of Constant Stride Linear Memory Address Descriptors (CSLMADs) [40] with
regular accesses; the use of a temporary array to collect shared indexes for irregular
accesses; static coalescing when using structs [38]; a lightweight loop code motion
designed for the UPC language. The evaluation demonstrated how eliminating
unnecessary runtime calls inserted by the compiler when accessing shared data is
important to achieve good performance.

The final part of the thesis presented optimizations to decrease the possibil-
ity of hotspot creation. UPC language is subject to hotspot creation or over-
subscription of the node due to the transparency allowed to the programmer. To
effectively avoid network congestion, the programmer or the runtime must spread
non-uniform traffic evenly over the different links. Chapter 6 explored the possi-
ble approaches of distributing the accesses through the network: (i) by manually
modifying the source code; (ii) by using compiler assistance loop transformations

101

102 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

to automatically improve performance.

Based on these results, we draw the following conclusions:

• Unified Parallel C programming model can provide MPI-comparable perfor-
mance in applications that contain fine-grained regular accesses, combined
with the optimizations presented.

• To provide performance comparable to coarse-grained application, it is im-
portant for the compiler to eliminate unnecessary runtime calls. Simple
approaches, such as the inspector-executor transformation, are not enough.

• For applications with irregular shared references, the programmer benefits
by expressing the accesses in the form of read-modify-write of data. Alter-
natively, the compiler optimizations, as presented in this thesis, can provide
an order of magnitude performance gain, but there is still room to close the
gap with the manual optimized benchmarks.

8.1 Publications

During the course of the thesis, we have published a number of articles. First of
all, the algorithm of inspector-executor presented in Chapter 4 was submitted as
patent [43]. The patent describes the basic design aspects of the transformation.

Michail Alvanos, Ettore Tiotto. Software prefetching technique for Par-
tion Global address Space (PGAS) languages. Canada Patent Application
No. 2762563 - US Patent Application US-20130167130.

After filling the patent, IBM gave permission to publish the transformation
and the initial results in the CASCON conference [36]. This work explains in
more detail the implementation of the patent and provides an evaluation up to
256 Cores. Following this presentation, we received feedback from experts in the
field. Such insights were important for developing this work further.

Michail Alvanos, Montse Farreras, Ettore Tiotto, and Xavier Martorell.
Automatic Communication Coalescing for Irregular Computations in UPC
language. In Conference of the Center for Advanced Studies, CASCON 2013.

Our next step was to address the comments made on the previous publication,
scale up the experiments up to 32768 cores, and provide incremental optimiza-
tions [38]. The contribution of this article is the combination of compile time
(static), as presented in Chapter 5, and runtime (dynamic) coalescing techniques
that do not require knowledge of physical data mapping. The evaluation yielded
speedups from 1.15X up to 21X compared to the baseline unoptimized versions,
achieving up to 63% the performance of the MPI versions.

8.1. PUBLICATIONS 103

Michail Alvanos, Montse Farreras, Ettore Tiotto, Jose Nelson Amaral,
and Xavier Martorell. Improving Communication in PGAS Environments:
Static and Dynamic Coalescing in UPC. In International Conference on Su-
percomputing, ICS 2013.

During the development of the International Conference on Supercomputing
paper, we came across an interesting outcome: The network was performing poorly
in a number of benchmarks. The problem was that the traffic was non-uniform,
creating hotspots on the network. Thus, our initial reaction was to present manual
and automatic compiler transformations to distribute the traffic [44]. Despite the
limited evaluation, the short article offers a glimpse of the UPC language pitfalls
to the community and provides possible solutions.

Michail Alvanos, Gabriel Tanase, Montse Farreras, Jose Nelson Amaral,
Xavier Martorell. Improving performance of all-to-all communication using
better loop scheduling in PGAS environments, In International Conference
on Supercomputing, ICS 2013. 2 Pages.

The short paper/poster on the International Conference on Supercomputing
sparked the exploration of a new set of optimizations, targeting both applications
with fine-grained and coarse-grained communication patterns [45]. Thus, the last
part of the thesis (Chapter 6) was published as a short paper on the International
Conference on PGAS Programming Models:

Michail Alvanos, Gabriel Tanase, Montse Farreras, Jose Nelson Ama-
ral, Xavier Martorell. Improving Communication Through Loop Scheduling
in UPC. In 7th International Conference on PGAS Programming Models,
PGAS 2013

Finally, as a member of the XL UPC Toronto compiler team, the author was
involved in a technical report that evaluates all the compiler and runtime opti-
mizations evaluated in the Power 775 machine [52]. The report provides insights
on the expected performance of UPC applications in the Power 775 machines:

Gabriel Tanase, Gheorghe Almaśi, Ettore Tiotto, Michail Alvanos, Anny
Ly, Barnaby Dalton. Performance Analysis of the IBM XL UPC on the
PERCS Architecture. IBM Technical Paper. RC25360, 2013.

Parts of this work are still under review for publication. For example, the
second part of the Chapter 5 is not properly described in the ICS paper [38].
Furthermore, the details of the Chapter 6 are not presented in the current publi-
cations [44, 45].

104 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Productization

The transformation presented in Chapter 4 was productized under the
-qprefetch=aggressive flag of XL UPC compiler [52, 53, 137] on Power 775
machine [138]. According to TOP500 [139] there are 9 installed supercomput-
ers providing a total of 5361 TFlops of processing power. Installed machines are
ranging from 2,000 to over 64,000 Power7 processing cores.

8.3 Future Work

The current prototype implementation can be improved in several ways. First
of all, the compiler has strict requirements for the inspector-executor transforma-
tion. The other transformations have fewer requirements, but the effectiveness
is limited. The loops must be normalized and monotonically increasing to com-
pletely remove the calls from the inspector and executor loops. Selecting a simpler
inspector-executor transformation without the blocking transformation can bridge
these requirements, despite possible drawbacks.

Furthermore, the existence of runtime calls inside the loops decreases the oppor-
tunities for optimizing the loop. Inter-procedural analysis can give the additional
information about the loop analysis to increase the opportunities for optimiz-
ing loops that contain procedure calls. The amount of iterations to analyze and
prefetch is different and depends on the access pattern, number of UPC threads,
and loop upper bound.

Finally, there are two applications categories that this thesis does not examine.
The first category included the applications that contain graph traversing. In this
case, the loops are not normalized and usually the traverse of the loop leads to
irregular access patterns. Another category is the benchmark that contains sparse
matrices. In this scenario, the inspector-executor optimization fetches only the
first level of the accesses leaving the blocking communication inside the execution
loop.

For example, Listing 8.1 presents an algorithm for connected components in
UPC [128]. The question here is how we optimize these accesses ? In the first
loop, the compiler privatizes the access in the El array, because it is upc forall

structure. Furthermore, the compiler can use the inspector-executor transforma-
tion to prefetch the D[u] and D[v] accesses. However, there is an indirect access
on D array that uses the D[v] in line 5.

The second loop contains an even more complicated expression that traverses
the graph. Note that the loop is irregular and contains indirect accesses. How
can the programmer optimize this piece of code? Even more, how the compiler
developer teach the compiler to apply optimizations on this irregular loop?

8.4. SURVIVAL OF THE UPC LANGUAGE 105

1 gr = 0;

2 upc_forall (i=0; i<m; i ++; &El[i]){

3 u = El[i].u; v = El[i].v;

4 if (D[u] < D[v]) {

5 D[D[v]] = D[u] ;

6 gr = 1;

7 }

8 }

9
10 gr = all_reduce_i (gr , UPC ADD) ;

11
12 if (gr == 0) break ;

13
14 upc_forall (i=0; i<n; i++; &D[i]){

15 while (D[i] != D[D[i]])

16 D[i] = D[D[i]] ;

17 }

Listing 8.1: UPC algorithm of connected components graph.

8.4 Survival of the UPC language

High Performance Fortran (HPF) [140] was a promising programming model for
high performance computing. HPF has the same goals with the Unified Parallel C
language: provide a programming model for scalable parallel systems, according to
which (i) the programmer sees a single shared address space, (ii) communication
is implicitly generated, (iii) the performance is comparable to the MPI hand tuned
version.

Unfortunately, the research and development process of the HPF compilers
and runtime stopped some years later. Kennedy explained why HPF did not
survive [141]. The main reasons for the limited adoption of the language are: (i)
the fact that programmers usually rewrite the application for the specific compiler
and machine; (ii) the use of immature compiler technology that leads to poor
performance; (iii) missing tools.

Despite the adequate number of UPC compilers [62, 142, 52, 143], not all of
them follow the standards or have good performance. For example, many of the
advanced optimizations of XL UPC compiler are not yet supported by the Cray
UPC compiler [143]. Another example is the gcc UPC compiler. In this case, the
programmer must specify the number of threads when declaring shared arrays on
the heap. In a typical scenario, the programmer will have to put some time and
effort into porting the applications to a different compiler and optimizing it to
achieve the maximum performance.

Despite all these challenges that HPC community and compiler developers must
face, the UPC language has greater opportunities than the HPF. The main reason
is the support from the open community with the availability of the Berkeley UPC
compiler [142] and the gcc UPC Compiler [62]. Both projects are open source and
available to download. Finally, they include support for many architectures and
Interconnects, partially solving the portability issue.

106 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] L. Dagum and R. Menon, “Openmp: An industry standard api for shared-
memory programming,” in IEEE International Conference on Computa-
tional Science and Engineering, 1998.

[2] J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared memory:
Concepts and systems,” Parallel & Distributed Technology: Systems & Ap-
plications, IEEE, vol. 4, no. 2, pp. 63–71, 1996.

[3] B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues and
algorithms,” Computer, vol. 24, no. 8, pp. 52–60, 1991.

[4] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta, “Running
OpenMP applications efficiently on an everything-shared SDSM,” in In Proc.
of IPDPS 04, pp. 35–42, 2004.

[5] C. Amza, A. L. Cox, H. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel, “TreadMarks: Shared Memory Computing on Networks
of Workstations,” IEEE Computer, vol. 29, pp. 18–28, 1996.

[6] Y.-S. Kee, J.-S. Kim, and S. Ha, “Parade: An openmp programming envi-
ronment for smp cluster systems,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, SC ’03, (New York, NY, USA), pp. 6–, ACM,
2003.

[7] A. Itzkovitz and A. Schuster, “MultiView and Millipage – fine-grain sharing
in page-based DSMs,” in Proceedings of the third symposium on Operat-
ing systems design and implementation, OSDI ’99, (Berkeley, CA, USA),
pp. 215–228, USENIX Association, 1999.

[8] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel Programming in Split-C,” in Pro-
ceedings of the Supercomputing ’93 Conference, (Portland, OR), pp. 262–273,
November 1993.

[9] U. Consortium, “UPC Specifications, v1.2,” tech. rep., Lawrence Berkeley
National Lab Tech Report LBNL-59208, 2005.

107

108 BIBLIOGRAPHY

[10] R. Numwich and J. Reid, “Co-array fortran for parallel programming,” tech.
rep., 1998.

[11] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. S. Jr., and S. Tobin-Hochstadt, “The Fortress Language Specifica-
tion Version 1.0,” March 2008. http://labs.oracle.com/projects/plrg/
Publications/fortress.1.0.pdf.

[12] Cray Inc, “Chapel Language Specification Version 0.8,” April 2011. http:

//chapel.cray.com/spec/spec-0.8.pdf.

[13] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: an object-oriented approach to non-
uniform cluster computing,” vol. 40, pp. 519–538, Oct. 2005.

[14] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A High-performance Java Dialect,” Concurrency - Practice and
Experience, vol. 10, no. 11-13, pp. 825–836, 1998.

[15] J. Lee and M. Sato, “Implementation and Performance Evaluation of Xcal-
ableMP: A Parallel Programming Language for Distributed Memory Sys-
tems,” in Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on, pp. 413–420, 2010.

[16] Francois Cantonnet, Yiyi Yao, Mohamed M. Zahran, and Tarek A. El-
ghazawi, “Productivity Analysis of the UPC Language,” in International
Parallel and Distributed Processing Symposium/International Parallel Pro-
cessing Symposium, 2004.

[17] Rajesh Nishtala and George Almasi, “Performance without pain = produc-
tivity: Data layout and collective communication in UPC,” in In Principles
and Practices of Parallel Programming (PPoPP), 2008.

[18] K. A. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. N. Hilfinger, P. Husbands, C. Iancu, A. Kamil,
R. Nishtala, J. Su, M. L. Welcome, and T. Wen, “Productivity and perfor-
mance using partitioned global address space languages,” in Proceedings of
the 2007 international workshop on Parallel symbolic computation, pp. 24–
32, 2007.

[19] C. Coarfa, Y. Dotsenko, J. M. Crummey, F. Cantonnet, T. E. Ghazawi,
A. Mohanti, Y. Yao, and D. C. Miranda, “An evaluation of global address
space languages: co-array fortran and unified parallel C,” in Proceedings of
the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’05, pp. 36–47, 2005.

http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://chapel.cray.com/spec/spec-0.8.pdf
http://chapel.cray.com/spec/spec-0.8.pdf

BIBLIOGRAPHY 109

[20] Christopher Barton, George Almasi, Montse Farreras, and Jose Nelson Ama-
ral, “A characterization of shared data access patterns in upc programs,” in
In Workshop on Languages and Compilers and Parallel Computing (LCPC),
pp. 111–125, 2006.

[21] MPI Forum, “MPI: A Message-Passing Interface Standard..” http://www.

mpi-forum.org.

[22] C. I. W. Chen and K. Yelick, “Communication optimizations for fine-grained
upc applications,” in In 14th International Conference on Parallel Architec-
tures and Compilation Techniques, 2005.

[23] C. Koelbel and P. Mehrotra, “Compiling Global Name-Space Parallel Loops
for Distributed Execution,” IEEE Trans. Parallel Distrib. Syst., vol. 2,
pp. 440–451, October 1991.

[24] P. Brezany, M. Gerndt, and V. Sipkova, “SVM Support in the Vienna Fortran
Compilation System,” tech. rep., KFA Juelich, KFA-ZAM-IB-9401, 1994.

[25] D. Yokota, S. Chiba, and K. Itano, “A New Optimization Technique for the
Inspector-Executor Method,” in International Conference on Parallel and
Distributed Computing Systems, pp. 706–711, 2002.

[26] J. Su and K. Yelick, “Automatic Support for Irregular Computations in a
High-Level Language,” in Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), 2005.

[27] K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: Programming for hierarchi-
cal parallelism and non-uniform data access,” in Proceedings of the Interna-
tional Workshop on Language Runtimes, OOPSLA, 2004.

[28] A. Sanz, R. Asenjo, J. Lopez, R. Larrosa, A. Navarro, V. Litvinov, S.-E.
Choi, and B. L. Chamberlain, “Global data re-allocation via communication
aggregation in chapel,” in SBAC-PAD, IEEE Computer Society, 2012.

[29] Christopher Barton, George Almasi, Montse Farreras, and Jose Nelson Ama-
ral, “A Unified Parallel C compiler that implements automatic communica-
tion coalescing,” in In 14th Workshop on Compilers for Parallel Computing,
2009.

[30] D. Chavarria-Miranda and J. Mellor-Crummey, “Effective Communication
Coalescing for Data-Parallel Applications,” in In Proceedings of the 10th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pp. 14–25, 2005.

[31] M. Gupta, E. Schonberg, and H. Srinivasan, “A Unified Framework for Opti-
mizing Communication in Data-Parallel Programs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, pp. 689–704, 1996.

http://www.mpi-forum.org
http://www.mpi-forum.org

110 BIBLIOGRAPHY

[32] C. M. Barton, “Improving access to shared data in a partitioned global ad-
dress space programming model. Ph.D. thesis,” 2009. University of Alberta.

[33] W.-Y. Chen, Optimizing Partitioned Global Address Space Programs for
Cluster Architectures. PhD thesis, EECS Department, University of Cali-
fornia, Berkeley, Dec 2007.

[34] Z. Zhang, J. Savant, and S. Seidel, “A UPC Runtime System Based on MPI
and POSIX Threads,” Parallel, Distributed, and Network-Based Processing,
Euromicro Conference on, vol. 0, pp. 195–202, 2006.

[35] M. Farreras, G. Almási, C. Cascaval, and T. Cortes, “Scalable rdma per-
formance in pgas languages,” in 23rd IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29,
2009, pp. 1–12, IEEE, 2009.

[36] M. Alvanos, M. Farreras, E. Tiotto, and X. Martorell, “Automatic communi-
cation coalescing for irregular computations in upc language,” in Conference
of the Center for Advanced Studies, CASCON ’12, ACM, 2012.

[37] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization
and scheduling of loops,” IEEE Transactions on Computers, vol. 40, no. 5,
pp. 603–612, 1991.

[38] M. Alvanos, M. Farreras, E. Tiotto, J. N. Amaral, and X. Martorell, “ Im-
proving Communication in PGAS Environments: Static and Dynamic Coa-
lescing in UPC,” in Proceedings of the 27th annual international conference
on Supercomputing, ICS ’13.

[39] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution environ-
ment,” in Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pp. 19–30, ACM, 2010.

[40] Y. Paek, J. Hoeflinger, and D. A. Padua, “Efficient and Precise Array Ac-
cess Analysis,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 24, no. 1, pp. 65–109, 2002.

[41] Y. Paek, J. Hoeflinger, and D. Padua, “Simplification of array access patterns
for compiler optimizations,” in ACM SIGPLAN Notices, vol. 33, pp. 60–71,
ACM, 1998.

[42] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control depen-
dence graph,” ACM Transactions on Programming Languages and Systems,
vol. 13, pp. 451–490, October 1991.

[43] M. Alvanos and E. Tiotto, “Data Prefetching and Coalescing for Parti-
tioned Global Address Space Languages,” Oct. 24 2012. US Patent App.
13/659,048.

BIBLIOGRAPHY 111

[44] M. Alvanos, G. Tanase, M. Farreras, E. Tiotto, J. N. Amaral, and X. Mar-
torell, “Improving performance of all-to-all communication through loop
scheduling in PGAS environments,” in Proceedings of the 27th international
ACM conference on International conference on supercomputing, pp. 457–
458, ACM, 2013.

[45] M. Alvanos, G. Tanase, M. Farreras, E. Tiotto, J. N. Amaral, and X. Mar-
torell, “Improving Communication Through Loop Scheduling in UPC,” in
Proceedings of 7th International Conference on PGAS Programming Models,
2013.

[46] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A nonuni-
form memory access programming model for high-performance computers,”
The Journal of Supercomputing, vol. 10, no. 2, pp. 169–189, 1996.

[47] D. R. Butenhof, Programming with POSIX threads. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.

[48] ISO/IEC JTC1 SC22 WG14, “ISO/IEC 9899:TC2 Programming Languages
- C,” tech. rep., May 2005. http://www.open-std.org/JTC1/SC22/WG14/

www/docs/n1124.pdf.

[49] S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms. Cam-
bridge Monographs on Mathematical Physics, Cambridge, U.K.; New York,
U.S.A.: Cambridge University Press, 2003.

[50] T. El-Ghazawi and F. Cantonnet, “UPC performance and potential: a NPB
experimental study,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, Supercomputing ’02, (Los Alamitos, CA, USA), pp. 1–26,
IEEE Computer Society Press, 2002.

[51] T. El-Ghazawi and F. Cantonnet, “UPC Performance and Potential: A NPB
Experimental Study,” in In Proceedings of Supercomputing 2002.

[52] G. Tanase, G. Almási, E. Tiotto, M. Alvanos, A. Ly, and B. Daltonn, “Per-
formance Analysis of the IBM XL UPC on the PERCS Architecture,” tech.
rep., 2013. RC25360.

[53] IBM, “XL C and C++ compilers.” http://www-01.ibm.com/software/

awdtools/xlcpp/.

[54] C. Barton, C. Cascaval, G. Almasi, Y. Zheng, M. Farreras, S. Chatterje,
and J. N. Amaral, “Shared memory programming for large scale machines,”
Sigplan Notices, vol. 41, 2006.

[55] G. I. Tanase, G. Almási, H. Xue, and C. Archer, “Composable, non-blocking
collective operations on power7 ih,” in Proceedings of the 26th ACM inter-
national conference on Supercomputing, ICS ’12, (New York, NY, USA),
pp. 215–224, ACM, 2012.

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www-01.ibm.com/software/awdtools/xlcpp/
http://www-01.ibm.com/software/awdtools/xlcpp/

112 BIBLIOGRAPHY

[56] G. Shah and C. Bender, “Performance and Experience with LAPI – A New
High-Performance Communication Library for the IBM RS/6000 SP,” in
Proceedings of the 12th. International Parallel Processing Symposium, IPPS
’98, (Washington, DC, USA), pp. 260–, IEEE Computer Society, 1998.

[57] IBM, Parallel Environment Runtime Edition for AIX, PAMI Programming
Guide, Version 1 Release 1.0, IBM. 2011. http://publib.boulder.ibm.

com/epubs/pdf/a2322730.pdf.

[58] M. Farreras and G. Almasi., “Asynchronous PGAS runtime for Myrinet
networks.,” in Fourth Conference on Partitioned Global Address Space Pro-
gramming Model (PGAS), Oct 2010.

[59] G. Almási, C. Archer, J. G. Castaños, J. A. Gunnels, C. C. Erway, P. Hei-
delberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, B. D.
Steinmacher-Burow, W. Gropp, and B. Toonen, “Design and implementa-
tion of message-passing services for the Blue Gene/L Supercomputer,” IBM
Journal of Research and Development, vol. 49, pp. 393–406, March 2005.

[60] Kumar, Sameer and Dozsa, Gabor and Almasi, Gheorghe and Heidelberger,
Philip and Chen, Dong and Giampapa, Mark E. and Blockso Michael and
Faraj, Ahmad and Parker, Jeff and Ratterman, Joseph and Smith, Brian and
Archer, Charles J., “The deep computing messaging framework: generalized
scalable message passing on the blue gene/p supercomputer,” in Proceedings
of the 22nd annual international conference on Supercomputing, ICS ’08,
(New York, NY, USA), pp. 94–103, ACM, 2008.

[61] D. Bonachea, “Gasnet specification, v1.1,” tech. rep., Berkeley, CA, USA,
2002.

[62] “The Berkeley UPC Compiler.” http://upc.lbl.gov.

[63] R. Rajamony, L. Arimilli, and K. Gildea, “PERCS: The IBM POWER7-IH
high-performance computing system,” IBM Journal of Research and Devel-
opment, vol. 55, no. 3, pp. 3–1, 2011.

[64] R. Arroyo, R. Harrington, S. Hartman, and T. Nguyen, “IBM Power7 sys-
tems,” IBM Journal of Research and Development, vol. 55, no. 3, pp. 2–1,
2011.

[65] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “Power7: IBM’s Next-
Generation Server Processor,” Micro, IEEE, vol. 30, pp. 7 –15, march-april
2010.

[66] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoe-
fler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The PERCS
High-Performance Interconnect,” High-Performance Interconnects, Sympo-
sium on, vol. 0, pp. 75–82, 2010.

http://publib.boulder.ibm.com/epubs/pdf/a2322730.pdf
http://publib.boulder.ibm.com/epubs/pdf/a2322730.pdf

BIBLIOGRAPHY 113

[67] M. S. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. J. Drake,
L. Pesantez, T. Gloekler, J. A. Tierno, P. Bose, and A. Buyuktosunoglu,
“Introducing the adaptive energy management features of the power7 chip,”
IEEE Micro, vol. 31, no. 2, pp. 60–75, 2011.

[68] D. J. Kerbyson and K. J. Barker, “Analyzing the performance bottlenecks
of the power7-ih network,” in Proceedings of the 2011 IEEE International
Conference on Cluster Computing, CLUSTER ’11, (Washington, DC, USA),
pp. 244–252, IEEE Computer Society, 2011.

[69] K. J. Barker, A. Hoisie, and D. J. Kerbyson, “An early performance analysis
of power7-ih hpc systems,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
’11, (New York, NY, USA), pp. 42:1–42:11, ACM, 2011.

[70] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology,” in Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’08, (Washington, DC,
USA), pp. 77–88, IEEE Computer Society, 2008.

[71] T. El-ghazawi and F. Cantonnet, “UPC Performance and Potential: A NPB
Experimental Study,” in In Supercomputing2002 (SC2002), pp. 1–26, IEEE
Computer Society, 2002.

[72] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[73] A. K. Dewdney, “Computer recreations sharks and fish wage an ecological
war on the toroidal planet wa-tor,” Scientific American, pp. 14–22, 1984.

[74] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC) bench-
mark suite,” in Proceedings of the 2006 ACM/IEEE conference on Super-
computing, SC ’06, (New York, NY, USA), ACM, 2006.

[75] H. Kulsrud, R. Sedgewick, P. Smith, and T. Szymanski, “Partition sorting
on the CRAY-I,” Institute for Defense Analyses, Princeton, NJ, vol. 7, p. 78,
1978.

[76] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2001.

[77] H. Jin, R. Hood, and P. Mehrotra, “A practical study of UPC using the NAS
Parallel Benchmarks,” in Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models, PGAS ’09, (New York, NY, USA),
pp. 8:1–8:7, ACM, 2009.

114 BIBLIOGRAPHY

[78] S. Muchnick, “Advanced compiler design and implementation,” 1997. ISBN
1558603204.

[79] K. J. Barker, A. Hoisie, and D. J. Kerbyson, “An early performance analysis
of POWER7-IH HPC systems,” in Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
SC ’11, (New York, NY, USA), pp. 42:1–42:11, 2011.

[80] Redbooks, IBM, IBM Power Systems 775 for AIX and Linux HPC Solution.
2012. http://www.redbooks.ibm.com/redbooks/pdfs/sg248003.pdf.

[81] R. Rajamony, M. W. Stephenson, and W. E. Speight, “The power 775 archi-
tecture at scale,” in Proceedings of the 27th international ACM conference
on International conference on supercomputing, ICS ’13, (New York, NY,
USA), pp. 183–192, ACM, 2013.

[82] R. Das, M. Uysal, J. Saltz, and Y. shin Hwang, “Communication optimiza-
tions for irregular scientific computations on distributed memory architec-
tures,” Journal of Parallel and Distributed Computing, vol. 22, pp. 462–479,
1993.

[83] A. C. de Melo, “The new linux ’perf’ tools,” in Slides from Linux Kongress,
2010.

[84] N. E. Fenton, Software Metrics: A Rigorous Approach. Chapman & Hall,
Ltd., 1991.

[85] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: a
scalable hpc system based on a dragonfly network,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC ’12, (Los Alamitos, CA, USA), pp. 103:1–103:9, IEEE
Computer Society Press, 2012.

[86] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, Highly-
scalable Dragonfly Topology,” ACM SIGARCH Computer Architecture
News, vol. 36, no. 3, pp. 77–88, 2008.

[87] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, K. Hill, J. Hiller, et al., “Exascale computing study:
Technology challenges in achieving exascale systems,” Defense Advanced Re-
search Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep, 2008.

[88] Das and Sarkar, “Conflict-free data access of arrays and trees in parallel
memory systems,” in Proceedings of the 1994 6th IEEE Symposium on Paral-
lel and Distributed Processing, SPDP ’94, (Washington, DC, USA), pp. 377–
384, IEEE Computer Society, 1994.

http://www.redbooks.ibm.com/redbooks/pdfs/sg248003.pdf

BIBLIOGRAPHY 115

[89] D. L. Erickson, Conflict-free access to rectangular subarrays in parallel mem-
ory modules. PhD thesis, Waterloo, Ont., Canada, Canada, 1993. Doctoral
Dissertation, UMI Order No. GAXNN-81075.

[90] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero,
G. Rodriguez, J. Labarta, and C. Minkenberg, “On-the-fly Adaptive Routing
in High-Radix Hierarchical Networks,” in Parallel Processing (ICPP), 2012
41st International Conference on, pp. 279–288, IEEE, 2012.

[91] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler
algorithm for prefetching,” in Proceedings of the fifth international conference
on Architectural support for programming languages and operating systems,
ASPLOS-V, pp. 62–73, 1992.

[92] S. P. VanderWiel and D. J. Lilja, “When caches aren’t enough: Data
prefetching techniques,” Computer, vol. 30, pp. 23–30, July 1997.

[93] W.-Y. Chen, “Building a Source-to-Source UPC-to-C Translator,” Tech.
Rep. UCB/CSD-04-1369, EECS Department, University of California,
Berkeley, Dec 2004.

[94] D. Callahan and K. Kennedy, “Compiling Programs for Distributed-Memory
Multiprocessors,” The Journal of Supercomputing, vol. 2, no. 2, pp. 151–169,
1988.

[95] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy,
“A global communication optimization technique based on data-flow analysis
and linear algebra,” 1998.

[96] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey, “A Multi-Platform Co-
Array Fortran Compiler,” in Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’04,
(Washington, DC, USA), pp. 29–40, IEEE Computer Society, 2004.

[97] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick, “Automatic nonblocking
communication for partitioned global address space programs,” in Proceed-
ings of the 21st annual international conference on Supercomputing (ICS
’07), pp. 158–167, 2007.

[98] C. Iancu, P. Husbands, and P. Hargrove, “HUNTing the Overlap,” in Pro-
ceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’05, (Washington, DC, USA), pp. 279–290,
IEEE Computer Society, 2005.

[99] J. Li and M. Chen, “Compiling communication-efficient programs for mas-
sively parallel machines,” IEEE Trans. Parallel Distrib. Syst., vol. 2, pp. 361–
376, July 1991.

116 BIBLIOGRAPHY

[100] Michigan Technological University., “UPC Projects,” 2011. http://www.

upc.mtu.edu.

[101] Hewlett-Packard, “Compaq UPC compiler,” 2011. http://www.hp.com/go/
upc.

[102] Hewlett-Packard, “Unified Parallel C (UPC) Programmer’s Guide,” April
2007.

[103] H. Gerndt, “Updating distributed variables in superb,” Concurrency: Prac-
tice and Experience, vol. 2, 1990.

[104] Filip Blagojevic, Paul Hargrove, Costin Iancu, and Katherine Yelick, “Hy-
brid PGAS Runtime Support for Multicore Nodes,” in Fourth Conference on
Partitioned Global Address Space Programming Model (PGAS10), October
2010.

[105] R. Nishtala and K. A. Yelick, “Optimizing collective communication on mul-
ticores,” in Proceedings of the First USENIX conference on Hot topics in
parallelism, HotPar’09, (Berkeley, CA, USA), pp. 18–18, USENIX Associa-
tion, 2009.

[106] C. Iancu, S. Hofmeyr, F. Blagojevic, and Y. Zheng, “Oversubscription on
multicore processors,” in 24th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23
April 2010 - Conference Proceedings, pp. 1–11, IEEE, 2010.

[107] S. Hofmeyr, C. Iancu, and F. Blagojević, “Load balancing on speed,” in Pro-
ceedings of the 15th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’10, (New York, NY, USA), pp. 147–158,
ACM, 2010.

[108] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and Mem-
ory Optimization Techniques for Embedded Systems,” ACM Trans. Des.
Autom. Electron. Syst., vol. 6, pp. 149–206, Apr. 2001.

[109] P. Marchal, J. I. Gómez, and F. Catthoor, “Optimizing the Memory Band-
width with Loop Fusion,” in Proceedings of the 2nd IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis,
CODES+ISSS ’04, pp. 188–193, 2004.

[110] J. R. Allen and K. Kennedy, “Automatic Loop Interchange,” in Proceedings
of the 1984 SIGPLAN symposium on Compiler construction, SIGPLAN ’84,
pp. 233–246, ACM, 1984.

http://www.upc.mtu.edu
http://www.upc.mtu.edu
http://www.hp.com/go/upc
http://www.hp.com/go/upc

BIBLIOGRAPHY 117

[111] M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop transfor-
mations considering caches and scheduling,” in Proceedings of the 29th an-
nual ACM/IEEE international symposium on Microarchitecture, MICRO 29,
pp. 274–286, 1996.

[112] E. P. Markatos and T. J. LeBlanc, “Using processor affinity in loop schedul-
ing on shared-memory multiprocessors,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 5, no. 4, pp. 379–400, 1994.

[113] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and loop scheduling
on numa multiprocessors,” in Parallel Processing, 1993. ICPP 1993. Inter-
national Conference on, vol. 2, pp. 140–147, IEEE, 1993.

[114] M. Cierniak, W. Li, and M. J. Zaki, “Loop scheduling for heterogeneity,” in
High Performance Distributed Computing, 1995., Proceedings of the Fourth
IEEE International Symposium on, pp. 78–85, IEEE, 1995.

[115] A. T. Chronopoulos, R. Andonie, M. Benche, and D. Grosu, “A class of loop
self-scheduling for heterogeneous clusters,” in Proceedings of the 2001 IEEE
international conference on cluster computing, vol. 291, 2001.

[116] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A compiler framework for optimization
of affine loop nests for gpgpus,” in Proceedings of the 22nd annual interna-
tional conference on Supercomputing, ICS ’08, pp. 225–234, ACM, 2008.

[117] Q. Zhang, Q. Li, Y. Dai, and C.-C. Kuo, “Reducing Memory Bank Conflict
for Embedded Multimedia Systems,” in Multimedia and Expo, 2004. ICME
’04. 2004 IEEE International Conference on, vol. 1, pp. 471 –474 Vol.1, June
2004.

[118] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, pp. 1–11,
IEEE, 2011.

[119] A. Jokanovic, B. Prisacari, G. Rodriguez, and C. Minkenberg, “Randomiz-
ing task placement does not randomize traffic (enough),” in Proceedings of
the 2013 Interconnection Network Architecture: On-Chip, Multi-Chip, IMA-
OCMC ’13, (New York, NY, USA), pp. 9–12, ACM, 2013.

[120] C. Barton, C. Cascaval, G. Almasi, R. Garg, J. N. Amaral, and M. Farreras,
“Multidimensional blocking in upc,” in Languages and Compilers for Parallel
Computing (V. Adve, M. J. Garzarán, and P. Petersen, eds.), vol. 5234 of
Lecture Notes in Computer Science, pp. 47–62, Springer Berlin Heidelberg,
2008.

118 BIBLIOGRAPHY

[121] S. Benkner, G. Lonsdale, and H. P. Zima, “The HPF+ Project: Supporting
HPF for Advanced Industrial Applications,” in Proceedings of the 5th Inter-
national Euro-Par Conference on Parallel Processing, Euro-Par ’99, (Lon-
don, UK, UK), pp. 1155–1165, Springer-Verlag, 1999.

[122] J. H. Merlin, “Adapting fortran 90 array programs for distributed memory
architectures,” in Proceedings of the First International ACPC Conference
on Parallel Computation, (London, UK, UK), pp. 184–200, Springer-Verlag,
1992.

[123] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner, “Com-
piling Stencils in High Performance Fortran,” in Proceedings of the 1997
ACM/IEEE conference on Supercomputing, Supercomputing ’97, (New York,
NY, USA), pp. 1–20, ACM, 1997.

[124] G. H. Roth, Optimizing Fortran90D/HPF for distributed-memory computers.
PhD thesis, Houston, TX, USA, 1997. UMI Order No. GAX97-27596.

[125] W. George, R. G. Brickner, R. G. Brickner, W. George, S. L. Johnsson,
S. L. Johnsson, A. Ruttenberg, and A. Ruttenberg, “A Stencil Compiler for
the Connection Machine Models CM-2/200,” in In Proceedings of the Fourth
Workshop on Compilers for Parallel Computers, p. pages, 1993.

[126] W. George, R. G. Brickner, and S. L. Johnsson, “POLYSHIFT communica-
tions software for the connection machine system CM-200,” Sci. Program.,
vol. 3, pp. 83–99, May 1994.

[127] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang,
W.-M. Ching, and T. Ngo, “An hpf compiler for the ibm sp2,” in Proceedings
of the 1995 ACM/IEEE conference on Supercomputing (CDROM), Super-
computing ’95, (New York, NY, USA), ACM, 1995.

[128] G. Cong, G. Almasi, and V. Saraswat, “Fast PGAS Implementation of Dis-
tributed Graph Algorithms,” in Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’10, (Washington, DC, USA), pp. 1–11, IEEE Computer
Society, 2010.

[129] S. Plimpton, R. Brightwell, C. Vaughan, K. Underwood, and M. Davis, “A
simple synchronous distributed-memory algorithm for the hpcc randomac-
cess benchmark,” in Cluster Computing, 2006 IEEE International Confer-
ence on, pp. 1–7, 2006.

[130] J. Zhu, J. Hoeflinger, and D. Padua, “Compiling for a hybrid programming
model using the lmad representation,” in Languages and Compilers for Par-
allel Computing, pp. 321–335, Springer, 2003.

BIBLIOGRAPHY 119

[131] J. N. A. Xunhao Li, Rahul Garg, “A new compilation path: From
python/numpy to opencl,” 2011.

[132] X. Li, “Jit4OpenCL: A Compiler from Python to OpenCL,” Master’s thesis,
University of Alberta, 2010.

[133] P. Quinton, “Automatic synthesis of systolic arrays from uniform recur-
rent equations,” in ACM SIGARCH Computer Architecture News, vol. 12,
pp. 208–214, ACM, 1984.

[134] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than You
Think,” in PACT’13 IEEE International Conference on Parallel Architecture
and Compilation Techniques, (Juan-les-Pins, France), pp. 7–16, September
2004.

[135] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Roun-
tev, and P. Sadayappan, “Automatic transformations for communication-
minimized parallelization and locality optimization in the polyhedral model,”
in International Conference on Compiler Construction (ETAPS CC), Apr.
2008.

[136] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practi-
cal automatic polyhedral program optimization system,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
June 2008.

[137] IBM, IBM XL Unified Parallel C User’s Guide. 2012. Version 12.0.

[138] IBM, “IBM Power 775 server,” 2012. http://www-03.ibm.com/systems/

power/hardware/775/.

[139] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “Top 500 supercom-
puter sites,” 2013. http://www.top500.org/.

[140] “High Performance Fortran language specification, version 1.0. Technical
Report ,” tech. rep., 1993. CRPC- TR92225.

[141] K. Kennedy, C. Koelbel, and H. Zima, “The rise and fall of High Perfor-
mance Fortran: an historical object lesson,” in Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pp. 7–1, ACM,
2007.

[142] “GNU Unified Parallel C (GNU UPC).” http://www.gccupc.org/.

[143] Cray, “Cray XE6,” 2012. http://www.cray.com/Assets/PDF/products/

xe/CrayXE6Brochure.pdf.

[144] K. Kennedy and J. R. Allen, “Optimizing compilers for modern architectures:
a dependence-based approach,” 2001. ISBN 1558602860.

http://www-03.ibm.com/systems/power/hardware/775/
http://www-03.ibm.com/systems/power/hardware/775/
http://www.top500.org/
http://www.gccupc.org/
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf

120 BIBLIOGRAPHY

[145] K. Cooper and L. Torczon, Engineering a compiler. Elsevier, 2011. ISBN
012088478X.

[146] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. Elsevier, 2012. ISBN 012383872X.

Appendix A

Terminology

This chapter provides definitions for general compiler terminology that is used
throughout the thesis. For additional definitions and a complete view of the com-
piler terminology, the is encouraged read advanced compiler design books [144, 78,
145].

Alias analysis: Alias analysis is a technique in compiler theory, used to determine
whether a storage location may be accessed in more than one way. In C language,
two pointers are aliased if they point to the same location. For example, in this
code snippet, the compiler after the alias analysis assumes that the *p and i point
the same memory position. Thus, the *p and i alias.

int *p, i;

p = &i;

Alias analysis techniques are usually classified by flow-sensitivity and context-
sensitivity. They may determine may-alias or must-alias information. The term
alias analysis is often used interchangeably with term points-to analysis, a specific
case.

Blocking Factor: Blocking Factor (BF) is layout qualifier that dictates the
number of successive elements placed on the same UPC thread. In UPC language
the blocking factor can be set with two ways: statically and dynamic [9]. The
programmer sets the blocking factor by using the layout qualifier in the array
declaration. The code snippet presents declaration examples of statically allocated
shared arrays:

shared [8] int A[16];

shared [*] int B[16];

shared [1] int C[16];

shared [0] int D[16];

The programmer can also use the upc all alloc(), and upc global alloc()

runtime calls to allocate memory with the desired blocking factor.

121

122 APPENDIX A. TERMINOLOGY

Cache: Cache or Processor Cache [146] is a smaller and faster memory which
stores copied of frequently used data from the main memory.

Cache Miss Ratio: When the processor access a memory location that is not
in the cache, it is called a cache miss. The processor then wait for the data to
be fetched from either the next cache level or the main memory. To calculate the
cache miss ration we can use this equation:

miss ratio =
Missed accesses

Total memory accesses

The cache misses categorized into two groups:

• Local miss rate misses in this cache divided by the total number of memory
accesses to this cache (Miss rate L2).

• Global miss rate misses in this cache divided by the total number of memory
accesses generated by the CPU (Miss RateL1×Miss RateL2)

Common subexpression elimination: Common subexpression elimination is
a compiler optimization that searches for instances of identical expressions, and
replaces them with a single variable holding the computed value. Figure A.1
presents an example of the optimization. Note that the compiler has to calculate
if the memory cost of the store to temp is less than the cost of the multiplication.

Programmer’s Code After common subexpression elimination

a = b * c + d;

e = b * c * f;

temp = b * c;

a = temp + d;

e = temp * f;

Figure A.1: Example of common subexpression elimination.

Constant propagation: Constant folding and constant propagation are related
compiler optimizations used by many modern compilers. An advanced form of
constant propagation known as sparse conditional constant propagation can more
accurately propagate constants and simultaneously remove dead code. Figure A.2
presents an example of constant propagation optimization. In this example, the
constant value of ‘a’ is propagated through the statements simplifying the return
expression.

Control Flow Graph:Control Flow Graph (CFG) is a representation, using
graph notation, of all paths that might be traversed through a program during its
execution.

123

Programmer’s Code After constant propagation

int app_kernel(int c){

int a = 10;

int b = 9 - (a / 2);

if (c > 10) {

c = c - 10;

}

return c * (60 / b) + a;

}

int app_kernel(int c){

int b = 4;

if (c > 10) {

c = c - 10;

}

return c * 15 + 10;

}

Figure A.2: Example of constant propagation optimization.

Data Flow Graph: Data Flow Graph or Diagram (DFD) is a graphical repre-
sentation of the data “flow” through the application code, and models its process
aspects.

Data Dependencies: When two program statements (or instructions) refers to
the data of a preceding statement, then there are data dependencies between them.
There are four type of data dependencies:

• Input dependence (RAR) occurs when statements S1 and S2 both read from
the same location. For example:

S1: A = B

S2: C = B

• Output dependence (WAW) occurs when two statements both write to the
same location. For example statements S1 and S3 write on the same location:

S1: B = 1

S2: C = B + 24

S3: B = 7

• Flow dependence (RAW) occurs when S1 writes to a location and a subse-
quent statement S2 reads from the same location. For example:

S1: B = A

S2: C = B

• Anti-dependence (WAR) occurs when S1 reads from a location and a subse-
quent statement S2 writes to the same location. For example:

S2: A = B + 24

S2: B = 7

Dead Store: Dead store statements are the statements that assign a value to a
variable, but this variable is not used by any subsequent statement or instruction.

124 APPENDIX A. TERMINOLOGY

Dead Stores are wasteful of processor time and memory. The compiler eliminates
them through the use of static program analysis and dead store elimination opti-
mization.

High Radix Interconnect: High Radix Interconnects are the networks with
switches or routers that contain large number of skinny ports. The motivation
behind this trend is that the bandwidth between nodes increases, however, the
latency between nodes does not. Thus, the idea is to create router with a large
number of skinny ports in order to reduce the latency between nodes.

Induction Variable:Induction variable is a scalar variable whose value gets in-
creased or decreased by a fixed constant amount on every iteration of a loop.

Iteration count: Put simply, the iteration count of a loop is the number of times
that the loop body get executed.

Loop-Invariant Code Motion: Loop-invariant code motion (also called hoisting
or scalar promotion) is a compiler optimization which moves of statements or
expressions outside the body of a loop without affecting the semantics of the
program. Figure A presents an example of the loop-invariant code optimization.
In this example, the calculation of expression x = y + z is independent of the
induction variable of the loop. Moreover, the expression x * x depends on the
value of x that is also independent. Thus, the compiler optimization moves these
expressions before the loop body.

Programmer’s Code After optimization

for (int i = 0; i < n; i++) {

x = y + z;

ARRAY[i] = i + i * z + x * x;

}

x = y + z;

t1 = x * x;

for (int i = 0; i < n; i++) {

ARRAY[i] = i + i * z + t1;

}

captionExample of constant invariant movement optimization.

Loop unrolling: Loop unwinding or unrolling is a loop transformation technique
that attempts to optimize a program’s execution speed at the expense of its binary
size by reducing instructions that control the loop. The loop transformation can
be undertaken manually by the programmer or by an optimizing compiler.

Network Contention: This term describes the situation when two or more
entities are competing for shared resources. The term is used especially in networks
to describe the situation where two or more nodes attempt to use the limited
bandwidth of a channel at the same time.

Normalized Loop:A loop which the loop variable starts from 0 and gets incre-
mented by a constant value at every iteration until the exit condition.

125

Static Single Assignment (SSA) form: SSA form an intermediate represen-
tation, where each variable is assigned exactly once. Variables from the initial
program are split into versions. The new variables are typically renamed accord-
ing to the original name accompanied a subscript. SSA form is normally used as
an extension on the top of the compiler’s intermediate representation, and it is
used in various optimizations.

Strip-Mining: Loop Strip-Mining, Loop Blocking, or Loop tiling is a compiler
optimization that partitions a loop’s iteration space into smaller blocks or chunks,
to improve the cache locality. Figure A.3 provides an example of the loop trans-
formation. The BLK variable is called block size of the transformation.

Programmer’s Code After transforamtion

for(i=0; i<N; ++i){

...

}

for(j=0; j<N; j+=BLK){

for(i=j; i<min(N, j+B); ++i){

....

}

}

Figure A.3: Example of loop blocking transformation.

Vectorization: Vectorization is the process of code optimization, during which
the programmer or the compiler transforms a computer program that uses scalar
variables into an implementation that uses one operant with multiple data. Auto-
matic compiler vectorization is a special case of automatic parallelization, where
the compiler converts part of the code to vector implementation that uses multiple
data with one operant or instruction.

	Introduction
	Objective of the thesis
	Dynamic Data Coalescing
	Reducing the overhead of inspector-loops
	Improving the all-to-all communication pattern

	Contributions
	Outline

	Background
	Partitioned Global Address Space Languages
	Unified Parallel C
	Overheads of fine-grained accesses
	The IBM UPC Compiler and Runtime System
	XL UPC Compiler Framework
	Runtime

	Experimental Setup
	The hardware environment
	Available Benchmarks
	Micro Benchmarks
	Applications

	Dynamic Data Aggregation
	Approaches and solutions
	Inspector-executor strategy
	Double buffering
	Loop versioning

	Implementation
	Transformation algorithm
	Runtime support
	Resolving Data Dependencies

	Experimental Results
	Benchmark versions
	Microbencmarks Performance
	Applications Performance
	Where does the time go?
	Cost of the optimization

	Chapter Summary and Discussion

	Reducing the Runtime Calls
	Inspector-executor Optimizations
	Constant Stride Linear Memory Descriptors
	CSLMADs in dynamic environments
	Usage of vectors
	Combining Dynamic with Static Coalescing
	Inline checks
	Optimization Integration

	Shared-reference-aware loop-invariant code motion and privatization for PGAS languages
	Experimental Results
	Methodology
	Microbenchmark Performance
	UPC Single-Threaded Slowdown
	Applications Performance
	Parameter exploration
	Overhead Analysis
	Compilation Time and Code Length

	Chapter Summary and Discussion

	Loop Scheduling
	Loop scheduling
	Approaches
	Compiler-assisted loop transformation

	Experimental results
	Methodology
	Limit study
	Compiler-assisted loop transformation

	Chapter Summary and Discussion

	Related Work
	Prefetching
	Inspector-executor approaches
	Compile-time Optimizations
	Code simplification
	Shared-Pointer Privatization
	Shared Object Coalescing
	Overlapping of communication and computation

	Runtime optimizations
	Software caching
	Hybrid environments

	Loop Scheduling
	Language Extensions
	Application specific optimizations
	Array Access Analysis

	Conclusions and Future Work
	Publications
	Productization
	Future Work
	Survival of the UPC language

	Appendix
	Terminology

