146 research outputs found

    A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Get PDF
    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    A Neurogenetic Algorithm Based on Rational Agents

    Get PDF
    Lately, a lot of research has been conducted on the automatic design of artificial neural networks (ADANNs) using evolutionary algorithms, in the so-called neuro-evolutive algorithms (NEAs). Many of the presented proposals are not biologically inspired and are not able to generate modular, hierarchical and recurrent neural structures, such as those often found in living beings capable of solving intricate survival problems. Bearing in mind the idea that a nervous system's design and organization is a constructive process carried out by genetic information encoded in DNA, this paper proposes a biologically inspired NEA that evolves ANNs using these ideas as computational design techniques. In order to do this, we propose a Lindenmayer System with memory that implements the principles of organization, modularity, repetition (multiple use of the same sub-structure), hierarchy (recursive composition of sub-structures), minimizing the scalability problem of other methods. In our method, the basic neural codification is integrated to a genetic algorithm (GA) that implements the constructive approach found in the evolutionary process, making it closest to biological processes. Thus, the proposed method is a decision-making (DM) process, the fitness function of the NEA rewards economical artificial neural networks (ANNs) that are easily implemented. In other words, the penalty approach implemented through the fitness function automatically rewards the economical ANNs with stronger generalization and extrapolation capacities. Our method was initially tested on a simple, but non-trivial, XOR problem. We also submit our method to two other problems of increasing complexity: time series prediction that represents consumer price index and prediction of the effect of a new drug on breast cancer. In most cases, our NEA outperformed the other methods, delivering the most accurate classification. These superior results are attributed to the improved effectiveness and efficiency of NEA in the decision-making process. The result is an optimized neural network architecture for solving classification problems

    A constraint-based genetic algorithm for optimizing neural network architectures for detection of loss of coolant accidents of nuclear power plants

    Get PDF
    © 2018 Elsevier B.V. The loss of coolant accident (LOCA) of a nuclear power plant (NPP) is a severe accident in the nuclear energy industry. Nowadays, neural networks have been trained on nuclear simulation transient datasets to detect LOCA. This paper proposes a constraint-based genetic algorithm (GA) to find optimised 2-hidden layer network architectures for detecting LOCA of a NPP. The GA uses a proposed constraint satisfaction algorithm called random walk heuristic to create an initial population of neural network architectures of high performance. At each generation, the GA population is split into a sub-population of feature subsets and a sub-population of 2-hidden layer architectures to breed offspring from each sub-population independently in order to generate a wide variety of network architectures. During breeding 2-hidden layer architectures, a constraint-based nearest neighbor search algorithm is proposed to find the nearest neighbors of the offspring population generated by mutation. The results showed that for LOCA detection, the GA-optimised network outperformed a random search, an exhaustive search and a RBF kernel support vector regression (SVR) in terms of generalization performance. For the skillcraft dataset of the UCI machine learning repository, the GA-optimised network has a similar performance to the RBF kernel SVR and outperformed the other approaches

    Anomalous behaviour detection using heterogeneous data

    Get PDF
    Anomaly detection is one of the most important methods to process and find abnormal data, as this method can distinguish between normal and abnormal behaviour. Anomaly detection has been applied in many areas such as the medical sector, fraud detection in finance, fault detection in machines, intrusion detection in networks, surveillance systems for security, as well as forensic investigations. Abnormal behaviour can give information or answer questions when an investigator is performing an investigation. Anomaly detection is one way to simplify big data by focusing on data that have been grouped or clustered by the anomaly detection method. Forensic data usually consists of heterogeneous data which have several data forms or types such as qualitative or quantitative, structured or unstructured, and primary or secondary. For example, when a crime takes place, the evidence can be in the form of various types of data. The combination of all the data types can produce rich information insights. Nowadays, data has become ‘big’ because it is generated every second of every day and processing has become time-consuming and tedious. Therefore, in this study, a new method to detect abnormal behaviour is proposed using heterogeneous data and combining the data using data fusion technique. Vast challenge data and image data are applied to demonstrate the heterogeneous data. The first contribution in this study is applying the heterogeneous data to detect an anomaly. The recently introduced anomaly detection technique which is known as Empirical Data Analytics (EDA) is applied to detect the abnormal behaviour based on the data sets. Standardised eccentricity (a newly introduced within EDA measure offering a new simplified form of the well-known Chebyshev Inequality) can be applied to any data distribution. Then, the second contribution is applying image data. The image data is processed using pre-trained deep learning network, and classification is done using a support vector machine (SVM). After that, the last contribution is combining anomaly result from heterogeneous data and image recognition using new data fusion technique. There are five types of data with three different modalities and different dimensionalities. The data cannot be simply combined and integrated. Therefore, the new data fusion technique first analyses the abnormality in each data type separately and determines the degree of suspicious between 0 and 1 and sums up all the degrees of suspicion data afterwards. This method is not intended to be a fully automatic system that resolves investigations, which would likely be unacceptable in any case. The aim is rather to simplify the role of the humans so that they can focus on a small number of cases to be looked in more detail. The proposed approach does simplify the processing of such huge amounts of data. Later, this method can assist human experts in their investigations and making final decisions

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    corecore