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ABSTRACT 

Alaa Sulaiman Nassar NASSAR 

A Hybrid Multibiometric System for Personal Identification Based on Face and 

Iris Traits 

The Development of an automated computer system for the identification of 

humans by integrating facial and iris features using Localization, Feature 

Extraction, Handcrafted and Deep learning Techniques. 

Keywords: Multimodal multibiometric systems, Face recognition, Iris 

recognition, Iris localization, Deep learning, Feature extraction, Curvelet 

transform, Fractal dimension, Deep belief network, Convolutional neural 

network. 

Multimodal biometric systems have been widely applied in many real-world 

applications due to its ability to deal with a number of significant limitations of 

unimodal biometric systems, including sensitivity to noise, population coverage, 

intra-class variability, non-universality, and vulnerability to spoofing. This PhD 

thesis is focused on the combination of both the face and the left and right 

irises, in a unified hybrid multimodal biometric identification system using 

different fusion approaches at the score and rank level. 

Firstly, the facial features are extracted using a novel multimodal local 

feature extraction approach, termed as the Curvelet-Fractal approach, which 

based on merging the advantages of the Curvelet transform with Fractal 

dimension. Secondly, a novel framework based on merging the advantages of 

the local handcrafted feature descriptors with the deep learning approaches is 

proposed, Multimodal Deep Face Recognition (MDFR) framework, to address 

the face recognition problem in unconstrained conditions. Thirdly, an efficient 

deep learning system is employed, termed as IrisConvNet, whose architecture 

is based on a combination of Convolutional Neural Network (CNN) and Softmax 

classifier to extract discriminative features from an iris image.  

Finally, The performance of the unimodal and multimodal systems has been 

evaluated by conducting a number of extensive experiments on large-scale 

unimodal databases: FERET, CAS-PEAL-R1, LFW, CASIA-Iris-V1, CASIA-Iris-

V3 Interval, MMU1 and IITD and MMU1, and SDUMLA-HMT multimodal 

dataset. The results obtained have demonstrated the superiority of the 

proposed systems compared to the previous works by achieving new state-of-

the-art recognition rates on all the employed datasets with less time required to 

recognize the person’s identity. 
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Chapter 1 

Introduction 

  

1.1 Overview 

Over the last few decades, increasing use of many developed and 

sophisticated techniques of hacking and forgery have led to increasing 

demands for alternative methods of recognizing a person's identity [1]. 

Biometric systems are constantly evolving and promise technologies that can 

be used in automatic systems for identifying and/or verifying a person's identity 

uniquely and efficiently without the need for the user to carry or remember 

anything, unlike traditional methods. These systems have been widely 

employed in many governmental and civilian sensitive applications, especially 

those including an automatic access control to physical or virtual places, such 

as border checkpoints, ATM machines, security and surveillance systems, 

financial transactions, computer/network security, etc. [2]. Personal 

identification based on biometric features has many advantages over traditional 

knowledge-based methods (e.g., passwords or Personal Identification Numbers 

(PINs)) and token-based methods (e.g., driver’s license, passport, ID card, or a 

simple set of keys), because it is difficult to be transferred, lost, forgotten or 

duplicated. In addition, employing biometrics in the task of identifying a person's 

identity is more convenient and user-friendly than traditional methods, so that 

clients do not need to remember or carry anything with them [3]. Finally, the 

security level achieved using biometric systems can be higher than those using 

traditional methods. 

Despite the fact that personal identification using biometric characteristics 

has been a matter of research for more than forty years [4], there has been a 

growing interest in highly secured and well-designed biometric systems in the 

last decade. This is evidenced by recently published books [3][5][6][7], specific 

international conferences on biometrics (e.g., IAPR1, ICBTAS2, etc.), the 

                                                           
1
 The 9th IAPR International Conference on Biometrics, 2016. 

2
 ICBTAS 2017: 19th International Conference on Biometrics Theory, Applications and Systems. 
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expansion of benchmark tools and assessment campaigns for biometric 

systems [8][9][10]. In addition, considerable attention has been also paid by 

government3,4, industry5, and international consortia dedicated specifically to 

biometric systems (e.g., CITeR6
, EAB-CITeR7, etc.) in the last few years. 

Broadly, biometric systems can be divided into two main types: unimodal 

and multimodal biometric systems. Unimodal biometric systems are based on 

using a single source of information (e.g., fingerprint, iris, or face, etc.) to 

establish the person's identity. This type of system has a number of critical 

limitations and issues that can affect reliability and performance. These include 

the possible poor quality of the specific biometric trait of the person, non-

universality, lack of uniqueness, spoof attacks, etc. All these drawbacks of 

unimodal systems can be efficiently addressed by systems combining evidence 

from multiple sources of biometric information for identifying a person’s identity. 

Such systems are then referred to as multimodal biometric systems. For 

instance, face and voice, or two fingerprints (e.g., left and right index fingers), 

can be employed together to more accurately and robustly verify the person's 

identity. Hence, multimodal biometric systems can inherently improve the 

accuracy of unimodal systems by eliminating the dependency on one particular 

biometric trait as well as providing a wider population coverage [3][5]. 

In this introductory chapter, basic information on biometric systems is 

presented, including the overall structure of the biometric systems and their 

functionalities, some of the most common biometric modalities used in practice, 

and the limitations of unimodal biometric systems. In this chapter, the motivation 

behind multimodal biometric systems is outlined along with the challenging 

issues in designing and implementing such systems, from which the motivation, 

objectives and tasks of this PhD thesis are also derived. The chapter is finished 

by stating the thesis, summarizing the research contributions originated from 

this work and giving an outline of the dissertation. 

                                                           
3
  The UK Biometrics Working Group (BWG): 

http://www.idsysgroup.com/files/Biometrics%20Advice.pdf.  
4
 TWS Biometrics Working Group: https://sites.google.com/site/twsbwg/. 

5
 Biometrics Research Group: Mobile Biometrics Market Analysis  

6
 CITeR: Center for identification technology research, US, 2011. 

7
 EAB-CITeR. European Cooperative Identification Technology Research Consortium, 2015.  

http://www.idsysgroup.com/files/Biometrics%20Advice.pdf
https://sites.google.com/site/twsbwg/
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1.2  Biometric Systems 

A biometric system is basically a classification and recognition system that 

captures a biometric trait from an individual, extracts a set of discriminative 

features from the trait captured, compares the extracted feature set against a 

template set (or sets) stored in the system's database. Then, the final decision 

is taken based on the results of this comparison. Thereby, users do not need to 

remember or carry anything with them, avoiding the loss, sharing or forgetting of 

personal information. As depicted in Fig.1.1, the overall structure of any 

biometric system consists of four main stages, that work in a sequential manner 

to obtain the result from the system [2][11]. 

1. Sensor Module: this stage represents the interface between the user and 

the biometric system in which an electronic sensor or reader captures the 

biometric trait and converts it into a digital form. For example, a digital CMOS 

camera may be used to capture the patterns (e.g., rings, ridges, crypts, etc.) 

of the iris region. This is a critical stage since the rest of the biometric system 

strongly depends on the quality of the scanned trait. Therefore, in some 

biometric systems, this stage is linked with a quality checking procedure. 

2. Pre-processing and Feature Extraction: Typically, the captured biometric 

trait is subjected to pre-processing operations in order to achieve a required 

quality. These operations can be divided into three steps. Firstly, an 

assessment step to evaluate the quality of the captured biometric trait, and 

then based on a pre-defined threshold either use the trait for further 

processing or attempt to re-capture the trait from the user. Then a 

segmentation step, in which the region of interest of the biometric trait is 

separated from the background noise, for example, detecting the iris region 

in the eye image. Finally, a number of image quality enhancement algorithms 

can be applied (e.g., logarithmic transformation, histogram equalization, etc.) 

on the detected biometric region to improve its quality by reducing the noise 

level introduced by the camera and illumination variations. After all or some 

pre-processing operations have been applied, a set, or vector, of 

discriminative features are extracted from the enhanced biometric trait. Then 

the extracted feature set is either sent to the matching stage for the purpose 

of user identification, or is stored in the system’s database as a template in 
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an enrollment phase. Ideally, the extracted features should have minimum 

intra-class variations and inter-class similarities.  

3. Matching Module: here a query trait feature vector provided by the feature 

extraction module is compared with all the previously stored templates in the 

system's database to generate matching scores. These scores are measures 

of either similarities, in which case a higher score indicates a closer match or 

dissimilarities (distance scores), in which cases a lower score indicates a 

closer match between the query and the templates. 

4. Decision Module: this is the final stage in the biometric system in which the 

user is identified or a claimed identity is either accepted (authorizing the user) 

or rejected (not authorizing the user) based on the score generated by the 

matching module. 

 

Figure 1.1: A general structure of a biometric system, adapted from Jain et al. 

[5]. 

In addition to the Enrollment task, the two other tasks which can be 

provided by a biometric system, depending on the application context, are 

verification and identification. In this thesis, the term " recognition  "  is used in 

the general case to refer to these two functionalities [5][11][12]: 

 Enrollment: the digital representations of the features extracted from the 

biometric trait captured from the person using a sensor or CCD camera are 

known as templates. These templates are stored in digital form in the 

system's database through the enrolment or training process, along with 
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some biographic information (e.g., name, PIN, address, etc.) distinguishing 

the user, as shown in Fig.1.2 (a). Therefore, it can be used to register a new 

user or update an old user's templates, and for both of them a quality 

checker can be used to ensure the quality of the input trait. In some 

sensitive applications, these templates are kept as encrypted templates 

because of security and privacy concerns. Finally, this task is always 

coupled with the other two tasks (verification and identification).  

 Verification: in this task a one-to-one comparison is conducted between 

the newly captured image and the claimed identity to decide whether the 

claim is genuine or not (e.g., "Does this biometric trait belongs to Bob?"). 

Firstly, the user claims an identity by providing a user-name, ID card, 

driver's license, or PIN, and their biometric trait to the biometric system at 

the same time. Secondly, the claimed identity is recalled by the system from 

its database corresponding to the provided user-name, ID card, driver's 

license, or Personal PIN, in order to compare it against the newly entered 

data. Finally, the system will decide if the user is accepted as an authorized 

user or rejected as an imposter depending on the result of this comparison, 

as shown in Fig. 1.2 (b). To be accepted, the similarity between the query 

data and stored data must be equal or higher than the pre-defined threshold 

set by the system's designer. Typically, the performance of the verification 

system is evaluated by measuring a number of criteria such as False 

Rejection Rate (FRR), False Acceptance Rate (FAR) and the Equal Error 

Rate (EER). A verification system is usually used as a positive recognition 

system in physical access control systems and ATM systems to prevent 

multiple users from using the same identity or restricting unauthorized 

users’ access to specific services.  

 Identification: this task is more complicated and takes longer than the 

verification task. In this task, users are asked to provide only their biometric 

trait to the system, and a one-to-many comparison is conducted by 

comparing the captured data with all the stored templates in the database, 

as shown in Fig. 1.2 (c). The user's identity is established by taking either 

the best match or by listing all the possible matches within the pre-defined 

threshold and ranking them based on the similarity score. The identification 
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system can be used in both positive and negative recognition applications. 

In the positive identification system, the question, is this person known to 

the system, is answered by determining the user's identity from a known set 

of identities. In contrast, if a user attempts to negatively identify themselves 

to the system by concealing their real identity, the negative identification 

system tries to uniquely determine the user's identity to prevent them from 

using multiple identities. The negative identification system answers the 

question, whose biometric data is this, and is usually used in forensic 

applications, background checks, criminal identification and law 

enforcement. The performance of the identification system is assessed by 

measuring its Correct Recognition Rate (CRR), Classification Error Rate 

(CER) or Rank-1 identification rate.    

 

1.3  Biometric Modalities 

Many different kinds of pattern recognition systems have been widely used 

in establishing the identity of a person based on different kinds of biometric 

characteristics. In a biometric system, these characteristics constitute a 

substantial and a strong link between the user and their identity [7]. The 

biometrics characteristics can be divided into two types, physiological 

characteristics such as those used in Face, Iris, Fingerprint, Hand Veins, etc., 

recognition or behavioral characteristics such as those used in Signature, 

Speech, Gait, Voice, Keystroke, etc., recognition [13]. Recently, some additional 

useful information, such as name, gender, height, weight, ethnicity, eye colour, 

age, tattoo, etc., referred to as soft biometric characteristics, can also be used 

to verify a person's identity. However, these biometric traits do not always 

provide sufficient evidence to accurately recognize the person's identity, 

therefore they should be incorporated into a primary biometric system along 

with some additional physiological or behavioral characteristics [14]. Fig.1.3 

shows some examples of physiological, behavioral and soft biometric 

characteristics which can be employed in a biometric personal identification 

system. The most essential question is what biological measurements 

(physical/behavioral characteristics) can be interpreted as a biometric trait? 

Ideally, a set of criteria should be met by any human physiological or behavioral 
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characteristic in order for it to be used as a successful biometric characteristic, 

and these criteria can be summarized as follows [2][15]: 

 Uniqueness (Distinctiveness): is the most important requirement for 

choosing a good biometric trait; it means that the biometric trait should be 

distinguishable among all members of the community, for instance, the iris 

trait is unique even between identical twins. 

 Universality (Availability): means that the characteristic is owned by all 

members of the community. 

 Robustness: means that the trait is not affected by different environmental 

conditions and should be constant for a long period of a person’s lifetime. 

The face trait, for example, can be affected by ageing. 

 Accessibility: (also referred to by Collectability and Measurability) means 

the trait should be easily acquired and measured quantitatively with little 

user interaction. 

In addition to considering all these criteria when selecting the best 

biometric trait, there are other criteria which should be taken into account when 

designing and applying any person verification/identification system based on 

the personal biometric traits, including [5]: 

 Performance: refers to the ability, reliability and efficiency of the biometric 

system to achieve a high recognition rate in different environmental 

conditions and at a reasonable speed and cost.   

 Acceptability: refers to what extent the biometric system is accepted by the 

general public and the willingness of people to provide this biometric trait 

comfortably.  

 Circumvention: refers to the ability of the biometric system to resist and 

discover all the fraudulent methods of an imposter, for example, using a 

fake fingerprint or imitating the behavior of an authorized user such as their 

signature. 

Based on domain-knowledge from the literature, it can be observed that 

no single biometric trait can satisfy all the criteria mentioned above. For 

instance, some biometrics have easy collectability and low distinctiveness (e.g., 

face trait), while other biometrics (e.g., iris trait) have a very high distinctiveness 
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and low collectability properties where iris acquisition devices are very 

expensive and require more user-cooperation. As reported by Ross et al. [3], 

the limitations and weaknesses of using a single biometric trait can be 

overcome by using two or more biometric traits in multimodal biometric 

systems, thus enhancing the security and reliability in establishing the person's 

identity. In this thesis, face and iris traits are studied and, as shown in Table 1.1, 

almost all desired properties are well fulfilled by combining these two traits. 

 

Figure 1.2: The three provided tasks by the biometric system: (a) Enrollment, 

(b) Authentication and (c) Identification task, adapted from Jain et al. [5]. 
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Table 1.1: A comparison of biometric characteristics. High, Medium, and Low 

are denoted by H, M, and L, respectively. Adapted from Jain et al.[2]. 
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Iris H H H M H L L 

Fingerprint M H H M H M M 

Hand Geometry M M M H M M M 

Gait M L L H L H M 

Voice M L L M L H H 

Signature L L L H L H H 

 

 

Figure 1.3: Examples of common biometrics: (a) Physiological, (b) Behavioral 

and (c) Soft characteristics. 
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1.4  The Limitations of Unimodal Biometric Systems 

Over the last few years, most biometric systems that have been widely 

employed in sensitive governmental and civilian applications have been 

unimodal biometric systems. Although these can provide a high level of security 

in identifying a person's identity, there are a number of critical limitations and 

problems that can significantly affect the reliability and the performance of these 

systems. These limitations and problems can be divided into three main types: 

accuracy, scalability, security and privacy [2][3][16]:   

 

1.4.1  Accuracy  

Ideally, any biometric system should be able to offer a high level of 

accuracy in recognizing a user's identity when a new query sample is presented 

to the system. However, the accuracy of biometric systems that operate on a 

single trait is usually affected by a number of factors that can be summarized as 

follows: 

 Noise in Sensed Data: there are a number of reasons that lead to the 

appearance of noise in the scanned data; some of these reasons are 

environmental conditions that surround the biometric acquisition process. 

For example, when voice data is captured in a noisy environment, or a 

user's face image is captured under poor illumination conditions, this affects 

the accuracy of the biometric system. In addition, sensors must be correctly 

maintained. For example, the quality of the fingerprint trait could be low as a 

result of the accumulation of dirt on the surface of the fingerprint reader 

[17]. The poor quality of the biometric data can result in a significant 

reduction in the overall accuracy of the system. 

 Non-Universality: simply means that a sub-set of the population is not able 

to provide the required biometric trait correctly or do not possess a specific 

biometric trait. This can lead to increased Failure Enrollment Rate (FER). 

For example, persons with long eyelashes or eye abnormalities may not be 

able to provide their iris trait correctly to an iris recognition system. Another 

example is shown in Fig.1.4, where users having very dry or oily fingers 

and workers with bruises and cuts have fingerprints that affect and limit the 

performance of a fingerprint recognition system [2]. 
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Figure 1.4: Three different examples of the non-universality of a fingerprint trait 

due to finger dryness [18]. 

 

 Intra-Class Variations: refers to the variations between user's samples 

acquired during the enrollment and recognition phases. These variations 

could be a result of incorrect operation of the reader (e.g. translation, 

rotation, and pressure on fingerprint sensor), inherent changes like the 

scars and bruises in the fingerprint trait as shown in Fig.1.5, a fraudster 

mimicking a particular behavioral trait, such as the voice, the effect of 

ageing on the face appearance, the effect of disease on the iris trait, and 

the use different sensors or modified sensor settings during enrollment and 

recognition phases. In an ideal biometric system, the features extracted 

from the biometric trait must be relatively invariant to these variations. 

However, features are very sensitive to these variations in most cases, and 

may need complex classification algorithms to handle these variations. 

 

 

Figure 1.5: Example of an intra-class variation of a fingerprint trait obtained 

from the same user at two different times: (a) Enrollment phase (b) Recognition 

phase [2].  
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 Inter-Class Similarities: refers to the lack of individuality (uniqueness) of 

the biometric trait as a result of increasing number of enrolled users in the 

database, leading to overlapping biometric characteristics in the feature 

space and an increase in the FAR. Therefore, each biometric system 

should have an upper bound on the number of enrolled users, set by the 

maximum number of users who are discriminated efficiently by the system.  

 

1.4.2  Scalability 

This issue refers basically to increasing the number of enrolled users in 

the database of the biometric system and its effect on the speed and the 

performance of the system. In fact, this effect is different according to whether 

verification or identification is the task provided by the biometric system. In a 

verification system, a worsening effect does not occur with increasing number of 

enrolled users, because only a one-to-one comparison is needed to verify the 

user's identity. On the contrary, increasing the number of enrolled users in an 

identification system has serious negative effects, because the query template 

will be compared against N templates in the database (a one-to-many 

comparison) [19]. Thereby, increasing the value of N will decrease the 

throughput of the biometric system by increasing the elapsed time required for 

establishing the user's identity. Moreover, it can increase the False Matching 

Rate (FMR) of the system. To eliminate or reduce this effect on the identification 

system one question needs to be answered, which is how we can reduce the 

number of these required comparisons? In fact, there are some approaches 

working on indexing or filtering the enrolled users based on extrinsic factors 

(e.g., age, gender, etc.) or intrinsic factors (e.g., fingerprint major classes). 

Therefore, only a subset of the whole database will be required for comparison 

purpose, but these approaches still have some limitations [18]. 

1.4.3 Security and Privacy 

This is usually related to biometric spoofing issues and the possibility that 

the unimodal system can be fooled, for example using a fake fingerprint or iris 

template. Behavioral characteristics like voice and gait are more vulnerable to 

such attacks than physical characteristics [3]. One of the most important 
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challenges in biometric systems is how to keep all the users' templates, which 

are stored in the database, secure from theft. There are different techniques for 

handling biometric spoofing issues, such as a liveness-detection techniques 

[20] for physical traits and a challenge-response mechanism [3] for physical 

traits and behavioral traits. An imposter can use a stolen template in two ways 

to circumvent a biometric system as follows: (i) the imposter can send the stolen 

template to the system to get an unauthorized access or (ii) use the stolen 

template by creating fake templates (physical spoof) to circumvent the system 

or other systems that operate on the same biometric trait [18]. 

1.5  Motivation for Multi-biometric Systems 

Multi-biometric systems are systems that fuse evidence from multiple 

sources of biometric characteristics in order to enhance the security and 

increase the reliability in establishing the person's identity. In other words, the 

multi-biometric systems are mainly based on the data presented and acquired 

from multiple resources, as will be explained later. Recently, multi-biometric 

systems have been adopted for many governmental and civilian applications 

due to their ability to address and overcome some of the main drawbacks and 

limitations exhibited by unimodal biometric systems. Some of the advantages of 

multi-biometric systems over unimodal biometric systems are listed as follows 

[3][16]: 

1. Increasing the efficiency and the reliability of the recognition system by 

considerably reducing the effect of noise or poor quality in the acquired 

biometric traits. The availability of other biometric sources in the multi-

biometric system can enhance the performance of the system, for example, 

if a user cannot be identified by their voice trait due to environmental issues, 

then they can still be identified using another trait, such as a fingerprint.  

2. Sufficient population coverage can be achieved using multi-biometric 

systems, due to their ability to solve problems related to the enrollment 

phase, such as non-universality. Thereby, a person who cannot present a 

particular biometric trait, can still be enrolled and identified by presenting 

another biometric trait, for example, a manual worker who has a poor 

fingerprint quality, can still be enrolled and identified using traits such as, 
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face, iris, voice, etc. As a result, the FER will be decreased by increasing 

the population coverage.  

3. A multi-biometric system can greatly reduce the overlap among the feature 

spaces of different persons (Inter-Class similarities) by combining biometric 

traits and adopting a fusion approach. Combining multiple pieces of 

evidence from different sources can increase the dimensionality of the 

feature vector, but the overall accuracy of the biometric system will be 

increased. For example, two persons from the same family who can have 

the same voice trait will not have the same iris and fingerprint traits. 

4. Multi-biometric systems can provide a higher accuracy and a greater 

resistance to unauthorized access by an intruder than unimodal biometric 

systems, due to the difficulty of spoofing or forging multiple biometric traits 

for a legitimate user at the same time. Furthermore, another mechanism can 

be coupled with the multi-biometric system, for example by asking users to 

present their biometric trait randomly at the acquisition time (e.g. fingerprint, 

followed by face trait and then voice) to ensure that it is a live user who is 

interacting with the system. This is known as a Liveness Detection or a 

Challenge-Response Mechanism. 

5. Using a multi-biometric system can substantially improve the throughput of a 

biometric system, especially in the identification task where a one-to-many 

comparison is required. This can be carried out using the least accurate 

biometric trait (e.g., Fingerprint trait) to prune the database size down to an 

acceptable size, and then the most accurate biometric trait (e.g., iris trait) will 

be used on the rest of the database to make the final decision.  

6. Finally, a high degree of flexibility will be offered to the user during the 

recognition time using a multi-biometric system. Suppose a system is 

implemented using three biometric traits (e.g., face, fingerprint and voice). 

Subsequently, at the recognition phase, a user can choose either to provide 

a subset or all of their biometric traits depending on the nature of the 

implemented application and the user's convenience. 
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1.6  Design Issues in Multi-biometric Systems 

Based on the definition of the multi-biometric system, three main factors 

must be taken into account when designing and implementing a multi-biometric 

system. Firstly, the architecture of the multi-biometric system in which the 

selected biometric traits will be acquired and processed. Secondly, the source 

of the information used by the multi-biometric system, which could be any of six 

different sources, as will be explained later on. The third factor is the fusion of 

the obtained traits and where this takes place in the multi-biometric system. In 

the next subsections, each factor will be explained in detail. 

1.6.1  Multi-biometric Systems Architectures 

One of the most challenging issues in designing a multi-biometric system, 

after the proper biometric traits have been selected to establish the user’s 

identity is choosing the architecture of the multi-biometric system. In fact, a 

number of factors play a significant role in deciding and selecting the best 

architecture type, such as the nature of the application, the required level of 

security, and the order in which the biometric traits from different resources are 

captured and processed through the system. Typically, depending on these 

factors, the architecture of the multi-biometric system can be categorized into 

three main types: serial, parallel, or hierarchical [2][21]. The serial scheme, also 

known as a cascade scheme in which the result of one trait can be used to 

prune the database size down before the next trait is used, especially when the 

system operates in the identification mode [16]. Therefore, the output of the 

next trait may be affected by the output of the previous one. For example, a 

multi-biometric system using iris and fingerprint can use the fingerprint trait to 

get the best top matches, and then the iris trait is applied to the rest of the 

database to make the final decision. As a result, the throughput of the system 

can be increased by making a decision before acquiring all the required 

modalities. Finally, the applied biometric traits do not have to be captured 

simultaneously. See Fig. 1.6 (a).  

On the other hand, in the parallel scheme multiple biometric traits are 

acquired and processed independently at the same time, and then the results 

obtained from them are combined using an appropriate fusion approach to 
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make the final decision [3], as shown in Fig. 1.6 (b). Therefore, the parallel 

scheme takes a longer recognition time compared to the serial scheme, which 

makes the serial scheme more convenient to the user. However, the security 

level is higher in the parallel scheme than the serial scheme, which makes it 

highly recommended for sensitive applications, such as military applications. 

Finally, the advantages of both the parallel and serial schemes can be 

combined in the third scheme, which is known as a hierarchical scheme. In this 

scheme, a number of problems can be solved such as missing biometric data or 

noisy biometric traits by combining a different classifier into a tree-like structure, 

as shown in 1.6 (c). [18]. However, this type of multi-biometric system 

architecture has not received a lot of attention in the research community. 

1.6.2  The Evidence Sources of Multi-biometric Systems   

To satisfy the multi-biometric system concept, more than one biometric 

source, either physiological or behavioral characteristic is required, as illustrated 

in Fig.1.7. In this section, the question, “What are the sources of biometric data 

that can be utilized in a multi-biometric system?”, is answered. In general, five 

scenarios are available in the multi-biometric system, and a sixth scenario 

refers to the hybrid multi-biometric system, which is the combination two or 

more of these five scenarios [22]. In these scenarios the evidence sources of 

the multi-biometric system can be categorized into one of, or a combination of, 

the following five types: 

1. Multiple Sensors/Single Trait: in this system one biometric trait is 

captured by using more than one sensor in order to get a more diverse set 

of features, for example, the face trait can be captured using two different 

cameras (e.g. infrared camera and visible light camera), or use optical and 

ultrasonic sensors to capture the fingerprint trait.  

2. Multiple Algorithms/Single Trait: in this system, only one biometric trait is 

captured and the results from multiple feature extraction approaches and/or 

multiple classifiers are concatenated to improve the performance of the 

system. The multiple algorithms system is less expensive than previous 

systems due to only one sensor being required, which also reduces the 

user interaction with sensors. 
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Figure 1.6: Multi-biometric system architectures: (a) Serial scheme, (b) Parallel 

scheme and (c) Hierarchical scheme, adapted from Ross et al. [3]. 
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However, in the multiple algorithm systems the computational complexity 

and time required are increased, due to multiple feature extraction and 

matching modules required. For example, the same fingerprint trait can be 

processed by using texture-based and minutiae-based approaches [16].  

3. Multiple Samples/Single Trait: this type of multi-biometric systems is 

adopted to increase the resistance of the system to variations of the 

biometric trait using a single sensor to capture more than one sample from 

the same trait. For example, in the face recognition system, the face trait 

can be captured from different angles (e.g. frontal, left and right profiles) 

using a single camera, and then the extracted information is used to 

address the challenges that arise from the variations of the facial pose [3]. 

4. Multiple Instances/Single Trait: again one biometric trait is used, but the 

information is extracted and used from multiple instances of the same 

biometric trait. For example, the person's identity could be established by 

extracting the information from his right and left iris trait or his right and left 

index fingers. This type of systems is cost efficient, due to no new sensors, 

feature extraction approaches, and/or classification approaches, being 

required [22]. 

5. Multiple Biometric Traits: this results in a multimodal biometric system, 

where multiple physiological and/or behavioral characteristics are employed 

to recognize the person's identity requiring the use of multiple sensors [16], 

for example, using the fingerprint and iris trait in establishing the person's 

identity. The independence of the adopted traits (e.g., fingerprint and iris) 

ensures that a considerable improvement in performance is obtained. 

However, some issues need to be addressed in this system, such as the 

cost of deploying multiple sensors, enrollment time, throughput time, and 

user’s convenience due to the number of the traits required during the 

enrollment and recognition phases. Finally, combining more than one trait 

can lead to an increase in the dimensionality of the feature vector, which 

results in putting an upper bound on the number of the used traits without 

affecting the performance [3]. 
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Figure 1.7: The five evidences sources of a multimodal biometric system, 

adapted from Ross and Jain [22]. 

 

1.6.3  Fusion Information Levels in Multi-biometric Systems 

Other essential challenges for the designer of the multi-biometric system 

are selecting the best information sources from multiple sources in the system 

and finding an efficient methodology to fuse them. As it is well known, 

information in the biometric system can be taken from four different points: the 

sensor module, the feature extraction module, the matching module and the 

decision module. Typically, the degree of availability of the information 

decreases as one moves from the sensor module toward the decision module 

[16]. Therefore, based on these information sources and the amount of the 

available information, the fusion method can take place in five different levels, 

as shown in Fig.1.8. These levels are the sensor level, the feature level, the 

score level, the rank level and the decision level. The five levels of integrating 

the biometric information can be broadly classified into two groups. Firstly, the 

Prior-to-Classification fusion levels, which includes the sensor and feature 

levels refers to combining the information before applying any matching 
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algorithm. Secondly, the Post-to-Classification fusion levels, which includes the 

score, rank and decision levels, refers to integrating the information in the 

matching score and the decision spaces [13][21]. In this section, the five fusion 

levels are explained as follows:   

1. Sensor Level Fusion: in this level of fusion, the sources of information 

either employ different compatible sensors to capture the same biometric 

trait or capture multiple instances for the same trait using a single sensor 

[23]. For example, the fingerprint trait can be obtained by using two different 

sensors (e.g. Optical and Ultrasonic sensors). Another example is capturing 

multiple snapshots of the face trait using the same camera. Although the 

sensor level represents the richest source of data, this data can be 

contaminated by noise, illumination changes and other enrollment process 

issues. Finally, it can quite difficult if not impossible to fuse directly two sets 

of raw data collected from two different modalities due to the 

incompatibilities between them. 

2. Feature Level Fusion: in features level fusion, the final feature vector is 

constructed by integrating different feature vectors, which are acquired from 

different sources either by employing multiple sensors (e.g. Optical and 

Ultrasonic sensors are used to capture the fingerprint trait), applying 

different feature extraction approaches on the same biometric trait (e.g. the 

texture-based and the minutiae-based approaches are used to process the 

fingerprint trait) or using different biometric traits (e.g. face and iris trait). It is 

highly probable that the recognition accuracy rate can be significantly 

improved by applying the fusion at the feature level compared to other 

levels of fusion, due to the high degree of the availability of the useful 

information about the raw biometric data [13]. Nevertheless, integrating the 

data at the feature level can be coupled with some drawbacks and 

difficulties. Firstly, extracting the feature vectors from different biometric 

traits using different approaches leads to a possible increase in 

incompatibility between the extracted feature vectors. Secondly, it increases 

the computation time and storage cost due to the high dimensionality of the 

feature vector obtained in this level. In addition, the relationship between 

the feature vectors extracted from different biometric traits may be 
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unknown. Thereby, dimensionality reduction algorithms or feature selection 

approaches may be employed to address the curse of high dimensionality 

problem and to discard the highly correlated features, respectively. Finally, 

the feature vectors may not be accessible, especially within the majority of 

commercial biometric systems. All these difficulties have led most 

researchers in this field to prefer the post-to-classification fusion levels 

[22][23].  

3. Score Level Fusion: also referred to as the measurement level, the expert 

or the confidence level. At this level, the similarity scores from one biometric 

trait or multiple biometric traits, by employing one or multiple classifiers, are 

integrated to form the final decision [13], for example, fusing the similarity 

scores from left and right index fingerprint trait using two different 

approaches, or fusing the similarity scores from the face trait and the hand 

trait. This level comes in the third degree in terms of the availability of 

information about the input biometric trait after the sensor level and feature 

level. In this fusion scheme, the most important thing to take into 

consideration is that the output from multiple classifiers might not be 

homogeneous [18]. For example, the matching score produced by one 

classifier could mean a similarity score where the highest score refers to the 

best match, whilst the matching score produced by another classifier could 

mean the dissimilarity (the distance score) where the smallest score refers 

to the best match. Moreover, the matching scores of multiple classifiers 

might not be in the same numerical range or probability distributions. This 

issue can be solved simply by applying a normalization technique to 

transform the matching scores into a common range, before this fusion 

takes place [16]. Depending on the treatment of the matching scores 

obtained from multiple classifiers, the fusion at the scores level can be 

classified into two different groups. Firstly, the fusion can be considered as 

a classification problem where the matching scores from multiple classifiers 

are integrated to formulate a feature vector, which is used as input to the 

second level classifier to make the final decision (e.g., genuine user or 

impostor user). Secondly, the fusion can be considered as a combination 

problem where the final decision is taken by normalizing into the same 
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range and combining the matching scores from multiple classifiers to 

produce a scalar fused score. The fusion at the matching score level has 

been extensively studied in the literature due to its simplicity, convenience 

of fusion and availability of information [13]. 

4. Rank Level Fusion: In multimodal biometric systems, if the system 

operates in the identification mode, then the output of each classifier can be 

viewed as a list of ranks of the enrolled candidates, which represents a set 

of all possible matches sorted in descending order of confidence. In this 

case, the fusion in the rank level can be applied using one of the ranking 

level fusion methods to consolidate the ranks produced by each individual 

classifier in order to deduce a consensus rank for each person. Then, the 

scores output are sorted in descending order and the identity with the 

lowest score is presented as the right person. As reported by Ho et al.[24], 

the ranks of multiple classifiers can be integrated using three different 

approaches: the Borda count approach, the highest rank approach, and 

logistic regression approach.  

5. Decision Level Fusion: this level of fusion is also known as an abstract 

level fusion where the least amount of information is available. This 

information represents the decision outputs taken from multiple individual 

classifiers, which are combined to form the final decision. A  number of 

approaches have been proposed to consolidate the final recognition 

decision, such as AND rule, OR rule, Bayesian decision, decision table, 

majority voting, weighted majority voting, and other fusion rules [13][14].  
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Figure 1.8: Four levels of fusion used in multi-biometric systems. Rank level 

fusion, not shown, is used only in the identification task, adapted from Ross 

[22]. 

1.7  Aims and Objectives  

The main aim of this research is to design and implement a hybrid multi-

biometric personal identification system for identifying a person's identity using 

a combination of face and iris biometric traits. These two biometric traits 

complement each other in that the face trait is the least intrusive, and the iris 

trait is the most accurate. Specific objectives are designing and implementing 

real-time, robust, and ready-to-use unimodal biometric algorithms for a multi-

biometric system that integrates the strengths of these two biometric traits. 

Further objectives are increasing the degree of flexibility of the proposed multi-

biometric system and eliminating the limitation imposed by the missing trait by 

selecting an appropriate fusion scheme. In order to meet and achieve the main 

objectives of the research the following tasks need to be investigated:    

1. Reviewing and analyzing the current state-of-the-art recognition approaches 

for both face and iris traits, and proposing improvements to develop a 

powerful multi-biometric system that can meet the requirements of real-

world applications. These investigations include several stages in the 

biometric system relating to pre-processing, feature extraction, fusion 

methodology, and classification. In this task, the emphasis will be on the 

fundamental theory, drawbacks, and hypothesis made by previous works.  
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2. Investigations into a proposed fully automated and robust face recognition 

algorithm in which a compact and discriminative facial representation is 

learned from face images which are taken under completely unconstrained 

conditions. In this thesis, a number of the most challenging face recognition 

problems are tackled, including a lack of training samples, changes of 

illumination, expressions, aging, occlusion and different poses. 

3. Investigations into the design of a practical prototype and robust iris 

recognition system. This task involves several issues: (i) Proposal of an 

efficient and real-time iris localization method to separate the iris region 

from background features, such as eyelashes, eyelids, and specular 

reflection; (ii) Proposal for a novel feature extraction method to extract 

discriminative features from the localized iris region without any domain 

knowledge of the iris image data, which is differ from the previous work that 

depend on handcrafted features [25][26][27][28][29]. This idea is motivated 

by current promising findings applying the deep learning approaches to 

learn compact and discriminative features from other biometric trait (e.g., 

face trait); (iii) Proposal for a new matching approach, which could enhance 

the accuracy of the traditional binary iris matching approaches, such as 

Hamming distance.  

4. Investigations into the design and implementation of a robust multi-instance 

system based on iris biometric trait taken from the right and the left eye of 

the same person.  

5. Investigations into combining face and both irises traits in one multi-

biometric personal identification system with multiple security levels. This 

task involves investigating into efficient fusion approaches for the adopted 

biometric traits (e.g. face and iris). 

6. Conducting extensive experiments to assess the effectiveness of the 

proposed approaches and methodologies in different scenarios on large-

scale unconstrained unimodal and multi-biometric databases. Furthermore, 

assessing the superiority of the proposed unimodal and multimodal systems 

compared to the previous state-of-the-art systems. 
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1.8  Thesis Contributions  

In this section, the main contributions of this research to the biometrics 

community are highlighted. The first part of this PhD thesis addresses the 

problem of the unimodal biometric systems based on the face and iris trait, 

while the second part deals with the problem of designing and implementing a 

hybrid multimodal biometric identification system for identifying a person's 

identity using a combination of face and iris biometric traits. The main 

contributions of this dissertation are as follows: 

1. A novel multimodal local feature extraction approach, based on merging the 

advantages of multidirectional and anisotropy transforms, specifically the 

Curvelet transform, with Fractal dimension, is proposed. Termed the 

Curvelet-Fractal approach, it is different from previously published Curvelet-

based face recognition systems, which extract only the global features from 

the face image. The proposed method has managed to extract the local 

features along with the face texture roughness and fluctuations in the 

surface efficiently by exploiting the Fractal dimension properties, such as 

self-similarity. There are three main differences from the Curvelet 

Transform-Fractional Brownian Motion8 (CT-FBM) approach. Firstly, unlike 

CT-FBM approach which used only the coarse band of the Curvelet 

transform as an input to the Fractal dimension stage, here other Curvelet 

sub-bands features are also used, which represent the most significant 

information in the face image (e.g. face edges and curves), which are 

known to be crucial in the recognition process. Secondly, a new Fractal 

dimension method, is proposed, based on an Improved Differential Box 

Counting (IDBC) method in order to calculate the Fractal dimension values 

from the new added Curvelet sub-bands and handle their high 

dimensionality. Then, the outputs of the IDBC and Fractional Brownian 

Motion (FBM) are combined to build an elementary feature vector. Finally, 

use of the Quadratic Discriminant Classifier (QDC) instead of K-Nearest 

                                                           
8
 The main details of the CT-FBM approach are in the conference paper, titled (A Robust Face 

Recognition System Based on Curvelet and Fractal Dimension Transforms), and it presented in this thesis 

only for comparison purposes. 
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Neighbour (K-NN) is proposed, because this improves the accuracy of the 

proposed system. 

2. A novel framework is proposed, termed the Multimodal Deep Face 

Recognition (MDFR) framework, to learn additional and complementary 

features representations by training a deep neural network (e.g. Deep Belief 

Networks (DBNs)) on top of a Curvelet-Fractal approach, instead of the 

pixel intensity representation. This is a demonstration that the proposed 

framework can represent large face images, with the time required to obtain 

the final trained model significantly reduced compared to the direct use of 

the raw data. Furthermore, the proposed framework is able to efficiently 

handle the non-linear variations (e.g., intra-personal and inter-personal 

variations) of face images, and is unlikely to over fit to the training data, due 

to the non-linearity of a DBN. 

3. An efficient and automatic iris localization model is proposed to carefully 

detect the iris region from the background and all extraneous features (e.g., 

pupil, sclera, eyelids, eyelashes, etc.), without the risk of losing important 

information from the iris region. 

4. An efficient deep learning system is proposed called IrisConvNet, whose 

architecture is based on a combination of a CNN and Softmax classifier to 

extract discriminative features from the iris image without any domain 

knowledge, and classify it into one of N classes. To the best of the author’s 

knowledge, this is the first work that investigates the potential use of CNNs 

for the iris recognition system, especially in the identification mode. It is 

worth mentioning that only two papers have been published recently 

[30][31] that investigated the performance of CNNs on the iris image. 

However, these two works have addressed the biometric spoofing detection 

problem with no more than three classes available, which is considered a 

simpler problem when compared to the iris recognition system where N 

class labels need to be correctly predicted. 

5. A discriminative training scheme equipped with a number of training 

strategies is also presented in order to evaluate different CNN architectures, 

including the number of layers, the number of filters layer, input image size, 
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etc. To the best of the author’s knowledge, this is the first work that 

compares the performance of these hyper-parameters in iris recognition. 

6. An efficient and real-time hybrid multimodal biometric identification system 

is proposed, based on fusing the results obtained from the face and both 

the left and right irises of the same person. To the best of the author’s 

knowledge, this is the first work that investigates the potential use of deep 

learning approaches (e.g. DBN and CNN) for fusing the face and both the 

left and right irises in a unified multimodal biometric system. In this work, a 

parallel architecture is considered, allowing users a high degree of flexibility 

to provide either a subset or all of their biometric traits, depending on the 

required security level and the users’ convenience. In addition, a limitation 

due to excluding a biometric trait is eliminated.  

 

1.9  Outline of the Thesis 

This PhD thesis is organized into six chapters including this chapter. An 

overview of these chapters is presented below. The chapters' organization and 

the dependence among these chapters are illustrated in Fig. 1.9. 

 Chapter 1 introduces the basics of biometric systems, main characteristics 

of the biometric modalities, and the limitations of unimodal biometric 

systems. The motivations, objectives, contributions and outline of this PhD 

thesis are also presented in Chapter 1.  

 Chapter 2 presents a review of previous investigations into face 

recognition, iris recognition, and multimodal biometric systems. It also 

details the motivations for this PhD thesis based on the previous related 

works. 

 Chapter 3 considers the problem of the unconstrained face recognition in 

both identification and verification tasks, and presents two novel face 

recognition approaches. In particular, a novel multimodal local feature 

extraction approach is presented, termed Curvelet-Fractal approach, and a 

novel framework, termed the Multimodal Deep Face Recognition (MDFR) 

framework, to learn additional and complementary representations by 

training a DBN on top of existing local representations instead of the pixel 

intensity representations, is also presented. 
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 Chapter 4 studies the problem of the iris recognition in identification task 

and presents an efficient and real-time iris recognition system based on 

building deep learning representations for images of both the right and left 

irises of a person. In particular, the proposed iris localization model is 

composed of four main stages and IrisConvNet system, whose architecture 

is based on a combination of a CNN and a Softmax classifier.   

 Chapter 5 presents an efficient and real-time hybrid multimodal biometric 

system for identifying a person's identity, based on fusing the matching 

scores generated from the face and both irises biometric traits at the score 

and rank level. In this chapter, different types of the multimodal biometric 

system are also proposed, based on the employed approach to generate 

the matching score and the biometric traits selected by the user at 

identification point. 

 Chapter 6 introduces the overall conclusions, achievements and some 

limitations of the thesis. Possible future directions of this research are also 

outlined in this chapter. 
 

 

Figure 1.9: The chapters' organization and the dependence among dissertation 

chapters.
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Chapter 2 

Related Work 

2.1  Introduction   

This chapter briefly summarizes previous work related to this PhD thesis. 

The literature on unimodal and multimodal biometric systems shows a variety of 

approaches that have been used to establish a person's identity in a wide range 

of real-world applications. In this chapter, previous work on the unimodal 

biometric systems that use either the face or iris traits in the decision-making 

process is described. Also included is a discussion of some of the previous 

research done on multi-biometric systems that combine multiple biometric 

sources at different levels of fusion, with more concentration given to those 

works that use one or both of the adopted traits in this thesis. The main aim of 

this chapter is not to give a comprehensive review of all the existing work 

dealing with each of the face recognition, iris recognition, and multi-biometric 

systems, but to summarize the most recent works which are closely related to 

this PhD thesis and to concentrate on the most important contributions and 

limitations existing in the current state-of-the-art aforementioned topics. 

The chapter is organized as follows: Firstly, previous research on the face 

recognition approaches is presented in Section 2.2. Section 2.3 outlines the 

most important contributions found in previous work to address the iris 

recognition problem. Section 2.4 discusses and analyses the main 

investigations carried out to date in the field of multi-biometric systems using 

different fusion methodologies. Section 2.5 discusses the main challenges and 

knowledge gaps in the previous research and finally, the summary and 

conclusions of this chapter being presented in Section 2.6. 

2.2  Research on Face Recognition 

In the last four decades, face recognition has received considerably more 

attention in the research community than other biometric traits, due to its wide 

range of commercial and governmental applications, low cost and ease of 
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capturing the face image in a non-intrusive way without the user's active 

cooperation [14]. Face recognition systems encompass two fundamental 

stages: Feature extraction and classification. The second stage is dependent on 

the first. Therefore, the task of extracting and learning useful and highly 

discriminating facial features in order to minimize intra-personal variations and 

maximize inter-personal differences is a challenging task. In this regard, a 

number of approaches have been proposed, implemented and refined to 

address some of these drawbacks and problems in the face recognition system. 

These approaches can be broadly divided into two categories: handcrafted-

descriptor approaches, and learning-based approaches [32]. The next 

subsections are devoted to outlining these approaches and their usage to 

address face recognition problem, before discussing their respective strengths 

and limitations. 

2.2.1  Handcrafted-Descriptor Approaches  

The majority of previous face recognition systems depend on feature 

representations produced by local/global handcrafted-descriptor approaches, 

such as Scale Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), 

2D Gabor Wavelet, etc. Handcrafted-descriptor approaches can be further 

divided into three groups: Feature-Based, Holistic-Based, and Hybrid-based 

approaches. 

In the first category, a geometric vector representing the facial features is 

extracted by measuring and computing the locations and geometric 

relationships among facial features (e.g., the mouth, eyes and nose), as shown 

in Fig. 2.1, and using it as an input to a structural classifier. In fact, early face 

recognition systems mainly relied on approaches belong to this category. One 

of the earliest such systems was by Wiskott et al. [33], who employed the 

Elastic Bunch Graph Matching (EBGM) method to reduce the input face image 

to a vector of geometric features. The EBGM is an example of a features-based 

approach, which uses the responses of Gabor filters at different orientations 

and frequencies at each facial feature point to extract a set of local features. 

This technique has the ability to provide feature representation that is invariant 

to affine transformations (e.g., translation, rotation, etc.) and changes in facial 
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expressions. A recognition rate of 98% has been achieved on a subset of 250 

face images from the FERET database.   

Kanade [34] proposed a simple feature extraction algorithm to extract a 

geometrical vector composed of 16 facial parameters, which are the ratios of 

distances, angles and areas between detected facial features in the input 

image, such as eyes, nose and mouth. Then, the Euclidean distance is 

employed in the matching stage to achieve a recognition rate of 75% on a small 

database of 20 persons (2 images per person). An extension of  Kanade’s 

approach was also proposed by Brunelli and Poggio [35], where the size of the 

extracted feature vector was increased to 35 geometric features. The authors 

were able to achieve a recognition rate of 90% when testing the system on a 

larger database of 47 persons (4 images per person). Biswas et al. [36] 

developed a face recognition system based on feature representations obtained 

using SIFT-based descriptors [37] at fiducial locations on the face image, and 

then the SIFT features of all facial landmarks were formed into a single vector 

representing the face. A best Rank-1 identification rate of 91% was achieved on 

the CMU Multi-PIE face database containing a total of 337 subjects. More 

recent Feature-Based approaches benefit from the great progress in facial 

landmark detection algorithms [38][39], which make dense facial landmarks 

detection more accurate, for example, the work proposed by Chen et al. [40], in 

which the multi-scale LBP was employed to extract features from regions 

around 27 facial landmarks. Similar ideas were also proposed for feature 

extraction in [41][42][43]. For more examples on the feature-based approaches, 

the reader is referred to [44][32]. The main advantage offered by these types of 

approach is that they are relatively robust to variations in the face image (e.g. 

changes of illumination, size, head position, etc.) and high-speed matching. 

However, the main limitation of these approaches is the difficulty of 

automatically detecting the facial features [45]. 
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Figure 2.1: Some examples of geometrical features of the face image. 

 

Compared with the first category, the holistic-based approaches usually 

extract the feature vector by operating on the whole face image instead of 

measuring the local geometric features. The major limitation of these 

approaches is performing the matching process in very high dimensionality 

space. Thus a number of face recognition algorithms have been developed that 

employ different dimensionality reduction methods to handle the issue of high 

dimensionality before the matching process can take place. The Eigenface 

methods are the best well-known examples of these approaches, which are 

represented by Principal Component Analysis (PCA), Independent Component 

Analysis (ICA), etc. The first well-known face recognition system based on the 

Eigenface methods was proposed by Sirovich and Kirby [46]. In this system, the 

PCA approach was applied on every face image in the system's database, and 

then projected onto a lower dimensional space, in which each face image was 

transformed into a vector of weights, so-called (Eigenfaces). In the testing 

phase, the weights vector of the query image were obtained in the same 

manner, and then the decision was made by measuring the similarity between 

each query-template pair. If the query image's weight was lower than a pre-

defined threshold, it was considered to be accepted.  

Based on Sirovich and Kirby’s findings, an improved system was proposed 

by Turk and Pentland [47], who demonstrated that these projections of the face 

image along Eigenfaces space could be used as input feature vectors to the 

classification approaches to recognize the person's identity efficiently. 
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Experiments on a private database consists of 2500 face images captured from 

16 subjects yielded a ~100% recognition rate.  Compared to the PCA approach 

that depends on the first and second-order statistics, the ICA approach has the 

ability to explore higher order statistics, which enables it to be successfully 

applied as a feature extraction approach to address the face recognition 

problem. However, the main drawback of this approach is the higher 

computational time required, compared to PCA approach. This problem has 

been partially overcome using a Fast-ICA version proposed by Bartlett et al. 

[48]. A comparison study presented in [49] demonstrates that a higher 

recognition rate can be obtained using ICA compared to PCA.   

Unlike the unsupervised Eigenfaces approaches (e.g., PCA and ICA) that 

reconstruct a face image from a low dimensional space and discard the class 

information, the supervised Fisherfaces approach, based on Linear Discriminant 

Analysis (LDA), has also been proposed by Belhumeur et al. [50] for face 

recognition. Firstly, like the Eigenfaces approaches, the Fisherfaces approach 

aligns face images in the training set, projects them into a lower dimension 

space, and then instead of using maximum variation directions as in the PCA, 

the Fisher LDA is applied to select the projection directions. This approach aims 

to improve the discrimination power by maximizing the ratio of the determinant 

of the between-class scatter matrix to the determinant of the within-class scatter 

matrix of the projected samples. Fig.2.2 shows some examples of Eigenfaces 

and Fisherfaces approaches, and how Fisherfaces can produce more 

discriminative information better than Eigenfaces. In fact, several publications 

have demonstrated the efficiency of the Fisherfaces approaches by exploiting 

class variation information, as in [51][52][53][54]. Furthermore, numerous 

extensions and non-linear schemes have been proposed to improve the 

performance of the standard Eigenfaces and Fisherfaces approaches, such as 

Kernel PCA [55][56], Fourier-LDA [57], Pair-wise LDA [58], and incremental 

LDA [59]. Other well-known examples of holistic-based approaches, include the 

Active Appearance Model (AAM) [60], LBP [61], the 3D Morphable Model [62] 

and Locality Preserving Projections (LPP) [63]. The major characteristic of the 

holistic-based approaches is that no important information is destroyed by 

focusing only on restricted regions of interest. However, these types of 
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approach usually suffer from some drawbacks, such as performing well only 

under fully controlled conditions (e.g., standardized lighting, angle, scale, etc.), 

being computationally very expensive, and producing a feature vector with very 

high dimensionality. Nevertheless, as mentioned before, several of these 

approaches have been devised to handle these limitations. 

Finally, the hybrid-based approaches use a combination of both feature 

and holistic approaches to address the face recognition problems. For example, 

one can argue that hybrid approaches that use both local and global features 

(e.g., obtained from both feature and holistic approaches, respectively) can be 

an efficient way to make use of complementary information, reduce the 

complexity of classifiers, and increase their generalization capability. However, 

the main challenging factors that can influence the performance of such 

approaches are in how to define which types of features should be fused, and 

how to fuse them [64]. For example, local features are very sensitive to the 

illumination changes, while expression changes have more influence on global 

features. Some of the recent examples belonging to this category were 

proposed by Fischer et al. [65], Berg and Belhumeur [66], Annan et al. [67], Zhu 

et al. [68], Ding et al.[69] and other examples can be found in [64].   

 

Figure 2.2: (a) Some examples of the Eigenfaces approach showing the 

tendency of the PCA to acquire the major variations in the training set (e.g.,  

lighting directions), and (b) Some examples of the Fisherfaces approach show 

its ability to discard information unrelated to classification [70]. 
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Multi-resolution transformation approaches (e.g., Wavelet transform, 

Curvelet transform, Ridgelet transform, etc.) have been widely used in 

conjunction with the aforementioned feature-based, holistic-based and hybrid-

based approaches. For example, Mukhedkar and Powalkar [71] proposed a 

facial feature extraction approach based on a combination of the Discrete 

Wavelet Transform (DWT) and PCA. The former is used to reduce the high 

dimensionality of the face image with different decomposition levels, while the 

latter is for the feature extraction process. The Euclidean distance is employed 

to make the final decision. Experimental results on four face databases, namely, 

Face94, Face95, Face96, and SELFFACE, show that this approach produced a 

higher recognition rate compared to using only the PCA approach. A face 

recognition system based on the DWT and the Regional Directional Weighted-

Local Binary Pattern (RDW-LBP) was also developed by Fengxiang [72]. 

Experiments on AR and ORL face databases reported recognition rates of 

97.2% and 99.2%, respectively. Mandal and Wu [73] developed a face 

recognition system based on the Fast Discrete Curvelet Transform (FDCT) to 

decompose face images into Curvelet sub-bands. Then, the PCA approach was 

employed on selected sub-bands to produce a representative feature set. They 

compared the performance of the proposed system with the Wavelet transform 

and traditional PCA approaches, and indicated that the proposed system 

produced higher recognition rates of 96.6% and 100% on ORL and Essex 

Grimace face databases, respectively. Rziza and et al. [74] used the Curvelet 

transform to decompose the face image into a number of sub-bands that 

characterize the face texture. Then, only a selected subset of the Curvelet sub-

bands was used and divided into small non-overlapping blocks, from which a 

set of simple statistical measures (such as mean, variance and entropy) were 

computed to form compact and meaningful feature vectors. These feature 

vectors were used as inputs to the LDA approach to make the final decision. 

Recognition rates of 98%, 93.33%, and 91.72% were achieved on ORL, YALE 

and FERET face databases, respectively.  

Quite recently, Elaiwat et al. [75] presented a multimodal Curvelet-based 

technique for 3D face recognition. Firstly, each face image was transformed into 

the Curvelet domain, then a number of robust and distinctive key points (e.g., 
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eyes-forehead and nose) were detected from textured 3D faces across different 

frequency sub-bands. Experimental results on BU-3DFE, FRGC v2, and 

Bosphorus face databases yielded verification rates of 95.1%, 99.2%, and 91% 

at 0.001 FAR. Other well-known examples of Curvelet-based face recognition 

systems were also proposed by Ch’ng et al. [76], Tanga and Chen [77], Zhou et 

al. [78], and Arivazhagan et al. [79].  

2.2.2  Learning-Based Approaches 

Previous research has demonstrated the efficiency of handcrafted-

descriptor approaches used as robust and discriminative feature detectors to 

solve the face recognition problem, even when relatively few training samples 

per person are available, as in [80][81]. However, the performance using 

handcrafted-descriptors approaches declines dramatically in unconstrained 

conditions, due to fact that the constructed face representations are very 

sensitive to the highly non-linear intra-personal variations, such as expression, 

illumination, pose, and occlusion [82]. In addition, this type of approach usually 

requires significantly more effort and domain-knowledge from the researcher to 

find the best compact and discriminative feature set for a given problem. 

Thereby, they are considered to be difficult and time demanding.  

To address these drawbacks, considerable attention has been paid to the 

use of learning-based approaches, which can learn features from labelled 

training samples, using machine learning techniques to recognize faces. The 

main advantage of the learning-based approaches over handcrafted-descriptor 

approaches is their ability to learn from experience and their robustness in 

handling non-linear variations of face images caused by pose variations, self-

occlusion, etc. Some examples of traditional approaches belonging to this 

category are Support Vector Machines (SVMs) [83], Artificial Neural Networks 

(ANN) [84][85] Discriminant Face Descriptor (DFD) [86], Local Quantized 

Patterns (LQP) [87] and  Multi-Layer Perceptron (MLP) [88], etc. For example, 

Ouarda et al.[89] used a set of geometric features containing a total of 33 points 

for each face image as input to train a Support Vector Machine (SVM). In 

experiments, the authors evaluated the performance of three different types of 

kernels (e.g., Linear, Radial Basis function and MPL kernels) with two features 
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selection approaches using the genetic algorithm and minimum Redundancy 

maximum Relevance (mRmR). The best recognition rates achieved were 

88.50% (using Linear kernel and GA) and 93.07% (using Linear kernel and 

mRmR) on the ORL and CALTECH databases, respectively. However, these 

traditional approaches have a number of drawbacks that need to be overcome, 

such as requiring low dimensional feature vectors in order to achieve an 

exceptional performance, difficulty in handling deformations of the input image 

(e.g., translation,  scaling and rotation), and the slow convergence of the 

shallow neural networks used (e.g., MLP networks) [64].  

Inspired by their impressive ability to learn more discriminative feature 

representations, considerable attention has also been paid to the use of deep 

learning approaches, such as Deep Neural Networks (DNNs) to learn 

automatically a set of higher-level feature representations through hierarchical 

non-linear mappings, which can robustly handle the non-linear intra- and inter-

personal variations of face images [90]. Moreover, in contrast to handcrafted-

descriptor approaches, the applications making use of deep learning 

approaches can generalize well to other new fields. Some of the most relevant 

examples using deep learning approaches for face recognition are reviewed 

below.  

Sun et al. [82] proposed a face recognition system, called Deep 

Identification-verification features (DeepID2), in which two supervisory signals 

(e.g., the face identification and verification signals) were combined 

simultaneously to boost the discriminative power of extracted features using 

CNNs. They showed empirically that the learned DeepID2 feature 

representations can generalize well to new identities in the Labeled Face in the 

Wild (LFW) database. A verification rate of 99.15% was achieved using the 

"Unrestricted, Labeled Outside Data" evaluation protocol. The same group of 

researchers developed the deep ConvNet-RBM model based on a combination 

of a set of CNNs and a Restricted Boltzmann Machine (RBM) model for face 

verification in the wild environment [91]. Verification rates of 91.75% and 

92.52% were achieved on the LFW and CelebFaces databases, respectively. 

The main architecture of the ConvNet-RBM model was further improved in [92], 

in which very high dimensional relational features were learned for face 
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verification rather than the low dimensional features learned in the previous 

version. A verification rate of 93:83% was achieved on the LFW database using 

the "Unrestricted, Labeled Outside Data" evaluation protocol. Taigman et al. 

[93] proposed the DeepFace framework for face verification using the frontal 

face images generated from a 3D shape model of a large-scale face dataset. 

They proposed to use the softmax loss on the top of CNN as the supervisory 

signal to train the proposed framework. Experiments on the LFW database 

using the "Unrestricted, Labeled Outside Data" sitting yielded a verification rate 

of 97.35%. In 2015, a comprehensive deep learning framework for face 

recognition, called the Multimodal Deep Face Representation (MM-DFR) was 

proposed by Ding and Tao [94]. The main structure of the MM-DFR framework 

was composed of a set of CNNs to extract complementary facial 

representations from multimodal data (e.g., the holistic face images, the frontal 

face images rendered by 3D Face Model, and sampled face patches), and a 

three-layer Stacked Auto-Encoder (SAE) to reduce the high dimensionality of 

the feature vector obtained from combining the outputs of all the CNNs. 

Experiments on the LFW and CASIA-WebFace databases reported a 

verification rate of 99.02% using the "Unrestricted, Labeled Outside Data" 

protocol and a Rank-1 identification rate of 76.53%, respectively. 

Liu et al.[95] proposed a Boosted Deep Belief Network (BDBN) framework 

to learn a set of features for facial expression recognition. A number of 

extensive experiments were conducted to assess the performance of the BDBN 

framework on Extended Cohn-Kanade (CK+) and JAFFE databases which 

yielded average classification rate of 97% and 68%, respectively. A new 

translation-invariant version of DBNs, called Convolutional Deep Belief 

Networks (CDBN) was proposed by Lee et al. [96], and used for face 

recognition. Experiment on the Caltech-101 face database by the authors 

reported a better performance compared to the state-of-the-art approaches, 

using SIFT operator, shape-context and geometric blur. Later, Huang et al. [97] 

suggested the learning of additional complementary facial representations by 

training a CDBN on the top of a handcrafted-descriptor approach (e.g., LBP 

method) instead of using the pixel intensity representations directly. In addition, 

a Local Convolutional Restricted Boltzmann Machines (LCRBM) was also 
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developed by these authors to make use of the global structure in a face image. 

They were able to show that complementary feature representations can be 

captured by combining the deep learning and handcrafted-descriptors 

approaches to improve the face verification results on the LFW database. A 

verification rate of 86.88% was achieved using the "Image-Restricted, Label-

Free, Outside Data" protocol. Similar ideas were also proposed by Li et al. [98] 

and Yi et al. [99]. In the literature, several metric learning approaches have 

been proposed to address the face verification problem, including Fisher Vector 

(FV) [100], Information-Theoretic Metric Learning (ITML) [101], Discriminative 

Deep Metric Learning (DDML) [102], Pairwise-constrained Multiple Metric 

Learning (PMML) [103], Logistic Discriminant based Metric Learning (LDML) 

[104], Large Scale Metric Learning (LSML) [105], Cosine Similarity Metric 

Learning (CSML) [106].  

The key limitations of the deep learning approaches include requiring a 

large amount of training data to avoid the overfitting problem and increase the 

generalization ability of the neural network, the number of hyper-parameters 

that need to be set, and all the DNNs are mainly based on a tedious iterative 

optimization procedure that can be computationally expensive for large-scale 

databases. However, these issues can be effectively alleviated using high-

performance computing systems, equipped with Graphics Processing Units 

(GPUs) [90]. In addition to all the aforementioned examples, there have also 

been several comprehensive surveys on different aspects of face recognition, 

including 3D face recognition [107], heterogeneous face recognition [108], 

illumination-invariant face recognition [109], video-based face recognition [110], 

single image-based face recognition [111] and Unimodal and Multimodal Face 

Recognition [112]. 

2.3  Research on Iris Recognition 

Iris recognition technology has been widely employed, in many mission-

critical applications, for instance, the iris recognition system is being employed 

to check visitors to the United Arab Emirates (UAE) [113], in India’s Unique ID 

program [114] and some airports (e.g., The Schiphol Privium scheme at the 
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Amsterdam airport9), that uses iris-scan cards to speed up the border control 

procedures. Among the different biometric modalities, the iris trait is considered 

to be the most accurate that can play an important role in identifying a person's 

identity with a remarkably high recognition rate. The uniqueness of an iris 

pattern comes from the distinctiveness and richness of texture details within the 

iris region (the annular part between pupil and sclera), including rings, ridges, 

crypts, furrows, freckles, zigzag patterns, etc. Since 1987, when the idea of 

using the iris as a biometric trait was first introduced by Flom and Safir [115], 

many different approaches have been proposed, and great progress on iris 

recognition has been achieved. In 1993, the first successful and the 

commercially available iris recognition system was proposed by Daugman 

[116]. In this system, the inner and outer boundaries of the iris region were 

detected using an Integro-differential operator. Afterwards, the iris template was 

transferred into the normalized form using Daugman's Rubber Sheet method. 

This is followed by using a 2D Gabor filter to extract the iris features and the 

Hamming distance for decision making. However, as reported in 

[117][118][119], the key limitation of Daugman's system was that it required a 

high-resolution camera to capture the iris image, and its accuracy significantly 

decreases under non-ideal imaging conditions due to the sensitivity of the iris 

localization stage to noise and different lighting conditions. Another well-known 

iris recognition system was developed at Sarnoff Labs by Wildes [120]. In 

Wildes’ system, the binary edge map of the iris images was computed first. This 

was followed by applying a Hough transform to detect the iris's region 

boundaries. Then, a Laplacian pyramid at multiple scales was used to produce 

an iris code. Finally, the normalized correlation between the query and template 

representations was computed, based on Fisher’s Linear Discriminant (FLD). 

Unlike Daugman’s system that uses an LED point light source coupled with a 

standard video camera to capture the iris image, Wildes proposed the use of a 

diffuse polarized illuminator with a low light level camera in the image 

acquisition process. It is fair to say that later all the proposed approaches for iris 

recognition have developed with the same concepts as these three mentioned 

examples. In this PhD thesis, numerous historical achievements and current 

                                                           
9
 https://www.dogsonacid.com/threads/iris-scanner-now-at-schiphol-airport.15949/  

https://www.dogsonacid.com/threads/iris-scanner-now-at-schiphol-airport.15949/
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state-of-the-art approaches for iris biometric are reviewed and categorized into 

three groups, based on their primary contribution to one of the three major 

modules of an iris recognition systems: iris localization, iris texture analysis, and 

iris template matching. These three categories of approaches are reviewed in 

the following subsections. 

2.3.1  Iris Localization Approaches 

Recently, iris segmentation has been receiving extensive attention, due to 

its direct effects on the performance and the accuracy of the iris recognition 

system. In this regard, a number of iris segmentation algorithms have been 

proposed in the past. As mentioned earlier, Daugman [116] proposed the first 

implemented iris segmentation method using an integro-differential operator for 

detecting iris boundaries and eliminating possible extraneous features such as 

the eyelids and eyelashes. This operator calculates the partial derivative of the 

average intensity of circle points, taking into account the increasing radius (r), 

followed by convolving the operator with a Gaussian filter. Then, the centre and 

radius of the iris boundaries are identified by computing the maximum 

difference between outer and inner circle. Finally, the eyelids are detected by 

using a parabolic curve fitting approach. The main limitation of Daugman’s 

method is that the Integro-differential operator can be easily affected by local 

gradient maxima where light spots can change the gradient greatly, which 

results in inaccurate iris localization. Wildes [120] proposed a Circular Hough 

transform-based filtering and voting procedure to localize the two circular 

boundaries of the iris. An edge detection filter applied to the eye image 

generated an edge image map which was subjected to the Hough transform 

voting procedure to find the desired edge map contour. The centre and radius of 

the circle with a maximum number of votes were detected as an iris boundary. 

The main limitation of this method is its computational complexity which makes 

it inappropriate to meet real-time requirements. Several iris localization 

algorithms were developed by Huang et al. [121], Liu et al. [122], Lili and Mei 

[123], He and Shi [124], and Feng and et al.[125], aiming to improve upon 

Wildes' system by reducing the computational complexity of the Hough 

transform.  
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Cui et al. [126] proposed a segmentation algorithm based on scaling the 

eye image using a Haar wavelet, followed by applying a Hough transform and 

integro-differential operator to detect the inner and outer boundaries, 

respectively. Then, histogram and parabolic arc based approaches were used 

to detect lower and upper eyelids, respectively. Ross and Shuh [127] proposed 

another iris segmentation algorithm using Geodesic Active Contours (GAC) to 

detect the iris region from input eye image. Firstly, the pupil was detected by 

applying a median filter on the eye image. This was followed by a simple 

thresholding method and circle fitting procedure. Then, an iterative process, 

based on the GAC was employed to detect the outer boundary as well as the 

eyelid contour. The performance of the segmentation algorithm was tested by 

applying multiple Gabor filters on a normalized iris template to observe its 

performance in the recognition task on the CASIA V 1.0 and WVU iris 

databases. A similar idea using GAC was also proposed by Pawar et al. [128]. 

Jan et al. [129] developed an iris localization algorithm based on a two-phase 

strategy. The first phase was employed to detect the pupil circle using a Hough 

transform, gray level statistics and adaptive thresholding method, and a new 

geometrical transform, the iris circle, was detected in a sub-image centred in the 

pupil circle in the second phase. Finally, the iris boundaries were regularized 

using the radial gradients and active contours. Sahmoud et al. [119] suggested 

enhancing the performance of the Circular Hough Transform (CHT) by applying 

the K-means clustering algorithm as a pre-processing step to separate the eye 

image into three different regions, namely the iris region, the skin region and the 

sclera region. Then, the non-iris regions were excluded to reduce the search 

space of the CHT used to estimate the radius and centre coordinates of the iris 

circle. Finally, a new robust algorithm was proposed to detect and isolate 

eyelashes, eyelids and specular reflections. The literature on iris localization 

shows a variety of approaches, such as Active Shape Models (ASM) [130], 

Genetic algorithms [131], Fuzzy logic [132][133], ANN [134][135], Adaptive 

thresholding and Histogram approaches [136] have also been used to detect 

efficiently the iris boundaries and extract the iris region from the background. 
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2.3.2  Iris Texture Analysis Approaches 

In the last decade, working on iris texture analysis to produce 

discriminative representations of the iris region has attracted much attention 

from research teams, and various approaches have been proposed in the 

literature to tackle the drawbacks in this stage of the iris recognition pipeline. 

Some of the most relevant examples of performing texture analysis for iris 

recognition are reviewed below. 

Sun et al. [137] proposed an iris recognition system, called Robust 

Direction Estimation (RDE). This system was based on estimating the local 

dominant direction of Gradient Vector Field (GVF), in which an iris image was 

convolved with a Gaussian filter to produce the local orientation at each pixel in 

the unwrapped iris region. The performance of the RDE system was evaluated 

using 2,255 iris images acquired from 213 subjects in the CASIA iris database. 

Harjoko et al. [138] employed four levels of Coiflet Wavelet Transform (CWT) to 

extract discriminatory information from the iris image. Then, the similarity 

between two irises representations was measured using a modified Hamming 

distance. A good performance was achieved on two iris databases: CASIA V 

1.0 and MMU 1 (with left and right eyes of MMU 1evaluated separately), with 

identification rates of 84.25%, 77.78%, and 86.67%, respectively. Sun et 

al.[139] developed a set of multi-lobe differential filters to calculate ordinal 

measures for iris texture analysis with the aim to characterize the qualitative 

relationships between iris regions instead of precise measurements of iris 

pattern structures. The authors reported that producing such iris representation 

may lose some image specific information. However, a good trade-off between 

distinctiveness and robustness was achieved. Experiments on four iris 

databases: UBath, CASIA V1.0, CASIA-IrisV3-Interval, and ICE2005 (left & right 

eye) reported an EER of 4.39×10-3, 3.70×10-3, 3.48×10-3, 6.32×10-3, and 

4.68×10-3, respectively. Velisavljevi [140] presented a novel iris recognition 

algorithm which used oriented separable wavelet transforms for extracting iris 

features. Then, a weighted Hamming distance was employed in the decision-

making process. An identification rate of 94.7% and a verification rate of 95.88 

at a FAR = 0.1% were achieved on the CASIA-IrisV3-Lamp database. Gulmire 

and Ganorkar [141] proposed a feature extraction method, based on ICA to 
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generate the iris code after detecting the iris region using Daugman’s integro-

differential operator. A recognition rate of 89.5% was achieved on the CASIA 

V1.0 database. 

The idea of using DWT as a feature extraction method for iris recognition 

was also proposed by Elgamal and Al-Biqami [142]. The high features 

dimensionality of the DWT's sub-bands were first reduced using PCA, and then 

used as input vectors for k-NN to make the final decision. Experiments on the 

IIT Delhi iris database yielded a recognition of 99.5%. A robust iris recognition 

algorithm, based on an orientation field, was developed by Patil [143]. In this 

algorithm, the Hough transform was employed to detect the iris boundaries, and 

then the detected iris region was divided into a number of non-overlapping 

blocks. The size of the blocks was set empirically to be (16×16) pixels. Then the 

block orientation was computed from the pixel gradient orientations based on an 

averaging and optimization procedure. This was followed by applying the Sobel 

gradient operator to compute the variance of orientation, which was used as a 

feature vector by an L2 norm classifier. Experiments with 372 iris images from 

54 subjects selected from the CASIA iris database achieved genuine 

acceptance rates of 96.33% at 11.3% FAR and 78% at 0.17% FAR. Bharath et 

al. [144] proposed two novel iris recognition methods based on Gradient 

Isolation (GI) and Radon Transform Thresholding (RTT). GI is a pre-processing 

method that utilizes the edge detection characteristic of the Gradient operator to 

isolate the iris patterns, thus obtaining salient iris textures. Then, the RTT 

method was applied to extract the prominent features from the enhanced iris 

image. A feature selection algorithm, based on the Binary Particle Swarm 

Optimization (BPSO), was employed to select the optimal features for the 

matching stage. Experiments yielded recognition rates of 95.62%, 95.93%, and 

84.17%, respectively, on three iris databases: Phoenix, IIT Delhi and CASIA-

IrisV3-Interval. 

More recently, Umer et al. [145] proposed a multiscale morphologic 

operator, based on a multiscale top-hat transformation, to extract 

structural/textural iris features. Good recognition performance was claimed on 

four iris databases, namely UPOL, MMU1, IIT Delhi, and UBIRIS with 

identification rates at Rank-1 of 100%, 99.55%, 98.37%, 97.51% and 
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verification rates of 100%, 100%, 99.55%, and 98.34%, respectively. Another 

work by the same group [146] introduced a novel texture feature method for iris 

recognition, based on a Texture Code Matrix (TCM) generated from the 

normalized iris image. The TCM representations were used to compute a co-

occurrence matrix. Then, the prominent texture features were obtained from the 

co-occurrence matrix. Experiments on four iris databases, namely, UPOL, 

CASIA-Iris-V3, MMU1, and IIT Delhi reported identification rates at Rank-1 of 

100%, 100%, 97.78%, and 99.52% and verification rate of 100%, 100%, 100%, 

and 99.96%, respectively. The results in [145] and [146] were obtained after 

combining the outputs of both left and right iris images for each person using 

different fusion approaches. Sangeetha [147] proposed representing the iris 

code by combining the local and global features of a normalized iris region 

using two cross over schemes in a genetic algorithm to produce a binary feature 

vector of size 64 bits. In this system, four iris local features, Contrast, 

Correlation, Homogeneity, and Energy were computed using the Gray Level 

Co-occurrence Matrices (GLCM), while histograms, coefficient correlations, 

means, and standard deviations were extracted as iris global features. A 

recognition rate of 98.75 was reported on the IIT Delhi database. Some 

examples of well-known approaches also proposed for encoding the most 

prominent features in the iris region include Log-Gabor Wavelet [148], a 

combination of DWT and Discrete Cosine Transform (DCT) [149], Fast Fourier 

Transform (FFT) and Moments method [150], Contourlet Transform [151], LBP 

[152], Neighbourhood-Based Binary Pattern (NBP) [153], PCA, Haar Transform 

and Block Sum algorithm [26], Speeded Up Robust Features (SURF) [154], 

SIFT [155], and other various approaches can be found in [156][157][158]. 

2.3.3  Iris Template Matching Approaches 

Once the process of encoding the iris features obtained from the 

segmented iris region is accomplished, the iris template matching task is 

performed, in which those encoded feature representations of unknown 

individuals are compared against the reference templates previously stored in 

the system's database. In the literature, several theories have been proposed to 

develop a decision-making tool for matching iris patterns. Hao et al. [159] 

proposed a fast search algorithm, named the Beacon Guided Search (BGS), to 
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speed up the matching process for a large database of iris codes. This 

algorithm was based on a brute force exhaustive search over a large iris 

database to find the best match. Experiments with 632,500 iris codes stored in 

the (UAE) border control system have reported significant improvements in 

search speed, with a slight loss of accuracy. Mehrotra et al. [160] reduced the 

matching time by employing an indexing algorithm using the energy histogram. 

In this algorithm, a multi-resolution DCT was applied to divide the unwrapped 

iris image into sub-bands, and then an energy histogram was computed for 

each sub-band, using all the iris images stored in the database. The iris images 

that have similar energy values were grouped together and associated with the 

same key. These keys were structured into a search tree. When a new iris 

image was submitted to the system, the algorithm calculated the key for this 

image and compared it with all iris images that have the same matching keys. 

Low penetration rates of 0.63%, 0.06% and 0.20% were achieved with CASIA V 

1.0, BATH and IITK iris databases, respectively. A similar idea was also 

proposed by Qiu et al. [161] by dividing iris images into different groups based 

on discriminative visual features, which they named Iris-Textons. In this 

algorithm, a K-means algorithm was applied to determine which group an iris 

image fell into, and a recognition rate of 95% was achieved on a five-category 

iris database. Chou et al. [162] proposed an edge-type matching method to 

perform iris recognition. They stated that this method could be easily 

implemented using the concept of classifier ensembles. The performance was 

evaluated on CASIA-V3-Interval and UBIRIS-V1 iris databases, achieving EERs 

of 0.031% and 0.258% respectively. Khedkar and Ladhake [163] compared the 

performance of three different learning approaches, including MLP, Radial 

Basis Function (RBF) and SVM. Experiments on the CASIA V 1.0 database 

reported that an MLP with one hidden layer containing 20 units outperformed 

the others in term of recognition rate, measured using a cross-validation 

procedure. Rai and Yadav [164] proposed a novel iris matching technique, 

based on a combination of SVM with Hamming distance to enhance the 

accuracy of iris recognition. In this system, the authors proposed using the 

former as a master classifier, and the latter as a secondary classifier. 

Recognition rates of 99.91% and 99.88% were achieved on CASIA and Chek 
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iris databases, respectively. Melin et al. [165] proposed an iris recognition 

system, based on a set of optimized Modular Neural Networks (MNN) using 

genetic algorithms. The authors evaluated different combination of their 

approach with other methods, including Type-1 fuzzy integration, optimized 

fuzzy integration using genetic algorithms, and gating network methods. A 

recognition rate of 99.76% was reported on the CASIA V 1.0 database using the 

proposed approach with the fuzzy integrator (Gaussian type MFs). In 2015, 

Saminathan et al. [166] introduced a novel machine learning-based multi-class 

SVM approach for both iris identification and verification. In their approach, 

three different types of kernel functions (e.g., polynomial, linear, and quadratic) 

were investigated and combined using three fusion methods (e.g., quadratic 

polynomial, sequential minimal optimization, and least squares). They also 

compared the results obtained from proposed approach with three other 

classification methods, namely Hamming distance, LBP and Feed Forward 

Neural Network (FFNN). Experiments on the CASIA-IrisV3-Interval database 

showed that the highest recognition rates were achieved using the combination 

of the least square method and quadratic kernel function with an identification 

rate of 98.5% and a verification rate of 100%. More examples belonging to this 

category can be found in [156][158] and also a variety of machine learning 

techniques for iris recognition can be found in [167]. 

2.4  Research on Multi-biometric Systems 

In the last decade, research on multi-biometric systems has attracted 

much attention in the biometric community and a number of efficient fusion 

strategies have been proposed to fuse the biometric data at different levels of 

fusion. The literature shows that five possible levels of fusion are employed for 

fusing data in the multi-biometric systems. These levels are: the sensor level, 

the feature level, the score level, the rank level and the decision level. As shown 

in Fig. 2.3, this thesis follows the same taxonomy described by Jain et al. [13] to 

outline the state-of-the-art approaches of the multi-biometric systems using 

different levels of fusion. The following subsection provides a comprehensive 

review of state-of-the-art multi-biometric systems, with more emphasis on 

systems in which the face or iris biometric traits are used in the decision-making 

process. 
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Figure 2.3: The taxonomy of information fusion approaches in multi-biometric 

systems, adapted from Jain et al.[13]. 

2.4.1  Prior-to-Classification Fusion 

Prior-to-classification fusion means combining the information obtained 

before applying any matching algorithm at the sensor level or at the feature 

level. In sensor-level fusion, raw data of the same biometric trait acquired from 

multiple compatible sensors are combined. This type of fusion can perfectly 

serve multi-sample systems that acquire multiple samples of the same biometric 

trait. For example, multiple samples of person's fingerprint acquired using the 

same sensor can be stitched together and create more informative image that 

reveals more of the essential ridge structure. This process is known as a 

mosaicing scheme. In 2003, a similar idea was proposed for face images by Liu 

and Chen [168]. They introduced a novel a face mosaicing method for 

combining a sequence of face images captured under an orthographic camera 

model. In this system, each frame was unwrapped onto a certain portion of the 

surface of a sphere using a spherical projection. Then, a minimization process, 

using the Levenberg-Marquardt algorithm was applied to optimize the distance 

between an unwrapped frame and the sphere. Experimental results were 

observed on a face sequence with 58 frames in total, and a size of (44×44) 

pixels. Singh et al. [169] presented a multispectral image fusion technique, 
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based on a 2-granular SVM, for integrating visible and long wave infrared face 

images. In this technique, multiple SVMs were employed to learn both the local 

and global features of the multispectral face images at different resolution 

levels. Then, the 2v-GSVM was used to perform accurate classification, which 

was subsequently used to dynamically calculate the weight values of visible and 

infrared face images to generate a new fused face image. The global and local 

facial features are extracted from the fused image, using 2D-log Gabor 

transform and LBP approaches, respectively. Finally, the verification decision 

was made by match score level fusion, using Dezert Smarandache theory. 

Experiments on Notre Dame and Equinox databases reported verification rates 

of 95.85% and 94.71, respectively at 0.01% FAR . Raghavendra et al. [170] 

proposed a new biometric sensor fusion method to fuse the information 

obtained from face and palmprint images using Particle Swarm Optimisation 

(PSO). Firstly, the face and palmprint images acquired from different sensors 

were decomposed using a wavelet transformation. This was followed by 

applying the PSO method to determine the most informative wavelet sub-bands 

of the face and palmprint images, to produce a new combined image. Then, 

feature vectors extracted using Kernel Direct Discriminant Analysis (KDDA) 

were used as input to a Nearest Neighbour Classifier (NNC) to make the final 

decision. The performance was evaluated on a virtual multi-biometric database 

of 250 subjects (collected from the FRGC face database and the polyU 

palmprint database) with a verification rate of 94.26% at 0.01% FAR. A similar 

idea of fusing the same adopted biometric traits was also proposed by Kisku et 

al. [171], where the wavelet transformation was employed to decompose and 

fuse face and palmprint images for personal verification. Then, the SIFT method 

was applied to the fused image in the feature extraction stage and verification 

was performed using a recursive descent tree traversal approach. A verification 

rate of 98.19% was achieved on a private multi-biometric database consisting of 

750 face and palmprint images acquired from 150 subjects. 

In the literature, several approaches have been proposed to study fusion 

at the feature-level, in which the feature sets extracted from the same (or 

different) biometric trait are consolidated into a single feature vector. An 

example of a feature-level fusion scheme was proposed by Rattani and 
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Tistarelli [172] for fusing both face and iris traits. In this work, the SIFT method 

was employed to extract the most discriminative features from each trait, and 

then the extracted feature vectors were combined to generate a joint SIFT 

feature vector. The matching score between two feature vectors was computed 

using the Euclidean distance. Experiments on a chimeric multi-biometric 

database, built up by fusing an Equinox face database and a CASIA V3.0 iris 

database, demonstrated the efficiency of the fusion approach compared to any 

unimodal biometric approach.  

GAN et al. [173] proposed a multi-biometric system, based on fusing face 

and iris traits at the feature-level using 2D-DCT and Kernel Fisher Discriminant 

Analysis (KFDA). A recognition rate of 100% was achieved on a chimeric 

database of 40 subjects. Nagar et al. [174] presented a biometric cryptosystem 

based on a feature-level fusion scheme to secure multiple templates of a 

person simultaneously. In this work, a fused multi-biometric feature vector of 

three biometric traits (e.g., fingerprint, iris, and face) was secured by employing 

two biometric cryptosystems, namely fuzzy vault and fuzzy commitment. The 

authors tested the trade-off between matching accuracy and security of their 

system on two multi-biometric databases (one real and one chimeric multimodal 

database), each containing the three adopted biometric traits. A verification rate 

of 99% was achieved on the chimeric database, while the verification rate was 

dramatically decreased on the real database to 68% and 75% using fuzzy vault 

and fuzzy commitment approaches, respectively. Another key contribution of 

fusing face and iris features was proposed by Lin et al. [175]. In this system,  

after integrating the feature set of both face and iris traits, the modified PUM 

was employed to measure the matching scores between the new fused feature 

representations. The performance was evaluated on two chimeric databases 

containing a total of 100 and 50 subjects, and recognition rates of 96.6% and 

97.3% were achieved, respectively. Sharma and Kumar [176] studied the fusion 

of both face and iris traits using four different feature extraction approaches, 

namely, LBP, Local Gabor XOR Pattern (LGXP), Empirical Mode 

Decomposition (EMD) and PCA. The Euclidean distance was adopted for 

making the final decision. Experiments on a chimeric database of 40 subjects 
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reported EERs of 0.5, 0.5, 0.56, and 0.57 using LBP, LGXP, EMD and PCA, 

respectively.  

2.4.2  Post-to-Classification Fusion 

Post-to-classification fusion means combining the information after the 

results of the classifiers have been obtained, and it can be divided into two 

categories: classifier selection and classifier fusion. The first category is also 

known as the winner-take-all scheme, in which the final result depends only on 

the classifier which is most likely to produce the correct decision for the input 

pattern. Classifier fusion can be broadly divided into three different levels of 

fusion, based on the information to be combined, namely, matching score level, 

rank level or decision level. 

Score level fusion refers to the integration of matching scores (e.g., 

similarity or distance scores) obtained from multiple classifiers applied to the 

same (or different) set of features to produce the final decision [13]. As shown in 

Fig. 2.3, depending on how the matching scores is treated by the system, the 

fusion approaches in this level can be further divided into two categories: 

combination approaches and classification approaches (See Section 1.6.3). 

This level of fusion is the most common level found in the multi-biometric 

literature and many different fusion approaches have been proposed, primarily 

due to their simplicity, convenience of fusion, and availability of information. In 

2005, Chen and Chu [177] developed a multi-biometric system, based on 

combining face and iris traits at score level fusion. In this system, the face 

image was converted into a 1D energy profile signal and used as the feature 

vector for face matcher, while the iris image was divided into five circular bands, 

and vertical projection was applied to convert these bands into a 1-D feature 

vector. Neural networks were used to produce the matching scores of both 

traits, and then an unweighted mean rule was used to form the final decision. 

The results on two chimeric databases of 40 and 100 subjects reported EERs of 

0.00% and 0.01%, respectively. Zhang et al. [178] proposed a multi-biometric 

system based on face and iris traits acquired from a single Near Infrared (NIR) 

image. The facial features were extracted using the PCA method, while the 

Gabor method was employed to encode the iris patterns. Then, the matching 
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scores of face and iris traits were obtained using the respective feature sets. In 

this work, different score fusion rules were evaluated in the decision-making 

process. The best verification rate of 99.75% was achieved on a database of 

112 subjects, using a sum rule. Fakhar et al. [179] proposed a novel matching 

score fusion approach, using fuzzy set theory for a face-iris multi-biometric 

identification system. They claimed that their approach outperformed a number 

of fusion approaches, including the sum rule, product rule, max rule, and min 

rule. A recognition rate of 97.69% at Rank-1 was achieved on a chimeric 

database of 108 subjects. Another example of a multi-biometric system, based 

on face and iris traits, was proposed by Al-Hijaili et al. [180] to improve the 

security level in the hierarchical architecture of Electronic Medical Records 

(EMR). The matching scores obtained from each trait were firstly normalized 

and fused using weighted sum rule. Experiments on a chimeric database 

containing a total of 40 subjects improved the verification rates by 22% and 3% 

over face and iris unimodal systems, respectively. Kim et al. [181] proposed a 

multi-biometric system for personal verification based on fusing the matching 

scores of face and both the face and both irises. In this system, the PCA 

method was used to extract the facial features, while a 1D Gabor filter was 

applied on the segmented iris region. Then, Euclidean distance was employed 

to provide the matching scores of the adopted traits which are then used as an 

input for the SVM to make the final decision. The performance was evaluated 

on a real multi-biometric database of 30 subjects, and an EER of 0.131% was 

achieved. More recently, Mamta and Hanmandlu [182] proposed a new 

matching score method, named Refined Score (RS). This method was applied 

on three different biometric traits, including IR face, ear and iris traits under both 

constrained and unconstrained conditions for the verification task. A verification 

rate of 100% at FAR of 0.01% was achieved on a database containing a total of 

100 subjects. In 2016, Aboshosha et al. [183] used the minutia-based algorithm, 

1D Log-Gabor filters, and the LBP method to extract the discriminative features 

from three biometric traits, including fingerprints, irises and faces. The min-max 

normalization method was applied to convert the matching scores obtained from 

the adopted traits into the same numerical range. Finally, the performances of 

three score fusion methods are evaluated to combine the normalized scores, 
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such as sum, weighted sum rules, and product. A verification rate of 99.7% was 

achieved on a chimeric database of 100 subjects. 

 When the biometric system operates in the identification mode, and the 

output of each classifier can be viewed as a list of ranks of the enrolled 

candidates, the fusion can be carried out at the rank level (See Section 1.6.3). 

The most popular examples of rank level fusion approaches are: Borda count, 

Highest rank, and Logistic regression approach, as proposed by Ho et al.[24]. 

Several multi-biometric systems have been used these approaches with a 

different number of adopted biometric traits to make the final decision. Some 

examples of such systems can be found in[184][185]. In addition to these 

approaches, a number of rank level fusion approaches have been proposed in 

the literature to deduce a consensus rank for each person. For example, a 

number of modifications to enhance the performances of the Highest rank and 

Borda count approaches were proposed by Abaza and Ross [186]. In this work, 

two main issues were addressed, including the presence of weak classifiers and 

the low quality of input images. For the highest rank approach, a perturbation 

factor was proposed to handle the existing tie problem. For the Borda count 

approach, two modifications were introduced: (i) the Nanson function, employed 

to discard the worst rank(s) before the fusion takes place, and (ii) the individual 

classifiers were automatically weighted, based on the quality information for the 

input images. Experiments on the two multi-biometric databases, , WVU dataset 

and NIST Biometric Scores Set Release-1 (BSSR1) database, reported 

promising results compared to the traditional approaches. Another example of 

improving the performance of existing rank fusion approaches was also 

proposed by Sharma et al. The authors presented two ways of fusing the results 

obtained from various existing rank fusion approaches: serial combination and 

parallel combination. The performance was evaluated on three publicly-

available databases: NIST BSSR1, Face Recognition Grand Challenge (FRGC 

V2.0), and LG4000 iris database. Rank-1 identification rates of 83.63%, 

92.63%, and 93.4% were achieved using three systems, namely, multi-

algorithm, multi-instance and multimodal biometric systems. Monwar and 

Gavrilova [187] proposed a novel rank fusion method based on a Markov chain 

approach for a multi-biometric system using three biometric traits (face, ear, and 
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iris). In this system, the facial and ear features were extracted using the 

fisherimage technique (a combination of PCA and LDA), while the Hough 

transform and Hamming distance techniques were employed for iris recognition. 

A Rank-1 identification rate of 98.29% was achieved using a chimeric database.  

In decision level fusion, the result of the multi-biometric system was 

obtained by consolidating the final outputs of multiple classifiers using different 

decision fusion approaches, such as “AND” and “OR” rules [188], majority 

voting [189], weighted majority voting [190], Dempster-Shafer theory, Naive 

Bayesian decision fusion [191], and behavior knowledge space [192]. In 2007, 

Lee et al. [193] introduced a novel fusion strategy to combine the outputs 

decision from multiple traits using a cascading verification scheme. The features 

from the face, iris and voice were extracted by applying the Eigenface 

algorithm, multi-scale edge methods (e.g., derivative of Gaussian and Laplacian 

of Gaussian), and Gaussian Mixture Models (GMMs), respectively. Using the 

cascading scheme, if the correct match is obtained by any one of the three 

modules, then the subject's identity was considered to be accepted. In this 

system, the result of each biometric matcher was a binary output, either match 

(accepted) or non-match (rejected), while the final match decision was made by 

fusing these outputs using the “OR” rule. The performance was evaluated on 

very small private Multi-biometrics database containing a total of 19 subjects 

(14 males and 5 females). 

In 2009, Yu et al. [194] proposed a  multi-biometric system that 

consolidated three different biometric traits, namely, palmprint, fingerprint and 

finger geometry at the decision fusion level. Firstly, the fingertips and valley 

points were detected by employing an eight neighbourhood border tracing 

algorithm. This was followed by extracting the regions of interest for palmprint, 

fingerprint, and finger contour from a whole hand image. In the feature 

extraction stage, the LDA approach was applied to extract palmprint and 

fingerprint features, while the finger contour was used to obtain the finger 

geometry features. The final decision was formed by fusing the outputs 

obtained from the adopted traits using three decision fusion rules, including 

“AND”, “OR”, and majority voting. Experiments on a database of 86 hands 

image, captured using a digital camera (Canon Power Shot A75) with 10 
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impressions per hand, demonstrated the efficiency of the majority voting in the 

verification task, compared to other two decision rules. 

A review of other existing multi-biometric systems using different biometric 

traits, different approaches, and different levels of fusion found in the literature 

is briefly presented in Table 2.1. Furthermore, some well-known examples of 

multi-biometric systems can also be found in some relevant literature surveys 

[3][14][16][23]. 

2.5  Current Challenges and Knowledge Gaps 

This review of the research on unimodal biometric systems, based on the 

face or iris traits, and their incorporation into multimodal biometric systems, has 

found a number of algorithms have been proposed and developed in attempts 

to address various aspects of the aforementioned topics. Nevertheless, there 

are still some interesting and challenging problems to be addressed. The 

literature reveals that, although numerous face recognition approaches have 

been proposed, and great progress has been achieved to improve its 

performance over previous decades, face recognition is still a challenging open 

problem for the research community. This is especially when face images are 

taken in unconstrained conditions, due to the large intra-personal variations, 

such as changes in facial expression, pose, illumination, aging, and the small 

inter-personal differences. For instance, Zhu et al. [68] and Li et al. [195] 

revealed that some of the face recognition approaches, as in [40][100][196][197] 

that achieve high recognition rates in face images under semi-controlled 

environmental conditions, are unable to achieve the same recognition rates 

under fully unconstrained conditions. Furthermore, previous work on face 

recognition has only focused on extracting the facial features representation 

using either handcrafted approaches (e.g., SIFT, LBP, etc.), or deep learning 

approaches (e.g., RBM, DBN, etc.). 

However, handcrafted approaches have some limitations that include: (i) 

they usually have difficulty with the wide variations in face images, (ii) they 

require domain-knowledge from the researcher to find the best feature set for a 

given problem, and (iii) sometimes they are extremely difficult and time 

demanding.  
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Table 2.1: A literature review of recent multimodal biometric systems. The 

usage of Real and Chimeric multi-biometric database is denoted by (R) and (C), 

respectively. 
 

Ref. Year Biometric Traits Level of Fusion Fusion Approach 

[198] 2011 Face and Iris (C) Feature level fusion PCA and 2D Gabor are applied to face 

and iris images, respectively. The 

normalized features are obtained using 

z-score method and combined using a 

series fusion method. 

[199] 2012 Fingerprint and Iris 

(C) 

Rank level fusion Fusion using the Borda count, and 

Logistic regression approaches. 

[200] 2012 Face and Palmprint 

(C) 

Feature level fusion Integrating the Log Gabor features 

using weighting scheme of PSO 

method 

[201] 

 
2013 Face and Ear (C) Feature level fusion Sparse Representation (SR) Sparse 

Coding Error Ratio and a novel index 

method called Sparse Coding Error 

Ratio (SCER) 

[202] 2013 Face and Iris (C) Feature level fusion DWT and DCT are used to extract 

features from the face and iris traits 

independently and fused using PCA 

fusion technique. 

[203] 2014 Face and Iris (C) Score level fusion 

Feature level fusion 

Iris-FVF and consists of PCA, LDA, 

LBP, sub-pattern PCA, and Modular 

PCA. These features are fused using 

PSO. LBP is used in Face-FVF. 

Weighted Sum rule at score level. 

[204] 2014 Face and Iris (R) & 

(C)  

Score level fusion Fusing the output of face and iris 

matcher using Weighted Sum rule 

[205] 2014 Iris and Fingerprints 

(C) 

Score level fusion 

Decision level fusion 
Fusion by Sum rule, Weighted Sum 

rule, and Fuzzy Logic method. 
[79] 2014 Face, Fingerprint, 

and Iris (C) 

Score level fusion Curvelet, Ridgelet transforms and 

weighted sum rule. 
[206] 2015 Face and Iris (C) Feature level fusion 

Score level fusion 

The local features are extracted from 

both traits using LBP Histogram, 

Modular PCA and sub-pattern PCA, 

while the global feature using PCA 

and LDA. Weighted Sum rule at score 

level. 

[207] 2015 Face and Iris (C) Feature level fusion 

Score level fusion 

PSO and Backtracking Search 

Algorithm (BSA) are applied to select 

optimized features and weights for 

feature level and score level fusion, 

respectively. 

[208] 

 
 

2016 Face and Iris (C) Feature level fusion 

Score level fusion 

Decision level fusion 

Features are extracted using log Gabor 

and LDA. The BSA algorithm is used 

to reduce the number of features and 

select the best weights for feature level 

and score level fusion, respectively. 

[209] 2016 Fingerprint and Iris 

(C) 

Score level fusion incremental Granular Relevance 

Vector Machine (iGRVM) classifier, 

which incorporates incremental and 

granular learning in RVM 

[210] 2016 Face And Palmprint 

(C) 

Feature level fusion 

 

Local features are fused non-stationary 

feature fusion. 

[211] 2017 Face and Iris (C) Score level fusion A framework based on bin-based 

classifier fusion. 
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On the other hand, deep learning approaches usually discard the local 

facial features, which are known to be important for face recognition. In addition, 

applying DNNs directly on the raw data can be quite computationally expensive 

for large-scale databases, and a very long time is required to obtain the final 

trained model. Therefore, there are significant potential demands for improving 

the performance of the face recognition system in various real-world 

applications. Several studies have pointed out that a better performance can be 

obtained by combining several feature representations from two or more 

handcrafted approaches, as in [64][67][68][69][212]. However, in most cases, 

face databases consisting of a relatively small number of subjects are employed 

for performance reporting, and very few of these approaches were capable of 

working under fully unconstrained conditions. Furthermore, very few studies 

have addressed and discussed the advantages of training deep learning 

approaches on the top of feature representations produced from handcrafted 

approaches instead of the raw data, to learn more informative and 

complementary representations.  

To address all the above problems, a new fully automatic and robust face 

recognition algorithm, based on merging the advantages of two efficient 

handcrafted approaches, is proposed. Unlike previously published works that 

extract only the global facial features from the input image, the proposed 

algorithm has succeeded in extracting the local facial features, along with the 

face texture roughness, and fluctuations in the image's surface efficiently. In 

addition, a novel framework, based on merging the advantages of the 

handcrafted feature descriptors with the DNNs, is proposed to address the face 

recognition problem in unconstrained conditions. The performance of the 

proposed face recognition approaches is observed in both face identification 

and verification. 

In the literature, although great progress has been achieved on iris 

recognition since the 1990s, some drawbacks and limitations have been 

observed, which indicate that identifying a person's identity using their iris trait is 

still an interesting area of research with many challenging and unsolved 

problems. Firstly, there is the lack of a real-time, accurate and fully automated 

iris localization system to detect the iris boundaries. The literature shows that 
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iris localization algorithms based on thresholding, geometric, or fuzzy logic 

approaches perform well when the iris images are taken under ideal imaging 

conditions. However, the accuracy of these approaches may decline 

significantly when non-ideal iris images are taken in unconstrained conditions 

[129]. As a result, this can significantly degrade the performance of iris 

recognition due to the incorrect iris localization or the poor quality of iris texture. 

Secondly, previous work has been limited to applying handcrafted approaches 

to encode the iris patterns. Despite several machine learning approaches 

having been employed in iris recognition systems, they mainly depend on 

shallow learning models. This observation is also applicable to multi-biometric 

systems. One of the main issues of the traditional approaches is that the input 

image is required to undergo several different image pre-processing stages. 

Furthermore, shallow learning models (e.g., an MLP) have difficulties in 

handling deformations of the input image, such as translation, scaling and 

rotation [213]. Finally, a large number of free parameters need to be tuned in 

order to achieve satisfactory results while avoiding the overfitting problem [214]. 

To overcome these drawbacks the use of deep learning approaches is 

proposed. Deep Learning can be viewed as an advanced subfield of machine 

learning techniques that depend on learning high-level representations and 

abstractions using a structure composed of multiple non-linear transformations. 

To date, as revealed in the recent survey [167], the use of deep learning 

approaches has not been fully explored and investigated for iris recognition. 

Unlike the conventional iris recognition pipeline, which consists of two 

separated stages (e.g., feature extraction and matching stage), one of the main 

contributions in this thesis is to develop an iris recognition system that can 

automatically learn non-linear transformation functions between the input 

images and their class label identities, simultaneously. Learning such general 

and high-level feature representations ensures that the same efficiency can be 

obtained on different databases and also it can be easily adapted to other new 

applications.  

Much work on the potential of improving the accuracy of unimodal systems 

by using multi-biometric systems has been carried out [16], yet there are still 

some interesting and relevant problems that need to be addressed. Firstly, the 
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paucity of available multimodal databases has led to most of the previous 

studies basing their evaluations on “chimeric” multimodal databases obtained 

by arbitrarily combining two or more biometric traits from different unimodal 

databases. The justification for these chimeric databases is mainly based on the 

assumption of independence between different biometric traits. However, the 

study in [215] demonstrated that all the biometric measures from a single 

person are by necessity correlated, and hence, using a chimeric database may 

not reflect the real world performance of the proposed approaches. Secondly, 

previous work has been limited to apply either handcrafted approaches (e.g. 

LBP) or machine learning approaches, based on shallow learning models (e.g., 

MLP) to encode the biometric data. However, the main issue of the former is 

that the input image needs to undergo several pre-processing stages, while the 

latter has difficulties in handling transformations of the input image, such as 

translations, scaling and rotation [216]. Thirdly, most of the previous work has 

been shown to improve the accuracy of the biometric system in the verification 

task, rather than the identification task, which is more difficult than the former. 

Finally, there is a lack of flexibility; for instance, if one of the biometric traits is 

unavailable or missed, then either the whole system breaks down or the 

accuracy rate decreases. Thus, creating a multimodal biometric system for 

identifying a person's identity, with a high accuracy and acceptable system 

complexity, is still an issue in real-world applications.  

2.6  Chapter Summary 

In this chapter, a brief review of previous research related to this PhD 

thesis is presented. Through this review on unimodal and multimodal systems, 

based on face and iris traits, a number of drawbacks and limitations have been 

clearly highlighted. One of the main observations is the potential for improving 

the accuracy of face recognition, using a combination of two or more 

handcrafted approaches, as well as the possibility of learning additional and 

complementary information for face recognition by applying deep learning 

approaches on the top of engineered features, which will be the main focus of 

Chapter 3.  
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Other observations that will be the main focus of chapters 3 and 4, include: 

(i) the need for a fast and accurate iris localization algorithm to efficiently detect 

the iris region without losing important information; (ii) the fact that deep 

learning approaches have not been fully investigated in the biometrics area 

except for face recognition. Research on iris recognition and multi-biometric 

systems has shown very few papers can be found in the literature that discuss 

the possibility of using deep learning approaches to learn more compact and 

discriminative features, so the work addresses the problem of missing biometric 

traits by proposing an efficient and real-time multi-biometric system with a high 

degree of flexibility, and evaluating its performance on real multi-biometric 

databases using different fusion approaches. 
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Chapter 3 

Face Recognition System 

3.1  Introduction   

This chapter describes the face recognition approaches proposed in this 

PhD thesis. Face recognition is one of the most popular biometric systems that 

have received a significant attention in the research community due to its 

distinctive accuracy and low cost. Face recognition has appeared to offer a 

number of characteristics over other biometric systems. Face recognition 

systems have the added advantage that the user can be identified without 

knowing he is being monitored. In addition, the biometric systems that depend 

on using the same sensor device to acquire the biometric trait from multiple 

users (e.g. Fingerprint recognition) can cause some health risks by transferring 

germs and/or some infectious diseases from one user to the other [217]. 

Moreover, there has been a growing interest in highly secured and well-

designed face recognition systems in the last few years, due to their potentially 

wide applications in many sensitive places, such as controlling access to 

physical, as well as virtual places in both commercial and military associations, 

including check points, ATM cash dispensers, e-learning, information security, 

intelligent surveillance, and other daily human applications [218]. In spite of the 

significant improvement in the performance of face recognition over previous 

decades, it still a challenging task for the research community, especially when 

face images are taken in unconstrained conditions, due to the large intra-

personal variations, such as changes in facial expression, pose, illumination, 

aging, the small inter- and intra-personal differences, and occlusions from 

wearing glasses and hats.  

Generally, a number of approaches have been proposed and refined to 

overcome all these drawbacks and problems, but very few of them are capable 

of working under fully unconstrained conditions. As described in (Chapter 2, 

Sect.1.2), the most recent face recognition systems are mainly dependent on 

feature representations obtained using either local handcrafted-descriptors, 

such as LBP, or use a deep learning approach, such as DBN. However, the 
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former usually suffer from the wide variations in face images, while the latter 

usually discard the local facial features, which are proven to be important for 

face recognition. In this chapter, a novel framework based on merging the 

advantages of the local handcrafted feature descriptors with the DBN is 

proposed to address the face recognition problem in unconstrained conditions. 

Firstly, a novel multimodal local feature extraction approach, based on merging 

the advantages of the Curvelet transform with Fractal dimension is proposed 

and termed the Curvelet-Fractal approach. The main motivation of this 

approach is that the Curvelet transform, a new anisotropic and multidirectional 

transform, can efficiently represent the main structure of the face (e.g. edges 

and curves), while the Fractal dimension is one of the most powerful texture 

descriptors for face images. Secondly, a novel framework is proposed, termed 

the Multimodal Deep Face Recognition (MDFR) framework, to add feature 

representations, by training a DBN on top of the local feature representations 

instead of the pixel intensity representations. It is demonstrated that 

representations acquired by the proposed MDFR framework are complementary 

to those acquired by the Curvelet-Fractal approach. To the authors’ best 

knowledge, very few publications can be found in the literature that discuss the 

potential of applying the DBN on top of pre-processed image feature 

representations. Huang et al. [97] have demonstrated that applying the 

Convolutional DBN on top of the output of LBP can increase the accuracy rate 

of the final system. Li et al. [98] have also reached the same conclusion by 

applying the DBN on top of Centre-Symmetric Local Binary Pattern (CS-LBP). 

However, the work in [97] was applied only to the face verification task, while 

the work in [98] was evaluated on a very small face dataset, where the face 

images were taken in controlled environments.  Finally, the performance of the 

proposed approaches has been evaluated by conducting a number of extensive 

experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, 

CAS-PEAL-R1 and LFW datasets. The results obtained from the proposed 

approaches outperform other state-of-the-art of approaches (e.g. LBP, DBN, 

WPCA and etc.) by achieving new state-of-the-art results on all the employed 

datasets.  
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This chapter focuses mainly on two different problems in the face 

recognition system: face identification and face verification. In this chapter, the 

term face recognition will be used in the general case to refer to these two 

problems. The remainder of the chapter is organized as follows: Section 3.2 is 

devoted to providing an overview of the proposed handcrafted-descriptors and 

deep learning approaches. Section 3.3 shows the implementation details of the 

proposed face recognition approaches. The experimental results are presented 

in Section 3.4. Finally, the summary and conclusions of this chapter are stated 

in the last section.  

3.2  Methodology Overview 

In this section, a brief description of the proposed face recognition 

approaches is presented, including the Curvelet transform and Fractal 

dimension method used in the proposed multimodal local feature extraction 

approach. In addition, the proposed deep learning approaches include the DBN 

and its building block the Restricted Boltzmann Machine (RBM) as well. The 

primary goal here is to review and recognize their strengths and shortcomings 

to empower the proposal of a novel face recognition framework that 

consolidates the strengths of these approaches. 

3.2.1 Curvelet Transform  

In recent years, many multi-resolution approaches have been proposed for 

facial feature extraction at different scales, aiming to improve face recognition 

performance. The Wavelet transform is one of the most popular multi-resolution 

feature extraction methods due to its ability to provide significant features in 

both space and transform domains. However, according to many studies in the 

human visual system and image analysis, the Wavelet transform is not ideal for 

the facial feature extraction approach [77]. A feature extraction approach cannot 

be optimal without satisfying conditions relating to the following: multi-resolution, 

localization, critical sampling, directionality and anisotropy [219]. It is believed 

that the Wavelet transform cannot fulfill the last two conditions, due to 

limitations of its basis functions in specifying the direction and the isotropic 

scale [220]. These restrictions lead to a weak representation of the edges and 

curves which are considered to be the most important facial features. Thus, a 
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novel transform was developed by Candes and Donoho in 1999, known as the 

Curvelet transform [221]. Their motivation was to overcome the drawbacks and 

limitations of widely used multi-resolution approaches such as the Wavelet and 

Ridgelet transforms. All the above five conditions can be fulfilled using the 

Curvelet transform. Fig.3.1 shows the edge representation capability of the 

Curvelet transform and Wavelet transform, where fewer Curvelet's coefficients 

are required to efficiently represent the edge compared to the number of 

required Wavelet's coefficients. Moreover, a smoother edge is produced using 

the Curvelet transform compared to use of the Wavelet transform. 

The multi-scale transform principle is a property common to Curvelet and 

Wavelet transforms, where each has multiple frames indexed by location and 

scale parameters. However, the Curvelet transform, unlike the Wavelet 

transform, has a very high degree of directional flexibility. In addition, the 

Wavelet transform depends on the isotropic scaling principle, where the width 

and the length of the frame are equal, which is quite different from the 

anisotropic scaling principle of the Curvelet transform, where the frame size is 

subject to the (width ≈ length2) law [220]. In general, two generations of the 

Curvelet transform are available. The first generation Discrete Curvelet 

Transform (DCTG1) is based on Wavelet sub-bands and the Ridgelet 

transform. DCTG1 is a sequence of four steps: sub-band decomposition, 

smooth partitioning, renormalization and Ridgelet analysis. More details on this 

transform, and its implementation can be found in [222]. In the first generation, 

the frame size obeys a parabolic or anisotropic scaling law (width ≈ length2) due 

to applying different levels of the multiscale Ridgelet transform. As a result, the 

increased degree of information redundancy in the feature space and the 

lengthy execution time of this generation, make it unsuitable for facial feature 

extraction, especially with a large dataset. To overcome the limitations of 

DCTG1, a second generation Curvelet Transform (DCTG2) was introduced by 

Candes and Donoho in 2006. DCTG2 is less redundant, simpler and faster in 

execution compared to DCTG1. In DCTG2, two implementations of fast discrete 

Curvelet transform are available. The first depends on an Unequally-Spaced 

Fast Fourier Transforms (USFFT) whilst the second depends on a wrapping 

procedure of specially chosen Fourier samples [221].  
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Figure 3.1: Edge representation: (a) Wavelet transform and (b) Curvelet 

transform [73]. 

The Curvelet transform has been successfully applied to solve many 

problems in the image processing area, such as texture classification [223], 

preserving edges and image enhancement [224], image compression [225], 

image fusion [226], and image de-noising [227]. Some work has been done to 

explore the potential of the Curvelet transform to help solve pattern recognition 

problems, for example by Lee and et al. [228], T. Mandal and et al [73] and Xie 

[229]. These showed that the Curvelet transform can serve as a good feature 

extraction method for pattern recognition problems like fingerprint and face 

recognition, due to its ability to represent crucial edges and curve features more 

efficiently than other transformation methods. However, the Curvelet transform 

cannot overcome the effects of large changes in illumination conditions, 

shadows, multiple views of face images and occlusions from wearing glasses or 

hats. As a result, the Curvelet transform is not able to describe the face texture 

roughness and fluctuations in the surface efficiently, which will have a 

significant effect on the recognition rate. All these factors together were behind 

the adoption here of the Fractal dimension to provide a better description of the 

face texture under unconstrained environmental conditions. 

3.2.2  Fractal Dimension  

The term Fractal dimension was first introduced by the mathematician 

Benoit Mandelbrot as a geometrical quantity to describe the complexity of 

objects that show self-similarity at different scales [230]. The Fractal dimension 
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has some important properties, such as a self-similarity, which means that an 

object has a similar representation to the original under different magnifications. 

This property can be used in reflecting the roughness and fluctuation of image's 

surface, where increasing the scale of magnification provides more and more 

details of the imaged surface. In addition, the non-integer value of the Fractal 

dimension gives a quantitative measure of objects that have complex geometry, 

and cannot be well described by an integral dimension (such as the length of a 

coastline) [231][232]. Many methods have been proposed to calculate Fractal 

dimension, such as Box Counting (BC), Differential Box Counting (DBC) and 

Fractional Brownian Motion (FBM), and other methods can be found here [230]. 

The Fractal dimension has been widely applied in many areas of image 

processing and computer vision, due to its simplicity and robustness in 

reflecting the roughness and fluctuations of the imaged surface. Hsu [233] 

proposed an efficient texture segmentation algorithm based on the capability of 

the Fractal dimension in describing the surface texture. In the medical field, Al-

Kadi [234] presented an efficient algorithm for classification of histological brain 

tumours by using Fractal analysis combined with the Wavelet transform. Zhu et 

al. [235] developed a fast and accurate face detection algorithm based on the 

inherent advantages of Fractal dimension in reflecting the roughness and 

texture information of the face region to separate it from the non-face regions 

(e.g. background). However, not much work has been done to explore and 

address the potential of using the Fractal dimension to resolve pattern 

recognition problems. Lin and et al [236] proposed an algorithm for human eye 

detection by exploiting the Fractal dimension as an efficient approach for 

representing the texture of facial features. Farhan and et al [237] developed a 

personal identification system based on fingerprint images using the Fractal 

dimension as a feature extraction method. Therefore, it appears that the texture 

of the facial image can be efficiently described by using the Fractal dimension. 

However, Fractal estimation methods are very time consuming, and cannot 

meet real-time requirements. To address all the limitations and drawbacks in 

(Section 3.2.1and 3.2.2), a novel face recognition algorithm, based on merging 

the advantages of a multidirectional and anisotropy transform, specifically the 

Curvelet transform, with Fractal dimension, is proposed. 
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3.2.3  Restricted Boltzmann Machine 

An RBM is an energy-based bipartite graphical model composed of two 

fully-connected layers via symmetric undirected edges, but there are no 

connections between units of the same layer. The first layer consists of m 

visible units v = (v1, v2,..., vm) that represent observed data, while the second 

layer consists of n hidden units h = (h1, h2,..., hn) that can be viewed as non-

linear feature detectors to capture higher-order correlations in the observed 

data. In addition, W = {w11, w12,…,w1n,…,wmn} is the connecting weights matrix 

between the visible and hidden units. A typical RBM structure is shown in Fig. 

3.2(a). The standard RBM was designed to be used only with binary stochastic 

visible units, and is termed Bernoulli RBM (BRBM). However, using binary units 

is not suitable for real-valued data (e.g. pixel intensities values in images). 

Therefore, a new model has been developed called the Gaussian RBM (GRBM) 

to address this limitation of the standard RBM [238]. The energy function of the 

GRBM is defined as follows: 

𝑬(𝒗, 𝒉) = −∑∑𝒘𝒊,𝒋𝒉𝒋

𝒗𝒊

𝝈𝒊
− ∑

(𝒗𝒊 − 𝒃𝒊)
𝟐

𝟐𝝈𝒊
𝟐

𝒎

𝒊=𝟏

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

− ∑𝒄𝒊𝒉𝒋

𝒏

𝒋=𝟏

                                (𝟑. 𝟏) 

Here, σi is the standard deviation of the Gaussian noise for the visible unit 

vi, wij represents the weights for the visible unit vi and the hidden unit hj, and bi 

and cj are biases for the visible and hidden units, respectively. The conditional 

probabilities for the visible units, given hidden units, and vice versa for the 

hidden units are defined as follows: 

𝒑(𝒗𝒊 = 𝟏|𝒉) = 𝑵(𝒗|𝒃𝒊 + ∑𝒘𝒊,𝒋𝒉𝒋,

𝒋

𝝈𝒊
𝟐)                                              (𝟑. 𝟐) 

𝒑(𝒉𝒋 = 𝟏|𝒗) = 𝒇(𝒄𝒋 + ∑𝒘𝒊,𝒋

𝒗𝒊

𝝈𝒊
𝟐

𝒊

)                                                         (𝟑. 𝟑) 

Here, N(·| µ,σ2) refers to the Gaussian probability density function with 

mean µ and standard deviation σ. 𝒇(𝒙) is a sigmoid function. During the training 

process, the log-likelihood of the training data is maximized using stochastic 
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gradient descent, and the update rules for the parameters are defined as 

follows: 

∆𝒘𝒊,𝒋 = 𝝐(〈
𝟏

𝝈𝒊
𝟐
𝒗𝒊𝒉𝒋〉𝒅𝒂𝒕𝒂 − 〈

𝟏

𝝈𝒊
𝟐
𝒗𝒊𝒉𝒋〉𝒎𝒐𝒅𝒆𝒍)                                        (𝟑. 𝟒) 

∆𝒃𝒊 = 𝝐(〈
𝟏

𝝈𝒊
𝟐
𝒗𝒊〉𝒅𝒂𝒕𝒂 − 〈

𝟏

𝝈𝒊
𝟐
𝒗𝒊〉𝒎𝒐𝒅𝒆𝒍)                                            (𝟑. 𝟓) 

∆𝒄𝒊 = 𝝐(〈𝒉𝒋〉𝒅𝒂𝒕𝒂 − 〈𝒉𝒋〉𝒎𝒐𝒅𝒆𝒍)                                                  (𝟑. 𝟔) 

Here, 𝝐 is the learning rate and 〈. 〉𝒅𝒂𝒕𝒂 and 〈. 〉𝒎𝒐𝒅𝒆𝒍  represent the 

expectations under the distribution specified by the input data (Positive phase) 

and the internal representations of the RBM model (Negative phase), 

respectively. Finally,  𝒃𝒊 and 𝒄𝒊 are biases terms for visible and hidden units, 

respectively. As reported in the literature, it is intractable to compute the 

〈𝒗𝒊𝒉𝒋〉𝒎𝒐𝒅𝒆𝒍. Therefore, the Contrastive Divergence (CD) algorithm [239] has 

become the standard learning method to update the RBM parameters by 

sampling k steps from the RBM distribution to approximate the second term in 

Eq. (3.4). One step of a CD algorithm for a single-sample can be implemented 

as follows: 

1. Visible units (𝒗𝒊) are initialized using training data, and the probabilities of 

hidden units are computed with Eq. (3.2). Then a hidden activation 

vector (𝒉𝒋) is sampled from this probability distribution. 

2. Compute the outer product of (𝒗𝒊) and (𝒉𝒋), which refers to the positive 

phase. 

3. Sample a reconstruction (𝒗𝒊
′) of the visible units from (𝒉𝒋) with Eq. (3.3), and 

then from (𝒗𝒊
′) resample the hidden units activations (𝒉𝒊

′). (One Gibbs 

sampling step). 

4. Compute the outer product of (𝒗𝒊
′)and (𝒉𝒊

′), which refers to the negative 

phase.  

5. Update weights matrix and biases with Eq. (3.4) - Eq. (3.6). 

The computation steps of the CD-1 algorithm are graphically shown in Fig. 

3.3. In the CD learning algorithm, k is usually set to 1 for many applications. 

More details on the GRBM model can be found in [238]. Typically, RBMs can be 

https://en.wikipedia.org/wiki/Outer_product
https://en.wikipedia.org/wiki/Outer_product
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used in two different ways: either as generative models or as discriminative 

models, as shown in Fig.3.2 (a-b). The generative models use a layer of hidden 

units to model a distribution over the visible units, as described above. Such 

models are usually trained in an unsupervised way and used as feature 

extractors to model only the inputs for another learning algorithm. On the other 

hand, discriminative models can also model the joint distribution of the input 

data and associated target classes. The discriminative models aim to train a 

joint density model using an RBM that has two layers of visible units. One 

represents the input data and the second is the Softmax label layer that 

represents the target classes. A discriminative RBM with n hidden units is a 

parametric model of the joint distribution between a layer of hidden units 

(referred to as features) h = (h1, h2,..., hn) and visible units made of the input 

data v = (v1,v2,..., vm) and targets y ∈ {1,2,…C }, that can be defined as follows: 

                

𝒑(𝒚, 𝒗, 𝒉) ∝   𝒆−𝑬(𝒚,𝒗,𝒉)                                                          (𝟑. 𝟕) 

     where,   

𝑬(𝒚, 𝒗, 𝒉) =  −𝒉𝑻𝑾𝒗 − 𝒃𝑻𝒗 − 𝒄𝑻𝒉 − 𝒅𝑻𝒚⃗⃗ − 𝒉𝑻𝑼𝒚⃗⃗                      (𝟑. 𝟖) 

Here, (𝑾, 𝒃, 𝒄, 𝒅, 𝑼) refer to the model parameters and 𝒚⃗⃗ = (𝟏𝒚=𝒊)𝒊=𝟏
𝑪  to the 

C classes. More details about the discriminative RBM model can be found in 

[240]. 

 



                                                                        Chapter 3: Face Recognition System 
    

 

70 
 

 

Figure 3.2: (a) A typical RBM structure, (b) A discriminate RBM modelling the 

joint distribution of input variables v and target classes y (represented as a one-

hot vector by 𝒚⃗⃗  ), (c) A greedy layer-wised training algorithm for the DBN 

composed of three stacked RBMs, and (d) Three layers of the DBN as a 

generative model, where the top-down generative path is represented by the P 

distributions (Solid arcs), and bottom-up inference and the training path are 

represented by the Q distributions (Dashed arcs). 
 

 

Figure 3.3: A graphical illustration of a single step of the CD algorithm. 

3.2.4  Deep Belief Networks 

In the last decade, DNNs have attracted much attention from research 

teams in the field of machine learning. Typically, DNNs comprise a set of 

feature detectors arranged in layers where more complex features are extracted 

as one moves from the lower layers towards the higher layers. In 2006, a new 

DNN was introduced, called the Deep Belief Network (DBNs), by Hinton et 
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al.[241]. DBN is a generative probabilistic model that differs from conventional 

discriminative neural networks. DBNs are composed of one visible layer 

(observed data), and many hidden layers that have the ability learn the 

statistical relationships between the units in the previous layer. They model the 

joint probability distribution over the input data (observations) and labels, which 

facilitates the estimation of both P(Observations |Labels) and P(Labels 

|Observations), while conventional neural networks are limited only to the latter 

[242]. DBN has been proposed to address issues encountered when applying 

the Back-propagation algorithm to very deep neural networks, including:  

1. The constraint of having a labelled dataset in the training phase. 

2. The long time required to converge (slow learning process).   

3. The increased number of free parameters that get trapped in poor local 

optima.  

As depicted in Fig. 3.2 (c), a DBN can be viewed as a composition of 

bipartite undirected graphical models each of which is an RBM. Therefore, 

DBNs can be efficiently trained using an unsupervised greedy layer-wised 

algorithm, in which the stacked RBMs are trained one at a time, in a bottom to 

top manner. For instance, consider training a DBN composed of three hidden 

layers, as shown in Fig. 3.2 (c). According to the greedy layer-wised training 

algorithm proposed by Hinton et al. [241], the first RBM is trained using the CD 

algorithm to learn a layer (h1) of feature representations from the visible units, 

as described in (Section 3.2.3). Then, the hidden layer units (h1), of the first 

RBM, are used as visible units to train the second RBM. The whole DBN is 

trained when the learning of the final hidden layer is completed. A DBN with l 

layers can model the joint distribution between the observed data vector v and l 

hidden layers hk as follows:    

𝑷(𝒗, 𝒉𝟏, … , 𝒉𝒍) =  (∏𝑷(𝒉𝒌|𝒉𝒌+𝟏)

𝒍−𝟐

𝒌=𝟎

)𝑷(𝒉𝒍−𝟏, 𝒉𝒍)                                  (𝟑. 𝟗) 

Here, 𝒗 = 𝒉𝟎, 𝑷(𝒉𝒌|𝒉𝒌+𝟏) is the conditional distribution for the visible units 

given hidden units of the RBM associated with level k of the DBN, and 

𝑷(𝒉𝒍−𝟏, 𝒉𝒍) is the visible-hidden joint distribution in the top-level RBM. An 

example of a three layers DBN as a generative model is shown in Fig.3.2(d), 
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where the symbol Q is introduced for exact or approximate posteriors of that 

model which are used for bottom-up inference. During the bottom-up inference, 

the Q posteriors are all approximate except for the top level 𝑷(𝒉𝒍|𝒉𝒍−𝟏), which is 

formed as an RBM and then the exact inference is possible.  

The DBN is one of the most popular unsupervised deep learning methods, 

which has been successfully applied to learn a hierarchical representations from 

unlabelled data in a wide range of fields, including face recognition [243], 

speech recognition [244], audio classification [245], and natural language 

understanding [246]. However, a key limitation of the DBN when the pixel 

intensity values are assigned directly to the visible units is that the feature 

representations of the DBN are sensitive to the local translations of the input 

image. This can lead to disregarding local features of the input image known to 

be important for face recognition. Furthermore, scaling the DBN to work with 

realistic-sized images (e.g., 128×128) is computationally expensive and 

impractical. To improve the generalization ability and reduce the computational 

complexity of the DBN, a novel framework, based on merging the advantages of 

the local handcrafted feature descriptors with the DBN is proposed to address 

the face recognition problem in unconstrained conditions. It is proposed that 

applying the DBN on top of pre-processed image feature representations, 

instead of the pixel intensity representations (raw data), as a way of guiding the 

learning process, can greatly improve the ability of the DBN to learn more 

discriminating features with less training time required to obtain the final trained 

model. 

3.3  Multimodal Deep Face Recognition Framework  

As depicted in Fig.3.4, a novel face recognition framework, named the 

Multimodal Deep Face Recognition (MDFR) framework, is proposed to learn 

high-level facial feature representations by training a DBN on top of a local 

Curvelet-Fractal representation instead of the pixel intensity representation. 

First, the main stages of the proposed Curvelet-Fractal approach are described 

in detail. This is followed by describing how to learn additional and 

complementary representations by applying a DBN on top of existing local 

representations. 
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Figure 3.4: Illustration of the proposed Curvelet-Fractal approach with the 

MDFR framework. 

3.3.1  The Proposed Curvelet-Fractal Approach 

The proposed face recognition algorithm starts by detecting the face 

region using a Viola-Jones face detector [247]. Detecting the face region in a 

complex background is not one of the contributions in this PhD thesis. Then, 

after rescaling the input image 𝒇(𝒙, 𝒚) to the range of [0, 1], a simple pre-

processing algorithm using a sigmoid function is applied as follows: 

𝒈(𝒙, 𝒚) =
𝟏

𝟏 + 𝒆(𝒄∗(𝑻𝒉−𝒇(𝒙,𝒚)))
                                                   (𝟑. 𝟏𝟎) 
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Here, 𝒈(𝒙, 𝒚) is the enhanced image. In this work, the contrast factor (c), 

and the Threshold value (Th), are empirically set to be 5 and 0.3, respectively. 

The advantage of the sigmoid function is to reduce the effect of illumination 

changes by expanding and compressing the range of values of the dark and 

bright pixels in the face image, respectively. In other words, sigmoid function 

compresses the dynamic range of the light intensity levels and spreads the pixel 

values more uniformly. This operation has increased the average recognition 

rate by 6%. After that, the proposed Curvelet-Fractal approach is applied to the 

enhanced face image. As indicated above, the Fractal dimension has many 

important properties, such as its ability to reflect the roughness and fluctuations 

of a face image's surface, and to represent the facial features under different 

environmental conditions (e.g., illumination changes). However, the Fractal 

estimation methods can be very time consuming, and the high dimensionality of 

the face image makes it less suited to meet the real-time requirements. 

Therefore, the Fractal dimension approach is applied to the Curvelet’s output to 

produce an illumination-insensitive representation of the face image that can 

meet the real-time system’s demands. Hence, the Curvelet transform is used 

here as a powerful technique for edge and curve representation and 

dimensionality reduction of the face image, to increase the speed of Fractal 

dimension estimation. In this work, two different methods to estimate the Fractal 

dimension are proposed based on the FBM and IDBC methods. The FBM 

method is used to process only the approximation coefficients (Coarse band) of 

the Curvelet transform, while the IDBC method is used to process the new 

added Curvelet sub-bands, and handle their high dimensionality. Then, the 

output of the FBM and IDBC are combined to build an elementary feature vector 

of the input image. After the Fractal dimension feature vector 𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓 is 

obtained, a simple normalization procedure is applied to scale the obtained 

features to the common range (0, 1), as follow:   

𝑭𝑫̃ 𝑽𝒆𝒄𝒕𝒐𝒓 =
𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓 − 𝒎𝒊𝒏(𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓)

𝒎𝒂𝒙(𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓) −  𝒎𝒊𝒏(𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓)
                                (𝟑. 𝟏𝟏) 

The main advantage of this scaling is to avoid features with greater 

numeric ranges dominating those with smaller numeric ranges, which can 

decrease the recognition accuracy. This procedure has increased the average 
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recognition rate by 5%. Finally, the Quadratic Discriminant Classifier (QDC) and 

Correlation Coefficients (CC) Classifiers are used in the recognition tasks. The 

main steps of the proposed Curvelet-Fractal approach for an input face image 

can be summarized as follows: 

1. The sigmoid function is applied to enhance the face image illumination. 

2. The Curvelet transform is applied to the image from 1, so the input image is 

decomposed into 4 scales and 8 orientations. In this work, the Curvelet sub-

bands are divided into three sets, as explained in (Section 3.3.1.1).  

3. The FBM method is applied to a contrast enhanced version of the coarse 

band produced in 2, and the result is then reshaped into a row feature 

vector 𝑭𝑩𝑴𝑽𝒆𝒄𝒕𝒐𝒓, as explained in (Section 3.3.1.2). 

4. The IDBC method is applied to the middle-frequency bands produced in 2, 

and a row feature vector 𝑰𝑫𝑩𝑪𝑽𝒆𝒄𝒕𝒐𝒓 is constructed, as explained in (Section 

3.3.1.3). 

5. The final facial feature vector 𝑭𝑫𝑽𝒆𝒄𝒕𝒐𝒓 = { 𝑭𝑩𝑴𝑽𝒆𝒄𝒕𝒐𝒓,  𝑰𝑫𝑩𝑪𝑽𝒆𝒄𝒕𝒐𝒓} is 

constructed. To obtain a uniform feature vector, a normalization procedure 

is applied to produce the normalized feature vector 𝑭𝑫̃ 𝑽𝒆𝒄𝒕𝒐𝒓. 

6. The QDC and CC classifiers are used in the final recognition tasks. The 

former is used for the identification task, while the latter is used for the 

verification task.  

The next three subsections describe in more detail the Curvelet transform 

and the FBM and IDBC methods mentioned above. 

3.3.1.1 Curvelet via Wrapping Transform 

In this work, the wrapping-based Curvelet transform described below is 

adopted, because it is faster to compute, more robust, and less redundant than 

the alternative Ridgelet and USFFT based forms of Curvelet transform. Its 

ability to reduce the dimensionality of the data and capture the most crucial 

information within face images, such as edges and curves, plays a significant 

role in increasing the recognition power of the proposed system. Firstly, the 

Curvelet transform, implemented via the wrapping function, is defined as 

follows: 

(𝒋, 𝒍, 𝒌) ≔ 〈𝒇, 𝝋𝒋,𝒍,𝒌〉                                                             (𝟑. 𝟏𝟐) 
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Here, 〈 〉 refer to the inner product between the Curvelet function 𝝋𝒋,𝒍,𝒌 and 

the Cartesian form of the face image f, and j, l and k refer to the variables’ 

scales, orientations, and positions, respectively [221].  

Secondly, the Curvelet via wrapping transform can be implemented by 

taking the input image as a Cartesian array 𝒇 [𝒏𝟏, 𝒏𝟐], such that 0 ≤ n1< N1, 0 ≤ 

n2< N2, where N1 and N2 are the dimensions of the original image. Then, a 

number of Curvelet coefficients are generated and indexed by scale j and 

orientation l, and with two spatial location parameters k =(k1,k2) as outputs. The 

major steps implemented on a face image to obtain the Curvelet coefficients 

can be summarized as follows: 

1. Application of the 2D-Fast Fourier Transform (2D-FFT) to the input image 

𝒇 [𝒏𝟏, 𝒏𝟐] and obtain 𝒇̂ [𝒏𝟏, 𝒏𝟐], −𝒏/𝟐 ≤  𝒏𝟏, 𝒏𝟐 <  𝒏/𝟐. 

2. Division of the transformed image into a collection of Digital Corona Tiles 

(Wedges) so each wedge can be reached by specifying scale and angle 

parameters, as shown in Fig.3.5. For each scale j and angle l the product 

𝒇̂ [𝒏𝟏, 𝒏𝟐] 𝑼̃𝒋,𝒍 [𝒏𝟏, 𝒏𝟐] is implemented, where 𝑼̃𝒋,𝒍 is a discrete localizing 

function, defined by a pair of windows, which are a radial window W (r) and 

an angular window V (t). These windows are calculated as follows:    

∑ 𝑾𝟐(𝟐𝒋𝒓) = 𝟏                     𝒓 ∈ (
𝟑

𝟒
,
𝟑

𝟐
)

∞

𝒋=−∞

                                   (𝟑. 𝟏𝟑) 

∑ 𝑽𝟐(𝒕 − 𝒍) = 𝟏                   𝒕 ∈ (
−𝟏

𝟐
,
𝟏

𝟐
)

∞

𝒍=−∞

                                  (𝟑. 𝟏𝟒) 

3. As shown in Fig.3.6, the wrapping procedure is applied to wrap this product 

around the origin and obtain 𝒇̃𝒋,𝒍 [𝒏𝟏, 𝒏𝟐] = 𝑾(𝑼̃𝒋,𝒍 𝒇̃)[𝒏𝟏, 𝒏𝟐], where the 

range for 𝒏𝟏 and 𝒏𝟐 is now 0 ≤ 𝒏𝟏 <L1,j and 0 ≤ 𝒏𝟐 < L2,j.  L1,j ~ 2 j and L2,j ~ 

2 j / 2  are constants and  − π/4 < 𝜽 < π/4. Here 𝜽 refers to the orientation. 

4. The inverse 2D FFT is applied for each 𝒇̃𝒋,𝒍, and then the Curvelet array is 

added to the collection of Curvelet coefficients. 
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Figure 3.5: The discrete domain of the Curvelet frequency tiling [221].   

 

Figure 3.6: Wrapping procedure of a segment around a discrete localization 

window: (a) before wrapping and (b) after wrapping [248].   

Based on domain-knowledge from literature, suggesting that a higher 

scale decomposition would only increase the number of Curvelet sub-bands 

(coefficients) with very marginal, or even no improvement, in recognition 

accuracy, the Curvelet coefficients are generated at scale 4 and orientation 8 

throughout this work. This maintains an acceptable balance between the speed 

and performance of the proposed system. Fig.3.7 shows the Curvelet 

decomposition coefficients of a face image of size (128×128) pixel taken from 



                                                                        Chapter 3: Face Recognition System 
    

 

78 
 

the FERET dataset. As indicated in Fig.3.7, the output of the Curvelet transform 

can be divided into three sets: 

1. The coarse band, containing only the low frequency (approximation) 

coefficients, is stored at the centre of the display (Scale1). These 

coefficients represent the main structure of the face. 

2. The Cartesian concentric coronae that represents the middle-frequency 

bands of the Curvelet coefficients at different scales, where the outer 

coronae correspond to the higher frequencies (Scale2,..., ScaleN-1). Each 

corona is represented by four strips corresponding to the four cardinal 

points. These strips are further subdivided into angular panels, which 

represent the Curvelet coefficients at a specified scale and orientation. The 

coefficients in these bands represent the most significant information of the 

face, such as edges and curves.  

3. The highest frequency band (ScaleN) of the face image, only indicated in 

Fig.3.7, is at scale 4. This band has been discarded due to it being 

dominated by noise information. 

From a practical point of view, the dimensionality of the Curvelet 

coefficients is extremely high due to the large amount of redundant and 

irrelevant information in each sub-band, especially in the middle-frequency 

bands. Hence, working on such a large number of Curvelet coefficients is very 

computationally expensive. A characteristic of the Curvelet transform is that it 

produces identical sub-bands coefficients at angle 𝜽 and (𝝅 + 𝜽) for the same 

scale. Thus, only half of the Curvelet sub-bands need to be considered. In this 

work, instead of the direct use of the Curvelet coefficients, analysis and 

processing of these coefficients is done using other methods. For the coarse 

band (the lowest frequency band), an image contrast enhancement procedure 

is applied, as shown in Fig.3.8, to improve the illumination uniformity of the face 

image stored at the centre of the display by stretching the overall contrast of the 

image between two pre-defined lower and upper cut-offs, which are empirically 

set to be 0.11, and 0.999, respectively. This is followed by extracting the face 

texture roughness and fluctuations in the surface using the FBM method. For 

the middle-frequency bands, the IDBC method is applied to reflect the face 

texture information, and to reduce the high dimensionality of these bands.  
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Figure 3.7: Illustration of the Curvelet decomposition coefficients obtained from 

a face image decomposed at scale 4 and orientations 8. 

 

Figure 3.8: Output of the image contrast enhancement procedure: (a) The 

coarse band and (b) The enhanced coarse band. 
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3.3.1.2 Fractional Brownian Motion   

As shown in Fig.3.9, the 2D face image can be considered as a 3D spatial 

surface that reflects the grey-level intensity value at each pixel position where 

the neighbourhood region around each pixel crosses the face surface, which 

covering a varying range of grey levels, can be processed as an FBM surface. 

To the best of the author’s  knowledge, this is the first attempt to use FBM as a 

facial feature extraction method. The FBM is a non-stationary model, and is 

widely used in medical imaging [232][249], due to its power to enhance the 

original image and make the statistical features more distinguishable. For 

example, in [250] it was found that employing the normalized FBM to extract the 

feature vectors from surfaces of five ultrasonic liver images improved the 

classification of the normal and abnormal liver tissues. Moreover, the Fractal 

dimension for each pixel, calculated over the whole medical image by the 

normalized FBM method, could be used as a powerful edge enhancement and 

a detection method, which can enhance the edge representation for the medical 

images without increasing the noise level.  

 

Figure 3.9: The spatial surface corresponding to a grey-scale face image. 

According to Mandelbrot [231], the FBM is statistically self-affine, which 

means that the Fractal dimension value of the FBM is not affected by linear 

transformations such as scaling. Therefore, the FBM is invariant under normally 

observed transformations of face images. For any (N×N) size image region, the 

FBM can be defined as the mean absolute difference of pixel pairs on a surface 

at different scale ranges, which can be represented as follows:  
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𝑬(∆𝑰∆𝒓) = 𝒌∆𝒓𝑯                                                             (𝟑. 𝟏𝟓)                                       

Here, 𝑬( )  is an expectation operator, and ∆𝑰∆𝒓 = |𝑰 (𝒙𝟐, 𝒚𝟐) − 𝑰 (𝒙𝟏, 𝒚𝟏)| is 

the absolute intensity difference between pairs of pixels separated by distance 

∆𝒓 = [ (𝒙𝟐, 𝒙𝟏)
𝟐 + (𝒚𝟐, 𝒚𝟏)

𝟐]𝟏 𝟐⁄ . K is a scaling constant (> 0) and H is called the 

Hurst exponent. Due to the discrete form of the image, the ∆𝒓 value between all 

the pixels is usually an integer value d from 1 to N-1. Thus, Eq.(3.15) can be 

expressed as follows: 

𝟏

𝑵𝒅
 ∑ ∆𝑰∆𝒓 =

∆𝒓=𝒅

 𝒌𝒅𝑯                                                           (𝟑. 𝟏𝟔) 

Here, Nd is the total number of pixel pairs with a distance ∆𝒓 = 𝒅. By 

taking the log of both sides of Eq.(3.16), the following form may be deduced: 

𝒍𝒐𝒈 (
𝟏

𝑵𝒅
 ∑ ∆𝑰∆𝒓

∆𝒓=𝒅

) = 𝑯. 𝒍𝒐𝒈(𝒅) + 𝒍𝒐𝒈(𝒌)                                  (𝟑. 𝟏𝟕) 

After ∆𝒓𝒎𝒊𝒏 and ∆𝒓𝒎𝒂𝒙 have been determined, a graph of Eq.(3.17) is 

plotted and least squares linear regression is used to estimate the slope, which 

represents the value of H. Finally, the Fractal dimension (FD) of the image 

surface is estimated as follows: 

                           𝑭𝑫 = 𝟑 − 𝑯                                                                 (𝟑. 𝟏𝟖) 

From a theoretical viewpoint, if the surface of an image is a perfect fractal 

surface, then the H value is constant, and Eq. (3.15) is true over the whole 

domain of ∆𝒓. However, sometimes only a specific region of the image can be 

described as Fractal. Therefore, a restricted range of ∆𝒓 is required, from 

∆𝒓𝒎𝒊𝒏 to ∆𝒓𝒎𝒂𝒙. This restricted range is the scale free interval of a fractal object 

in which the Fractal dimension value is stable, and the fitted curve is a straight 

line. In this work, the face image of size (M×N) is transformed to its Fractal 

dimension form by applying a kernel function fd(p,q) of size (n×n) on the entire 

face image, using the algorithm summarized in Fig.3.10. In this work, the kernel 

function operates by block processing on (7×7) neighbouring pixels of the face 

image, and calculating the Fractal dimension value of each pixel from its 

surrounding neighbours, as explained above. As a result, a fractal transformed 

face image is obtained. 
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 The size of the kernel function was determined empirically, noting that 

increasing its size can affect the accuracy of the calculated Fractal dimension, 

causing the obtained image to become less distinct, while decreasing its size 

can result in an insufficient number of surrounding pixels to calculate accurately 

the Fractal dimension value. The kernel function computed and applied to the 

face image is defined in Eq.(3.19) and Eq.(3.20). This implementation of the 

FBM has the ability to enhance the edges and curves representations and 

create an illumination-invariant representation of the face image without 

increasing the noise level.    

𝒇𝒅(𝒑, 𝒒) = 𝟑 −  (
𝐥𝐨𝐠 (

∆𝑰
𝒌

)

𝐥𝐨𝐠(∆𝒓)
⁄  )                                        (𝟑. 𝟏𝟗) 

𝑭𝑫𝑰𝒎𝒂𝒈𝒆 (𝒙, 𝒚) =  ∑ ∑ 𝒇𝒅(𝒑, 𝒒)𝑰(𝒙 + 𝒑, 𝒚 + 𝒒)

𝒃

𝒒=−𝒃

𝒂

𝒑=−𝒂

                  (𝟑. 𝟐𝟎) 

Here, a and b are non-negative integer variables, which are used to centre 

the kernel function on each pixel in the face image, and are defined as: a and b 

= ceil ((n − 1)/ 2). Fig.3.11 shows examples of the approximation coefficients of 

the Curvelet transform and the resulting fractal transformed images. After, a 

fractal transformed image of size (M×N) has been obtained, it is reordered into 

a row feature vector, 𝑭𝑩𝑴𝑽𝒆𝒄𝒕𝒐𝒓, for further analysis.  

In this work, a mirror mapping of pixels along the edge of the input image 

is made to fill the part of the sliding window, when the center pixel of the sliding 

window is lying on or near the edge of the input image. 
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Figure 3.10: A block diagram of the implementation of the FBM method. 
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Figure 3.11: The top row shows coarse band Curvelet approximation 

coefficients of four images. The middle row shows the images after applying the 

contrast enhancement procedure, and the bottom row shows the FBM fractal 

transformed images. 

3.3.1.3 Improved Differential Box Counting 

The main purpose of the second Fractal method is to estimate the Fractal 

dimension features from the middle-frequency bands of the Curvelet transform, 

reduce the high dimensionality of these bands, and increase the speed of the 

proposed system. Face recognition, like other pattern recognition systems, 

suffers from the problem of high dimensionality. There are many possible 

reasons for reducing the feature vector size, such as providing a more efficient 

way for storing and processing the data related to the increasing number of 

training samples, and increasing the discriminative power of the feature vectors. 

The second method to compute the Fractal dimension is based on the Improved 

Differential Box Counting (IDBC). The basic approach of the traditional DBC is 

to treat any image of size (M×M) as a 3D space, where (x, y) denotes the pixel 

position on the image surface, and the third coordinate (z) denotes the pixel 

intensity. The DBC starts by scaling the image down into non-overlapping 

blocks of size (s×s), where (M/ 2 > s > 1) and s is an integer, and then the 

Fractal dimension is calculated as follows:  
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𝑭𝑫 =  𝒍𝒊𝒎
𝒓→𝟎

𝒍𝒐𝒈 (𝑵𝒓) 

𝒍𝒐𝒈 (𝟏/𝒓)
                                                            (𝟑. 𝟐𝟏) 

Here, r = s is the scale of each block and Nr is the number of boxes 

required to entirely cover the object in the image, which is counted in the DBC 

method as follows: On each block there is a column of boxes of size (s×s×s'), 

where s'=s, and each box is assigned with a number (1,2,…), starting from the 

lowest grey level value, as shown in Fig.3.12. Let the minimum and the 

maximum grey level of the image in the (i, j)th block fall in box number k and l, 

respectively. The contribution of nr in (i, j)th block is calculated as follows: 

 𝒏𝒓(𝒊, 𝒋) = 𝒍 − 𝒌 + 𝟏                                                         (𝟑. 𝟐𝟐) 

The contributions from all blocks Nr is counted for different values of r as 

follows: 

𝑵𝒓 = ∑𝒏𝒓(𝒊, 𝒋)

𝒊,𝒋

                                                            (𝟑. 𝟐𝟑) 

More information on this technique, and its implementation, can be found 

in [230]. The traditional DBC has many issues. The most important is how to 

choose the best size of the boxes that cover each block on the image surface. 

This can significantly affect the results of the curve fitting process, and result in 

inaccurate estimation of the Fractal dimension. Moreover, calculating the 

Fractal dimension using the traditional DBC cannot accurately reflect the local 

and global facial features of different and similar classes. Finally, the traditional 

DBC method can suffer from over or under counting of the number of boxes that 

cover a specific block, which leads to calculating the Fractal dimension 

inaccurately [251][252].   

To overcome these drawbacks, an improved DBC method is proposed, 

which involves calculating and describing the Fractal dimension as a feature 

vector. This feature vector is calculated by, firstly, dividing each Curvelet sub-

band into a (k×k) sized sub-images, and then dividing each sub-image farther 

into (n×n) sized blocks. In the proposed method, (𝒍𝒐𝒈𝟐 𝒏) different sizes of 

boxes are used, which are then used to cover the same block. These boxes are 

represented by (b1, b2, b3,…,𝒃𝒍𝒐𝒈𝟐 𝒏). Then, the Fractal dimension value of each 

block is estimated, as in Eq.(3.21). For example, a Curvelet sub-band of size 
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(32×32) will be decomposed into (16×16) size sub-images, and then a grid of 

blocks of size (4×4) will cover each sub-image. The Fractal dimension feature is 

estimated from each block using (𝒍𝒐𝒈𝟐 𝟒) different sizes of boxes. Then, from 

each sub-image, 16 Fractal dimension features are estimated. By combining the 

features obtained from the four sub-images (4×16), a sub-row feature vector Vi 

= {Fd1, Fd2,….., Fd64} is constructed for each Curvelet sub-band. As in 

Eq.(3.24), the final feature vector 𝑰𝑫𝑩𝑪𝑽𝒆𝒄𝒕𝒐𝒓 of the middle-frequency bands is 

constructed by combining the Vi from 4 and 8 sub-bands located at scale 2 and 

3, respectively.  

𝑰𝑫𝑩𝑪𝑽𝒆𝒄𝒕𝒐𝒓 = {𝑽𝟏, 𝑽𝟐, … , 𝑽𝟏𝟐}                                              (𝟑. 𝟐𝟒) 

In this work, to ensure the correct division without losing any important 

information, the Curvelet sub-bands at scale 2 and 3 have been resized from 

their original sizes to (24×24) and (32×32), respectively. The experimental 

results have demonstrated that calculating the Fractal dimension features using 

different sizes of boxes covering the same block can play a significant role in 

increasing the discriminative power of the final feature vector, by efficiently 

reflecting the face texture information using the edges and curves of the face 

presented in the middle-frequency bands.  

 

Figure 3.12: Calculating the Fractal dimension by using the traditional (DBC) 

[253]. 
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3.3.1.4 Face Matching Techniques     

Classification and decision making are the final steps in the proposed 

Curvelet-Fractal approach. These refer to the process of either classifying the 

tested samples into N classes based on the identity of the training subjects, or 

deciding whether two faces belong to the same subject or not. In this chapter, 

the QDC and CC classifiers are used in the identification and verification tasks, 

respectively. The QDC from PRTools10 is a supervised learning algorithm 

commonly used for multi-classification tasks. It is a Bayes-Normal-2 classifier 

assuming Gaussian distributions, which aims to differentiate between two or 

more classes using a quadric surface. Using this Bayes rule, a separate 

covariance matrix is estimated for each class, yielding quadratic decision 

boundaries. This is done by estimating the covariance matrix (C) for the scatter 

matrix (S), as follows:   

𝑪 = (𝟏 − 𝜶 − 𝜷)𝑺 + 𝜶 ∗ 𝒅𝒊𝒂𝒈(𝑺) +
𝜷

𝒏
 ∑𝒅𝒊𝒂𝒈(𝑺)                     (𝟑. 𝟐𝟓) 

Here, n refers to the dimensionality of the feature space, 𝜶 and 𝜷 ∈

[𝟎, 𝟏] are regularisation parameters. In this work, these parameters are 

determined empirically to be 𝜶 = 𝟎. 𝟏 and 𝜷 = 𝟎. 𝟐, as explained in (Section 

3.4.2.1). The decision making is based on calculating the similarity scores 

between the two face images using the CC classifier, which is defined as 

follows: 

𝑪(𝑨,𝑩) =  
∑ ∑ (𝑨𝒎𝒏− 𝑨̅)( 𝑩𝒎𝒏− 𝑩̅)𝒏𝒎

√(∑ ∑ (𝑨𝒎𝒏− 𝑨̅)𝒏𝒎
𝟐
)(∑ ∑ (𝑩𝒎𝒏− 𝑩̅)𝒏𝒎

𝟐
)

                                 (𝟑. 𝟐𝟔)              

Here, m and n are the dimensions of the sample, and 𝑨̅ and 𝑩̅ are the 

mean values of the testing and training samples, respectively. 

3.3.2  Learning Additional Features Representations 

Like any deep learning approach, the DBN is usually applied directly on 

the pixel intensity representations. However, although DBN has been 

successfully applied in many different fields, scaling it to realistic-sized face 

images still remains a challenging task for several reasons. Firstly, the high 

dimensionality of the face image leads to increased computational complexity of 
                                                           
10

 http://www.37steps.com/prhtml/prtools.html 

http://www.37steps.com/prhtml/prtools.html
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the training algorithm. Secondly, the feature representations of the DBN are 

sensitive to the local translations of the input image. 

This can lead to a disregard of the local features of the input image, which 

are known to be important for face recognition. To address these issues of the 

DBN, a novel framework, based on merging the advantages of the local 

handcrafted image descriptors and the DBN, is proposed. It is proposed that 

applying the DBN on top of local features representations, instead of the pixel 

intensity representations (raw data), as a way of guiding the learning process, 

can greatly improve the ability of the DBN to learn more discriminating features 

with a shorter training time required to obtain the final trained model. As shown 

in Fig.3.4, the local facial features are first extracted using the proposed 

Curvelet-Fractal approach. Then, the extracted local features are assigned to 

the feature extraction units of the DBN to learn additional and complementary 

representations. In this work, the DBN architecture stacks 3 RBMs (3 hidden 

layers). The first two RBMs are used as generative models, while the last one is 

used as a discriminative model associated with Softmax units for multi-class 

classification purposes. Finally, the hidden layers of the DBN are trained one at 

a time in a bottom-up manner, using a greedy layer-wised training algorithm. In 

this work, the training methodology to train the DBN model can be divided into 

three phases: pre-training, supervised, and fine-tuning.  

1. In the pre-training phase, the first two RBMs are trained in a purely 

unsupervised way, using a greedy training algorithm, in which each added 

hidden layer is trained as an RBM (e.g., using the CD algorithm). The 

activation outputs of a trained RBM can be viewed as feature 

representations extracted from its input data, which will be the input data 

(visible units) used to train the next RBM in the stack. The unsupervised 

pre-training phase is finished when the learning of the second hidden layer 

is completed. The main advantage of the greedy unsupervised pre-training 

procedure is the ability to train the DBN using a massive amount of 

unlabelled training data, which can improve the generalization ability and 

prevent overfitting. In addition, the degree of complexity is reduced, and the 

speed of training is increased.  
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2. In the supervised phase, the last RBM is trained as a non-linear classifier, 

using the training and validation set, along with their associated labels to 

observe its performance in each epoch.  

3. Finally, the fine-tuning phase is performed in a top-down manner using the 

Back-propagation algorithm to fine-tune parameters (weights) of the whole 

network for optimal classification.  

A difference, compared with conventional neural networks, is that the 

DNNs require a massive amount of training data to avoid overfitting during the 

learning process and achieve satisfactory predictions. Hence, data 

augmentation is the simplest and most common method of achieving this, which 

artificially enlarges the training dataset using techniques such as: random 

crops, intensity variations, and horizontal flipping. In contrast to previous works 

that randomly sample a large number of face image patches [254][82], it is 

proposed to sample a uniformly small number of face image patches. To 

prevent background information from artificially boosting the results of the 

proposed Curvelet-Fractal11 approach, and to speed up experiments when the 

DBN is directly applied on the pixel intensity representations, the face region is 

detected, and the data augmentation procedure12 is implemented on the 

detected face image. In this work, for a face image of size (Hdim × Wdim), five 

images patches of the same size are cropped, four starting from the corner and 

one centred (and their horizontally flipped counterparts), which helps maximize 

the complementary information contained within the cropped patches. Fig. 3.13 

shows the ten image patches generated from a single input image. 

 

                                                           
11

 The data augmentation procedure is not implemented during the performance assessment of the 

proposed Curvelet-Fractal approach. 
12

 In this work, the data augmentation procedure is applied only for the training set. 
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Figure 3.13: Data augmentation procedure: (a) Detected Face image, (b) The 

normalized face patches used as input for the MDFR where the (top) row are 

patches sampled from (a), and the (bottom) row their horizontal flipped 

versions. 

3.4  Experimental Results  

In this section, comprehensive experiments are described using the 

proposed approaches for both face identification and verification tasks, in order 

to demonstrate their effectiveness and compare their performance with other 

existing approaches. Firstly, a brief description of the face datasets used in 

these experiments is given. Then a detailed evaluation and comparison with the 

state-of-the-art approaches are presented, in addition to some insights and 

findings about learning additional features representations, by training a DBN 

on top of local feature representations. 

3.4.1  Description of Face Datasets  

In this work, all the experiments were conducted on four large-scale 

unconstrained face datasets: SDUMLA-HMT [255], FacE REcognition 

Technology (FERET) [256], CAS-PEAL-R1[257], and Labelled Faces in the 

Wild (LFW) [258]. Some examples of face images from each dataset are shown 

in Fig. 3.14. 

 SDUMLA-HMT face dataset [255]: This includes 106 subjects, and each 

has 84 face images taken from 7 viewing angles, and under different 

experimental conditions including, facial expressions, accessories, poses, 

and illumination. Fig.3.15 shows the camera setting and illumination setting 

in the capturing process of face images in the SDUMLA-HMT dataset. The 
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main purpose of this dataset is to simulate real world conditions during face 

image acquisition. The image size is (640×480) pixels. 

 FERET dataset [256]: This contains a total of 14,126 images taken from 

1,196 subjects, with at least 365 duplicate sets of images. This is one of the 

largest publicly-available face datasets with a high degree of diversity of 

facial expression, gender, illumination conditions and age. The image size 

is (256×384) pixels. 

 CAS-PEAL-R1dataset [257]: A subset of the CAS-PEAL face dataset has 

been released for research purposes and named CAS-PEAL-R1. This 

contains a total of 30,863 images taken from 1,040 Chinese subjects (595 

are males and 445 are females). The image size is (360×480) pixels. 

 LFW dataset [258]: This contains a total of 13,233 images taken from 

5,749 subjects, where 1,680 subjects appear in two or more images. In the 

LFW dataset, all images were collected from Yahoo! News articles on the 

web, with a high degree of intra-personal variations in facial expression, 

illumination conditions, occlusion from wearing hats and glasses, etc. It has 

been used to address the problem of unconstrained face verification task in 

recent years. The image size is (250×250) pixels. 



                                                                        Chapter 3: Face Recognition System 
    

 

92 
 

 

Figure 3.14: Examples of face images in four face datasets: (a) SDUMLA-HMT, 

(b) FERET, (c) CAS-PEAL-R1, and (d) LFW.  
 

 

Figure 3.15: An illustration of the environmental setting during the capturing 

process of the face image in the SDUMLA-HMT dataset [255]. 
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3.4.2  Face Identification Experiments 

This section describes the evaluation of the proposed approach to the face 

identification problem on three different face datasets: SDUMLA-HMT, FERET, 

and CAS-PEAL-R1. To the best of the author’s knowledge, this is the first work 

that uses the SDUMLA-HMT face dataset for evaluating a face recognition 

approach. In this work, the SDUMLA-HMT dataset is used as the main dataset 

to fine-tune the hyper-parameters of the proposed Curvelet-Fractal approach 

(e.g. regularization parameters of the QDC classifier), as well as the proposed 

MDFR framework (e.g. number of hidden units per layer, etc.), because it has 

more images per subject in its image gallery than the other datasets. This 

allowed more flexibility in dividing the face images into training, validation, and 

testing sets. 

3.4.2.1  Parameter Settings of the Curvelet-Fractal Approach     

In the proposed Curvelet-Fractal approach, the most important thing is to 

set the regularization parameters of the QDC classifier. In this work, these 

parameters are determined empirically by varying their values from 0 to 1 in 

steps of 0.1, starting with 𝜶 = 𝟎. and 𝜷 = 𝟎. Hence, 121 experiments were 

conducted where each time the former was increased by 0.1 and tested it with 

all the possible values of the latter. Fig.3.16 shows the Validation Accuracy 

Rate (VAR) generated throughout these experiments. These experiments were 

carried out using 80% randomly-selected samples for the training set, and the 

remaining 20% for the testing set. In particular, the parameters optimization 

process is performed on the training set using the 10-fold cross-validation 

procedure that divides the training set into k subsets of equal size. Sequentially, 

one subset is used to evaluate the performance of the classifier trained on the 

remaining k-1 subsets. Then, the Average Error Rate (AER) over 10 trials is 

calculated as follows:   

𝑨𝑬𝑹 =
𝟏

𝑲
 ∑ 𝑬𝒓𝒓𝒐𝒓𝒊

𝒌

𝒊=𝟏

                                                   (𝟑. 𝟐𝟕) 

Here, 𝑬𝒓𝒓𝒐𝒓𝒊 refers to the error rate per trial. After finding the best values 

of the regularization parameters, the QDC classifier is trained using the whole 

training set, and its performance in predicting unseen data properly is then 
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evaluated, using the testing set. Algorithm 1, shows pseudo-code of the 

procedure proposed to train the QDC classifier. Fig. 3.17, shows results 

comparing the present Curvelet-Fractal approach with the author’s previous 

Curvelet Transform-Fractional Brownian Motion (CT-FBM) approach described 

in (Chapter 1, Sect. 1.8) using the Cumulative Match Characteristic (CMC) 

curve to visualize the performance of both approaches. It can be seen in Fig. 

3.17 that the Rank-1 identification rate has dramatically increased from 0.90 to 

0.95 using the CT-FBM to more than 0.95 to 1.0 using the Curvelet-Fractal 

approach. 

 

Figure 3.16: The VAR generated throughout 121 experiments of finding the 

best regularization parameters. 
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Figure 3.17: Performance comparison between the Curvelet-Fractal and CT-

FBM approaches on the SDUMLA-HMT Dataset. 

Algorithm 1. Find the optimal QDC classifier. 

Input: Labeled dataset:  𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐒𝐞𝐭 (𝒙𝒊, 𝐲𝒊) and 𝐓𝐞𝐬𝐭𝐢𝐧𝐠 𝐒𝐞𝐭 (𝒙𝒊, 𝐲𝒊). 
Output: Optimal QDC Classifier. 
Initialization:  𝛂 = 𝟎, 𝛃 = 𝟎, and Max_Accurcy=0; 
 

for 𝛼_now = 0 : 0.1 : 1 
      for 𝛽_now = 0 : 0.1 : 1 
  

 Train the QDC classifier using the current values of 𝜶_𝐧𝐨𝐰 and 𝜷_𝐧𝐨𝐰. 
 Apply the 10-folds cross-validation evaluation procedure on the 

Training Set. 
 Calculate the Average Error Rate (AER) over 10-folds using Eq.(3.27). 
 Calculate the Validation_Accurcy = 1-AER; 
 if    Validation_Accurcy>Max_Accurcy 

    Max_Accurcy = Validation_Accurcy;  
  Optimal_ α = α_now;  
  Optimal_ β_= β_now;  

                end 
     end 
end 

 Train the QDC classifier using the 𝐎𝐩𝐭𝐢𝐦𝐚𝐥_ 𝛂 and  𝐎𝐩𝐭𝐢𝐦𝐚𝐥_ 𝛃. 
 Assess the final trained QDC classifier using the Testing Set. 
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3.4.2.2  MDFR Architecture and Training Details 

The major challenge of using DNNs is the number of the model 

architectures and hyper-parameters that need to be evaluated, such as the 

number of layers, the number of units per layer, learning rate, the number of 

epochs, etc. In a DBN, the value of a specific hyper-parameter may mainly 

depend on the values selected for other hyper-parameters. Moreover, the 

values of the hyper-parameters set in one hidden layer (RBM) may depend on 

the values of the hyper-parameters set in other hidden layers (RBMs). 

Therefore, hyper-parameter tuning in DBNs is very computationally expensive. 

Given these findings, the best hyper-parameter values are found by performing 

a coarse search over all the possible values. In this section, all the experiments 

were carried out using 60% randomly selected samples for training, and the 

remaining 40% samples were divided into two sets of equal size as validation 

and testing sets. In all experiments, the validation set is used to assess the 

generalization ability of the MDFR framework during the learning process before 

using the testing set. Following, the training methodology described in (Section 

3.3.2), the MDFR framework was greedily trained using input data acquired 

from the Curvelet Fractal approach. Once the training of a given hidden layer is 

accomplished, its weights matrix is frozen, and its activations are served as 

input to train the next layer in the stack.   

As shown in Table 3.1, four different 3-layer DBN models were greedily 

trained in a bottom-up manner using different numbers of hidden units. For the 

first two layers, each one was trained separately as an RBM model in an 

unsupervised way, using the CD learning algorithm with 1 step of Gibbs 

sampling (CD-1). Each individual model was trained for 300 epochs with a 

momentum of 0.9, a weight-decay of 0.0002, and a mini-batch size of 100. The 

weights of each model were initialized with small random values sampled from 

a zero-mean normal distribution and standard deviation of 0.02. Initially, the 

learning rate was to be 0.001 for each model as in [259], but it was observed 

this was inefficient, as each model took too long to converge, due to the 

learning rate being too small. Therefore, for all the remaining experiments, the 

learning rate was set to be 0.01. The last RBM model was trained in a 

supervised way as a non-linear classifier using the training and validation set, 
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along with their associated labels to evaluate its discriminative performance. In 

this phase, the same values of the hyper-parameters used to train the first two 

models were used, except that the last model was trained for 400 epochs. 

Finally, in the fine-tuning phase, the whole network was trained in a top-down 

manner using the Back-propagation algorithm equipped for Dropout 

compensation, to find optimized parameters and to avoid overfitting. The 

Dropout ratio was set to 0.5 and the number of epochs through the training set 

was determined using an early stopping procedure, in which the training 

process is stopped as soon as the classification error on the validation set starts 

to rise again. In these experiments using the validation set, it was found (see 

Table 3.1 and Fig. 3.18) that hidden layers with sizes 800, 800, 1000 provided 

considerably better results than the other hidden layer sizes that the author 

trained. This model trained on input data acquired from the Curvelet-Fractal 

approach is termed the MDFR framework. Table 3.1 shows the Rank-1 

identification obtained from the four trained DBNs models over the validation 

set, while the CMC curves shown in Fig.3.18 are used to visualize their 

performance on the validation set. 

 

Table 3.1: Rank-1 identification rates obtained for different DBN architectures 

using Validation set. 

DBN Models Accuracy Rate % 

600-600-1000 92.19 

700-700-1000 92.48 

800-800-1000 95.38 

900-900-1000 93.68 
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Figure 3.18: CMC curves for the four trained DBNs models over the validation 

set. 

3.4.2.3 Comparative Study of Fractal, Curvelet-Fractal, DBN and MDFR 

Approaches 

In this section, to evaluate the feature representations obtained from the 

MDFR framework, its recognition accuracy was compared with feature 

representations obtained by the Fractal, Curvelet-Fractal approach and DBN13. 

This comparison study was conducted for several reasons: Firstly, to 

demonstrate the efficiency of the proposed Curvelet-Fractal approach 

compared with applying the Fractal dimension individually. Secondly, to 

demonstrate that the feature representations acquired by the MDFR framework 

as a deep learning approach is complementary to the feature representations 

acquired by Curvelet-Fractal approach as a handcrafted-descriptors; Thirdly, to 

show that applying the DBN on top of the local feature representations, instead 

of the pixel intensity representations, can significantly improve the ability of the 

DBN to learn more discriminating features with less training time required. 

Finally, using these complementary feature representations, the MDFR 

framework was able to handle efficiently the non-linear variations of face 

                                                           
13

 The DBN model was trained on the top of the pixel intensity representation using the same hyper-

parameters of the MDFR framework. 
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images due to the non-linearity of a DBN. In this work, the input image rescaled 

to (32×32) pixel to speed up the experiments when the Fractal dimension 

approaches are directly applied on the face image. Here, 𝑭𝒓𝒂𝒄𝒕𝒂𝒍𝑽𝒆𝒄𝒕𝒐𝒓 denotes 

applying both the FBM and IDBC approach directly on the input image. As 

shown in Fig.3.19, a higher identification rate was obtained using the proposed 

Curvelet-Fractal approach compared to only applying the Fractal dimension. 

Furthermore, It was possible to improve further the recognition rate of the 

Curvelet-Fractal approach by learning additional feature representations 

through the MDFR framework, as well as improve the performance of the DBN 

by forcing it to learn only the important facial features (e.g. edges and curves).  

 

Figure 3.19: Performance comparison between the DBN, Curvelet-Fractal and 

MDFR methods on the SDUMLA-HMT Dataset. 

To further examine the robustness of the proposed approaches, a number 

of experiments were conducted on the FERET and the CAS-PEAL-R1datasets, 

and the results obtained were compared with the state-of-the-art approaches. 

For a fair comparison, the performance of the Curvelet-Fractal approach was 

evaluated using the standard evaluation protocols of FERET and CAS-PEAL-

R1dataset described in [256][257], respectively. In this work, to prevent 
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overfitting and increase the generalization ability of the MDFR framework, the 

data augmentation procedure as described in (Section 3.3.2) was applied only 

to the gallery set of these two datasets. Then, its performance during the 

learning process was observed on a separate validation set taken from the full 

augmented gallery set.  

According to the standard evaluation protocol, the FERET dataset is 

divided into five distinct sets: Fa contains a total 1,196 subjects with one image 

per subject, which is used as a gallery set. The Fb contains 1,195 images taken 

on the same day and under the same lighting conditions as the Fa set, but with 

different facial expressions. The Fc set has 194 images taken on the same day 

as the Fa set, but under different lighting conditions. The Dup.I set contains 722 

images acquired on different days after the Fa set. Finally, the Dup.II set 

contains 234 images acquired at least one year after the Fa set. Following the 

standard evaluation protocol, the last four sets are used as probe sets to 

address the most challenging problems in the face identification task, such as 

facial expression variation, illumination changes, and facial ageing. Table 3.2 

lists the Rank-1 identification rates of the proposed approaches and the state-

of-the-art face recognition approaches on all four probe sets of the FERET 

dataset.   

The standard CAS-PEAL-R1evaluation protocol divides the dataset into a 

gallery set and six frontal probe sets without overlap between the gallery set 

and any of the probe sets. The gallery set consists of 1,040 images of 1,040 

subjects taken under the normal conditions. The six probe sets contain face 

images with the following basic types of variations: Expression (PE) consists of 

1570 images, Accessories (PA) consists of 2285 images, Lighting (PL) consists 

of 2243 images, Time (PT) consists of 66 images, Background (PB) consists of 

553 images, and Distance (PS) consists of 275 images. Table 3.3 lists the 

Rank-1 identification rates of the proposed approaches and the state-of-the-art 

face recognition approaches on all six probe sets of the CAS-PEAL-R1dataset.  
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Table 3.2: The Rank-1 identification rates of different methods on the FERET 

probe sets. 

Approach Fb  Fc  Dup.I Dup.II 

DLBP-W [260] 99 99 86 85 

G-LQP [261] 99.9  100  93.2  91.0  

FHOGC [262] 98.3   98.3     86.3     81.2 

Groupwise MRF [263] 98.5 98.8 87.7 86.2 

H-Groupwise MRF [263] 99.7 99.2 94.7 93.6 

LGOP+WPCA [264] 99.2     99.5     89.5     88.5 

DFD(S=3)+WPCA [86] 99.3 99 88.8 87.6 

DFD(S=5)+WPCA[86] 99.4 100 91.8 92.3 

AMF [81] 99.9 100 96.4 93.6 

GOM [80] 99.9 100 95.7 93.1 

DBN 99.95 100 95.15  93.35 

FractalVector  97.5 96.65 92 90.34 

Curvelet-Fractal 100 98.97 97.92 95.72 

MDFR Framework 100 100 98.40 97.86 
  

 

It can be seen from the results listed in Table 3.2 and 3.3, it was possible 

to achieve competitive results with the state-of-the-art face identification results 

on the FERET and the CAS-PEAL-R1datasets, using only the Curvelet-Fractal 

approach. Its performance was compared with popular and recent feature 

descriptors, such as G-LQP, LBP, WPCA, etc. Although some approaches, 

such as DFD(S=5)+WPCA [86], GOM [80], AMF [81], and DBN achieved a 

slightly higher identification rate on the Fc probe set, they obtained inferior 

results on the other probe sets of the FERET dataset. In addition, the Curvelet-

Fractal approach achieved a higher identification rate on all the probe sets of 

the CAS-PEAL-R1dataset. Some of the existing approaches, such as H-

Groupwise MRF [263] and FHOGC [262] also achieved a 100% identification 

rate on the PB and PT probe set, respectively, but they obtained inferior results 

on the other probe sets of the CAS-PEAL-R1 dataset. Finally, a further 

improvement and a new state-of-the-art recognition accuracy were achieved 

using the MDFR framework on the FERET and the CAS-PEAL-R1 datasets. In 

particular, this was the case when the most challenging probe sets are under 
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consideration, such as Dup.I and Dup.II in FERET dataset and PE, PA, PL, 

and PS in the CAS-PEAL-R1dataset.   

Table 3.3: The Rank-1 identification rates of different methods on the CAS-

PEAL_R1 probe sets. 

 Approach PE  PA  PL PT PB PS 

RBFNN [265] 84.8 93.4 63.4 96.9 - - 

DT-LBP [266] 98 92 41 - - - 

DLBP-W 
[260] 99 92 41 - - - 

1D-CFA [267] 83.12 74.84 31.43 71.21 98.19 98.55 

Groupwise MRF [263] 94.8 90.3 66.9 99.2 98.8 99.5 

H-Groupwise MRF [263] 96.4 90.3 66.9 99.8 100 99.6 

LGOP+WPCA [264] 99.6 96.8 69.9 - - - 

DFD(S=3)+WPCA [86] 99 96.9 63.9 - - - 

DFD(S=5)+WPCA [86] 99.6 96.9 58.9 - - - 

FHOGC [262] 94.9 90.3 68.7 100 - - 

LBP [268] 92.93 82.58 32.46 - - - 

DBN 98.93 75.36 80.60 95.45 96.01 97.09 

FractalVector 95.12 92.55 78.01 92.33 95.23 96.03 

Curvelet-Fractal 99.87 98.07 89.48 100 100 99.64 

MDFR Framework 100 99.43 89.92 100 100 100 
  

3.4.3  Face Verification Experiments 

In this section, the robustness and the effectiveness of the proposed 

approaches were examined to address the unconstrained face verification 

problem using the LFW dataset. The face images in the LFW dataset were 

divided into two distinct Views. "View 1" is used for selecting and tuning the 

parameters of the recognition model, while "View 2" is used to report the final 

performance of the selected model. In "View 2", the face images are paired into 

6,000 pairs, with 3,000 pairs labelled as positive pairs, and the rest as negative 

pairs. The final performance is reported as described in [258] by calculating the 

mean accuracy rate (𝝁̂) and the standard error of the mean accuracy (SE) over 

10-folds cross-validation, with 300 positive and 300 negative image pairs per 

each fold. For a fair comparison between all face recognition algorithms, the 
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creators of LFW dataset have pre-defined six evaluation protocols, as described 

in [269]. In this work, the "Image-Restricted, Label-Free Outside Data" protocol 

is followed, where only the outside data is used to train the MDFR framework. 

Furthermore, the aligned LFW-a14 dataset is used, and the face images were 

resized to (128×128) pixel after the face region has been detected using pre-

trained Viola-Jones15 face detector. 

For the proposed Curvelet-Fractal approach, the feature representation of 

each test sample is obtained first, and then the similarity score between each 

pair of face images is calculated using the CC classifier. In the training phase, 

the Curvelet-Fractal approach does not use any data augmentation or outside 

data (e.g. creating additional positive/negative pairs from any other source). It 

just uses the pre-trained Viola-Jones face detector, which has been trained 

using outside data. The final results over 10-folds are reported, where each of 

the 10 experiments is completely independent of the others, and the decision 

threshold of the CC classifier is learnt from the training set according to the 

standard evaluation protocol. Then, the accuracy rate in each round of 10-folds 

cross-validation is calculated as the number of correctly classified pairs of 

samples divided by the total number of test sample pairs. For further evaluation, 

the results obtained from the Curvelet-Fractal approach were compared to 

state-of-the-art approaches on LFW dataset, such as DDML [102], LBP, Gabor 

[43], and MSBSIF-SIEDA [270] using the same evaluation protocol (Restricted), 

as shown in Table 3.4. It can be seen that the accuracy rate, 0.9622 ± 0.0272, 

of the Curvelet-Fractal approach is higher than the best results reported on the 

LFW dataset, which is 0.9463 ± 0.0095. In this work, further improvements and 

a new state-of-the-art result were achieved by applying the MDFR framework 

on the LFW dataset. This experiment can be considered as an examination of 

the MDFR’s generalization ability to address the unconstrained face verification 

problem on the LFW dataset. In this work, the final performance of two pre-

trained DBNs models was evaluated, while the first model was applied directly 

on top of pixel intensity representations the second was applied on top of local 

features representations, and referred to the MDFR framework. Following the 

                                                           
14

  http://www.openu.ac.il/home/hassner/data/lfwa/ 
15

 The incorrect face detection results have been detected manually to ensure that all the subjects are 

contributed in the subsequent evaluation of the proposed approaches. 

http://www.openu.ac.il/home/hassner/data/lfwa/
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same evaluation protocol mentioned above, the hyper-parameters of the MDFR 

framework were find-tuned using data from the SDUMLA-HMT dataset, as 

described in (Section 3.4.2.2). 

In the MDFR framework, the feature representations, fx and fy, of a pair of 

two images, Ix and Iy, are obtained firstly by applying Curvelet-Fractal approach, 

and then a feature vector F for this pair is formed using element-wise 

multiplication (F = fx ⊙ fx). Finally, these feature vectors F (extracted from pairs 

of images) are used as input data to the DBN, to learn additional features 

representations and perform face verification in the last layer. The performance 

of the MDFR framework is reported over 10-folds, each time one fold was used 

for testing and the other nine folds for training. For each round of the 10 

experiments, the data augmentation procedure was applied for the training set, 

to avoid overfitting and increase the generalization ability of the network. Table 

3.4 lists the mean accuracy of the recent state-of-the-art methods on the LFW 

dataset, and the corresponding Receiver Operating Characteristic (ROC) 

curves are shown in Fig. 3.20. Considering the results of the MDFR framework, 

it is significantly improved over the mean accuracy rate of the Curvelet-Fractal 

approach and the DBN model applied directly on top of pixel intensity 

representations, by 2.6% and 5.3% respectively. In this work, the performance 

of the proposed MDFR framework is also compared with several state-of-the-art 

deep learning approaches, including, DeepFace [93], DeepID [254], ConvNet-

RBM [92], ConvolutionalDBN [97] and DDML [102]. The first three approaches 

were mainly trained using the "Unrestricted, Labeled Outside Data" protocol, in 

which a private dataset consisting of a large number of training images      (> 

100K), is employed. The accuracy rate has been improved by 1.38%, compared 

to the next highest results reported by DeepID [254]. These promising results 

demonstrate the good generalization ability of the MDFR framework, and its 

feasibility for deployment in real applications. 
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Table 3.4: Performance comparison between the proposed approaches and the 

State-of-the-Art approaches on LFW dataset under different evaluation 

protocols. 

 Approach Acc. ( 𝛍̂  ± 𝐒𝐄) Protocol 

DeepFace [93] 0.9735 ±0.0025 Unrestricted 

DeepID [254] 0.9745 ± 0.0026 Unrestricted 

ConvNet-RBM[92] 0.9252 ± 0.0038 Unrestricted 

ConvolutionalDBN [97] 0.8777 ± 0.0062 Restricted 

DDML [102] 0.9068 ± 0.0141 Restricted 

VMRS [271]  0.9110 ± 0.0059 Restricted 

HPEN+HD-LBP+ DDML [43] 0.9257 ± 0.0036 Restricted 

HPEN+HD-Gabor+ DDML [43] 0.9280 ± 0.0047 Restricted 

Sub-SML+Hybrid+LFW3D [272]  0.9165 ± 0.0104 Restricted 

MSBSIF-SIEDA [270] 0.9463 ± 0.0095 Restricted 

DBN 0.9353 ± 0.0165 Restricted 

Curvelet-Fractal  0.9622 ± 0.0272 Restricted 

MDFR Framework 0.9883 ± 0.0121 Restricted 

 

Figure 3.20: ROC curves averaged over 10-folds of "View 2" of the LFW-a 

dataset. Performance comparison between the DBN, Curvelet-Fractal, and 

MDFR framework on the face verification task. 
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3.4.4  Running Time 

In this section, the running time of the proposed approaches, including the 

Curvelet-Fractal, DBN, and MDFR framework, was measured by implementing 

them on a personal computer with the Windows 8 operating system, a 3.60 GHz 

Core i7-4790 CPU and 24 GB of RAM. The system code was written in 

MATLAB R2015a and later versions. It should be noted that the running time of 

the proposed approaches is proportional to the number of subjects and their 

images in the dataset. The training time using the different datasets is given in 

Table 3.5. It is clear from the table that the training time of the proposed MDFR 

framework has significantly reduced the training time of the DBN when it is 

applied directly on top of the pixel intensity representations. Moreover, the 

computational efficiency of the proposed MDFR framework can be further 

improved using GPUs and code optimization. The test time per image, from 

image input until the recognition decision, for both the Curvelet-Fractal 

approach and MDFR framework, is about 1.3ms and 1.80ms, respectively, 

which is fast enough to be used for real-time applications. 

Table 3.5: The average training time of the proposed approaches using 

different datasets. 

Datasets DBN Curvelet-
Fractal 

MDFR 
Framework 

SDUMLA-HMT 18 Hours & 
35 Minutes 

35 

Minutes 

4 Hours & 
15 Minutes 

FERET 16 Hours &  
45 Minutes 

17 

Minutes 

3 Hours & 
33 Minutes 

CAS-PEAL-R1    15 Hours &  
27 Minutes 

14 

Minutes 

3 Hours & 
32 Minutes 

LFW-a 13 Hours & 
 41 Minutes 

7 

Minutes 

2 Hours & 
56 Minutes 
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3.5  Chapter Summary 

In this chapter, a novel multimodal local feature extraction approach is 

proposed, based on merging the advantages of multidirectional and anisotropy 

transforms, such as the Curvelet transform with Fractal dimension, termed the 

Curvelet-Fractal approach.  Using this approach, effective local facial features 

(e.g., the edges and curves) were efficiently captured by the Curvelet transform, 

while the Fractal dimension was employed to produce an illumination invariant 

representation of the face image, and to describe the face texture roughness 

and fluctuations in the surface efficiently, which play a significant role in 

increasing the recognition power of the proposed system. In this work, Curvelet 

coefficients in different frequency bands have been processed separately using 

two different Fractal dimension methods. The FBM method was used to process 

only a Coarse band of the Curvelet transform, while the IDBC method was used 

to handle the high dimensionality of other adopted Curvelet sub-bands. 

Furthermore, a novel framework is proposed, termed the Multimodal Deep Face 

Recognition (MDFR) framework, to learn additional and complementary 

representations by training a DBN on top of existing local representations 

(Curvelet-Fractal’s representations), instead of the pixel intensity 

representations. It has been observed that more discriminating features can be 

learned with less training time required to obtain the final trained model, by 

feeding the DBN approach with only the usefulness features, instead of with raw 

data. Finally, comprehensive experiments were conducted using the proposed 

approaches for both face identification and verification tasks, on four large-scale 

unconstrained face datasets (e.g. SDUMLA-HMT, FERET, CAS-PEAL-R1 and 

LFW dataset) with high variation in facial expressions, lighting conditions, noise, 

etc. It was possible to achieve competitive results with the state-of-the-art 

approaches (e.g. G-LQP, LBP, WPCA, etc.) using only the Curvelet-Fractal 

approach. Furthermore, new state-of-the-art accuracy rates were achieved by 

applying the proposed MDFR framework on all the employed datasets. 
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Chapter 4 

Iris Recognition System 

4.1  Introduction   

This chapter describes the iris recognition approaches proposed in this 

PhD thesis. Iris recognition is considered as the most accurate and highly 

reliable biometric system for personal verification and/or identification [273]. 

Several studies have demonstrated that the iris trait has a number of 

advantages over other biometric traits (e.g. face, fingerprint, etc.), which make it 

commonly accepted for application in high reliability and accurate biometric 

systems. Firstly, the iris trait represents a highly protected part of the human 

eye; it is located between the black pupil and the white sclera. This position 

makes the iris trait completely isolated and protected from external 

environmental conditions [274][275]. Secondly, it is believed that the iris texture 

provides a very high degree of uniqueness and randomness, so it very unlikely 

for any two iris patterns to be the same, even irises from identical twins, or from 

the right and left eyes of an individual person. This complexity in iris patterns is 

due to the distinctiveness and richness of the texture details within the iris 

region, including rings, ridges, crypts, furrows, freckles, zigzag patterns, etc. 

[276]. Thirdly, the iris trait provides a high degree of stability during a person’s 

lifetime from one year of age until death. Finally, it is considered the most 

secure biometric trait against fraudulent methods and spoofing attacks by an 

imposter, where any attempt to change its patterns, even with a surgery, is a 

high risk, unlike the fingerprint trait which is relatively easier to tamper with 

[277]. Despite these advantages, implementing an iris recognition system is 

considered a challenging problem due to the iris acquisition process possibly 

acquiring irrelevant parts, such as eyelids, eyelashes, eyelashes, pupil and 

specular reflections, which may greatly influence the iris segmentation and 

recognition outcomes.  

Typically, the iris recognition system consists of four main stages: image 

acquisition, pre-processing, feature extraction and classification. The image 
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acquisition stage employs an imaging device (e.g., LG2200 camera) to capture 

the iris image of high-resolution and sharpness [156]. The image pre-processing 

stage can be divided further into three sub-steps: iris localization, iris 

normalization and iris enhancement.  

Iris localization refers also to the iris segmentation, which is a crucial step 

to build an efficient, robust and real-time iris recognition system. The main aim 

of the iris localization is to detect the iris region from the background and all 

surrounding features, such as sclera, pupil, eyelashes, eyelids, eyebrows and 

specular reflections. Accurate iris localization can be achieved by delimiting the 

inner border between the pupil and iris and the outer border between the iris 

and sclera. However, the task becomes more challenging, due to the portions of 

the iris region occluded by eyelids and eyelashes. In addition, the small 

difference of the intensity levels between the iris and the sclera regions makes 

detecting the outer boundary more difficult compared to the detection of the 

inner boundary. Finally, varying illumination conditions that can affect the 

appearance of the iris patterns could greatly influence the iris segmentation 

outcome [278][279]. In this chapter, an efficient and automatic method is 

proposed for the inner and outer iris boundary localization, which addresses the 

main concerns in many previous methods, for instance, the computational cost 

and high accuracy. Firstly, the pupil boundary is detected after eliminating the 

specular reflections using a simple thresholding technique with the 

morphological operations. Then, the outer iris boundary is detected using the 

generated edge map along with the Coherent Circular Hough Transform 

(CCHT). At this stage, an efficient enhancement procedure is proposed to 

enhance the iris boundary by applying 2D Gaussian filter and Histogram 

equalization processes. Finally, robust and fast eyelids detection algorithm is 

developed by employing an anisotropic diffusion filter with Radon transform to fit 

the upper and lower eyelids boundaries.   

 After the pre-processing stage, the most discriminative feature 

representations of the iris region are extracted and used for establishing the 

person's identity in the classification stage. In this chapter, two discriminative 

learning techniques are proposed, based on the combination of a Convolutional 

Neural Networks (CNN) and the Softmax classifier as a multinomial logistic 
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regression classifier. The trained deep learning system proposed is called the 

IrisConvNet system. CNNs are efficient and powerful DNNs which are widely 

applied in image processing and pattern recognition with the ability to 

automatically extract distinctive features from input images, even without a pre-

processing step. Moreover, CNNs have a number of advantages compared to 

other DNNs, such as fast convergence, simpler architecture, adaptability and 

fewer free parameters. In addition, CNNs are invariant to image deformations, 

such as translation, rotation, and scaling [280]. The Softmax classifier is a 

discriminative classifier widely used for multi-class classification purposes. It 

was chosen for use on top of the CNN because it has produced outstanding 

results compared to other popular classifiers, such as Support Vector Machines 

(SVMs), in terms of accuracy and speed [281]. In this work, the efficiency and 

learning capability of the proposed techniques are investigated by employing a 

training methodology based on the Back-propagation algorithm with the mini-

batch Adagrad optimization method. In addition, other training strategies are 

also used, including dropout and data augmentation to prevent the overfitting 

problem and increase the generalization ability of the neural network [282][283], 

as will be explained later on. The performance of the proposed iris recognition 

system has been tested on five public datasets collected under different 

conditions: SDUMLA-HMT, CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 and 

IITD iris datasets. The results obtained from the proposed system outperform 

other state-of-the-art of approaches (e.g. Wavelet Transform, Scattering 

Transform, LBP and PCA) by achieving new state-of-the-art Rank-1 

identification rates on all the employed datasets and a recognition time less 

than one second per person.  

The remainder of the chapter is organized as follows: Section 4.2 provides 

an overview of the proposed approaches for iris localization, feature extraction 

and pattern matching processes. The implementation details of the proposed 

iris recognition system including the proposed iris localization and IrisConvNet 

system are presented in Section 4.3. The experimental results are presented in 

Section 4.4. Finally, the summary and conclusions of this chapter are stated in 

the last section.  
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4.2  Methodology Overview 

In this section, since the proposed iris localization system is based on the 

CCHT and Radon transform, they are briefly reviewed here. Moreover, a brief 

description of the proposed deep learning approach is given, which incorporates 

two discriminative learning techniques: a CNN and a Softmax classifier. The 

main aim here is to inspect their internal structures, and identify their strengths 

and weaknesses to enable the proposal of an iris recognition system that 

integrates the strengths of these proposed techniques. 

 

4.2.1 Coherent Circular Hough Transform 

The standard Circular Hough transform (CHT) works on detecting the 

circular shapes of a given radius within the image. The edge map of the eye 

image is generated by computing the first derivatives of intensity values. Each 

point in the edge map donates a circle of radius r and centre (xc, yc) to an 

output accumulator array. Then, a voting procedure is used to find the largest 

peak in the resulting accumulator array in the parameter space, which 

corresponds to the circle best defined by the edge points  [120]. Considering the 

obtained set of edge points as (xi, yi), i = (1,2, . . .,n), the CHT for fitting a circle 

with radius r and centre coordinates (xc, yc) is defined as follows: 

𝑯( 𝒙𝒄, 𝒚𝒄, 𝒓) =  ∑ 𝒉( 𝒙𝒊, 𝒚𝒊, 𝒙𝒄, 𝒚𝒄, 𝒓)

𝒏

𝒊=𝟏

                                      (𝟒. 𝟏) 

    where 

𝒉( 𝒙𝒊, 𝒚𝒊, 𝒙𝒄, 𝒚𝒄, 𝒓) = {
𝟏,    𝒊𝒇   𝒈( 𝒙𝒊, 𝒚𝒊, 𝒙𝒄, 𝒚𝒄, 𝒓) = 𝟎

 
𝟎,                            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

                 (𝟒. 𝟐) 

And the parametric function g is defined as follows:   

𝒈( 𝒙𝒊, 𝒚𝒊, 𝒙𝒄, 𝒚𝒄, 𝒓) = (𝒙𝒊 − 𝒙𝒄)
𝟐 + (𝒚𝒊 − 𝒚𝒄)

𝟐 − 𝒓𝟐                      (𝟒. 𝟑) 

The value of the function (g) of each point is equal to 1, if it is located over 

the circle with parameters (xc, yc, r) by Eq.(4.2). Finally, the voting procedure is 

implemented in the Hough space to detect the correct circle. A number of 

modifications have been applied to the CHT to either improve the localization 
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rate or to decrease its computational complexity. In this work, the CCHT 

developed by Atherton and Kerbyson [284] is employed to improve the inner 

and outer boundary localization rate and to reduce the execution time, using a 

complex phase coding to produce a complex accumulator array. The word 

complex here refers to the real and imaginary numbers in the generated 

accumulator array. In the CCHT, the phase is used to code for the radius of the 

circle, where the phase is relative to the distance travelled far from the edge 

points. After projecting the edge points along a line in the direction of the edge 

orientation, their complex values are added to the accumulator array. The 

projections of the edge points lying on the same circle will be intersected at a 

common point and within the same phase, which means they have the same 

distance from this intersection point. Edge projections are usually not lying on a 

circle border (e.g. noise edge points), instead, they will be associated with a 

random phase and tend to be discarded. In other words, the contribution of 

each edge point to the accumulator array is within the phase, if this point is lying 

on the circle and out of the phase elsewhere, as shown in Fig. 4.1. Finally, the 

circle parameters are obtained where the centre coordinates are represented by 

the positions of the peaks in the magnitude of the accumulator array, while the 

radius is represented by the phase at the peak position. More details on CCHT 

can be found in [284]. 

 

Figure 4.1: The edge points and accumulator space of the CCHT approach. 
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4.2.2  Radon Transform  

In 1917, an integral transform was introduced by the Austrian 

mathematician named Johann Radon. The Radon transform, as it became 

known, is now an important mathematical tool that is widely used in many 

medical imaging, geophysical imaging and radar imaging applications [285]. 

The Radon transform is a set of 1D projections of a given 2D function f(x, y). In 

this case, the given 2D function is an image, and the projection is a set of line 

integrals. These line integrals are computed from multiple resources by the 

Radon transform in a certain angle. Generally, the Radon transform of the 2D 

function f(x, y) is the line integral of f at an angle θ, that is parallel to the y´-axis 

defined as follows: 

𝑹𝜽  (𝒙
′) = ∫ 𝒇(𝒙′

∞

−∞

𝒄𝒐𝒔𝜽 − 𝒚′ 𝒔𝒊𝒏𝜽, 𝒙′ 𝒔𝒊𝒏𝜽 + 𝒚′ 𝒄𝒐𝒔𝜽)𝒅𝒚′                   (𝟒. 𝟒) 

Here 𝒙′ and 𝒚′ are computed as follows: 

[𝒙
′

𝒚′] =  [
    𝒄𝒐𝒔 𝜽 𝒔𝒊𝒏𝜽
−𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝜽

] [𝒙
𝒚
]                                                (𝟒. 𝟓)                                

The Radon transform and the Hough transform are similar in the sense 

they map the data points from the image space to a parameter space. However, 

they differ in their mapping form. The Radon transform derives a point in 

parameter space from image space, and this mapping is known as the reading 

paradigm. The Hough transform, on the other hand, depends on the writing 

paradigm in mapping the data points from image space to the parameter space. 

Moreover, unlike the Hough transforms, the Radon transform has a well-formed 

mathematical construct [286]. In this work, the Radon transform is employed to 

detect the parts of the upper and lower eyelids' boundaries that can be 

modelled as a line without losing important information from the iris region. 

4.2.3  Convolutional Neural Network 

As is well known, the success of any biometric system defined as a 

classification and recognition system mainly depends on the efficiency and 

robustness of the feature extraction and classification stages. In the literature, 

several publications have documented the high accuracy and reliability of neural 

networks, such as the MLP, in many real-world pattern recognition and 
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classification applications [287][288]. Inspired by a number of characteristics of 

such systems (e.g. a powerful mathematical model, the ability to learn from 

experience and robustness in handling noisy images), neural networks are 

considered as one of the simplest and powerful of classifiers [289]. However, 

traditional neural networks have a number of drawbacks and obstacles that 

need to be overcome. Firstly, the input image is required to undergo several 

different image processing stages, such as image enhancement, image 

segmentation and feature extraction, to reduce the size of the input data and 

achieve a satisfactory performance. Secondly, designing a handcrafted feature 

extractor needs a good domain-knowledge and a significant amount of time. 

Thirdly, an MLP has difficulty in handling deformations of the input image, such 

as translations, scaling and rotation [216]. Finally, a large number of free 

parameters need to be tuned in order to achieve satisfactory results while 

avoiding the overfitting problem. The large number of these free parameters is 

due to the use of full connections between the neurons in a specific layer, and 

all activations in the previous layer [214]. To overcome these limitations and 

drawbacks the use of deep learning techniques has been proposed. Deep 

learning can be viewed as an advanced subfield of machine learning techniques 

that depend on learning high-level representations and abstractions, using a 

structure composed of multiple non-linear transformations. In deep learning, the 

hierarchy of automatically learning features at multiple levels of representations 

can provide a good understanding of data, such as image, text and audio, 

without depending completely on any domain-knowledge and handcrafted 

features [280]. In the last decade, deep learning has attracted much attention 

from research teams with promising and outstanding results in several areas, 

such as Natural Language Processing (NLP) [290], texture classification [291], 

object recognition [283], face recognition [292], speech recognition [293], 

information retrieval [294], traffic sign classification [295], etc.  

A CNN is a feed-forward multi-layer neural network, which differs from 

traditional fully-connected neural networks by combining a number of locally-

connected layers aimed at automated feature recognition, followed by a number 

of fully-connected layers aimed at classification [242]. The CNN architecture, as 

illustrated in Fig. 4.2, comprises several distinct layers including sets of locally-
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connected convolutional layers (with a specific number of different learnable 

kernels in each layer), sub-sampling layers named pooling layers, and one or 

more fully-connected layers. The internal structure of the CNN combines three 

architectural concepts, which make the CNN successful in different fields, such 

as image processing, pattern recognition, speech recognition, and NLP. The 

first concept is applied in both convolutional and pooling layers, in which each 

neuron receives input from a small region of the previous layer called the local 

receptive field equals in size to a convolution kernel [289]. This local 

connectivity scheme ensures that the trained CNN produces strong responses 

to capture local dependencies and extracts elementary features in the input 

image (e.g., edges, ridges, curves, etc.) which can play a significant role in 

maximizing the inter-class variations and minimizing the intra-class variations, 

and hence increasing the CRR of the iris recognition system. Secondly, the 

convolutional layer applies the sharing parameters (weights) scheme in order to 

control the model capacity and reduce its complexity. At this point, a form of 

translational invariance is obtained using the same convolution kernel to detect 

a specific feature at different locations in the iris image [296]. Finally, the non-

linear down sampling applied in the pooling layers reduces the spatial size of 

the convolutional layer’s output and reduces the number of the free parameters 

of the model. Together, these characteristics make the CNN very robust and 

efficient at handling image deformations and other geometric transformations, 

such as translation, rotation and scaling [242]. In more detail these layers are:     

 Convolutional layer: In this layer, the parameters (weights) consist of a set 

of learnable kernels that are randomly generated and learned by the Back-

propagation algorithm. These kernels have a few local connections, but 

connect through the full depth of the previous layer. The result of each 

kernel convolved across the whole input image is called the activation (or 

feature) map, and the number of the activation maps is equal to the number 

of applied kernels in that layer. Fig. 4.2. shows a first convolution layer 

consisting of 6 activation maps stacked together and produced from 6 

kernels independently convolved across the whole input image. Hence, 

each activation map is a grid of neurons that share the same parameters. 

The activation map of the convolutional layer is defined as: 
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𝒚𝒋(𝒓) = 𝒎𝒂𝒙 (𝟎, 𝒃𝒋(𝒓) + ∑𝒌𝒊𝒋(𝒓)

𝒊

∗ 𝒙𝒊(𝒓))                               (𝟒. 𝟔) 

Here, 𝒙𝒊(𝒓) and 𝒚𝒋(𝒓) are the i-th input and the j-th output activation map, 

respectively. 𝒃𝒋(𝒓) is the bias of the j-th output map and (∗) denotes 

convolution. 𝒌𝒊𝒋(𝒓) is the convolution kernel between the i-th input map and 

the j-th output map. The ReLU activation function (y =max (0, x)) is used 

here to add non-linearity to the network, as will be explained later on. 

 Max-Pooling layer: Its main function is to reduce the spatial size of the 

convolutional layers' output representations, and it produces a limited form 

of the translational invariance. Once a specific feature has been detected by 

the convolutional layer, only its approximate location relative to other 

features is kept. As shown in Fig. 4.2, each depth slice of the input volume 

(convolutional layer’s output) is divided into non-overlapping regions, and 

for each sub-region, the maximum value is taken. A commonly used form is 

max-pooling with regions of size (2×2) pixels and a stride of 2. The depth 

dimension of the input volume is kept unchanged. The max-pooling layer 

can be formulated as follows: 

𝒚𝒋,𝒌
𝒊 = 𝒎𝒂𝒙

𝟎≤𝒎,𝒏<𝒔
(𝒙𝒋.𝒔+𝒎,𝒌.𝒔+𝒏

𝒊 )                                           (𝟒. 𝟕) 

Here, 𝒚𝒋,𝒌
𝒊  represents a neuron in the i-th output activation map, which is 

computed over an (s×s) non-overlapping local region in the i-th input map 

𝒙𝒋,𝒌
𝒊 . 

 Fully-connected layers: the output of the last convolutional or max-pooling 

layer is fed to one or more fully-connected layers as in a traditional neural 

network. In those layers, the outputs of all neurons in layer (l-1) are fully-

connected to every neuron in layer l. The output 𝒚(𝒍)(𝒋) of neuron 𝒋 in a fully-

connected layer l is defined as follows: 

𝒚(𝒍)(𝒋) =  𝒇(𝒍)  ( ∑ 𝒚(𝒍−𝟏)(𝒊).

𝑵(𝒍−𝟏)

𝒊=𝟏

 𝒘(𝒍)(𝒊, 𝒋) + 𝒃(𝒍)(𝒋) )                       (𝟒. 𝟖) 

where 𝑵(𝒍−𝟏) is the number of neurons in the previous layer (l-1), 𝒘(𝒍)(𝒊, 𝒋) is 

the weight for the connection from neuron 𝒋 in layer (l-1) to neuron 𝒋 in layer 
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l, and 𝒃(𝒍)(𝒋) is the bias of neuron 𝒋 in layer l. As for the other two layers, 𝒇(𝒍) 

represents the activation function of layer l. 

 

Figure 4.2: An illustration of the CNN architecture, where the grey and green 

squares refer to the activation maps and the learnable convolution kernels, 

respectively. The cross lines between the last two layers refer to the fully-

connected neurons. 

4.2.4  Softmax Regression Classifier 

The classifier implemented in the fully-connected part of the system, 

shown in Fig.4.2, is the Softmax regression classifier, which is a generalized 

form of binary Logistic Regression classifier intended to handle multi-class 

classification tasks. Suppose that there are K classes and n labelled training 

samples {(x1, y1),···, (xn, yk)}, where xi ∈ Rm is the i-th training example and yi 

∈ {1,···,K} is the class label of xi. Then, for a given test input xi, the Softmax 

classifier will produce a K-dimensional vector (whose elements sum to 1), 

where each element in the output vector refers to the estimated probability of 

each class label conditioned on this input feature. The hypothesis, 𝒉𝜽(𝒙𝒊), to 

estimate the probability vector of each label, can be defined as follows: 

 𝒉𝜽(𝒙𝒊) =  

[
 
 
 
𝒑(𝒚𝒊 = 𝟏| 𝒙𝒊;  𝜽)

𝒑(𝒚𝒊 = 𝟐| 𝒙𝒊;  𝜽)
...

𝒑(𝒚𝒊 = 𝑲| 𝒙𝒊;  𝜽)]
 
 
 

=  
𝟏

∑ 𝒆
𝜽
𝒋𝒙𝒊
𝑻

𝑲
𝒋=𝟏

[
 
 
 
 𝒆

𝜽
𝟏𝒙𝒊
𝑻

𝒆𝜽
𝟐𝒙𝒊
𝑻

...

𝒆𝜽
𝑲𝒙𝒊
𝑻

]
 
 
 
 

                            (𝟒. 𝟗) 

Here, (𝜽𝟏, 𝜽𝟐, … , 𝜽𝑲) are the parameters to be randomly-generated and 

learned by the Back-propagation algorithm. The cost function used for the 

Softmax classifier is called as the cross-entropy loss function and can be 

defined as follows:  
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𝑱(𝜽) =  − 
𝟏

𝒎
 [∑∑𝟏{𝒚𝒊 = 𝒋}𝒍𝒐𝒈

𝒆𝒋𝒙𝒊
𝑻

∑ 𝒆𝒍𝒙𝒊
𝑻𝑲

𝒍=𝟏

𝑲

𝒋=𝟏

𝒎

𝒊=𝟏

] + 
𝝀

𝟐
 ∑∑𝜽𝒊𝒋

𝟐

𝒏

𝒋=𝟎

𝑲

𝒊=𝟏

           (𝟒. 𝟏𝟎) 

Here, 1{} is a logical function, that is, when a true statement is given, 1{} 

1, otherwise, 1{} 0. The second term is a weight decay term that tends to 

reduce the magnitude of the weights, and prevents the overfitting problem. 

Finally, the gradient descent method is used to solve the minimum of the 𝑱(𝜽), 

as follows: 

𝜵𝜽𝒋
𝑱(𝜽) =  − 

𝟏

𝒎
 ∑[𝒙𝒊(𝟏{𝒚𝒊 = 𝒋} − 𝒑(𝒚𝒊 = 𝒋| 𝒙𝒊;  𝜽))]

𝒎

𝒊=𝟏

+ 𝝀𝜽𝒋           (𝟒. 𝟏𝟏) 

In Eq. (4.10), the gradients are computed for a single class 𝒋, and for each 

iteration, the parameters will be updated for any given training pair (xi, yi), as 

follows: 𝜽𝒏𝒆𝒘 =  𝜽𝒐𝒍𝒅 − 𝜶𝜵𝜽𝑱(𝜽), where the symbol 𝜶 refers to the learning rate 

[297]. 

4.3  The Proposed Iris Recognition System 

An overview of the proposed iris recognition system is shown in Fig. 4.3. 

Firstly, a pre-processing procedure is implemented, based on employing an 

efficient and automatic iris localization to carefully detect the iris region from the 

background and all extraneous features, such as pupil, sclera, eyelids, 

eyelashes, and specular reflections. In this work, the main reason for defining 

the iris area as the input to CNN instead of the whole eye image is to reduce the 

computational complexity of the CNN. Another reason is to avoid the 

performance degradation of the feature extraction and matching processes 

resulting from the appearance of eyelids and eyelashes. After detection, the iris 

region is transformed into a normalized form with fixed dimensions, in order to 

allow direct comparison between two iris images with initially different sizes.  

The normalized iris image is further used to provide robust and distinctive 

iris features by employing the CNN as an automatic feature extractor. Then, the 

matching score is obtained using the generated feature vectors from the last 

fully-connected layer as the input to the Softmax classifier. Finally, the matching 

scores from either the right or left iris images are used to establish the identity 
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of the person whose iris images are under investigation. During the training 

phase, different CNN configurations are trained on the training set and tested 

on the validation set, to obtain the best one with the smallest error that is called 

the IrisConvNet system. Its performance on test data is then assessed in the 

testing phase. 

 

Figure 4.3: Overall stages of the proposed iris recognition system. 

4.3.1 The Proposed Iris Localization System 

As mentioned previously, accurate iris localization plays a significant role 

in improving the accuracy and reliability of an iris recognition system, as the 

performance of the following stages of the system directly depends on the 

quality of the detected iris region. The iris localization procedure aims to detect 

the two iris region boundaries: the inner (pupil-iris) boundary, and the outer (iris-

sclera) boundary. However, the task becomes more difficult, when parts of the 

iris are covered by eyelids and eyelashes. In addition, changes in the lighting 

conditions during the acquisition process can affect the quality of the extracted 

iris region, and then affect the iris localization and the recognition outcome. As 

depicted in Fig. 4.4, the proposed iris localization method can be divided 

broadly into four stages: specular reflection removal, pupil localization, iris 

localization, and eyelid and eyelash detection. 
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Figure 4.4: Overall stages of the proposed iris localization procedure. 

4.3.1.1 Specular Reflection Removal  

One of the major issues in the iris segmentation and recognition system is 

the presence of reflection spots, which can result in inaccurate iris localization 

and thereby lead to poor iris recognition system performance. In this case, 

these spots need to be detected and isolated to get a clean iris pattern that can 

contribute to increasing the recognition rate. In this work, a reflection mask (Rm) 

is calculated to detect and remove the reflection spots along the eye image in 

two steps. Firstly, an adaptive threshold is applied, and, if the intensity of the 

pixel I(x, y) is greater than the determined threshold (T), then it will be 

considered as a reflection noise.  

𝑹𝒎(𝒙, 𝒚) = {
𝟏,          𝑰(𝒙, 𝒚) < 𝑻

 
𝟎,          𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

                                          (𝟒. 𝟏𝟐)                                  

Secondly, a morphological dilation operation is applied using a square 

shaped structure element whose width is 5 pixels for perfect detection and 

elimination of the reflection spots. Finally, the specular reflection spots in the 

eye image are painted using a defined reflection mask and a roifill Matlab 

function. As shown in Fig. 4.5, the specular reflections spots in the eye image 

have been removed efficiently; thereby this could contribute to improving the 

quality of iris patterns and the performance of the iris localization method. 
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Figure 4.5: Specular reflection removal stage: (a) The original eye image and 

(b) The output image. 

4.3.1.2  Pupil Localization 

The inner boundary of the iris region is detected before the outer 

boundary, due to the fact that the pupil region is the darkest region in the eye 

image, and can be detected easily. Moreover, this can contribute to improving 

the accuracy and the speed of detecting the outer boundary, as will be 

explained later on. The pupil localization is carried out by transforming the grey-

scale eye image into a binary image using the Hysteresis thresholding method. 

In this method, all pixels that have values above upper threshold, Tup, are 

marked as edge points. In addition, all the adjacent pixels to these edge points 

with values greater than lower threshold, Tlow, are marked as edge points as 

well. In this method, eight connectivity is used to detect connected regions to 

each edge point. As shown in Fig. 4.6 (b), there could exist some noise present 

in the binary image, due to other dark regions, such as eyelashes and eyelids. 

A morphological erosion operation using a disk shaped structure element of 1-

pixel radius is applied to eliminate such noise. This is followed by discarding all 

the connected components smaller than 80 pixels in order to produce the final 

binary image. As shown in Fig. 4.6 (c), the pupil region is almost completely 

detected in the binary image. Since it can be modelled as a circle, the pupil is 

detected correctly by employing the CCHT to obtain the centre coordinates and 

radius of the pupil circle. Fig. 4.6 (d) shows the detected inner boundary of the 

iris region. 
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Figure 4.6: Pupil localization stage: (a) The input image, (b) Applying the 

Hysteresis thresholding method, (c) The output of the morphological operation, 

and (d) The localized pupil boundary. 

4.3.1.3 Iris Localization 

The most challenging stage of the iris region localization model is 

detecting the outer boundary between the iris and sclera, for several reasons. 

Firstly, no clearly defined border exists between the iris and sclera because of 

the low variation in intensity between them. Secondly, the upper part of the iris 

is occluded by the upper eyelid and eyelashes in most cases. In this work, the 

edge map is generated using a Canny edge detector, followed by the CCHT, to 

localize the iris outer boundary. Each edge point in the edge map casts a vote 

in the Hough transform space and produces a circle of radius r to the output 

accumulator array. The circle with the highest number of votes is then chosen. 

However, the main concern here is that the Hough transform is computationally 

expensive, and increasing the number of unnecessary edge points can result in 

inaccurate iris localization. Therefore, to reduce the search space, the eye 

image needs to be enhanced before and after generating the edge map. In this 

work, a 2D Gaussian filter is employed, in order to smooth the eye image and 

reduce noise, as shown in Fig. 4.7 (b). The Gaussian filter is a low-pass filter, 

whose 2D filter coefficients are computed as follows:  
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𝑮(𝒙, 𝒚) =
𝟏

𝟐𝝅𝝈𝟐
𝒆

−
𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐                                                        (𝟒. 𝟏𝟑) 

Here, x and y are the distances from the origin along the horizontal and 

vertical axes, and σ = 0.8 is the standard deviation of the Gaussian distribution. 

After that, the Histogram equalization is used to enhance the contrast between 

the iris and sclera region, and to make detecting the iris outer boundary easier, 

as shown in Fig. 4.7 (c). In the next step, an edge map of the eye image is 

generated by applying the Canny edge detector. As can be seen in Fig. 4.7 (d), 

there are a lot of unnecessary edge points that need to be identified and 

eliminated to improve the performance of the CCHT. In this work, based on 

prior knowledge from the literature that the centre of the iris and pupil are 

relatively close, and to the established fact in [298][299] that the ratio of iris 

radius/pupil falls between 4 and 1.75, a circle using the pupil centre is drawn 

and the pixels within the circle are set to zero. The radius of the drawn circle 

was selected empirically to be (rpupil+6) for all the employed datasets. This 

procedure eliminates edge points within the iris region that represent the pupil 

boundary and iris tissue without the risk of affecting the iris outer boundary. 

Then, all the connected components smaller than 99 pixels are excluded, as 

shown in Fig. 4.7 (e). These parameters are adjusted only once for all the 

datasets considered. Finally, the centre coordinates and radius of the iris circle 

are obtained by applying the CCHT, as shown in Fig. 4.7 (f). 

4.3.1.4  Eyelids and Eyelashes Detection 

This stage of detecting the eyelids boundaries and the eyelashes has a 

significant role in either improving or degrading the performance of the iris 

localization model and the iris recognition system. Therefore, these artefacts 

need to be identified and eliminated to obtain a clean iris template. However, 

detecting the eyelids boundaries is a challenging problem as they can be 

occluded by the eyelashes in many cases. A number of eyelids detection 

algorithms have been proposed in the literature, as described in [300], where 

the boundary between the eyelids and iris is modeled as a parabolic arc or line. 

In this work, an efficient and robust algorithm is proposed by fitting these 

boundaries as straight lines, where the line form has fewer parameters than the 

parabolic arc, and thereby requires less processing time. 
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Figure 4.7: Iris localization stage: (a) The input image, (b) Applying the 2D 

Gaussian filter, (c) Histogram equalization is employed, (d) Generated edge 

map, (e) Further processing for removing noise, and (f) The final detected iris 

boundaries. 

Firstly, an anisotropic diffusion filter [301], is applied on the eye image in 

order to enhance the eyelids boundaries and reduce the eyelashes effect, as 

shown in Fig. 4.8 (b). The anisotropic diffusion filter can be defined as follows: 

 𝑰𝒊,𝒋
𝒕+𝟏 = 𝑰𝒊,𝒋

𝒕 +  𝝀[𝒄𝑵 . 𝜵𝑵 𝑰 + 𝒄𝑺 . 𝜵𝑺 𝑰 + 𝒄𝑬 . 𝜵𝑬 𝑰 + 𝒄𝑾 . 𝜵𝑾 𝑰]𝒊,𝒋
𝒕         (𝟒. 𝟏𝟒)                                 

Here, I is the eye image, 0 ≤ 𝝀 ≤ 1/4, c refers to the conduction coefficients 

that updated each iteration as a function of the brightness gradient, t refers to 

the iteration index, and 𝜵 points to the nearest neighbour differences in all the 

directions N,S,E and W, as follows: 

𝜵𝑵 𝑰𝒊,𝒋 = 𝑰𝒊−𝟏,𝒋 − 𝑰𝒊,𝒋 

𝜵𝑺 𝑰𝒊,𝒋 = 𝑰𝒊+𝟏,𝒋 − 𝑰𝒊,𝒋 

𝜵𝑬 𝑰𝒊,𝒋 = 𝑰𝒊,𝒋+𝟏 − 𝑰𝒊,𝒋 

𝜵𝑾 𝑰𝒊,𝒋 = 𝑰𝒊,𝒋−𝟏 − 𝑰𝒊,𝒋                                              (𝟒. 𝟏𝟓) 
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Figure 4.8: (a) An occluded eye image and (b) the output of the anisotropic 

diffusion filter. 

In this work, 𝝀 = 𝟎. 𝟐𝟏 and t=6. Secondly, the search time for the Radon 

transform is reduced by extracting the iris and dividing it into upper and lower 

parts, as shown in Fig. 4.9 (a) and (b). This is followed by generating the edge 

map of each part using a modified Canny edge detector where only the 

horizontal edges are considered, as shown in Fig. 4.9 (c). Finally, the Radon 

transform is implemented to fit the upper and lower eyelids boundaries. In the 

proposed method, there is no line to fit, if the maximum of the Radon transform 

space is less than the pre-defined threshold, which means that the iris region is 

not occluded by the eyelids. Generally, the eyelashes can be divided into types: 

separable and multiple eyelashes that grow along the eyelid boundaries. In 

addition, it is observed that the eyelashes have a lower intensity value than the 

iris region. In this work, a simple thresholding technique is employed to detect 

eyelashes carefully to avoid remove important iris information, as shown in Fig. 

4.9 (d). 

 

Figure 4.9:  Eyelids and Eyelashes Detection: (a) The iris boundary region, (b) 

The top and bottom parts of iris region, (c) The edge map the top and bottom 

parts, and (d) The final detected eyelids and eyelashes. 
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4.3.1.5  Iris Normalization 

Once, the iris boundaries have been detected, iris normalization is 

implemented to produce a fixed dimension feature vector that allows 

comparison between two different iris images. The main advantage of the iris 

normalization process is to remove the dimensional inconsistencies that can 

occur due to stretching of the iris region caused by pupil dilation with varying 

levels of illumination. Other causes of dimensional inconsistencies include, 

changing imaging distance, elastic distortion in the iris texture that can affect the 

iris matching outcome, rotation of the camera or eye and so forth. To address 

all these mentioned issues the iris normalization process is applied using 

Daugman’s Rubber Sheet mapping to transform the iris image from Cartesian 

coordinates to polar coordinates, as shown in Fig. 4.10. Daugman’s mapping 

takes each point (x, y) within the iris region to a pair of normalized non-

concentric polar coordinates (r, θ), where r is on the interval [0, 1] and θ is the 

angle on the interval [0, 2π]. This mapping of the iris region can be defined 

mathematically as follows: 

           𝑰(𝒙(𝒓, 𝜽), 𝒚(𝒓, 𝜽))
 
→ 𝑰(𝒓, 𝜽)                              

          𝒙(𝒓, 𝜽) = (𝟏 − 𝒓)𝒙𝒑 (𝜽)𝒓𝒙𝒍(𝜽)                        

      𝒚(𝒓, 𝜽) = (𝟏 − 𝒓)𝒚𝒑 (𝜽)𝒓𝒚𝒍(𝜽)                                      (𝟒. 𝟏𝟔) 

Here 𝑰(𝒙, 𝒚) is the intensity value at (𝒙, 𝒚) in the iris region image. The 

parameters 𝒙𝒑 , 𝒙𝒍, 𝒚𝒑 and 𝒚𝒍 are the coordinates of the pupil and iris boundaries 

along the 𝜽 direction. 

 

 

 

 

 

Figure 4.10: Daugman’s Rubber Sheet model to transfer the iris region from the 

Cartesian coordinates to the polar coordinates. 
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4.3.2  The Proposed IrisConvNet System 

Once a normalized iris image is obtained, feature extraction and 

classification is performed using a deep learning approach that combines a 

CNN and a Softmax classifier. In this work, the structure of the proposed CNN 

involves a combination of convolutional layers and sub-sampling max-pooling. 

The top layers in the proposed CNN are two fully-connected layers for the 

classification task. Then, the output of the last fully-connected layer is fed into 

the Softmax classifier, which produces a probability distribution over the N class 

labels. Finally, a cross-entropy loss function, a suitable loss function for the 

classification task, is used to quantify the agreement between the predicted 

class scores and the target labels, and calculate the cost value for different 

configurations of CNN. In this section, the proposed methodology for finding the 

best CNN configuration to be used for the iris recognition task is explained. 

Based on domain-knowledge from the literature [31][291], there are three main 

aspects that have a great influence on the performance of a CNN, which need 

to be investigated. These include: (i) Training methodology, (ii) Network 

configuration or architecture, and (iii) Input image size. The performance of 

some carefully proposed training strategies, including the dropout method, 

AdaGrad method and data augmentation is investigated as part of this work. 

These training strategies have a significant role in preventing the overfitting 

problem during the learning process, and increasing the generalization ability of 

the neural network for new unseen data. These three aspects are described in 

more details in the next section. 

4.3.2.1 Training Methodology 

In this work, all of the experiments were carried out, given a particular set 

of sample data, using 80% randomly selected samples for training, and the 

remaining 20% for testing. The training methodology is similar to [254][302]. It 

starts with training a particular CNN configuration by dividing the training set 

into four sets: three sets are used to train the CNN, and the last one is used as 

for validation. Validation is used for testing the generalization ability of the 

network during the learning process and storing the weights configuration that 

performs best on it with a minimum validation error, as shown in Fig. 4.11. In 

this work, the training procedure is performed using the Back-propagation 
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algorithm, with the mini-batch AdaGrad optimization method introduced in [303], 

where each set of the three training data is divided into mini-batches, and the 

training errors are calculated upon each mini-batch in the Softmax layer and get 

back-propagated to the lower layers.  

After each epoch (passing through the entire training samples), the 

validation set is used to measure the accuracy of the current configuration by 

calculating the cost value and the Top-1 validation error rate. Then, according to 

the Adagrad optimization method, the learning rate is scaled by a factor equal to 

the square root of the sum of squares of the previous gradients, as shown in 

Eq.(4.17). An initial learning rate must be selected, hence two of the most 

common used learning rate values are analysed herein, as shown in (Section 

4.4.3.1). To avoid the overfitting problem, the training procedure is stopped as 

soon as the cost value and the error on the validation set starts to rise again, 

which means that the network starts to overfit the training set. This process is 

one of the regularization methods called the early stopping procedure. In this 

work, different numbers of epochs are investigated as explained in (Section 

4.4.3.1). Finally, after the training procedure is finished, the testing set is used 

to measure the efficiency of the final configuration obtained in predicting the 

unseen samples by calculating the identification rate at Rank-1 as an 

optimization objective, which is maximized during the learning process. Then, 

the CMC curve is used to visualize the performance of the best configuration 

obtained as the iris identification system. The main steps of the proposed 

training methodology are summarized as follows: 

1. Split the dataset into three sets: Training, Validation and Test set. 

2. Select a CNN architecture and a set of training parameters. 

3. Train the each CNN configuration using the training set. 

4. Evaluate each CNN configuration using the validation set. 

5. Repeat steps 3 through 4 using N epochs. 

6. Select the best CNN configuration with a minimal error on the validation set. 

7. Evaluate the best CNN configuration using the test set. 
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Figure 4.11: An overview of the proposed training methodology to find the best 

CNN architecture, where CRR refers to the Correction Recognition Rate at 

Rank-1. 

4.3.2.2 Network Architecture 

Once the parameters of the training methodology are determined (e.g. 

learning rate, number of epochs, etc.), it is used to identify the best network 

architecture. From the literature, it appears that choosing the network 

architecture is still an open problem, and is application dependent. The main 

concern in finding the best CNN architecture is the number of the layers to 

employ transforming from the input image to high-level feature representations, 

along with the number of convolution filters in each layer. Therefore, some CNN 

configurations using the proposed training methodology are evaluated by 

varying the number of convolutional and pooling layers, and the number of 

filters in each layer, as explained in (Section 4.4.3.2). To reduce the number of 

configurations to be evaluated, the number of the fully-connected layers is fixed 

at two, as in [304][305], and the size of filters for both the convolutional and 

pooling layers are kept as the same as in [30], except in the first convolutional 

layer where it is set to (3×3) pixels, to avoid a rapid decline in the amount of 

input data. 
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4.3.2.3 Input Image Size 

The input image size is one of the hyper-parameters in the CNN that has 

a significant influence on the speed and the accuracy of the neural network. In 

this work, the influence of input image size is investigated using the sizes 

(64×64) pixels and (128×128) pixels (generated from original images of larger 

size as described in the Data Augmentation section below), given that, for lower 

values than the former, the iris patterns become invisible, while for higher 

values than the latter, the larger memory requirements and higher 

computational costs are potential problems. In order to control the spatial size of 

the input and output volumes, a zero-padding (of 1-pixel) is applied only to the 

input layer.  

4.3.2.4 Training Strategies 

In this section, a number of carefully-designed training techniques and 

strategies are used to prevent overfitting during the learning process and 

increase the generalization ability of the neural network. These techniques are: 

1. Dropout Method: this is a regularization method recently introduced by 

Srivastava et al. [282] that can be used to prevent neural networks from 

overfitting the training set. The dropout technique is implemented in each 

training iteration by completely ignoring individual nodes with a probability of 

0.5, along with their connections. This method decreases the complex co-

adaptations of nodes by preventing the interdependencies from emerging 

between them. The nodes which are dropped do not participate in both 

forward and backward passing. Therefore, as shown in Fig. 4.12 (b), only a 

reduced network is left and is trained on the input data in that training 

iteration. As a result, the process of training a neural network with n nodes 

will end up with a collection of (2n) possible "thinned "neural networks that 

share weights. This allows the neural network to avoid overfitting, learn 

more robust features that generalize well to new unseen data, and speeds 

up the training process. Furthermore, it provides an efficient way of 

combining many neural networks with different architectures, which make 

the combination more beneficial. In the testing phase, it is not practical to 

average the predictions from (2n) "thinned" neural networks, especially for a 
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large value of n. However, this can be easily addressed by using a single 

network without dropout, and with the outgoing weights of each node 

multiplied by a factor of 0.5 to ensure that the output of any hidden node is 

the same as in the training phase. In this work, the dropout method is 

applied only to the two fully-connected layers, as they include most of the 

parameters in the proposed CNN, and are more vulnerable to overfitting. 

More information on the dropout method can be found in [282]. 

 

 

 

 

 

 

 

 

 

Figure 4.12: An illustration of applying the dropout method to a standard neural 

network: (a) A standard neural network with 2 hidden layers before applying 

dropout method. (b) An example of a reduced neural network after applying 

dropout method. The crossed units and the dashed connections have been 

dropped. 

2. AdaGrad Algorithm: in the iris recognition system, infrequent features can 

significantly contribute to improving the accuracy of the system through 

minimizing intra-class variations and inter-class similarities, which is caused 

by several factors, including pupil dilation/constriction, eyelid/eyelash 

occlusion, and specular reflections spots. However, in the standard 

Stochastic Gradient Descent (SGD) algorithm for learning rate adaptation, 

both infrequent and frequent features are weighted equally in terms of 

learning rate, which means that the influence of the infrequent features is 

practically discounted. To counter this, the AdaGrad algorithm is 

implemented to increase the learning rate for more sparse data, which is 
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translated into a larger update for infrequent features, and decreased 

learning rate for less sparse data, which is translated into a smaller update 

for the frequent features. The AdaGrad algorithm also has the advantage of 

being simpler to implement than the SGD algorithm [303]. The AdaGrad 

technique has been shown to improve the convergence performance 

stability of neural networks over the SGD in many different applications (e.g. 

NLP, document classification, etc.) in which the infrequent features are 

more useful than the more frequent features. The AdaGrad algorithm 

computes the learning rate (η) for every parameter (𝜽𝒊) at each time step 𝒕, 

based on the previous gradients of the same parameter as follows:  

𝜽𝒊
(𝒕+𝟏)

= 𝜽𝒊
(𝒕)

− 
𝜼

√𝑮𝒕,𝒊𝒊 + 𝒆
 . 𝒈𝒕,𝒊                                         (𝟒. 𝟏𝟕) 

Here, 𝒈𝒕,𝒊 = 𝜵𝜽𝑱(𝜽𝒊) is the gradient of the objective function at time step t, 

and 𝑮𝒕,𝒊𝒊 = ∑ 𝒈𝒕,𝒊
𝟐𝒕

𝒓=𝟏  is the diagonal matrix, where each diagonal element (i, 

i) is the sum of the squares of the gradients for the parameter (𝜽𝒊) at time 

step t. Finally, 𝒆 is a small constant to avoid division by zero. More details 

on the AdaGrad algorithm can be found in [303]. 

3. Data Augmentation: it is well-known that DNNs need to be trained on a 

large number of training samples to achieve satisfactory prediction and 

prevent overfitting. Data augmentation is a simple and commonly-used 

method to artificially enlarge the dataset by methods such as: random 

crops, intensity variations, horizontal flipping, etc. In this work, data 

augmentation is implemented similarly to [283]. Initially, a given rectangular 

image is rescaled so that the longest side is reduced to the length of the 

shortest side instead of cropping out a square central patch from the 

rectangle image, as in [283], which can lose crucial features from the iris 

image. Then, five image regions are cropped from the rescaled image 

corresponding to the four corners and central region. In addition, their 

horizontally flipped versions are also acquired. As a result, ten image 

patches are generated from each input image. During prediction time, the 

same ten image patches are extracted from each input image, and the 

mean of the predictions on the ten patches is taken at the Softmax layer. In 

this work, the performance of the CNN is evaluated using two different input 



                                                                         Chapter 4: Iris Recognition System 
    

 

133 
 

image sizes, so the data augmentation procedure is implemented twice, 

once for each size. Image patches of size (64×64) pixels are extracted from 

original input images of size (256×70) pixels, and image patches of size 

(128×128) pixels are extracted from original input images of size (256×135) 

pixels. 

4. The ReLU Activation Function:  is applied on the top of the convolutional 

and fully-connected layers, in order to add non-linearity to the network. As 

reported by Krizhevsky [283], the ReLU 𝒇(𝒙) = 𝒎𝒂𝒙 (𝟎, 𝒙) has been found 

to be crucial to learning when using DNNs, especially for CNNs, compared 

to other activation functions, such as the sigmoid and tangent. In addition, it 

results in neural network training several times faster than with other 

activation functions, without making a significant difference to generalization 

accuracy.   

5. Weight Decay: is used in the learning process as an additional term in 

calculating the cost function and updating the weights. Here, the weight 

decay parameter is set to 0.0005 as in [306]. 

 

4.4  Experimental Results 

In this section, a number of extensive experiments are described to assess 

the effectiveness of the proposed iris localization, the deep learning approach 

for iris recognition, and compare their performance with other existing 

approaches. Firstly, a brief description of the iris datasets used in these 

experiments is given. Secondly, the performance of the proposed iris 

localization system was evaluated and compared with current state-of-the-art 

approaches in term of Average Accuracy Rate (AAR) and average localization 

time. Finally, extensive experiments performed to find the best CNN (called 

IrisConvNet) for the iris recognition system, are described and compared with 

current state-of-the-art approaches, in term Rank-1 identification rate and 

recognition time. 

4.4.1  Description of Iris Datasets 

In this work, the performances of the proposed iris localization and 

recognition systems were evaluated on the most challenging iris datasets 

currently available in the public domain. Five iris datasets, namely, SDUMLA-



                                                                         Chapter 4: Iris Recognition System 
    

 

134 
 

HMT [255], CASIA-Iris-V1 [307], CASIA-Iris-V3 Interval [308], Multimedia 

University (MMU1) [309], and IITD [309], were employed as testing benchmarks 

and for comparing the results obtained with current state-of-the-art approaches. 

In most cases, the iris images in these datasets were captured under different 

conditions of pupil dilation, eyelids/eyelashes occlusion, head-tilt, a slight 

shadow of eyelids, specular reflection spots, etc. Some examples of iris images 

from each dataset are shown in Fig. 4.13, while the basic characteristics of 

these five datasets are summarized in Table 4.1. 

 SDUMLA-HMT iris dataset [255]: This comprises of 106 subjects with 

each one providing 10 images (e.g. 5 images for each eye). Therefore, the 

total is 1,060 images taken using an intelligent iris capture device with a 

distance between the device and the eye of between 6cm and 32cm. The 

images are stored in grey-scale level and “BMP” format, with an image size 

of (768×576) pixels. To the best of the author’s knowledge, this is the first 

work that uses the SDUMLA-HMT iris dataset for evaluating an iris 

recognition system operating in the identification mode. 

 CASIA-Iris-V1 dataset [307]: This contains a total of 756 images captured 

from 108 subjects with 7 images for each one. The images in this dataset 

were collected in two sessions with some irises occluded by the upper 

and/or lower eyelids. All images were stored in “BMP” format, with an image 

size of (320×280) pixels. 

 CASIA-Iris-V3 Interval dataset [308]: The CASIA-Iris-V3 Interval dataset 

consists of 2,566 images from 249 subjects, which were captured from both 

left and right eye using a self-developed close-up iris camera. In this 

dataset, the number of images of each subject differs, and 129 subjects 

have less than 14 iris images. These were not used in the experiments. The 

images were stored in “JPEG” format with an image size of (320×280) 

pixels.  

 MMU1 dataset [309]: This contains a total of 450 images captured from 45 

subjects with each one providing 10 images (e.g. 5 images for each eye). 

These images were captured using an LG IrisAccess semi-automated 

camera with a distance between the eye and the camera of between 7cm 

and 25cm. The images were stored in “BMP” format with an image size of 



                                                                         Chapter 4: Iris Recognition System 
    

 

135 
 

(280×320) pixels. In this work, the left and right iris images of the MMU1 

dataset were treated separately for a comparison purpose, and hence the 

MMU1 dataset has 90 subjects during the experimental setup. 

 IITD dataset [309]: This contains a total of 1,120 iris images captured from 

224 subjects (176 males and 48 females) in the age group 14–55 years, 

who are students and staff at IIT Delhi, New Delhi, India. Each subject has 

5 images for each eye, which were captured using three different cameras: 

JIRIS, JPC1000, digital CMOS cameras. The size of each image is 

(320×240) pixels, and they were stored in the “BMP” format. 

 

Figure 4.13: Examples of iris images in five iris datasets: (a) SDUMLA-HMT, 

(b) CASIA-Iris-V1, (c) CASIA-Iris-V3 Interval (d) MMU1, and (e) IITD.  
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Table 4.1: The characteristics of the adopted iris image datasets. 

Iris 
Datasets 

The Main Characteristics 
Number of 

Classes 
Samples Per 

Subject 
Number of 

Images 
Image 

Size 
Image 

Format 
SDUMLA-

HMT 
106 5 Right & 5 Left 1,060  (768×576) BMP 

CASIA-Iris-
V1 

108 7 Per Subject 756 (320×280) BMP 

CASIA-Iris-
V3 Interval 

120 7 Right & 7 Left 1,680 (320×280) JPEG 

MMU1 90 5 Per Subject 450 (320×240) BMP 
IITD 224 5 Right & 5 Left 2,240 (320×240) BMP 

4.4.2  Iris Localization Experiments 

In this section, extensive experiments were conducted on five challenging 

and well-known iris datasets to evaluate the performance of the proposed iris 

localization system. In this work, the iris localization is considered as accurate 

only if two conditions are satisfied. Firstly, the inner and outer boundaries are 

correctly localized. Secondly, the upper and the lower eyelids are correctly 

detected, as shown in Fig. 4.14. If one of the above conditions is not provided, 

then the iris localization is not precise, as illustrated in Fig. 4.15. The AAR of the 

proposed iris localization method was computed by dividing the number of 

correctly localized iris images with the number of all the iris images in the 

dataset, defined as follows: 

 𝑨𝑨𝑹 =  
𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝑳𝒐𝒄𝒂𝒍𝒊𝒛𝒆𝒅 𝑰𝒓𝒊𝒔 𝑰𝒎𝒂𝒈𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒎𝒂𝒈𝒆𝒔
 × 𝟏𝟎𝟎                         (𝟒. 𝟏𝟖)   

Finally, the average localization time was computed by calculating the 

localization time for all the correctly localized iris images, divided by the number 

of the correctly localized iris images in the dataset. 
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Figure 4.14: Examples of correct localized iris images: The top row represents 

examples from the CASIA-Iris-V1 dataset, while the second and bottom rows 

represent examples from the SDUMLA-HMT dataset, the right and left eye 

image, respectively. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Examples of failed iris localization: The top row represents 

examples from the CASIA-Iris-V1 dataset, while the second and bottom rows 

represent examples from the SDUMLA-HMT dataset, the right and left eye 

image, respectively. 
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As can be seen from Table 4.2, excellent results with an overall accuracy 

of 96.99%, 99.07%, 99.82%, 99.11%, and 99.87%, obtained with times of 

0.72s, 0.63s, 0.62s, 0.32s, and 0.51s, were achieved by applying the proposed 

iris localization model on the SDUMLA-HMT, CASIA-Iris-V1, CASIA-Iris-V3 

Interval, MMU1, and IITD dataset, respectively. The proposed iris localization 

model managed to correctly localize the iris region from 1,028 out of 1,060 eye 

images, 749 out of 756 eye images, 1,677 out of 1,680 eye images,446 out of 

450 eye images, and 2,237 out of 2,240 eye images in the SDUMLA-HMT, 

CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1, and IITD datasets, respectively. 

Moreover, it has been found that, using the Radon transform in the eyelids 

boundary detection increases the speed of the proposed system, which has the 

advantage over other fitting algorithms, such as the parabolic Hough transform. 

In this work, the main causes of the error iris localization are due to the weak 

contrast between the iris and sclera regions, the presence of eyelashes that 

cover the iris and/or the eyelids, and the low illumination. However, in most of 

the failing situations, the proposed method is still able to detect correctly at least 

one of the iris boundaries. The incorrect iris localization results have been taken 

into account manually, to ensure that all the subjects have the same number of 

images for the subsequent evaluation of the overall proposed iris recognition 

system. 

 

Table 4.2: The accuracy rate and running time of the proposed iris localization 

system. 

Iris Datasets AAR (%)  Running Time (s) 

SDUMLA-HMT 96.99 0.72 

CASIA-Iris-V1 99.07   0.63 

CASIA-Iris-V3 Interval 99.82 0.62 

MMU1 99.11 0.32 

IITD 99.87 0.51 
 

For further evaluation, the performance of the proposed iris localization 

system was compared with other established iris localization approaches, as 

listed in Table 4.3. The results obtained demonstrate that the proposed system 
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outperforms the indicated state-of-the-art of approaches in terms of accuracy in 

33 out of 35 cases, and, in terms of running time, in 15 out of 19 cases, where 

this information is available. Although some approaches have achieved slightly 

a higher AAR (e.g., Jan et al. [129]) or a lower running time (e.g., Hentati et al. 

[310], Uhl et al. [311], Mehrotra et al. [154], etc.) compared with the proposed 

system, they obtained inferior results either in another term or in other datasets. 

4.4.3  Iris Identification Experiments  

In this section, extensive experiments performed to find the best CNN 

model (called IrisConvNet) for the iris recognition system are described. Based 

on the domain-knowledge from the literature, sets of training parameters and 

CNN configurations, as illustrated in Fig. 4.16, were evaluated to study their 

behavior and to obtain the best CNN. Then, the performance of this best system 

was used later on, to make comparisons with current state-of-the-art iris 

recognition systems. 

In this work, due to the sufficient number of iris images, the datasets 

namely: SDUMLA-HMT, CASIA-Iris-V3 Interval, and IITD were used as the 

main datasets to fine-tune the hyper-parameters of the CNN to find the best 

recognition model. Then, the best obtained CNN model was used for 

subsequent evaluations on CASIA-Iris-V1 and MMU1 dataset. 

 

 

Figure 4.16: An illustration of the IrisConvNet model for iris recognition. 
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Table 4.3: Comparison of the proposed iris localization model with previous 

approaches using four different iris datasets. 

Datasets Approach AAR (%) Time (s) 

C
A

S
IA

-I
ri

s-
V

1
 

Faundra et al. [312] 98.88 - 

Shamsi et al. [313] 98.00 - 

Masek  [314] 83.00 9.37 

Mahmoud and Ali [315] 98.37 - 

Hentati et al. [310] 92.6 0.290 

GuangZhu et al. [316] 98.42 - 

Ng et al. [317] 97.22 - 

Jan et al. [129] 100 7.20 

Ibrahim et al. [318] 92.00 - 
Proposed Iris Localization 99.07   0.63 

C
A

S
IA

-I
ri

s-
V

3
 I

n
te

rv
a

l 

Rao et al. [319] 91.00 0.26 

Mahmoud and Ali [315] 99.18 - 

Jan et al. [129] 99.50 7.75 

Wang et al. [320] 96.95 165.4 

Uhl et al. [311] 74.00 0.21 

Ugbaga et al. [321] 98.90 - 

Umer et al. [146] 95.87 0.89 

Wild et al. [322] 98.13 - 

Aydi et al. [274] 96.51 9.049 

Pawar et al. [128] 96.88 - 

Mehrotra et al. [154] 99.55 0.396 

Wan et al. [323] 97.29 1.67 
Wild et al. [324] 94.03 - 

Proposed Iris Localization 99.82 0.62 

M
M

U
1

 

Shamsi et al. [313] 99.00 - 

Jan et al. [129] 100 2.67 

Umer et al. [146] 98.22 0.58 

P´erez et al. [325] 84.00 0. 379 

Ibrahim et al. [318] 93.00 - 
Wan et al. [323] 97.83 1.52 
Valentina et al. [326] 92.89 - 

Fernandez et al. [327] 97.60 0.557 

Proposed Iris Localization 99.11 0.32 

II
T

D
 

Jan et al. [129] 99.40 8.52 

Wang et al. [320] 96.07 145.4 

Umer et al. [146] 98.48 0.77 

Wild et al. [322] 97.60 - 

Wild et al. [324] 96.77 - 

Proposed Iris Localization 99.87 0.51 
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4.4.3.1 Training Parameters Evaluation 

As mentioned previously, a set of training parameters is needed in order to 

study and analyse their influence on the performance of the proposed deep 

learning approach and to design a powerful network architecture. All these 

experiments were conducted on the three different iris datasets, and the 

parameters with the best performance (e.g. lowest validation error rate and best 

generalization ability) were kept to be used later in finding the best network 

architecture. For an initial network architecture, the Spoofnet architecture, as 

described in [30], was used with only a few changes. The receptive field in the 

first convolutional layer was set to be (3×3) pixels rather than (5×5) pixels to 

avoid a rapid decline in the amount of input data, and the output of the Softmax 

layer was set to N units (the number of classes) instead of 3 units, as in the 

Spoofnet. Finally, the (64×64) pixels input image size, rather than (128×128) 

pixels, was used in these experiments with a zero-padding of 1-pixel value 

applied only to the input layer. The first evaluation was to analyse the influence 

of the learning rate parameter using the AdaGrad optimization method. Based 

on the proposed training methodology described in (Section 4.3.2.1), an initial 

learning rate of 10-3 was employed as in [328]. However, it was observed that 

the model takes too long to converge because the learning rate was too small 

and it reduced continuously after each epoch according to the AdaGrad 

method. Therefore, for all the remaining experiments, an initial learning rate of 

10-2 was used. For the first time, the initial number of epochs was set to 100 

epochs as in [283]. After that, larger numbers of epochs were also investigated 

using the same training methodology, including 200, 300, 400, 500 and 600 

epochs. The CMC curves shown in Fig. 4.17 are used to visualize the 

performance of the last obtained model on the validation set. It can be seen 

that, as long as the number of epochs is increased, the performance of the last 

model gets better. However, when 600 epochs were evaluated, it was observed 

that the obtained model started overfitting the training data, and poor results 

were obtained on the validation set. Therefore, 500 epochs were taken as the 

initial number of epochs in the assessment procedure for all remaining 

experiments, since the learning process still achieved good generalization 

without overfitting. 



                                                                         Chapter 4: Iris Recognition System 
    

 

142 
 

 

(a) SDUMLA-HMT Dataset. 

 

(b) CASIA-Iris-V3 Interval Dataset. 
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(c) IITD Dataset. 

Figure 4.17: CMC curves for epoch number parameter evaluation using three 

different iris datasets: (a) SDUMLA-HMT, (b) CASIA-Iris-V3, and (c) IITD. 

4.4.3.2 Network Architecture and Input Image Size Evaluation  

The literature on designing powerful CNN architectures shows that this is 

an open problem, and usually approached using previous knowledge of related 

applications. Generally, the CNN architecture is related to the size of the input 

image. A smaller network architecture (a smaller number of layers) is required 

for a small image size to avoid degrading the quality of the last generated 

feature vectors, by increasing the number of layers, while a deeper network 

architecture can be employed for input images with a larger size, along with a 

large number of training samples to increase the generalization ability of the 

network by learning more distinctive features from the input samples. In this 

study, when the training parameters have been determined, the network 

architecture and input image size were evaluated simultaneously by performing 

extensive experiments using different network configurations. Based on the 

proposed training methodology, the evaluation strategy starts from a relatively 

small network (three layers), and then the performance of the network was 

observed by adding more layers and filters within each layer. In this work, the 

influence of input image size was investigated using image sizes of (64×64) 

pixels and (128×128) pixels, each with two different network configurations. For 
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example, the (64×64) size was assessed using network topologies with 3 and 4 

convolutional layers, while the (128×128) size was assessed using network 

topologies with 4 and 5 convolutional layers. 

The results obtained by applying the proposed system on the three 

different iris datasets with image sizes of (64×64) pixels and (128×128) pixels 

are presented in Table 4.4 and 4.5, respectively. As can be seen in these 

tables, the number of the filters in each layer is tending to increase as one 

moves from the input layer toward the higher layers, as has been done in 

previous works in the literature, to avoid memory issues and control the model 

capacity. In general, it has been observed that the performance of a CNN 

improves as the number of the employed layers is increased, along with the 

number of the filters per each layer. For instance, in Table 4.4 the recognition 

rate dramatically increased for all employed datasets by adding a new layer on 

the top of the network. However, adding a new layer on the top of the network, 

and/or altering the number of the filters within each layer, should be carefully 

controlled. For instance, in Table 4.5, it can be seen that adding a new layer led 

to a decrease in the recognition rate from 93.02% to 80.09% for the left iris 

image in the SDUMLA-HMT dataset, and from 99.17% to 95.23% for the right 

iris image in the CASIA-Iris-V3 Interval dataset. In addition, changing the 

number of filters within each layer has a significant influence on the 

performance of the CNN. There are examples of this shown in Table 4.4 (e.g. 

Configuration number 10 and 11), and Table 4.5 (e.g. Configuration number 18 

and 19) where altering the number of filters in some layers has led to either an 

increase or a decrease in the recognition rate.  

As indicated in Fig. 4.16, the last CNN configuration in Table 4.4 is 

preferred as the adopted CNN architecture for identifying a person’s identity, for 

several reasons. Firstly, it provides the highest identification rate at Rank-1 for 

both the left and right iris images for all the employed datasets with less 

complexity (fewer parameters). Secondly, although this model has given 

promising results using an input image of size (128×128) pixels, the input image 

size might be a major constraint in some applications; hence the smaller one is 

used as the input image size for IrisConvNet. In addition, the training time 

required to train such a configuration is less than one day, as shown in (Section 
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4.4.4). Finally, a larger CNN configuration, along with a larger image size, drives 

significant increases in memory requirements and computational complexity. 

The performance of IrisConvNet for iris identification for both employed input 

images sizes is expressed through the CMC curve, as shown in Fig. 4.18. Fig. 

4.19 shows the feature maps for the first two layers of the IrisConvNet system, 

with corresponding input images from SDUMLA-HMT dataset. One can see that 

the filters in the first two layers of the IrisConvNet system can efficiently capture 

the edges and corners within the input image, which are proven to be important 

for iris recognition.   

 

Table 4.4: Rank-1identification rates obtained for different CNN architectures 

using the input image size of (64×64) pixels. Each configuration has either 3 or 

4 layers and indicates the number of filters in each layer. 

 

 

Configuration 
SDUMLA-HMT  CASIA-Iris-V3 IITD  

R. Iris L. Iris R. Iris L. Iris R. Iris L. Iris 

[6   6      6 ]C1 46.30 44.71 7.79 0.85 0.44 0.44 

[6   6    20]C2 48.77 44.33 0.83 0.84 0.45 0.46 

[6  20    6 ]C3 48.96 40.94 76.60 69.46 0.47 0.44 

[6  20  36]C4 46.22 46.41 62.69 60.89 47.76 0.46 

[6  20  36     36]C5 86.50 92.73 87.68 96.79 88.04 86.47 

[6  20  36     64]C6 93.30 96.22 94.64 97.62 84.46 82.45 

[6  20  36     96]C7 97.54 95.94 96.84 98.21 94.82 94.15 

[6  20  36  128]C8 95.66 98.68 96.85 98.57 95.54 96.56 

[6  20  36  150]C9 98.88 97.64 98.04 98.27 95.94 96.74 

[6  20  36  256]C10 98.77 98.08 98.87 99.10 97.00 97.77 

[6  32  36     64]C11 94.15 98.67 98.33 97.02 99.10 99.12 

[6  32  36     96]C12 99.25 99.43 99.52 97.86 99.02 99.50 

[6  32  36  128]C13 99.15 99.71 99.29 99.64 99.33 99.64 

[6  32  36  150]C14 98.68 98.08 99.16 99.11 99.28 98.88 

[6  32  36  256]C15 99.05 98.96 99.70 99.64 99.46 99.50 

[6  32  64  256]C16 99.62 100 99.94 99.88 99.82 99.92 
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Table 4.5: Rank-1identification rates obtained for different CNN architectures 

using the input image size of (128×128) pixels. Each configuration has either 4 

or 5 layers and indicates the number of filters in each layer. 

 

 

 

 

Configuration 
SDUMLA-HMT   CASIA-Iris-V3 IITD  

R. Iris L. Iris R. Iris L. Iris R. Iris L. Iris 

[6  6     16     16 ]C1 0.97 0.94 45.35 11.78 34.50 15.89 

[6  16   16    16 ]C2 56.79 56.45 59.46 66.13 40.80 37.86 

[6  16   16     32]C3 57.55 71.51 72.38 72.20 46.38 34.06 

[6  16   32     32]C4 78.77 80.28 55.54 57.97 94.41 94.73 

[6  16   32     64]C5 85.94 64.76 96.13 94.70 97.67 95.93 

[6  16   32     96]C6 92.26 95.18 96.66 97.14 98.48 98.30 

[6  16   32  128]C7 93.58 94.52 98.51 98.21 96.07 98.12 

[6  16   32  256]C8 95.75 95.66 98.15 98.92 98.48 97.36 

[6  32   32     32]C9 32.54 66.13 82.38 94.70 85.17 84.11 

[6  32   32     64]C10 92.07 81.41 92.55 92.73 89.19 93.83 

[6  32   32     96]C11 93.77 92.16 97.32 98.09 96.25 85.71 

[6  32   32  128]C12 94.52 92.35 97.02 98.09 96.25 96.60 

[6  32   32  256]C13 93.49 92.92 96.90 96.93 94.91 93.48 

[6  32   64  256]C14 94.53 93.02 99.17 97.56 97.37 96.25 

[6  16   32    32    64]C15 96.42 80.09 95.23 99.04 98.43 98.17 

[6  16   32    32    96] C16 97.45 93.27 99.28 99.34 98.34 98.83 

[6  16   32    32 128] C17 98.87 96.98 99.34 99.40 99.73 96.92 

[6  16   32    32 256] C18 98.49 97.83 99.22 99.64 97.09 99.28 

[6  16   32    64    64] C19 98.49 91.04 92.92 96.90 99.78 99.64 

[6  16   32    64    96] C20 98.58 98.39 99.64 99.82 99.11 98.75 

[6  16   32    64 128] C21 99.43 99.71 99.16 99.82 99.50 95.76 

[6  16   32    64 256] C22 99.43 99.62 99.88 100 99.41 98.75 

[6  16   64    64 256] C23 97.07 99.39 99.40 99.64 99.91 99.15 
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(a) SDUMLA-HMT Dataset. 

 

(b) CASIA-Iris-V3 Interval Dataset. 

 

(c) IITD Dataset. 

Figure 4.18: CMC curves for IrisConvNet for iris identification: (a) SDUMLA-

HMT, (b) CASIA-Iris-V3, and (c) IITD. 
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Figure 4.19: The feature maps for the first two layers of the IrisConvNet system 

with corresponding input images from SDUMLA-HMT dataset: The top row 

shows the input image, while the middle and bottom rows represent the feature 

maps of the first and second layer, respectively. 

The comparison of the proposed IrisConvNet system with the current 

state-of-the-art approaches using CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 

and IITD dataset is demonstrated in Table 4.6. In this table, the average Rank-1 

identification rates obtained from both the right and left iris images are reported 

for both CASIA-Iris-V3 Interval and IITD dataset, while the test time per image is 

calculated from image input until the recognition decision. The feature extraction 

and classification techniques used in these approaches, along with their 

evaluation protocols, are shown in Table 4.7. We have assumed that these 

existing approaches shown in Table 4.6 are customized for these four iris 

datasets and the best results they obtained are quoted herein.  

As can be seen from inspection of Table 4.6, that the performance of the 

proposed IrisConvNet system on CASIA-Iris-V1 and MMU1 dataset is better 

than all the state-of-art iris recognition systems, in terms of Rank-1 identification 

rate and running time. The results obtained demonstrate that the proposed 
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system outperforms the indicated state-of-the-art of approaches in terms of 

Rank-1 identification rate in 14 out of 14 cases, and, in terms of running time, in 

5 out of 5 cases, where this information is available using both datasets. The 

performance of the proposed IrisConvNet system, with respect to CASIA-Iris-V3 

Interval dataset, is comparable with the results of Chen et al. [329], but the work 

in [329] has been evaluated using a small number of subjects (100 classes) 

compared to the proposed IrisConvNet system. Moreover, the proposed system 

achieved a better running time to establish the person's identity from 120 

subjects using the same dataset instead of 100 subjects as in [329]. Finally, the 

proposed system outperforms the indicated state-of-the-art of approaches in 

terms of Rank-1 identification rate in 9 out of 10 cases and in terms of running 

time in 6 out of 7 cases, where this information is available using CASIA-Iris-V3 

Interval dataset. Although some approaches have achieved a lower recognition 

time compared with the proposed system on the CASIA-Iris-V3 Interval and the 

IITD dataset, such as Bharath et al. [144], they obtained inferior results in term 

of Rank-1 identification rates on both datasets. For the IITD iris dataset, the 

proposed system managed to outperform the previous approaches in terms of 

Rank-1 identification rate in 10 out of 10 cases and in terms of running time in 5 

out of 6 cases, where this information is available.  

From Table 4.7, it has been seen that the proposed deep learning 

approaches have overall, outperformed all the state-of-art feature extraction 

methods, which include the Discrete Wavelet Transform (DWT), the Discrete 

Cosine Transform (DCT), Principal Component Analysis (PCA), Average Local 

Binary Pattern (ALBP), Texture Code Matrix (TCM) Empirical Mode 

Decomposition (EMD), Multi-Perturbation Shapley Analysis (MSA), etc. In term 

of the Rank-1identification rate, the highest results were obtained by the 

proposed system using these four iris datasets. 
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Table 4.6: Comparison of the proposed IrisConvNet system with other existing 

approaches using four different iris datasets. Data labelled by (∗) come from 

Chowhan et al. [330]. 

Dataset Approach Average RT (s) 

C
A

S
IA

-I
ri

s-
V

1
 

Daugman [330] 99.25∗ - 
Wildes [330] 97.43∗ - 
Chowhan et al. [330] 94.00 - 
Kumar et al. [331] 99.07 - 
Liang [25] 97.55 30.2 
Gale and Salankar [26] 98.00 - 
Khan et al. [332] 90.25 - 
Nalla and Chalavadi [148] 75.00 - 
IrisConvNet System 100 0.82 

C
A

S
IA

-I
ri

s-
V

3
 I

n
te

rv
a

l 

Kerim and Mohammed [333] 99.40 2 
Umer et al. [146] 96.82 0.98 
De Costa and Gonzaga [334] 99.10 - 
Zhang and Guan [335] 99.60 - 
Roy et al. [336] 97.21 0.995 
Li et al. [27] 99.91 - 
Bharath et al. [144] 84.17 0.44 
Chen et al. [329] 99.82 138.3 
Umer et al. [29] 99.57 1.05 
Umer et al. [28] 99.38 0.93 
IrisConvNet System 99.82 0.89 

M
M

U
1

 

Umer et al. [146] 94.22 0.92 
Chen et al.  [329] 99.75 - 
Umer et al. [29] 99.56 0.89 
Umer et al. [28] 97.78 0.76 
Umer et al. [145] 98.89 0.94 
Rahulkar and Holambe [337] 98.16 - 
IrisConvNet System 99.89 0.45 

II
T

D
 

Nalla and Chalavadi [148] 86.00 - 
Umer et al. [146] 98.80 1.11 
Bharath et al [144] 95.93 0.10 
Umer et al. [29] 99.38 1.13 
Umer et al. [28] 98.03 1.00 
Umer et al. [145] 97.40 1.18 
Elgamal and Al-Biqami [142] 99.50 - 
Minaee et al. [338] 99.20 - 
Dhage et al. [149] 97.81 93.24 
Abhiram et al. [339] 97.12 - 
IrisConvNet System 99.87 0.81 
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Table 4.7: Summary of the compared iris recognition approaches and their 

evaluation protocols. 

Approach Feature Extraction Classification Evaluation Protocol 

Chowhan et al. [330] MFHSNN Bhattacharyya  

distance 

4:3 (Training: Testing) 

Kumar et al. [331] PCA+DWT KNN 6:1 (Training: Testing) 

Liang [25] Gabor filter  Self-Adaptive  5:2 (Training: Testing) 

Gale and Salankar [26] Haar Transform + PCA 

+ Block Sum 

Artificial Neural   

Network 

___ 

Khan et al. [332] 2D Gabor filter SVM 5:2 (Training: Testing) 

Nalla and Chalavadi 

[148] 

Log-Gabor Wavelet On-Line Dictionary 

Learning 

5:2 (Training: Testing) 

3:2 (Training: Testing) 

Kerim et al. [333] Co-occurrence Matrix Euclidean distance ___ 

Umer et al. [146] TCM with ordered PB SVM + Fusion Leave-one-out 

Abhiram et al. [339] Circular Sector DCT Euclidean distance 3:2 (Training: Testing) 

De Costa and Gonzaga 
[334] 

Dynamic features Euclidean distance Cross-Validation 

Zhang and Guan [335] EMD KNN ___ 

Roy et al. [336]  MSA SVM Cross-Validation 

Li et al. [27] Average LBP KNN + SVM 4:1 (Training: Testing) 

Bharath et al. [144] Radon Transform + 

Gradient-Based 

Isolation 

Euclidean distance 

 

4:1 (Training: Testing) 

Chen et al. [329] SIFT + OPDF Weighted Sub-

Region Matching 

Fusion 

Cross-Validation 

Umer et al. [29] Feature Learning 

Techniques 

Linear SVM 10-Fold Cross-

Validation 

Umer et al. [28] Textural Edgeness 

Descriptors 

Linear SVM 10-fold cross-

validation 

Umer et al. [145] Morphologic features SVM Leave-one-out 

Rahulkar and Holambe 

[337] 

Wavelet Filter Bank Post-Classifier  Leave-one-out 

Elgamal and Al-Biqami 
[142] 

DWT+PCA KNN ___ 

Minaee et al. [338] Scattering Transform  Minimum distance  Cross-Validation 

Dhage et al. [149] DWT+DCT Euclidean distance 9:1 (Training: Testing) 

IrisConvNet System CNN Softmax Classifier  Cross-Validation 

3:2 (Training: Testing) 

4:3 (Training: Testing) 
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4.4.4  Running Time  

In this work, the running time was measured by implementing the 

proposed approaches using a laboratory in Bradford University consisting of 25 

PCs with the Windows 8.1 operating system, Intel Xeon E5-1620 CPUs and 16 

GB of RAM. The system code was written to run in MATLAB R2015a and later 

versions. Table 4.8 shows the overall average of the training time of the 

proposed system, which mainly depends on the input image size, the number of 

subjects in each dataset, and the CNN architecture. Although the training time 

is not as important as the testing time in many applications, just for as the iris 

recognition system, using high-performance GPUs and code optimization can 

significantly reduce the time required to train proposed IrisConvNet system. The 

test time per image from image input until the recognition decision is less than 

one second per subject, which is fast enough to be utilized for a real-time iris 

recognition system.   

Table 4.8:  The average training time of the proposed deep learning approach. 

Iris Datasets 
Input Image Size 

(64×64) (128×128) 

SDUMLA-HMT 
6 Hours    & 

30 minutes 

20 Hours & 

33 minutes 

CASIA-Iris-V1 
2 Hours    & 

12 minutes 

4 Hours      &  

13 minutes 

CASIA-Iris-V3 
Interval 

9 Hours    & 

18 minutes 

53 Hours & 

14 minutes 

MMU1 
1 Hours    & 

38 minutes 

2 Hours      &  

10 minutes 

IITD 
17 Hours & 

33 minutes 

60 Hours & 

46 minutes 
 

4.5  Chapter Summary  

In this chapter, a robust and fast iris recognition system has been proposed 

called the IrisConvNet system, which has an architecture based on the 

combination of two discriminative learning techniques, namely a CNN and the 

Softmax classifier to identify the person's identity, using either the right or left 

irises of the same person. The architecture of the proposed iris recognition 

system starts by firstly employing an efficient and automatic iris localization 
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model to carefully detect the iris region from the background and all extraneous 

features, such as the pupil, sclera, eyelids, eyelashes, and specular reflections. 

The proposed iris localization model is composed of four main stages: specular 

reflection removal, pupil localization, iris localization, and eyelid and eyelash 

detection. It was noticed that using the CCHT in the first two stages has 

significantly increased the overall accuracy and reduced the processing time of 

the subsequent stages in the proposed iris localization model and the iris 

recognition system. It was also observed that the proposed eyelids and 

eyelashes algorithm, which employs an anisotropic diffusion filter to enhance 

the eyelids boundaries and reduce the eyelashes effect, along with the Radon 

transform for fitting these boundaries as straight lines, has significantly 

increased the iris recognition performance. Once a normalized iris image is 

obtained, the IrisConvNet system is applied to extract the most distinctive and 

robust feature representations of iris region and to establish the person's 

identity in the classification stage. Furthermore, a powerful training methodology 

equipped with a number of training strategies (e.g. Back-propagation, Dropout 

method, AdaGrad algorithm, etc.) is proposed, in order to control overfitting 

during the learning process and increase the generalization ability of the neural 

network to new unseen data. In this chapter, the IrisConvNet system has been 

applied separately for the left and right iris of the same person, and the average 

recognition rate was used for comparison purpose with the state-of-the-art iris 

recognition approaches. 

In the experimental part, comprehensive have been conducted to evaluate 

the performance of the proposed iris recognition approaches using five 

challenging datasets: SDUMLA-HMT, CASIA-Iris-V1, CASIA-Iris-V3 Interval, 

MMU1 and IITD iris dataset. The iris images in these datasets were captured 

under different conditions of pupil dilation, eyelids/eyelashes occlusion, specular 

reflection, etc. The results obtained demonstrated the superiority of the 

proposed approaches over many existing feature extraction approaches, such 

as the DWT, DCT, TCM, EMD, etc. In addition, a new state-of-the-art accuracy, 

in term of rate Rank-1 identification rate, has been achieved on all the five 

datasets, with less than one second required to establish the person's identity. 
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Chapter 5 

Multimodal Biometric System 

5.1  Introduction   

In the previous two chapters, the effectiveness and robustness of the 

proposed face recognition and iris recognition systems were discussed as 

unimodal biometric systems. In this chapter, a novel multimodal biometric 

system is proposed, based on fusing the results obtained from both the face 

and the left and right irises using different approaches and evaluated under 

different scenarios based on the biometric traits selected by the user at 

identification point. As mentioned earlier in Chapter 1, most biometric systems 

that have been widely employed in governmental and civilian sensitive 

applications have been unimodal biometric systems. Although these unimodal 

biometric systems have been used efficiently in identifying a person's identity, 

there are a number of critical limitations and issues (e.g. noisy data, non-

universality, spoof attacks, etc.) that can affect the reliability and the 

performance of these systems [16]. As reported by Ross et al. [3], these 

limitations of unimodal biometric systems can be overcome using multimodal 

biometric systems, by extracting the features from two or more biometric traits 

in order to enhance the security and increase the reliability in establishing the 

person's identity. Recently, considerable attention has been paid to employing 

multimodal biometric systems in many governmental and private sectors, due to 

their ability to improve significantly the recognition performance of biometric 

systems, besides adding a number of other advantages compared to unimodal 

biometric systems, including: (i) improving population coverage; (ii) improving 

the biometric system's throughput; (iii) deterring spoofing attacks; (iv) 

maximizing the inter-personal similarities and minimizing the intra-personal 

variations; and (v) providing a high degree of flexibility allowing people to 

choose either to provide a subset or all of their biometric traits depending on the 

nature of the implemented application and the user's convenience [3][22][23]. 

Hence, research on multimodal biometric systems has attracted much attention 

in the biometric community, and a number of efficient fusion strategies have 
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been proposed to fuse the biometric data at different levels of fusion in the last 

decade. Although existing multimodal biometric systems have been shown to 

improve effectively the accuracy of biometric system, there are still some 

interesting and relevant problems that need to be addressed, including: (i) 

employing a real multimodal biometric dataset to evaluate the performance of 

the proposed multimodal biometric system instead of using a chimeric dataset, 

in order to reflect the real performance of the proposed system, (ii)  

investigations into combining the advantages of both the local handcrafted 

feature descriptors and deep learning approaches for encoding the biometric 

traits, (iii) improving the accuracy of the multimodal biometric system in the 

identification task, rather than just in the verification task, and (iv) providing a 

high degree of flexibility and handling the problem of missing biometric traits 

while maintaining a high recognition rate. 

In this chapter, an efficient and real-time hybrid multimodal biometric 

system for identifying a person's identity, using a combination of the face and 

both irises biometric traits, is proposed to addresses the problems mentioned 

above. These two types of biometric traits complement each other, as the face 

trait is unobtrusive, while the iris trait is more accurate. For face recognition, the 

matching scores are obtained from two distinctive face recognition algorithms, 

described in Chapter 3. These are the Curvelet-Fractal approach and MDFR 

framework, in which additional and complementary features representations are 

learnt by training a DBN on top of Curvelet-Fractal approach, instead of the 

pixel intensity representations. An efficient deep learning system described in 

Chapter 4, and referred to as IrisConvNet, is used for iris recognition. In this 

work, a parallel architecture is considered allowing, users a high degree of 

flexibility to provide either a subset or all of their biometric traits, depending on 

the required security level and the users’ convenience. In addition, a limitation 

due to excluding a biometric trait is eliminated. Furthermore, three different 

types of the multimodal biometric system are proposed, namely, multiple 

algorithms face recognition, multiple instances iris recognition, and hybrid 

multimodal biometric system. The Graphical User Interface (GUI) of these 

multimodal biometric systems are shown in the Appendix (Fig. A.1-A-3). The 

performance of the proposed multiple algorithms face recognition system was 
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tested in both identification and verification task, using large-scale 

unconstrained face datasets: FERET, CAS-PEAL-R1 and LFW datasets. On the 

other hand, the performances of the last two types were evaluated in the 

identification task using real multimodal datasets. The CASIA-Iris-V3 Interval 

and IITD iris datasets were employed to assess the efficiency of the proposed 

multiple instances iris recognition, while the SDUMLA-HMT multimodal dataset, 

in which the face and both irises traits were acquired from the same person, 

was used to validate the accuracy of the proposed hybrid multimodal biometric 

system.  

The remainder of the chapter is organized as follows: The implementation 

details of the proposed hybrid multimodal biometric system are presented in 

Section 5.2. Section 5.3 provides an overview of the employed fusion 

approaches for combining multiple biometric modalities. The experimental 

results of using the different types of the multimodal biometric system are 

presented in Section 5.4. Finally, the summary and conclusions of this chapter 

are stated in the last section. 

5.2  The Proposed Hybrid Multimodal Biometric System 

The proposed hybrid multimodal biometric identification system for face 

and both irises traits is shown in the Fig. 5.1. Firstly, the data obtained from 

each biometric trait is pre-processed to detect the region of interest from the 

input image (e.g. face and iris regions). Secondly, discriminative features and 

matching scores are obtained by applying different approaches for each 

individual biometric trait. Finally, the person's identity is assigned to one of N 

classes stored in the dataset, after calculating the similarity scores between the 

query trait and training traits. In this work, no normalization of outputs is 

needed, due to all the employed classifiers producing outputs within the same 

numeric range [0, 1]. The next two subsections describe the main 

implementation steps of the unimodal biometric systems for both face and iris 

traits. 

 

 



                                                               Chapter 5: Multimodal Biometric System 
    

 

157 
 

5.2.1  Face Recognition Matcher 

In this work, the matching scores of the face biometric trait are obtained 

using two different face recognition algorithms, as described in Chapter 3. In the 

first algorithm, a novel multimodal local feature extraction approach, based on 

merging the advantages of multidirectional and anisotropy transforms, 

specifically the Curvelet transform, with Fractal dimension, is employed, 

referred to as the Curvelet-Fractal approach. The key contribution of this 

approach is that the Fractal dimension approach is applied on the Curvelet’s 

output to produce an illumination invariant representation of the face image that 

can meet the real-time system’s demands. Hence, the Curvelet transform is 

used here as a powerful technique for edge and curve representations and 

dimensionality reduction of the face image, to increase the speed of fractal 

dimension estimation. After the face region has been detected using the Viola-

Jones face detector [247], the main steps of the proposed Curvelet-Fractal 

approach for an input face image are implemented as explained in (Chapter 3, 

Sect. 3.3.1). 

 

 

Figure 5.1: Block diagram of the proposed hybrid multimodal biometric system 

for face and both iris biometric traits. 
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The second face recognition algorithm employs a novel face recognition 

framework, referred to as the MDFR framework, in which additional and 

complementary features representations are learnt by training a DBN on top of 

Curvelet-Fractal representations instead of the pixel intensity representations. 

Like any deep learning approach, the DBN is usually applied directly on the 

pixel intensity representations. However, although the DBN has been 

successfully applied in many different fields, scaling it to realistic-sized face 

images still remains a challenging task, for several reasons. Firstly, the high 

dimensionality of the face image leads to increased computational complexity of 

the training algorithm. Secondly, the feature representations of the DBN are 

sensitive to the local translations of the input image. This can lead to a 

disregard of the local features of the input image, which are known to be 

important for face recognition. To address these issues of the DBN, a novel 

framework, based on merging the advantages of the local handcrafted image 

descriptors and the DBN is proposed. It is argued that applying the DBN on top 

of local features representations instead of the pixel intensity representations 

(raw data), as a way of guiding the learning process, can greatly improve the 

ability of the DBN to learn more discriminating features with a shorter training 

time required to obtain the final trained model. Initially, the local facial features 

are first extracted using the proposed Curvelet-Fractal approach. Then, the 

extracted local features are assigned to the feature extraction units of the DBN 

to learn additional and complementary representations. In this work, the DBN 

architecture stacks 3 RBMs (3 hidden layers). The first two RBMs are used as 

generative models, while the last one is used as a discriminative model, 

associated with Softmax units for multi-class classification purpose. Finally, the 

hidden layers of the DBN are trained, one at a time, in a bottom-up manner, 

using a greedy layer-wise training algorithm. In this chapter, a less complex 

architecture of a hybrid multimodal biometric identification system was also 

investigated, which completely depends on deep learning approaches by 

employing only a DBN approach to obtain the matching scores of the face 

biometric trait, as shown in Fig. 5.2. To the best of the author’s knowledge, this 

is the first work that investigates the potential use of deep learning approaches 

(e.g. DBN and CNN) for fusing the face and both the left and right irises in a 

unified multimodal biometric system. Fig. 5.3 shows the main structure of the 
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hybrid multimodal biometric identification system, in which the face and both iris 

biometric traits are encoded using only deep learning approaches. 

 

 

Figure 5.2: Block diagram of the proposed face recognition system using the 

DBN approach. 

 

Figure 5.3: Block diagram of a less complex face and iris multimodal biometric 

system using only deep learning approaches. 
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5.2.2  Iris Recognition Matcher 

An efficient deep learning system described in Chapter 4 and referred to 

as IrisConvNet, is used for iris recognition. The architecture of the IrisConvNet 

system is based on a combination of a CNN and a Softmax classifier to extract 

automatically discriminative features from the iris image without any domain 

knowledge, and then classify it into one of N classes. Firstly, a pre-processing 

procedure is implemented, which employs an efficient and automatic iris 

localization algorithm to detects carefully the iris region from the background 

and all extraneous features, such as the pupil, sclera, eyelids, eyelashes, and 

specular reflections. Daugman’s Rubber Sheet Model is then applied to transfer 

the detected iris region from Cartesian to polar coordinates, and allow direct 

comparison between two iris images with initially different sizes. Once a 

normalized iris image is obtained, feature extraction and classification is 

performed using a deep learning approach that combines a CNN and a Softmax 

classifier. In this work, the structure of the proposed CNN involves a 

combination of convolutional layers and sub-sampling max-pooling. The top 

layers in the proposed CNN are two fully-connected layers for the classification 

task. Then, the output of the last fully-connected layer is fed into the Softmax 

classifier, which produces a probability distribution over the N class labels. 

Finally, a cross-entropy loss function, a suitable loss function for the 

classification task, is used to quantify the agreement between the predicted 

class scores and the target labels, and calculate the cost value for different 

configurations of CNN. As described in (Chapter 4, Sect. 4.3.2.1), the 

IrisConvNet system is equipped with a number of carefully-designed training 

techniques and strategies (e.g. Back-propagation, Dropout method, AdaGrad 

algorithm, etc.) to prevent overfitting during the learning process, and to 

increase the generalization ability of the neural network for unseen testing data.   

5.3  Fusion Techniques 

One of the main factors that must be taken into account when designing 

and implementing multimodal biometric systems is the fusion of the obtained 

biometric traits, and where the fusion takes place in the multimodal biometric 

system. Generally, the application context of the biometric system can also play 
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a significant role in determining where the fusion process can take place in the 

multimodal biometric system. For instance, in verification mode, only a single 

match score for each matcher is obtained, by comparing the query trait with 

only the template trait of the claimed identity. In contrast, using the identification 

mode, the query trait is compared with all the templates enrolled in the dataset, 

resulting in N matching scores for each individual matcher. Hence, the rank 

level fusion can only be applied when the biometric system operates in the 

identification mode. In this chapter, the fusion of the three scores obtained from 

three biometric traits (the face and both irises) is evaluated and tested at two 

different fusion levels: Score level fusion and Rank level fusion. As all the 

employed classifiers produce the same type of output (Similarity score), and all 

of them have the same numeric range [0, 1], no normalization procedure is 

needed before applying the score fusion methods. 

5.3.1  Score Level Fusion  

For score level fusion, the problem of classifying a given input pattern F 

into one of N possible classes is considered, based on the scores provided by 

M different classifiers, where N represents the number of persons enrolled in 

the dataset. Let (𝒇𝒊) be the feature vector extracted from the input pattern F, 

and presented to the 𝒊𝒕𝒉 classifier with output 𝑷(𝒓𝒋|𝒇𝒊), referring to the posterior 

probability of the input pattern F belonging to class 𝒓𝒋 given the feature vector 

(𝒇𝒊). Suppose that the input pattern F is assigned to class 𝒄 = {𝟏, 𝟐, …𝐍}, then 

there are five matching scores fusion rules to determine (𝒄). An example which 

represents the general flow of information using the match score level fusion 

scheme is shown in Fig. 5.4. In this example, matching scores generated by 

face and iris matchers are similarity measures within the same numeric range 

[0, 1].  

1. Product Rule (PR): this rule mainly depends on the assumption of 

statistical independence between the M feature representations 

{𝒇𝟏, 𝒇𝟐, … , 𝒇𝑴}. The product rule assigns the input pattern F to class (𝒄), as 

follows: 

𝒄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒋

 ∏𝑷(𝒓𝒋|𝒇𝒊)

𝑴

𝒊=𝟏

                                              (𝟓. 𝟏) 
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2. Sum Rule (SR):  this rule is more practical than the product rule, especially 

when the input pattern F tends to be more noisy, leading to ambiguity in the 

estimation of posteriori probabilities. In addition, it also assumes that the 

posteriori probabilities calculated by the different classifiers do not deviate 

dramatically from the prior probabilities for each class. The input pattern F is 

assigned to the class (𝒄), as follows: 
 

𝒄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒋

  ∑𝑷(𝒓𝒋|𝒇𝒊)

𝑴

𝒊=𝟏

                                              (𝟓. 𝟐) 

 

3. Weighted Sum Rule (WSR): this is an extended version of sum rule that 

assigns the input pattern F to class 𝒄, as follows: 

𝒄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒋

  ∑𝑷(𝒓𝒋|𝒇𝒊)

𝑴

𝒊=𝟏

∗ 𝒘𝒊                                     (𝟓. 𝟑) 

Here, 𝒘𝒊 is the weights assigned to the 𝒊𝒕𝒉 biometric trait, with condition 

∑ 𝒘𝒊 = 𝟏𝑴
𝒊=𝟏 . In this work, the weights are calculated as in [13][204] based 

on the biometric traits selected by the user. In general, a higher weight 

value is assigned to the iris trait compared to the face trait when both of 

them are under consideration. 

4. Max Rule: this assigns the input pattern F to class (𝒄) using the maximum 

score from the M different Classifiers, as follows: 

𝒄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒋

  𝐦𝐚𝐱
𝒊

 𝑷(𝒓𝒋|𝒇𝒊)                                           (𝟓. 𝟒) 

5. Min Rule: this assigns the input pattern F to class (𝒄) using the minimum 

score from the M different Classifiers, as follows: 

𝒄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝒋

  𝐦𝐢𝐧
𝒊

 𝑷(𝒓𝒋|𝒇𝒊)                                           (𝟓. 𝟓) 

5.3.2  Rank Level Fusion 

In this work, rank level fusion is employed, where each individual classifier 

produces a ranked list of possible matching scores for each user (a higher rank 

indicates a better match). Then, these ranks are integrated to create a new 

ranking list that is used to make the final decision on user identity. A simple 

example of rank level fusion using three different methods is shown in Fig. 5.5. 
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In this example, the iris matchers are more accurate than the face matcher. 

Hence, a weight of 0.4 is assigned for both of them, and due to this significant 

difference in their weights, the reordered ranks using logistic regression method 

are very similar to the ranks assigned by the iris matchers. Suppose that there 

are P users registered in the dataset, and the number of employed classifiers is 

C. Let 𝒓𝒊,𝒋 is the rank assigned to 𝒋𝒕𝒉 user in the dataset by the 𝒊𝒕𝒉 classifier, 

𝒊 = {𝟏, 𝟐, …𝐂} and 𝒋 = {𝟏, 𝟐, …𝐏}. Then, the consensus ranks 𝐑𝐜 for a particular 

class are obtained using the following fusion methods: 

1. Highest Rank (HR): this is a useful method for fusing the ranks only when 

the number of registered users is large compared to the number of 

classifiers, which is the usual scenario in the identification system. The 

consensus rank of a particular class is computed as the lowest rank 

generated by different classifiers (minimum 𝒓𝒊,𝒋 value) and the ties are 

broken by incorporating a small factor epsilon (e), as follows: 

𝑹𝒄 = 𝒎𝒊𝒏
𝟏≤𝒊≤ 𝑪

𝒓𝒊,𝒋 + 𝒆𝒊                                                   (𝟓. 𝟔) 

     Here,  

𝒆𝒊 = ∑𝒓𝒊,𝒋

𝑪

𝒊=𝟏

/𝑲                                                          (𝟓. 𝟕) 

Here, the value of (𝒆𝒊) is ensured to be small by assigning a large value to 

parameter K. 

2. Borda Count (BC): using this fusion method, the consensus rank of a 

query identity is computed as the sum of ranks assigned by individual 

classifiers independently, as follows: 

𝑹𝒄 = ∑𝒓𝒊,𝒋

𝑪

𝒊=𝟏

                                                                 (𝟓. 𝟖) 

3. Logistic Regression (LR): this is a generalized form of the Borda count 

method to solve the problem of the uniform performance of the individual 

classifiers. The consensus rank is calculated by sorting the users according 

to the summation of their ranks obtained from individual classifiers, as 

follows: 
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𝑹𝒄 = ∑ 𝒘𝒊∗𝒓𝒊,𝒋

𝑪

𝒊=𝟏

                                                           (𝟓. 𝟗) 

Here, 𝒘𝒊 is the weight to be assigned to the 𝒊𝒕𝒉 classifier, which is 

determined by logistic regression according to the biometric traits selected 

by the user, such that the maximum recognition rate is achieved, and the 

possibility of spoofing attacks is reduced. 

 

 

Figure 5.4: Example of score level fusion using five score fusion methods: 

Product, Sum, Weighted Sum, Max, and Min Rule. Adapted from [3]. 
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Figure 5.5: Example of rank level fusion using the Highest rank, Borda count 

and Logistic Regression method. Adapted from [3]. 

5.4  Experimental Results  

In this section, the performances of the proposed multimodal systems are 

tested on the most challenging face and iris datasets currently available in the 

public domain, in order to demonstrate their effectiveness and compare their 

performances with other existing approaches. Firstly, a number of experiments 

are carried out using the proposed multiple algorithms face recognition system 

for both face identification and verification tasks, in order to demonstrate its 

effectiveness and compare its performance with the proposed unimodal 

approaches, described in Chapter 3. The performances of the proposed 
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multiple algorithms face recognition system was tested using large-scale 

unconstrained face datasets: FERET, CAS-PEAL-R1 and LFW datasets. 

Secondly, the performance of the last two types of the proposed multimodal 

biometric systems was assessed in the identification task using real multimodal 

datasets, and compared with the state-of-the-art approaches. The CASIA-Iris-

V3 Interval and IITD iris datasets were employed to assess the efficiency of the 

proposed multiple instances iris recognition, while the SDUMLA-HMT 

multimodal dataset, in which the face and both irises traits were acquired from 

the same person, was used to validate the accuracy of the proposed hybrid 

multimodal biometric system, using two different architectures. Finally, different 

fusion scenarios of the face and both irises traits are evaluated and discussed, 

using different fusion methods at the score and rank level. In the 

implementation of weighted fusion methods, the assigned weights are based on 

the biometric traits selected by the user, such that the maximum recognition 

rate is achieved, and the possibility of spoofing attacks is reduced. Hence, in 

the proposed hybrid multimodal biometric system, the iris trait is assigned with 

higher weight compared to the face trait. The recognition time of the proposed 

approaches was measured by implementing them on a personal computer with 

the Windows 8 operating system, a 3.60 GHz Core i7-4790 CPU and 24 GB of 

RAM. The system code was written to run in MATLAB R2015a and later 

versions. It should be noted the execution time of the proposed multimodal 

biometric system is proportional to the number of biometric traits selected by the 

user, the number of subjects, and their images in the dataset. However, the test 

time is less than 4 seconds on average, which is fast enough to be utilized for 

real-time applications. 

5.4.1  Multiple Algorithms Face Recognition 

The performance of the proposed multiple algorithms face recognition 

system was evaluated by conducting a number of extensive experiments on 

FERET and CAS-PEAL-R1 for the identification task, while the LFW dataset 

was used for the verification task. In these experiments, as described in 

(Chapter 3, Sect. 3.4.2), regularization parameters (𝜶, 𝜷) of the QDC classifier 

used in the Curvelet-Fractal approach were set to 0.1 and 0.2, respectively. On 

the other hand, the MDFR framework, trained on input data acquired from the 
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Curvelet-Fractal approach using a 3-layer DBN model with hidden layers of 

sizes (800, 800, 1000), was greedily trained in a bottom-up manner. The first 

two layers were each trained separately as non-linear feature detectors (RBM 

models) in an unsupervised way, using the CD learning algorithm, while the last 

layer was trained in a supervised way as a non-linear classifier (a discriminative 

RBM). Each individual RBM was trained for 300 epochs, with a momentum of 

0.9, a weight-decay of 0.0002, a mini-batch size of 100, and the learning rate 

was set to be 0.01. Finally, in the fine-tuning phase, the whole network was 

trained in a top-down manner, using the back-propagation algorithm equipped 

for Dropout compensation to find optimized parameters and to avoid overfitting. 

The Dropout ratio was set to 0.5, and the number of epochs through the training 

set was determined using an early stopping procedure to be around 1000 

epochs.  

In the identification task, the robustness of the proposed multiple 

algorithms face recognition system was tested on the FERET and CAS-PEAL-

R1 dataset. In these experiments, the matching scores obtained from the 

present Curvelet-Fractal approach and the MDFR framework were fused using 

several fusion methods at the score and rank level fusion. The Rank-1 

identification rates (%), using different fusion methods at the score and rank 

level fusion, are listed in Table 5.1 and 5.2, respectively. In general, the results 

obtained show a noticeable improvement in the performance of the proposed 

multiple algorithms face recognition system, compared to only applying the 

Curvelet-Fractal approach or the MDFR framework, by achieving higher Rank-1 

identification rates at all the implemented fusion methods. From Table 5.1 and 

5.2, one can see that the highest Rank-1 identification rates on all the probe 

sets of both face datasets were achieved by employing the weighted sum rule 

and Highest rank method at the score and rank level fusion, respectively. 

Finally, additional improvements and new state-of-the-art recognition rates were 

reached, using the proposed multiple algorithms face recognition system on the 

FERET and the CAS-PEAL-R1 dataset; in particular, when the most challenging 

probe sets are under consideration, such as Dup.I and Dup.II in the  FERET 

dataset and PE, PA, PL, and PS in the CAS-PEAL-R1dataset.   
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Table 5.1: Rank-1 identification rate (%) of the proposed multiple algorithms 

face recognition system on FERET and CAS-PEAL-R1 dataset using score 

level fusion. 

 Dataset Curvelet- 

Fractal 
MDFR Score Fusion Methods 

SR WSR PR Max  Min  

F
E

R
E

T
 

Fc 100 100 100 100 100 100 100 

Fc 98.97 100 98.97 100 98.99 98.96 98.98 

Dup.I 97.92 98.40 97.94 98.92 98.22 97.97 98.20 

Dup.II 95.72 97.86 95.75 98.72 96.42 95.77 96.75 

C
A

S
-P

E
A

L
_
R

1
 

PE 99.87 100 99.89 100 99.93 99.90 99.91 

PA 98.07 99.43 99.63 99.93 99.49 98.49 98.52 

PL 89.48 89.92 89.97 91.94 89.99 89.52 89.49 

PT 100 100 100 100 100 100 100 

PB 100 100 100 100 100 100 100 

PS 99.64 100 99.94 100 99.71 99.68 99.66 

 

Table 5.2: Rank-1 identification rate (%) of the proposed multiple algorithms 

face recognition system on FERET and CAS-PEAL-R1 dataset using rank level 

fusion. 

Dataset Curvelet-

Fractal 
MDFR 

Rank Fusion Methods 

HR BC LR 

F
E

R
E

T
 

Fc 100 100 100 100 100 

Fc 98.97 100 100 99.95 100 

Dup.I 97.92 98.40 98.86 98.12 98.62 

Dup.II 95.72 97.86 97.94 96.85 97.85 

C
A

S
-P

E
A

L
_
R

1
 

PE 99.87 100 100 99.97 99.95 

PA 98.07 99.43 99.87 98.63 99.32 

PL 89.48 89.92 90.62 89.56 89.85 

PT 100 100 100 100 100 

PB 100 100 100 100 100 

PS 99.64 100 100 99.87 100 
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Furthermore, the LFW dataset was used to evaluate the robustness and 

the effectiveness of the proposed multiple algorithms face recognition system to 

address the unconstrained face verification problem. As described in (Chapter 

3, Sect. 3.4.3), the "Image-Restricted, Label-Free Outside Data" protocol is 

followed, where only the outside data is used to train MDFR framework, and the 

aligned LFW-a version is employed as a testing benchmark. The general flow of 

information, when the proposed multiple algorithms face recognition system 

operates in the verification mode, is shown in Fig. 5.6. The final performance is 

reported in Table 5.3 by calculating the mean accuracy rate (𝝁̂) and the 

standard error of the mean accuracy (SE) over 10-folds cross-validation using 

different score fusion methods, and the corresponding ROC curves are shown 

in Fig. 5.7. From Table 5.3 and Fig, 5.7, the highest accuracy rate was obtained 

using the weighted sum rule as a fusion mothed in the score level, where a 

higher weight was assigned to the MDFR framework compared to the Curvelet-

Fractal approach. The accuracy rate has been improved by 3.58% and 0.97% 

compared to the Curvelet-Fractal approach and the MDFR framework, 

respectively. 

 

 

Figure 5.6: Flow of information when the proposed multiple algorithms face 

recognition system operates in the verification mode. 
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Table 5.3: Performance comparison between the proposed multiple algorithms 

face recognition system on LFW dataset using different score fusion methods. 

Curvelet-

Fractal 
MDFR Acc. ( 𝛍̂  ± 𝐒𝐄)  

SR WSR PR Max  Min  

0.9622 ± 
0.0272 

0.9883 ± 
0.0121 

0.9832 ± 

0.0186 

0.9980 ± 

0.0198 

0.9837± 

0.0194 

0.9748 ± 

0.0187 

0.9840 ± 

0.0201 

 

 

Figure 5.7: ROC curves using different score fusion methods. 

5.4.2  Multiple Instances Iris Recognition 

In this section, a number of extensive experiments to evaluate the 

robustness of the proposed multiple instance iris recognition system on the 

most challenging iris datasets currently available in the public domain is 

described. Two iris datasets, namely, CASIA-Iris-V3 Interval, and IITD were 

employed as testing benchmarks, and for comparing the results obtained with 

current state-of-the-art approaches. Used as an iris identification system, each 

time a query sample is presented, the similarity score is computed by 

comparing it against the templates of N different subjects registered in the 

dataset and a vector of N matching scores is produced by the classifier. These 

matching scores are obtained from both the left and right iris images of the 

same person and fused using different fusion methods at the score and rank 
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level. In the rank level fusion, the matching scores from each iris are arranged 

in descending order to form the ranking list of matching identities, where a 

higher rank number indicates a better match. 

Table 5.4 and 5.5 show the Rank-1 identification rate (%) for both left and 

right iris images in the CASIA-Iris-V3 Interval and IITD dataset, and their fusion 

rates at the score and rank level, respectively. In these experiments, the same 

weights were assigned for both the left and right iris images in the application of 

the weighted fusion methods. Although all the fusion methods produced the 

same level of accuracy, the Highest ranking method was adopted for comparing 

the performance of the proposed multiple instance iris recognition system with 

that of other existing systems, due to its efficiency compared to the other fusion 

methods in exploiting the strength of each classifier effectively, and breaking the 

ties between the subjects in the final ranking list. In addition, it is simpler than 

the weighted fusion methods, such as weighted sum rule and logistic regression 

method, which need a training phase to find the weight for each individual 

classifier.  

 Table 5.4: Rank-1identification rate (%) of the proposed multiple instance iris 

recognition system using score level fusion. 

Dataset R. Iris L. Iris Score Fusion Methods 

SR WSR PR Max Min 

CASIA-Iris-V3 

Interval 
99.94 99.88 100 100 100 100 100 

IITD 99.82 99.92 100 100 100 100 100 

Table 5.5: Rank-1identification rate (%) of the proposed multiple instance iris 

recognition system using rank level fusion. 

Dataset R. Iris L. Iris Rank Fusion Methods 

HR BC LR 

CASIA-Iris-V3 
Interval 

99.94 99.88 100 100 100 

IITD 99.82 99.92 100 100 100 
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The comparison of performance of the proposed multiple instance iris 

recognition system with the other existing methods on the CASIA-Iris-V3 

Interval and ITD dataset is demonstrated in Table 5.6. In this table, the 

percentage accuracy as CRR for identification, is presented along with the 

recognition time in seconds per iris image. The feature extraction and 

classification techniques used in most of these methods, along with their 

evaluation protocols are shown in (Chapter 4, Table 4.7). It is assumed that 

these existing methods, as shown in Table 5.6, are customized for these two iris 

datasets and the best results they obtained are quoted herein. From Table 5.6, 

the proposed deep learning approach has overall, outperformed all the state-of-

art feature extraction methods, which include DWT, DCT, PCA, ALBP, etc. In 

term of the Rank-1 identification rate, the highest results were obtained by the 

proposed system using these two datasets. Although the works described in 

[146][29] also achieved a 100% recognition rate for the CASIA-Iris-V3 Interval 

dataset, the proposed system achieved a better running time to establish the 

person's identity from 120 persons from the same dataset instead of 99 

persons, as in [146], and 100 persons as in [29]. In addition, they obtained 

inferior results on the IITD dataset in terms of both Rank-1 identification rate 

and running time. For the IITD dataset, even though the methods of Elgamal 

and Al-Biqami [142] show a good performance, they evaluated their system on 

a small subset of 80 persons, compared to 244 persons in the author’s 

experiments. Finally, the results obtained demonstrate that the proposed 

multiple instance iris recognition system outperforms the indicated state-of-the-

art of approaches in terms of Rank-1 identification rate, in 19 out of 21 cases, 

and, in terms of running time, in 12 out of 12 cases, where this information is 

available using both datasets. 
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Table 5.6: Comparison of the proposed system with other existing approaches 

using two different iris datasets. 

Dataset Approach CRR 
(%) 

Time 
(s) 

Fusion 
Method 

C
A

S
IA

-I
ri

s-
V

3
 I

n
te

rv
a

l 

Vatsa et al. [340] 97.21 1.82 2ν-SVM 
Kerim and Mohammed [333] 99.40 2 - 
Umer et al. [146] 100 0.98 BC 
Umer et al. [29] 100 1.05 BC 
Umer et al. [28] 99.38 0.93 - 
De Costa and Gonzaga [334] 99.10 - - 
Ng et al. [341] 98.45 - - 
Zhang and Guan [335] 99.60 - - 
Roy et al. [336] 97.21 0.995 - 
Li et al. [27] 99.91 - - 
Tsai et al. [342] 99.97 - - 
The Proposed System 100 0.89 HR 

II
T

D
 

Umer et al. [146] 99.52 1.11 BC 
Umer et al. [29] 99.46 1.13 BC 
Umer et al. [28] 98.03 1.00 - 
Umer et al. [145] 98.37 1.18 BC 
Elgamal and Al-Biqami 
[142] 

99.50 3.00 - 

Nalla and Chalavadi [148] 86.00 - - 
Elgamal and Al-Biqami [142] 99.50 - - 
Minaee et al. [338] 99.20 - - 
Dhage et al. [149] 97.81 93.24 - 
Abhiram et al. [339] 97.12 - - 
The Proposed System 100 0.81 HR 

 

5.4.3  Hybrid Multimodal Biometric System 

The performance of the proposed hybrid multimodal biometric system was 

tested on the real multi-biometric dataset, SDUMLA-HMT, where the face and 

both irises traits were acquired from the same person, is described. In this work, 

two different architectures of a hybrid multimodal biometric identification system 

were investigated, termed as Architecture_1 and Architecture_2, as shown in 

Fig. 5.1 and 5.3, respectively. Starting with a less complex architecture that may 

be called Architecture_2, the matching scores of the face and both irises 

biometric traits were obtained using deep learning approaches by employing a 

DBN approach and IrisConvNet system for encoding face and iris trait, 

respectively. On the other hand, the feature representations of the face and 

both irises traits were extracted using different approaches, the facial features 
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were extracted using Curvelet-Fractal/MDFR approach, while the iris features 

were extracted using the IrisConvNet system in the Architecture_1. Then, the 

fusion of the face and both irises matching scores for both architectures was 

evaluated using different fusion methods at the score and rank level. In this 

work, the effectiveness and robustness of the proposed hybrid multimodal 

biometric systems have been evaluated with different scenarios, based on the 

biometric traits selected by the user at the identification point. The Rank-1 

identification rates (%) for Architecture_1 and Architecture_2, using different 

fusion methods are listed in Table 5.7 and 5.8, respectively. In general, the 

results obtained show a very clear improvement in the performance of the 

proposed multimodal biometric system for both architectures compared to 

unimodal systems, by achieving higher Rank-1 identification rates at all the 

implemented scenarios. In addition, a better performance is obtained by fusing 

the face along with one or both irises compared to the performance of fusion 

solely the face trait (e.g. Using Multi-Algorithms), due to the high recognition 

accuracy obtained using iris biometric trait compared with the face biometric 

trait. From Table 5.7, the highest identification rate was obtained using the 

weighted sum rule to fuse the matching scores generated from the Curvelet-

Fractal approach and the MDFR framework, when only the face trait is selected 

to establish the person's identity.  

Although high identification rates obtained using both architectures, the 

proposed multimodal biometric system using Architecture_1 provides a higher 

degree of flexibility than Architecture_2 allowing the user to provide a subset or 

all of his/her biometric traits depending on the nature of the implemented 

application, required security level and the user's convenience. Finally, the 

authors in [343] have proposed a multimodal biometric system using only the 

face trait in SDUMLA-HMT dataset. Therefore, for purpose of comparison, the 

best result obtained from fusion only of face recognition approaches using the 

weighted sum rule is employed, and the results are listed in Table 5.9. It can be 

seen that the accuracy rate of 100 % of the proposed system is higher than the 

best results reported in [343], which is 96.54 % using the CLVQ approach. 
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Table 5.7: Rank-1identification rate (%) of the proposed hybrid multimodal 

biometric system (Architecture_1) using different scenarios of fusion at score 

and rank level fusion. 

Scenarios 
Score Fusion Methods Rank Fusion Methods 

PR SR WSR Max Min HR BC LR 
Face + Face 

(Using Multi-Algorithms) 
99.95 99.34 100 99.55 99.68 99.97 99.21 99.95 

R. Iris + L. Iris 
(Using Multi-Instances) 

100 100 100 100 100 100 100 100 

R. Iris + L. Iris + Face 
(Using Curvelet-Fractal) 

100 100 100 100 100 100 100 100 

R. Iris + L. Iris + Face 
(Using MDFR Framework) 

100 100 100 100 100 100 100 100 

R. Iris + Face 
(Using Curvelet-Fractal) 

100 100 100 100 100 100 100 100 

L. Iris+ Face 
(Using MDFR Framework) 

100 100 100 100 100 100 100 100 

Hybrid Multimodal 
biometrics System 

100 100 100 100 100 100 100 100 

  

Table 5.8: Rank-1identification rate (%) of the proposed hybrid multimodal 

biometric system (Architecture_2) using different scenarios of fusion at score 

and rank level fusion. 

Scenarios 
Score Fusion Methods Rank Fusion Methods 

PR SR WSR Max Min HR BC LR 

R. Iris +L. Iris  100 100 100 100 100 100 100 100 

L. Iris + Face 99.91 99.95 100 99.88 99.98 100 99.83 99.92 

R. Iris + Face 100 100 100 100 100 100 100 100 

R. Iris + L. Iris + Face 100 100 100 100 100 100 100 100 
 

 

Table 5.9: Comparison of the proposed multimodal system using face trait with 

the state-of-the-art approaches on SDUMLA-HMT dataset. 

Approach CRR (%) 

MLP [343] 93.35 

CLVQ [343] 96.54 

CRBF[343] 92.25 

Face + Face 
(Using Multi-Algorithms) 

100 
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5.5  Chapter Summary 

In this Chapter, an efficient and real-time hybrid multimodal biometric 

identification system has been proposed using a parallel architecture to fuse the 

results obtained from the face and both irises of a subject. This type of 

architecture can offer people a high degree of flexibility to provide either a 

subset or all of their biometric traits, depending on the required security level 

and their convenience. In addition, it is efficient in handling the problem of 

missing biometric traits, whilst maintaining a high recognition rate. In this work, 

each individual biometric trait has been processed using different approaches. 

The facial features are extracted using a Curvelet-Fractal/MDFR approach, 

while the iris features are extracted using the IrisConvNet system. Three 

different types of the multimodal biometric system are proposed, namely, 

multiple algorithms face recognition, multiple instances iris recognition, and 

hybrid multimodal biometric system. The performances of the proposed multiple 

algorithms face recognition system was evaluated in the identification task using 

the FERET and CAS-PEAL-R1dataset, in which the face images were captured 

under different conditions of facial expressions, lighting conditions, etc. The 

results obtained have indicated the reliability and efficiency of the proposed face 

recognition approaches when there is only one image in the gallery set. The 

same system was also tested to address the unconstrained face verification 

problem, and a new state-of-the-art accuracy rate has been achieved on the 

LFW dataset. Further, new state-of-the-art results were produced, by applying 

the proposed multiple instances iris recognition system on real multimodal 

datasets, namely, CASIA-Iris-V3 Interval and IITD iris datasets, in which the left 

and right iris images were captured from the same person. Finally, the 

SDUMLA-HMT as a real multibiometric dataset has been used to assess the 

performance of the proposed hybrid multimodal biometric system for different 

scenarios based on the biometric traits selected by the user at the identification 

point. The results obtained have clearly shown the efficiency of the proposed 

multimodal biometric system using two different architectures with these 

scenarios compared to unimodal systems in term of Rank-1 identification rates 

using different fusion methods at the score and rank level. 
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Chapter 6 

Conclusions and Future Work 
 

This thesis has addressed the problem of designing and implementing a 

novel multimodal biometric identification system, based on fusing the matching 

scores obtained from the face and both irises using different fusion approaches. 

After a summary of the state-of-the-art works in both the unimodal and 

multimodal biometric systems that employ either the face or iris traits in the 

decision-making process, a number of efficient and robust algorithms have 

been proposed for encoding the most prominent features in the face and iris 

traits, based on combining the advantages of the local handcrafted-

descriptors/deep learning approaches towards building a novel hybrid 

multimodal biometric system for personal identification. This chapter briefly 

summarizes the work presented in this PhD thesis. Firstly, the main 

contributions achieved in each chapter are briefly discussed and summarized. 

This is followed by pointing out some of the suggestions and recommendations 

to be addressed in future work in order to further enhance the security and 

increase the reliability of both the unimodal and multimodal biometric systems. 

6.1  Conclusions 

Nowadays, using traditional methods such as username-passwords, ID 

cards and PINs does not achieve the required level of security, because the 

security of the system can be easily broken when the ID card is stolen or the 

password is guessed by an imposter. This problem can be solved by verifying 

persons’ identity based on their biometric traits. Multimodal biometric systems 

seek to alleviate some of these limitations of unimodal biometric systems by 

combining multiple pieces of evidence of the same person in the decision-

making process. In this work, the author believes that a considerable progress 

has been made with regards to integrating both the face and the left and right 

irises in a unified hybrid multimodal biometric identification system. 

As demonstrated in Chapter 2, the main limitation of the experimental 

results in most of the previous works is using a “chimeric” multimodal database 
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instead of a real multimodal biometric database, along with the lack of flexibility 

when one of the biometric traits is unavailable or missed.  

In Chapter 3, a novel multimodal local feature extraction approach was 

proposed, based on merging the advantages of multidirectional and anisotropy 

transforms like the Curvelet transform with Fractal dimension. The main 

contribution of this approach is to apply the Curvelet transform as a fast and 

powerful technique for representing edges and curves of the face structure, and 

then to process the Curvelet coefficients in different frequency bands using two 

different Fractal dimension approaches to efficiently reflect the face texture 

under unconstrained environmental conditions. The proposed approach has 

been tested on four large-scale unconstrained face datasets (e.g. SDUMLA-

HMT, FERET, CAS-PEAL-R1 and LFW dataset), with high diversity in facial 

expressions, lighting conditions, noise, etc. The results obtained demonstrated 

the reliability and efficiency of the Curvelet-Fractal approach by achieving 

competitive results with the state-of-the-art approaches (e.g. G-LQP, LBP, 

WPCA, etc.), especially when there is only one image in the gallery set. The 

author is also aware that a possible source of error using the Curvelet-Fractal 

approach could result from the full-profile face images, which suffer from severe 

self-occlusion. However, this drawback has been significantly alleviated using a 

novel MDFR framework, in which additional and complementary information 

were automatically and conjointly learned by applying the DBN on top of the 

local feature representations obtained from the Curvelet-Fractal approach. 

Extensive experiments were conducted, and a new state-of-the-art accuracy 

rate was achieved by applying the proposed MDFR framework on all the 

employed datasets. Based on the results obtained, it can be concluded that the 

proposed Curvelet-Fractal approach and MDFR framework can be readily used 

in real face recognition system for both the identification and the verification 

task with different face variations.   

In the iris recognition module, described in Chapter 4, a robust and fast iris 

recognition system called IrisConvNet system, to identify the person's identity 

by constructing a deep learning based system for either the right or left irises of 

the same person, was developed. The proposed system starts by applying an 

automatic and real-time iris localization model to detect the iris region using 
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CCHT, which has significantly increased the overall accuracy and reduced the 

processing time of the subsequent stages in the proposed system. Despite the 

fact that the proposed iris localization model was designed to detect the iris 

region within grayscale images, the main contribution of the proposed model 

lies in its ability to detect accurately the iris boundaries accurately, which can 

greatly improve the accuracy of the proposed iris recognition system. 

Furthermore, its speed in detecting the iris boundaries is less than one second, 

which is comparable to the face detection speed.  

For iris texture encoding features, an efficient deep learning system based 

on a combination of the CNN and Softmax classifier, was proposed. A powerful 

training methodology equipped with a number of training strategies has also 

been proposed, in order to control overfitting during the learning process and 

increase the generalization ability of the neural network. The effectiveness and 

robustness of the proposed iris localization and recognition approaches have 

been tested on five challenging datasets: SDUMLA-HMT, CASIA-Iris-V1, 

CASIA-Iris-V3 Interval, MMU1 and IITD iris datasets. Extensive experiments 

have been conducted on these datasets to evaluate different numbers of 

training parameters (e.g. learning rate, number of layers, number of filters per 

each layer, etc.), in order to build an optimum CNN as the framework for the 

proposed iris identification system. The experimental results demonstrated the 

superiority of the proposed system over recently reported iris recognition 

systems, by achieving a new state-of-the-art Rank-1 identification rate on all the 

five datasets. The system is fast, as it requires less than one second to 

establish the person's identity. 

In the fusion module, an efficient and real-time hybrid multimodal biometric 

identification system was proposed, using a parallel architecture to fuse the 

results obtained from the face and both irises of a subject, as described in 

Chapter 5. Three different types of the multimodal biometric system were 

proposed, namely, multiple algorithms face recognition, multiple instances iris 

recognition, and hybrid multimodal biometric system. The performances of the 

proposed multiple algorithms face recognition system was evaluated in the 

identification task using the FERET and CAS-PEAL-R1dataset, in which the 

face images were captured under different conditions of facial expressions, 
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lighting conditions, etc. The experimental results indicate the reliability and 

efficiency of the proposed face recognition approaches, especially when there is 

only one image in the gallery set. New state-of-the-art recognition rates are 

achieved, using all the probe sets of these two face databases. The same 

system was also tested to address the unconstrained face verification problem, 

and a new state-of-the-art accuracy rate is achieved on the LFW dataset. 

Furthermore, a new state-of-the-art Rank-1 identification rate of 100% produced 

by applying the proposed multiple instances iris recognition system on real 

multimodal datasets, namely, CASIA-Iris-V3 Interval and IITD iris datasets, in 

which the left and right iris images were captured from the same person. Finally, 

the SDUMLA-HMT as a real multibiometric dataset, has been used to assess 

the performance of the proposed hybrid multimodal biometric system for 

different scenarios, based on the biometric traits selected by the user at the 

identification point. The results obtained have clearly shown the efficiency of the 

proposed multimodal biometric system using two different architectures with 

these scenarios, compared to unimodal systems in term of Rank-1 identification 

rates using different fusion methods at the score and rank level. All of the 

proposed multimodal biometric systems can work in a real-time to meet the 

requirements of real-world applications. 

To conclude, this thesis has accomplished and fulfilled all objectives and 

aims, as stated in Chapter 1. Despite the long training time required, the hybrid 

multimodal biometric identification system presented in this PhD thesis is highly 

customizable, in terms of selecting different recognition scenarios and different 

approaches to encode the selected biometric traits at the decision-making 

process. Furthermore, it has been designed and implemented in a way that 

allows adding more approaches and biometric traits (e.g., fingerprint trait) at a 

later time. Hence, the proposed hybrid multimodal biometric system can be 

improved significantly by selecting robust recognition approaches that offer a 

better performance in different recognition scenarios, based on the selected 

biometric traits. All experimental results were carefully documented and 

presented in this thesis, and, unlike previous multimodal biometric systems, real 

multi-biometric databases were employed to assess the performance of the 

proposed approaches.  
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6.2  Future Work 

Although a significant progress has been achieved in this PhD thesis in 

recognising the identities of people based on a combination of the face and both 

irises biometric traits using the proposed unified multimodal biometric system, 

there are some limitations that need to be addressed in the near future, such 

as: 

1. Firstly, the performance of the proposed hybrid multimodal biometric system 

presented in Chapter 5 should be tested using other real multimodal 

datasets. In particular, it would be necessary to validate further the 

efficiency and reliability of the proposed hybrid multimodal biometric system 

using a larger real multimodal dataset, containing more individuals with 

images captured under more challenging conditions. Unfortunately, to the 

best of our knowledge, there is no other free variable, real dataset, which 

contains the face and both irises biometric traits of the same person that 

can be used to evaluate the performance of the proposed system.  

2. The performance of the proposed hybrid multimodal biometric system 

presented in Chapter 5 can be enhanced further by incorporating the quality 

measures of the biometric traits and feeding them to the adopted classifiers, 

either as separate features, weights, or combined with the obtained scores 

from each individual classifier. Several image quality assessment 

algorithms, for both the face and iris biometric traits, have been proposed in 

the literature, as in [344][345] [346] [347] [348]. For face recognition, the 

face image quality measures are divided into two categories:  texture quality 

measures (e.g., sharpness, resolution, contrast and light intensity, 

compression ratio, etc.) and other characteristics directly associated with 

the facial features (e.g., position, symmetry, rotation, eyes visibility, the 

appearance of shadows or glare on the face). On the other hand, some of 

quality metrics used for iris recognition include occlusion (e.g., eyelids 

eyelashes, hair, and glasses) focus and motion blur (e.g., due to hand-held 

sensors), off-angle (e.g., angular deformation), and image resolution [349]. 

3. As the performance of the proposed approaches in chapter 4 and 5 is 

limited to the identification mode, it could be interesting to evaluate the 

performance in different and new scenarios, such as verification 
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applications. In particular, the performance of the proposed IrisConvNet 

system could be further assessed in addressing the problem of the 

heterogeneous iris verification, which can be further divided into cross-

resolution iris verification and cross-sensor iris verification. In the cross-

resolution iris verification, the aim is to match low-resolution testing iris 

images with high-resolution training images captured at the enrolment 

phase [350]. On the other hand, the aim of the cross-sensor iris verification 

is to measure the similarity between iris images captured using different 

sensors along with different sensors settings [351][352]. 

4. The proposed iris localization model is designed to detect the iris region 

within grayscale images. This model could be further extended in the future 

to deal with coloured iris images, which might contain additional information 

and can help to enhance the accuracy of detecting iris boundaries and 

minimize the identification error rates. 

5. A well-known limitation of using deep learning approaches is the long time 

required to train the neural network. This is the main limitation of the 

proposed IrisConvNet system. Although the training time is not as important 

as the testing time in many applications, like the iris recognition system, 

using high-performance GPUs and code optimization can significantly 

reduce the time required to train the proposed IrisConvNet system. 

Furthermore, a number of powerful textural edgeness descriptors can be 

employed to process the detected iris region (e.g., LBP, ALBP, FBM, etc.), 

and then to apply the proposed IrisConvNet system on the feature 

representations generated from one or more of these descriptors. It can be 

argued that the overall performance can be improved, and the training time 

can be reduced, by feeding the CNN with only useful iris feature 

representations.  

6. The proposed approaches in this dissertation can also be applied to other 

biometric traits. Firstly, the performance of the hybrid multimodal biometric 

system presented in Chapter 5 has been tested using only two biometric 

traits (face and iris trait). It would be interesting to integrate other biometric 

traits in conjunction with the employed traits to enhance the recognition 

performance. For instance, physiological traits (e.g., fingerprint, palm vein, 

etc.) or behavioural traits (e.g., signature, voice, etc.) can be potential 
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candidates for the proposed approaches. Secondly, studying the 

application of the proposed face recognition approaches (Curvelet-Fractal 

approach/MDFR framework) to other biometric traits, in which the edges 

and curves representations can play a significant role in improving their 

recognition performance, such as fingerprint, finger/palm vein, etc. Finally, 

studying the potential use of the DBN approach to address the problem of 

the iris recognition system in both identification and verification tasks. This 

has led Baqar et al. [353] to propose an iris recognition system that 

operates in the identification mode. However, the main weakness in their 

study is that they evaluated their system using very small iris dataset of 10 

classes. Therefore, there are still some interesting and relevant problems to 

be addressed.  
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Appendix A  

Graphical User Interface 

As mentioned earlier that the code of all proposed approaches presented 

in chapters 3, 4 and 5 was written to run in MATLAB R2015a and later versions. 

The main window of the proposed hybrid multimodal biometric identification 

system consists of 3 buttons (See Fig. A.1). The system user can choose one of 

these multimodal biometric systems based on the biometric traits selected by 

the user at the identification point, as follows:  

1. Multi-biometric Face Recognition System: When the system user 

presses the button a new window of the proposed multi-biometric face 

recognition system will appear, as shown in Fig. A.2. From the right side of 

this window, the user will be able to choose which recognition task to 

implement (either verification task or identification task), and he/she will be 

able to choose which approach to be used for encoding the face image 

(e.g., Curvelet-Fractal approach, MDFR framework, Multiple Algorithms). 

Here, Multiple Algorithms option refers to the fusion between the Curvelet-

Fractal approach and MDFR framework. For face verification task, the user 

needs to press the ‘Load Face Image’ button in order to load face images. 

A file chooser will appear twice and the user has to select two different face 

images and after that the ‘Face Verification’ panel will show up to visualize 

the selected face images along with their detected face regions, as shown 

in Fig. A.2. By pressing the ‘Face Matching’ button, the selected face 

recognition approach will be implemented and a message box will show up 

to tell if these images are belong to the same person or not. The elapsed 

time during this process in millisecond will be shown as well. Furthermore, 

the user is able to choose different fusion method from the Pop-up menu to 

make the final decision. This Pop-up menu is active only when Multiple 

Algorithms is selected to make the final decision. On the other hand, when 

the face identification task is selected the user has to load a face image 

after pressing the ‘Load Face Image’ button. Next, the ‘Face 
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Identification’ panel will appear to visualize the selected face image along 

with the detected face region, as shown in Fig. A.3. As mentioned before, 

the system user able to choose which face recognition approach to be used 

for encoding the face image and also which fusion approach to make the 

final decision. To establish the person’s identity, the user needs to press 

‘Face Recognition’ button. If the person is registered in the system’s 

database a message box will show up to tell that the person is found and 

the ‘Personal Information’ panel will appear containing different personal 

information on the identified person (e.g., Full Name, Person ID, Date of 

Birth, etc.). Otherwise, if the person is not identified by the system a 

message box will appear to tell that the person is not found. Finally, there 

are other buttons like ‘Face Detection’ button to visualize the detected 

facial features, ‘Add New User’ button to add the person’s image and his 

personal information to the system’s database, and ‘Curvelet-Fractal 

Training’ and ‘MDFR Training’ buttons are used to automatically train the 

classifiers of the Curvelet-Fractal approach and MDFR Framework, 

respectively, after the face images of the new registered person have been 

added.  

  

 

Figure A.1: The main GUI window of the proposed hybrid multimodal biometric 

identification system. 
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Figure A.2: The main GUI window of the proposed multi-biometric face 

recognition system operates in the verification mode. 

 

 

Figure A.3: The main GUI window of the proposed multi-biometric face 

recognition system operates in the identification mode. 
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2. Multi-biometric Iris Recognition System: When the system user presses 

the button a new window of the proposed multi-biometric iris recognition 

system will appear, as shown in Fig. A.4. From the right side of this window, 

the user will be able to choose which iris trait will be used to establish the 

person’s identity (e.g., Right iris image, Left iris image, or both irises 

images). If the last option was selected from ‘Iris Trait Selection’ panel the 

system allows to the user to select different fusion method to make the final 

decision on the person’s identity who his/her irises images are under the 

consideration. Firstly, the user needs to press the ‘Load Iris Image’ button 

to load either one iris image or two based on the selected option from the 

‘Iris Trait Selection’ panel. If one of the first two options in the from the ‘Iris 

Trait Selection’ panel was selected the ‘Iris Localization Stages’ panel 

will appear to visualize the input image, as shown in Fig. A.4. By pressing 

the ‘Iris Localization’ button, the detected iris boundaries and the detected 

eyelids and eyelashes will be visualized next to the input image. The result 

of the iris normalization can be obtained by pressing the ‘Iris 

Normalization’ button. To recognize the person’s identity the user needs to 

press the ‘Iris Matching’ button. If the person correctly recognized by the 

system the ‘Personal Profile’ panel will appear containing a personal photo 

of the person, a message box tells that the person is found, and a 

‘Personal Information’ panel contains all his/her personal information (See 

Fig. A.5). Otherwise, if the person is not registered in the database, a 

message box will appear to tell that the person is not found. The elapsed 

time will be visualized in edit box below the ‘Personal Information’ panel. If 

the last option was selected from ‘Iris Trait Selection’ panel, the ‘Right & 

Left Iris Images’ panel will show up to visualize the input irises images 

along with their detected iris regions, as shown in Fig. A.6. Finally, the 

person’s identity can be established in the same procedure described 

above by pressing the ‘Iris Matching’ button. 
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Figure A.4: The main GUI window of the proposed multi-biometric iris 

recognition system when only one of the iris image is selected. 

 

 

Figure A.5: The main GUI window of the proposed multi-biometric iris 

recognition system when the person is correctly identified by the system. 
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Figure A.6: The main GUI window of the proposed multi-biometric iris 

recognition system when both irises images of the same person are selected. 

 

3. Hybrid Multimodal Recognition System: By pressing this button the main 

GUI window of the proposed hybrid multimodal recognition system will 

appear, as shown in Fig. A.7.  As can be seen from this figure, the 

proposed system offers the user a high degree of flexibility to choose from 

the ‘Biometric Trait Selection’ panel which biometric trait will be used at 

the identification point. Furthermore, the system user can choose different 

face recognition approaches and fusion method to make the final decision 

from the ‘Face Approach Selection’ panel and ‘Select the Fusion 

Method’ pop up menu, respectively. Finally, person’s identity can be 

recognized by pressing the ‘Person Recognition’ button.  
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Figure A.7: The main GUI window of the proposed hybrid multimodal 

recognition system. 
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