23 research outputs found

    Compiling machine-independent parallel programs

    Get PDF

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    Type Oriented Parallel Programming

    Get PDF
    Context: Parallel computing is an important field within the sciences. With the emergence of multi, and soon many, core CPUs this is moving more and more into the domain of general computing. HPC programmers want performance, but at the moment this comes at a cost; parallel languages are either efficient or conceptually simple, but not both. Aim: To develop and evaluate a novel programming paradigm which will address the problem of parallel programming and allow for languages which are both conceptually simple and efficient. Method: A type-based approach, which allows the programmer to control all aspects of parallelism by the use and combination of types has been developed. As a vehicle to present and analyze this new paradigm a parallel language, Mesham, and associated compilation tools have also been created. By using types to express parallelism the programmer can exercise efficient, flexible control in a high level abstract model yet with a sufficiently rich amount of information in the source code upon which the compiler can perform static analysis and optimization. Results: A number of case studies have been implemented in Mesham. Official benchmarks have been performed which demonstrate the paradigm allows one to write code which is comparable, in terms of performance, with existing high performance solutions. Sections of the parallel simulation package, Gadget-2, have been ported into Mesham, where substantial code simplifications have been made. Conclusions: The results obtained indicate that the type-based approach does satisfy the aim of the research described in this thesis. By using this new paradigm the programmer has been able to write parallel code which is both simple and efficient

    Runtime-adaptive generalized task parallelism

    Get PDF
    Multi core systems are ubiquitous nowadays and their number is ever increasing. And while, limited by physical constraints, the computational power of the individual cores has been stagnating or even declining for years, a solution to effectively utilize the computational power that comes with the additional cores is yet to be found. Existing approaches to automatic parallelization are often highly specialized to exploit the parallelism of specific program patterns, and thus to parallelize a small subset of programs only. In addition, frequently used invasive runtime systems prohibit the combination of different approaches, which impedes the practicality of automatic parallelization. In the following thesis, we show that specializing to narrowly defined program patterns is not necessary to efficiently parallelize applications coming from different domains. We develop a generalizing approach to parallelization, which, driven by an underlying mathematical optimization problem, is able to make qualified parallelization decisions taking into account the involved runtime overhead. In combination with a specializing, adaptive runtime system the approach is able to match and even exceed the performance results achieved by specialized approaches.Mehrkernsysteme sind heutzutage allgegenwĂ€rtig und finden tĂ€glich weitere Verbreitung. Und wĂ€hrend, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit der steigenden Anzahl an Kernen einhergeht. Existierende AnsĂ€tze der automatischen Parallelisierung sind hĂ€ufig hoch spezialisiert auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung weniger Programmteile. Hinzu kommt, dass hĂ€ufig verwendete invasive Laufzeitsysteme die Kombination mehrerer Parallelisierungs-AnsĂ€tze verhindern, was der Praxistauglichkeit und Reichweite automatischer AnsĂ€tze im Wege steht. In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte Programmuster nicht notwendig ist, um ParallelitĂ€t in Programmen verschiedener DomĂ€nen effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung, der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte Parallelisierungsentscheidungen unter BerĂŒcksichtigung relevanter Kosten zu treffen. In Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte Ansatz in der Lage, mit den Ergebnissen spezialisierter AnsĂ€tze mitzuhalten, oder diese gar zu ĂŒbertreffen.Part of the work presented in this thesis was performed in the context of the SoftwareCluster project EMERGENT (http://www.software-cluster.org). It was funded by the German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”. Later work has been supported, also by the German Federal Ministry of Education and Research (BMBF), through funding for the Center for IT-Security, Privacy and Accountability (CISPA) under grant no. “16KIS0344”

    Tools and Models for High Level Parallel and Grid Programming

    Full text link
    When algorithmic skeletons were first introduced by Cole in late 1980 the idea had an almost immediate success. The skeletal approach has been proved to be effective when application algorithms can be expressed in terms of skeletons composition. However, despite both their effectiveness and the progress made in skeletal systems design and implementation, algorithmic skeletons remain absent from mainstream practice. Cole and other researchers, focused the problem. They recognized the issues affecting skeletal systems and stated a set of principles that have to be tackled in order to make them more effective and to take skeletal programming into the parallel mainstream. In this thesis we propose tools and models for addressing some among the skeletal programming environments issues. We describe three novel approaches aimed at enhancing skeletons based systems from different angles. First, we present a model we conceived that allows algorithmic skeletons customization exploiting the macro data-flow abstraction. Then we present two results about the exploitation of meta-programming techniques for the run-time generation and optimization of macro data-flow graphs. In particular, we show how to generate and how to optimize macro data-flow graphs accordingly both to programmers provided non-functional requirements and to execution platform features. The last result we present are the Behavioural Skeletons, an approach aimed at addressing the limitations of skeletal programming environments when used for the development of component-based Grid applications. We validated all the approaches conducting several test, performed exploiting a set of tools we developed.Comment: PhD Thesis, 2008, IMT Institute for Advanced Studies, Lucca. arXiv admin note: text overlap with arXiv:1002.2722 by other author

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Die GI-Fachgruppe 2.1.4 "Programmiersprachen und Rechenkonzepte" veranstaltete vom 3. bis 5. Mai 2004 im Physikzentrum Bad Honnef ihren jĂ€hrlichen Workshop. Dieser Bericht enthĂ€lt eine Zusammenstellung der BeitrĂ€ge. Das Treffen diente wie in jedem Jahr gegenseitigem Kennenlernen, der Vertiefung gegenseitiger Kontakte, der Vorstellung neuer Arbeiten und Ergebnisse und vor allem der intensiven Diskussion. Ein breites Spektrum von BeitrĂ€gen, von theoretischen Grundlagen ĂŒber Programmentwicklung, Sprachdesign, Softwaretechnik und Objektorientierung bis hin zur ĂŒberraschend langen Geschichte der Rechenautomaten seit der Antike bildete ein interessantes und abwechlungsreiches Programm. Unter anderem waren imperative, funktionale und funktional-logische Sprachen, Software/Hardware-Codesign, Semantik, Web-Programmierung und Softwaretechnik, generative Programmierung, Aspekte und formale TestunterstĂŒtzung Thema. Interessante BeitrĂ€ge zu diesen und weiteren Themen gaben Anlaß zu Erfahrungsaustausch und FachgesprĂ€chen auch mit den Teilnehmern des zeitgleich im Physikzentrum Bad Honnef stattfindenden Workshops "Reengineering". Allen Teilnehmern möchte ich dafĂŒr danken, daß sie mit ihren VortrĂ€gen und konstruktiven DiskussionsbeitrĂ€gen zum Gelingen des Workshops beigetragen haben. Dank fĂŒr die Vielfalt und QualitĂ€t der BeitrĂ€ge gebĂŒhrt den Autoren. Ein Wort des Dankes gebĂŒhrt ebenso den Mitarbeitern und der Leitung des Physikzentrums Bad Honnef fĂŒr die gewohnte angenehme und anregende AtmosphĂ€re und umfassende Betreuung

    New approaches to protein docking

    Get PDF
    In the first part of this work, we propose new methods for protein docking. First, we present two approaches to protein docking with flexible side chains. The first approach is a fast greedy heuristic, while the second is a branch -&-cut algorithm that yields optimal solutions. For a test set of protease-inhibitor complexes, both approaches correctly predict the true complex structure. Another problem in protein docking is the prediction of the binding free energy, which is the the final step of many protein docking algorithms. Therefore, we propose a new approach that avoids the expensive and difficult calculation of the binding free energy and, instead, employs a scoring function that is based on the similarity of the proton nuclear magnetic resonance spectra of the tentative complexes with the experimental spectrum. Using this method, we could even predict the structure of a very difficult protein-peptide complex that could not be solved using any energy-based scoring functions. The second part of this work presents BALL (Biochemical ALgorithms Library), a framework for Rapid Application Development in the field of Molecular Modeling. BALL provides an extensive set of data structures as well as classes for Molecular Mechanics, advanced solvation methods, comparison and analysis of protein structures, file import/export, NMR shift prediction, and visualization. BALL has been carefully designed to be robust, easy to use, and open to extensions. Especially its extensibility, which results from an object-oriented and generic programming approach, distinguishes it from other software packages.Der erste Teil dieser Arbeit beschĂ€ftigt sich mit neuen AnsĂ€tzen zum Proteindocking. ZunĂ€chst stellen wir zwei AnsĂ€tze zum Proteindocking mit flexiblen Seitenketten vor. Der erste Ansatz beruht auf einer schnellen, gierigen Heuristik, wĂ€hrend der zweite Ansatz auf branch-&-cut-Techniken beruht und das Problem optimal lösen kann. Beide AnsĂ€tze sind in der Lage die korrekte Komplexstruktur fĂŒr einen Satz von Testbeispielen (bestehend aus Protease-Inhibitor-Komplexen) vorherzusagen. Ein weiteres, grösstenteils ungelöstes, Problem ist der letzte Schritt vieler Protein-Docking-Algorithmen, die Vorhersage der freien Bindungsenthalpie. Daher schlagen wir eine neue Methode vor, die die schwierige und aufwĂ€ndige Berechnung der freien Bindungsenthalpie vermeidet. Statt dessen wird eine Bewertungsfunktion eingesetzt, die auf der Ähnlichkeit der Protonen-Kernresonanzspektren der potentiellen Komplexstrukturen mit dem experimentellen Spektrum beruht. Mit dieser Methode konnten wir sogar die korrekte Struktur eines Protein-Peptid-Komplexes vorhersagen, an dessen Vorhersage energiebasierte Bewertungsfunktionen scheitern. Der zweite Teil der Arbeit stellt BALL (Biochemical ALgorithms Library) vor, ein Rahmenwerk zur schnellen Anwendungsentwicklung im Bereich MolecularModeling. BALL stellt eine Vielzahl von Datenstrukturen und Algorithmen fĂŒr die FelderMolekĂŒlmechanik,Vergleich und Analyse von Proteinstrukturen, Datei-Import und -Export, NMR-Shiftvorhersage und Visualisierung zur VerfĂŒgung. Beim Entwurf von BALL wurde auf Robustheit, einfache Benutzbarkeit und Erweiterbarkeit Wert gelegt. Von existierenden Software-Paketen hebt es sich vor allem durch seine Erweiterbarkeit ab, die auf der konsequenten Anwendung von objektorientierter und generischer Programmierung beruht

    Tools and models for high level parallel and Grid programming

    Get PDF
    When algorithmic skeletons were first introduced by Cole in late 1980 (50) the idea had an almost immediate success. The skeletal approach has been proved to be effective when application algorithms can be expressed in terms of skeletons composition. However, despite both their effectiveness and the progress made in skeletal systems design and implementation, algorithmic skeletons remain absent from mainstream practice. Cole and other researchers, respectively in (51) and (19), focused the problem. They recognized the issues affecting skeletal systems and stated a set of principles that have to be tackled in order to make them more effective and to take skeletal programming into the parallel mainstream. In this thesis we propose tools and models for addressing some among the skeletal programming environments issues. We describe three novel approaches aimed at enhancing skeletons based systems from different angles. First, we present a model we conceived that allows algorithmic skeletons customization exploiting the macro data-flow abstraction. Then we present two results about the exploitation of metaprogramming techniques for the run-time generation and optimization of macro data-flow graphs. In particular, we show how to generate and how to optimize macro data-flow graphs accordingly both to programmers provided non-functional requirements and to execution platform features. The last result we present are the Behavioural Skeletons, an approach aimed at addressing the limitations of skeletal programming environments when used for the development of component-based Grid applications. We validated all the approaches conducting several test, performed exploiting a set of tools we developed

    Design and implementation of an array language for computational science on a heterogeneous multicore architecture

    Get PDF
    The packing of multiple processor cores onto a single chip has become a mainstream solution to fundamental physical issues relating to the microscopic scales employed in the manufacture of semiconductor components. Multicore architectures provide lower clock speeds per core, while aggregate floating-point capability continues to increase. Heterogeneous multicore chips, such as the Cell Broadband Engine (CBE) and modern graphics chips, also address the related issue of an increasing mismatch between high processor speeds, and huge latency to main memory. Such chips tackle this memory wall by the provision of addressable caches; increased bandwidth to main memory; and fast thread context switching. An associated cost is often reduced functionality of the individual accelerator cores; and the increased complexity involved in their programming. This dissertation investigates the application of a programming language supporting the first-class use of arrays; and capable of automatically parallelising array expressions; to the heterogeneous multicore domain of the CBE, as found in the Sony PlayStation 3 (PS3). The language is a pre-existing and well-documented proper subset of Fortran, known as the ‘F’ programming language. A bespoke compiler, referred to as E , is developed to support this aim, and written in the Haskell programming language. The output of the compiler is in an extended C++ dialect known as Offload C++, which targets the PS3. A significant feature of this language is its use of multiple, statically typed, address spaces. By focusing on generic, polymorphic interfaces for both the generated and hand constructed code, a number of interesting design patterns relating to the memory locality are introduced. A suite of medium-sized (100-700 lines), real-world benchmark programs are used to evaluate the performance, correctness, and scalability of the compiler technology. Absolute speedup values, well in excess of one, are observed for all of the programs. The work ultimately demonstrates that an array language can significantly reduce the effort expended to utilise a parallel heterogeneous multicore architecture, while retaining high performance. A substantial, related advantage in using standard ‘F’ is that any Fortran compiler can create debuggable, and competitively performing serial programs
    corecore