
AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC
LANGUAGES

Diptorup Deb

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2019

Approved by:

Robert J. Fowler

Allan Porterfield

Jan F. Prins

Donald E. Porter

Mary Hall

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/225545948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2019
Diptorup Deb

ALL RIGHTS RESERVED

ii

ABSTRACT

DIPTORUP DEB: Automating Data-Layout Decisions In Domain-Specific Languages
(Under the direction of Robert J. Fowler)

A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement

of programmer productivity and hardware computational efficiency. The challenge has been exacerbated

by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been

able to hand-code domain-specific data transformations and vectorization schemes needed to extract

the best possible performance on such architectures. In this research, we examined the possibility of

automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL

approach extends C++14 by embedding into it a high-level data-parallel array language, and by using

a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-

space transformation algebra within this high-level array language to manipulate array data-layouts and

data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array

data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization

strategy by up to 40% for stencil computations. The compiler also automates distributed data movement

with overlapping of local compute with remote data movement using polyhedral integer set analysis.

Along with these main innovations, we developed a new technique using C++ template metaprogramming

for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate

representation that simplifies data flow analysis of abstract DSL constructs.

We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice

quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing

production C code for selected kernels. This gain in performance was obtained while using less than one-

tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized

and hand-vectorized code, and is an order of magnitude better than existing production DSLs.

iii

To my wife and my parents.

iv

ACKNOWLEDGMENTS

My journey as a graduate student would not have been possible without the unwavering support and

encouragement of a lot of people. These acknowledgments are a token of my appreciation to the people

without whom this dissertation would not have been possible.

I thank Rob Fowler, my adviser, for teaching me how to be a researcher, and supporting me to the

very end. I would not have reached this point without Rob believing in me, even more than I did at times.

I would also thank Allan Porterfield for the endless hours he devoted to discussing and developing my

ideas, and seed new ones. I am especially grateful that even after leaving Renci Allan continued visiting

and was always available for discussions.

Thanks to Balint Joó at Thomas Jefferson National Accelerator Facility for teaching me enough

about Lattice Quantum Chromodynamics (LQCD) to be able to build a domain-specific language for

LQCD. Balint also helped me understand an advanced SIMD vectorization method, automating which

ended up becoming a large part of my thesis. I am grateful to Robert Edwards and Frank Winter from

Thomas Jefferson National Accelerator Facility and Dheeraj Kalamkar at Intel Parallel Labs for their

research insights and ideas.

Jan Prins taught me parallel programming and high-performance computing. Don Porter helped me

become better at presenting my research in words. Thanks also to Mary Hall for graciously agreeing to

be on my committee, and providing insights into my work.

Thanks to Niki Fowler for painstakingly proofreading and editing my dissertation, and all my papers.

Thanks to Xipeng Shen at NCSU for providing a graduate-level compiler optimization course when

no such course was offered at UNC.

Diane Pozefsky first planted the idea of staying back after my M.S. for a Ph.D. I am thankful that

I took her advice and decided to take the qualifier examination. Victor Eijkhout at TACC guided me

during a wonderful internship I did under him. The initial ideas around focusing on data-layouts and

data-placement in HPC applications started germinating during my work under Victor.

v

I thank Anirban Mandal for his support and guidance all thought my work at Renci. I also acknowl-

edge the wonderful friends I had during graduate school, including Duo Zhao, Sridutt Bhalachandra, Yue

Gao, Fan Ziang, and Dheeraj Shetty.

I thank my parents for instilling the values in me that shape the person I am today. Thanks also to

my sister, my uncle and my aunt for their constant encouragement and well wishes.

I thank my wife, Shreoshi, for encouraging me to go back to graduate school. Thanks to her unending

love and support I could maintain focus and sanity during the bleakest of time.

I acknowledge support from the U.S. Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research and Office of Nuclear Physics, Scientific Discovery through Advanced

Computing (SciDAC) program under grants DE-FG02-11ER26050/DE-SC0006925, DE-SC0008706,

and a sub-contract of grant DE-AC05-06OR23177 from the Thomas Jefferson National Accelerator

Facility.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

1 Introduction . 1

1.1 A Historical Perspective . 4

1.2 Thesis . 5

1.3 Contributions . 6

1.4 Dissertation Overview . 7

2 Background and Motivation . 9

2.1 EDSL Code-Generation . 9

2.2 Data Placement Abstractions. 13

2.3 Motivating Example . 17

3 The QUARC Framework . 21

3.1 EDSL Design Approach . 23

3.2 Parallel Programming Model . 24

3.3 The Core Components of QUARC . 24

3.3.1 Minimal Expression Template Array Language (METAL) . 24

3.3.2 Array Transformation Language (ATL) . 25

3.3.3 QUARC Optimizer (QOPT) . 25

3.3.4 QUARC Runtime (QUARC-RT) . 25

4 An Algebra for Array Transformations . 26

vii

4.1 Basic Operators . 27

4.1.1 Composing array-transformations . 33

4.1.2 Comparison of QUARC’s array-transformations to APL . 33

4.2 Index-space Mapping. 34

5 Programming Interface . 36

5.1 Minimal Expression Template Array Language (METAL) . 37

5.1.1 Grammar. 37

5.1.2 Type System . 37

5.1.2.1 Array Properties . 37

5.1.2.2 Array Containers . 39

5.1.2.3 Elemental Functions . 42

5.1.2.4 Array Operations . 43

5.1.2.5 Array Expressions . 45

5.1.2.6 Callback Functions . 50

5.2 Abstraction Characterization Templates (ACTs) . 51

5.2.1 Types of ACTs and DSL Intrinsic . 53

5.3 Programming Data-Placement Using ATL . 55

5.3.1 ATL attributes . 55

5.3.2 METAL-ATL interface . 57

5.3.3 Compile-time ATL v/s Runtime ATL . 58

6 Code Generation and Runtime System . 59

6.1 QOPT: QUARC’s Domain-specific Compiler . 59

6.1.1 Architecture and Pass Pipeline . 61

6.1.2 Running Example . 66

6.2 QOPT High-level Code-generation . 67

6.2.1 Clang -O0 compilation . 67

6.2.2 Preprocessing . 68

viii

6.2.3 QKET Construction . 71

6.2.4 High-level Optimizations . 72

6.3 Speculative SIMD Vectorization . 74

6.4 QOPT Late Scalarization . 76

6.4.1 Preventing Invalid Scalarization . 76

6.4.2 Loop Generation . 78

6.4.3 QUARC-RT library calls generation . 87

6.4.4 Loop body generation. 90

6.4.5 Reductions . 96

6.5 QUARC-RT: Runtime Time System . 97

6.5.1 Halo Generation and Communication Optimization . 97

6.5.2 Data Distribution Functions . 97

6.5.3 Data-Layout Selection . 98

7 Performance Analysis of Data-Layouts . 99

7.1 Background . 99

7.1.1 Stencil Kernels . 99

7.1.2 Short-vector SIMD architectures . 100

7.1.3 Stream alignment conflict . 101

7.1.4 Mitigating SAC . 102

7.2 Experimental Setup . 102

7.2.1 Stencil Benchmarks . 103

7.2.2 Architectures . 103

7.2.3 Data-layouts . 103

7.3 Results and Observations . 104

8 Data-Layout Selection Policy. 111

8.1 Performance Effects of Data-Layouts. 111

8.2 Policy Input Parameters . 113

ix

8.3 Policy Execution Steps . 113

8.4 Evaluating the Policy . 114

9 QUICQ: A QUARC-based LQCD DSL . 116

9.1 Lattice Quantum Chromodynamics (LQCD) . 116

9.1.1 The Wilson Dslash operator . 117

9.1.2 The Kogut-Susskind Dslash operator . 121

9.1.3 Linear Solvers . 123

9.2 The QUICQ DSL . 123

10 Evaluation and Performance Analysis . 130

10.1 Stencil SIMD vectorization . 130

10.2 Performance Evaluation of QUICQ . 132

10.2.1 Chroma . 132

10.2.2 MILC . 135

10.3 Comparing Two Approaches for Code Generation . 140

11 Related Work . 142

11.1 C++ Array-Programming Techniques . 142

11.2 C++ Parallel Skeleton Library . 143

11.3 LQCD DSLs . 145

11.4 DSLs and DSL Frameworks . 145

11.5 Data-Layout Transformations . 147

12 Conclusion and Future Work . 149

12.1 Future Work . 151

BIBLIOGRAPHY . 153

x

LIST OF TABLES

5.1 METAL DSL intrinsic functions . 54

6.1 QOPT analysis and code generation passes . 63

7.1 Evaluating all data-layout choices for 2D-Jacobi . 106

7.2 Calculated reuse distances and shuffle instructions for the {1024×512} sized
2D-Jacobi . 106

7.3 Evaluating the five best and five worst data-layout choices for 3D-Jacobi kernel 107

7.4 Calculated reuse distances and shuffle instructions for the {128×64×64} sized
3D-Jacobi . 108

7.5 Evaluating the five best and five worst data-layout choices for WD kernel 109

10.1 ICC vectorization v/s QOPT vectorization on Intel Skylake (AVX512) 131

10.2 ICC vectorization v/s QOPT vectorization on Intel KNL (AVX512) . 131

10.3 Lines of code for KS Dslash MILC v/s QPhiX v/s QUICQ . 136

xi

LIST OF FIGURES

2.1 Array-of-Structs (AOS) versus Structs-of-Arrays (SOA) versus Array-of-
Structs-of-Arrays (AOSOA) . 15

2.3 Improving SIMD vectorization after a data-layout transformation . 19

3.1 QUARC system architecture diagram . 22

5.1 METAL’s EBNF grammar . 38

5.2 An example METAL binary expression tree . 52

5.3 Example of an ATL specification. 56

5.4 An example of an ATL specified block data-distribution. 57

6.1 QOPT’s compilation pipeline . 60

6.2 Codegen shows at a high-level QOPT’s code generation process . 65

6.3 QOPT’s pre-processing pass . 69

6.4 Examples of fusible METAL array expressions . 73

6.5 An example showing invalid scalarization of a METAL array assignment
expression. 78

6.6 QOPT’s QKSCoP detection pass . 81

6.7 Steps involved in generating boundary region index sets from a vector of shift
offsets. 82

6.8 Halo identification for multi-dimensional shifts . 83

6.9 Halo identification for array expressions with shifts . 85

6.10 Boundary domains and statements for a five-point stencil . 86

6.11 Basic block CFG for a typical QK. 88

6.12 QOPT’s QK expression tree code generation pass . 91

6.13 Handling boundaries within a SIMD vector tile . 94

7.1 An empirical evaluation of data-layout choices based on wall clock execution
time. 105

xii

8.1 Steps to select a set of data-layout candidates for a stencil kernel. 112

9.1 An illustrative four-dimensional even-odd preconditioned LQCD lattice. 117

9.2 High-level structure of the Wilson Dslash operator . 120

9.3 High-level structure of the KS Dslash operator . 122

9.4 Mkernel functions needed for the KS Dslash operator . 127

10.1 Single node Haswell comparison of QDP++ and QUICQ. 133

10.2 Single node KNL comparison of QDP++, QUICQ and QPhiX. 134

10.3 Single node comparison of MILC, QUICQ and QPhiX. 137

10.4 Evaluation of MILC and QUICQ’s conjugate gradient solvers and the complete
su3 rmd simulation on a single 48-core Skylake server. 138

10.5 Comparing the two code generation approaches for QUARC for the KS Dslash
lattice. 141

xiii

LIST OF ABBREVIATIONS

ACT Abstraction Characterization Template

AOS Array-of-Structs

AOSOA Array-of-Structs-of-Arrays

ATL Array Transformation Language

C++ ET C++ Expression Template

DSL Domain-Specific Language

EDSL Embedded Domain-Specific Language

FLOP Floating-point Operations per Second

GPGPU General-purpose Graphical Processing Unit

HPC High-Performance Computing

IR Intermediate Representation

ISA Instruction Set Architecture

ISL Integer Set Library

JIT Just-in-Time

LHS Left-Hand Side

LQCD Lattice Quantum Chromodynamics

METAL Minimal Expression Template Array Language

MPI Message Passing Interface

MSP Multi-Staged Programming

QCD Quantum Chromodynamics

QOPT QUARC’s Optimizer

QUARC QCD’s Array-based Rapid-prototyping Compiler

QUARC-RT QUARC’s Runtime

QUICQ QUICQ Internally Calls QUARC

RHS Right-Hand Side

SIMD Single Instruction Multiple Data

SOA Structs-of-Arrays

TMP Template Metaprogramming

xiv

CHAPTER 1: INTRODUCTION

This dissertation targets a long-standing challenge in High-Performance Computing (HPC), i.e.

simultaneous achievement of programmer productivity and hardware computational efficiency. Our ap-

proach is to develop a compiler for an Embedded Domain-Specific Language (EDSL) using a production

compiler infrastructure (The LLVM Foundation, 2018). A unique innovation of this compiler is a frame-

work for data-layout transformations to generate code competitive with the very best hand-optimizations.

The breakdown of Dennard scaling (Dennard et al., 1974) in the early 2000’s capped air-cooled

uniprocessor clock speeds at around 3GHz and marked the onset of chip multiprocessing. Consequently,

shifts occurred in HPC hardware architectures and in parallel-programming models. A single node of a

current-generation HPC cluster has complementary features, such as deeply nested cache hierarchies,

multiple cores, simultaneous multithreading, short-vector Single Instruction Multiple Data (SIMD) units,

and accelerators. The software stack consists of frameworks supporting various programming models,

such as message-passing, shared-memory threads, and accelerator-based data parallelism. Such diversity

offers more choices to application developers, but it greatly complicates extraction of high levels of

portable performance from modern HPC systems. Application programming on today’s HPC systems

requires programmers to mesh these disparate hardware and software components to boost performance.

In addition, significant architecture-aware programming skills and domain-specific knowledge are both

necessary. The deepening programming crisis calls for newer approaches in programming language

design and in compiler technology. Development of such newer approaches is an increasingly important

goal for the HPC research community (Department of Defense, 2001), especially given the current rush

towards exascale computing.

Legacy applications in C/C++ or FORTRAN are unable to utilize the peak machine Floating-

point Operations per Seconds (sFLOPs) rate and the maximum available memory bandwidth without

architecture-specific code-tuning. Certain types of newer architectures such as NVIDIA’s General-

purpose Graphical Processing Units (sGPGPUs) require large-scale re-implementation and rewrite of

1

legacy applications. The issue of code-tuning and rewriting also applies to non-legacy applications.

Converting a prototype of an application to a production-grade HPC version generally involves an order of

magnitude of growth in the lines of code. Thus, the net result is a high entry barrier to HPC programming

that limits true accessibility of HPC platforms to a small niche of experts.

Performance portability is a set of closely related problems linked to the overall problem of code

rewrite and re-implementation. For the very best performance, performance-tuning of an HPC application

kernel by hand often requires architecture-specific optimizations. The specificity of such optimizations

necessitate repeating the exercise on different architectures or generations of an architecture family. A

notable example is hand-vectorization of code for different generations of x86 processors. Each generation

of x86 has a different Instruction Set Architecture (ISA) extension to support SIMD vectorization that

requires a rewrite of hand-vectorized codes before the code can make effective use of a newer ISA vector

extension. Another aspect of performance portability is that hand optimizations are not directly portable

across applications, or even across kernels within an application stack. Solving the issue of performance

portability requires addressing all these related issues. A solution to the issue of performance portability

is still missing in existing programming languages and frameworks. Often, the only recourse to high

performance on different architectures is to write and maintain different versions of the application. The

resulting code complexity means that many HPC applications bear little resemblance to the original

abstract algorithms and are difficult, if not impossible, to understand for those domain experts who are

not expert programmers.

Domain-specific Languages (DSLs) offer a potential solution to the programming crisis in HPC.

The history of DSLs is traceable to the very first commercially available language, FORTRAN (Backus,

1978). Although not called a DSL, FORTRAN was conceived as a high-level language specifically for

scientific and mathematical computation. Since then, several DSLs such as Matlab (MATLAB, 2010),

R (The R Foundation, 2018), NumPy (van der Walt et al., 2011) have gained popularity in HPC. Code

written in such DSLs is not always the most performant, and often the computationally intensive tasks

require implementation within libraries written in C/C++ or FORTRAN. The strategy works if a highly

tuned library implementation is available, but this is not always the case. The past two decades have

seen much effort towards improving the performance of DSLs. One possible solution is to create DSLs

embedded inside a high-level language. Such DSLs are called EDSLs. EDSLs and the closely related

concept of active libraries (Veldhuizen and Gannon, 1998) rely on generative programming features of an

2

existing high-level language to optimize, tune, and generate domain-specific code for a DSL embedded

within that high-level language. C++ template metaprogramming is perhaps one of the most successfully

adopted techniques for building EDSLs. Apart from C++ templates, other recent approaches have used

Multi-Staged Programming (MSP) (Taha and Sheard, 1997) to build EDSLs on top of languages such as

Scala (Odersky et al., 2008) and Lua (LabLua, 2015). Chapter 2 explains these methods in detail.

EDSL designs, especially those based on purely generative methods, are not perfect. A significant

limitation is the lack of important types of optimizations that require deeper compiler analysis than

is possible inside the EDSL-layer. Analyses range from data-flow-based redundancy elimination

optimization to much more intricate data-dependence-based loop optimizations. Code generated by some

EDSL can also introduce obfuscations that impede low-level compiler optimizations. These obfuscations,

such as address and loop linearization, can make it very hard, if not impossible, for any compiler to infer

the programmer’s intent, inhibiting subsequent compiler-driven analysis and optimization.

Overcoming the limitations of EDSLs requires a new design approach. Such a design should

extend the underlying host-language’s compiler be aware of EDSL domain-specific abstractions and

constructs. With such a design the possibility exists of optimizing EDSL expressions using a wider

range of standard compiler optimizations. A close coupling between the EDSL and the host-language

compiler simplifies designing newer domain-specific optimization and code-generation techniques by

reusing existing compiler infrastructure. Chapters 5 and 6 present such a new EDSL-design approach.

Data-placement is another area that is increasingly important for both general-purpose parallel

programming languages and EDSLs. The overall data-placement of an application controls several

aspects of data movement across the computation domain. In the context of HPC, data movement refers

to communication over a network interconnect, across the non-uniform memory-access shared-memory

hierarchy, or even among registers. Several complementary methods exist to optimize applications

for these scenarios. Such methods include customizing shared-memory data-layouts, and customizing

data-distributions for distributed-memory clusters. Automating data-placement via compiler analysis, and

even providing an interface to define data-placement, remain key challenges for programming systems.

Optimizing data-placement by hand is one of the main areas that requires expert programming skills in

HPC.

Alleviating the programming crisis by addressing limitations in EDSL code-generation and designing

an easy-to-use data-placement abstraction technique form the core of this dissertation. We introduce

3

a new technique for EDSL code-generation that uses C++ template metaprogramming to encode a

domain-specific Intermediate Representation (IR) inside a general-purpose compiler IR. The new

metaprogramming technique simplifies the engineering of new domain-specific optimizations and code

transformations on top of existing general-purpose compiler technology. We also introduce a data-

placement abstraction technique that completely decouples architecture-specific data-distributions and

data-layouts from application-level algorithms. Using these two innovations, we introduce a new SIMD

auto-vectorization based on a data-layout transformation technique. For selected kernels form a large

scale HPC application, the new auto-vectorization offered a factor of two performance improvement,

while taking less than one-tenth the lines of code. Other innovations explained in Section 1.3 include

automated code-generation from the same abstract high-level program for both multi-core and multi-node

cluster, and a design for high-level optimization of EDSL constructs.

1.1 A Historical Perspective

Kennedy et al. (Kennedy et al., 2004) quantified computational productivity as a function of the

amortized cost of preparing the program, the cost of running it, and the net present value of the results.

The computational resources needed by some problems are minimal and the time to solution is not large.

For such problems, it is ideal to minimize the programming costs by using an expressive scripting tool

such as Python, Matlab, or R. At the other end of the spectrum, large computational campaigns may use

many millions of CPU hours and the opportunity cost of waiting for an answer may be very large. In

extreme cases, e.g., disaster forecasting or even responses to interactive queries, late answers may be

useless. Such cases require uncompromised computational efficiency. There are even cases in which

there is a need to program a new algorithm quickly for a large time-critical computation. Most large HPC

applications lie somewhere between these extremes.

In 1978, Glenford Myers (Myers, 1979) first published a book that focused on the “semantic gap”, the

incompatibility between the abstractions of high-level languages and the low-level machine instructions

of the computers of that era. Myers advocated closing the gap by raising the semantic level of the

hardware. Instead, at about the same time, the RISC revolution increased the gap by further lowering the

semantics of the machines, thus leaving a larger gap that needed to be bridged by software. Subsequent

complexities, such as multi-issue CPUs with deep pipelines, vector pipelines on commodity processor

4

chips, multi-core/multi-threaded chips, and deeper, more complex coherent memory hierarchies, have

exacerbated the problem.

Myers and Kennedy et al. addressed the same problem from different perspectives. Closing the

semantic or productivity gap entails increasing the expressive power of the programming environment

while simultaneously increasing the computational efficiency of programs.

Striking the right balance between expressiveness and computational efficiency has been a challenge

since the first generation of computers. To incorporate expressiveness, programming systems have added

layers of abstractions. In recent decades, innovations such as object-oriented and functional programming

have greatly improved the tools available for abstraction. Unfortunately, multiple layers of abstraction

and the resulting deep call chains, sometimes involving dynamic bindings, may decrease computational

efficiency as measured in terms of the peak achievable architectural FLOPs rate. Generic and generative

programming techniques, e.g., C++ template metaprogramming (Eisenecker, 1997; Bischof et al., 2004)

and Template Haskell (Sheard and Peyton Jones, 2002) macros, mitigate aspects of this problem. MSP

(Taha and Sheard, 1997), or staging, also has shown promise. From a code-generation perspective,

Just-in-Time (JIT) compilation has been by far the most popular option. Many expressive high-level

languages that support type introspection use JIT to enhance computational efficiency. Full-blown

parallel programming languages such as the ones developed as part of United States Department of

Defense’s Defense Advanced Research Projects Agency’s (DARPA) High Productivity Computing

System (HPCS) project (Dongarra et al., 2008) are another alternative. These languages focus primarily

on abstracting architecture-specific parallelization, making it easier to write parallel programs.

1.2 Thesis

Existing EDSLs and other high-productivity programming systems for HPC look to combine high

productivity with high performance via abstract parallel patterns. Such patterns typically are specialized

for multiple architectures and provide some level of performance portability. However, no EDSLs

or high-productivity programming system has completely addressed the issue of abstractions for data-

placement. Programming systems that support such abstractions often do so for only a single architectural

layer. Many systems either support a set of abstractions for data-layouts and ignore data-distributions, or

the vice versa. Failing to address both aspects of data-placement leads to performance loss and limits the

5

applicability of the programming system. Close coupling of abstractions within the main programming

interface is another issue, which leads to source code that has data-placement logic intertwined with

application logic. Such entanglement impairs readability and overall portability of the code.

To mitigate these issues, our thesis is as follows.

A system of high-level data-placement abstraction based on a well-defined algebra can describe

multiple layers of data-placement in relation to each other. Combining the data-placement mechanism

with domain-specific code optimization and generation within a compiler can improve programmer

productivity without loss in computational efficiency, reducing the semantic gap.

1.3 Contributions

In support of the thesis statement presented in Section 1.2 our dissertation makes the following main

contributions.

• We implemented a C++-14 and LLVM-based EDSL compilation framework called QCD’s Array-

based Rapid-prototyping Compiler (QUARC) that serves as a proof-by-example of our thesis.

– To demonstrate QUARC’s capability, we implemented a prototype EDSL for the HPC

domain of Lattice Quantum Chromodynamics (LQCD). The performance of selected kernels

implemented in this EDSL, QUICQ Internally Calls QUARC (QUICQ), was up to two

times better than that of an existing production application called MILC (MILC collaboration,

1992). The kernels implemented in QUICQ also took less than one-tenth the lines of code

when compared to MILC. QUICQ’s performance was up to 10 times better than that of an

existing production DSL in LQCD, QDP++ (Edwards and Joó, 2005). QUICQ also was

competitive with the best hand-optimized kernels for the evaluated set of examples.

• We implemented an array index-space transformation algebra to define data-placement abstrac-

tions. Using the algebra, it is possible to define abstractions both for data-layouts and for data-

distributions.

– This design separates data-placement specifications from the rest of the programming layer.

Application developers can customize data-placement specifications at runtime to tune

program execution.

6

– The same high-level code executes in parallel on a single multi-core server or on a multi-node

cluster by changing runtime data-placement specifications.

• We introduce an external policy-driven speculative SIMD auto-vectorizer.

– Speculative SIMD vectorization frees application programmers from having to make data-

layout choices in their application code. External agents, such as an autotuner, or a low-level

expert, can make the layout selection at runtime.

– We introduce a data-layout selection policy for higher-order stencil kernels. A stencil kernel

is an iterative computation used in various scientific computations such as partial differential

operators and image-processing. The term “stencil” refers to updating an array element

according to a fixed computational pattern involving neighboring array elements in the same

or in a separate array.

• We introduce a new technique for building C++-based EDSLs.

– The new technique, Abstraction Characterization Templates (sACTs), uses metaprogramming

to generate a domain-specific IR from standard C++ templates.

– We demonstrate the efficacy of delayed or late scalarization of array expressions. In QUARC,

scalarization does not happen inside C++ templates, and is done as late as possible in the

code-generation process. This facilitates improved compiler analysis and optimization.

– We introduce a design for using scalar data-flow optimizations to optimize EDSL constructs.

1.4 Dissertation Overview

This rest of the dissertation provides the motivation, design considerations, implementation details,

and evaluation of the QUARC framework as follows:

Chapter 2 provides a background on different EDSL designs. The emphasis is on EDSL code-

generation methods and on data-placement abstractions provided by stat- of-the-art HPC EDSLs. The

end of the chapter includes a motivating example showing the impact of data-layout transformations on

SIMD vectorization performance on a modern x86 architecture.

Chapter 3 introduces the QUARC framework and its individual components.

7

Chapter 4 presents a formalization of the array index-space transformation algebra. The chapter

discusses these operators in general, without focusing on any aspect of their use in QUARC. Readers

with experience using APL or other array programming language already should be familiar with most of

the concepts. They can refer to Section 4.1.2 for the specific differences between our operators and the

more general APL counterparts.

Chapter 5 presents QUARC’s programming interface (METAL), describing the C++-14-based

data-parallel array operators and the overall API to construct EDSLs. Section 5.1 includes a detailed

guide to METAL’s syntax, and is aimed at programmers. General audiences may skip this chapter.

Section 5.2 describes the ACT’s design pattern and its use for preserving high-level semantics inside

METAL. Section 5.3 describes QUARC’s data-placement abstractions (ATL).

Chapter 6 describes in detail our LLVM-based domain-specific compiler’s design and implementa-

tion. It also describes a small runtime library interface for automating Message Passing Interface (MPI)

communication-generation. The chapter explains each stage of the code-generation and optimization

pipeline, including the late scalarization approach, in detail.

Chapter 7 presents an empirical performance analysis of the impact of different data-layout choices

on the SIMD vectorization performance of stencil computations. The study was conducted for multiple

generations of Intel x86-based architectures. We discuss the data-layout characteristics that drive SIMD

vectorization performance and the trade-offs required to ensure high performance.

Chapter 8 presents a data-layout selection policy based on the empirical study in Chapter 7. QUARC

uses the policy in its speculative SIMD vectorization technique.

Chapter 9 presents the steps involved in developing an EDSL for LQCD. Section 9.1 introduces the

domain of LQCD, and then Section 9.2 shows the main excerpts of our EDSL implementation. The goal

of this chapter is to evaluate the overall productivity gained in terms of lines of code by using this EDSL,

when compared to an existing production application developed in C.

Chapter 10 evaluates the performance of our LQCD DSL by comparing it both to an existing

C++-based production DSL and to a legacy application written in C. Wherever available, both sets of

evaluation include the very best hand-optimized implementations as the standard of peak performance.

Chapter 11 surveys further related work in various areas of relevance to QUARC.

Chapter 12 concludes this dissertation and lays out a vision for future extensions.

8

CHAPTER 2: BACKGROUND AND MOTIVATION

Designing a DSL for an HPC domain involves several important design considerations. This

chapter reviews the choices, emphasizing code-generation methods and data-placement abstractions for

domain-specific abstractions.

2.1 EDSL Code-Generation

Contemporary HPC DSLs fall into two broad categories: standalone DSLs, and EDSLs that

are embedded inside a high-level host language. Examples of standalone DSLs are the numerical

analysis DSLs Matlab (MATLAB, 2010), Julia (Bezanson et al., 2017), the machine-learning DSL Glow

(Rotem et al., 2018). Prominent EDSLs are Halide (Ragan-Kelley et al., 2013) an image-processing

DSL, SPIRAL (Püschel et al., 2005) a DSL for signal processing, and QDP++ (Edwards and Joó,

2005), a DSL for LQCD. Our present discussion defines EDSLs as those languages whose syntax

does not differ from the host languages, i.e., every EDSL program is a completely legal host language

program. Such characterization of an EDSL excludes language extensions such as CUDA C (NVIDIA

Corporation, 2010), OpenMP (OpenMP Architecture Review Board, 2015), OpenCL (Stone et al., 2010)

and OpenACC (OpenACC.org, 2013). All these language extensions introduce new keywords, data types,

and annotations. All require custom parsers and compilers.

Standalone DSLs require more work to develop and to maintain the language front-end and parser,

but the interface can be tailored more closely to domain-specific requirements. EDSLs lower the front-

end implementation cost, but the interface is restricted to the features of the underlying high-level

language. Standalone DSLs provide their own compilers with high-level, domain-specific optimizations

and code-generation. Usually, low-level optimizations and machine-code-generation are offloaded to a

general-purpose compiler such as LLVM (The LLVM Foundation, 2018). However, the high engineering

cost of developing standalone DSLs disqualify this option for many HPC communities. EDSLs offer

9

quicker design and development turnaround times, and thus present a more viable option. This chapter

focuses exclusively on EDSL development methodologies.

There are several methodologies to construct EDSLs. Each methodology uses a different approach

to detect EDSL code sections embedded inside a host language program and to generate domain-specific

code for those EDSL sections. Metaprogramming within the host language, through custom source-to-

source translation, and utilizing staging are some of the most successful EDSL methodologies. The

following paragraphs review these methodologies.

Metaprogramming is a programming technique in which programs treat themselves or other pro-

grams as data. Using metaprogramming, a program generates code during compilation of itself, and

merges the generated code with the rest of its source code. Lisp and its dialects were the earliest

exponents of metaprogramming. Lisp (LISt Processor) treats source programs as linked lists of data

structures. Using Lisp’s macro system, programmers can introspect their programs as a list of data

structures. Related macro systems have evolved in other programming languages as well, e.g., Template

Haskell (Sheard and Peyton Jones, 2002), Scala (Odersky et al., 2008), and Clojure (Rich Hickey, 2007).

Generative programming (GP) is another term closely associated with metaprogramming. Czarnecki

and Eisenecker (Czarnecki and Eisenecker, 2000) described GP as an attempt to automate creation of soft-

ware components by developing programs that synthesize other programs. Template Metaprogramming

(TMP) falls into this category. Templates are program constructs that are written without binding them

to specific data types. The data types are specified later as a specialization of the template. TMP was

pioneered by ML, a language derived from Lisp. Since templates are written with generic types rather

than with concrete types, TMP is often also called generic programming. The most popular use of TMP

is found in C++. C++ TMP is widely used in C++’s standard library. C++ TMP-based methods such as

C++ Expression Templates (sC++ ETs) (Veldhuizen, 1995; Vandevoorde and Josuttis, 2002) are also

widely used to create EDSLs. C++ ETs use TMP to build expression objects that abstract complicated

loop structures. Template expansion and specialization are used to synthesize loops for different data

types and architectures without direct programmer involvement. C++ ETs has been used to develop

HPC DSLs (Edwards and Joó, 2005; Parsons and Quinlan, 1994; Reynders and Cummings, 1998), where

C++ ETs automate MPI, OpenMP, or CUDA code-generation.

C++ TMP, and specifically C++ ETs, suffer from several shortcomings. The loop synthesis happens

in the template layer and cannot incorporate various advanced loop optimizations. Loop optimizations

10

that require data dependence-based analysis are hard, if not impossible, to incorporate using C++ TMP.

C++ TMP also cannot apply high-level optimizations, such as expression fusion and other redundancy

elimination, across multiple template statements. C++ TMP code-generation is limited to a single

template recursion chain. For these reasons, C++ TMP may be used to synthesize parallel loops, but the

performance often falls short of the level obtained by the very best hand-tuned libraries. Additionally,

obfuscations introduced by C++ TMP can also impede subsequent compiler analysis and optimization.

Multistage programming (MSP) (Taha and Sheard, 1997), or staging, is a special case of metapro-

gramming that involves staging of portions of code for evaluation and compilation at a later phase.

Phased, or partial, evaluation is beneficial for scenarios in which information about a program only

becomes available at a later phase. A good example is type information in dynamically typed languages.

MSP can have both compile-time and runtime stages.

MSP is the basis for recent HPC DSL frameworks like Delite (Sujeeth et al., 2014) and Terra (DeVito

et al., 2013). Delite is an EDSL on top of Scala (Odersky et al., 2008), a hybrid object-oriented functional

language that runs on the Java Virtual Machine (JVM). Delite uses a modified Scala compiler and MSP

to generate a domain-specific IR embedded into Scala’s byte code. Delite’s compiler optimizes this

domain-specific IR, before generating architecture-specific parallel code. Terra is a low-level language

specifically designed for MSP in Lua (LabLua, 2015), a dynamically typed functional programming

language. Terra’s design envisions two-level staging. At first, a program is implemented in Lua for rapid

prototyping, and then performance-critical sections are staged as Terra code. The Terra compiler uses

dynamic staging to enable runtime feedback-driven optimizations and auto-tuning. Chapter 11 expands

our discussion of Delite and Terra.

MSP requires an up-front decision about the portions of a program that are to be staged. MSP-based

systems use either explicit staging annotations or custom data types to denote staged code. The staged

portion of the code can be adapted to different platforms and architectures by adding new library routines

or by adding new compilation targets. The high-level staged code does not need changes. However, the

up-front demarcation of staged code limits the interaction between the staged code and the non-staged

code. The limited interaction between the staged and the non-staged code is disadvantageous in scenarios

in which optimizing the staged code requires knowing the context of the staged code inside a larger

non-staged code section. Maintaining type-safety is another issue associated with MSP. An MSP

compiler translates high-level staged code into a domain-specific IR, and after optimizations translates

11

the domain-specific IR back into the regular host language IR or directly to low-level code. It is not

trivial to ensure guaranteed type-safety during these code-generation steps, especially when MSP is used

inside a dynamically typed language. Addressing the type-safety issue was one of the major emphases

of the Terra framework. Terra required static type information to be added to every staged library

function call within the dynamically typed Lua language. Beyond maintaining type-safety, extending the

domain-specific IR of an MSP compiler requires significant engineering work. Often, that engineering

work involves rewriting a lot of the same boilerplate. The recent Forge framework (Sujeeth et al., 2013)

targets this issue within the Delite framework.

Split-languages can also fall under the purview of metaprogramming, but we choose to categorize

them separately to highlight the use of two separate programming interfaces in split-languages. The

two programming interfaces of a split-language separate domain-specific algorithms from architecture-

specific code-generation decisions. The domain-specific programming interface is embedded into a host

language, and a separate specification language drives architecture-specific code-generation. Notable

examples of EDSLs using a split-language design are Halide (Ragan-Kelley et al., 2013), SPIRAL

(Püschel et al., 2005), and Sequoia (Fatahalian et al., 2006). All three languages are programmed

in C++/C, but use standalone specification languages for code-generation decisions. The standalone

code-generation specification interface is a main feature of these EDSLs. Using the separate interface, a

set of domain experts can rapidly prototype the algorithmic portions of an application. After that another

set of experts can tune the application by building an architecture-specific code-generation specification.

Despite their elegance, split-languages have potential pitfalls. Often, the code-generation specifica-

tion is too intricate for the average domain expert, and a separate set of experts to write the code-generation

specifications are not available. Even when experts to write code-generation specifications are available,

the best specification may require exhaustive searching of a large optimization space. Thus, the challenge

lies in splitting the two programming layers without over-complicating the code-generation specification

layer. The authors of Halide acknowledge the problem in their recent follow-up paper (Ragan-Kelley

et al., 2017). While the core Halide language is highly expressive and easy to learn for domain experts,

the programming schedules remains hard for most programmers.

JIT compilation is another common EDSL code-generation strategy. JIT refers to the fact that

low-level code-generation happens during program execution. Terra supports JIT compilation; there have

also been implementations (Winter et al., 2014) of JIT compilers within C++ ETs. Source-to-source

12

translation is a technique in which the DSL code is translated into a low-level language like C/C++ or

FORTRAN. The translated code then is compiled using a standard compiler.

2.2 Data Placement Abstractions

Data placement refers to the organization of a program’s data across a memory domain. For modern

HPC architectures, this can occur at multiple levels. Data placement across multiple nodes of a cluster is

called data-distribution or data partitioning. The organization of the members of a data structure inside

a shared-memory domain is called memory data-layout. The various levels of data-placement have to

perform well in conjunction with each other. Together, they control data-movement-related costs and

significantly impact a program’s overall performance.

The importance of data placement is closely tied to the locality of reference. Denning and Schwartz

(Denning and Schwartz, 1972) first observed that programs repeatedly access same or related storage

locations, and called the locality of reference. A significant number of optimizations, both in software

and hardware, are designed to exploit locality of reference. Such features include deeply nested multiple

levels of caches, branch predictors, and prefetchers. Operating systems tailor their virtual memory

sub-system and paging policies to depend on locality of reference. Important compiler optimizations such

as loop tiling, loop fusion, and software prefetching work with the hardware layers to exploit locality of

reference.

Several programming languages have explicit data-placement options using abstractions both for

data-distribution and for data-layout. We next survey examples of both types of abstraction.

Data-Distribution Abstractions

Data-parallel programming languages, most notably High Performance Fortran (HPF) (Loveman,

1993) and ZPL (Chamberlain et al., 1998), focused on abstractions to define data-distribution across

multiple nodes of a cluster computer. Partitioned Global Address Space (PGAS) languages first developed

in the late 1990’s took a different approach to data-distribution. PGAS languages allowed programming

with a seemingly shared-memory model, with explicit demarcation between local and shared data. All

shared data was partitioned over processors. The initial PGAS languages, Unified Parallel C (UPC) (El-

Ghazawi and Smith, 2006), Co-array FORTRAN (Numrich and Reid, 1998), and Titanium (Yelick et al.,

13

1998), all began as extensions to existing sequential languages. The initial implementation did not offer

much support for controlling data-distributions. Later enhancements added abstractions that provided

support for data-distributions, such as blocking of arrays. Closely related to the PGAS languages are those

developed as part of DARPA’s High-Productivity Computing System (HPCS) project (Dongarra et al.,

2008). The three HPCS languages, X10 (Charles et al., 2005), Fortress (Allen et al., 2008), and Chapel

(Chamberlain et al., 2007), offered different levels of support for data-distributions. Fortress allows

libraries to define custom data-distributions for arrays. X10 supports distributed arrays that can be blocked

across multiple processes. Chapel offers the most flexibility for array-data distributions. It supports a set

of data-distribution choices, but also allows defining application-specific custom data-distributions.

A common limitation of most of these languages is the close coupling of data-placement abstractions

with the core language semantics. The close coupling means that data-placement abstractions are

inherently intertwined with application-level algorithms. Experimenting is hard with different distribution

options without first altering the source code. The code entanglement also limits portability, and restricts

evolving an old code to a newer architecture.

A more modern framework, Legion (Bauer et al., 2012), simplifies the problem of separating data

placements from the rest of the application logic. Legion’s programming model is built around the notion

of logical regions. A logical region is a logical data partition, and the smallest unit for data-distribution in

Legion’s programming model. Every logical region defines its access privileges, aliasing, and coherence

properties. The properties of a logical region decide the level of concurrent accesses possible on the

logical region. Legion programs are composed of tasks, each of which accesses logical regions. By

performing a task-dependence analysis, Legion’s runtime system schedules parallel execution of tasks.

Tasks can execute on different nodes of a cluster, a node-attached accelerator, or multiple cores of a node.

Programmers retain control of how the data is partitioned and of the mapping of the data partitions to

processors. The mapping interface is decoupled from the rest of the application programming interface.

Therefore, data-placement logic is separated from the main application logic, and provides flexibility in

extending an existing application to a new architecture.

Data-Layout Abstractions

Data-layouts define the in-memory organization of members of a data structure in shared-memory

architectures. The data-layout of an application’s data structures plays an important role in the appli-

14

AoS

SoA

AoSoA

Rr0 Ri0 Br0 Bi0 Gr0 Gi0 Rr1 Ri1 Br1 Bi1 Gr1 Gi1 . . . Rr31 Ri31 Br31 Bi31 Gr31 Gi31

Rr0 Rr1 Rr2 Rr31

Ri0 Ri1 Ri2 Ri31

Br0 Br1 Br2 Br31

Bi0 Bi1 Bi2 Bi31

Gr0 Gr1 Gr2 Gr31

Gi0 Gi1 Gi2 Gi31

Rr0 Rr8 Rr16 Rr24

Ri0 Ri8 Ri16 Ri24

Br0 Br8 Br16 Br24

Bi0 Bi8 Bi16 Bi24

Gr0 Gr8 Gr16 Gr24

Gi0 Gi8 Gi16 Gi24

Rr1 Rr9 Rr17 Rr25

Ri1 Ri9 Ri17 Ri25

Br1 Br9 Br17 Br25

Bi1 Bi9 Bi17 Bi25

Gr1 Gr9 Gr17 Gr25

Gi1 Gi9 Gi17 Gi25

.

Rr7 Rr15 Rr23 Rr31

Ri7 Ri15 Ri23 Ri31

Br7 Br15 Br23 Br31

Bi7 Bi15 Bi23 Bi31

Gr7 Gr15 Gr23 Gr31

Gi7 Gi15 Gi23 Gi31

Figure 2.1: This illustrative example shows three different data-layouts for a one-dimensional array of
size 32. Each element of this array has six nested elements {Rr, Ri, Br, Bi, Gr, Gi}. The data type
represents an SU(3) complex vector. Chapter 9 provides further details on this data type and its use.
The figure shows an AOS, SOA, and an AOSOA data-layout for the array. Each data-layout leads to a
rearrangement both of the array elements and of nested elements at each index position.

15

cation’s performance, and for this reason there has been significant amount of research to optimize

data-layouts. Anderson et al. (Anderson et al., 1995) used data-layout transformation to address false

sharing in cache-coherent shared-memory multiprocessors. Lu et al. (Lu et al., 2009) used an approach

like Anderson et al., but for improving the locality on a prototype non-uniform cache-access architecture.

Barua et al. (Barua et al., 1999) and So et al. (So et al., 2004) proposed data-layout transformations to

improve memory-level parallelism on FPGAs. Both methods transform the data-layout of an array to

interleave elements across multiple on-chip memory banks. Sung (Sung et al., 2010) targeted structured

grid applications on many-core and GPGPU platforms. Henretty (Henretty et al., 2011) looked at

data-layout transformations to improve short-vector SIMD vectorization.

Programming systems for modern architectures are increasingly exploring data-layout options to

improve application performance. Figure 2.1 illustrates three data-layout options, AOS, SOA, and

Array-of-Structs-of-Arrays (AOSOA), for a one-dimensional array. Each choice has its advantage, the

SOA data-layout is generally better for SIMD vectorization, the AOS data-layout has better spatial

locality, especially if neighboring array elements are accessed together, the AOSOA data-layout strikes a

balance between AOS and SOA. The performance of a data-layout depends on various factors, including

array size, data access patterns, and hardware architectural properties. Several recent performance studies

(Rosales et al., 2016; Giles et al., 2013) have argued for the inclusion of these type of data-layout

options via either library-based abstractions or language extensions. Still, these layout choices have

limitations, such as they do not allow arbitrary splitting and transposition of array dimensions. For

higher-dimensional arrays, the lack of the feature to arbitrarily split and transpose array dimensions

limits the number of data-layout choices. Such layout choices are required for some kernels and some

architectures. Section 2.3 presents such a scenario.

Despite the need for better support for data-layouts, very few extant programming systems support

data-layout abstractions or constructs. Most proposals have not grown beyond the research phase,

including Intel’s ispc compiler (Pharr and Mark, 2012) and a proposed extension to the OpenACC

standard (Hoshino et al., 2014). Both systems included a fixed set of layout choices as language

extensions and keywords. Terra (DeVito et al., 2013), Halide (Ragan-Kelley et al., 2013), and some

research prototype compiler systems (Majeti et al., 2014; Xu and Gregg, 2014) support Array-of-Structs

(AOS) and Structs-of-Arrays (SOA) data-layouts. The Kokkos C++ library (Carter Edwards et al.,

16

2014) supports custom data-layouts other than Array-of-Structs (AOS) and Structs-of-Arrays (SOA) for

multi-dimensional arrays.

Conclusion

Our work looks at a general system of data-placement abstractions that is usable for defining both

data-layouts and data-distributions. Chapter 4 presents the array index-space transformation algebra that

is the basis of our data-placement abstractions. The implementation of the abstractions is in Section 5.3,

and code-generation based on the abstractions is described in detail in Chapter 6.

2.3 Motivating Example

This section presents a motivating example that highlights the need for data-layout transformations to

improve the SIMD vectorization performance of stencil computation on an Intel Haswell server. Although

this example uses a single server, the observations apply to other recent x86-based server architectures.

Stencil computations are one of the most important computational patterns in scientific computation

and HPC (Asanovic et al., 2009). Stencils are iterative computations that update each array element

according to a fixed computational pattern involving its neighboring array elements. Listing 2.1 presents

a nine-point scalar stencil computation over a four-dimensional regular grid. The loop-nest shown in the

example is perfectly nested and completely parallel, and is an ideal candidate for fine-grained inner-loop

parallelization or vectorization.

Auto-vectorization

Compiling Listing 2.1 with Intel’s ICC 17.04 compiler at a -O3 optimization level leads to auto-

vectorization of the innermost loop. Listing 2.2 shows the generated assembly code for the main loop

body. The code-generation target was an Intel Haswell architecture with 256-bit AVX2 registers. With

single-precision floating-point values and a small problem size of 16×32×32×32, the total data footprint

is only 4MB. The test machine for this example had 20MB of L3 cache. Therefore, the whole problem

size easily fits inside this L3 cache. For this small problem, and based solely on wall clock execution

time, the default auto-vectorization yields a 53% performance improvement compared to scalar execution

with the “no-vec” compiler option.

17

1 constexpr std::size_t T = 32, Z = 32, Y = 32, X = 32;
2
3 void stencil_9pt (float * restrict A1, const float * restrict A2) {
4 for(auto t = 1ul; t < T-1; ++t)
5 for(auto z = 1ul; z < Z-1; ++z)
6 for(auto y = 1ul; y < Y-1; ++y)
7 for(auto x = 1ul; x < X-1; ++x) {
8 A1[t*Z*Y*X + z*Y*X + y*X + x]
9 = A2[(t-1)*Z*Y*X + z*Y*X + y*X + x]

10 + A2[(t+1)*Z*Y*X + z*Y*X + y*X + x]
11 + A2[t*Z*Y*X + (z-1)*Y*X + y*X + x]
12 + A2[t*Z*Y*X + (z+1)*Y*X + y*X + x]
13 + A2[t*Z*Y*X + z*Y*X + (y-1)*X + x]
14 + A2[t*Z*Y*X + z*Y*X + (y+1)*X + x]
15 + A2[t*Z*Y*X + z*Y*X + y*X + x - 1]
16 + A2[t*Z*Y*X + z*Y*X + y*X + x + 1];
17 }
18 //... Elided boundary region computations
19 }

Listing (2.1) A nine-point scalar stencil

1 # shape of arrays A1,A2 is {T-Z-Y-X}. X is the fastest changing dimensions.
2 vmovups 4228+A2(...), %ymm0 # (t-1) from 0*Z*Y*X + 1*Y*X + 1*Y + 1*X
3 vmovups 131204+A2(...), %ymm1 # (z-1) from 1*Z*Y*X + 0*Y*X + 1*Y + 1*X
4 vmovups 135172+A2(...), %ymm4 # (y-1) from 1*Z*Y*X + 1*Y*X + 0*Y + 1*X
5 vmovups 135296+A2(...), %ymm5 # (x-1) from 1*Z*Y*X + 1*Y*X + 1*Y + 0*X
6 vaddps 266372+A2(...), %ymm0, %ymm2 # (t+1) from 2*Z*Y*X + 1*Y*X + 1*Y + 1*X
7 vaddps 139396+A2(...), %ymm1, %ymm3 # (z+1) from 1*Z*Y*X + 2*Y*X + 1*Y + 1*X
8 vaddps 135428+A2(...), %ymm4, %ymm6 # (y+1) from 1*Z*Y*X + 1*Y*X + 2*Y + 1*X
9 vaddps 135304+A2(...), %ymm5, %ymm7 # (x+1) from 1*Z*Y*X + 1*Y*X + 1*Y + 2*X

10 vaddps %ymm7, %ymm6, %ymm9
11 vaddps %ymm3, %ymm2, %ymm8
12 vaddps %ymm14, %ymm13, %ymm2
13 vaddps %ymm9, %ymm8, %ymm10
14 vmovups %ymm10, 135300+A1(...) # (x) from 1*Z*Y*X + 1*Y*X + 1*Y + 1*X

Listing (2.2) AVX2 assembly generated by ICC 17.04

Hand-vectorization after data-layout transformation

Custom hand-vectorization after a data-layout transformation yielded 35% better performance over

the default ICC -O3 auto-vectorization. Our hand-vectorization used a data-layout transformation

converting the arrays A1 and A2 to an AOSOA data-layout, and the writing AVX2 vector intrinsic

manually. Chapter 6 presents in detail the data-layout transformation and auto-vectorization based on the

data-layout transformation.

18

A2[x−1]

A2[x+1]

A1[x]

Overlapping vector registers prevent reuse

Default lexicographic indexing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 29 30 31

0 1 2 3 4 5 6 7

2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

8 9 10 11 12 13 14 15

10 11 12 13 14 15 16 17

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

19 20 21 22 23 24 25 26

18 19 20 21 22 23 24 25

(a) Default vectorization with row-major layout

A2[x−1]

A2[x+1]

A1[x]

(x−1) vector reused after two iterations,
but needs a permute

(x+1) vector reused
after two iterations

Custom data-layout after reshaping and transposing the X-dimension

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

0 4 8 12 16 20 24 28

2 6 10 14 18 22 26 30

1 5 9 13 17 21 25 29

1 5 9 13 17 21 25 29

3 7 11 15 19 23 27 31

2 6 10 14 18 22 26 30

2 6 10 14 18 22 26 30

4 8 12 16 20 24 28 0

3 7 11 15 19 23 27 31

(b) Custom vectorization after a data-layout transformation

Figure 2.3: Improving SIMD vectorization after a data-layout transformation

19

Discussion

Figure 2.3a illustrates why custom vectorization after a data-layout transformation is an improvement

over auto-vectorization over the default data-layout. In the default case, the two SIMD registers for the

A2[x+1] and A2[x-1] shares multiple elements. The overlap of the data in SIMD registers limits reuse

of the registers. Figure 2.3b shows the data reorganization done by the data-layout transformation. The

layout transformation is akin to a gather-scatter reorganization of the array elements. The effect of this

transformation creates a two-dimensional tiled vector data-layout. The tiled data-layout ensures that each

register in a tile has multiple reuses. The internal rows are directly reused after one iteration, and the only

SIMD permutations needed are at the boundaries of the vector tile. The data-layout transformation is the

primary reason why our custom hand-vectorization outperforms the existing compiler auto-vectorization

for this stencil computation. Applying this type of data-layout transformation by hand is not feasible, it

requires low-level programming skills and is error-prone. The low-level code offers minimal portability

as each architecture has a different vector instruction set extension.

Chapter Review

This chapter discussed two important issues that DSLs in HPC have to tackle. Both code-generation

methods for EDSLs and data-placement abstractions play an important role in combining high pro-

grammer productivity with high computational efficiency. Chapter 3 introduces how the QUARC

framework handles these two specific issues. Subsequent chapters then go into the specific design and

implementation details of QUARC’s code-generation technique and of its data-placement abstractions.

20

CHAPTER 3: THE QUARC FRAMEWORK

QCD’s Array-based Rapid-prototyping Compiler (QUARC) is a framework for creating EDSLs

using C++14 for lattice and grid-based domains (Deb et al., 2016, 2017). QUARC consists of a high-level

programming interface embedded in C++14, a domain-specific compiler that uses LLVM (The LLVM

Foundation, 2018), and a runtime library for MPI parallelism. Figure 3.1 presents QUARC’s high-level

system architecture. QUARC’s front-end has a split-language programming interface with two pro-

gramming layers: Minimal Expression Template Array Language (METAL) and Array Transformation

Language (ATL). METAL is the interface to build EDSLs using QUARC, and is a notational, array-

based, implicitly data-parallel C++14 header-only library. METAL programs are free of explicit parallel

constructs and make it easy for domain-experts to write readable code. ATL is a small specification

language based on YAML (Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009). ATL specifications

define the data-distribution and data-layout of abstract METAL arrays.

QUARC uses a domain-specific compiler, QUARC’s Optimizer (QOPT), to compile METAL

programs. QOPT is a plug-in to the LLVM compiler framework that defines a set of domain-specific

analysis and code-generation passes. QOPT passes execute before the standard LLVM compiler passes

and lower METAL abstractions into standard LLVM IR. This step involves domain-specific optimizations,

MPI library call generation, SIMD vectorization, array access linearization, and loop generation. After

compiling the high-level METAL code, QOPT invokes the standard LLVM optimization and code-

generation passes to optimize the code further and to lower it to a binary executable.

The QUARC’s Runtime (QUARC-RT) library is the final component of QUARC. QUARC-RT has

a parser for ATL specifications, a polyhedral analyzer to compute MPI data movement, a set of wrapper

functions for MPI routines, and a mapping interface to map distributed METAL arrays to MPI Cartesian

communicators.

21

QUICQ

METAL
QUARC-

RT
C++14
stdlib

MPI-3

ISL
clang++

Policy Engine

Layout
Dictionary

opt

llc*.exe

DSLs

QUARC

QOPT

External libraries

preprocess

high-level

opt.

low-level

opt.

codegen

Link dependency

Include dependency

Process flow

LLVM component

Figure 3.1: QUARC system architecture diagram

22

3.1 EDSL Design Approach

QUARC’s EDSL design approach combines the best ideas in several established EDSL techniques,

such as metaprogramming and split-languages. Chapter 2 surveyed these EDSL code-generation

techniques. Although based on established ideas, QUARC’s EDSL design approach has important

enhancements that we list in this section.

QUARC uses C++ TMP to implement its METAL front-end. However, the use of C++ TMP differs

from conventional C++ TMP-based EDSL designs. Conventional C++ TMP-based EDSLs generate

low-level code using TMP. METAL takes an alternative approach, and uses C++ TMP to generate a

domain-specific IR. The domain-specific IR consists of a set of side-effect-free domain-specific function

calls. Using this approach, METAL communicates much of the high-level domain-specific semantics to

QOPT. QOPT then uses the information for high-level optimizations on domain-specific constructs, and

generates data-parallel code.

QUARC’s approach bears similarities to MSP. Like most MSP-based methods, QUARC involves

multiple levels of staging and code-generation. Our design offers a novel way of staging a domain-specific

IR using side-effect-free domain-specific function calls inside an industry-standard compiler IR. These

domain-specific function calls are equivalent to staging annotations in MSP. QUARC’s domain-specific

IR is legal LLVM IR, and as such, is analyzable via standard LLVM compiler passes. Analyzing

a domain-specific IR using standard compiler passes makes it easier to implement domain-specific

optimization and code-generation passes, and lowers the overall engineering cost of QOPT.

QUARC’s use of the split-language design is limited when compared to those of other EDSLs

frameworks that take a similar design approach. Other frameworks such as Halide and SPIRAL offload a

significant chunk of the code generation logic into the specification layer of the split-language interface.

The ATL interface is much smaller in comparison, and exposes as little as possible of the code-generation

process to end users. Instead, QUARC leverages standard compiler analysis to make domain-specific

code-generation decisions.

QUARC eschews JIT compilation for ahead-of-time code-generation. The ahead-of-time code-

generation strategy generates multiple code versions based on prior application profiling. Application

profiling and subsequent feedback to QOPT is separate from QUARC’s overall infrastructure. The

primary use of the strategy is in QOPT’s SIMD auto-vectorizer. The auto-vectorizer generates multiple

23

vectorized versions of each METAL array expression based on different data-layout choices. The layout

choices are provided as compiler flags to QOPT. The decision to use ahead-of-time code-generation

instead of JIT compilation was based primarily on the ease of implementation. Integrating a JIT compiler

into QUARC-RT would have entailed additional software engineering work, with minimal benefit for

current use cases. It is a case for future consideration.

3.2 Parallel Programming Model

QUARC has an implicit data-parallel programming model exposed via METAL’s array program-

ming interface. METAL is free of explicit parallelization constructs; therefore, programmers do not

have to reason about actual data-parallel execution of their application-level code. Instead, the ATL-

specified data placement of an application’s array-data types decides the parallel execution. Due to this

programming model, programmers can adapt the execution of their application by only changing the

ATL specification. Depending on the type of ATL specification, the same application can execute in

serial, in parallel on multiple cores, or in parallel across distributed memory nodes.

The implementation of QUARC relies on MPI. Thus, QUARC shares MPI’s memory model. All

participating processors have their own private address spaces, and explicit communication is needed

to move data among processors. QUARC-RT internally uses various optimizations to ensure that the

communication overheads remain low. Chapter 6 explains these optimizations in detail.

3.3 The Core Components of QUARC

3.3.1 Minimal Expression Template Array Language (METAL)

METAL is a high-level array programming language that uses C++14 TMP. The language defines

array containers, data-parallel operators, and array-expression data types. These basic constructs are

composable into data-parallel array expressions. METAL array expressions can combine arrays and C++

scalar types. The implementation of METAL uses a new metaprogramming technique called Abstraction

Characterization Templates (sACTs). ACTs use template recursion to generate a forest of side-effect-free

function, or DSL intrinsic, calls. The DSL intrinsic calls encode the complete expression-tree of METAL

array expressions and semantic information about the expression-tree nodes into QOPT’s domain-specific

IR. QOPT reconstructs METAL expression-trees by recognizing the encoded DSL intrinsic calls.

24

METAL’s semantics are similar to other languages supporting array objects, such as FORTRAN 90

and High-performance FORTRAN (HPF). METAL behaves as though it fully evaluates the Right-Hand

Side (RHS) of an array-assignment expression without side effect, and only then modifies the Left-Hand

Side (LHS) sub-expression of an array-assignment. Chapter 5 presents the METAL language, its design,

and its implementation details.

3.3.2 Array Transformation Language (ATL)

ATL is a small specification language based on YAML that specifies data placement of high-level

METAL arrays. An ATL specification serves three main purposes: it specifies the data-distribution of

an array, it specifies the data-layout of the array, and it specifies the mapping of the array blocks, or

partitions to an MPI Cartesian communicator. Section 5.3 presents the implementation details of ATL.

Chapter 4 presents the underlying algebra that ATL uses to define data-distributions and data-layouts.

3.3.3 QUARC Optimizer (QOPT)

QOPT is an LLVM-based domain-specific compiler for METAL, and is a plug-in of LLVM’s Opt

module. QOPT handles all low-level code-generation and parallelization decision for every METAL

array expression. In the current implementation of QUARC, this includes speculative SIMD vectorization

on x86 64 platforms, shared-memory parallelism using MPI-3, distributed memory parallelism using

MPI-2, and other low-level optimizations. Chapter 6 presents the details of these optimizations, along

with a detailed elucidation of QOPT’s design and implementation.

3.3.4 QUARC Runtime (QUARC-RT)

The QUARC-RT library has wrapper functions for MPI operations, a parser for ATL specifications,

and data-distribution functions. Section 6.5 explains the library and its components.

25

CHAPTER 4: AN ALGEBRA FOR ARRAY TRANSFORMATIONS

QUARC’s data-placement abstractions are based on a more general array-transformation algebra.

This chapter presents the formal semantics, legality constraints, and composability rules of this algebra.

The algebra defines array index-space transformations using two operators, reshape (ρ) and transpose

(φ). A ρ transformation reshapes array dimensions by partitioning existing dimensions, and creates a

partitioned index-space. The φ transformation permutes array dimensions. Reshaping and permuting

dimensions create new array index-spaces. The ρφ algebra does not specify how an array index-space

is mapped to a memory address space. Instead, it specifies how to generate a map between an initial

index-space and a transformed index-space. Language implementations on top of this algebra must

generate the needed data transformations based on the index-space maps.

QUARC’s ρ and φ operators resemble similarly named operators defined by APL (Iverson, 1962)

and by other array programming languages. However, QUARC’s definition and usage of these operators

differ from those of other array languages. Section 4.1.2 notes the differences.

Notation. We use the following notation to describe formally QUARC’s array-transformation algebra.

Lower-case Greek letters identify operators. All operators are written in C/C++ function-call syntax.

As in C++, the term “vector” is used for a one-dimensional sequence container. Some of our array

notations follow the style of Mullin’s Mathematics of Arrays (Mullin, 1988). We use angle brackets,

〈〉, to represent vectors. Parentheses () denote arrays. For arrays with more than two dimensions, the

parentheses are nested. The uppercase letter A represents a typical QUARC array container wherever it

is used in a definition. We use the notation An wherever the dimensionality of an array is mentioned, n

being the number of dimensions of the array. The lowercase letter v represents an arbitrary vector. Array

and vector indices are zero-based and are read from left to right. The usual C/C++ subscript operator []

is used to denote indexing into arrays and vectors. The ∆
= operator is used in all definitions to denote

equivalence of two expressions. The = operator is used as a relational operator.

26

4.1 Basic Operators

Definition 4.1. Dimensionality (δ(A))

The unary δ operator returns the rank or dimensionality of an array.

δ(An)
∆
= n. (4.1)

Definition 4.2. Shape (σ(A))

The unary σ operator takes either an array or a vector as its argument. For an array, it returns as a

vector the number of components in each dimension of the array. For a vector argument, σ returns the

total number of elements in the vector.

σ(A)
∆
= s

∆
= 〈e0, . . . , e(δA)−1〉. (4.2)

The components of vector, s, are positive integers. Each component gives the extent of an array

dimension. As QUARC does not support zero-ranked arrays, each component of s must be a positive

integer greater than one, i.e., ∀i, s[i] > 1.

Note. APL users would recognize σ as the same operator as APL’s monadic ρ shape operator. We

chose to use a different symbol to avoid confusion with the dyadic ρ reshape operator.

Example 4.1.

For the following two-dimensional array

A
∆
=


a b c d

e f g h

i j k l

,

σ(A)
∆
= 〈3, 4〉.

Example 4.2.

Using the same array from Example 4.1.

σ(σ(A))
∆
= 2.

27

Definition 4.3. Product (π(v))

The binary π operator returns the cumulative product of the components of a vector. It requires two

input arguments: a vector and a start-index position. The start-index position argument defaults to 0, and

can be omitted.

π(v, j)
∆
=

σ(v)−1∏
i=j

v[i]. (4.3)

Example 4.3.

Given a vector (v) 〈a, b, c, d〉,

π(v)
∆
= π(v, 0)

∆
= a · b · c · d

π(v, 1)
∆
= b · c · d.

Definition 4.4. Stride (st)

A stride is the number of array elements that must be traversed to reach the next array element along

an array dimensional axis. The vector st denotes the stride in every dimension for an array.

st[i]
∆
=


π(s, i+ 1) if 0 ≤ i < δ(A)− 2

1 otherwise
, where 0 ≤ i < δ(A). (4.4)

Example 4.4.

Let A be a four-dimensional array with a row-major lexicographic data-layout, and σ(A4)
∆
=

〈a, b, c, d〉.

st
∆
= 〈b · c · d, c · d, d, 1〉

Definition 4.5. Block Dimension

A block dimension is a new dimension created by partitioning an existing array dimension. A block

dimension cannot be further reshaped.

28

Definition 4.6. Dimensional Attribute (da)

A vector of Boolean values, each of which specifies the type of an array dimension. The value is ‘1’

for a block dimension and ‘0’ otherwise.

Definition 4.7. Reshape (ρ)

The binary ρ operator splits every array dimension based on a corresponding reshape factor. The

operator takes an integral vector argument (p). The components of p specify the reshape factors for all

array dimensions. A legal p vector is defined as follows:

δ(A) = σ(p). (P1)

1 ≤ p[i] < s[i], ∀i | 0 ≤ i < σ(s). (P2)

s[i] modp[i] = 0, ∀i | 0 ≤ i < σ(s). (P3)

p[i] = 1, ∀i | 0 ≤ i < σ(s) and da[i] = 1. (P4)

• P1 states that a reshape factor is needed for each array dimension. Thus, multiple dimensions may

be reshaped together.

• P2 states that the reshape factor should be between one and the extent of a dimension. As reshaping

involves integral division, the factor needs to be greater than 0. A reshape factor also cannot be

equal to the extent of the dimension. If permitted, such a reshape operation would only create a

superfluous unit-length dimension.

• P3 states that each reshape factor should split a dimension evenly. This constraint is primarily

there to simplify indexing operations. Future extensions to QUARC may relax this constraint by

handling uneven divisions using array padding.

• P4 states that a block dimension cannot be reshaped. Block dimensions are meant to be mapped to

an address space. Thus, reshaping a block dimension is not permitted. It is treated as immutable,

once defined. Note that an original array dimension can be reshaped multiple times to create

multiple levels of block dimensions.

29

ρ updates s to s
′
, and da to da

′
for A as follows:

(s
′
)2ij=0

∆
=


p[
j

2
] if jmod2 = 0

s[j2]

p[j2]
otherwise

, where 0 ≤ i < σ(s). (4.5)

(da
′
)2ij=0

∆
=


1 if jmod2 = 0

0 otherwise
, where 0 ≤ i < σ(s). (4.6)

Equations 4.5 and 4.6 add entries into the new shape and dimensional attribute vectors. Both

equations add entries in the new vectors, including a unit-reshape factor even though a unit-reshape factor

performs no reshape. Therefore, as a final step, ρ removes all components corresponding to unit-length

block dimensions from s
′
, da

′
, and st

′
to create three new vectors, s

′′
, da

′′
, and st

′′
.

s
′′ ∆
= s

′
−k, (4.7)

da
′′ ∆
= da

′
−k, (4.8)

where ∀k| 0 ≤ k < σ(s
′
) and s

′
[k] = 1 and da

′
[k] = 1. The notation v

′
−k indicates the removal

of the kth entry from a vector v.

Example 4.5.

This example uses a two-dimensional array, A, with initial s equaling 〈64, 64〉. To demonstrate

the effect of reshaping, every array element is shown as a two-tuple consisting of the element’s initial

two-dimensional index.

A
∆
=


0, 0 0, 1 . . . 0, 63

...
...

...
...

63, 0 63, 1 . . . 63, 63



ρ(A, 〈2, 2〉) ∆
=



 0, 0 0, 1 . . . 0, 31

0, 32 0, 33 . . . 0, 63


.
.


 31, 0 0, 1 . . . 31, 31

31, 32 31, 33 . . . 31, 63

 32, 0 32, 1 . . . 32, 31

32, 32 32, 33 . . . 32, 63


.
.


 63, 0 63, 1 . . . 63, 31

63, 32 63, 33 . . . 63, 63





30

After the reshape transformation, the new shape-vector for A is 〈2, 32, 2, 32〉. The notation should

be read as a 2×32 array of 2×32 blocks. The index positions inside a block are contiguous. A reshape

transformation does not change the lexicographic ordering of the original indices.

Definition 4.8. Transpose (φ)

The binary φ operator permutes the dimensions of an array using a permutation vector (p). φ

permutes the existing s, and da, attributes of A. A legal permutation vector, p, is defined as follows:

δ(A) = σ(p). (P5)

p[i] 6= p[j], ∀i, j | 0 ≤ i, j < σ(s) and i = j. (P6)

0 ≤ p[i] < δ(A), ∀i | 0 ≤ i < σ(s). (P7)

P5 states that the size of the permutation vector should be equal to rank of the array. P6 states that the

permutation vector should not have repeated values. P7 states that a permutation vector should contain

only values corresponding to the position of an array dimension.

φ updates the existing s to s
′
, and da to da

′
, for A as follows:

s
′′
[i]

∆
= s

′
[p[i]], (4.9)

da
′′
[i]

∆
= da

′
[p[i]], (4.10)

where 0 ≤ i < σ(s
′
).

Example 4.6.

This example applies a φ transformation to the reshaped array created in Example 4.5. The trans-

formed array’s shape was 〈2, 32, 2, 32〉. Following are two examples of possible φ transformations of

this array.

31

φ(A, 〈0, 2, 1, 3〉) ∆
=





0, 0 . . . 0, 31

1, 0 . . . 1, 31

...
...

...

31, 0 . . . 31, 31





0, 32 . . . 0, 63

1, 32 . . . 1, 63

...
...

...

31, 32 . . . 31, 63




32, 0 . . . 32, 31

33, 0 . . . 33, 31

...
...

...

63, 0 . . . 63, 31





32, 32 . . . 32, 63

33, 32 . . . 33, 63

...
...

...

63, 32 . . . 63, 63




The φ transformation permuted the second and the third dimensions of the reshaped array. The array

was transformed from a 2×32 array of 2×32 blocks to a 2×2 array of 32×32 blocks. Note that the φ

transformation reorders the original indices. This transposition is useful when partitioning an array across

multiple processors.

φ(A, 〈1, 3, 0, 2〉) ∆
=




(0,0 0,32) (32,0 32,32)

...
...

...
...

(0,31 31,63) (32,32 32,63)


...

...
...

...
(31,0 31,32) (33,0 33,32)

...
...

...
...

(31,31 31,63) (63,32 63,63)




This second φ transformation is a different permutation of the array dimensions. To clarify, the

overall permutation can be viewed as the following series of permutations.

φ(A, 〈1, 0, 2, 3〉)→ φ(A, 〈1, 0, 3, 2〉)→ φ(A, 〈1, 3, 0, 2〉)

The resulting final shape of the array is 〈32, 32, 2, 2〉. This φ transformation transposes the block

dimensions in the opposite direction as compared to the previous transformation. This transformation is

useful when indices are rearranged to create an inner SIMD vector dimension that is lifted from outer

32

dimensions. Here, the innermost dimensions may be composed together to generate a four-wide SIMD

vector dimension.

4.1.1 Composing array-transformations

The ρ and φ operators both update the s and da vector of A. The transformations may be composed

together if their input arguments do not violate any legality constraints.

A φ transformation is invertible. A ρ transformation, however is not invertible. To invert a ρ

operation, our algebra would have to be extended via a concatenation or a ravel operator. Such operators

are present in APL and in other array algebras, such as Mullin’s Mathematics of Arrays and More’s Array

Theory (More, 1973). QUARC’s present use cases did not require a ravel operator, and it was omitted

from this algebra. As such, any sequence of array-transformations that involve a reshape transformation

is not invertible.

4.1.2 Comparison of QUARC’s array-transformations to APL

QUARC’s ρ and φ operators are eponyms of APL’s (Iverson, 1962) ρ and φ operators. The general

semantics of the two sets of operators is similar. However, QUARC’s operators differ from APL’s in

some important ways.

APL’s dyadic ρ operator requires as its input a new shape-vector for an array. It applies the new

shape to an existing index-space. Thus, it may increase or decrease an array’s rank. APL’s reshape

operator accepts a shape-vector argument even when the product of that vector’s components does not

equal the total number of array elements. APL handles such cases either by ignoring all extra elements

where the product is lesser, or by wrapping around when the product is greater. In comparison, QUARC’s

ρ operator is an index-space partitioning operator. It partitions the existing index-space to create a new

shape that can only increase an array’s rank.

Similarly, QUARC’s φ operator is only a subset of APL’s φ operator. QUARC does not permit

repeats in the permutation vector argument of φ. The permutation vector argument to APL’s φ operator

can have repeated values, and produces what is known as a diagonal section of the transformed array. We

would refer readers to (More, 1973; Mullin, 1988) for a detailed elucidation of APL’s formal algebra.

33

4.2 Index-space Mapping

This last section describes the generation of mapping functions between a lexicographic index-

space and an index-space created using a ρφ transformation. These functions are the basis of writing

data-redistribution or data-layout transformation routines.

First, we introduce another auxiliary operator (ι) to help describe data-mapping functions.

Definition 4.9. Index (ι)

The binary ι operator returns an index offset (I) from a datum. This operator is used to calculate a

memory address within an array. It takes two vector arguments, an index vector (i) and a stride vector

(st). ι is defined as follows:

I
∆
= (i, st)

∆
=

j=δ(st)∑
0

i[j]× st[j], where δ(st) = δ(i). (4.11)

Let i be an index vector for an array A, and i′ be an index vector for the array A′ that is produced

by a ρ transformation on A. Then, i′ is derived as follows.

(i
′′
)2kj=0

∆
=


i[j2]

s[j2]
if jmod2 = 0

i mod s[
j

2
] otherwise

, where 0 ≤ k < σ(s). (4.12)

i′
∆
= i

′′
−k. (4.13)

With this definition for the index vector for the transformed array, the mapping function from A to

A′ is derived as follows.

A′[ι(i′, st′)] = A[ι(i, st)], (4.14)

where i spans the space of all indices of A. The inverse mapping is simply the reverse assignment.

For φ transformations, i′ is derived by permuting the original index vector using the same permutation

vector.

34

Example 4.7.

Given an A2 of shape 32×32 that is ρφ transformed as follows:

ρ(A, 〈2, 2〉)→ φ(A, 〈1, 3, 0, 2〉).

This transformation results in the layout shown in Example 4.6. Then, a possible implementation of

the mapping from the default lexicographic data-layout to the new data-layout is shown by the following

C++ loop nest.

for(auto y = 0ul; y < Y; ++y)

for(auto x = 0ul; x < X; ++x)

A_transformed[y%(Y/2)][x%(X/2)][y/(Y/2)][x/(X/2)] = A[y][x];

Copying data back from the transformed data-layout to the original row-major lexicographic data-

layout can be done simply by reversing the assignment.

for(auto y = 0ul; y < Y; ++y)

for(auto x = 0ul; x < X; ++x)

A[y][x] = A_transformed[y%(Y/2)][x%(X/2)][y/(Y/2)][x/(X/2)];

Chapter Review

This chapter presented the array-transformation algebra that is used by QUARC to define its data-

placement abstractions. Although based on similar operators in APL, QUARC’s operators have different

semantics. Section 5.3 in Chapter 5 explains the use of this algebra in the ATL specification language.

35

CHAPTER 5: PROGRAMMING INTERFACE

QUARC has a two-level split programming interface. Application programs are written in the

METAL, an extension to C++14 that implements an implicitly data-parallel array programming interface.

An application-level METAL array does not have an intrinsic data-layout or data-distribution. These

attributes are added at runtime using the ATL. ATL is a small specification language based on YAML

(Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009). ATL controls the runtime data-parallel execution

of METAL programs. There are several benefits to this split programming interface. It keeps METAL

applications succinct, improves readability, and reduces maintenance overheads. It reduces the need to

recompile a program for a different data-distribution or data-layout, and allows rapid prototyping. Any

future QUARC code-generation target, such as GPGPUs, can be added by enhancing ATL and QUARC’s

code-generation and runtime libraries. Splitting ATL and METAL also enables auto-tuning in the space

of data-layouts and data-distribution for METAL arrays.

METAL’s Application Programming Interface (API) provides array containers, expressions objects,

and data-parallel operators. The API allows developing expressive array-based EDSLs that are free of

explicit parallelization constructs, elemental loops, and array accesses. Programming in METAL, or an

EDSL developed on top of METAL, requires no custom annotations, pragmas or keywords. Section 5.1

describes METAL’s grammar and API in detail. This section is primarily aimed at programmers

implementing EDSLs on top of METAL, and can be skipped by general audiences.

METAL is nominally a C++ template-only library, unlike conventional C++ template-only libraries

METAL templates do not generate low-level executable code inside C++. METAL templates do not

scalarize array expressions, i.e., they do not generate elemental loops and array accesses. Instead of

generating elemental loops and array accesses, METAL generates an architecture-neutral domain-specific

IR that encodes the expression tree for each METAL array expression. The encoded IR-generation uses

a new design pattern called Abstraction Characterization Templates (sACTs). Every ACT function call

represents a separate node of the parse tree. Internally, an ACT uses C++ TMP to generate calls of

36

specially annotated side-effect-free functions called domain-specific intrinsic (DSL intrinsic) functions.

DSL intrinsic function calls encode the METAL constructs into the domain-specific IR generated for

QUARC’s compiler, QOPT. QOPT recognizes DSL intrinsic function calls, and recovers METAL

expression trees and their properties. This allows various optimizations at the expression tree-level,

followed by architecture-specific data-parallel code-generation. ACT and DSL intrinsic function calls get

fully inlined over the course of code-generation. Section 5.2 presents the design and implementation

details for ACTs.

Finally, Section 5.3 describes ATL. An ATL specification defines a METAL array’s data-layout,

and distribution over an actual processor grid. ATL uses ρφ algebra to define operators that do these

operations. It also provides a way to map METAL array blocks or partitions to actual processors.

Depending on this mapping a METAL program can be executed serially, parallelized on multiple cores

of a shared-memory node, or parallelized at a large scale on a distributed cluster.

5.1 Minimal Expression Template Array Language (METAL)

5.1.1 Grammar

Figure 5.1 shows METAL’s complete EBNF grammar. METAL has a relatively small type system

consisting of a dynamically allocated global array container, a fixed size array container, expression

classes to define array expressions, and data-parallel operators for whole-array operations. Section 5.1.2

describes all these data types in detail.

The METAL high-level API does not implement any elemental functions for the global array

container class. The implementation of elemental functions is left as a prerogative of the EDSL-layer

developed on top of METAL.

5.1.2 Type System

5.1.2.1 Array Properties

Global shape (glblshape)

A glblshape type defines an abstract global index-space for a METAL distributed global array. A

glblshape type is defined with two non-type template parameters. The first non-type parameter is

37

1 <quarc-kernel> = <asgn-expr> | <reduction-expr>;

2 <asgn-expr> = <mddarray-term> <asgn-op> <expr>;

3 <reduction-expr>= <supported-ty> "=" <reduce-expr>;

4 <expr> = <if-even-choose-expr> | <choose-expr> | <gshift-expr> |

5 <drill-expr> | <mddarray-term> | <sdlarray-term> |

6 <binary-expr> | <unary-expr> | <reduce-expr>;

7 <reduce-expr> = "REDUCE" "("<expr>","<accumulator-fn>")";

8 <bin-expr> = <expr> <binary-op> <expr>;

9 <unary-expr> = <unary-op> <expr>;

10 <if-even-choose-expr>

11 = "IF_EVEN_CHOOSE" "(" <gshift-expr> "," <gshift-expr> ")";

12 <choose-expr> = "CHOOSE" "("<predicate-fn>","<gshift-expr>","<gshift-expr>")";

13 <gshift-expr> = <mddarray-term> ["." "GSHIFT" "<" int{ "," int} ">"];

14 <drill-expr> = "DRILL" "<" uint ">" "(" <mddarray-term> ")";

15 <mddarray-term> = <mddarray-ty> <id>;

16 <sdlarray-term> = <sdlarray-ty> <id>;

17 <mddarray-ty> = "mddarray" "<" <supported-ty> "," <glblshape-ty> ">";

18 <binary-op> = (operator<op> | <id>) "<"

19 <expr> "," <expr> "," <binary-mk-ty>

20 ">" "(" <expr> <id> "," <expr> <id> ")";

21 <unary-op> = (operator<op> | <id>) "<" <expr>","<unary-mk-ty> ">"

22 "(" <expr> <id> ")";

23 <binary-mk-ty> = <supported-ty> <id> "(" <supported-ty>","<supported-ty> ")";

24 <unary-mk-ty> = <supported-ty> <id> "(" <supported-ty> ")";

25 <supported-ty> = <arithmetic-ty> | <sdlarray-ty>;

26 <sdlarray-ty> = "sdlarray" "<" (<arithmetic-ty> | <sdlarray-ty>)","uint ">";

27 <glblshape-ty> = "glblshape" "<" uint "," <boundary-fn> ">";

28 <boundary-fn> = uint "(" "*" ")" "(" int <id> "," int <id> ")";

29 <predicate-fn> = bool <id> "(" uint {, unit} ")"

30 <accumulator-fn>= <supported-ty> <id> "(" <supported-ty>","<supported-ty> ")";

31 <arithmetic-ty> = (* Any C++ integral or floating point types *);

32 <op> = (* Any C++ overloadable operator *);

33 <asgn-op> = (* Any C++ assignment operator *);

34 <id> = (* Any legal C++ identifier *);

Figure 5.1: METAL’s EBNF grammar

38

the rank of the index-space, and the second non-type parameter is a boundary function. A glblshape

instance is created with a list of unsigned integer arguments, each of which is a dimensional upper-bound

of the index-space. Every METAL global array is instantiated with a glblshape instance.

§Syntax

gshapeTyDef

glblshape
�� �
<

���
uint
�� �
,

���
boundFnDef >
���
;

���

gshapeDef

gshapeTyDef ID
�� �
(

���
 unsigned integer
�� �
�

�
�

)

���
;
���

The glblshapeTyDef is the syntax rule for a glblshape type definition. gshapeDef is the

syntax rule for instantiating a glblshape object. ID denotes a legal C++ identifier.

§Rationale. All global view arrays in a METAL array expression are required to have the same global

shape. A separate data type for global shape makes it easier for programmers to follow this requirement.

A single glblshape instance can be created, and shared by multiple array instances. Having a separate

glblshape type also makes it easy for QUARC-RT to validate this requirement. QUARC-RT does

so using pointer comparisons of the glblshape members of the arrays in an expression.

§Implementation Note. The glblshape class constructor uses C++14’s variadic templates to

initializes the extents of a glblshape instance in a type-safe manner. A compile-time check ensures

that the number of extent arguments match the glblshape type’s rank. By default the array boundary

condition argument to a global shape object is set as a modulo periodic boundary function.

5.1.2.2 Array Containers

Single-dimensional local array (sdlarray)

An sdlarray is a fixed sized array container that can have numeric type elements, or can nest

another sdlarray. Every sdlarray type definition needs two template arguments. The first argument

specifies the data type of the elements of the sdlarray, and the second template argument statically

specifies the number of elements. An sdlarray cannot be zero-dimensional, and does not satisfy

39

C++’s plain-old-data-type (POD) type trait. METAL allows defining mddarray global view arrays

with an sdlarray element type.

§Syntax

arithTy

C++ arithmetic types
�� �

sdlarrayTyDef

sdlarray
�� �
<

���
arithTy ,
���
uint

�� �
>
���
;

���

sdlarrayDef

sdlarrayTyDef ID
�� �
;

���

The arithTy syntax rule is used here, and in subsequent syntax diagrams to represent all C++

arithmetic data types. The sdlarrayTyDef rule specifies an sdlarray type definition and the rule

sdlarrayDef specifies instantiating an sdlarray object.

§Rationale. The sdlarray type has similar semantics to the standard C++ std::array type.

For QUARC’s design goal, the standard container was unsuitable and we implemented the sdlarray

type for the following reasons.

• QUARC data-layout transformations can encompass outer mddarray dimensions and nested

sdlarray dimensions. To ensure QOPT correctly translates nested sdlarray accesses after a

layout transformation, it needs to recognize these accesses inside the IR. The sdlarray subscript

operator is a METAL DSL intrinsics function that lets QOPT recognize these accesses, and recover

a full delinearized view for each access.

• The standard array container class can be zero-dimensional, and it provides no guarantee that any

nested array is allocated contiguously. Sdlarray cannot be zero-dimensional, and guarantees

contiguous allocation of nested arrays.

• By not being a POD, the sdlarray type prevents C++ compilers from implicitly optimizing

sdlarrays copy operations. For example, LLVM’s Clang C++ front-end implicitly converts

std::array copy into memcpy calls. Such optimizations are advantageous in the general case,

but impede QUARC’s domain-specific code-generation.

40

Multi-dimensional distributed array (mddarray)

An mddarray is a distributed global view array container. Every mddarray type declaration

requires an element type argument and a glblshape type argument. An mddarray’s elements can

either be a C++’s scalar numeric type or an sdlarray type. The mddarray class constructor requires

an ATL specification (Section 5.3) as an argument. The specification is parsed at runtime, and decides the

data-distribution and data-layout of the mddarray. The data-placement of an mddarray is immutable.

The class provides separate data copy functions to copy data in and out from an mddarray. Apart from

the single constructor, the mddarray class does not provide any copy, move constructors or assignment

operators. It also does not provide a new operator. Each mddarray instance is meant to be defined

once, and then passed by reference everywhere. This is done to make reaching definition-based data-flow

analyses easier inside QOPT.

§Syntax

mddarrTyDef

mddarray
�� �
<

���
 arithTy�
� sdlarrayTyDef

�

,

���
gshapeTyDef >
���
;

���

mddarrDef

mddarrTyDef ID
�� �
(

���
&
���
gsID

�� �
,
���
dPSpecID

�� �
)
���
;

���

The mddarrTyDef is the syntax rule for an mddarray type definition. mddarrDef is the rule

to instantiate an mddarray. gsID is a pointer to a glblshape instance, and dPSpecID is an ATL

spec file name.

§Rationale. C++ does not have multi-dimensional dynamic arrays. To get around this limitation,

libraries, such as Boost MultiArray (Garcia et al., 2001), Global Array Toolkit (Nieplocha et al., 2006),

and Kokkos (Carter Edwards et al., 2014), added support for such arrays. For QUARC, we required

a container that is both lightweight, and whose properties are recognizable by our underlying domain-

specific compiler. The mddarray class uses DSL intrinsic calls to identify multi-dimensional accesses,

constructor calls, and assignment operations. Recognizing these properties is a prerequisite for domain-

specific optimizations and code-generation.

41

§Implementation Note. The mddarray class does not provide any copy or move constructor or

assignment operators. It prevents scenarios such as returning and passing mddarray objects by value.

Mddarray cannot be used inside standard C++ containers, such as std::vector. These limitations

made aspects of QOPT’s implementation simpler. QUARC provides a speculative SIMD vectorizer that

analyzes the uses of an mddarray to generate vectorized code specialized for a set of data-layouts.

The def-use analysis of an mddarray is simplified by making the mddarray class non-copyable and

non-movable.

5.1.2.3 Elemental Functions

Elemental functions, or “mkernels”, describe an operation applied to mddarray elements. As

mddarray elements may be sdlarray, mkernels may operate on sdlarray types. Mkernels must

be free of side-effects, and their definitions should be accessible inside the translation unit where they are

used. Mkernels require a pass-by-value and return-by-value semantics that is enforced by METAL’s API.

Mkernels can be both binary or unary operators. METAL does not provide any mkernels, and EDSLs

must define their own domain-specific mkernel functions.

§Syntax

supTy

arithTy�
� sdlarrayTyDef

�

uMkernel

supTy ID (
���
supTy)

���
;
���

bMkernel

supTy ID (
���
supTy ,

���
supTy)
���
;

���

The supTy rule specifies the allowed data types for an mkernel function argument. These are also

the types allowed as elements of an mddarray. Currently, only C++ arithmetic data types, sdlarray,

or arithmetic types are allowed. uMkernel and bMkernel are the syntax rules for mkernel function

signature. The rules specify that mkernels require both pass-by-value and return-by-value semantics.

42

§Rationale. The mkernel function’s design allows QOPT to fully analyze these functions during

code-generation. Being aware of the calling context of these functions, QOPT can make domain-specific

code-generation decisions that are not possible otherwise. QOPT takes into consideration any data-layout

transformations on the mddarray, and uses the information to SIMD vectorize the functions. QOPT

also fully inlines these functions during code-generation.

§Implementation Note. During code-generation QOPT inlines all mkernels, and possibly converts

all arithmetic operations to equivalent SIMD vectorized operations. For this reason, QUARC currently

limits the type of operations that are permitted in an mkernel function. Mkernel functions are only

allowed to have static for-loops that are defined using C++ templates. Static for-loops get fully unrolled

during template expansion. Mkernels should not have any other control flow apart from these special

template-based loop abstractions. Function calls are also not allowed within mkernel functions. In

addition, all mkernel functions must have static inline qualifiers. This qualifier ensures that the definition

of an mkernel function has internal linkage within the translation unit where it is used.

5.1.2.4 Array Operations

METAL array operation data types encapsulate mkernel functions, and generate DSL intrinsic

function calls that identify the encapsulated mkernel inside QOPT’s IR. METAL has two array operation

data types: unary operation (unary op) and binary operation (binary op). As part of their type

signature, both these data types require a non-type template argument specifying the mkernel function.

The data types have a static apply op function that calls back the encapsulated mkernel function. The

apply op function is a METAL DSL intrinsic function, and QOPT recognizes them inside its IR. Using

this approach, QOPT identifies calls to the user defined mkernel functions inside its IR. The apply op

calls are inlined at the end of code-generation.

The array operation classes are never directly instantiated, rather they are part of the type signature of

a METAL expression class. Template recursion generates the apply op call at the point of evaluation

of the expression class that encapsulates the array operation. Section 5.1.2.5 discusses evaluation of

expression classes.

43

Unary operation (unary op)

A unary op object abstracts a unary operation that applies to a METAL sub-expression. Each

unary op type is defined to accept a unary mkernel. Every unary op type needs three template

arguments. The first argument is the input type accepted by the unary mkernel function encapsulated by

the unary op. The second argument specifies the return type of the mkernel. The last argument is a

function pointer type specifying the type signature of the mkernel. A unary op object is required to

create a unary array expression.

§Syntax

unaryOpTy

unary op
�� �
<

���
supTy ,
���
supTy ,

���
uMkernel >
���
;

���

Binary operation (binary op)

A binary op object is analogous to a unary op, but abstracts a binary operation that applies to

two METAL sub-expressions. Each binary op needs four template arguments. The first two are the

input types accepted by the mkernel function encapsulated by the binary op. The third argument is the

return type of the mkernel. The fourth argument is a function pointer type specifying the type signature

of the mkernel. A binary op object is required to create a binary array expression.

§Syntax

binaryOpTy

binary op
�� �
<

���
supTy ,
���
supTy ,

���
supTy ,
���
�

�
�bMkernel >

���
;
���

§Rationale. Unary and binary operation objects serve two important roles. All mkernels in METAL

are required to be pure functions that pass and return objects by value. The required mkernel signature is

enforced by the unary and binary operation classes. These classes also free up EDSL developers from

44

having to manually annotate mkernel functions. unary op and binary op initialization internally

invokes a DSL intrinsic that annotate the supplied mkernel function.

§Implementation Note. The unary op and binary op are not exposed by METAL’s public API.

Instead, METAL provides factory functions that EDSLs need to use to define new types of expressions.

The factory functions create both the expression type and the needed operation type.

5.1.2.5 Array Expressions

METAL array expression are data-parallel operations over mddarrays. Array expressions abstract

foreach operations where the same operation is performed on each array element in parallel. METAL

supports unary, binary, and special expression types. EDSL built using METAL need to define the

operators that create unary and binary expressions. These EDSL operators are abstractions for higher

order array functions. An EDSL operator encapsulates an mkernel call back function, and generates a

METAL unary or binary expression by calling a factory function.

METAL’s API provides custom template functions that define the special expression types. The

DRILL function is applied across the whole mddarray to indirectly access sdlarray elements

nested at each location. The GSHIFT function defines a whole array shift of an mddarray. The

IF EVEN CHOOSE function defines a built-in predicate that provides alternative actions at each location

depending on the parity of the array index expression. The REDUCE function defines a reduction of

another METAL expression.

Each array expression type includes a member template function called evaluate_expr. This

template function needs to be invoked to evaluate an array expression. Typically, array expressions

get evaluated inside mddarray assignment statements, and reduction assignment statements. Every

expression type invokes a DSL intrinsic function when its evaluate_expr gets called. Binary and

unary expressions invoke the apply_op function of the encapsulated array operation. An mddarray

terminal expression would invoke an array_access_fn DSL intrinsic call. The next sections discuss

the different expression types and their evaluation.

Unary expression (unary expr)

A unary expr abstracts a unary operation for a single METAL sub-expression.

45

§Syntax

Expr

METAL array expression types
�� �

unaryExprTy

unary expr
�� �
<

���
Expr ,
���
unaryOpTy >

���
;
���

Binary expression (binary expr)

A binary expr abstracts a binary operation that applies to two METAL sub-expressions.

§Syntax

binaryExprTy

binary expr
�� �
<

���
Expr ,
���
Expr ,

���
binaryOpTy >
���
;

���

Mddarray terminal expression (mddarray term expr)

An mddarray term expr represents an mddarray element access. Evaluating this type of

expressions generates an access fn DSL intrinsic call. The DSL intrinsic function call captures the

fully delinearized array access functions needed to index into the mddarray.

Scalar terminal expression (scalar term expr)

A scalar term expr is generated when a scalar arithmetic expression is used inside a METAL

array expression. Scalar expressions are used for operations such as scaling of mddarray elements by a

fixed value, and storing the output of a reduction.

Sdlarray terminal expression (sdlarray term expr)

A sdlarray term expr are like scalar terminal expressions, but use sdlarray values instead

of arithmetic types.

46

GSHIFT expression (gshift expr)

A gshift expr is a type of unary expression that represents a “shift” of an mddarray. A

gshift expr generates an mddarray terminal expression. This expression is created by METAL’s

GSHIFT function. A shift of an mddarray conceptually returns a new array of the same shape, but

with its elements rearranged into a new configuration. METAL supports only one type of shift where

every element is moved to a new address that is at a fixed linear offset from the element’s initial location.

Boundaries are handled using the boundary function specified in the mddarray’s glblshape attribute.

A gshift expr does not actually return a new array. It is implemented as a linear indexing

expression. GSHIFT requires a list of signed integer values. Each value in the list represents a constant

offset of a uniformly generated reference (Gannon et al., 1988; Wolf and Lam, 1991) for each dimension

of the mddarray. The linearization of each reference produces the shifted address for an element.

§Syntax

gshiftOp

ID
�� �
.

���
GSHIFT
�� �
<

���
 integer
�� �
�

�
�

>

���
()
�� �
;

���

gshiftExprTy

gshift expr
�� �
<

���
mddarrTyDef ,
���
 integer

�� �
�
�

�

>

���
;
���

§Rationale. A gshift expr allows QUARC to retain a fully delinearized view of an mddarray

access inside QOPT’s IR. Having a delinearized view of an access makes it easier to perform several

analyses used for code-generation. They are used for reuse distance calculation, and computation of

communication sets when generating code for multi-node clusters. QOPT can also perform scalar

redundancy elimination optimizations directly on gshift expr objects.

§Implementation Note. GSHIFT is implemented as a C++14 variadic function template that takes

an n-tuple of non-type template arguments, where n equals the mddarray rank. This template generates

a gshift expr object defined with the same non-type template arguments.

47

DRILL expression (drill expr)

The DRILL operator generates a unary drill expr. The expression abstracts an indirect access

of a nested sdlarray element.

§Syntax

drillOp

DRILL
�� �
<

���
integer
�� �
>

���
(
���
ID)

���
;
���

drillExprTy

drill expr
�� �
<

���
mddarrTyDef ,
���
 integer

�� �
�
�

�

>

���
;
���

§Rationale. This expression class provides the option to write METAL array expressions that access

a nested sdlarray, and pass the sdlarray element to an mkernel. This allows reusing the same

mkernel across array expressions that use different types of mddarray.

§Implementation Note. The present implementation of the DRILL operator only allows drilling

into an mddarray terminal expression. DRILL cannot be used on any other expression types. For

example, DRILL does not allow gshift expr or another drill expr.

IF EVEN CHOOSE expression (if even choose expr)

An if even choose expr is a binary expression that encapsulates a selection operation for each

mddarray elemental access. METAL’s IF EVEN CHOOSE operator generates this type of expression.

IF EVEN CHOOSE allows two alternate GSHIFT operations at each mddarray index position. A

runtime selection between the two alternatives is made based on the mddarray index’s “parity”. Here

parity refers to a domain-specific global index that is separate from the mddarray’s internal indexing.

48

1 template <typename... Args>
2 bool is_even (Args... args) {
3 size_t sum = 0;
4 size_t arr[sizeof...(args)] = {(size_t)args...};
5 for(auto i = 0ul; i < sizeof...(args)-1; ++i)
6 sum += arr[i];
7 return sum % 2 == 0;
8 }

Listing 5.1: Implementation of an “even or odd” predicate function in C++

§Syntax

IfEvenChooseOp

IfEvenChoose
�� �
<

���
gshiftExprTy ,
���
gshiftExprTy >

���
�

�

�(
���
ID ,

���
ID)
���
;

���

IfEvenChooseExprTy

if even choose expr
�� �
<

���
gshiftExprTy ,
���
�

�
�gshiftExprTy >

���
;
���

§Rationale. METAL’s IF EVEN CHOOSE operator was designed specifically to help write “even-

odd” preconditioned iterative solvers in lattice quantum chromodynamics (LQCD). The operation splits a

multidimensional lattice or grid into sub-lattices, each of which contains either even or odd sites. Each

sub-lattice is operated independently of the other. This makes it possible to parallelize iterative solvers

by removing loop carried dependence.

§Implementation Note. Listing 5.1 shows a possible portable C++14 implementation of METAL’s

built-in “even-or-odd” predicate function. This is equivalent to the code QOPT generates.

Reduction expression

The REDUCE operator constructs a reduction expression to reduce the elements of a METAL

mddarray into a single scalar or sdlarray result. The REDUCE operator must be associative, but

may also be marked as commutative. The REDUCE operator requires three template arguments. The

first non-type integer argument conveys the commutative property of the reduction. A non-zero value

49

indicates the reduction is commutative, and a zero indicates the reduction is non-commutative. The

second template argument should be a METAL expression that the REDUCE operator reduces. The

expression argument can be any legal METAL expression except another reduction expression. The third

template argument should be a function that specifies a domain-specific reduction function.

§Syntax

ReduceOp

REDUCE
�� �
<

���
integer ,
���
Expr ,

���
Op
�� �
>

���
�

�

�(
���
Expr expr

�� �
,
���
Op

�� �
ID
�� �
)

���
;
���

§Rationale. Reduction operations are a fundamental part of scientific programming. These are used

in most types of linear solvers. Providing an architecture neutral general-purpose reduction operator is

needed to support such kernels in QUARC. The compiler has more opportunities for optimization if the

operator is commutative.

5.1.2.6 Callback Functions

Boundary function

A boundary function is an indexing function defining the boundary condition of a METAL distributed

array container (mddarray). EDSLs built using METAL specify the boundary functions for their

domains. A boundary function adheres to the following function signature. The first argument is a signed

integer signifying a shifted index value for an array dimension. The second argument is the extent of that

dimension. The output of a boundary function is an index value used in memory address calculations.

§Syntax

boundFnDef

uint
�� �
ID

�� �
(
���
int

�� �
ID
�� �
,

���
uint
�� �
ID

�� �
)
���
;

���

§Rationale. A differential equation system typically involves boundary value problems. A boundary

value problem defines the value of the independent equation variables at the physical boundary of the

50

1 size_t PERIODIC (int64_t i, size_t extent)
2 {
3 return ((i %=extent) < 0) ? i + extent : i;
4 }

Listing 5.2: Default implementation of periodic boundary conditions

domain. To handle boundary conditions scientific codes typically include conditional checks using

loop-index variables. However, as an array programming language, METAL array expressions abstract

away loops and direct array accesses. Instead, METAL includes the boundary function data type. The

actual conditional checks are added during QOPT code-generation.

§Implementation Note. METAL’s implementation presently limits an mddarray to a single

boundary function for all array boundaries. During code-generation QOPT tries to inline all boundary

function calls. To do so EDSLs must define the boundary function as static within the scope of a

translation unit.

In our prototype EDSL implementation presented in Chapter 9 we used a periodic boundary condition.

Listing 5.2 shows a possible portable C++ implementation of this function. For performance reasons this

function is marked as a DSL intrinsic recognizable inside QOPT’s IR. This helps QOPT easily inline this

boundary function call with an equivalent version written in LLVM IR.

Reduction function

Reduction functions have the same signature and properties as binary mkernel functions. Refer

Section 5.1.2.3.

5.2 Abstraction Characterization Templates (ACTs)

ACTs are standard compliant C++ function templates. As with any C++ template, ACTs use

template metaprogramming to generate code at compile-time. However, unlike most C++ template

metaprogramming techniques, the code generated by ACTs does not produce an executable. Instead

of generating low-level code, such as loops and array accesses, an ACT generates a call to a specially

annotated function. The specially annotated functions called from inside ACTs are called DSL intrinsic

functions. This design pattern of using ACTs and DSL intrinsic functions allows encoding METAL

array expressions as graph-based IR into QUARC’s LLVM-based QOPT compiler with very little loss

51

Array assignment node

[operator=]

quarc kernel dispatch()

Binary expression node

[operator+(b.GSHIFT<1,0>, b.GSHIFT<-1,0>)]

evaluate expr()

apply op() [encapsulate mkernel]

GSHIFT expression node

[b.GSHIFT<-1,0>]

evaluate expr()

Mddarray terminal node

[b]

access fn(b,-1,0)

GSHIFT expression node

[b.GSHIFT<1,0>]

evaluate expr()

Mddarray terminal node

[b]

access fn(b,1,0)

Mddarray terminal node

[a]

access fn(a,0,0)

Figure 5.2: Binary expression tree for the expression a = b.GSHIFT<1,0>() + b.GSHIFT<-1,0>().

of high-level semantics. There is another advantage of ACTs when compared to using annotations and

pragmas in high-level code. DSL intrinsic function calls are invisible to application programmers. No

programmer intervention is needed to generate these calls. The complete set of annotations required by

QUARC gets generated automatically using template metaprogramming.

Example 5.1.

Every ACT function template represents a node of a METAL parse/expression tree. This example

shows the expression tree encoded using ACT function calls for a three-point stencil METAL array

expression. Figure 5.2 presents this expression tree. The expression tree is constructed recursively in

a bottom-up manner. Each ACT has an evaluation member function that in turn calls the evaluation

member function of the child nodes of the ACT. Leaf or terminal nodes end the recursion. Terminals are

either mddarray accesses or scalar accesses. This recursive evaluation of ACT nodes, happens lazily.

52

That is the whole expression tree is evaluated only when the result needs to be computed. In this case,

the evaluation starts when the overloaded template assignment operator is instantiated.

Figure 5.2 shows the nested template instantiation hierarchy for the ACT and DSL intrinsic function

templates. Every dashed-dotted arrow leads to a DSL intrinsic function call. Solid arrows represent

parent-child relationship between nodes. All the function calls that are shown in the figure are DSL

intrinsic function calls. The quarc kernel dispatch call indicates the start of the RHS sub-tree of

expression. The evalaute_expr calls annotate the point of evaluation of each ACT expression node.

The apply op call indicates an elemental operation. The function encapsulates an mkernel function.

Finally, access fn indicates the terminal mddarray accesses. QOPT recognizes these DSL intrinsic

function calls, and can recover the whole expression tree. Section 6.2.2 discusses that process.

Aside from annotating expression tree nodes, DSL intrinsic function calls serve an important

secondary purpose. Some DSL intrinsic convey additional information that is useful during code-

generation. The apply op calls indirectly help QOPT identify mkernel function calls inside the

generated IR. The function body for every apply op function is empty except for a callback to the

mkernel. This domain-specific information about the code structure allows QOPT to identify user

provided mkernel functions. The arguments to an access fn calls stores a complete delinearized view

of that mddarray access. QOPT then parses the function call arguments to recover every delinearized

mddarray access. The information is very useful in performing index calculations, reuse distance

analysis, and other important code-generation steps.

5.2.1 Types of ACTs and DSL Intrinsic

METAL uses a relatively small number of DSL intrinsic functions to encode its expression trees into

QOPT’s IR. Table 5.1 lists all the DSL intrinsic functions that are used currently. These functions are

specially annotated using Clang’s attribute ((annotate("string"))) feature. The string

value passed to this special macro serves as the key to recognize the functions inside the IR. This way it

is ensured that the DSL intrinsic functions are recognizable regardless of their C++ mangled function

names. The primary purpose served by each DSL intrinsic function call is to encode a type of METAL

expression tree node. Example 5.1 introduced few of them, Table 5.1 describes the rest. Some DSL

intrinsic function calls capture additional information about the high-level METAL program. Example 5.1

described the use of apply op and access fn functions. In addition, other DSL intrinsics serve

53

DSL intrinsic Expression tree node Arguments

access fn Denotes an mddarray access terminal
node.

Constant offset for the affine
access function in each array
dimension.

apply op Denotes the call site of an mkernel
function.

N/A

binary expr builder Denotes creation of a binary expression
node.

N/A

choose expr builder Denotes creation of a
IF EVEN CHOOSE expression node.

N/A

drill expr builder Denotes creation of a DRILL
expression node.

N/A

drill op Denotes a drill operation that is
performed on evaluation of a DRILL
expression.

Constant index value for a
nested sdlarray
dimension.

evaluate expr Denotes the evaluation point of a
METAL expression node. It is emitted
by all types of METAL expressions.

Constant index value for a
nested sdlarray
dimension.

gshift expr builder Denotes creation of a GSHIFT
expression node.

N/A

gshift expr builder Denotes creation of a GSHIFT
expression node.

N/A

quarc kernel dispatch Denotes the start point for evaluating a
METAL expression.

N/A

quarc Rkernel dispatch Denotes the start point for evaluating a
METAL reduction expression.

N/A

scalar access fn Denotes a scalar terminal expression
node

The actual scalar value
encapsulated within the
expression node.

scalar expr builder Denotes creation of a scalar expression
node.

N/A

sdlarray copy Denotes an assignment expression for
sdlarray objects.

N/A

sdlarray subop Denotes an access to an sdlarray
element.

N/A

unary expr builder Denotes creation of a unary expression
node

N/A

Table 5.1: METAL DSL intrinsic functions

54

similar secondary purposes. Nested sdlarray accesses are preserved by sdlarray subop. The

argument passed to drill op intrinsic calls convey the index of an indirect access of sdlarray

elements of an mddarray. The first argument to reduction kernel dispatch indicates if a

reduction expression is commutative.

5.3 Programming Data-Placement Using ATL

Array Transformation Language (ATL) is a small specification language for programming data-

placements for METAL mddarrays. This Section describes ATL, and aspects of its overall design.

ATL is written as YAML (Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009), and each ATL entry is a

YAML “key-value” pair. Each entry defines an mddarray data-placement attribute. These include the

array’s data-layout, data distribution, and other aspects corresponding to how the array is distributed over

an MPI Cartesian communicator. An ATL file is required to initialize an mddarray, and gets parsed

only at runtime.

5.3.1 ATL attributes

P-grid defines the processor space on to which the array partitions are mapped. In QUARC’s current

implementation the p-grid corresponds to an MPI Cartesian communicator. It is specified as a list of

integers that specify the size of the communicator in each dimension.

Dist-rtf defines the blocking factors for each mddarray dimension. It too is specified as a list

of integers. The operation encoded by this attribute represents a ρ transformation followed by a φ

transformation that permutes all the block dimensions outwards. The resulting new shape of the array

has a set of outermost block dimensions.

Example 5.2.

For a two-dimensional mddarray, A, the dist-rtf value of {2, 2} is equivalent to the following ρφ

transformation.

ρ(A, 〈2 2〉)→ φ(A, 〈0 2 1 3〉).

Simd-rtf defines the blocking factors to build an innermost SIMD dimension by blocking one or

more mddarray dimensions. The semantics of simd-rtf are like dist-rtf, except that the encoded ρφ

transformation is different. In this case, the φ transformation permutes all the block dimensions inwards.

55

using GS = global_shape<2>;
using ATE = mddarray<T, GS>;

GS<2> gs(16,16);
ATE A(&gs, "atl-spec");

(a) Defining a two-dimensional mddarray.

{
"p-grid" : "2,2",
"dist-rtf" : "2,2",
"simd-rtf" : "2,2",
"mapper" : "STATIC"

}

(b) ATL specification as a YAML file

Figure 5.3: Example of an ATL specification.

The innermost block dimensions cumulatively show be equal to the SIMD register length for the target

architecture. The transformation defines a new data-layout for the mddarray. The simd-rtf values can

be user specified for cases where the user wants to generate code for a specific data-layout. Optionally,

QOPT can speculatively generate a set of data-layout choices that are encoded as multiple simd-rtf values.

QOPT then generates a code version for each of the data-layouts.

When an mddarray has nested sdlarray elements the effect of the ρφ transformation gets

applied to each nested sdlarray dimension. All the nested dimensions are permuted out, and the

innermost dimension is still a SIMD vector dimension.

Example 5.3.

For a two-dimensional mddarray, A, the simd-rtf value of {2, 2} is equivalent to the following ρφ

transformation.

ρ(A, 〈2 2〉)→ φ(A, 〈1 3 0 2〉).

Mapper specifies the mapping function that maps mddarray blocks on to the p-grid. The mapper

value is defined as a string. QUARC-RT internally has a dictionary mapping the string name for a mapper

to a library implementation of a mapping function.

§Implementation Note. The current scope of QUARC was limited to grid and lattice-based ap-

plications that exhibit regular data access patterns. Such applications benefit from rectilinear array

partitioning to define “blocked” data-distributions. For this reason, currently, QUARC provides only

one mapping function that statically maps mddarray blocks onto a single MPI rank within the p-grid.

Future extensions can add more types of mapping functions for other use cases.

56

{16×16} global
index-space

{2×2×8×8} blocked
index-space

1,1

0,1

1,0

0,0

8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7

9,0 9,1 9,2 9,3 9,4 9,5 9,6 9,7

10,0 10,110,2 10,3 10,4 10,5 10,6 10,7

11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7

12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7

13,0 13,113,2 13,3 13,4 13,5 13,6 13,7

14,0 14,114,2 14,3 14,4 14,5 14,6 14,7

15,0 15,1 15,2 15,3 15,4 15,5 15,6 15,7

dist-rtf : “2,2”

Block-space MPI ranks

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

Static mapping of
blocks to MPI ranks

Figure 5.4: ATL specifications to define a two-dimensional block distribution for an mddarray. The
dist-rtf specification is added via ATL, and blocks the global index space into four blocks. These blocks
are mapped bijectively to the ranks of an MPI Cartesian communicator.

5.3.2 METAL-ATL interface

The mddarray class constructor requires an ATL specification as an input parameter. The ATL

specification defines the data-distribution and data-layout for the mddarray, and once defined these

attributes are immutable. Listing 5.3a shows a simple example of an mddarray constructor call.

Listing 5.3b shows the corresponding ATL specification file. This ATL specification is to define a

two-dimensional {2×2}MPI Cartesian communicator. The dist-rtf, and simd-rtf attributes are the same

as discussed in Example 5.2 and Example 5.3. Figure 5.4 provides a visualization of this data-distribution

strategy. It only shows the block distribution over the MPI Cartesian communicator, and omits the

data-layout transformation within each block.

57

5.3.3 Compile-time ATL v/s Runtime ATL

The initial design of QOPT incorporated ATL as a compile-time compiler flag. Along with data-

placement options, ATL specified even the mddarray shapes. The design provided several code-

generation advantages. Knowing an array’s shape and placement at compilation allowed specializing

array expression loops to compile time know trip counts. QOPT could avoid several extra checks that

are required when the trip counts are not known at compile time. Additionally, some auxiliary variables

needed to support data communication could be allocated statically on the stack without requiring

dynamic heap allocation at runtime.

Despite the advantages, we found it hard to extend the compile-time ATL design to real-world

applications. A fixed array shape and data-placement required a recompilation for each problem size.

Moreover, integrating with existing application code required multiple hooks to pre-compiled binaries

generated by QUARC. Another issue that proved hard to resolve was using different shaped array types

in the same QUARC program. There was no easy way to annotate the array shape and data-placement to

an array declaration with a single compiler flag. The closest solution was to add extra ATL annotations to

METAL’s source code. This was something we chose not to do to satisfy our design goal of a complete

separation of domain-level algorithms from their architecture and parallel execution concerns. The final

implementation of QUARC uses a runtime specification design for ATL due to the difficulties with a

compile-time ATL design.

58

CHAPTER 6: CODE GENERATION AND RUNTIME SYSTEM

This chapter describes QUARC’s compiler and runtime system. Section 6.1 introduces the overall

compiler architecture, the pass pipeline, and the different intermediate representations (IRs) used during

code-generation. Section 6.2 presents the high-level code-generation steps. Section 6.3 describes our

speculative SIMD vectorization technique. Section 6.4 describes QUARC’s scalarization steps for

METAL array expressions. Each section provides the necessary implementation details of the set of

compiler passes used in that stage of compilation. Section 6.5 presents QUARC’s runtime system. The

runtime is a lightweight library that uses integer set analysis to generate MPI communication. It also

provides an API to define data-distributions for METAL mddarrays, and implements the interface for

selecting a data-layout from the available options that were speculatively generated during compilation.

6.1 QOPT: QUARC’s Domain-specific Compiler

QUARC Optimizer (QOPT) is a domain-specific extension to the open source LLVM (The LLVM

Foundation, 2018) compiler framework, and is implemented as a plug-in to LLVM’s optimizer and

analyzer (Opt) module. METAL programs first get translated into LLVM IR without any optimization

(-O0) using LLVM’s C++ front-end (Clang). This initial -O0 LLVM IR retains METAL array expression

trees as encoded DSL intrinsic function calls (Section 5.2.1). QOPT’s multi-stage code-generation process

lowers the initial LLVM IR to successive domain-specific IRs. At the end of code-generation standard

LLVM IR gets generated. Figure 6.1 shows QOPT’s pass pipeline and the transition between the different

IRs. The final residual LLVM IR is optimized further using Opt, and compiled into an executable.

Building a domain-specific compiler may seem orthogonal to an EDSL framework like QUARC.

It may be argued that a domain-specific compiler introduces engineering complexity and maintenance

cost that defeat the purpose of embedding a DSL in a general-purpose language. However, various

important optimizations cannot be designed solely using metaprogramming-based EDSL techniques.

Such optimizations require data flow and loop dependence-based compiler analysis. Moreover, EDSL

59

METAL

LLVM IR

HIR

QKET

QKSCoP

ISL-AST

LLVM IR

Executable

C++ Compilation (-O0)

Preprocessing
Lower METAL DSL intrinsic to LLVM metadata
Delete or inline METAL C++ template function calls

Extract Expression Trees
Outline array expression trees into separate functions

Optional High-level Optimizations
LLVM CSE redundancy elimination

Generate Polyhedral Representation
Generate a QKSCoP polyhedral IR

Optional Polyhedral Optimizations
Apply polyhedral storage-management optimization

Low-level Optimizations and AST generation
Split scheduling to overlap communication and computation

Generate an AST from the QKSCoP representation

Late Scalarization
Loop and array access generation

Speculative IA SIMD vectorization

MPI-3 parallelization

Further LLVM Compilation (-O2/-O3)

MIRs

Figure 6.1: QOPT’s compilation pipeline. The grey process boxes indicate QOPT compilation stages.
The dashed “Optional Polyhedral Optimization” stage is a proposed QOPT step that is not presently
implemented. The white boxes are standard Clang/LLVM compilation steps.

60

generated code often has obfuscations and library calls that impede compiler analyses and optimizations.

Handling these scenarios require a domain-specific compiler. Several modern DSLs, such as the image

processing DSL Halide (Ragan-Kelley et al., 2013), and the numerical analysis DSLs Julia (Bezanson

et al., 2017) and Numba (Lam et al., 2015), bundle their own compiler back-ends for this reason. All

three languages use LLVM for low-level code generation, but have standalone optimization and analysis

modules that do not utilize LLVM.

QOPT’s approach is different from these other contemporary DSL frameworks. Our approach

integrates EDSL code-generation and optimization closely into a general-purpose compiler. Doing

this allows us to leverage compiler passes that the general-purpose compiler already provides. New

domain-specific passes are also easier to implement on industry-standard static single assigned (SSA)

(Rosen et al., 1988) control flow graph (CFG) IR. SSA is a robust and easier format for code optimization

and transformation. Most other EDSLs, like Halide, use custom non-SSA IRs. While, a non-SSA IR

may seem expedient in designing a DSL, it limits extensibility and makes implementing data flow-based

optimizations harder. EDSL compilers usually cannot interface with code outside EDSL expressions.

This may in some scenarios limit the scope of code optimization. With its integrated EDSL compiler

design, QUARC suffers from no such limitation.

Another advantage lies in the utilization of modern polyhedral code-generation and optimization

techniques; many production compilers like LLVM, GCC (Free Software Foundation, 2018), and IBM’s

XLC (IBM Corporation, 2015) already provide the necessary boilerplate interface. Therefore, domain-

specific polyhedral optimizations and code-generation require lesser engineering effort.

There are other secondary software engineering benefits of integrating an EDSL compiler into a

general-purpose compiler. All code-generation and transformation phases are part of a single infrastruc-

ture. This removes the need for glue interfaces, and stitching together of different build technologies.

6.1.1 Architecture and Pass Pipeline

Figure 6.1 presents QOPT’s compilation pipeline. As shown by this pipeline, QOPT compilation

phases interpose Clang/LLVM compilation phases. When compiling a METAL program all QOPT passes

complete first, and only then user-specified LLVM compilation options such as -O2 or -O3 execute. The

pass pipeline does not preclude QOPT from invoking standard LLVM analysis and transformation passes,

61

and various stages of QOPT internally utilize LLVM passes. This is one of the key engineering benefits

of implementing QOPT as a plug-in for LLVM Opt.

Table 6.1 lists all passes currently provided by QOPT. The QOPT analysis passes are listed in Table

6.1(a). Analysis passes do not alter the IR. They only extract high-level METAL language properties

encoded inside the LLVM IR. Table 6.1(b) lists the QOPT transformation passes. Both type of QOPT

passes depend on an initial set of preprocessing passes.

QOPT code-generation uses multiple forms of IRs. The initial Clang -O0 compilation results in

an LLVM IR that retains all METAL ACTs and DSL intrinsic (Section 5.2.1) function calls. The DSL

intrinsic function calls are annotated by METAL. All the annotations are stored in the -O0 IR as a global

string constant. This global string is composed of sub-strings that are key-value pairs of the METAL

annotation strings and the annotated functions. QOPT performs an initial preprocessing step to convert

the -O0 IR into a form that is termed as QOPT’s High-level IR (HIR).

High-level Intermediate Representation. The QOPT preprocessing pass converts METAL annota-

tion strings into LLVM IR metadata nodes. This ensures that METAL annotations persist across different

QOPT transformation passes. Preprocessing also invokes LLVM’s mem2reg pass to promote memory

load and store instructions to virtual registers. This step constructs the pruned static single assignment

(SSA) IR that is used by all subsequent passes. After constructing the pruned SSA form the preprocessing

pass does domain-specific inlining of METAL function calls. Domain-specific inlining has the effect

of pruning METAL expression trees, and removing all intermediate ACT function calls. The LLVM IR

constructed after preprocessing is called the HIR. Section 6.2.2 describes QOPT’s preprocessing stage in

detail.

Mid-level Intermediate Representations. QOPT transformation and analysis passes construct four

IR forms out of the HIR. These mid-level Intermediate Representations (MIRs) are separate from the

standard LLVM IR, and represented as in-memory data structures. QOPT uses the following four types

of MIRs.

• QUARC Kernel Expression Tree (QKET)

QKET is a binary expression tree format to represent a METAL array expression. A QKET is

rooted at an “assignment” node represented by an sdlarray copy DSL intrinsic call or an

LLVM store instruction. All internal nodes are METAL DSL intrinsic calls that represent mkernel

62

Pass name Stage Dependency Description

qopt-detectqket All qopt-preprocess It detects all QKs in a function. For each QK it
builds a binary expression tree (QKET) using
recursive def-use analysis of METAL DSL
intrinsic function calls.

qopt-mka Late
Scalarization

qopt-preprocess It analyzes METAL array element-wise
functions (mkernels) to generate metadata that
is used by qopt-code to inline mkernels.

(a) QOPT Analysis Passes

Pass name Stage Dependency Description

qopt-preprocess Preprocessing mem2rega It applies domain-specific function inlining to
METAL expression trees. Also, converts C++
annotations to LLVM IR metadata nodes.

qopt-extractqket High-level Opts qopt-preprocess,
qopt-detectqket

It outlines QKETs into separate functions to
enable high-level optimization.

qopt-inlineqket High-level Opts qopt-preprocess,
qopt-detectqket

It is a custom inliner for QKETs that were
outlined in separate functions.

qopt-simplifyqket High-level Opts qopt-preprocess,
qopt-detectqkets,
qopt-extractqket

Optional pass that applies high-level
optimization to outlined QKET functions.
High-level optimizations are either QKET
rewrites, or LLVM scalar redundancy
elimination applied to QKET nodes.

qopt-codegen Late
Scalarization

qopt-preprocess,
qopt-detectqket,
qopt-mka

This pass scalarizes QKs. It generates multiple
versions of IA SIMD loops if ATL data-layout
specifications were provided, inlines all
METAL mkernel calls, and adds QUARC-RT
library calls for MPI parallelization.

a mem2reg is LLVM’s pruned-SSA form generation pass.

(b) QOPT Transformation Passes

Table 6.1: QOPT analysis and code generation passes

63

calls or whole array operations, i.e., DRILL, CHOOSE, REDUCE (Section 5.1.2.5). Leaf nodes are

always mddarray or scalar accesses. Section 6.2.3 formally defines the structure of a QKET

and describe the steps of building a QKET. A QKET representation stores an internal attribute to

indicate if the QKET is a reduction expression.

• QUARC Kernel Expression Forest (QKEF)

A QKEF is a disjoint union of multiple QKETs. QKEFs are produced by high-level optimization

of the HIR that fuses individual QKETs. Section 6.2.4 defines the rules guiding construction of a

QKEF.

• QUARC Kernel Static Control Part (QKSCoP)

QOPT uses polyhedral code-generation to scalarize METAL array expressions. It uses a polyhedral

representation called QKSCoP for that purpose. A QKSCoP is constructed for every QKET or

QKEF. The QKSCoP form is based on the static-control-parts (SCoP) format used by the Integer

Set Library (ISL) (Verdoolaege, 2010). A SCoP is a control flow graph (CFG) region that has

statically known branching and memory accesses. That is, a SCoP is generally a CFG region

with only for-loops and if-conditions. Although, certain relaxation of this condition is possible

(Benabderrahmane et al., 2010). We refer readers to (Grosser, 2011) for further details LLVM’s

SCoP representation.

QKSCoP is different in its construction than the standard SCoP format. As a QKSCoP corresponds

to a QKET or QKEF, it does not directly meet the definition of a SCoP. Instead, a QKSCoP can

be conceptually understood as an “abstract” CFG region that corresponds to the loop-nest and

conditional branches abstracted by a METAL array expression.

QOPT’s present implementation does not include non-QKET control flow structures inside a

QKSCoP. This limits some optimizations opportunities. This work is proposed as a future extension

to QOPT.

• Integer Set Library Abstract Syntax Tree (ISL-AST)

ISL is part of LLVM’s polyhedral code generator and optimization module Polly. ISL analyzes

code in the SCoP format, and produces an abstract syntax-tree (AST) representation of each SCoP.

64

Procedure codegen(Module M)
Input: LLVM -O0 IR Module M
Output: Fully code generated Module M′

Parameter :boolean HLO, layout-choices
1 if M has no METAL DSL intrinsics calls;
2 then
3 exit;
4 end
// preprocess and convert METAL annotations to LLVM metadata

5 M′← preprocess(M);
6 if HLO then

// outline expression trees into separate functions

7 M′← extractQkets(M′);
// apply LLVM’s scalar redundancy elimination passes to M’

8 M′← qoptHloOpts(M′);
9 end

10 foreach function F in M′ that is a QK do
// Lower QKs into loops, add MPI calls.

// If layout choices are provided, then generate a SIMD code version

// for every QK for each layout choice

11 lateScalarizarion (F, layout-choices);
12 end
13 return M′;

Figure 6.2: Codegen shows at a high-level QOPT’s code generation process

This AST format is called as the ISL-AST IR. QOPT uses ISL to convert QKSCoP to ISL-AST.

The ISL-AST is then lowered to standard LLVM.

Code-Generation. Figure 6.2 presents codegen, QOPT’s overall code-generation procedure. Each

sub-procedure called from codegen is discussed in detail over the next subsections. The codegen procedure

acts on an LLVM module or translation unit. Codegen is parameterized by two optional arguments:

HLO and layout-choices. HLO triggers high-level optimizations such as redundancy elimination and

QKET transformations. The layout choices are ATL simd-rtfs specifications that define data-layout

choices. QOPT does SIMD vectorization only when layout choices are specified. Codegen involves

two main steps. The first high-level code-generation step does initial preprocessing of the -O0 IR and

optional high-level optimizations. The next step, called late scalarization, does all loop and array access

generation. After late scalarization the generated IR is handed off to LLVM’s standard optimization

pathway for further optimization and machine code-generation.

65

1 using qcomplex = quarc::metal::sdlarray<2,float>;
2 using su3 = quarc::metal::sdlarray<3,qcomplex>;
3 using GS2D = quarc::metal::global_shape<2>;
4 using SU32DArr = quarc::metal::mddarray<su3, GS2D>;
5 /// Mkernel adding two su3 sdlarrays. The addition loop has been fully unrolled.
6 auto su3add(su3 s1, su3 s2) {
7 su3 ret;
8 ret[0][0] = s1[0][0] + s2[0][0];
9 ret[0][1] = s1[0][1] + s2[0][1];

10 ret[0][0] = s1[0][0] + s2[0][0];
11 ret[0][1] = s1[0][1] + s2[0][1];
12 ret[0][0] = s1[0][0] + s2[0][0];
13 ret[0][1] = s1[0][1] + s2[0][1];
14 return ret;
15 }
16 /// Builds a binary expression encapsulating su3add. binary_expr_builder is a
17 /// METAL DSL intrinsic that indicates a binary array expression.
18 template < typename Tp1, typename Tp2 >
19 const auto& operator+ (const Tp1 & ref1, const Tp2 & ref2) {
20 return
21 quarc::metal::expression_factory::binary_expr_builder<
22 Tp1, Tp2, typename Tp2::value_type, su3add
23 >(ref1, ref2);
24 }
25 /// A 2D stencil array expression
26 void twoDStencilQK (const SU32DArr &a1, SU32DArr &a2) {
27 a2 = a1.GSHIFT<1,0>() + a1.GSHIFT<-1,0>()
28 + a1.GSHIFT<0,1>() + a1.GSHIFT<0,-1>();
29 }

Listing 6.1: A two-dimensional five-point stencil using SU3 vector types

6.1.2 Running Example

Listing 6.1 presents a two-dimensional stencil written in METAL. This is a running example used

to elaborate the steps of codegen. The stencil uses a relatively simple mkernel function. The su3add

mkernel adds two su3 data type, and returns the result. The su3 data type denotes a mathematical vector

object belonging to the special unitary group of degree three SU(3). SU(3) algebra is the basic algebra

used in LQCD. Using su3 data types also illustrate code-generation involving nested arrays. All IR

Listings in this Section use an abridged form of the standard LLVM IR. For space and readability reasons

the examples omit most type signatures, replace mangled C++ function names by readable pseudonyms

that are analogous to the C++ names, and do not include LLVM specific attributes and annotations that

are present in the full LLVM IR. In all Listings, both METAL and IR, QUARC-specific identifiers are

emphasized using boldface font.

66

1 ; -O0 IR for the operator+ function
2 define internal %"struct.binary_expr"* @operator_add(%ref1, %ref2) {
3 entry:
4 %ref1.addr = alloca %"struct.binary_expr"*
5 %ref2.addr = alloca %"struct.gshift_expr"*
6 store %"struct.binary_expr"* %ref1, %"struct.binary_expr"** %ref1.addr
7 store %"struct.gshift_expr"* %ref2, %"struct.gshift_expr"** %ref2.addr
8 %0 = load %"struct.binary_expr"*, %"struct.binary_expr"** %ref1.addr
9 %1 = load %"struct.gshift_expr"*, %"struct.gshift_expr"** %ref2.addr

10 %call = call %"struct.binary_expr"* @binary_expr_builder(%0, %1)
11 ret %"struct.binary_expr"* %call
12 }
13 ; -O0 IR for one of the GSHIFT operator calls
14 define internal %"struct.gshift_expr"* @GSHIFT(%"struct.mddarray"* %a) {
15 entry:
16 %a.addr = alloca %"struct.mddarray"*, align 8
17 store %"struct.mddarray"* %a, %"struct.mddarray"** %a.addr, align 8
18 %a1 = load %"struct.mddarray"*, %"struct.mddarray"** %a.addr, align 8
19 %call = call %"struct.gshift_expr"* @gshift_expr_builder(%a1)
20 ret %"struct.gshift_expr"* %call
21 }
22 ; -O0 IR for twoDStencilQK
23 define internal void @twoDStencilQK(%a1, %a2) {
24 entry:
25 %a1.addr = alloca %"struct.mddarray"*
26 %a2.addr = alloca %"struct.mddarray"*
27 store %"struct.mddarray"* %a1, %"struct.mddarray"** %a1.addr
28 store %"struct.mddarray"* %a2, %"struct.mddarray"** %a2.addr
29 %0 = load %"struct.mddarray"*, %"struct.mddarray"** %a1.addr
30 %call = call %"struct.gshift_expr"* @GSHIFT(%0)
31 %1 = load %"struct.mddarray"*, %"struct.mddarray"** %a1.addr
32 %call1 = call %"struct.gshift_expr"* @GSHIFT(%1)
33 %call2 = call %"struct.binary_expr"* @operator_add(%call, %call1)
34 %2 = load %"struct.mddarray"*, %"struct.mddarray"** %a1.addr
35 %call3 = call %"struct.gshift_expr"* @GSHIFT(%2)
36 %call4 = call %"struct.binary_expr"* @operator_add(%call2, %call3)
37 %3 = load %"struct.mddarray"*, %"struct.mddarray"** %a1.addr
38 %call5 = call %"struct.gshift_expr"* @GSHIFT(%3)
39 %call6 = call %"struct.binary_expr"* @operator_add (%call4, %call5)
40 %4 = load %"struct.mddarray"*, %"struct.mddarray"** %a2.addr
41 %call7 = call %"struct.mddarray"* @sdlarray_copy(%4, call6)
42 ret void
43 }

Listing 6.2: -O0 IR generated by Clang from the METAL source.

6.2 QOPT High-level Code-generation

6.2.1 Clang -O0 compilation

Listing 6.2 shows the -O0 IR for the twoDStencilQK, GSHIFT, and operator+ functions.

The -O0 IR is very close to the high-level METAL source. It retains all high-level METAL ACT calls

and DSL intrinsic calls. Section 5.2 introduced ACTs as a metaprogramming technique to encode

67

METAL’s array expression trees into LLVM IR. This example uses three ACTs, GSHIFT, operator+,

and operator=. The four GSHIFT ACT calls of the original program (Listing 6.1) are compiled

to the four function calls on lines 30, 32, 35, and 38 of the -O0 IR. A GSHIFT ACT inserts a gshift

expression node into the METAL expression tree. A gshift-expression node is detected using the

gshift expr builder DSL intrinsic function call. Line 14 of Listing 6.2 shows the generated code

for one of the GSHIFT ACTs, and line 19 is the DSL intrinsic function call.

The overloaded operator+ functions in Listing 6.1 build binary expression nodes. These get

compiled into the operator add calls on lines 33, 36 and 39. These also follow the same design

pattern. Line 2 shows the generated code for one of the operator+ (operator add) functions. This

ACT emits the binary expr builder DSL intrinsic call shown on line 10.

The operator= ACT generates an assignment expression node. In this case, the assignment

expression calls the copy constructor defined inside METAL’s sdlarray class. This ACT function is

annotated inside METAL’s code with Clang’s attribute ((always inline)) attribute. This

caused it to get fully inlined even during -O0 compilation. Therefore, the METAL DSL intrinsic function

sdlarray copy is directly called on line 41 of Listing 6.2.

Listing 6.2 does not show all the function calls that are part of a complete METAL expression tree.

Each expression node has a child evaluation node. An evaluation node is encoded by an eval_expr

DSL intrinsic call. An evaluation node, depending on the type of expression, may be the parent of other

evaluation nodes, mkernel wrapper nodes, array accesses, or array assignments. Each child node is

encoded with a different DSL intrinsic call (Section 5.2.1).

6.2.2 Preprocessing

The -O0 IR retains the complete METAL expression tree as outlined ACT and DSL intrinsic function

calls. The first step of QOPT’s high-level code generation, preprocess, prunes the expression tree

by domain-specific inlining several of these functions. It also converts METAL’s C++ annotations into

LLVM metadata nodes. Figure 6.3 presents the steps of the preprocess procedure.

The IR generated by preprocess is called HIR. This HIR does not have any outlined ACT calls,

but some DSL intrinsic calls are still retained. Listing 6.3 shows the preprocessed HIR for Listing 6.1’s

twoDStencilQK function. The example shows the inlined quarc_access_fn DSL intrinsic calls

that were encapsulated by GSHIFT ACT calls in METAL. The parameters of these calls give the shift

68

Procedure preprocess(Module M)
Input: METAL Module M
Output: HIR Module M′

1 M′←M;
2 foreach function F in M′ that has a METAL annotation do
3 convert METAL annotations to LLVM string metadata;
4 add the string metadata to F as an LLVM IR metadata node (MDNode);
5 end
// Identify and annotate mkernels

6 foreach function F in M′ that is an apply op DSL intrinsic;
7 do
8 add ALWAYS INLINE attribute to F;
9 assert that F only has a single function call instruction;

10 add an MDNode to the called function identifying it as an mkernel;
11 end

// Domain-specific inlining of METAL ACT calls

12 foreach function F in M′ that has an EVAL EXPR metadata;
13 do
14 CalledFunctions← get list of all functions called by F;
15 foreach CF in CalledFunctions do
16 if CF is not access fn, drill_op, if even_choose then
17 CF← add always inline attribute to CF;
18 end
19 end
20 end
21 return M′;

Figure 6.3: Preprocess converts C++ annotations into LLVM metadata nodes, and does domain-specific
inlining of METAL expression trees to simplify future analysis steps.

offsets that were originally passed to GSHIFT. The su3add mkernel calls, previously encapsulated by

binary expression nodes, are also now inlined.

Preprocess first identifies all METAL evaluation nodes. Evaluation nodes are ACT function calls that

denote the evaluation of a METAL expression. They are encoded by an eval expr DSL intrinsic call.

Preprocess recursively inlines all functions called from inside an evaluation node. The only exclusions

are the DSL intrinsic calls encoding mddarray accesses, DRILL, and IF EVEN CHOOSE expressions.

Domain-specific inlining of METAL’s outlined expression trees is done for two main reasons. This

makes subsequent analysis and code generation simpler. All such steps only require local data flow

analysis rather than interprocedural analysis. Inlining also opens the possibility of applying high-

69

1 ; preprocessed HIR for twoDStencilQK
2 define void @twoDStencilQK(%a1, %a2) {
3 entry:
4 %sret18 = alloca %"struct.sdlarray"
5 %sret17 = alloca %"struct.sdlarray"
6 %sret1 = alloca %"struct.sdlarray"
7 %0 = call %"struct.sdlarray"* @access_fn(%a1, 1, 0)
8 %1 = call %"struct.sdlarray"* @access_fn(%a1, -1, 0)
9 call void @su3add(%sret1, %0, %1)

10 %2 = call %"struct.sdlarray"* @access_fn(%a1, 0, 1)
11 call void @su3add(%sret17, %sret1, %2)
12 %3 = call %"struct.sdlarray"* @access_fn(%a1, 0, -1)
13 call void @su3add(%sret18, %sret17, %3)
14 %4 = call %"struct.sdlarray"* @access_fn(%a2, 0, 0)
15 %5 = call %"struct.sdlarray"* @sdlarray_copy(%4, %sret18)
16 ret void
17 }

Listing 6.3: HIR generated by preprocessing the -O0 IR

level optimizations on the expression tree nodes. Such optimizations involve either scalar redundancy

elimination, or domain-specific transformation of the expression tree.

Preprocess does not directly inline functions. Instead, it adds LLVM’s ALWAYS INLINE function

attribute to all functions that are to be inlined. After that QOPT runs LLVM’s always-inline function

inlining pass.

Along with inlining, preprocess also converts METAL’s C++ annotations into LLVM IR’s CFG

nodes. LLVM provides special CFG nodes called MDNode for this purpose. METAL’s C++ annotations

are lowered into the -O0 IR as a global string variable. This global variable has key-value entries for the

C++ annotation string and the function name on which the annotation was applied. Preprocess parses

this global string variable to extract the entries. It then converts them into corresponding LLVM metadata

nodes that are attached to the LLVM function definitions. Converting from C++ annotations to LLVM

metadata eases further code generation. It also removes a level of indirection introduced by wrapper

DSL intrinsic calls (Section 5.2.1). The wrapper DSL intrinsic call, apply op, encapsulates mkernels

that are user-defined and cannot be directly annotated by METAL. Preprocess identifies the apply op

calls, inlines them, and directly adds MDNodes to the mkernel functions. Doing this ensures QOPT can

identify user provided mkernel functions that are defined outside of METAL.

70

6.2.3 QKET Construction

All optimization and code generation stages use the QKET binary expression tree MIR. QOPT uses

a procedure called qketgen to generate a QKET from LLVM IR. Prior to describing the steps in qketgen,

we formalize the definition of a QUARC Kernel (QK) and a Reduce QUARC Kernel (RQK).

Definition 6.1. QUARC Kernel (QK)

A QK is a whole array assignment statement whose LHS is an mddarray access expression with

no shifts. The RHS sub-expression can be any METAL array expression, but not a reduction expression.

All mddarray values in a QK should have the same global shape and data placement.

Definition 6.2. Reduction QUARC Kernel (RQK)

An RQK is a METAL assignment statement where the LHS is a scalar or sdlarray variable, and

the RHS sub-expression is a reduction expression.

Qketgen is implemented inside QOPT’s qopt-detectqket analysis pass. This pass is a basic

block level pass, i.e., its scope is restricted to a single basic block inside a function. A basic block is a

maximal length sequence of branch-free instructions within a function. Qketgen uses recursive def-use

graph analysis to build the QKET. A def-use graph is a graph that contains an edge from each definition

point in a program to every possible use of the variable at runtime (Kennedy and Allen, 2002).

Qketgen builds this QKET in a bottom-up fashion. It starts by identifying the leaf nodes, i.e.,

mddarray or scalar access nodes inside a basic block. The LLVM instructions denoting leaf nodes

would have the access fn LLVM MDNode metadata. After identifying a leaf node, it uses the def-use

graph to identify the next instruction that uses the leaf node. Typically, this would be either an mkernel,

DRILL, IF EVEN CHOOSE, or an assignment node. Qketgen repeats the def-use analysis after reaching

the user of leaf nodes. The recursion terminates on finding the root node of the QKET that is always an

assignment operation. For QKs that only have mddarrays with scalar elements, the root is an LLVM

store instruction. If the mddarrays used nested sdlarray members the root node of the QK is an

sdlarray copy constructor call. This structure is guaranteed by METAL. Qketgen exits once both

sub-trees of the root node are constructed.

71

6.2.4 High-level Optimizations

High-level optimization of QKs tries to eliminate redundancy, and potentially fuse QKs. The goal

is to potentially fuse array expressions that access the same memory location. There are two strategies

for high-level optimization of QKs. LLVM scalar redundancy elimination using value numbering can

identify fusion opportunities for simpler cases. Polyhedral dependence analysis can help identify fusion

cases for more complicated cases. QOPT’s prototype implementation only implements the first strategy.

We propose a design for extending QOPT for the polyhedral strategy.

The qketfusion procedure implements a local optimization, i.e., the scope is limited to a basic block.

The procedure starts by identifying QKs that can be potentially fused. The decisions rests on the following

two constraints:

Constraint 6.1. Currently, only QKs that are adjacent and access at least one common mddarray

reference are candidates for fusion.

Constraint 6.2. An LHS array reference for any QK in the set of adjacent QKs can only be accessed in

any of the RHS iff that arguments to the RHS access fn call are all zeroes.

Qketfusion only looks to fuse QKs, and RQKs are not considered. Two QKs are considered adjacent

if the end instruction of the first QK’s QKET is immediately followed by the start instruction of the

second QK’s QKET. QOPT ignores any debug or LLVM intrinsic instructions when identifying adjacent

QKs. QOPT uses only value tracking to check if two adjacent QK share at least one array reference. Thus,

any kind of pointer-based indirection prevents fusion. If two adjacent QKs meet Constraint (6.1), then

they are evaluated against Constraint (6.2). This constraint ensures that QK fusion does not introduce a

loop carried dependence. This is a very broad check that may preclude legitimate fusion. Such fusion

cases cannot be handled with data dependence-based analysis. The future extension proposal to enhance

QOPT using polyhedral data dependence analysis addresses this issue.

Once a candidate set of QKs is identified, qketfusion outlines the set of QKETs into a separate

function. Outlining is done to restrict the scope of scalar redundancy elimination to only the candidate

set of QKETs inside one basic block. The outlined function is optimized using LLVM’s global value

numbering (GVN) redundancy elimination pass. After running GVN, qketfusion invokes a slightly

modified version of the QKET generation procedure. The procedure called qkefgen works the same way,

72

1 b = DRILL<0>(g) * a.GSHIFT<1>() + DRILL<1>(g)*a.GSHIFT<-1>();
2 d = DRILL<0>(g) * c.GSHIFT<1>() + DRILL<1>(g)*c.GSHIFT<-1>();

(a) Shared DRILL expressions across two QK.

1 a = b.GSHIFT< 1 , 0>();
2 a += b.GSHIFT<-1 , 0>();
3 a += b.GSHIFT< 0 , 1>();
4 a += b.GSHIFT< 0 ,-1>();

(b) Multiple add-assignment expressions to write a five-point stencil.

Figure 6.4: METAL array expressions fusible using qketfusion

1 using GS2D = quarc::metl::global_shape<2>;
2 using floatArr2D = quarc::metl::mddarray<float, GS2D>;
3
4 void unNormalizedBoxFilter (const floatArr2D &a1, floatArr2D &a2) {
5 auto a3 = a1.GSHIFT<-1,0>() + a1 + a1.GSHIFT<1,0>();
6 a2 = a3.GSHIFT<0,-1>() + a3 + a3.GSHIFT<0,1>();
7 }

Listing 6.4: An unnormalized box filter kernel from 2D image processing. These two QKs cannot be
fused using GVN-based redundancy elimination.

but instead of constructing a single QKET generates multiple QKETs each represented inside a QKEF.

Note that in a QKEF there are multiple QKETs, and one or more of these QKETs share common nodes.

Listing 6.4a and Listing 6.4b are two examples where qketfusion can use GVN to fuse the QKs. In

both cases, GVN would identify the redundant values across multiple QKs, and replace those values with

a single value. Listing 6.4a is an excerpt from a multiple RHS linear solver kernel. GVN identifies the two

DRILL<0>(g) and the two DRILL<1>(g) accesses that are common across both QKs. Listing 6.4b

is equivalent to the five-point stencil kernel from our running example shown in Listing 6.1. Instead of

writing the whole stencil as a single statement, multiple add-assignment operators are used to break it out

into multiple statements.

§Implementation Note. As currently implemented, qketfusion cannot identify some potential fusion

candidates. Listing 6.4 shows such an example. For this example, qketfusion identifies the two QKs as

potential fusion candidates. However, the QKs do not share any exact array reference, and GVN is unable

to locate any redundancy. Qkefgen fails to build a QKEF for the same reason, and the two QKETs are

deemed non-fusible. The QKs are in fact fusible using a technique known as array storage optimization.

73

The optimization uses dependence analysis to identify that the array a3 can in fact be replaced by a

temporary. Doing so then enables fusing these two QKs. This is an important optimization that is

especially useful in image processing pipelines. The Halide image processing DSL implements this type

of fusion optimization. The application of the optimization is dependent on external explicit specification

of the fusion, and Halide does not provide an analysis framework for auto-discovery. Bhaskaracharya

et al. (Bhaskaracharya et al., 2016) do provide an automated polyhedral method to discover and apply

this type of fusion.

Apart from this array storage management example, most other QK fusion cases fall under classical

loop fusion. Modern polyhedral data dependence analysis, such as the one provided by ISL, allow

identifying such cases. QOPT already integrates ISL in its compiler infrastructure. The current usage is

restricted only to code generation out of QKSCoPs and MPI communication generation. To benefit from

ISL’s data dependence analysis, we would have to expand QKSCoPs to encompass multiple QKs. Doing

that would allow an inter QK dependence analysis, and leading to discovery of additional fusion and

parallelization opportunities.

6.3 Speculative SIMD Vectorization

This section presents QOPT’s speculative SIMD code generation method. Here we only discuss

the rationale for using a speculative strategy, and how the interface is designed. The actual SIMD

vectorization is described under the late scalarization process in Section 6.4.

Large number of potential data-layout candidates

QOPT’s SIMD vectorizer is designed to generate SIMD code for a particular memory data-layout that

was specified using a ρφ transformation. Section 5.3.1 described the process for specifying data-layouts

for an mddarray. The number of possible data-layouts depends on the shape of the mddarray, and

the architectural SIMD register width. For higher dimensional arrays, this can be a large number. It

is equivalent to finding all multiplicative partitions for the vector register width, and then identifying

all the permutations to factorize the mddarray dimensions to build each multiplicative partition. The

following example illustrates this for a four-dimensional mddarray and an architecture with SIMD

register width of eight.

74

Example 6.1.

1. There are three multiplicative partitions for the number eight. These are {8}, {2,4}, {2,2,2}. These

partitions represent possible data-layouts that can be constructed using ρφ transformations.

2. Each of the multiplicative partition can be constructed by factorizing one, two, or three array

dimensions. Note that for constructing data-layouts the factors {2,4} is not the same as {4,2}.

Each represents a different way of transforming the array dimension. Therefore, when calculating

the number of possible data-layout choices, the total number of possible permutations of the factors

is required, as opposed to calculating the possible combinations.

The sum of all the permutations is 4P1 +
4P2 +

4P3
3! , i.e., 20.

We refer readers to (Odlyzko, 1995) to understand the details for these calculations.

The example shows that the number of data-layouts is already large for a four-dimensional case on

an architecture with vector register length of eight. It grows for higher dimensional arrays, and longer

architectural vector register lengths. Thus, it is not feasible to exhaustively generate code versions for

all possible data-layouts derived using ρφ transformations. This is the reason for using a speculative

strategy, and generating code for a limited set of choices.

Steps in speculative SIMD vectorization

The data-layout choices for the SIMD code versions to be generated is done outside of QOPT.

Chapter 8 describes the policy used for that purpose. The data-layout choices are provided as ATL

specifications to QOPT, and the number of choices decide the number of code versions. For every QK, a

code version corresponding to a particular data-layout is generated. A default non-SIMD code version is

always generated. Depending on what data-layout is defined for the mddarray at runtime, one of the

SIMD code versions, or the non-SIMD code version executes.

QOPT can add optional validations to ensure that a SIMD code version complies to the actual array

shape specified at runtime. A data-layout is legal if none of the shifts on a reshaped dimension exceeds

the size of that dimension. This check is to ensure no stream alignment conflicts occur, and no divisions

or modulo operations are required to compute the shifted array access for a transformed array. The notion

75

of stream alignment conflicts is formally defined in Chapter 7. Section 6.4.4 describes why this constraint

is required to avoid division and modulo operation in shifted array access calculations.

§Implementation Note. The currently implemented QOPT interface for specifying data-layout

candidates is relatively simple. It allows specifying multiple layouts in the ATL format (Section 5.3) for

mddarrays of a given rank. So, there is no provision to specify different data-layouts for two different

mddarrays that have the same rank. A standalone policy engine also means that programmers should

separately train the policy engine for it to generate data-layout candidates for their QKs. However, the

advantage is in updating the policy without having to make changes to the compiler infrastructure.

The emphasis of the current implementation was to serve as a proof-of-concept of the speculative

vectorization technique. It is possible that the system can be further automated and made more general.

The policy engine can be moved into QOPT, and data-layout candidate generation made autonomous of

programmer intervention. We propose such work for future investigation and implementation.

6.4 QOPT Late Scalarization

The last stage in QOPT’s code-generation pipeline is called late scalarization. METAL array

expressions get lowered into loops and array accesses at this stage. The term late scalarization was chosen

to draw a contrast with other C++ template-based array programming techniques such as expression

templates that perform scalarization in the template expansion stage. QUARC’s late scalarization design

overcomes inherent limitations in scalarizing early during template expansion. Scalarizing early leads

to both loop and array access linearization in the C++ front-end. It may also lead to generation of calls

to OpenMP, MPI, CUDA runtime libraries to support parallel execution. This makes it difficult for a

compiler to retain enough context to infer the programmer’s intent. Subsequent analysis and optimization,

such as standard loop optimization techniques, becomes hard. Even simple high-level optimizations such

as those discussed in Section 6.2.4 usually are impossible to apply on scalarized array expressions due to

complicated loop structures and nested library calls.

6.4.1 Preventing Invalid Scalarization

QUARC’s scalarization semantics are similar to other array languages such as FORTRAN 90 and

High Performance FORTRAN. The RHS array expressions are fully evaluated without side-effects,

76

and only then are the results stored into the LHS. Implementing this “load-before-store” semantics

requires correctness guarantees. To understand the reason, let us slightly modify the QK in our running

example. Listing 6.5a shows the modified QK with the a1 array used on both LHS and RHS. Listing 6.5b

shows a scalarized version of this modified QK. Unfortunately, the scalarized version of the QK is not

parallelizable and if executed in parallel would lead to incorrect results. The reason is that every i-th

and j-th iteration of the scalarized loop nest depends on the results obtained in a previous iteration.

This is known as loop-carried dependence (Kennedy and Allen, 2002). Given QUARC’s data parallel

programming model this type of scalarization is considered invalid. Invalid scalarization is a potential

problem for any high-level array language. Some FORTRAN 90 compilers handled the situation by doing

two-step scalarization of array assignment statements. The first step involved a “naive” scalarization

of array assignment statements. The loops generated in the first step would approximate the loop nest

shown in Listing 6.5b. A subsequent step would apply standard loop transformations to try and remove

loop-carried dependence, and make the loops parallel. Such transformations require data dependence

analysis to ensure validity. Several loop transformations can be performed after data dependence-based

analysis to introduce parallelism, e.g. loop reversal, loop interchange, loop skewing, loop tiling, and

generating array temporaries. (Kennedy and Allen, 2002) provides a detailed introduction to the methods.

QUARC, given its limited scope, enforces a set of hard constraints to avoid invalid scalarization. Un-

like, FORTRAN 90 or similar languages where writing the kind of array statement shown in Listing 6.5a

is legal, in QUARC this is an invalid statement whose output is undetermined. QUARC allows accesses

on the same mddarray on both RHS and LHS of a QK if and only if all RHS accesses are free of shifts.

This is part of the definition of a QK, and checked during QKET construction. However, compile-time

checking using value-based analysis cannot guard against all cases. Pointer-based indirection can only

be detected at runtime. QOPT can optionally generate additional runtime checks for such cases. The

runtime checking is kept optional to allow programmer’s and EDSL designer’s control over when such a

check is required. Without the runtime check, QUARC defers to the programmer to do the correct thing,

and provides no implicit correctness guarantee. Note that this restriction cannot be violated by QK fusion

optimization. Constraint (6.2) enforced by qketfusion ensures that QK fusion does not inadvertently

introduce any loop-carried dependence.

These restrictions limit the type of programs that can be presently written using QUARC. Relaxing

these restrictions is planned as a future extension. There are multiple options to add data dependence-

77

1 a1 = a1.GSHIFT< 1, 0>() + a1.GSHIFT<-1, 0>()
2 + a1.GSHIFT< 0, 1>() + a1.GSHIFT< 0,-1>();

(a) Same array used on both LHS and RHS

1 // X, Y are the extents for each array dimension.
2 for(auto i = 1ul; i < X-1; ++i)
3 for(auto j = 1ul; j < Y-1; ++j)
4 a1[i][j] = a1[i+1][j] + a1[i-1][j] + a1[i][j+1] + a1[i][j-1];

(b) Incorrectly scalarized loop-nest

Figure 6.5: An example showing invalid scalarization of a METAL array assignment expression.

based analysis to QOPT. QOPT already uses ISL for polyhedral code-generation, and can potentially

leverage ISL’s polyhedral dependence analysis infrastructure. Even without using ISL’s dependence

analyzer QOPT can easily leverage other dependence analysis methods. METAL GSHIFT expressions

by construction only involve single subscripts and are always linear. Thus, QOPT can potentially use

simpler single-subscript dependence tests for QKs.

6.4.2 Loop Generation

QOPT uses polyhedral code-generation (Ancourt and Irigoin, 1991) to lower QKs in the QKET/QKEF

form into loop nests and array accesses. Polyhedral code-generation uses integer sets to represent loop

nests, and each integer set is mapped to a multi-dimensional time instance. This mapping, known as a

schedule, determines the relative execution order of the loop iterations.

The first step in QOPT’s loop generation is to build an index set representation for the block-local

index space of an mddarray. METAL requires all mddarrays in a QK to have the same data

placement, so a single integer set can be used per QK. The block-local index space represents the set

of mddarray elements inside a block. Section 5.3 described the notion of hypercubic blocking of

an mddarray using ATL data placement specifications. The integer set that is constructed for the

block-local index space represents a set of loops that would iterate over each mddarray element in that

block. Since, the size of a block is defined at runtime the upper bounds of the block-local index space

is kept parameterized at compile-time. The parameters get resolved at runtime once the ATL specified

partitioning is known. The block-local index set is constructed as part of the QKSCoP mid-level IR.

On the block-local index set, QOPT applies index set partitioning to represent split loops. This is done

78

for QKs that have GSHIFT expressions. Split loops allow overlapping local computation with the MPI

communication needed to gather remote data. After this step, once the final polyhedral representation

inside a QKSCoP is built, it is converted into an Abstract Syntax Tree (AST) using the ISL polyhedral

library. The ISL-AST is lowered into LLVM loops. QOPT embeds QUARC-RT library function calls at

this stage to induce MPI communication and MPI synchronization. The final step in late scalarization is

generation of the loop bodies. This step involves converting individual METAL expression tree nodes

into LLVM code; various optimizations such as if-conversion (Allen et al., 1983), scalar-expansion, and

SIMD vectorization are introduced at this point. The following sections describe in detail all of the steps

in the late scalarization.

§Implementation Note. The steps described in this section present the loop generation over a single

block of an mddarray. Conceptually, a QUARC supports overpartitioned data distributions where a

single process can own multiple blocks. In such cases, an outermost “block-loop” is required to iterate

over all the local blocks. This is currently unimplemented, and block-loops are not part of the QKSCoP

IR. QUARC and QUARC-RT prototypes only support a bijective mapping of mddarray blocks to

processes, i.e., each process owns only one block. Adding support for overpartitioned data distributions

is part of a planned future extension of QUARC.

QKSCoP construction

QKSCoP construction is the first step in generating loops for a QK. A QKET represents an abstract

perfectly nested set of loops, but the corresponding QKSCoP can represent multiple loops nests. These

loop nests are not necessarily perfectly nested. There is no difference in the QKSCoP construction

process between SIMD vectorized, and scalar loop generation scenarios. The only difference lies in

generating the loop bodies. That process is explained in Section 6.4.4 when describing array access

generation. Prior to going into the details of QKSCoP construction, the following definitions formalize

the core concepts. The definitions use operators and notations introduced in Chapter 4.

Definition 6.3. Block index vector (bi)

Given an n-dimensional mddarray, the block index vector bi of a particular element in a block

of the mddarray is a vector of integers that gives the element’s lexicographic position within that

block. The rank of the block index vector is always the same as the rank of the blocked shape (bs) of the

79

mddarray. Thus, a block index vector is given by

bi
∆
= [bi0, bi1, . . . , bin−1]

where bik, 0 ≤ k < n, is the index for each dimension of bs, and ∀k, 0 ≤ bik < ι(k, bs), i.e. the index

component for any dimension is less than the extent of the that dimension. 4

An index vector always points to a lexicographic position, irrespective of the actual data-layout of the

mddarray. For cases where the index space is for an mddarray with a ρφ transformed data-layout,

each index vector points to a SIMD vector. All other cases the index points to a single mddarray

element. The set of all bi for an mddarray is its block-local index space.

Definition 6.4. QKSCoP

A QKSCoP is a five-tuple (domain, parameters, inner region statement, [boundary domains],

[boundary region statements]). The integer set covering all loop iterations for a QKSCoP is known as its

domain. The set of symbolic integer values that represent the upper bounds of the domain are known as

the set of parameters. A statement is a set of loop iterations. Every QKSCoP has at least one statement

known as the inner region statement. This statement includes all loop iterations that require only local

data available inside an mddarray block. If a QK has GSHIFT expressions, then the QKSCoP has set

of subsets of the domain known as boundary domains. These identify the index vectors where computing

the output requires handling boundary conditions, and may require non-local data. Corresponding to the

boundary domains, a QKSCoP may have a set of boundary region statements. Each boundary statement

is a set of loop iterations over one or more boundary domains. Boundary domains and statements are

optional attributes of a QKSCoP. 4

Definition 6.5. Statement

A statement is a three-tuple (parent, domain, schedule). Parent refers to the QKSCoP to which the

statement belongs. The domain of a statement is the integer set that identifies the set of loop iterations

executed by the statement. The schedule of a statement is a mapping of its loop iterations to a multi-

dimensional point in time. The schedule determines the relative ordering of various statements included

in a QKSCoP. 4

80

Procedure qkscopGenaration
Input: QK qk
Output: QKSCoP S

1 define an unbounded integer set I;
// generate a set symbolic parameters

2 foreach dimension n of bs do
3 create a symbolic parameter Dn;
4 end
// add constraints to define the full index space for qk

5 foreach dimension n of bs do
6 add a constraint to I setting the lower bound as 0 ≤ for this dimension;
7 add a constraint to I setting the upper bound as < Dn for this dimension;
8 end
// generate subsets of I to represent disjoint boundary points for

// every RHS GSHIFT expression.

9 foreach RHS GSHIFT expression do
10 sv ← access fn function arguments;
11 S.BregSets← genBoundaryDomains (I , sv);
12 end

// add statement for local loop iterations of the QKSCoP

13 S.IregStmt← construct statement to loop over the entire index set I;
// add statements for boundary loop iterations

14 if there are any RHS GSHIFT expression then
15 msv ← store maximal shift in each direction for every dimension;
16 S.BregStmts← addBoudaryRegionStatement (I , msv);
17 end
18 return S;

Figure 6.6: Steps involved in generating a QKSCoP representation for a QK.

Figure 6.6 presents QOPT’s QKSCoP construction procedure. The following paragraphs describe

each individual step.

Defining the domain. The domain for every QKSCoP is initially constructed as an unbounded

integer set. It is then constrained by a default set of constraints that define its lower and upper bounds.

The upper bounds use symbolic parameters, and the lower bound is always zero. For the five point stencil

in our running example, the domain for the QKSCoP is given by

[D0, D1]→ {[i0, i1] : 0 ≤ i0 < D0 and 0 ≤ i1 < D1}

where, D0, D1 are symbolic parameters, and i0, i1 represent generic index variables for the two

dimensions.

81

Procedure genBoundaryDomains
Input: Index set I
Input: Vector of shift offsets sv
Output: Vector of boundary index sets B
// Initialize the boundary index sets vector with I

1 B ← I;
2 foreach shift offset s in sv do
3 if s 6= 0 then
4 foreach index set b in B do
5 Itmp ← I;
6 if s < 0 then

// project out the upper bound for the shifted dimension

7 Itmp ← project out upper bound constraint on Itmp for the shifted dimension;
8 Itmp ← add a new upper bound constraint <−s;
9 end

10 else if s > 0 then
// project out the lower bound for the shifted dimension

11 Itmp ← project out lower bound constraint on Itmp for the shifted dimension;
12 Itmp ← add a new lower bound constraint ≥ Dn−s;
13 end

// create the boundary index set by intersecting Itmp with b

14 bnew ← Itmp ∩ b;
// subtract Itmp from b to construct subsequent disjoint boundary region

// sets for any shifts on other lower dimensions

15 b← b \ Itmp;
// add bnew to B.

16 insert bnew into B;
17 end
18 end
19 end

// remove the first set inside B, as this is the residual non-boundary region

20 B ← remove B[0];
21 return B;

Figure 6.7: Steps involved in generating boundary region index sets from a vector of shift offsets.

The domain does not include nested or sdlarray dimensions. Nested dimensions are only accessed

inside METAL’s mkernel elemental functions. Any loops over nested dimensions inside an mkernel

function is typically fully unrolled, and the mkernel function itself inlined. Section 6.4.4 provides further

details.

Boundary separation. The qkscopGeneration procedure performs an additional step when

there are RHS GSHIFT expressions in the QK. It constructs disjoint subsets of the domain to represent

boundary regions corresponding to each GSHIFT expressions. An mddarray access inside a boundary

82

shift
dimension 0

shift
dimension 1

Figure 6.8: Separating the boundary regions for a multi-dimensional GSHIFT<1,1>() expression. The
gray boxes depict the inner region points, and the white boxes are the boundary points. At the end of the
process the GSHIFT results in three disjoint boundary region integer sets.

region requires applying the boundary function defined for the mddarray. The access may be for a

non-local array element, in which case MPI data communication is required. The primary reason for the

boundary separation is to allow overlapping remote data communication with local computation.

The genBoundarySets procedure shown in Figure 6.7 implements the boundary region domain con-

struction. Boundary region domains are constructed individually for each GSHIFT. For each dimension

with a shift, genBoundarySets projects out the existing constraints on that dimension. The projection

operation is provided by the ISL library, and makes the integer space unbounded for the projected out

dimension. After projecting out existing constraints, a new set of constraints based on the shift’s integer

value is constructed. As shown in Figure 6.7, the constraint depends on the sign or direction of the shift.

A positive value is a forward shift, and a negative value is a backward shift. These new constraints are

applied to a copy of the original domain to create a subset of the original integer set. This subset is the

boundary region domain for the particular shift. The genBoundarySets procedure builds four boundary

region domains for out five-point stencil running example. These boundary regions can be visualized as

the last and first rows, and the last and first columns of a rectangular two-dimensional block. The four

boundary regions are

[D0, D1]→ {[D0−1, i1] : D0 > 0 and 0 ≤ i1 < D1};

[D0, D1]→ {[0, i1] : D0 > 0 and 0 ≤ i1 < D1};

[D0, D1]→ {[i0, D1−1] : D1 > 0 and 0 ≤ i0 < D0};

[D0, D1]→ {[i0, 0] : D1 > 0 and 0 ≤ i0 < D0};

83

where, D0, D1 are symbolic parameters, and i0, i1 represent generic index variables for the two

dimensions.

GenBoundarySets handles multi-dimensional shifts as well. Figure 6.8 depicts how genBoundarySets

handles multi-dimensional shifts. It starts with the outermost shifted dimension, and generates a boundary

region set for that shift. The boundary is subtracted from each existing index set produced till that point.

The new boundary set in then appended to the collection of boundary sets. This produces multiple disjoint

subsets for a multi-dimensional shift. In Figure 6.8 the multi-dimensional GSHIFT<1,1>() produces

three boundary region sets. Note that the boundary region collection is initialized with the complete

integer set as the initial entry. At the end of genBoundarySets the first entry represents the residual inner

region, and is purged from the collection.

Statement construction is the final step in QKSCoP construction. Qkscopgen adds an inner region

statement to iterate over the whole index space for the QK. The inner region statement’s domain is the

same as the parent QKSCoP’s domain, and it includes loop iterations over all boundary regions. Boundary

checks inlined within the innermost loop of the generated loop nest handle the boundary region accesses.

Additional boundary region statements are constructed whenever the QK has GSHIFT expressions. The

domain of each boundary region statement is calculated by integer set operations.

§Implementation Note. The statement generation design is an optimization that has to do with

QUARC’s use of the MPI-3 for shared memory parallelism. The MPI-3 standard allows MPI processes on

the same shared memory domain to access each other’s memory using direct loads and stores. Therefore,

non-local data accesses inside a boundary region may in fact be on the same shared memory domain,

and if MPI ranks are provisioned carefully the non-local data may even be within the same cache block.

Scheduling the boundary iterations separately would not yield any benefit in these scenarios.

QUARC-RT decides whether to use MPI-3 load and stores, or MPI-2 one-sided communication when

it generates the communication plan. The checks inside the inner region statement use this information.

If a boundary access can be handled by a load from a shared memory address it gets executed inside the

inner region statement. Otherwise, the computation happens in a boundary region statement.

Boundary region statements are constructed whenever the QK has GSHIFT expressions. Boundary

statements do not necessarily have a one to one correspondence to boundary region domain. To minimize

the number of boundary statements that are needed, a single boundary statement can include iterations

over multiple boundary region domains. Therefore, boundary checks are also required inside boundary

84

Procedure addBoudaryRegionStatement
Input: Index set I
Input: Vector of maximum shift offsets msv
Output: Vector of boundary statements BregStmts
// Initialize a one-dimensional ‘‘time’’ to schedule the statements

1 T ← 0;
2 foreach shift offset s in msv do
3 Itmp ← I;
4 if s < 0 then

// project out the upper bound for the shifted dimension

5 Itmp ← project out upper bound constraint on Itmp for the shifted dimension;
6 Itmp ← add a new upper bound constraint <−s;
7 end
8 else if s > 0 then

// project out the lower bound for the shifted dimension

9 Itmp ← project out lower bound constraint on Itmp for the shifted dimension;
10 Itmp ← add a new lower bound constraint ≥ Dn−s;
11 end

// create the boundary index set by intersecting Itmp with I

12 Bregdom ← Itmp ∩ I;
// subtract Itmp from I to construct subsequent disjoint boundary statements

13 I ← I \ Itmp;
14 BregStmt← new QKSCoP-Statement with Bregdom and T ;

// increment T value for the next statement

15 T ← T+1;
16 insert BregStmt into BregStmts;
17 end
18 return BregStmt;

Figure 6.9: Steps involved in generating boundary statements from the maximal shifts in each direction
for every dimension of an mddarray.

region statements. Figure 6.9 presents the genBoundaryStatements procedure that is used to the create

boundary statements for a QKSCoP. GenBoundaryStatements requires a single input vector containing

the maximum forward and backward shift for each mddarray dimension. The set operations within

GenBoundaryStatements are identical to the set operations inside genBoundarySets. However, as bound-

ary region statements are constructed for the maximal shift in a cardinal direction, the set intersection and

difference operations have to be performed only once per boundary region statement. After generating

all the boundary region statements they are scheduled with the outermost dimension boundary region

statements scheduled first, followed by inner dimension boundary region statements. Within a dimension

the forward direction boundary statement is scheduled before the backward direction boundary statement.

85

{[0, i1] : D0 ≥ 2 and 0 ≤ i1 < D1} {[D0−1, i1] : D0 > 0 and 0 ≤ i1 < D1}

{[i0, 0] : D1 ≥ 2 and 0 < i0 ≤ D0−2} {[i0, D1−1] : D1 > 0 and 0 < i0 ≤ D0−2}

a. Boundary domains

b. Inner-region statement

1

2

3 4

c. Boundary-region statements

1. {[D0−1, i1] : D0 > 0 and 0 ≤ i1 < D1}

2. {[0, i1] : D0 ≥ 2 and 0 ≤ i1 < D1}

3. {[i0, D1−1] : D1 > 0 and 0 < i0 ≤ D0−2}

4. {[i0, 0] : D1 ≥ 2 and 0 < i0 ≤ D0−2}

Figure 6.10: Boundary domains and statements for a five-point stencil. D0, D1 are the symbolic upper
bounds for each dimension. The dashed lines in (b), (c) shows the intersection with boundary domains.
The inner-region statement intersects all four boundary domains. The top and bottom boundary statements
intersect the lower dimension boundary domains.

The boundary statement domains for our the five-point stencil running example are given by

[D0, D1]→{[D0−1, i1] : D0 > 0 and 0 ≤ i1 < D1};

[D0, D1]→{[0, i1] : D0 ≥ 2 and 0 ≤ i1 < D1};

[D0, D1]→{[i0, D1−1] : D1 > 0 and 0 < i0 ≤ D0−2};

[D0, D1]→{[i0, 0] : D1 ≥ 2 and 0 < i0 ≤ D0−2};

where, D0, D1 are symbolic parameters, and i0, i1 represent generic index variables for the two

dimensions.

86

1 // Inner region statement’s headers
2 for (int i0 = 0; i0 < D0; i0 += 1)
3 for (int i1 = 0; i1 < D1; i1 += 1);
4
5 // Boundary regions’ loop headers
6 {
7 if (D0 >= 1) {
8 for (int i1 = 0; i1 < D1; i1 += 1);
9 if (D0 >= 2)

10 for (int i1 = 0; i1 < D1; i1 += 1);
11 }
12 if (D1 >= 1) {
13 for (int i0 = 1; i0 < D0 - 1; i0 += 1);
14 if (D1 >= 2)
15 for (int i0 = 1; i0 < D0 - 1; i0 += 1);
16 }
17 }

Listing 6.5: Loop headers generated for the five-point stencil running example.

Figure 6.10 shows the final boundary domains and statements generated for the five-point stencil

example. Figure 6.10.a shows the four boundary domains that each correspond to the four GSHIFT

expressions. Figure 6.10.b shows the inner-region statement. The dotted lines represent the iterations

within the statement that overlap with a boundary domain. These are handled with inline boundary check

conditions within the innermost loop body. Figure 6.10.c shows the four disjoint boundary statements.

The number inside each box shows the schedule of the boundary statement. Dotted lines are used once

more to show boundary domain intersections.

ISL-AST generation. Every QKSCoP is lowered into an ISL-AST. The AST generation translates

the domains for each statement into loop headers. This step is the final step in QOPT’s loop generation

process. Listing 6.5 shows the loop headers built for our five-point running example. Note that the loop

bodies are empty at this point. The loop bodies get populated in the array access and mkernel generation

step of late scalarization. The split loop nests in the ISL-AST format are next lowered into LLVM loops.

6.4.3 QUARC-RT library calls generation

QUARC-RT library calls abstract MPI data communication and synchronization routines. Prior

to generating the loop bodies for QK, QOPT adds the needed QUARC-RT library calls. Figure 6.11

shows the basic block-level CFG that is generated to add these calls. To make it readable, the CFG

was significantly simplified. All LLVM instructions apart from the function calls are elided. Single

87

alloca:
/*local variable allocations*/
br label %prologue

wait.for.mpi.data:
call void @quarc rt wait for remote halos(...)
br label %qopt.merge.cond74.split

inner.points.loops:
br label %wait.for.mpi.data

get.remote.data:
call void @quarc rt get remote halos(...)
br label %qopt.loop preheader

boundary.points.loops:
br label %qopt.cond

free.resources:
call void @quarc rt free remote comm infos(...)

prologue:
call void @quarc rt build halo objs(...)
br label %qk.inner.volume

Figure 6.11: Basic block CFG for a typical QK

88

superblocks are used to represent the inner region, and boundary region loop nests. The superblock

abstracts the CFG region consisting of multiple basic blocks for each loop nest.

The process of MPI communication is split into two steps. The first one builds a communication

plan. The step involves identifying neighboring MPI ranks, allocating buffers for remote data, and

calculating starting offsets into the buffers from which data would have to be read. The function all

inside the prologue basic block represents this step. The next step does actual MPI one-side data

movement. QOPT tries to overlap local computation with remote data movement. This is the reason

for creating the split loop nests for any QK that has at least one GSHIFT expression. This can also

be seen in the basic block control flow in Figure 6.11. The call inside the get.remote.data basic

block initiates an asynchronous MPI one-sided communication step. This is followed immediately by the

inner.points.loops block where the loop nest corresponding to the inner region QKSCoP state-

ment gets built. The QUARC-RT call to wait for remote data are inserted inside wait.for.mpi.data.

All boundary region loops are built inside boundary.points.loops. The global.reduction

is an optional step that is used only for reduction QKs. All final cleanups, including freeing resources,

is done inside free.resources. The following QUARC-RT library calls are part of the QOPT

code-generation processes.

A quarc rt build halo objs call uses the GSHIFT information for the QK to generate a

communication plan. This involves identifying the remote processors from which data needs to be moved,

and allocation of local buffers to store remote data. Note that this step only builds a communication plan,

and does not execute any actual communication. This split of the communication plan generation and

the actual communication is done for an important reason. If a QK is executed multiple times inside a

loop, as is likely when writing iterative solvers, a communication plan once created is reusable for each

execution of the QK. QOPT tries to detect such scenarios, and if successful hoists this call out of the loop

enclosing the QK.

A quarc rt lock local win call uses MPI-3 passive target synchronization (Gropp et al.,

2014) to start an exclusive access epoch on the LHS array of a QK. The call internally uses an

MPI Win lock operation. Inside the exclusive access epoch, the LHS array can only be accessed

by the local MPI process. This is done to prevent any remote process from accessing the LHS array using

an MPI-3 one-sided routine, before all local updates are complete.

89

A quarc rt get remote halos initiates MPI data movement. The previously generated com-

munication plan is used to access remote data. The data movement involves the non-blocking MPI

one-sided MPI Get routine. The intent is to overlap movement of remote data to the local processor

with the local computation for the QK. Note that this call does not necessarily mean that data movement

is required. A GSHIFT can be on a non-distributed array dimension, or all array partitions may be

on the same shared memory domain. For such cases this call would return without invoking any MPI

communication.

A quarc rt wait for remote halos call blocks execution of an MPI rank till the remote

data has been moved to a local buffer. QOPT inserts a call to the function at a point where the local

computation of a QK is known to be complete.

A quarc rt unlock local win call unlocks the LHS array and ends the exclusive access

epoch on the LHS array.

A quarc rt mpi allreduce call is an optional global communication call that is used for

reduction QKs. As the name indicates, this QUARC-RT call wraps around an MPI Allreduce routine.

A quarc rt free remote comm infos call frees up resources by deleting local data buffers

and the QUARC-RT communication plan. As with quarc rt build halo objs, if a QK is inside a

loop nest QOPT tries to move this call out of the loop nest by sinking it after the outer loop exit block.

The sinking happens in conjunction with the hoisting of the quarc rt build halo objs call.

6.4.4 Loop body generation

Loop body generation for QKSCoP statements is the final compilation step inside QOPT. The process

starts by doing a post-order walk of the QKET’s RHS sub-tree, emitting the required code for each QKET

node that it visits. The qketBuildRHS procedure shown in Figure 6.12 presents a high-level overview

of the loop body generation steps. Each QKET node has different code-generation requirements. This

section goes over the specifics of each case.

Building a DRILL expression node requires only updating the index vector that is used to build

a linearized array access. The METAL DRILL operator generates a constant index value for a nested

sdlarray dimension. This constant value is appended to the index vector, and used during address

linearization.

90

Procedure qketBuildRHS
Input: QKET qketNode
Input: QKSCoP for the QKET qkscop
Output: Vector of LLVM virtual register values V

1 switch qketNode.node type do
2 case DRILL do
3 updateIndexVextor ();
4 lv ← qketBuildRHS (qketNode.leftChild);
5 end
6 case IF EVEN CHOOSE do
7 lv ← qketBuildRHS (qketNode.leftChild);
8 rv ← qketBuildRHS (qketNode.rightChild);
9 V ← applyIfConversion (lv, rv);

10 end
11 case binary mkernel do
12 lv ← qketBuildRHS (qketNode.leftChild);
13 rv ← qketBuildRHS (qketNode.rightChild);
14 V ← inlineMkernel (lv, rv);
15 end
16 case unary mkernel do
17 lv ← qketBuildRHS (qketNode.leftChild);
18 V ← inlineMkernel (lv);
19 end
20 case array access do
21 addinlineBoundaryChecks (qkscop, qketNode);
22 V ← createArrayAccess (qketNode);
23 end
24 case scalar access do
25 V ← createScalarAccess (qketNode);
26 end
27 otherwise do
28 Other
29 end
30 end
31 return V ;

Figure 6.12: A recursive post-order walk is used to lower the RHS sub-tree of a QKET into LLVM
instructions. The output of qketBuildRHS is a set of LLVM virtual register that stores the output of a
memory read operation or an arithmetic operation. The LLVM virtual register values get assigned to the
LHS using LLVM memory write operation.

91

Building an IF EVEN CHOOSE expression node results in an implicit if-conversion optimization.

As defined in Section 5.1.2.5, METAL’s IF EVEN CHOOSE operator generates this type of expression

node. The expression has two children that are terminal GSHIFT expressions. The expression encap-

sulates a built-in predicate (Listing 5.1) that uses the local mddarray indices to compute a global

“parity” value at each mddarray index position. QketBuildRHS generates the predicate as an inlined

computation inside the innermost loop body. It then adds LLVM select instructions to select one of

the two accesses at runtime. Thus, generating code for IF EVEN CHOOSE expressions avoids adding

extra control flow into the loop.

Inlining mkernel functions is done using a QOPT’s custom domain-specific function inliner. This

custom inliner benefits from domain-specific information that a general-purpose function inliner cannot

decipher. The custom inliner applies optimizations that a general-purpose inline would not be able to

discover.

Mkernel call inlining occurs only in the context of QKET loop body generation. As qketBuildRHS

does a depth-first walk of the tree, the mkernel function inliner is aware what arguments are passed to

the mkernel call. Along with that it is also aware of guarantees provided by METAL API. For mkernels

that operate on sdlarray data types, the inliner removes all nested sdlarray accesses. These nested

accesses get replaced by a single linearized address offset from the parent mddarray’s base address.

It may do so as METAL ensures that nested sdlarray members are allocated contiguously inside an

mddarray. For SIMD vectorized code-generation the inliner converts all scalar arithmetic operations

into SIMD vector operations.

Building scalar mddarray accesses requires two things to be considered: adding boundary condi-

tion checks when the QK has GSHIFT expressions, and generating LLVM memory operations.

Boundary condition checks are derived using integer set operations involving a QKSCoP statement’s

iteration domain and the QKSCoP’s boundary domains. A boundary check is inserted whenever a

statement’s domain intersects a boundary domain. If an mddarray access falls inside a boundary, then

it is loaded from the memory region corresponding to that boundary. The memory region can be a shared

memory address, an address inside the same block, or a memory buffer that stores data copied over from

a remote process. This distinction between memory regions is abstracted by QUARC-RT. Listing 6.6

shows the loop nests for the five-point example with the boundary condition checks added.

92

1 // Inner region statement’s headers
2 for (int i0 = 0; i0 < D0; i0 += 1)
3 for (int i1 = 0; i1 < D1; i1 += 1) {
4 // Check if last row
5 if (i0 == D0-1) { }
6 // Check if first row
7 if (i0 == 0) { }
8 // Check if last column
9 if (i1 == D1-1) { }

10 // Check if first column
11 if (i1 == 0) { }
12 }
13 // Boundary regions’ loop headers
14 {
15 if (D0 >= 1) {
16 for (int i1 = 0; i1 < D1; i1 += 1) {
17 // Check if last column
18 if (i1 == D1-1) { }
19 // Check if first column
20 if (i1 == 0) { }
21 }
22 if (D0 >= 2)
23 for (int i1 = 0; i1 < D1; i1 += 1) {
24 // Check if last column
25 if (i1 == D1-1) { }
26 // Check if first column
27 if (i1 == 0) { }
28 }
29 }
30 if (D1 >= 1) {
31 for (int i0 = 1; i0 < D0 - 1; i0 += 1);
32 if (D1 >= 2)
33 for (int i0 = 1; i0 < D0 - 1; i0 += 1);
34 }
35 }

Listing 6.6: Inline boundary checks inside generated loops

LLVM load instructions are inserted after the boundary checks. The code path that loads for non-

boundary domain cases, adds a load from the local MPI window for the mddarray. For the code path

where an access falls inside a boundary domain, the load is from the memory region pointer returned by

QUARC-RT. Each nested sdlarray element is loaded with a separate load operation.

Building SIMD mddarray accesses involves extra steps compared to building scalar mddarray

accesses. The boundary condition checking is same as scalar mddarray accesses, but the loads inside a

boundary iteration involves vector shuffle operations. These shuffle operations are needed due to an extra

boundary condition introduces by QUARC’s ρφ-based data-layout transformations. Reshaping of an

mddarray dimension introduces an internal boundary within an mddarray block. Nearest neighbor

operation on the elements in an internal boundary region require elements from within the same block as

93

0,31 0,3 0,7 0,11 0,15 0,19 0,23 0,27

shufflevector(v1,v2,{7,0,1,2}) shufflevector(v1,v2,{7,0,1,2})

0,3 0,7 0,11 0,15 0,19 0,23 0,27 0,31

v1 v2

0,19 0,23 0,27 0,31 0,3 0,7 0,11 0,15

v1 v2

0,0 0,4 0,8 0,12

0,1 0,5 0,9 0,13

0,2 0,6 0,10 0,14

0,3 0,7 0,11 0,15

GSHIFT<0,-1>()

GSHIFT<0, 1>()

0,16 0,20 0,24 0,28

0,17 0,21 0,25 0,29

0,18 0,22 0,26 0,30

0,19 0,23 0,27 0,31

0,0 0,4 0,8 0,12 0,16 0,20 0,24 0,28

v1 v2

0,16 0,20 0,24 0,28 0,0 0,4 0,8 0,12

v1 v2

0,4 0,8 0,12 0,16 0,20 0,24 0,28 0,0

shufflevector(v1,v2,{1,2,3,4}) shufflevector(v1,v2,{1,2,3,4})

(a) SIMD data-layout created using ATL specification v:RT(1,4). Only the inner array dimension is reshaped and
transposed to build the four-wide vector dimension.

0,31 0,7 16,31 16,7 0,15 0,23 16,15 16,23

shufflevector(v1,v2,{7,0,1,2}) shufflevector(v1,v2,{7,0,1,2})

0,7 0,15 16,7 16,15 0,23 0,31 16,23 16,31

v1 v2

0,23 0,31 16,23 16,31 0,7 0,15 16,7 16,15

v1 v2

0,0 0,8 16,0 16,8

0,1 0,9 16,1 16,9

.

.

.
.
.
.

.

.

.
.
.
.

0,6 0,14 16,6 16,14

0,7 0,15 16,7 16,15

GSHIFT<0,-1>()

GSHIFT<0, 1>()

0,16 0,24 16,16 16,24

0,17 0,25 16,17 16,25

.

.

.
.
.
.

.

.

.
.
.
.

0,22 0,30 16,22 16,30

0,23 0,31 16,23 16,31

0,0 0,8 16,0 16,8 0,16 0,24 16,16 16,24

v1 v2

0,16 0,24 16,16 16,24 0,0 0,8 16,0 16,8

v1 v2

0,8 0,16 1,8 1,16 0,24 0,0 16,24 16,0

shufflevector(v1,v2,{1,4,3,6}) shufflevector(v1,v2,{1,4,3,6})

(b) SIMD data-layout created using ATL specification v:RT(2,2). Both array dimensions are reshaped and
transposed to build the four-wide vector dimension.

Figure 6.13: Showing the handling of boundaries for ρφ transformed mddarray layouts using vector
shuffle operations. The example uses a 32×32 mddarray that is blocked on the inner dimension. The
sub-figures show two possible data-layouts within a block. A global two-dimensional indexing scheme
is used to help understand the data distribution and data-layout. The array uses a periodic boundary
condition.

94

well as a neighboring block. The data elements need to be shuffled to get them in the right vector lanes,

before applying any SIMD arithmetic operations.

Figure 6.13 shows two scenarios that illustrate this need for vector shuffling. The two scenarios show

two different ρφ data-layout transformations on a two-dimensional mddarray with a 32×32 global

shape. The inner dimension of the mddarray has been blocked by a factor of two. Each subfigure

shows the first row within the two neighboring blocks. Notice that after the layout transformations,

there is an inner vector dimension within each row. Therefore, each row consists of multiple vectors.

The data-layout in both scenarios is different. In Figure 6.13a, the inner mddarray dimension is ρφ

transformed to build a four-wide vector dimension. In Figure 6.13b, both mddarray dimensions are

transformed to build the vector dimension. As shown, the two GSHIFT operations, GSHIFT<0,1>()

and GSHIFT<0,-1>(), on the inner dimension require data to be gathered from two different vector

registers. These two vector registers must be shuffled or blended to get the needed elements in the right

position inside a single vector register. The shuffle operation uses architecture-specific blend instructions,

such as the AVX VBLENDVPS and VPBLENVPS instructions, for this purpose. A blend instruction needs

an instruction mask specified as a list of unsigned integer values to select the required elements from

either vector register. The instruction mask needs to be generated at compile time.

We ensure that all shifts in a given direction for a reshaped dimension use the same instruction mask.

That is, the instruction mask value only depends on the ρφ transformation, and not on the shift value. This

is done by enforcing a legality constraint when selecting a ρφ transformation to define an mddarray

data-layout. This constraint is defined as follows:

Constraint 6.3. The absolute value of a shift on a ρφ transformed mddarray dimension should be less

than the reshaped extent of that dimension.

Constraint (6.3) ensures that all array elements in inner-region iterations have the shifted neighbor in

the same vector lane on another vector register. For boundary-region iterations, the shifted neighbors of

the array elements are in the next or prior vector lane. Moreover, boundary region separation follows the

same logic as described in Section 6.4.2.

This constraint essentially restricts the space of applicable ρφ transformations. The rationale for the

constraint is based on the index mapping formulae defined in Section 4.2. Translating an array accesses

from a lexicographic index space to a ρφ transformed index space requires integer division and modulo

95

1 auto sq_norm = REDUCE(a1*a1, su3add);
2
3 /* Semantically equivalent loop nest for the METAL REDUCE expression
4 * auto sq_norm = 0.0;
5 * for (auto k = 0ul; k < a1.get_local_extent(0); ++k) {
6 * for (auto l = 0ul; l < a1.get_local_extent(1); ++l) {
7 * autp sq = sqmag(a1.at(k,l), a1.at(k,l));
8 * sq_norm = su3add(sq_norm, sq);
9 * }

10 * }
11 *
12 * quarc_rt_mpi_allreduce(...);
13 */

Listing 6.7: After optimizing the REDUCE expression

operations. Applying the constraint ensures no division or modulo operation is needed, and a fixed

translation of the shifted is possible for all shifts for a given ρφ defined data-layout.

Building scalar terminal nodes involve generating a load operation for the scalar variable referenced

by the QKET leaf node. For SIMD code-generation, each scalar load is expanded into a vector load with

the scalar value replicated across all the vector lanes. This is a standard compiler optimization known as

scalar expansion.

6.4.5 Reductions

Code-generation for reduction QKs is very similar to the steps described for regular QKs. Listing 6.7

shows a METAL code snippet calculating the squared norm for an mddarray. The mddarray is of

the same type as in our five-point stencil example, its elements are of the su3 data type. The su3add

mkernel introduced in Listing 6.1 is used as the accumulator for this reduction operation. The sqmag

mkernel is elided in the example, it squares the value of each component an su3 vector.

The commented code section in Listing 6.7 shows the corresponding loop-nest generated for the

METAL expression. Every reduction internally uses an accumulator variable where the output of the local

reduction step is stored. The variable sq norm is the accumulator in this example. A global reduction

follows the local reduction step. The mkernel function provided to the REDUCE operator is converted to

an MPI User_function and used for the global reduction. The global reduction step is executed by

the QUARC-RT quarc rt mpi allreduce library function call.

96

6.5 QUARC-RT: Runtime Time System

6.5.1 Halo Generation and Communication Optimization

QUARC-RT implements a polyhedral integer set analysis based automatic method for MPI com-

munication generation. Our method has similarities with earlier work done in the Rice dHPF compiler

(Adve and Mellor-Crummey, 1998). Like dHPF’s implementation, QUARC-RT uses affine array access

functions to derive the set of array indices that are part of a communication set. QUARC’s implementation

has advantages over dHPF, and even a more recent design based on polyhedral dependence analysis

proposed by Bondhugula (Bondhugula, 2013). QUARC’s derivation of communication sets happens at

runtime, and with exact awareness of how the arrays have been distributed over an actual MPI Cartesian

communicator. This makes it easier to do exact analysis, and omit all statically generated checks that

dHPF or Bondhugula’s method requires.

The communication set generation algorithm is essentially the same as the genBoundarySets pro-

cedure in Figure 6.7. The only difference is that unlike genBoundarySets QUARC-RT does not use

symbolic parameters as the array block shape is already known at runtime. The communication sets for a

GSHIFT expression is computed as an index set inside another neighboring array block. QUARC-RT

then optimizes these index sets by consolidating multiple sets for different GSHIFT expressions inside

the same QK using set union operations. The consolidated set of indices that is needed from the same

block is then moved using a single MPI remote memory access (RMA) operation using MPI’s hvector

data types. There is a further optimization inside QUARC-RT. RMA is used only when QUARC-RT

determines that the neighboring array block is on another processor node. Our implementation uses

MPI’s split communicator functionality for this purpose. If QUARC-RT determines that the needed array

block is within the same shared memory domain, then direct memory accesses are used instead of RMA

operations. Whenever RMA is required, QUARC-RT allocates a local memory buffer or halo to store the

remote data. The size of the halo is directly derived from the communication set.

6.5.2 Data Distribution Functions

QUARC allows the possibility of using application specific data distributions by defining custom

mapping functions. The design cleanly separates the definition of hypercubic blocks for mddarrays,

97

using the ATL dist-rts argument, from the mapping of the blocks on to a processor grid that was defined

using the ATL p-grid argument. Using this design non-trivial data distributions, such as those implemented

in the Rice dHPF compiler (Mellor-Crummey et al., 2002), become implementable relatively easily.

Implementing new types of data distributions that follow the basic hypercubic array blocking design

would not involve any changes to METAL or ATL. The only addition would be inside QUARC-RT.

Array blocks defined via ATL are assigned a unique multi-dimensional block id. QUARC-RT defines the

processor grid as an MPI Cartesian communicator, and each processor or MPI rank in that communicator

is assigned a multi-dimensional Cartesian coordinate by the MPI runtime. Defining a data distribution

involves providing the mapping between the multi-dimensional block id space to the MPI Cartesian

coordinate space. This mapping can be done as per the application need, and all data movement and

communication get transparently handled based on which blocks are mapped to which processor.

6.5.3 Data-Layout Selection

QUARC currently implements an external policy engine (Chapter 8) to select a set of data-layout

candidates for an application. The ATL specification generated according to the policy only has the set of

simd-rtf values, and the relative ranking of each value. The QUARC-RT runtime library selects one of

the simd-rtf values for an mddarray. The selection is made according to the mddarray global shape

and block distribution. QUARC-RT evaluates if the simd-rtf value is applicable to the blocked shape

of the mddarray, but applies no other fitness criteria. QOPT can optionally add validations inside the

generated code to check if the data-layout specified via the selected simd-rtf value works for a given

QK.

98

CHAPTER 7: PERFORMANCE ANALYSIS OF DATA-LAYOUTS

We now analyze the impact of ρφ data-layout transformations on SIMD vectorization of stencil

kernels. The analysis was done on three modern Intel Architectures (IA) servers using QOPT’s custom

vectorizer. The results in this chapter form the empirical basis for QUARC’s layout selection policy

engine described in Chapter 8.

7.1 Background

7.1.1 Stencil Kernels

A stencil kernel is an iterative computation that updates an array element according to a fixed

computational pattern involving neighboring array elements in the same or in a separate array. The fixed

computational pattern is known as a stencil. Stencil computations is encountered in several scientific

domains, such as differential equation solvers, image processing, finite-element methods, and cellular

automata. For this reason, stencil kernels are recognized to be one of the core kernels of scientific

computing (Asanovic et al., 2009).

A large body of work exists around optimizing stencil kernels for different performance concerns,

such as cache reuse, communication optimizations, and SIMD vectorization (Roth et al., 1997), (Kamil

et al., 2005), (Datta et al., 2008), (Tang et al., 2011), (Ragan-Kelley et al., 2013), (Henretty et al., 2013),

(Acharya and Bondhugula, 2015), (Rawat et al., 2015), (Yount, 2015). A majority of the methods look to

improve cache performance of stencil kernel loops by introducing loop tiling or cache blocking methods.

Roth et al. (Roth et al., 1997) explored data communication optimizations to improve the performance of

stencil kernels on distributed-memory machines.

From this list of prior work, notably Henretty et al. (Henretty et al., 2011), and Yount (Yount, 2015)

have looked at techniques specific to improving the SIMD vectorization performance on IA short-vector

machines. Both techniques deal with a fundamental issue with SIMD vectorization of stencil kernels

that has its root in the architectural design of short-vector machines. The central premise of short-vector

99

SIMD vectorization is streaming contiguous chunks of memory into short SIMD vector registers that

have multiple channels or lanes. A single SIMD instruction is then applied to the data in each lane. The

big limitation in SIMD vectorization is that content of two vector registers need to be stream aligned,

i.e., the operands of a SIMD operation need to be in the same lane of the respective registers. Typically,

cross lane SIMD operations are not supported by short-vector machines. Henretty et al. used the term

stream alignment conflict to describe this problem. To get over the issue of stream alignment conflicts,

they proposed a data-layout transformation technique. The technique that they termed as dimension-lift

and transpose is subsumed in our ρφ algebra. Yount used a different technique. His method applied

in-register swizzle operations to get data stream aligned.

7.1.2 Short-vector SIMD architectures

The SIMD vector processing units on most modern architectures, such as x86, AMD64, Power, and

ARM64, are classified as streaming SIMD multimedia extensions. These architectures use Instruction

Set Architecture (ISA) extensions to add short-vector registers to the architecture to support SIMD

vectorization. The register size of SIMD ISA extensions on IA has doubled with each newer processor

generation. The earliest Intel MMX extension offered 64-bit vector registers that provided eight 8-bit

lanes. This has increased, as of 2018, to 512-bit in current architectures that support the AVX512 ISA

extension. A 512-bit vector register has eight 64-bit lanes, 16 32-bit lanes, or 64 8-bit lanes.

These ISA extensions were introduced primarily to improve graphics and multimedia application

performance on consumer-grade processors. Graphics applications use different number of bits to indicate

the color of a pixel. This value is known as the bit or color depth. Graphic applications from the 1990’s

mostly used 8-bit or 16-bit color. Most application in the 2010’s have moved to 24-bit or 32-bit color

depths. SIMD ISA extensions allow packing multiple color data types into a SIMD register, and operating

on them in parallel.

Short-vector architectures differ significantly from the large vector processors like Cray-1 from

1970’s and 1980’s, and even from GPGPUs. Most short-vector SIMD ISA extensions do not offer

conditional execution via mask registers. They also do not offer non-unit stride and gather-scatter

addressing modes in hardware. This is largely due to the memory organization of modern architectures.

Almost all modern DRAM memory chips are organized as a two-dimensional array of DRAM cells.

Rather than addressing individual memory location, memory addresses are multiplexed into two parts,

100

1 void stencil_9pt (float * restrict A1, const float * restrict A2) {
2 for(auto t = 1ul; t < T-1; ++t)
3 for(auto z = 1ul; z < Z-1; ++z)
4 for(auto y = 1ul; y < Y-1; ++y)
5 for(auto x = 1ul; x < X-1; ++x) {
6 A1[t][z][y][x] = A2[t-1][z][y][x] + A2[t+1][z][y][x]
7 + A2[t][z-1][y][x] + A2[t][z+1][y][x]
8 + A2[t][z][y-1][x] + A2[t][z][y+1][x]
9 + A2[t][z][y][x-1] + A2[t][z][y][x+1];

10 }
11 //... Elided boundary region computations
12 }

Listing 7.1: A nine-point scalar stencil

i.e., row address selection and column address selection. Memory is addressed first using the row address,

and then the column address is decoded to access an individual element in that row. Data is also not

moved as individual words, rather it is always accessed in terms of cache-line sized blocks. Due to these

reasons no gather-scatter addressing at the level of words is implemented in hardware.

7.1.3 Stream alignment conflict

The stream alignment conflict (SAC) metric is an array reuse distance-based measure for detecting

scenarios that need data-layout transformations. A SAC occurs when the same array element is read

more than once in successive iterations of an innermost loop, and the reuse distance is less than or equal

to the architectural SIMD register width. For such cases, vectorization of the innermost loop would lead

to the overlapping SIMD register scenario that was illustrated in Section 2.3. The following definitions

formalizes this notion.

Definition 7.1. Reuse distance (Rd)

Rd of an array element is defined as the number of other distinct array elements that are accessed

between two consecutive accesses of the same array element. Rd is measured in terms of the number of

memory references, and is a measure of temporal locality. 4

Definition 7.2. Stream alignment conflict

A SAC exists inside a stencil kernel if there are two distinct array read accesses a1 and a2 that access

the same array element in two different iterations i and i′, and the Rd of that element is either less than or

equal to the SIMD register width, or is not a multiple of the SIMD register width. 4

101

Listing 7.1 is the same stencil used in Section 2.3. Definition 7.2 offers a way to identify the need for

a data-layout transformation for this case. The Rd of each array element for the two accesses A2[x-1]

and A2[x+1] is two, which is less than the SIMD vector width of eight. However, if the accesses are

changed to A2[x-1] and A2[x+7] the Rd is eight, and SAC does not exist. Both these scenarios are

considering the array has a default lexicographic row-major data-layout.

7.1.4 Mitigating SAC

Data-layout transformations based on our ρφ algebra (Chapter 4) are a way to mitigate SAC. When

using a ρφ to define a SIMD vectorizable data-layout, one or more array dimensions are reshaped and then

transposed to build a new innermost dimension. This dimension is of the same size as the SIMD vector

width. Section 5.3 presented QUARC’s ATL interface that is used for defining such transformations. The

primary rationale for the transformation is to place the array elements in memory so that the Rd for any

pair of array reference in a stencil kernel does not result in a SAC.

7.2 Experimental Setup

The experiments were done in phases for three different stencil kernels on two IA servers. Each

phase used a different array size, and considered all possible combinations of ρφ transformations for that

array size. The applicable ρφ transformations varied based on the rank of the array, and the architectural

SIMD register width. The array size was varied to range from fully resident inside L2 cache to falling

out of L2, but resident in L3 cache. All the experiments used only single threaded execution, and used

single-precision floating point numbers.

The reported performance is the median execution time per stencil iteration over 20 separate runs of

the experiment. For each run the stencil loop was executed 50 times, and the median time out of the 50

runs reported. This was done to negate any impact of cold cache misses. The experiments were repeated

for each data-layout choice for every problem size on both architectures. Along with, execution time the

total instructions count, and L1 and L2 data cache miss rate (DCM) was also measured using hardware

performance counters.

102

7.2.1 Stencil Benchmarks

2D-Jacobi stencil computes a five-point sum for each element of a two-dimensional array. Each

stencil site involved four real addition operations, and had a data footprint of 20 bytes.

3D-Jacobi stencil computes a seven-point sum for each element of a three-dimensional array. Each

stencil site involved six real addition operations, and had a data footprint of 28 bytes.

Wilson-Dslash (WD) is a nine-point stencil kernel from LQCD. This is a complicated stencil that

involves complex SU(3) complex vector algebra at each stencil point. Each stencil site involves multiple

complex matrix-vector products for a total FLOP count of 1320, and a data footprint of 1440 bytes. The

stencil is described in detail in Section 9.1.1.

7.2.2 Architectures

Knight’s Landing (KNL) is a single socket 68 core Intel® Xeon Phi™ CPU 7250 server with

1MB shared L2 cache. KNLs do not have an L3 cache, but have a high bandwidth memory that was

configured to run in cache mode. All experiments on this server used 512-bit AVX512 vectorization.

Skylake X (SKX) is a dual-socket 24 core Intel® Xeon® Platinum 8160 CPU with 1MB private

L2 cache, and a 33MB shared L3 cache. All experiments on this platform were executed with 512-bit

AVX512 SIMD vectorization.

7.2.3 Data-layouts

The data-layouts for these experiments are based on ρφ transformations. The number of data-layout

for each of our test cases was as follows.

The 2D-Jacobi used arrays shapes: {512×512}, {1024×512} and {1024×1024}. These shapes

allowed five data-layout choices for AVX512.

The 3D Jacobi used arrays shapes: {64×64×64}, {128×64×64} , and {128×128×64}. These

shapes allowed us to evaluate 15 data-layout choices for AVX512.

The WD kernel has a larger data footprint per stencil site, and limits the array shape choices for

smaller problem sizes. The following array shapes were used for this stencil: {4×4×8×8}, {4×8×8×8},

and {4×8×16×16}. The reason for selecting these particular array shapes was to mimic the typical array

block sizes used in production LQCD applications (Joó et al., 2013). There the usual strategy is to block

103

the outer array dimensions over multiple threads, and use the inner dimensions for SIMD vectorization.

These array shapes limited the potential number of data-layouts that could be evaluated. They allowed a

mix of two-, three-, and four-dimensional data-layouts. Our layout selection policy that is discussed in

Chapter 8 is independent of the array shape, and applies to selecting the best subset of data-layouts for a

given set of data-layout choices. Thus, even though a limited number of data-layout choices are possible,

it does not restrict us from evaluating our overall data-layout selection policy.

7.3 Results and Observations

Figure 7.1 presents the execution time distribution for the different data-layout options for each of

the stencil kernels. Few trends are immediately apparent from these plots. The SIMD vectorization

performance variation across different data-layouts is much more pronounced on KNL than on SKX. In

fact, for the WD kernel the variation is negligible on SKX, and we saw only a difference of ∼10% in

execution time for all problem sizes. This to a certain extent relates to the fact that a relatively smaller

number of layouts were tried for this kernel. All experiments on both SKX and KNL showed that most

data-layouts performed well, with a small number of outliers. The outliers became prominent only at

larger problem sizes. The data-layout choice also had a greater impact for larger array sizes. This was

seen on both architectures, and all three kernels.

Analyzing 2D-Jacobi

Table 7.1 presents the performance for each of the five data-layouts for the 2D-Jacobi stencil for SKX

and KNL for the {1024×512} and {1024×1024} array shapes. Both architectures exhibited similar

variation in performance of the best and worst data-layout choice. A more interesting observation is how

individual data-layouts performed. The results in this regard are almost a complete opposite of each other

for each architecture for the smaller problem size. The {1, 16} layout was one of the best choices on

SKX, but was the worst layout choice on KNL. The {16, 1} layout was one of the best choice on KNL

for the smaller size, but was the worst option for SKX.

We need to recall how data-layouts are constructed using ρφ transformations to explain these results.

The {16, 1} data-layout completely transposes the innermost array dimension, while constructing the

SIMD dimension by reshaping the outer dimension. The {1, 16} data-layout is built by only reshaping

104

0

200

400

600

800

1,000

1,200

tim
e

(µ
s)

Jacobi 2D

0

500

1,000

1,500

2,000

tim
e

(µ
s)

Jacobi 3D

0

200

400

600

800

1,000

1,200

tim
e

(µ
s)

WD

1 MB

2 MB

≥ 4 MB

SKX

SKX

SKX

KNL

KNL

KNL

Figure 7.1: An empirical evaluation of data-layout choices based on wall clock execution time. Each
boxplot shows the minimum, first quartile, median, third quartile, and maximum execution time. The
minimum execution time value indicates the best data-layout choice.

105

Table 7.1: Evaluating all data-layout choices for 2D-Jacobi

(a) SKX

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,16 159 449 65.63 65.57
2,8 159 439 65.65 65.55
4,4 159 433 67.40 65.54
8,2 165 430 131.85 65.38

16,1 167 352 131.86 65.41

{1024×512} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

2,8 317 864 134.10 130.97
1,16 317 875 131.20 130.96
4,4 327 859 263.60 130.63
8,2 331 856 263.76 130.72

16,1 348 701 263.58 130.99

{1024×1024} (4MB)

(b) KNL

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

4,4 530 433 38.39 3.70
16,1 534 351 92.04 4.55
8,2 571 430 90.07 4.08
2,8 575 438 30.41 3.55

1,16 590 449 21.64 3.76

{1024×512} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

2,8 1003 863 76.20 68.16
4,4 1006 859 183.02 65.87
8,2 1022 856 182.12 71.28

16,1 1087 701 182.16 84.77
1,16 1103 875 60.17 63.49

{1024×1024} (4MB)

Table 7.2: Calculated reuse distances and shuffle instructions for the {1024×512} sized 2D-Jacobi

Layout Y X RDY RDX SY SX Total Shuffles

1,16 1024 32 32 1 0 2048 2048
2,8 512 64 64 1 2 1024 1026
4,4 256 128 128 1 2 512 514
8,2 128 256 256 1 2 256 258
16,1 64 512 512 1 2 0 2

and transposing the inner dimension, without impacting the outer dimension. These transformations

impact the strides in each dimension, and therefore the reuse distances. As explained in Section 6.4.4 it

also impacts the number of shuffle and blend operations needed while vectorizing over a particular array

data-layout.

Table 7.2 shows the reuse distances and the number of shuffles needs for the {1024×512} problem

size. The two array dimensions are called ‘Y’ and ‘X’, with Y being the outer dimension, and X the inner

dimension. RDY and RDX depict the reuse distance in Y and X. Reuse distance is measured in terms of

the number of vector register loads that are required between two successive accesses for the same vector.

SY and SX are the shuffles needed in Y and X. Note that since each vector tile has two boundaries the

number of shuffles is doubled. The total number of shuffle instructions is the sum of SY and SX .

106

Table 7.3: Evaluating the five best and five worst data-layout choices for 3D-Jacobi kernel

(a) SKX

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,2,8 171 682 130.82 65.55
1,4,4 171 790 131.49 65.54
1,8,2 173 755 131.42 65.55
1,16,1 173 702 129.32 65.56
2,8,1 174 743 133.66 65.59
4,2,2 180 690 131.50 65.66
8,2,1 182 730 133.44 66.20
8,1,2 186 802 131.52 66.17
4,1,4 186 850 131.55 65.64
16,1,1 233 703 132.43 95.94

{128×64×64} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

2,8,1 342 1472 266.27 131.01
1,16,1 344 1366 266.87 131.03
1,2,8 347 1357 262.67 130.97
1,4,4 349 1575 262.93 131.05
1,1,16 351 1773 262.71 131.08
4,4,1 362 1470 266.71 131.44
4,1,4 369 1701 262.94 131.41
8,1,2 445 1604 262.65 182.80
8,2,1 445 1454 264.64 183.49
16,1,1 626 1407 263.93 261.72

{128×128×64} (4MB)

(b) KNL

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,2,8 690 691 68.07 3.72
2,1,8 697 744 51.84 4.59
1,16,1 699 702 79.32 1.82
2,4,2 713 692 69.93 2.47
2,8,1 719 743 72.51 2.24
1,4,4 767 790 44.05 1.33
8,2,1 844 730 70.19 3.53
4,1,4 855 850 62.26 2.38
8,1,2 895 801 64.62 3.08
16,1,1 936 703 72.09 3.58

{128×64×64} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,2,8 1331 1374 134.65 7.50
2,1,8 1389 1485 103.55 10.12
1,1,16 1403 1724 71.79 7.32
1,16,1 1411 1366 168.42 4.24
2,4,2 1431 1377 140.66 5.29
4,1,4 1771 1701 123.05 5.96
4,4,1 1794 1470 133.33 8.86
8,1,2 1935 1604 125.28 6.94
8,2,1 1975 1454 133.30 8.54
16,1,1 2053 1407 142.29 6.94

{128×128×64} (4MB)

Both RDX|Y and SX|Y are computed based on the reshaped extents of the original array dimension.

Reuse distance in a given dimension is the same as the stride in that dimension based on the reshaped

extents. The number of shuffle and blends is computed as the reverse stride for that dimension, i.e., doing

the stride calculation in the opposite direction or inside out. It can be seen that the {1, 16} data-layout

results in the lowest reuse distance, while having the highest number of shuffles. It is exactly the

opposite for the {16, 1} data-layout. Our empirical measurements attest these calculations. The {1, 16}

data-layout has the highest instruction count, and the {16, 1} layout has the minimum. Whereas, the

{1, 16} data-layout has a low L1 cache miss rate, and vice-versa for the {16, 1} layout.

107

Table 7.4: Calculated reuse distances and shuffle instructions for the {128×64×64} sized 3D-Jacobi

Layout Z Y X RDZ RDY RDX SZ SY SX Total Shuffles

1,2,8 128 32 8 256 8 1 0 256 8192 8448
1,4,4 128 32 16 512 16 1 0 256 8192 8448
1,8,2 128 8 32 256 32 1 0 256 2048 2304

1,16,1 128 4 64 256 64 1 0 256 0 256
2,8,1 64 16 64 1024 64 1 2 128 0 130
4,2,2 32 64 32 2048 32 1 2 64 4096 4162
8,2,1 16 64 64 4096 64 1 2 32 0 34
8,1,2 16 64 32 2048 32 1 2 0 2048 2050
4,1,4 32 64 16 1024 16 1 2 0 4096 4098

16,1,1 8 128 64 8192 64 1 2 0 0 2

Analyzing 3D-Jacobi and WD

Both 3D-Jacobi and WD are higher order stencils, and due to this reason, the effect of data-layouts

is slightly different from the 2D-Jacobi case. Table 7.3 presents the best and worst five data-layout

choices for 3D-Jacobi for the {128×64×64}, and {128×128×64} shaped arrays. The worst performing

data-layouts are in the rows highlighted in gray. The data shows that on both SKX and KNL data-layouts

constructed by reshaping the outermost dimension by a large factor leads to the worst performance. This

once again is due to the impact of these data-layouts on the reuse distance. All the worst performing

data-layouts have the largest reuse distance in the outermost dimension. The best layouts all have small

reuse distances for the outer dimension. This can be seen in Table 7.4 that presents the reuse distances for

the data-layouts on SKX for the {128×64×64} case. The convention followed to name the dimensions

is the same as before, with ‘Z’ introduced to represent the outermost array dimension. The number of

shuffles and blend operations has a much lesser impact than in the 2D-Jacobi case.

Along with reuse distance and shuffle operations there is a tertiary factor that impacts data-layout

performance for higher dimensional arrays and higher order stencils. We term this as “edge” reuse. The

vectors at the edges of every vector tile have two types of reuse. The first comes when the vector is

accessed in a subsequent loop iteration with an aligned vector load. This reuse is the basis of our reuse

distance calculations. The vectors at the edges of the tiles are reused once more in the shuffle operations

needed to handle the internal vector tile boundary. The edges for multi-dimensional vector tiles are longer

for higher dimensional arrays. This leads to a performance improvement for cases where the edge vector

tile is resident in L2 cache for both its reuses. This is the reason the data-layouts with the Z dimension

transformed by a factor of two performed well on both architectures.

108

Table 7.5: Evaluating the five best and five worst data-layout choices for WD kernel

(a) SKX

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,1,4,4 92 366 40.45 20.42
1,4,4,1 92 367 41.40 20.12
2,2,4,1 92 367 41.16 20.18
2,4,2,1 92 363 41.21 19.89
2,2,1,4 93 364 41.35 20.11
2,1,4,2 94 358 42.84 20.23
2,1,2,4 95 363 41.68 20.30
1,2,2,4 96 362 44.31 20.15
2,2,2,2 96 360 46.14 20.22
1,4,2,2 96 359 46.19 20.40

{4×8×8×8} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

2,1,1,8 410 1417 165.33 110.98
2,1,8,1 413 1441 164.59 110.60
2,1,4,2 427 1413 190.04 110.61
2,1,2,4 428 1420 183.17 110.63
2,4,2,1 429 1443 164.33 123.75
1,1,8,2 441 1422 187.20 120.91
1,4,1,4 441 1440 185.20 120.85
1,4,2,2 442 1419 189.36 119.54
1,2,2,4 446 1425 195.16 117.80
1,1,4,4 450 1425 195.55 121.15

{4×8×16×16} (12MB)

(b) KNL

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

1,2,2,4 535 365 29.58 13.56
1,4,1,4 535 367 27.66 12.98
2,4,2,1 540 362 28.24 12.22
1,4,2,2 545 358 31.30 13.23
1,4,4,1 552 369 28.03 13.29
1,1,4,4 564 364 26.01 13.63
2,2,2,2 568 361 30.99 12.20
2,1,2,4 574 363 27.22 13.37
2,2,4,1 574 363 27.99 12.57
2,2,1,4 576 365 27.69 12.41

{4×8×8×8} (2MB)

Layout Exec.
Time
(µs)

Total
Inst.
(×103)

L1
DCM
(×103)

L2
DCM
(×103)

2,4,2,1 2272 1436 113.47 55.67
2,2,4,1 2351 1429 119.29 58.91
2,1,2,4 2359 1422 121.38 57.03
2,2,2,2 2362 1429 126.33 58.13
1,4,2,2 2403 1418 128.22 62.68
1,4,1,4 2534 1440 123.35 64.85
1,2,1,8 2535 1425 118.19 64.52
1,1,2,8 2563 1413 115.22 63.97
1,1,4,4 2573 1423 128.19 62.94
1,1,8,2 2584 1420 124.07 63.94

{4×8×16×16} (12MB)

Table 7.5 presents the performance results for the five best and five worst data-layouts for the

WD kernel. The table shows the results for the {4×8×8×8} and {4×8×16×16} array shapes. The

four-dimensional WD stencil has a much larger data footprint than the Jacobi stencils. The edge reuse is

highly beneficial for this kernel, especially for larger problem sizes. Each of the best data-layout options

for the 12 MB problem size involved transforming the outermost dimension. Within that set of layouts

the relative reuse distances of the inner dimension determined the performance of a layout. The smaller

problem size also benefits from edge reuse, but not to the same extent. The reuse distance plays a more

important role, especially on KNL.

109

Chapter Review

This performance analysis presented a set of heuristics that allow evaluating ρφ data-layout trans-

formations for stencil kernels. Data-layouts formed using these transformations are impacted by three

factors: reuse distance, number of shuffle and blend operations, and edge reuse. How these three factors

interplay with each other depends on the type of stencil, the problem size and the architectural character-

istics. Each SKX core is much faster than a single KNL core. This is the reason the number of shuffles

has a lesser impact on SKX than on KNL. However, for most cases cache performance played a much

bigger role than the instruction counts.

This analysis helps provide an empirical basis for the intuitions behind the data-layout selections in

hand vectorized libraries, such as the QPhiX library (Joó et al., 2013) from LQCD. Due to the complexity

of hand vectorization and data-layout transformation, most hand vectorized libraries select a very small

set of data-layouts. As an example, QPhiX does not support building three or four-dimensional vector

tiles, and is restricted to one- and two-dimensional vector tiles. Our analysis shows that there are other

data-layout options that can potentially perform better. Having our results as a reference should enable

library writers make better choices regarding data-layouts for SIMD vectorization.

Finally, as a side benefit this analysis demonstrates one of the big advantages of QUARC’s automated

data-layout based SIMD vectorization. Exploring the complete space of data-layouts by hand is not

feasible especially for high-dimensional arrays on architectures with relatively longer SIMD widths.

QUARC makes this extremely easy, and can be the used by auto-tuners or even manual analysis. The

results of such analysis can be used to define policies, making the data-layout selection and code-

generation process as much automated as possible. Chapter 8 describes a possible implementation of

such a policy.

110

CHAPTER 8: DATA-LAYOUT SELECTION POLICY

QOPT’s SIMD vectorizer requires arrays to have a data-layout defined using a ρφ transformation.

The transformation reshapes one or more outer array dimensions, and then transposes them inwards

to build an innermost SIMD dimension. Previous chapters provide the specifics of the transformation

(Chapter 4), its implementation in ATL (Chapter 5), and the QOPT’s ahead of time speculative SIMD

vectorization process (Chapter 6). This chapter discusses the policy used to select the set of data-layout

choices based on which speculative vectorization is done. The policy currently is implemented outside of

QOPT. The chapter focuses only on the policy, and not on its implementation mechanism.

8.1 Performance Effects of Data-Layouts

The data-layout selection policy is tailored specifically for stencil kernels based on the empirical

performance evaluation in Chapter 7.

The primary performance effect of a layout transformation is the removal of stream alignment

conflicts. Stream alignment conflicts reduce vectorization efficiency by requiring extra unaligned loads,

shuffles, blends and permute vector instructions. A data-layout transformation performs a gather-scatter

redistribution of an array’s elements to ensure that most accesses in a stencil loop are aligned vector

loads and do not need shuffles or blends operations. Apart from this primary effect, a data-layout has

a second order effect that impacts performance. A ρφ data-layout transformation can be equated to

multi-dimensional array tiling. Tiling impacts the stride of the array in each dimension, and thereby

affects the reuse distances for array accesses. The results in Section 7.3 demonstrated the correlation

between vector reuse distance and the L1 and L2 cache miss rates. Thus, how a data-layout impacts reuse

distance impacts the overall performance.

Although, a ρφ data-layout transformation removes most unaligned vector loads, shuffle and blend

operations it cannot remove all shuffles operations for stencil kernels. Shuffle operations are required to

handle vector loads at the tile boundaries. The number of such shuffle operations is dependent on the

111

Procedure selectLayout
Input: Architecture A

Input: Block shape Bs
Input: Element size es

Input: Stencil extents Sexts
Input: Number of layouts Nl

Output: Set of ρφ factors L

1 Nd ← number of array dimension;

2 Df ← data footprint of the array block;

3 Generate set of all data-layout candidates for Bs for the target SIMD width.;

4 Eliminate all layouts that violate Constraint (6.3);

5 Compute reuse distance (Rd) and number of shuffle operations (Ns) for each layout;

6 if L2 cache size < Df ≤ 8× L2 cache size and Nd > 3 then
7 Add to L all layouts with outermost reshape factor of 2;

8 end
9 if L is empty then

10 Add all viable layouts to L;

11 end
12 Sort layouts in L based on smallest Rd starting from the outermost dimension;

13 Retain top N members in L;

14 if A is KNL then
15 Sort the layouts based on smallest Ns;

16 end
17 return L;

Figure 8.1: Steps to select a set of data-layout candidates for a stencil kernel.

number of array dimensions that are transformed. The number of shuffle operations too has an impact on

the SIMD vectorization performance, and is an important third order effect to be consider.

Finally, for a limited number of cases involving four-dimensional arrays there is an effect that is

termed as the edge reuse effect. Four-dimensional arrays used for lattice and grid computation typically

have larger data footprints, but the extents for each dimension is small. The discussion in Section 7.3

touched upon the two types of reuse for boundary vector tiles. Apart from the reuse for regular aligned

loads, boundary tiles are also reused in the shuffle operations. Multi-dimensional vector tiling involving

the outermost dimension is useful for such cases, especially if the number of tiles is small. Such cases

benefit from improved reuses of the boundary tiles for the shuffle operations.

112

8.2 Policy Input Parameters

Architecture

The policy is designed for two types of Intel Architectures, server-class Xeon processors and the

Intel Knight’s Landing (KNL) Xeon-Phi processor. Apart from deciding which data-layouts to select, the

architecture also decides the required SIMD width.

Array block shape

The data-layout choices are selected for a specific block shape that specifies the extents of each array

dimension.

Element size

The policy requires the size in bytes of each array element to compute the data footprint of the array

block.

Stencil extents

The policy requires the stencil extents in every cardinal direction to compute the reuse distances, and

number of shuffle operations.

Number of layouts

The number of layouts selected by the policy.

8.3 Policy Execution Steps

Figure 8.1 describes the functioning of the data-layout selection policy. The policy starts by

exhaustively generating all possible data-layout candidates based on SIMD register width of the target

architecture. This set of data-layouts is then pruned based on Constraint (6.3) defined in Section 6.4.4.

The constraint ensures that a data-layout is free of stream alignment conflicts, and the shifted accesses

can be translated to the transformed layout without any division or modulo operations.

113

An additional step is included for four-dimensional arrays specific to lattice and grid based kernels.

The policy looks for data-layouts that define the vector tile by factoring the outermost dimension. The

search is restricted to the smallest possible reshape factor, and cases where the boundary tiles fit inside

L2 cache. The current policy only considers array blocks that are at up to eight times the L2 cache size.

Beyond that the vector tiles are large enough that no benefit is seen from edge reuse.

After the initial set of layouts is identified reuse distances and the number of shuffle and blend

operations are computed for each layout. The layouts are then ranked based on the ascending order of

reuse distances.

An extra step is done to optimize the data-layout selection for KNLs; the selected data-layouts are

further sorted based on the number of shuffle instructions. This ensures that the policy gives preferences

to data-layouts that have lower total shuffle operations on KNLs.

8.4 Evaluating the Policy

The policy is evaluated by comparing it to the empirical results obtained in Chapter 7. The policy

was effective on both architectures for the 2D-Jacobi example. It was always able to select the best three

layouts for both problem sizes resident in L2 cache, and larger sizes that did not fully fit in the L2 cache.

An accuracy of 66% was achieved for the 3D-Jacobi kernel when selecting the best three options on

the test Intel Skylake server. However, the accuracy rate improved to 80% when top five data-layout

choices were selected. The policy performed similarly for the same kernel on the KNL server, but there

were some outlier array shapes for which the policy accuracy dropped to 60% for best five layouts. It is

possible that these particular array shapes led to higher conflict cache misses. The policy proved effective

for the Wilson Dslash LQCD stencil as well for both Skylake and KNL. The accuracy rate was again up

to 80% on Skylake. On KNL the policy worked best for problem sizes resident in L2 cache, and had an

accuracy of 80%. Data-layout selection for large problem sizes was not as effective, and the policy could

identify only one out of the top three data-layouts. Even then the data-layouts identified by the policy

were within the third quartile of all layout choices.

Overall, using the simple heuristics identified in Chapter 7 the policy proved highly effective in

being able to select data-layouts for the tested stencil kernels. It is possible that the policy can be further

114

fine-tuned for more problem sizes and array shapes, but the main performance effects we highlighted

should remain effective for selecting data-layouts using ρφ data-layout transformations.

115

CHAPTER 9: QUICQ: A QUARC-BASED LQCD DSL

We now describe the construction of a prototype EDSL using QUARC. The target application

domain for the EDSL is Lattice Quantum Chromodynamics (LQCD), which is one of the original United

States government HPC grand challenges (Interagency Working Group on Information Technology

Research and Development, 2006). LQCD simulations are part of both high-energy physics and nuclear

physics research, and are one of the largest consumers of computation cycles on United States Department

of Energy leadership class machines. Section 9.1 introduces the domain of LQCD and its basic operators.

The information in Section 9.1 paraphrases discussions with LQCD researchers, Balint Joó (private

communication, Joó, 2014) and Carleton DeTar (private communication, DeTar, 2013).

The prototype EDSL, QUICQ Internally Calls QUARC (QUICQ), demonstrates a highly expressive

and notation programming interface using LQCD-specific abstractions. Section 9.2 presents QUICQ’s

various code components including domain-specific array data types, whole-array operators, and mkernels.

QUICQ is not yet a complete EDSL for LQCD, but it is powerful enough to write iterative solvers that

can be deployed at scale on large cluster computers. This chapter only presents QUICQ’s implementation

details, performance evaluation results are in Chapter 10.

9.1 Lattice Quantum Chromodynamics (LQCD)

Quantum Chromodynamics (QCD) is a branch of theoretical physics that deals with the study of the

strong force, which is one of the four fundamental forces in nature. The strong force, or strong interaction,

describes the interactions between the elementary particles: quark and gluon. Quark and gluons make up

the nucleons, i.e. protons, neutrons, and mesons. QCD is analogous to quantum electrodynamics. Just

as photons are the charge carriers in quantum electrodynamics, gluons are the charge carriers in QCD.

Instead of carrying an electrical charge, gluons carry what is called a color charge. Color charge has

no correlation to the visual perception of color, and is merely a notation used to define the quark-gluon

interaction.

116

-t +t

-z

+z

-y

+y

-x
+x

Spinors

SU(3) gauge links

Figure 9.1: An illustrative four-dimensional even-odd preconditioned LQCD lattice.

The strong force is highly non-linear; therefore, it is extremely hard to formulate analytical solutions

for low-energy QCD. Instead, an alternative non-perturbative approach, called Lattice QCD (LQCD), is

used to simulate the interactions on a discretized four-dimensional space-time lattice. The nodes, or sites,

of the lattice represent quarks and the connecting links represent gluons. Figure 9.1 shows an example of

a LQCD lattice.

The Dirac equation (Dirac, 1928) is fundamental to all LQCD simulations. Repeated solving of the

Dirac equation is the most computationally expensive piece of LQCD simulations. In LQCD, the Dirac

equation is discretized as a sparse matrix equation

Mψ = χ, (9.1)

where ψ, and χ are quarks, and M is the Dirac matrix. The equation solves ψ for a given χ. The

Dirac equation is a partial differential equation, and the M matrix represents the discretized partial

differential operators. Solving Equation (9.1) involves repeated inversion of M . The Dirac equation is

solved with varying RHS values, and different Dirac matrix configurations. We refer readers to more

topical material (Creutz, 1987) for further details.

9.1.1 The Wilson Dslash operator

The Wilson Dslash (WD) operator is one of the discretized differential operators used to solve the

Dirac equation. The locality of this operator connects each lattice site with its neighbor in the eight

117

cardinal directions. The WD operator uses four-dimensional complex vectors to represent quarks. These

complex vectors are known as spinors. Gluons are represented by three-dimension complex matrices that

belong to the SU(3) unitary group. The SU(3) matrices comprise a gauge field. The full vector space

for WD is the tensor product of four different vector spaces that results in a 12-dimensional complex

vector space.

Spin space (S)

S is a four-dimensional complex vector space. The spin space is used to define four 4×4 hermitian

γ matrices that are used by the WD operator. The γ matrices are used to project and elongate spinors

between the four-dimensional spin space and a two-dimensional subspace.

γ1 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, γ2 =



0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


,

γ3 =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


, γ4 =



0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0



Color space (C)

C is a three-dimensional complex vector space that defines the color charge. The three color

components of a spinor are usually called as red, blue or green for quark particles. Antiquark particles

have the corresponding antired, antiblue, and antigreen charge.

Reality space (R)

R is the two-dimensional vector space of complex numbers used in spinors and gauges.

118

Lattice space (V)

V defines a regular grid or lattice. Its size is defined by the product of the dimensions of each of the

four components of the lattice space, i.e. the product of the extents of the lattice in x, y, z and t Cartesian

directions. The overall size of V defines the total number of lattice points. Therefore, any generic point

on the lattice can be denoted using four coordinates (x, y, z, t).

The full complex vector space of WD is:

W ≡ S ⊗ C ⊗R⊗ V ≡ S ⊗ C ⊗R⊗X ⊗ Y ⊗ Z ⊗ T (9.2)

The sparse matrix M to solve the Dirac equation using WD can be represented as

M = (Nd +m)− 1

2
Dw, (9.3)

where m is the quark real mass parameter, and D is the WD operator.

Dw =
4∑

µ=1

((I − γµ)⊗ Uµx δx+µ̂,x′ + (I + γµ)⊗ Uµ†x−µ̂δx−µ̂,x′). (9.4)

Equation (9.4) shows the summation of the SU(3) 3 matrix-vector product of gauges and spinors at

each lattice site. Uµx represents the gauge emanating from site x in direction µ. The δx+µ̂,x′ Kronecker

delta notation corresponds to the neighboring spinor in the forward or backward µ direction. The (I ± γ)

terms are projector operators acting on spin indices of spinors. Spin projection projects out the lower two

spin components to reduce the number of spin components to two.

A numerical property of the SU(3) gauge matrices is that

Uµx ≡ U
µ†
x′ , (9.5)

i.e., the gauge matrix between the sites x and one of its neighboring sites in a cardinal direction

x′ is the conjugate transpose of the gauge matrix between x′ and x. The property reduces the storage

requirements for the gauge matrices, and improving the computational properties of WD.

119

Procedure WilsonDslashEO
Input: Odd half-lattice
Output: Even half-lattice

1 foreach each site in the half-lattice do
2 foreach each of the eight neighboring sites do

// 24 real values

3 Gather neighboring spinor (ns);
// 12 flops

4 Project out lower two spin components of ns;
// 18 real values

5 Gather gauge matrix for the cardinal direction;
// 2×66 flops

6 Matrix multiplication of gauge and spinor for both spin components ;
7 Reconstruct the lower two spin components of ns;
8 end

// 7×24 flops

9 Aggregate matrix multiplication results at output site;
10 end

Figure 9.2: High-level structure of the Wilson Dslash operator

The lattice is preconditioned into even and odd half-lattices before applying WD. Such a precondi-

tioning step splits the lattice into two separately stored half lattices based on the parity of each site. After

preconditioning the Schur complement system is solved for one half lattice at a time.

Computational profile of the WD operator

Figure 9.2 shows the high-level structure of the WD operator for one half lattice where the odd

half lattice is the input and the even half lattice is the output. The computation at each site needs eight

neighboring spinors, and the eight SU(3) gauge matrices. Every spinor is a 12-dimensional complex

vector requiring 24 real numbers. An SU(3) matrix for a gauge is a 3×3 complex matrix requiring 18

real numbers. The per-site data footprint constitutes of 8×24 real numbers for the spinors, 8×18 for the

gauge matrices, and 24 real numbers for the output spinor. The total requirement is 360 real numbers that

in single precision translates into 1440 bytes, and in double precision is 2880 bytes.

The WD operations consists of an initial spin projection step for each of the eight neighboring spinor.

A projection operation on a spinor involves two complex additions per color component, i.e., six complex

additions or 12 floating point operations (flops). Here addition includes both add and subtract operations.

Spin projection projects out the lower two spin components of the spinor. After spin projecting, the

120

residual color components are multiplied with the gauge matrix. The gauge-spinor product consists

of three complex inner products with each inner product involving three complex multiplications and

two complex additions. Thus, the number of flops for a gauge-spinor product are 66 flops. Since, both

color components are multiplied with the gauge the total flops are 2×66, i.e., 132 flops. After the

gauge-spinor multiplication, the projected out spinors are reconstructed. Reconstruction of the lower two

spin components only involves multiplication by the −i, i, 1, or −1, and can be done without expending

any flops. The final step is aggregating the intermediate results into the output spinor that involves seven

spinor additions, or 7×24 additions. From this breakdown, the total flop rating for WD is 1320 flops.

Arithmetic Intensity (AI) or the flop-to-byte ratio of WD per lattice site is 1320/1440 = 0.92

in single precision and 0.46 in double precision. The relatively low AI makes WD a memory bound

operation.

9.1.2 The Kogut-Susskind Dslash operator

The Kogut-Susskind Dslash (KSD) or the staggered Dslash operator is another formulation of the

Dslash operator. KSD uses a different type of spinor that has only one spin component. The locality of

KSD connects each site with its immediate neighbors and its third neighbors in each cardinal direction.

The vector space of KSD is a three-dimensional complex space.

KS ≡ C ⊗R⊗ V ≡ C ⊗R⊗X ⊗ Y ⊗ Z ⊗ T (9.6)

The notation is the same as the WD operator. As KSD uses only one spin component, the S spin

space is not required. The full discretized KSD differential operator is represented as:

Dks =
4∑

µ=1

((Uµx δx+µ̂,x′ + Uµ†x−µ̂δx−µ̂,x′) + (U3µxδx+3µ̂,x′ + U3µ†x−µ̂δx−3µ̂,x′). (9.7)

As with WD, in Equation (9.7) Uµx represents the gauge emanating from site x in direction µ, and

the Kronecker delta terms corresponds to the neighboring spinor in the forward or backward µ direction.

U3µx represents the gauge matrices that represent the edge or link between a site and its third neighbor in

the direction µ. The gauges, Uµx and U3µx are constructed differently, but the calculations are otherwise

121

Procedure KSDslashEO
Input: Odd half-lattice
Output: Even half-lattice

1 foreach each site in the half-lattice do
2 foreach each of the 16 neighboring sites do

// 6 real values

3 Gather neighboring spinor (ns);
// 18 real value

4 Gather gauge matrix (U) for the first neighbor;
// 66 flops

5 Matrix multiplication of U and (ns);
// 18 real value

6 Gather gauge matrix (U3) for the third neighbor;
// 66 flops

7 Matrix multiplication of (U3) and (ns);
8 end

// 15×6 flops

9 Aggregate matrix multiplication results at output site;
10 end

Figure 9.3: High-level structure of the KS Dslash operator

the same. KSD does not involve any spin projection and reconstruction step. Even-odd preconditioning

is also used for KSD.

Computational profile of the KSD operator

Figure 9.3 shows the high-level structure of the KSD operator for one half lattice where the odd half

lattice is the input and the even half lattice is the output. The gauge basic data types are similar to WD

and are 3×3 complex matrix requiring 18 real numbers. KSD uses three-dimensional complex spinors

that require six real numbers. Since, KSD’s locality spans the first and third neighbors its per-site data

footprint is higher. Each site requires 16×6 real numbers for the spinors, 16×18 for the gauge matrices,

and six real numbers for the output spinor. The total requirement is 390 real numbers that in single

precision translates into 1560 bytes, and in double precision is 3120 bytes.

The numerical operations involve 16 gauge-spinor multiplications. Using the same calculation as

WD, this translates into 1056 flops. The final aggregation step requires 15×6 additions, bringing the total

flop count to 1146 flops per site.

Arithmetic Intensity (AI) or the flop to byte ratio of KSD is 1146/1560 in single precision 0.73

and 0.37 in double precision.

122

9.1.3 Linear Solvers

Non-stationary iterative Krylov solvers, such as conjugate Gradients (CG) (Hestenes and Stiefel,

1952) and biconjugate gradient stabilized method (BiCGStab) (van der Vorst, 1992), are typically used to

apply Dslash operators when solving the Dirac equation. Even-odd preconditioning is almost always

used to accelerate the solution discovery amd reduce the memory footprint. Additionally, techniques

such as compression of SU(3) matrices (Clark et al., 2010) and preconditioning at reduced precision are

sometimes also applied to reduce the memory bandwidth requirements. The linear solver accounts for

80-99% of the execution time of most LQCD simulation. Apart from iterative solvers, recent approaches

have explored using adaptive geometric multigrid methods with impressive performance gains (Clark

et al., 2016).

9.2 The QUICQ DSL

All EDSLs developed using QUARC have to provide three main code components: domain-specific

data types created using METAL’s array types (Section 5.1.2.2), whole-array operators to build data

parallel array expressions, and the elemental functions or mkernels (Section 5.1.2.3). The following

subsections present these components for the QUICQ EDSL.

LQCD Data Types

QUICQ supports both the Dslash operators described in Section 9.1. It includes custom nested array

types to represent both Wilson and KS spinor types. Listing 9.1 shows the type definitions for these

spinor types. Both spinor types are constructed by nesting METAL sdlarray.

The su3matrix type is for gauge matrices, and is also constructed using sdlarray. QUICQ uses

an additional data type called packedGauges that is a collection of the eight gauge matrices emanating

from each lattice site. The collection is used for cases where all neighboring gauges are pre-gathered

prior to use, removing the need to gather the gauge matrices prior to their use in a Dslash operator. Finally,

an mddarray type is defined for both spinor type, and the packedGauges type. These mddarray

types are used to define the overall LQCD lattice data types that are shown in Listing 9.2.

Listing 9.2 shows two LQCD lattice data types. The listing defines two even-odd preconditioned

lattices of KS, and Wilson spinors. We have skipped the constructor and destructor calls for the classes.

123

1 using namespace quarc::metal;
2
3 /// Complex number
4 using qcomplex = sdlarray<TYPE, 2>;
5 /// KS spinors
6 using su3vector = sdlarray<qcomplex, 3>;
7 /// Wilson spinors
8 using wilson_vector = sdlarray<su3vector, 4>;
9 using half_wilson_vector = sdlarray<su3vector, 2>;

10 /// A 3x3 SU(3) matrix formed out of three su3vector
11 using su3matrix = sdlarray<su3vector, 3>;
12 /// A packed array of eight SU3 matrices
13 using packedGauges = sdlarray<su3matrix, 8>;
14 /// Global shape representing a 4D lattice
15 using Latt4D = global_shape<4>;
16 /// Mddarray containers representing different types of lattices
17 using ksSpinorLattice = mddarray<su3vector, Latt4D>;
18 using wilsonSpinorLattice = mddarray<wilson_vector, Latt4D>;
19 using gaugeLattice = mddarray<packedGauges, Latt4D>;

Listing 9.1: Defining LQCD data types in QUICQ

1 /// Even-odd preconditioned KS lattice
2 class EvenOddKSLattice
3 {
4 ksSpinorLattice EO_KSSpinors[2];
5 /// packged gauges for the first neighboring sites
6 gaugeLattice EO_FatLinks[2];
7 /// packged gauges for the third neighboring sites
8 gaugeLattice EO_LongLinks[2];
9 };

10
11 /// Even-odd preconditioned Wilson lattice
12 class EOWilsonLattice
13 {
14 ksSpinorLattice EO_WilsonSpinors[2];
15 gaugeLattice EO_Links[2];
16 };

Listing 9.2: Lattice data types

Notice that by default QUICQ’s uses an SOA layout for a LQCD lattice. As mentioned in Section 9.1,

each LQCD lattice site has a spinor, and eight gauges representing the edges between that site and its

neighboring sites in each cardinal direction. Conceptually, a lattice is an array of sites, and each site

represented as a struct. Several LQCD applications, like MILC (MILC collaboration, 1992), use

such a representation. In QUICQ, every lattice is stored using at least two arrays an array of spinors and

an array of packed gauges. The use of two separate arrays for spinors and packed gauges aids SIMD

vectorization, and reduces the need for strided gathers when moving neighboring spinors between MPI

ranks. The even and odd halves are kept separately in two different mddarrays.

124

Lattice Operators

Lattice operators operate on lattice data types. These are whole-array operations that each encapsulate

an mkernel function. Listing 9.3 shows the four lattice operators that are needed to implement the KS

Dslash operator as a METAL array expression. Each operator uses METAL’s expression factory functions

to define an array expression. C++14’s Substitution Failure Is Not An Error (SFINAE) functionality is

used to ensure an operator works for only a specified type of operands.

Each lattice operator builds either a binary or a unary array expression. For binary expressions,

the operator needs to specify the types of the two input operands, the output type, and the mkernel

function that is called back when evaluating the expression. For example, the operator* is defined

to accept an mddarray of packedGauges and and an mddarray of ksSpinors, while returning

an mddarray of ksSpinors. The operator calls the su3mult op mkernel function. The unary

operators have similar semantics, but require only one input operand type.

Mkernels

An mkernel function (Section 5.1.2.3) is an elemental operation that gets called for each mddarray

element. The mkernels provided by QUICQ define the base SU(3) algebra used in LQCD. Figure 9.4

presents the mkernels that are used in QUICQ’s KS Dslash implementation. These represent different

SU(3) operations, and can be viewed as short matrix-vector or vector-vector operations. During code-

generation mkernel functions get fully inlined at their call sites. For this reason, METAL requires that

mkernel functions are defined with the C++ static inline qualifiers.

KS Dslash Implementation

With the lattice operators defined in Listing 9.3 the KS Dslash operator is implemented as a single

array assignment statement. Listing 9.8 presents QUICQ’s implementation of the 17-point stencil kernel

representing the KS Dslash operator. As evident from this implementation, the kernel is implemented

using very few lines of code.

125

1 /// Builds a binary expression encapsulating SU(3) matrix-vector product.
2 template < typename T1, typename T2,
3 typename std::enable_if <
4 std::is_base_of<base_expression, T1>::value &&
5 std::is_base_of<base_expression, T2>::value &&
6 std::is_same<su3vector, typename T2::value_type>::value
7 >::type* = nullptr >
8 const auto& operator* (const T1 & r1, const T2 & r2)
9 {

10 return
11 expr_factory::binary_expr_builder <
12 T1, T2, typename T2::value_type, su3mult
13 > (r1, r2);
14 }
15 /// Builds a binary expression encapsulating addition of two SU(3) vectors.
16 template < typename T1, typename T2,
17 typename std::enable_if <
18 std::is_base_of<base_expression, T1>::value &&
19 std::is_base_of<base_expression, T2>::value &&
20 std::is_same<su3vector, typename T2::value_type>::value
21 >::type* = nullptr >
22 const auto& operator+ (const T1 & r1, const T2 & r2)
23 {
24 return
25 expr_factory::binary_expr_builder <
26 T1, T2, typename T2::value_type, su3add
27 > (r1, r2);
28 }
29 /// Builds a binary expression encapsulating subtraction of two SU(3) vectors.
30 template < typename T1, typename T2,
31 typename std::enable_if <
32 std::is_base_of<base_expression, T1>::value &&
33 std::is_base_of<base_expression, T2>::value &&
34 std::is_same<su3vector, typename T2::value_type>::value
35 >::type* = nullptr >
36 const auto& operator- (const T1 & r1, const T2 & r2)
37 {
38 return
39 expr_factory::binary_expr_builder <
40 T1, T2, typename T2::value_type, su3sub
41 > (r1, r2);
42 }
43 /// Builds a unary expression for conjugate transpose of SU(3) matrix
44 template < typename T1,
45 typename std::enable_if <
46 std::is_base_of<base_expression, T1>::value
47 >::type* = nullptr >
48 const auto& adjoint (const T1 & r1)
49 {
50 return
51 expr_factory::unary_expr_builder < T1, su3matrix, adj > (r1);
52 }

Listing 9.3: KS Lattice operators in QUICQ

126

1 /// Add two SU(3) vectors.
2 static inline auto
3 su3add (su3vector a, su3vector b) {
4 su3vector r;
5 for(auto i = 0ul; i < 3; ++i) {
6 r[i][0] = a[i][0] + b[i][0];
7 r[i][1] = a[i][1] + b[i][1];
8 }
9 return r;

10 }

Listing (9.4) Adding two su3vectors

1 /// Subtract two SU(3) vectors.
2 static inline auto
3 su3sub (su3vector a, su3vector b) {
4 su3vector r;
5 for(auto i = 0ul; i < 3; ++i) {
6 r[i][0] = a[i][0] - b[i][0];
7 r[i][1] = a[i][1] - b[i][1];
8 }
9 return r;

10 }

Listing (9.5) Subtracting two su3vectors

1 /// SU(3) matrix-vector multiplication
.

2 static inline auto
3 su3mul (su3matrix m, su3vector v) {
4 su3vector r = {0.0};
5 for(auto i = 0ul; i < 3; ++i)
6 for(auto j = 0ul; j < 3; ++j) {
7 r[i][0] += m[i][j][0] * v[j][0];
8 r[i][0] -= m[i][j][1] * v[j][1];
9 r[i][1] += m[i][j][0] * v[j][1];

10 r[i][1] += m[i][j][1] * v[j][0];
11 }
12 return r;
13 }

Listing (9.6) Multiply su3matrix by su3vector

1 /// Conjugate transpose of an SU(3)
matrix.

2 static inline auto
3 adj (su3matrix m) {
4 su3matrix r;
5 for(auto i = 0ul; i < 3; ++i)
6 for(auto j = 0ul; j < 3; ++j) {
7 r[i][j][0] = m[j][i][0];
8 r[i][j][1] = -m[j][i][1];
9 }

10
11 return r;
12
13 }

Listing (9.7) Conjugate transpose of an su3matrix

Figure 9.4: Mkernel functions needed for the KS Dslash operator

Implementation BLAS Level 1 routines

Building Krylov subspace solvers, such as the conjugate gradient (CG) method, requires vari-

ous BLAS Level 1 routines. Listing 9.9 shows excerpts from a full CG solver that solves the Dirac

equation using the KS Dslash operator. The listing shows various BLAS Level 1 routines applied to

ksSpinorLattice instances. QUICQ makes it exceedingly easy to write these routines, and all of

them can be written as succinct one-line array expressions.

Chapter Review

The implementation of QUICQ demonstrates the productivity advantage accrued by using QUARC.

The implementation of the KS Dslash 17-point stencil kernel took less than 400 lines of code including

all lattice operators and mkernel functions. A complete conjugate gradient solver on top of the KS Dslash

127

1 /// KS Dslash operator that updates one half of an even-odd lattice
2 void
3 __attribute__((always_inline))
4 ks_dslash_eo (const ksSpinorLattice &in, ksSpinorLattice &out,
5 const gaugeLattice &fl, const gaugeLattice &ll)
6 {
7 out = DRILL<0>(fl) * in.GSHIFT<1,0,0,0>()
8 + DRILL<1>(fl) * in.GSHIFT<0,1,0,0>()
9 + DRILL<2>(fl) * in.GSHIFT<0,0,1,0>()

10 + DRILL<3>(fl) * IF_EVEN_CHOOSE(in.GSHIFT<0,0,0,1>(), in)
11 - adjoint(DRILL<4>(fl)) * in.GSHIFT<-1,0,0,0>()
12 - adjoint(DRILL<5>(fl)) * in.GSHIFT<0,-1,0,0>()
13 - adjoint(DRILL<6>(fl)) * in.GSHIFT<0,0,-1,0>()
14 - adjoint(DRILL<7>(fl)) * IF_EVEN_CHOOSE(in, in.GSHIFT<0,0,0,-1>())
15 + DRILL<0>(ll) * in.GSHIFT<3,0,0,0>()
16 + DRILL<1>(ll) * in.GSHIFT<0,3,0,0>()
17 + DRILL<2>(ll) * in.GSHIFT<0,0,3,0>()
18 + DRILL<3>(ll) * IF_EVEN_CHOOSE(in.GSHIFT<0,0,0,2>(),
19 in.GSHIFT<0,0,0,1>())
20 - adjoint(DRILL<4>(ll)) * in.GSHIFT<-3,0,0,0>()
21 - adjoint(DRILL<5>(ll)) * in.GSHIFT<0,-3,0,0>()
22 - adjoint(DRILL<6>(ll)) * in.GSHIFT<0,0,-3,0>()
23 - adjoint(DRILL<7>(ll)) * IF_EVEN_CHOOSE(in.GSHIFT<0,0,0,-1>(),
24 in.GSHIFT<0,0,0,-2>());
25 }

Listing 9.8: KS Dslash implemented in QUICQ

1 ksSpinorLattice X,Y,Z;
2 /// squared magnitude of ksSpinorLattice X into a single su3vector
3 /// (operator* squares the magnitude of an su3vector)
4 auto msq_v = REDUCE(X*X, su3add);
5 /// AXPY (overloaded operator* scales the su3vector by the scalar ’a’)
6 auto a = 4.0;
7 auto Z = a*X + Y;
8 /// Dot product
9 auto pkp = REDUCE(dot(X,Y), scalar_add<float,float>);

10 /// L2 Norm
11 auto norm = std::sqrt(REDUCE(X*X, scalar_add<float,float>));

Listing 9.9: BLAS Level 1 routines in QUICQ

128

stencil kernel required another 100 lines of code, and a glue interface to integrate QUICQ’s solver into

MILC needed approximately 200 lines of code. The equivalent implementation of the KS Dslash kernel

itself in the MILC application package is approximately 3500 lines of code long. Thus, programming in

QUICQ offers a significant productivity boost in terms of the number of lines of code. The productivity

gain is much higher when we consider that programming in QUICQ is free of MPI, OpenMP, or any

other explicit parallelization constructs. Another point worth highlighting is that the mkernel functions

are near equivalent to their MILC counterparts, and are reused directly in the EDSL.

The main motivation of QUARC is not just to provide a high-productivity programming interface,

rather to combine high-productivity with high computational efficiency. To make that case, Chapter 10

presents the performance evaluation of the QUICQ kernels presented here, and compares the performance

to the baseline application performance.

129

CHAPTER 10: EVALUATION AND PERFORMANCE ANALYSIS

This chapter provides an evaluation of the QUARC framework. It looks at the effectiveness of the

data-layout transformation scheme introduced in Chapter 7. The performance of the stencil kernels

in Chapter 7 is compared to a baseline performance obtained by the Intel compiler’s auto-vectorizer.

After that we present a detailed evaluation and performance analysis of QUICQ, the prototype lattice

QCD DSL. QUICQ’s performance and productivity gains are compared to two existing lattice QCD

application frameworks: Chroma (Edwards and Joó, 2005), and MILC (MILC collaboration, 1992). Our

evaluation compares the two Dslash kernels introduced in Chapter 9. In addition, for MILC we developed

a complete conjugate gradient solver that was incorporated into an existing hybrid Monte Carlo molecular

dynamics application. The results present both the solver-level performance improvement, and shows

how that gain translates to whole application performance. We also provide a performance model to

evaluate the Dslash performance against the machine capabilities. The chapter concludes by discussing

two different code generation approaches that were tried when designing QUARC.

Test Platforms

All experiments for these set of evaluations were done on the following three Intel servers: A 32-core

dual-socket Intel®Xeon®E5-2698 v3 (Haswell) at 2.3 GHz server with 32 KB L1d, 256 KB L2 caches

and a shared 40 MB L3 cache per socket. A 68-core Intel®Xeon Phi ™7250 (KNL) at 1.4 GHz per core

with 32 KB L1d, 1 MB L2 and a 16 GB high-bandwidth MCDRAM configured as a L3 cache. A 48-core

dual-socket Intel®Xeon®Platinum 8160 (Skylake) server at 2.10 GHz with 32 KB L1d, 1 MB L2 and 33

MB of shared L3 per socket.

10.1 Stencil SIMD vectorization

This section compares QOPT’s SIMD vectorization for the 2D and 3D Jacobi stencils in Chapter 7

against ICC 18.0.1 autovectorization at -O3 optimization levels. Table 10.1 presents the execution

130

2D Jacobi 3D Jacobi
4MB 2MB 1MB 4MB 2MB 1MB

QOPT best exec. time (µs) 317 159 79 342 171 86
QOPT median exec. time (µs) 327 159 79 360 174 88
QOPT worst exec. time (µs) 348 167 83 626 233 115
ICC exec. time (µs) 504 247 124 572 279 141
% Gain in best case 37% 36% 36% 39% 40% 39%

Table 10.1: ICC vectorization v/s QOPT vectorization on Intel Skylake (AVX512)

2D Jacobi 3D Jacobi
4MB 2MB 1MB 4MB 2MB 1MB

QOPT best exec. time (µs) 1003 530 243 1331 690 325
QOPT median exec. time (µs) 1022 571 264 1548 762 361
QOPT worst exec. time (µs) 1103 590 272 2053 936 454
ICC exec. time (µs) 1127 723 338 1884 987 489
% Gain in best case 11% 27% 28% 29% 30% 34%

Table 10.2: ICC vectorization v/s QOPT vectorization on Intel KNL (AVX512)

times for the best, median, and worst performing QUARC data-layouts on the Intel Skylake server. It

also shows the execution time for a reference C++ implementation. We used the -qrestrict flag

along with the restrict keyword to aid ICC autovectorization. These options inform the compiler

that the pointers used in our stencil loop do not alias. Additionally, we used the xCORE-AVX512

and qopt-zmm-usage=high flags to ensure ICC used AVX512 vectorization on the Skylake server.

Both 2D and 3D scalar Jacobi are relatively simple kernels, and we were only considering single

threaded execution with periodic boundary conditions. Even then, on the Skylake server QOPT’s SIMD

vectorization in the best-case out performed ICC auto vectorization by up to 40% for the 3D example,

and up to 37% for the 2D example.

Table 10.2 presents the evaluation of the stencil kernels on the KNL platform used for the performance

study. On KNL the best performance was obtained for the smaller problem sizes. For the smallest 2D

Jacobi example, QOPT’s best data-layout outperformed ICC autovectorization by 28%. The gap closed

for larger problem sizes, where the performance was limited by the memory bandwidth. Even for such

cases, QOPT was able to achieve an 11% performance gain. The 3D Jacobi case has a comparatively

higher arithmetic intensity, and thus gains more from SIMD vectorization. Here, QOPT out performed

ICC by 34% for the smallest problem size. The larger problem size yielded a 29% performance gain.

131

10.2 Performance Evaluation of QUICQ

Figure of Merit (FOM) Both the Wilson Dslash and KS Dslash kernels from Chroma and MILC are

evaluated based on the following figure of merit. The reported numbers calculate the number of floating

point operations as follows:

FOM =
iterations× FlopCount× lattice volume

execution time(s)
(flops), (10.1)

where lattice volume is total number of sites in the lattice. The FlopCount for both Wilson and KS

Dslash was calculated in Section 9.1.

10.2.1 Chroma

The Chroma LQCD application is primarily developed using QDP++, with some of the performance

critical sections re-implemented as C/C++ libraries. QDP++ is a C++ DSL based on expression templates.

It uses the PETE expression template library (S. Haney J. Crotinger and Smith, 1999), and supports MPI,

OpenMP and IA SIMD vectorization. QDP++ also provides an optional JIT compiler to generate code

for Nvidia GPGPUs.

We evaluated the single node performance of Chroma’s default Wilson Dslash kernel implemented in

QDP++, and a hand-optimized version from the QPhiX library (Joó et al., 2013). QPhiX provides tuned

versions of the kernel for various generations of Intel architectures, and is currently the best performing

implementation of the Wilson Dslash kernel on x86 64 architectures. Chroma by default uses the QPhiX

implementation wherever available. We built both QDP++ and QPhiX using the Intel compiler 18.01,

and use only OpenMP parallelization. For QDP++, the IA SIMD specializations were not used. The IA

SIMD specialization only supports Intel SSE3 vector extensions, and was found to offer no performance

gain on our test platforms. QUICQ used LLVM 6.0 and OpenMPI 4.0.0. The evaluation was done on

two Intel servers, a 32-core Haswell with AVX2 vectorization, and a 68-core KNL supporting AVX512

vectorization. Experiments used all available cores and hyperthreads. The Haswell server provided two

hyperthreads per core, and the KNL server offered four hyperthreads per core. In addition, the KNL

server was configured to group the cores as four quadrants and the attached high-bandwidth memory

132

(HBM) was configured to run as a direct-mapped L3 cache. All results presented here use single-precision

floating point numbers. The results do not include data-layout conversion timings.

Figure 10.1 shows the comparative performance of QDP++ and QUICQ on the Haswell server.

The graph plots the lattice size against the calculated GFLOPs rate. We could not build the QPhiX

implementation for AVX2 vectorization, and it was omitted from these results.

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

Memory footprint (MB)

G
FL

O
PS

32-core Intel Haswell

QDP++ QUICQ

Figure 10.1: Single node Haswell comparison of QDP++ and QUICQ.

On the Haswell server, when the lattice size fits within L3 cache QUICQ outperformed QDP++

by 10×. There was a slight performance drop for problem sizes outside of L3 cache, but even for this

case QUICQ consistently performed 8-9× better than QDP++. For the QUICQ evaluations we blocked

the outermost lattice dimension, and allocated each block to an MPI rank. The data-layout for SIMD

vectorization was constructed using the simd-rtf value of {1,2,4,1}. The innermost dimension was fully

unrolled and the vector tile constructed out of the two inner dimensions.

The KNL evaluation included QPhiX as well. The problem sizes evaluated ranged from 51 MB to

1.6GB lattices. QPhiX and QUICQ blocked the lattice and bound each block to a hyperthread. When

evaluating the smallest problem size of a 51MB lattice, the blocks were small enough to be fully L2

cache resident. QDP++ provides no provision for blocking the lattice, and the default OpenMP static

133

0 200 400 600 800 1,000 1,200 1,400 1,600

0

100

200

300

400

500

600

Memory footprint (MB)

G
FL

O
PS

68-core Intel KNL

QDP++ QPhiX QUICQ

Figure 10.2: Single node KNL comparison of QDP++, QUICQ and QPhiX.

blocking and scheduling was applied. QUICQ’s block distribution was similar to what was used on the

Haswell test server, the lattice was block distributed along the outermost dimension. The data-layout

strategy involved building a three-dimensional vector tile by transforming the three outer dimensions. As

before the innermost dimension was fully unrolled. The data-layout was specified using a simd-rtf value

of {2,2,4,1}. This allowed building a 16 wide SIMD dimension to accommodate AVX512 vectorization.

QUICQ’s WD implementation outperformed QDP++ by up to 18× for the smallest lattice, and

was still 10× faster for the larger lattices. QPHiX’s KNL implementation performed ∼17% faster than

QUICQ. To understand the performance gap between QUICQ and QPhiX on KNLs, we measured and

analyzed performance-counter data, and found that QPhiX had a L2 cache miss rate of ∼15%, whereas

QUICQ had a miss rate of ∼25%. This difference only showed up when using hyperthreading. QPhiX

uses OpenMP based fine-grained thread affinity settings to pin OpenMP threads to hardware threads.

Due to this when QPhiX allocated two neighboring lattice blocks to different OpenMP threads, it could

ensure that the threads are co-located on the same core. QUICQ uses OpenMPI as its MPI back end.

OpenMPI only allows binding MPI ranks to individual cores. When using hyperthreads, OpenMPI does

what is known as over-provisioning of MPI ranks per node. It does not offer any easy features to pin

134

ranks to hyperthreads. The only way to do so would be to write MPI rankfiles, something we have not

explored at this point.

10.2.2 MILC

MILC is another production LQCD application mostly written in C, and that uses MPI for parallelism.

Some kernels within MILC provide OpenMP support to hybrid MPI+OpenMP parallelism. There is

limited support for explicit SIMD vectorization, but this application too uses the QPhiX library for

optimized implementation of the Wilson and KS Dslash kernels and iterative solvers. We evaluated

the performance of MILC’s KS Dslash and an iterative conjugate gradient solver to corresponding

implementations using QUICQ. Performance evaluation results for MILC use its default MPI+OpenMP

execution mode. We used the MILC version distributed as part of the Trinity NERSC benchmark suite

(National Energy Research Scientific Computing Center, 2013). The MILC application was compiled

using ICC 18.0.1 and used the Intel MPI library.

We evaluate MILC’s KS Dslash kernel against an equivalent version implemented in QUICQ, and

also compare a hand-tuned version released as part of the QPhiX library. This is followed by evaluating

a conjugate gradient solver that uses the KS Dslash kernel, and finally we analyze the whole program

performance after integrating our solver.

KS Dslash Performance

The KS Dslash kernel was described in Section 9.1.2. This kernel is used in staggered fermion

configuration of LQCD simulations. It is a 17-point stencil over a complex vector field.Table 10.3

shows the respective lines of code (loc) metric for the KS Dslash implementations in MILC, QPhiX and

QUICQ. These counts were generated using Linux’s cloc utility. The loc metric considered only functions

that implement the Dslash operator, MPI communication, and other helper routines such as vector and

prefetch intrinsics. The pseudo-code loc value represents the minimum number of lines needed to write

the 17-point Dslash stencil and its elemental SU(3) operators in C. The numbers show that going from

65 lines of pseudo-code to a real HPC application is a huge expansion in loc. More importantly, with this

inflation of code size comes a large increase code complexity. MILC or QPHiX implementations include

MPI, OpenMP and vector intrinsics interleaved with the application logic. This makes the code hard to

read and maintain. It also makes it harder to improve and port them to newer architectures.

135

Table 10.3: Lines of code for KS Dslash MILC v/s QPhiX v/s QUICQ

Pseudo-code MILC QPhiX QUICQ

65 3,486 2,358/1,726a 387

aVector intrinsics headers implementing K-S Dslash for one of the several layouts that QPhiX can use. QPhiX uses a small
code-generator to generate separate headers for each ISA and data-layout.

In this regard, QUICQ offers tremendous productivity gain. The implementation of the KS Dslash

kernel and the solver routines in QUICQ takes almost one tenth the loc as MILC. The implementation

was presented in Section 9.2. The DSL-level code does not require any explicit parallelization constructs.

The code retains an expressiveness that comes closest to the pseudo code implementation. This gives

application developers better readability, and allows them to focus on the algorithmic aspects of their

applications. QUARC’s speculative vectorizer and decoupled runtime data-layout specification means

that porting the abstract application to a new IA involves recompilation with correct data-layout flags and

architecture specifier. This offers a significant boost in productivity, reducing the time to develop or port

algorithms to newer generations of architectures.

Figure 10.3 compares the performance of the single precision performance of the KS Dslash kernel.

On all architectures QUICQ significantly outperforms MILC by over a factor of two. QUICQ’s better

cache blocking strategy and SIMD vectorization achieves a much greater performance, even when the

problem falls out of last-level cache. QUICQ is also able to closely match QPhiX’s performance on

the 32-core Haswell server. The only variation is for the smallest lattice configuration on this server.

This was a small 32×8×8×16 lattice for which QUICQ could not use a data-layout wide enough for

AVX2 vectorization. The reported number are based on AVX vectorization and comparatively slower

than QPhiX.

QUICQ was 1.8× faster than MILC on KNLs as well. As with the Chroma experiments, there was a

small performance gap between QUICQ and QPhiX on KNLs, still QUICQ’s performance was within

10% of QPhiX performance. The KS Dslash implementation within the QPhiX library was not publicly

available for the Skylake architecture at the time of this evaluation, so our evaluation on the Skylake

server does not include QPhiX.

136

50 100 150 200 250 300
0

100

200

300

400

Memory footprint (MB)

G
FL

O
PS

32-core Intel Haswell

100 200 300 400 500 600
0

100

200

300

400

Memory footprint (MB)

G
FL

O
PS

48-core Intel Skylake

500 1,000 1,500 2,000 2,500
0

100

200

300

400

Memory footprint (MB)

G
FL

O
PS

68-core Intel KNL

MILC QPhiX QUICQ

Figure 10.3: Single node comparison of MILC, QUICQ and QPhiX.

137

100 200 300 400 500 600
0

100

200

300

400

Memory footprint (MB)

G
FL

O
PS

CG Solver Performance

100 150 200 250 300
0

100

200

300

400

Memory footprint (MB)

W
al

l-
cl

oc
k(

s)

Whole application performance

MILC QUICQ

Figure 10.4: Evaluation of MILC and QUICQ’s conjugate gradient solvers and the complete su3 rmd
simulation on a single 48-core Skylake server.

Conjugate Gradient Solver and Whole Application Performance

The final step of our experimental evaluation of MILC was analyzing the full conjugate gradient

solver built on top of the KS Dslash kernel, and to use that solver in the MILC benchmark (National

Energy Research Scientific Computing Center, 2013). The benchmark is a simplified version of MILC’s

su3 rmd hybrid Monte Carlo molecular dynamics simulation. The solver constitutes around 70-80% of

the total wall-clock time of each simulation. In addition to the Dslash kernel, the solver incorporates

various level-one BLAS kernels. This causes the whole solver to have a slightly greater flop count than

the Dslash. Using the methodology used in Chapter 9 for the KS Dslash kernel, the per site flop count

for the solver is derived as 1187. The whole application and solver experiments were done only on the

Skylake server. We updated the existing MILC su3 rmd benchmark application to use the solver written

in QUICQ.

Figure 10.4 shows the performance of QUICQ for the conjugate gradient solver on the Skylake

server. Here too QUICQ outperforms MILC by a factor of two. The whole application level performance

reflects a much smaller gain than just the solver. The best performance improvement was 30% for a

16×16×16×48 size lattice.

138

This lower whole application performance gain is attributable to the cost of doing the data-layout

transformations between MILC and QUICQ before each solver run. However, the benchmark application

does significantly lower number of iterations per solve compared to a full-scale production simulation. A

production simulation would do order of magnitude higher number of iterations. The net application-level

gain should be higher for actual production loads. This proof-of-concept design shows the viability of

the DSL approach to rewrite a portion of the existing application without wholesale re-implementation.

Performance Model to Evaluate Dslash Memory Performance

Section 9.1.2 provided the computational profile of the KS Dslash operator. This kernel has a large

data footprint of 1560 bytes per lattice site when using single precision floating point numbers. The

flop-to-byte ratio was calculated as 0.73 for every Dslash iteration. These figures are now used to develop

a basic performance mode to evaluate the measured floating-point operation rate.

The measured flop rate can be written in terms of memory bandwidth as follows:

Flops =
1147

16×G
Br

+ 16×S
Br

+ 1×S
Bw

, (10.2)

where G is the size of a SU(3) matrix representing a gauge link, S is the size of a SU(3) vector

representing a spinor, and Br and Bw are the read and write memory bandwidths. The read spinors

can be reused across iterations, but the gauge links do not have reuse and have to be reread each time.

The result of each iteration needs to be written back to memory. The theoretical memory bandwidth

requirement for the KS Dslash kernel can be computed based on these characteristics.

The 16×S
Br

term can be disregarded if it is assumed that the read spinors are perfectly reused from

last-level cache. Also, for simplification of the model Br and Bw are considered the same. With these

assumptions, the required memory bandwidth is computed as:

B =
MeasuredF lops ∗ (16×G+ 1× S)

1147
. (10.3)

For the results obtained on the Skylake server for KS Dslash, the 32×16×16×16 lattice is used as

a representative problem size that does not fully fit in the L3 cache on this server. The measured flop

rate of the Dslash kernel for this lattice was 185 GFLOPS. Equation (10.3) provides the peak theoretical

bandwidth requirement for this problem size as 189 GB/s. If this figure is compared to the published

139

memory bandwidth numbers (Gómez-Iglesias et al., 2017) for this server, we notice that our measured

results come within 97% of the peak Stream (McCalpin, 2007) bandwidth.

The performance model shows that the overall performance of this kernel is constrained by memory

bandwidth, and that QUICQ obtains close to the maximum possible Stream memory bandwidth. Thus,

based on the roofline model (Williams et al., 2009) we argue that the performance attained by QUICQ is

close to the peak possible flop-rate for this kernel on this particular server. Thus, lending credence to one

of our core arguments that it is possible to achieve uncompromised performance using a DSL approach.

10.3 Comparing Two Approaches for Code Generation

The initial implementation of QUARC (quarc v0.4) required a static problem size for all mddarrays.

The problem size and data-layout needed to be specified as a compiler flags to QOPT. The advantage

of this approach was that it allowed us to do the various checks regarding applicability of data-layouts

at compile time. Additionally, the polyhedral code generation process was much simplified, as all loop

bounds were statically defined. The disadvantage to this approach was it made integrating QUARC-

generated kernels with existing code cumbersome. A change of problem size or data-layout required

recompilation of the whole program. Linking QUARC-generated binaries to existing applications also

proved hard, since the glue interface needed to be specialized for the problem sizes and data-layouts that

were previously generated using QUARC.

To get around these software engineering issues, we did a re-implementation of the code generator

(quarc v0.5). The requirement for a compile time known problem size was removed. The speculative

SIMD vectorizer was introduced to allow the code generation to be specialized for a subset of applicable

data-layout choices. The layout selection and most of the checks to ensure legality were pushed

into the QUARC-RT runtime library. These changes meant that the interoperability of QUARC with

existing application became significantly easier. This was evident when we could use the solver routine

implemented in QUICQ as a drop-in replacement for MILC’s default solver.

A disadvantage of the second code generation method was it slightly increased compilation time,

because multiple versions are generated for each kernel. Figure 10.5 presents the comparison of the KS

Dslash kernel on the Skylake server for both approaches. These numbers are based on evaluating just

the KS Dslash as a micro-kernel with synthetic data. As evidenced from these numbers, we noticed an

140

16×16×16×48 32×16×16×48 0

1

2

3

4

5

1

5

2

5

E
xe

cu
tio

n
tim

e
(s

)

Execution time of 500 KS Dslash iteration on a 48-core Skylake

quarc v0.4 quarc v0.5

Figure 10.5: Comparing the two code generation approaches for QUARC for the KS Dslash lattice.

overhead of 8% for the best-case scenario when the problem fits in L3 cache. Once the problem becomes

memory bound the overhead between the two methods is negligible.

Chapter Review

The results presented in this chapter underscore the effectiveness of data-layout transformations in

improving SIMD vectorization for stencil kernels. The performance gain is especially pronounced for

HPC applications such as lattice QCD that involve large number of iterative steps. The performance

results of the QUICQ DSL show that our approach is well suited to offer large productivity gains, while

being highly competitive with the best hand-tuned implementations for the type of kernels currently

targeted by QUARC.

From a software architecture perspective, our design shows how a DSL approach is usable with

existing production applications. Our framework allows existing hot spots to be rewritten in a high-

productivity DSL, without needing a wholesale application rewrite. We feel this approach is better suited

to wide adoption of DSLs.

141

CHAPTER 11: RELATED WORK

This chapter reviews related work and prior art that connect to aspects of QUARC’s design and

implementation. QUARC builds on ideas introduced in diverse domains like array-programming,

metaprogramming, data parallelism, polyhedral compilation, and DSL design. We compare QUARC

to other C++-based approaches and to previous DSLs in the domain of LQCD, as well as to recent

HPC DSL designs and their implementation. The final section of the chapter evaluates data-layout

transformation methods, contrasting them to QUARC’s approach.

11.1 C++ Array-Programming Techniques

C++ does not directly support multi-dimensional dynamic arrays as first-class objects. Techniques

such as C++ ETs (Veldhuizen, 1995; Vandevoorde and Josuttis, 2002) exist to get around this limitation.

C++ ETs are based on C++ template recursion and lazy evaluation of C++ templates. The key concept is

to evaluate a C++ template-based array expression only when it is needed, eliminating temporary arrays

that otherwise would be created. Dedicated C++ ETs frameworks, such as Boost.Proto (Niebler, 2007),

build on this basic design and include further optimizations using C++ template specialization. C++ ETs

have been used widely to build BLAS libraries (Veldhuizen, 2006; Iglberger et al., 2012; Walter and

Koch, 2012), data-parallel EDSLs (Edwards and Joó, 2005; Parsons and Quinlan, 1994; Reynders and

Cummings, 1998), and high-level abstractions to generate x86 64 SIMD code (Estérie et al., 2012), and

GPGPUs code (Wiemann et al., 2011; Breglia et al., 2013; Winter et al., 2014).

The C++ ETs design generates loops and linearized array accesses in the C++ TMP-layer. Due

to this design, scalar optimizations such as common sub-expression elimination and lazy code motion

cannot directly be applied to array expressions written using C++ ETs. Such optimizations require

additional loop analysis and optimization. Often, C++ template-generated obfuscation makes it nearly

impossible for any compiler to detect any such loop-optimization opportunity. As an example, each C++

ET expands into a separate function call that has a scalarized loop nest. This implies that a prerequisite

142

to any loop optimization across the loop nests generated for multiple C++ ETs is inlining of each C++

ETs function call. The problem gets harder when C++ ETs generate parallel code. In such cases, the

scalarized loop nests may include OpenMP or MPI library calls. Such library calls are opaque to most

C++ compilers, and make it harder to apply function inlining and loop optimizations such as loop fusion

in a deterministic fashion.

There have been attempts to mitigate some of the limitations of C++ ETs. The ROSE source-to-

source compiler (Quinlan et al., 2003) uses abstract syntax-tree rewrite rules to optimize code-generation

out of C++ ETs. Winter et al. (Winter et al., 2014) used JIT compilation of C++ ETs to compile for

NVIDIA GPGPUs, and to generate SIMD vector code on x86 64. Despite much sterling effort, it has

not been possible to overcome the design flaws associated with C++ ETs.

METAL’s approach solves many of the issues of C++ ETs. Rather than generate low-level code out

of array expressions in the C++ template-layer, METAL generates a domain-specific IR that encodes the

array expressions directly into a compiler IR. QUARC’s code-generation stages apply standard as well as

domain-specific compiler passes to optimize and to auto-parallelize array expressions.

There have been other C++ array-programming techniques apart from C++ ETs. C++ Extension

for Array Notation (CEAN) (Robison, 2013), Intel Array Building Blocks (ArBB) (Newburn et al.,

2011), and the Kokkos library (Edwards and Trott, 2013) incorporated array-based abstractions and data

parallelism. CEAN expressions were inherently data-parallel and served as compiler hints to generate

x86 64 SIMD vector code. ArBB used JIT compilation to scalarize loops for automatic thread parallelism

and SIMD vectorization. Both CEAN and ArBB are now retired and are no longer extant. The Kokkos

library supports array data-layouts. Kokkos does not support array expressions directly, but has foreach

loop constructs. It is possible to specialize the foreach constructs both for GPGPUs and for x86 64 CPU

parallelism from the same high-level interface.

11.2 C++ Parallel Skeleton Library

A parallel skeleton is an abstraction for a parallel computation pattern. Parallel skeletons, either

as language extensions or as library functions, support programmers in writing parallel programs, thus

improving programmer productivity. Parallel skeletons often are combined with parallel containers.

Parallel containers abstract the partitioning and distribution of data across a compute environment.

143

Implementations of skeletons and parallel containers can abstract aspects of parallelism, data movement,

and synchronization. In C++, the library function route has been an efficient way to implement parallel

skeletons (Bischof et al., 2004). Often, such implementations use generative programming using C++

templates. There are several production-quality C++ parallel skeleton libraries.

STAPL (Buss et al., 2010) has parallel containers whose basic functionalities are equivalent to the

sequential containers in the C++ Standard Template Library (STL). STAPL implements parallel versions

of STL’s algorithm functions, supporting both shared and distributed memory parallelism. STAPL’s

underlying programming model is task parallelism. It relies on a its own runtime system.

Thrust (NVIDIA Corporation, 2016) is another C++ header-only library with a C++ STL-like

interface for parallel skeletons. The primary focus of Thrust is to accelerate code on NVIDIA GPGPUs.

The library has memory-locality specifiers to control where data is stored. Thrust has optimized the

NVIDIA CUDA (NVIDIA Corporation, 2010) implementation of standard C++ STL algorithms.

OpenCL skeletons are parallel programming skeletons for GPGPUs using OpenCL (The Khronos

Group, 2015) directives. There are several libraries that abstract OpenCL code-generation. VexCL (Demi-

dov et al., 2013) is a C++ ETs libraries that generates OpenCL/CUDA code for several parallel patterns

and BLAS kernels. Boost.Compute (Lutz, 2015) is a C++ template library for OpenCL programming.

Boost.Compute parallel containers manage GPU-device memory allocation as well as automate data

movement between the CPU and the GPU. SYCL (Group, 2018) is a cross-platform abstraction layer

for OpenCL developed by the Khronos Group, an industry consortium which maintains the OpenCL

standard. Sycl allows programs to be written in a “single-source” style, i.e., as opposed to separate

sources for host and device code, a single source file can include both. SYCL’s interface is like C++ STL,

and includes built-in parallel patterns.

C++17 Parallel STL The library-based parallel skeleton implementations stem from the C++

standard’s lack of support for parallel skeletons and algorithms. The revamped C++17 standard aims to

mitigate this discrepancy. The new C++17 standard has included a set of parallel algorithms in the newly

added C++17 Parallel STL standard library. The scope for C++17 Parallel STL is restricted to multi-core

and SIMD parallelization. The initial set of algorithms include only three parallel patterns: foreach,

reduce and scan. Present discussions in the C++ community are exploring ways to expand on this initial

set of patterns. There are also discussions around supporting GPGPUs and accelerator programming in

an updated C++ standard.

144

QUARC’s current design incorporates the foreach, shift, and reduce parallel skeletons. All three skele-

tons are implemented inside the METAL frontend. QUARC’s parallel skeletons act on the mddarray

global view array container. The uniqueness in QUARC’s design is its support for shared-memory paral-

lelism, distributed-memory parallelism, and SIMD vectorization using the same set of abstractions. This

makes QUARC’s parallel skeletons powerful and wellsuited for large-scale HPC application domains.

11.3 LQCD DSLs

LQCD has existing production DSLs based on C++ ETs. QDP++ (Edwards and Joó, 2005) is a

legacy DSL that uses the PETE (S. Haney J. Crotinger and Smith, 1999) C++ ET library. Although

QDP++ is a highly expressive programming language for LQCD applications, its performance does

not match those of hand-tuned libraries. Performance-critical portions of LQCD applications usually

are coded outside of QDP++. The goal of improving QDP++ performance automatically was the main

motivation for QUARC.

QDP-JIT (Winter et al., 2014) is a JIT compiler framework to optimizes QDP++. It embeds a JIT

compiler in the C++ ET template interface. Runtime evaluation of the ETs generates native code via the

JIT compiler. The initial goal of QDP-JIT was to generate code for NVIDIA GPGPUs. Further extensions

to QDP-JIT have added code-generation capabilities for x86 and MIC architectures. QDP-JIT offers a

performance advantage over QDP++, but its performance does not compare to hand-tuned libraries such

as QPhiX (Joó et al., 2013) or QUDA (Babich et al., 2011).

Grid (Boyle et al., 2015) is a more modern C++ template-based LQCD DSL. Grid uses abstractions

for architecture-specific SIMD data types and supports a set of fixed data-layout choices based on

architecture-specific SIMD register width. Despite having a modern C++-based design, Grid too suffers

from limitations that impact a library-only EDSL design. Grid’s interface has to be updated for every

SIMD ISA generation, and optimizations such as cache blocking require separate template specialization.

11.4 DSLs and DSL Frameworks

The need for DSLs and DSL frameworks in HPC has been apparent for a long time. The early

2000’s saw several projects aimed at DSLs and at domain-specific compiler implementations. The

telescoping languages (Kennedy et al., 2005) design was an influential early proposal seeking to address

145

property discovery and transformation of high-level code. The telescoping languages aimed at reducing

the performance gap between scripting languages and code written in C or in FORTRAN. The design

presented, among other things, a concept called a “library-aware” optimizer. Such an optimizer could

be capable of substituting DSL function calls with calls to specialized library function implementations.

It was also proposed that the creation of a library-aware optimizer could be automated. The Tensor

Contraction Engine (TCE) (Baumgartner et al., 2005) was a domain-specific compiler developed to

compile a Mathematica-style DSL into FORTRAN code. TCE targeted two levels of optimizations. At the

highest level, domain-specific algebraic substitutions were done to reduce the computational complexity.

Then, the DSL code was source-to-source translated to FORTRAN, and loop fusion transformations

were explored. TCE primarily was used for quantum chemistry code. Finally, POOMA (Reynders and

Cummings, 1998) was a C++ ET based data parallel framework. POOMA was a precursor to LQCD’s

QDP++ DSL. POOMA suffered from the same issues afflicting C++ ETs.

There has been a lot of advancement in DSL technologies since these early frameworks. We look

next at some of the most successful DSL frameworks that have prevailed in the past decade.

Delite (Sujeeth et al., 2014) is a Scala-based DSL framework. It provides several data-parallel

patterns and DSL data types that form the basic blocks for HPC DSLs. The framework uses a modified

version of the standard Scala compiler called Scala-virtualized (Moors et al., 2012) to construct a domain-

specific IR from Scala’s JVM byte code. To identify the DSL constructs embedded inside a standard

Scala program, Delite uses a version of MSP (Chapter 2) called Lightweight Modular Staging (LMS).

The domain-specific IR is optimized using a standalone Delite compiler. The Delite compiler provides

several optimizations, such as common sub-expression elimination, dead code elimination, and code

motion, that are applied directly to high-level DSL constructs and operators. In addition, Delite supports

AOS-to-SOA data-layout transformations and has some support for fusion of data-parallel operators

based on producer-consumer dependence.

The Delite approach bears similarities to that of QUARC, but the overall engineering and design of

the frameworks are very different. Unlike Delite, QUARC stages its domain-specific IR inside LLVM’s

SSA CFG IR using only a small set of DSL intrinsic function calls. QUARC’s compiler is fully integrated

with the standard LLVM compiler and is implemented as a set of custom LLVM compiler passes. This

allows us to use existing data-flow optimizations, polyhedral code-generation, and loop optimizations

directly by utilizing the LLVM infrastructure. Although Delite supports AOS-to-SOA data-layout

146

transformations, QUARC’s data-placement optimizations for numeric nested array types are much more

general and support a larger space of data-layouts.

SPIRAL (Püschel et al., 2005) is a digital signal-processing (DSP) DSL with a split-programming

language interface. Algorithms for a DSP transform are written as formula in a language called SPL.

SPL uses domain-specific algebraic simplification rules, or rewrite rules, to optimize the high-level

formulae. The process incorporates feedback-driven autotuning. Low-level code-generation is driven

by a separate specification layer. SPIRAL uses two types of code-generation specifications that it calls

tags and templates. Tags are directly attached to SPL rules and define options such as loop unroll factors.

Templates define a rich loop-generation algebra and control most aspects of low-level loop generation.

Templates allow decoupling of the high-level algorithms from platform-specific code-generation and ease

evaluation of different code-generation strategies for the same high-level algorithm.

Halide (Ragan-Kelley et al., 2013) is an image-processing DSL with a two-level split-programming

interface. Halide programs have an algorithm section and a separate code-generation specification that

is called a schedule. The schedule guides loop optimizations and parallel code-generation. Halide uses

an autotuning approach to optimize schedules for a given algorithm. Although Halide was primarily

designed for image processing, the DSL has other potential application. There is ongoing effort to use

Halide in designing DSLs for LQCD.

QUARC’s METAL and ATL approach drew on SPIRAL and on Halide’s split-language design.

Terra (DeVito et al., 2013) is a statically typed language for building EDSLs in the Lua programming

language (LabLua, 2015). Terra and Lua share the same lexical scope. The design allows applications to

be prototyped rapidly in Lua before portions of the code are staged and re-implemented in Terra. Terra

uses dynamic staging and allows for runtime feedback-based autotuning.

11.5 Data-Layout Transformations

Data-layout transformations, and specifically, data-placement abstractions, have been discussed

elsewhere in this dissertation. This section summarizes and highlights some of the key prior work.

Anderson et al. (Anderson et al., 1995) used a data-layout transformation based on the strip-mine and

interchange loop transformation to address false sharing on cache-coherent architectures. Their technique

is expressed easily in our ρφ algebra as a one-dimensional array reshape-and-transpose operation. A

147

very similar technique was introduced by Lu et al. (Lu et al., 2009) to improve data locality on chip-

multiprocessors with non-uniform caches. So et al. (So et al., 2004) used a data-layout transformation to

improve memory access on FPGA-based systems. Their method transformed arrays for placement on

multiple memory banks to enhance memory bandwidth by paralleling memory accesses. Sung et al. used

a matrix transpose-based technique (Sung et al., 2010) to change array data-layouts on GPGPUs, thus

improving memory-level parallelism for structured grid applications.

FORTRAN variants like FORTRAN D (Hiranandani et al., 1992) and High Performance FORTRAN

(HPF) (Loveman, 1993) offered directive-based data-placement abstractions for multi-dimensional arrays.

The directives were used primarily to define hypercubic blocking for arrays over distributed memory

systems. Similar block directives were used in ZPL (Chamberlain et al., 1998), and in the HPCS

programming language family (Chamberlain et al., 2007; Charles et al., 2005; Allen et al., 2008).

Recent compiler frameworks like Intel’s ispc (Pharr and Mark, 2012) and a Habenero-C based

compiler framework from Majeti et al. (Majeti et al., 2016) have AOS and SOA-type data-layout in the

code frontend. A stencil compiler prototype developed by Henretty et al. (Henretty et al., 2013) used

the previously discussed dimension-lift and transpose data-layout transformations to optimize stencil

kernels.

148

CHAPTER 12: CONCLUSION AND FUTURE WORK

The issue of combining high programmer productivity with commensurate computational efficiency

is a long-standing challenge in computer science. The challenge is greater within the space of HPC where

there is the requirement of cluster-level parallelism. When compared to serial programming, writing

parallel programs for a cluster is much harder as cluster-level parallel programming has limited compiler

and programming language support. Such programs are typically written using external libraries and

APIs such as MPI. The already hard problem of cluster-level parallel programming has gained a new

dimension due to the onset of chip multi-processing and large-sale parallelism with a single compute

node of a cluster computer. Getting a large fraction of peak single-node performance of an application by

compiling it for a newer, faster architecture generation is no longer a viable option.

To mitigate aspects of the challenge, our thesis argued for a data-placement-based approach where

code-generation and optimization is driven by data-placement. We argued that an EDSL-based design is

well-suited for such a data-placement-based code-generation approach. The QUARC framework is a

proof-by-example in support of this thesis. The data-parallel abstractions in QUARC was the basis of

the prototyped LQCD DSL, QUICQ. LQCD kernel implementations in QUICQ (Section 9.2) were

simpler than comparable existing production code. QUICQ not only took less than one-tenth the lines of

code, but required no explicit parallel programming. The performance results in Chapter 10 show that the

kernels implemented in QUICQ are up to twice as fast in comparison to existing production code written

in C. The performance of QUICQ was also competitive with those of the very best hand-optimized

library implementation. In addition, QUICQ outperformed an existing LQCD EDSL by a factor of ten.

The evaluation results, both in terms of the productivity gain and in terms of performance gain, make a

strong case in support of our thesis.

The design and implementation of QUARC addressed two important issues regarding EDSL

development for HPC domains.

149

The first issue relates to data placement abstractions and the need for multiple layers of such

abstractions. Our ρφ index-space transformation algebra (Chapter 4) addressed this issue. Using

this algebra, QUARC’s ATL specifications can define data-placement at multiple levels. Our work

demonstrates the use of the same set of operators to define both on node data-layouts and global data-

distributions. The current implementation is limited to these two types of data-placement abstractions, but

the algebra is extensible to other architectures. Specific to shared-memory systems, we implemented a

new SIMD auto-vectorization method that was solely based on data-layouts defined using the ρφ algebra.

The new auto-vectorization method performs up to 40% better than default auto-vectorization for scalar

stencil kernels. The performance gain is much higher for the complex stencil kernels in LQCD. There

exists prior art that used hand-vectorization after similar data-layout transformations, but the automated

technique implemented in QUARC makes this kind of vectorization robust and portable. Another

key feature of QUARC’s data-placement abstractions is they work with polyhedral code-generation.

Chapter 6 explained in detail the use of polyhedral code-generation methods in combination with custom

data-placement abstractions. To the best of our knowledge, QUARC is the first system to demonstrate

this type of code-generation approach.

The second issue addressed by QUARC’s design is the issue of making a compiler aware of the

programmer’s intent. Traditionally, low-level languages such as C and C++ make a number of code-

generation decisions in the frontend. Loop and access linearization are examples of such decisions.

Losing these information makes it hard for any compiler to recover the programmer’s intent, and thwarts

subsequent compiler analyses and optimizations. Existing EDSLs address some of these issues by

constructing domain-specific IRs and using domain-specific AST-level rewrites before passing the code

to a lower-level compiler. Our approach expanded on these ideas. Using a new metaprogramming

technique called ACTs (Section 5.2), we presented a new design for domain-specific IRs. ACTs are a

way to encode a domain-specific IR into a general-purpose compiler’s IR. By encoding a domain-specific

IR into a general-purpose compiler’s IR, QUARC lowers the engineering effort of domain-specific

code-generation and optimizations. The viability of this design was demonstrated by QOPT’s speculative

SIMD vectorization optimization. In Section 12.1, we discussed some other potential benefits of

QUARC’s ACTs-based IR design.

In conclusion, the design and implementation of QUARC introduced new ways of constructing

EDSLs using C++14 and LLVM. Our work showed the importance of data-layouts on modern x86 64-

150

based architectures, and offered a way of automating several of the code-generation decisions that are

dependent on data-layouts. The value of these innovations is demonstrated by the implementation of

QUICQ, an EDSL for a real-world HPC application domain. There is significant room for further

expasion of the ideas introduced in our work, and targeting the development for other HPC EDSLs using

QUARC. The next section concludes this dissertation by presenting a list of such potential future work.

12.1 Future Work

The current design of QUARC is general, and it offers the potential of extensions to support large-

scale, real-world application domains. The implementation for the purpose of this dissertation only serves

as a technology demonstrator in support of our main thesis around data-placement abstractions. There

are several other areas that present opportunities for further development of QUARC. Following are

some of the areas that need to be incorporated into QUARC’s implementation to quantify its applicability

in a real-world environment.

METAL’s design, using ACTs and DSL intrinsics, also makes it possible to develop other patterns

such as operators required for algebraic multigrid methods. Such techniques are becoming increasingly

useful, but programming them by hand is still difficult. An EDSL-based approach could help simplify

the conceptual and programming challenges.

The design of late scalarization of array expressions preserves high-level constructs late into the

code-generation process. This opens up the possibility of applying high-level optimizations directly to

array expressions prior to lowering them into low-level loops and elemental accesses. QOPT presented

a design that explored the viability of this method. To do this well for general cases will require

data-dependence analysis. Chapter 6 discussed how data-dependence analysis can be incorporated into

QUARC. Incorporating data-dependence-based analyses would enable targeting much wider range of

kernels.

The current focus of QUARC was restricted to Intel architectures, but both QUARC’s EDSL design

methodology and data-layout transformation techniques should map well to other architectures such as

GPGPUs. The emergence of very large accelerator-based systems makes this a priority.

151

Finally, techniques for profiling and debugging EDSL generated code are a necessity. This area

presents both practical design and implementation challenges and open research questions. Such

challenges need to be solved prior to wide adoption of EDSL frameworks like QUARC.

152

BIBLIOGRAPHY

Acharya, A. and Bondhugula, U. (2015). PLUTO+: Near-Complete Modeling of Affine Transformations
for Parallelism and Locality. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 54–64.

Adve, V. and Mellor-Crummey, J. (1998). Using Integer Sets for Data-parallel Program Analysis and
Optimization. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, PLDI ’98, pages 186–198, New York, NY, USA. ACM.

Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G. L., and Tobin-
Hochstadt, S. (2008). The Fortress Language Specification Version 1.0. http://homes.soic.
indiana.edu/samth/fortress-spec.pdf.

Allen, J. R., Kennedy, K., Porterfield, C., and Warren, J. (1983). Conversion of Control Dependence to
Data Dependence. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’83, pages 177–189, New York, NY, USA. ACM.

Ancourt, C. and Irigoin, F. (1991). Scanning Polyhedra with DO Loops. In Proceedings of the Third
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’91, pages
39–50, New York, NY, USA. ACM.

Anderson, J. M., Amarasinghe, S. P., and Lam, M. S. (1995). Data and Computation Transformations for
Multiprocessors. ACM SIGPLAN Notices, 30(8):166–178.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson,
D., Sen, K., Wawrzynek, J., Wessel, D., and Yelick, K. (2009). A View of the Parallel Computing
Landscape. Commun. ACM, 52(10):56–67.

Babich, R., Clark, M. A., Joó, B., Shi, G., Brower, R. C., and Gottlieb, S. (2011). Scaling Lattice
QCD Beyond 100 GPUs. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 70:1–70:11, New York, NY, USA.
ACM.

Backus, J. (1978). The History of FORTRAN I, II, and III. SIGPLAN Not., 13(8):165–180.

Barua, R., Lee, W., Amarasinghe, S., and Agarwal, A. (1999). Maps: a compiler-managed memory
system for Raw machines. In Proceedings of the 26th International Symposium on Computer
Architecture (Cat. No.99CB36367), pages 4–15.

Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. (2012). Legion: Expressing Locality and Indepen-
dence with Logical Regions. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los Alamitos, CA, USA.
IEEE Computer Society Press.

Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata, A., Choppella, V., Cociorva, D., Gao, X., Harrison,
R. J., Hirata, S., Krishnamoorthy, S., Krishnan, S., chung Lam, C., Lu, Q., Nooijen, M., Pitzer,
R. M., Ramanujam, J., Sadayappan, P., and Sibiryakov, A. (2005). Synthesis of High-Performance
Parallel Programs for a Class of ab Initio Quantum Chemistry Models. Proceedings of the IEEE,
93(2):276–292.

153

http://homes.soic.indiana.edu/samth/fortress-spec.pdf
http://homes.soic.indiana.edu/samth/fortress-spec.pdf

Benabderrahmane, M. W., Pouchet, L. N., Cohen, A., and Bastoul, C. (2010). The Polyhedral Model Is
More Widely Applicable Than You Think. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6011 LNCS:283–303.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A Fresh Approach to Numerical
Computing. SIAM Review, 59(1):65–98.

Bhaskaracharya, S. G., Bondhugula, U., and Cohen, A. (2016). SMO: An Integrated Approach to
Intra-array and Inter-array Storage Optimization. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 526–538, New
York, NY, USA. ACM.

Bischof, H., Gorlatch, S., and Leshchinskiy, R. (2004). Generic Parallel Programming Using C++
Templates and Skeletons. In Lengauer, C., Batory, D., Consel, C., and Odersky, M., editors, Domain-
Specific Program Generation: International Seminar, Dagstuhl Castle, Germany, March 23-28,
2003. Revised Papers, pages 107–126, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bondhugula, U. (2013). Compiling Affine Loop Nests for Distributed-memory Parallel Architectures. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, pages 33:1–33:12, New York, NY, USA. ACM.

Boyle, P., Yamaguchi, A., Cossu, G., and Portelli, A. (2015). Grid: A Next Generation Data-Parallel C++
QCD Library. https://github.com/paboyle.

Breglia, A., Capozzoli, A., Curcio, C., and Liseno, A. (2013). CUDA Expression Templates for Electro-
magnetic Applications on GPUs [EM Programmer's Notebook]. IEEE Antennas and Propagation
Magazine, 55(5):156–166.

Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu, X., Bianco,
M., Amato, N. M., and Rauchwerger, L. (2010). STAPL: Standard Template Adaptive Parallel
Library. In Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR ’10,
pages 14:1–14:10, New York, NY, USA. ACM.

Carter Edwards, H., Trott, C. R., and Sunderland, D. (2014). Kokkos. J. Parallel Distrib. Comput.,
74(12):3202–3216.

Chamberlain, B. L., Callahan, D., and Zima, H. P. (2007). Parallel Programmability and the Chapel
Language. Int. J. High Perform. Comput. Appl., 21(3):291–312.

Chamberlain, B. L., Choi, S.-E., Lewis, E. C., Lin, C., Snyder, L., and Weathersby, W. D. (1998). The
Case for High Level Parallel Programming in ZPL. IEEE Computational Science and Engineering,
5(3):76–86.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., and Sarkar,
V. (2005). X10: An Object-oriented Approach to Non-uniform Cluster Computing. SIGPLAN Not.,
40(10):519–538.

Clark, M., Babich, R., Barros, K., Brower, R., and Rebbi, C. (2010). Solving Lattice QCD Systems
of Equations Using Mixed Precision Solvers on GPUs. Computer Physics Communications,
181(9):1517 – 1528.

154

https://github.com/paboyle

Clark, M. A., Joó, B., Strelchenko, A., Cheng, M., Gambhir, A. S., and Brower, R. C. (2016). Acceler-
ating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis, SC
’16, pages 795–806.

Creutz, M. (1987). Quarks, Gluons and Lattices. Cambridge University Press 1983. ISBN 0-521-31535-2.
(Cambridge Monogr. on Mathematical Physics) . ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 67(1):16.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., and
Yelick, K. (2008). Stencil Computation Optimization and Auto-tuning on State-of-the-art Multicore
Architectures. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08,
pages 4:1–4:12, Piscataway, NJ, USA. IEEE Press.

Deb, D., Fowler, R. J., and Porterfield, A. (2016). QUARC: An Array Programming Approach to
High Performance Computing. Proceedings of the 29th International Workshop on Languages and
Compilers for Parallel Computing, LCPC’16.

Deb, D., Fowler, R. J., and Porterfield, A. (2017). QUARC: An Optimized DSL Framework Using
LLVM. In Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM-HPC’17, pages 9:1–9:11, New York, NY, USA. ACM.

Demidov, D., Ahnert, K., Rupp, K., and Gottschling, P. (2013). Programming CUDA and OpenCL: A
Case Study Using Modern C++ Libraries. SIAM Journal on Scientific Computing, 35(5):C453–C472.

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R. (1974). Design of
Ion-implanted MOSFET’s with Very Small Physical Dimensions. IEEE J. Solid-State Circuits,
9(5):256–268.

Denning, P. J. and Schwartz, S. C. (1972). Properties of the Working-set Model. Commun. ACM,
15(3):191–198.

Department of Defense (2001). DoD Research and Development Agenda For High Productivity
Computing Systems. https://www.nitrd.gov/nitrdgroups/images/6/64/DoD_
Research_and_Development_Agenda_For_HPCS.pdf.

DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., and Vitek, J. (2013). Terra: A Multi-stage Language
for High-performance Computing. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 105–116, New York, NY,
USA. ACM.

Dirac, P. A. M. (1928). The Quantum Theory of the Electron. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 117(778):610–624.

Dongarra, J. J., Graybill, R., Harrod, W., Lucas, R. F., Lusk, E. L., Luszczek, P., McMahon, J., Snavely,
A., Vetter, J. S., Yelick, K. A., Alam, S. R., Campbell, R. L., Carrington, L., Chen, T.-Y., Khalili,
O., Meredith, J. S., and Tikir, M. M. (2008). DARPA’s HPCS Program- History, Models, Tools,
Languages. Advances in Computers, 72:1–100.

155

https://www.nitrd.gov/nitrdgroups/images/6/64/DoD_Research_and_Development_Agenda_For_HPCS.pdf
https://www.nitrd.gov/nitrdgroups/images/6/64/DoD_Research_and_Development_Agenda_For_HPCS.pdf

Edwards, H. C. and Trott, C. R. (2013). Kokkos: Enabling Performance Portability Across Manycore
Architectures. In Proceedings of the 2013 Extreme Scaling Workshop (Xsw 2013), XSW ’13, pages
18–24, Washington, DC, USA. IEEE Computer Society.

Edwards, R. G. and Joó, B. (2005). The Chroma Software System for Lattice QCD. Nucl. Phys. Proc.
Suppl., 140:832. [,832(2004)].

Eisenecker, U. W. (1997). Generative Programming (GP) With C++. In Mössenböck, H., editor, Modular
Programming Languages: Joint Modular Languages Conference, JMLC’97 Linz, Austria, March
19–21, 1997 Proceedings, pages 351–365, Berlin, Heidelberg. Springer Berlin Heidelberg.

El-Ghazawi, T. and Smith, L. (2006). UPC: Unified Parallel C. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, New York, NY, USA. ACM.

Estérie, P., Gaunard, M., Falcou, J., Lapresté, J.-T., and Rozoy, B. (2012). Boost.SIMD: Generic
Programming for Portable SIMDization. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, pages 431–432, New York, NY,
USA. ACM.

Fatahalian, K., Knight, T. J., Houston, M., Erez, M., Horn, D. R., Leem, L., Park, J. Y., Ren, M., Aiken,
A., Dally, W. J., and Hanrahan, P. (2006). Sequoia: Programming the Memory Hierarchy. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.

Free Software Foundation (2018). GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

Gannon, D., Jalby, W., and Gallivan, K. (1988). Strategies for Cache and Local Memory Management by
Global Program Transformation. Journal of Parallel and Distributed Computing, 5(5):587 – 616.

Garcia, R., Siek, J., and Lumsdaine, A. (2001). Boost.MultiArray Library. https://www.boost.
org/doc/libs/1_66_0/libs/multi_array/doc/index.html.

Giles, M. B., Mudalige, G. R., Spencer, B., Bertolli, C., and Reguly, I. Z. (2013). Designing OP2 for
GPU architectures. Journal of Parallel and Distributed Computing, 73(11):1451 – 1460. Novel
architectures for high-performance computing.

Gómez-Iglesias, A., Chen, F., Huang, L., Liu, H., Liu, S., and Rosales, C. (2017). Benchmarking the
Intel®Xeon®Platinum 8160 Processor. In TACC Technical Report TR-17-01.

Gropp, W., Hoefler, T., Thakur, R., and Lusk, E. (2014). Using Advanced MPI: Modern Features of the
Message-Passing Interface. The MIT Press.

Grosser, T. (2011). Enabling Polyhedral Optimizations in LLVM. Diploma Thesis.

Group, K. (2018). Sycl: C++ Single-source Heterogeneous Programming for OpenCL. https:
//www.khronos.org/sycl.

Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., and Sadayappan, P. (2011).
Data Layout Transformation for Stencil Computations on Short-Vector SIMD Architectures. In
Compiler Construction: 20th International Conference, CC 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26–April 3, 2011. Proceedings, pages 225–245, Berlin, Heidelberg. Springer Berlin Heidelberg.

156

https://gcc.gnu.org/
https://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html
https://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html
https://www.khronos.org/sycl
https://www.khronos.org/sycl

Henretty, T., Veras, R., Franchetti, F., Pouchet, L.-N., Ramanujam, J., and Sadayappan, P. (2013). A
Stencil Compiler for Short-vector SIMD Architectures. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS ’13, pages 13–24, New
York, NY, USA. ACM.

Hestenes, M. R. and Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear Systems.
Journal of research of the National Bureau of Standards, 49:409–436.

Hiranandani, S., Kennedy, K., and Tseng, C.-W. (1992). Compiling Fortran D for MIMD Distributed-
memory Machines. Commun. ACM, 35(8):66–80.

Hoshino, T., Maruyama, N., and Matsuoka, S. (2014). An OpenACC Extension for Data Layout
Transformation. In 2014 First Workshop on Accelerator Programming using Directives, pages
12–18.

IBM Corporation (2015). IBM XL C/C++ for Linux, V13.1.2. https://ibm.co/2ruJgoE.

Iglberger, K., Hager, G., Treibig, J., and Rude, U. (2012). High Performance Smart Expression Template
Math Libraries. In 2012 International Conference on High Performance Computing and Simulation
(HPCS). IEEE.

Interagency Working Group on Information Technology Research and Development (2006). GRAND
CHALLENGES: Science, Engineering, and Societal Advances Requiring Networking and Informa-
tional Technology Research and Development . https://www.nitrd.gov/pubs/200311_
grand_challenges.pdf.

Iverson, K. E. (1962). A Programming Language. John Wiley & Sons, Inc., New York, NY, USA.

Joó, B., Kalamkar, D. D., Vaidyanathan, K., Smelyanskiy, M., Pamnany, K., Lee, V. W., Dubey, P., and
Watson, W. (2013). Lattice QCD on Intel®Xeon Phi™ Coprocessors. In Supercomputing, pages
40–54. Springer Science + Business Media.

Kamil, S., Husbands, P., Oliker, L., Shalf, J., and Yelick, K. (2005). Impact of Modern Memory
Subsystems on Cache Optimizations for Stencil Computations. In Proceedings of the 2005 Workshop
on Memory System Performance, MSP ’05, pages 36–43, New York, NY, USA. ACM.

Kennedy, K. and Allen, J. R. (2002). Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Kennedy, K., Broom, B., Chauhan, A., Fowler, R. J., Garvin, J., Koelbel, C., Mccosh, C., and Mellor-
Crummey, J. (2005). Telescoping Languages: A System for Automatic Generation of Domain
Languages. Proceedings of the IEEE, 93(2):387–408.

Kennedy, K., Koelbel, C., and Schreiber, R. (2004). Defining and Measuring the Productivity of
Programming Languages. The International Journal of High Performance Computing Applications,
(18)4, Winter, 2004:441–448.

LabLua (2015). The Programming Language Lua. https://www.lua.org/.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A LLVM-based Python JIT Compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15,
pages 7:1–7:6, New York, NY, USA. ACM.

157

https://ibm.co/2ruJgoE
https://www.nitrd.gov/pubs/200311_grand_challenges.pdf
https://www.nitrd.gov/pubs/200311_grand_challenges.pdf
https://www.lua.org/

Loveman, D. B. (1993). High Performance Fortran. IEEE Parallel Distrib. Technol., 1(1):25–42.

Lu, Q., Alias, C., Bondhugula, U., Henretty, T., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P., Chen, Y., Lin, H., and f. Ngai, T. (2009). Data Layout Transformation for Enhancing
Data Locality on NUCA Chip Multiprocessors. In 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 348–357.

Lutz, K. (2015). Boost.Compute. https://bit.ly/2UTshdk.

Majeti, D., Barik, R., Zhao, J., Grossman, M., and Sarkar, V. (2014). Compiler-Driven Data Layout
Transformation for Heterogeneous Platforms. In Euro-Par 2013: Parallel Processing Workshops,
pages 188–197. Springer Science + Business Media.

Majeti, D., Meel, K. S., Barik, R., and Sarkar, V. (2016). Automatic Data Layout Generation and Kernel
Mapping for CPU+GPU Architectures. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, pages 240–250, New York, NY, USA. ACM.

MATLAB (2010). version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts.

McCalpin, J. D. (2007). STREAM: Sustainable Memory Bandwidth in High Performance Computers.
Technical report, University of Virginia, Charlottesville, Virginia. A continually updated technical
report. http://www.cs.virginia.edu/stream/.

Mellor-Crummey, J., Adve, V., Broom, B., Chavarrı́a-Miranda, D., Fowler, R., Jin, G., Kennedy, K.,
and Yi, Q. (2002). Advanced Optimization Strategies in the Rice dHPF Compiler. Concurrency
Computation Practice and Experience, 14(8-9):741–767.

MILC collaboration (1992). MILC Collaboration Code for Lattice QCD Calculations.

Moors, A., Rompf, T., Haller, P., and Odersky, M. (2012). Scala-virtualized. In Proceedings of the ACM
SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation, PEPM ’12, pages
117–120, New York, NY, USA. ACM.

More, T. (1973). Axioms and Theorems for a Theory of Arrays. IBM J. Res. Dev., 17(2):135–175.

Mullin, L. (1988). A Mathematics of Arrays. PhD thesis, Syracuse University, December 1988.

Myers, G. J. (1979). Review of Advances in Computer Architecture by Glenford J. Myers. Wiley-
Interscience Division of John Wiley and Sons 1978. SIGARCH Comput. Archit. News, 7(7):25–26.

National Energy Research Scientific Computing Center (2013). NERSC-8/Trinity Benchmarks. https:
//bit.ly/2R8i0Y8.

Newburn, C. J., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S. D., Wang, Z. G., Du, Z. H.,
Chen, Y., Wu, G., Guo, P., Liu, Z., and Zhang, D. (2011). Intel’s Array Building Blocks: A
Retargetable, Dynamic Compiler and Embedded Language. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’11, pages
224–235, Washington, DC, USA. IEEE Computer Society.

Niebler, E. (2007). Proto: A Compiler Construction Toolkit for DSELs. ACM SIGPLAN Symposium on
Library-Centric Software Design.

158

https://bit.ly/2UTshdk
https://bit.ly/2R8i0Y8
https://bit.ly/2R8i0Y8

Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and Aprà, E. (2006). Advances,
Applications and Performance of the Global Arrays Shared Memory Programming Toolkit. Int. J.
High Perform. Comput. Appl., 20(2):203–231.

Numrich, R. W. and Reid, J. (1998). Co-array Fortran for Parallel Programming. SIGPLAN Fortran
Forum, 17(2):1–31.

NVIDIA Corporation (2010). NVIDIA CUDA C Programming Guide. Version 3.2.

NVIDIA Corporation (2016). NVIDIA Thrust. https://developer.nvidia.com/thrust/.

Odersky, M., Spoon, L., and Venners, B. (2008). Programming in Scala: A Comprehensive Step-by-step
Guide. Artima Incorporation, USA, 1st edition.

Odlyzko, A. M. (1995). Handbook of Combinatorics (Vol. 2). pages 1063–1229. MIT Press, Cambridge,
MA, USA.

OpenACC.org (2013). OpenACC 2.0 Specifications. https://www.openacc.org/
specification.

OpenMP Architecture Review Board (2015). OpenMP 4.5 Specifications. http://www.openmp.
org/mp-documents/openmp-4.5.pdf.

Oren Ben-Kiki, Clark Evans, Brian Ingerson (2009). YAML: YAML Ain’t Markup Language. http:
//yaml.org/.

Parsons, R. and Quinlan, D. (1994). A++/P++ Array Classes for Architecture Independent Finite
Difference Computations. In Proc. 2nd Annual Object-Oriented Numerics Conf. (OON-SKI’94),
pages 408–418.

Pharr, M. and Mark, W. R. (2012). ispc: A SPMD Compiler for High-performance CPU Programming.
In 2012 Innovative Parallel Computing (InPar), pages 1–13.

Püschel, M., Moura, J. M. F., Johnson, J. R., Padua, D., Veloso, M. M., Singer, B. W., Xiong, J.,
Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R. W., and Rizzolo, N. (2005). SPIRAL:
Code Generation for DSP Transforms. Proceedings of the IEEE, 93(2):232–275.

Quinlan, D. J., Schordan, M., Philip, B., and Kowarschik, M. (2003). The Specification of Source-to-
Source Transformations for the Compile-Time Optimization of Parallel Object-Oriented Scientific
Applications. In Dietz, H. G., editor, Languages and Compilers for Parallel Computing, pages
383–394, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ragan-Kelley, J., Adams, A., Sharlet, D., Barnes, C., Paris, S., Levoy, M., Amarasinghe, S., and Durand,
F. (2017). Halide: Decoupling Algorithms from Schedules for High-performance Image Processing.
Commun. ACM, 61(1):106–115.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S. (2013). Halide:
A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image
Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA. ACM.

159

https://developer.nvidia.com/thrust/
https://www.openacc.org/specification
https://www.openacc.org/specification
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://yaml.org/
http://yaml.org/

Rawat, P., Kong, M., Henretty, T., Holewinski, J., Stock, K., Pouchet, L.-N., Ramanujam, J., Rountev,
A., and Sadayappan, P. (2015). SDSLc: A Multi-target Domain-specific Compiler for Stencil
Computations. In Proceedings of the 5th International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing, WOLFHPC ’15, pages 6:1–6:10,
New York, NY, USA. ACM.

Reynders, J. V. W. and Cummings, J. C. (1998). The POOMA framework. in Comput. Phys., 12:453–459.

Rich Hickey (2007). The Clojure Programming Language. https://clojure.org/.

Robison, A. D. (2013). Composable Parallel Patterns with Intel Cilk Plus. Computing in Science
Engineering, 15(2):66–71.

Rosales, C., Cazes, J., Milfeld, K., Gómez-Iglesias, A., Koesterke, L., Huang, L., and Vienne, J. (2016).
A Comparative Study of Application Performance and Scalability on the Intel Knights Landing
Processor. In Lecture Notes in Computer Science, pages 307–318. Springer International Publishing.

Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1988). Global Value Numbers and Redundant
Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’88, pages 12–27, New York, NY, USA. ACM.

Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov, R., Hegeman, J., Levenstein, R., Maher, B.,
Satish, N., Olesen, J., Park, J., Rakhov, A., and Smelyanskiy, M. (2018). Glow: Graph Lowering
Compiler Techniques for Neural Networks. CoRR, abs/1805.00907.

Roth, G., Mellor-Crummey, J., Kennedy, K., and Brickner, R. G. (1997). Compiling Stencils in High
Performance Fortran. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, SC
’97, pages 1–20, New York, NY, USA. ACM.

S. Haney J. Crotinger, S. K. and Smith, S. (1999). Easy Expression Templates Using PETE, the Portable
Expression Template Engine. Technical Report LA-UR-99-777.

Sheard, T. and Peyton Jones, S. (2002). Template Meta-programming for Haskell. pages 1–16.

So, B., Hall, M. W., and Ziegler, H. E. (2004). Custom Data Layout for Memory Parallelism. In
Proceedings of the International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’04, pages 291–, Washington, DC, USA. IEEE Computer
Society.

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heteroge-
neous Computing Systems. IEEE Des. Test, 12(3):66–73.

Sujeeth, A. K., Brown, K. J., Lee, H., Rompf, T., Chafi, H., Odersky, M., and Olukotun, K. (2014). Delite:
A Compiler Architecture for Performance-Oriented Embedded Domain-Specific Languages. ACM
Trans. Embed. Comput. Syst., 13(4s):134:1–134:25.

Sujeeth, A. K., Gibbons, A., Brown, K. J., Lee, H., Rompf, T., Odersky, M., and Olukotun, K. (2013).
Forge: Generating a High Performance DSL Implementation from a Declarative Specification.
SIGPLAN Not., 49(3):145–154.

Sung, I.-J., Stratton, J. A., and Hwu, W.-M. W. (2010). Data Layout Transformation Exploiting
Memory-level Parallelism in Structured Grid Many-core Applications. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques, PACT ’10, pages
513–522, New York, NY, USA. ACM.

160

https://clojure.org/

Taha, W. and Sheard, T. (1997). Multi-stage Programming with Explicit Annotations. SIGPLAN Not.,
32(12):203–217.

Tang, Y., Chowdhury, R. A., Kuszmaul, B. C., Luk, C.-K., and Leiserson, C. E. (2011). The Pochoir
Stencil Compiler. In Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’11, pages 117–128, New York, NY, USA. ACM.

The Khronos Group (2015). The OpenCL Specification v2.1. https://www.khronos.org/
registry/cl/specs/opencl-2.1.pdf.

The LLVM Foundation (2018). The LLVM Compiler Infrastructure. llvm.org.

The R Foundation (2018). The R Project for Statistical Computing. https://www.r-project.
org/.

van der Vorst, H. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing,
13(2):631–644.

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering, 13(2):22–30.

Vandevoorde, D. and Josuttis, N. M. (2002). C++ Templates: The Complete Guide. Addison-Wesley
Professional.

Veldhuizen, T. (1995). Expression Templates. C++ Report, 7:26–31.

Veldhuizen, T. (2006). Blitz++ library. http://blitz.sourceforge.net/resources/
blitz-0.9.pdf.

Veldhuizen, T. L. and Gannon, D. (1998). Active Libraries: Rethinking the Roles of Compilers and
Libraries. In In Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing, OO’98. SIAM Press.

Verdoolaege, S. (2010). isl: An Integer Set Library for the Polyhedral Model, pages 299–302. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Walter, J. and Koch, M. (2012). uBLAS BOOST library. http://www.boost.org/doc/libs/
1_57_0.

Wiemann, P., Wenger, S., and Magnor, M. (2011). CUDA Expression Templates. In WSCG Communica-
tion Papers Proceedings, pages 185–192. ISBN 978-80-86943-82-4.

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline. Commun. ACM, 52(4):65.

Winter, F. T., Clark, M. A., Edwards, R. G., and Joó, B. (2014). A Framework for Lattice QCD
Calculations on GPUs. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. IEEE.

Wolf, M. E. and Lam, M. S. (1991). A Data Locality Optimizing Algorithm. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation, PLDI ’91,
pages 30–44, New York, NY, USA. ACM.

161

https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
llvm.org
https://www.r-project.org/
https://www.r-project.org/
http://blitz.sourceforge.net/resources/blitz-0.9.pdf
http://blitz.sourceforge.net/resources/blitz-0.9.pdf
http://www.boost.org/doc/libs/1_57_0
http://www.boost.org/doc/libs/1_57_0

Xu, S. and Gregg, D. (2014). Semi-automatic Composition of Data Layout Transformations for Loop
Vectorization. In Network and Parallel Computing, pages 485–496. Springer Science + Business
Media.

Yelick, K. A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger, P.,
Graham, S., Gay, D., Colella, P., and Aiken, A. (1998). Titanium: A High-Performance Java Dialect.
In In ACM, pages 10–11.

Yount, C. (2015). Vector Folding: Improving Stencil Performance via Multi-dimensional SIMD-vector
Representation. In 2015 IEEE 17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded Software and Systems, pages 865–870.

162

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	A Historical Perspective
	Thesis
	Contributions
	Dissertation Overview

	Background and Motivation
	EDSL Code-Generation
	Data Placement Abstractions
	Motivating Example

	The QUARC Framework
	EDSL Design Approach
	Parallel Programming Model
	The Core Components of QUARC
	Minimal Expression Template Array Language (METAL)
	Array Transformation Language (ATL)
	QUARC Optimizer (QOPT)
	QUARC Runtime (QUARC-RT)

	An Algebra for Array Transformations
	Basic Operators
	Composing array-transformations
	Comparison of QUARC's array-transformations to APL

	Index-space Mapping

	Programming Interface
	Minimal Expression Template Array Language (METAL)
	Grammar
	Type System
	Array Properties
	Array Containers
	Elemental Functions
	Array Operations
	Array Expressions
	Callback Functions

	Abstraction Characterization Templates (ACTs)
	Types of ACTs and DSL Intrinsic

	Programming Data-Placement Using ATL
	ATL attributes
	METAL-ATL interface
	Compile-time ATL v/s Runtime ATL

	Code Generation and Runtime System
	QOPT: QUARC's Domain-specific Compiler
	Architecture and Pass Pipeline
	Running Example

	QOPT High-level Code-generation
	Clang -O0 compilation
	Preprocessing
	QKET Construction
	High-level Optimizations

	Speculative SIMD Vectorization
	QOPT Late Scalarization
	Preventing Invalid Scalarization
	Loop Generation
	QUARC-RT library calls generation
	Loop body generation
	Reductions

	QUARC-RT: Runtime Time System
	Halo Generation and Communication Optimization
	Data Distribution Functions
	Data-Layout Selection

	Performance Analysis of Data-Layouts
	Background
	Stencil Kernels
	Short-vector SIMD architectures
	Stream alignment conflict
	Mitigating SAC

	Experimental Setup
	Stencil Benchmarks
	Architectures
	Data-layouts

	Results and Observations

	Data-Layout Selection Policy
	Performance Effects of Data-Layouts
	Policy Input Parameters
	Policy Execution Steps
	Evaluating the Policy

	QUICQ: A QUARC-based LQCD DSL
	Lattice Quantum Chromodynamics (LQCD)
	The Wilson Dslash operator
	The Kogut-Susskind Dslash operator
	Linear Solvers

	The QUICQ DSL

	Evaluation and Performance Analysis
	Stencil SIMD vectorization
	Performance Evaluation of QUICQ
	Chroma
	MILC

	Comparing Two Approaches for Code Generation

	Related Work
	C++ Array-Programming Techniques
	C++ Parallel Skeleton Library
	LQCD DSLs
	DSLs and DSL Frameworks
	Data-Layout Transformations

	Conclusion and Future Work
	Future Work

	BIBLIOGRAPHY

