View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC

LANGUAGES

Diptorup Deb

provided by Carolina Digital Repository

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2019

Approved by:
Robert J. Fowler
Allan Porterfield
Jan FE. Prins
Donald E. Porter
Mary Hall

https://core.ac.uk/display/225545948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2019
Diptorup Deb
ALL RIGHTS RESERVED

il

ABSTRACT

DIPTORUP DEB: Automating Data-Layout Decisions In Domain-Specific Languages
(Under the direction of Robert J. Fowler)

A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement
of programmer productivity and hardware computational efficiency. The challenge has been exacerbated
by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been
able to hand-code domain-specific data transformations and vectorization schemes needed to extract
the best possible performance on such architectures. In this research, we examined the possibility of
automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL
approach extends C++14 by embedding into it a high-level data-parallel array language, and by using
a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-
space transformation algebra within this high-level array language to manipulate array data-layouts and
data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array
data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization
strategy by up to 40% for stencil computations. The compiler also automates distributed data movement
with overlapping of local compute with remote data movement using polyhedral integer set analysis.
Along with these main innovations, we developed a new technique using C++ template metaprogramming
for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate
representation that simplifies data flow analysis of abstract DSL constructs.

We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice
quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing
production C code for selected kernels. This gain in performance was obtained while using less than one-
tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized

and hand-vectorized code, and is an order of magnitude better than existing production DSLs.

iii

To my wife and my parents.

v

ACKNOWLEDGMENTS

My journey as a graduate student would not have been possible without the unwavering support and
encouragement of a lot of people. These acknowledgments are a token of my appreciation to the people
without whom this dissertation would not have been possible.

I thank Rob Fowler, my adviser, for teaching me how to be a researcher, and supporting me to the
very end. I would not have reached this point without Rob believing in me, even more than I did at times.
I would also thank Allan Porterfield for the endless hours he devoted to discussing and developing my
ideas, and seed new ones. I am especially grateful that even after leaving Renci Allan continued visiting
and was always available for discussions.

Thanks to Balint Jo6 at Thomas Jefferson National Accelerator Facility for teaching me enough
about Lattice Quantum Chromodynamics (LQCD) to be able to build a domain-specific language for
LQCD. Balint also helped me understand an advanced SIMD vectorization method, automating which
ended up becoming a large part of my thesis. I am grateful to Robert Edwards and Frank Winter from
Thomas Jefferson National Accelerator Facility and Dheeraj Kalamkar at Intel Parallel Labs for their
research insights and ideas.

Jan Prins taught me parallel programming and high-performance computing. Don Porter helped me
become better at presenting my research in words. Thanks also to Mary Hall for graciously agreeing to
be on my committee, and providing insights into my work.

Thanks to Niki Fowler for painstakingly proofreading and editing my dissertation, and all my papers.

Thanks to Xipeng Shen at NCSU for providing a graduate-level compiler optimization course when
no such course was offered at UNC.

Diane Pozefsky first planted the idea of staying back after my M.S. for a Ph.D. I am thankful that
I took her advice and decided to take the qualifier examination. Victor Eijkhout at TACC guided me
during a wonderful internship I did under him. The initial ideas around focusing on data-layouts and

data-placement in HPC applications started germinating during my work under Victor.

I thank Anirban Mandal for his support and guidance all thought my work at Renci. I also acknowl-
edge the wonderful friends I had during graduate school, including Duo Zhao, Sridutt Bhalachandra, Yue
Gao, Fan Ziang, and Dheeraj Shetty.

I thank my parents for instilling the values in me that shape the person I am today. Thanks also to
my sister, my uncle and my aunt for their constant encouragement and well wishes.

I thank my wife, Shreoshi, for encouraging me to go back to graduate school. Thanks to her unending
love and support I could maintain focus and sanity during the bleakest of time.

I acknowledge support from the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research and Office of Nuclear Physics, Scientific Discovery through Advanced
Computing (SciDAC) program under grants DE-FG02-11ER26050/DE-SC0006925, DE-SC0008706,
and a sub-contract of grant DE-AC05-060R23177 from the Thomas Jefferson National Accelerator

Facility.

vi

TABLE OF CONTENTS

LIST OF TABLES ..o e e xi
LIST OF FIGURES e e e e e e e xii
LIST OF ABBREVIATIONS . ..ot e e Xiv
O Y6 0 a L1151) o Y 1
1.1 A Historical Perspectiveuuutiteti ettt e e e 4

0 U 4 1) 5

1.3 CONLIIBULIONS .. e .e ettt e ettt e e e e 6

1.4 Dissertation OVEIVIEWttt ittt e e e 7

2 Background and MOtIVAtIONo.tt ittt e 9
2.1 EDSL Code-Generationc.ueuuententettateat e, 9

2.2 Data Placement ADStractions.uuutttteit ettt e e i aieaieneenns 13

2.3 Motivating Example e 17

3 The QUARC FrameworkKot i e e e e 21
3.1 EDSL Design Approachouououiii e 23

3.2 Parallel Programming Model i 24

3.3 The Core Components of QUARC i e 24
3.3.1 Minimal Expression Template Array Language (METAL) 24

3.3.2 Array Transformation Language (ATL)coiiiiiiiii i 25

3.3.3 QUARC Optimizer (QOPT) oo i 25

334 QUARC Runtime (QUARC-RT) ... oo 25

4 An Algebra for Array Transformations.ouuuiiniiinii i, 26

vii

4.1 BaSiC OPETALOrS . .. v ettt ittt et e et ettt e e e e et e e 27

4.1.1 Composing array-transformationsc..ccoeiiiiiniiiienieneenenn.. 33
4.1.2 Comparison of QUARC’s array-transformations to APL 33

4.2 Index-space Mapping.c.uutn ittt e e 34
Programming Interface.o e 36
5.1 Minimal Expression Template Array Language METAL)coiiia... 37
5001 Grammar. . oottt e e 37

5.1.2 0 TYPE SYSIEIM ..ottt ettt et e et e e e 37
5.1.2.1 Array Propertieso.unuein i e 37

5.1.2.2 Array CONtainerso.ueutentntei it inaaeanns 39

5.1.2.3 Elemental Functionso, 42

5.1.2.4 Array Operationsoueuentneiu e, 43

5.1.2.5 Array EXPressionsououiuiiiii i 45

5.1.2.6 Callback FUnctionsc..oiuiiiiiiiiiiiiii e, 50

5.2 Abstraction Characterization Templates (ACTS)ooiiiiiiinii i 51
5.2.1 Types of ACTs and DSL Intrinsicooiuiiiinniiiiiiiiiiinnen.. 53

5.3 Programming Data-Placement Using ATL i, 55
5.3. 1 ATL AttribUutesottt e e e 55

5.3.2 METAL-ATL interfaceoouoiuiiniii et 57

5.3.3 Compile-time ATL v/s Runtime ATL i, 58
Code Generation and Runtime SYStemo.tiutiinrii it ii e i iinaeanans 59
6.1 QOPT: QUARC’s Domain-specific Compilerccoiiiiiiiiiiiiiiiinennenn... 59
6.1.1 Architecture and Pass Pipelineo i, 61

6.1.2 Running EXxample ...t 66

6.2 QOPT High-level Code-generationuuuurenteeeiteeneneieaiennannennnn. 67
6.2.1 Clang —00 compilationotiuiirii ittt i a s 67

6.2.2 PrePIrOCESSINE ..\ttt ettt et ettt e e e e e e 68

viil

6.2.3 QKET ConsStruCtiOno.utttitt ittt ettt e e e 71

6.2.4 High-level OptimiZationseuuenuentententmt i eieeneneenenen 72

6.3 Speculative SIMD VeCtOrizationo.uietiuinteneentnt i eineneneanenn. 74
6.4 QOPT Late Scalarizationouuutteeinteeaiitee ittt it nineeannnns 76
6.4.1 Preventing Invalid Scalarizationccoiiiiiiiii .. 76

6.4.2 LOoOP GENETAtION ...\ttt ettt ettt ettt e e e e et e e et e e e eeneneanns 78

6.4.3 QUARC-RT library calls generationccovuuiirenreirnennennennnnn. 87

6.4.4 LoOp bodY GENEIation.vuttn ettt ettt e e e e e 90

6.4.5 RedUCHONSttt e 96

6.5 QUARC-RT: Runtime Time Systemuuuirtiri it a i eieaeneennnn, 97
6.5.1 Halo Generation and Communication Optimizationv.... 97

6.5.2 Data Distribution Functions 97

6.5.3 Data-Layout Selectionuutiuiirintii it 98

7 Performance Analysis of Data-Layoutsc.ouiiiiiiiniiiiii i, 99
7.1 Background. e 99
711 Stencil Kernels e 99

7.1.2 Short-vector SIMD architecturesciiiiiiiiiiiininanenn.. 100

7.1.3 Stream alignment conflict 101

7.1.4 Mitigating SAC ... 102

7.2 Experimental SEtUPttt e 102
7.2.1 Stencil Benchmarks e 103

722 ATCRItECIUIESottt et 103

7.2.3 Data-layouts e 103

7.3 Results and ODbSEIrVationso.tuutnttn ettt 104
8 Data-Layout Selection POLiCYoiniiii i e e e e 111
8.1 Performance Effects of Data-Layouts.ouiiiiiiiiiiiiii i iieinennnn. 111
8.2 Policy Input Parametersoiuiiuiiti i 113

X

8.3 Policy EXECULION SEPS ... v vttt ettt ettt e 113

8.4 Evaluating the POLICY . ..o e 114

9 QUICQ: A QUARC-based LQCD DSLot e 116
9.1 Lattice Quantum Chromodynamics (LQCD)ot 116
9.1.1 The Wilson Dslash operator.............coouiiiiiiiiiiii it iiiineannn. 117

9.1.2 The Kogut-Susskind Dslash operatorc.oiiiiiiiiiiiinnenn.n.. 121

0.1.3 LNear SOIVEIS . ..ottt 123

9.2 The QUICQ DSL ... e e 123

10 Evaluation and Performance AnalysiS............oooiuiuiiiinii i, 130
10.1 Stencil SIMD VECtOTIZAtION . ..o .v vttt ettt e et 130
10.2 Performance Evaluation of QUICQ ..ot aeens, 132
L0.2.1 CRIOMA ..ottt e e e 132

10.2.2 MILC . .ot e 135

10.3 Comparing Two Approaches for Code Generationc..eieiuenninnenennnn. 140

11 Related WOrKo 142
11.1 C++ Array-Programming Techniquesc..oiiiiiiiiiiiniiiiiiennennnn. 142
11.2 C++ Parallel Skeleton Libraryooiiiiiiiii i 143
11.3 LOQCD DSLS . .ottt e e e e 145
11.4 DSLs and DSL Frameworkso.ouiuin e 145
11.5 Data-Layout Transformationsuueteutnrtnteitei e n i eieanennenenn, 147

12 Conclusion and Future Work i e 149
12.1 Future WOTKo 151
BIBLIOGRAPHY . ..o e e 153

LIST OF TABLES

5.1 METAL DSL intrinsic fUncCtionsoiuoiuintitmn i anenenenn. 54
6.1 QOPT analysis and code Zeneration PasSEsoueeeenterenreneeneenenneneenenn. 63
7.1 Evaluating all data-layout choices for 2D-Jacobi ..., 106
7.2 Calculated reuse distances and shuffle instructions for the {1024 x512} sized

2D-JACODT ..o 106
7.3 Evaluating the five best and five worst data-layout choices for 3D-Jacobi kernel 107

7.4 Calculated reuse distances and shuffle instructions for the {128 x64x64} sized

I Voo o P 108
7.5 Evaluating the five best and five worst data-layout choices for WD kernel 109
10.1 ICC vectorization v/s QOPT vectorization on Intel Skylake (AVXS512) 131
10.2 ICC vectorization v/s QOPT vectorization on Intel KNL (AVX512)..................... 131
10.3 Lines of code for KS Dslash MILC v/s QPhiX v/sQUICQcoovin.... 136

X1

2.1

23

3.1

5.1

52

53

54

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

7.1

LIST OF FIGURES

Array-of-Structs (AOS) versus Structs-of-Arrays (SOA) versus Array-of-

Structs-0f-Arrays (AOS O A) ...t 15
Improving SIMD vectorization after a data-layout transformation....................... 19
QUARC system architecture diagramcooiiiiiiininiiiiiineenn.. 22
METAL’S EBNF Grammarououtttttteta it ee e eieneaeenns 38
An example METAL binary eXpression tre€o.veeeentenententeieeneneneenenns 52
Example of an ATL specification.o.iiuiiiiinii i iinanenn, 56
An example of an ATL specified block data-distribution. 57
QOPT’s compilation pipelineoouiniiniirii it it e eaeaens 60
Codegen shows at a high-level QOPT’s code generation processo..... 65
QOPT’S PIe-PrOCESSINZ PASS .+ e v vt e ttete et et et et e et e et e et et a e eeeaeaanneneennn 69
Examples of fusible METAL array €Xpressionsoeeeeeerenreneeneeneneennnnn. 73
An example showing invalid scalarization of a METAL array assignment

CXPIESSION. + v ettt ettt et et e e e e e e e e e e e e e e 78
QOPT’s QKSCOP deteCtion Passcuveneenttttit ettt eiaeaeanes 81
Steps involved in generating boundary region index sets from a vector of shift

0§ 1 £ 82
Halo identification for multi-dimensional shifts oL, 83
Halo identification for array expressions with shifts 85
Boundary domains and statements for a five-point stencil............................... 86
Basic block CFG for a typical QK e 88
QOPT’s QK expression tree code generation Passvvuevrenreneeneenenneneenennn. 91
Handling boundaries within a SIMD vector tileciiiiiiiiiioa.. 94

An empirical evaluation of data-layout choices based on wall clock execution
1101 105

xii

8.1

9.1

9.2

9.3

94

10.1

10.2

10.3

10.4

10.5

Steps to select a set of data-layout candidates for a stencil kernel. 112
An illustrative four-dimensional even-odd preconditioned LQCD lattice. 117
High-level structure of the Wilson Dslash operatorc.coooiiiiiiia.. 120
High-level structure of the KS Dslash operator.............. ..., 122
Mkernel functions needed for the KS Dslash operatort 127
Single node Haswell comparison of QDP++ and QUICQ.coint. 133
Single node KNL comparison of QDP++, QUICQ and QPhiX. 134
Single node comparison of MILC, QUICQ and QPhiX.cciiiiiiiint.. 137

Evaluation of MILC and QUICQ’s conjugate gradient solvers and the complete
su3_rmd simulation on a single 48-core Skylake server.l 138

Comparing the two code generation approaches for QUARC for the KS Dslash
JAtEICE. . e 141

X1il

ACT
AOS
AOSOA
ATL
C++ET
DSL
EDSL
FLOP
GPGPU
HPC
IR

ISA
ISL
JIT
LHS
LQCD
METAL
MPI
MSP
QCD
QOPT
QUARC
QUARC-RT
QUICQ
RHS
SIMD
SOA
TMP

LIST OF ABBREVIATIONS

Abstraction Characterization Template
Array-of-Structs
Array-of-Structs-of-Arrays

Array Transformation Language

C++ Expression Template

Domain-Specific Language

Embedded Domain-Specific Language
Floating-point Operations per Second
General-purpose Graphical Processing Unit
High-Performance Computing
Intermediate Representation

Instruction Set Architecture

Integer Set Library

Just-in-Time

Left-Hand Side

Lattice Quantum Chromodynamics
Minimal Expression Template Array Language
Message Passing Interface

Multi-Staged Programming

Quantum Chromodynamics

QUARC’s Optimizer

QCD’s Array-based Rapid-prototyping Compiler
QUARC’s Runtime

QUICQ Internally Calls QUARC
Right-Hand Side

Single Instruction Multiple Data
Structs-of-Arrays

Template Metaprogramming

Xiv

CHAPTER 1: INTRODUCTION

This dissertation targets a long-standing challenge in High-Performance Computing (HPC), i.e.
simultaneous achievement of programmer productivity and hardware computational efficiency. Our ap-
proach is to develop a compiler for an Embedded Domain-Specific Language (EDSL) using a production
compiler infrastructure (The LLVM Foundation, 2018). A unique innovation of this compiler is a frame-
work for data-layout transformations to generate code competitive with the very best hand-optimizations.

The breakdown of Dennard scaling (Dennard et al., 1974) in the early 2000’s capped air-cooled
uniprocessor clock speeds at around 3GHz and marked the onset of chip multiprocessing. Consequently,
shifts occurred in HPC hardware architectures and in parallel-programming models. A single node of a
current-generation HPC cluster has complementary features, such as deeply nested cache hierarchies,
multiple cores, simultaneous multithreading, short-vector Single Instruction Multiple Data (SIMD) units,
and accelerators. The software stack consists of frameworks supporting various programming models,
such as message-passing, shared-memory threads, and accelerator-based data parallelism. Such diversity
offers more choices to application developers, but it greatly complicates extraction of high levels of
portable performance from modern HPC systems. Application programming on today’s HPC systems
requires programmers to mesh these disparate hardware and software components to boost performance.
In addition, significant architecture-aware programming skills and domain-specific knowledge are both
necessary. The deepening programming crisis calls for newer approaches in programming language
design and in compiler technology. Development of such newer approaches is an increasingly important
goal for the HPC research community (Department of Defense, 2001), especially given the current rush
towards exascale computing.

Legacy applications in C/C++ or FORTRAN are unable to utilize the peak machine Floating-
point Operations per Seconds (sFLOPs) rate and the maximum available memory bandwidth without
architecture-specific code-tuning. Certain types of newer architectures such as NVIDIA’s General-

purpose Graphical Processing Units (sGPGPUs) require large-scale re-implementation and rewrite of

legacy applications. The issue of code-tuning and rewriting also applies to non-legacy applications.
Converting a prototype of an application to a production-grade HPC version generally involves an order of
magnitude of growth in the lines of code. Thus, the net result is a high entry barrier to HPC programming
that limits true accessibility of HPC platforms to a small niche of experts.

Performance portability is a set of closely related problems linked to the overall problem of code
rewrite and re-implementation. For the very best performance, performance-tuning of an HPC application
kernel by hand often requires architecture-specific optimizations. The specificity of such optimizations
necessitate repeating the exercise on different architectures or generations of an architecture family. A
notable example is hand-vectorization of code for different generations of x86 processors. Each generation
of x86 has a different Instruction Set Architecture (ISA) extension to support SIMD vectorization that
requires a rewrite of hand-vectorized codes before the code can make effective use of a newer ISA vector
extension. Another aspect of performance portability is that hand optimizations are not directly portable
across applications, or even across kernels within an application stack. Solving the issue of performance
portability requires addressing all these related issues. A solution to the issue of performance portability
is still missing in existing programming languages and frameworks. Often, the only recourse to high
performance on different architectures is to write and maintain different versions of the application. The
resulting code complexity means that many HPC applications bear little resemblance to the original
abstract algorithms and are difficult, if not impossible, to understand for those domain experts who are
not expert programmers.

Domain-specific Languages (DSLs) offer a potential solution to the programming crisis in HPC.
The history of DSLs is traceable to the very first commercially available language, FORTRAN (Backus,
1978). Although not called a DSL, FORTRAN was conceived as a high-level language specifically for
scientific and mathematical computation. Since then, several DSLs such as Matlab (MATLAB, 2010),
R (The R Foundation, 2018), NumPy (van der Walt et al., 2011) have gained popularity in HPC. Code
written in such DSLs is not always the most performant, and often the computationally intensive tasks
require implementation within libraries written in C/C++ or FORTRAN. The strategy works if a highly
tuned library implementation is available, but this is not always the case. The past two decades have
seen much effort towards improving the performance of DSLs. One possible solution is to create DSLs
embedded inside a high-level language. Such DSLs are called EDSLs. EDSLs and the closely related

concept of active libraries (Veldhuizen and Gannon, 1998) rely on generative programming features of an

existing high-level language to optimize, tune, and generate domain-specific code for a DSL embedded
within that high-level language. C++ template metaprogramming is perhaps one of the most successfully
adopted techniques for building EDSLs. Apart from C++ templates, other recent approaches have used
Multi-Staged Programming (MSP) (Taha and Sheard, 1997) to build EDSLs on top of languages such as
Scala (Odersky et al., 2008) and Lua (LabLua, 2015). Chapter 2 explains these methods in detail.
EDSL designs, especially those based on purely generative methods, are not perfect. A significant
limitation is the lack of important types of optimizations that require deeper compiler analysis than
is possible inside the EDSL-layer. Analyses range from data-flow-based redundancy elimination
optimization to much more intricate data-dependence-based loop optimizations. Code generated by some
EDSL can also introduce obfuscations that impede low-level compiler optimizations. These obfuscations,
such as address and loop linearization, can make it very hard, if not impossible, for any compiler to infer
the programmer’s intent, inhibiting subsequent compiler-driven analysis and optimization.
Overcoming the limitations of EDSLs requires a new design approach. Such a design should
extend the underlying host-language’s compiler be aware of EDSL domain-specific abstractions and
constructs. With such a design the possibility exists of optimizing EDSL expressions using a wider
range of standard compiler optimizations. A close coupling between the EDSL and the host-language
compiler simplifies designing newer domain-specific optimization and code-generation techniques by
reusing existing compiler infrastructure. Chapters 5 and 6 present such a new EDSL-design approach.
Data-placement is another area that is increasingly important for both general-purpose parallel
programming languages and EDSLs. The overall data-placement of an application controls several
aspects of data movement across the computation domain. In the context of HPC, data movement refers
to communication over a network interconnect, across the non-uniform memory-access shared-memory
hierarchy, or even among registers. Several complementary methods exist to optimize applications
for these scenarios. Such methods include customizing shared-memory data-layouts, and customizing
data-distributions for distributed-memory clusters. Automating data-placement via compiler analysis, and
even providing an interface to define data-placement, remain key challenges for programming systems.
Optimizing data-placement by hand is one of the main areas that requires expert programming skills in
HPC.
Alleviating the programming crisis by addressing limitations in EDSL code-generation and designing

an easy-to-use data-placement abstraction technique form the core of this dissertation. We introduce

a new technique for EDSL code-generation that uses C++ template metaprogramming to encode a
domain-specific Intermediate Representation (IR) inside a general-purpose compiler IR. The new
metaprogramming technique simplifies the engineering of new domain-specific optimizations and code
transformations on top of existing general-purpose compiler technology. We also introduce a data-
placement abstraction technique that completely decouples architecture-specific data-distributions and
data-layouts from application-level algorithms. Using these two innovations, we introduce a new SIMD
auto-vectorization based on a data-layout transformation technique. For selected kernels form a large
scale HPC application, the new auto-vectorization offered a factor of two performance improvement,
while taking less than one-tenth the lines of code. Other innovations explained in Section 1.3 include
automated code-generation from the same abstract high-level program for both multi-core and multi-node

cluster, and a design for high-level optimization of EDSL constructs.

1.1 A Historical Perspective

Kennedy et al. (Kennedy et al., 2004) quantified computational productivity as a function of the
amortized cost of preparing the program, the cost of running it, and the net present value of the results.
The computational resources needed by some problems are minimal and the time to solution is not large.
For such problems, it is ideal to minimize the programming costs by using an expressive scripting tool
such as Python, Matlab, or R. At the other end of the spectrum, large computational campaigns may use
many millions of CPU hours and the opportunity cost of waiting for an answer may be very large. In
extreme cases, e.g., disaster forecasting or even responses to interactive queries, late answers may be
useless. Such cases require uncompromised computational efficiency. There are even cases in which
there is a need to program a new algorithm quickly for a large time-critical computation. Most large HPC
applications lie somewhere between these extremes.

In 1978, Glenford Myers (Myers, 1979) first published a book that focused on the “semantic gap”, the
incompatibility between the abstractions of high-level languages and the low-level machine instructions
of the computers of that era. Myers advocated closing the gap by raising the semantic level of the
hardware. Instead, at about the same time, the RISC revolution increased the gap by further lowering the
semantics of the machines, thus leaving a larger gap that needed to be bridged by software. Subsequent

complexities, such as multi-issue CPUs with deep pipelines, vector pipelines on commodity processor

chips, multi-core/multi-threaded chips, and deeper, more complex coherent memory hierarchies, have
exacerbated the problem.

Myers and Kennedy et al. addressed the same problem from different perspectives. Closing the
semantic or productivity gap entails increasing the expressive power of the programming environment
while simultaneously increasing the computational efficiency of programs.

Striking the right balance between expressiveness and computational efficiency has been a challenge
since the first generation of computers. To incorporate expressiveness, programming systems have added
layers of abstractions. In recent decades, innovations such as object-oriented and functional programming
have greatly improved the tools available for abstraction. Unfortunately, multiple layers of abstraction
and the resulting deep call chains, sometimes involving dynamic bindings, may decrease computational
efficiency as measured in terms of the peak achievable architectural FLOPs rate. Generic and generative
programming techniques, e.g., C++ template metaprogramming (Eisenecker, 1997; Bischof et al., 2004)
and Template Haskell (Sheard and Peyton Jones, 2002) macros, mitigate aspects of this problem. MSP
(Taha and Sheard, 1997), or staging, also has shown promise. From a code-generation perspective,
Just-in-Time (JIT) compilation has been by far the most popular option. Many expressive high-level
languages that support type introspection use JIT to enhance computational efficiency. Full-blown
parallel programming languages such as the ones developed as part of United States Department of
Defense’s Defense Advanced Research Projects Agency’s (DARPA) High Productivity Computing
System (HPCS) project (Dongarra et al., 2008) are another alternative. These languages focus primarily

on abstracting architecture-specific parallelization, making it easier to write parallel programs.

1.2 Thesis

Existing EDSLs and other high-productivity programming systems for HPC look to combine high
productivity with high performance via abstract parallel patterns. Such patterns typically are specialized
for multiple architectures and provide some level of performance portability. However, no EDSLs
or high-productivity programming system has completely addressed the issue of abstractions for data-
placement. Programming systems that support such abstractions often do so for only a single architectural
layer. Many systems either support a set of abstractions for data-layouts and ignore data-distributions, or

the vice versa. Failing to address both aspects of data-placement leads to performance loss and limits the

applicability of the programming system. Close coupling of abstractions within the main programming
interface is another issue, which leads to source code that has data-placement logic intertwined with
application logic. Such entanglement impairs readability and overall portability of the code.

To mitigate these issues, our thesis is as follows.

A system of high-level data-placement abstraction based on a well-defined algebra can describe
multiple layers of data-placement in relation to each other. Combining the data-placement mechanism
with domain-specific code optimization and generation within a compiler can improve programmer

productivity without loss in computational efficiency, reducing the semantic gap.

1.3 Contributions

In support of the thesis statement presented in Section 1.2 our dissertation makes the following main

contributions.

* We implemented a C++-14 and LLVM-based EDSL compilation framework called QCD’s Array-

based Rapid-prototyping Compiler (QUARC) that serves as a proof-by-example of our thesis.

— To demonstrate QUARC’s capability, we implemented a prototype EDSL for the HPC
domain of Lattice Quantum Chromodynamics (LQCD). The performance of selected kernels
implemented in this EDSL, QUICQ Internally Calls QUARC (QUICQ), was up to two
times better than that of an existing production application called MILC (MILC collaboration,
1992). The kernels implemented in QUICQ also took less than one-tenth the lines of code
when compared to MILC. QUICQ’s performance was up to 10 times better than that of an
existing production DSL in LQCD, QDP++ (Edwards and Jo6, 2005). QUICQ also was

competitive with the best hand-optimized kernels for the evaluated set of examples.

* We implemented an array index-space transformation algebra to define data-placement abstrac-
tions. Using the algebra, it is possible to define abstractions both for data-layouts and for data-

distributions.

— This design separates data-placement specifications from the rest of the programming layer.
Application developers can customize data-placement specifications at runtime to tune

program execution.

— The same high-level code executes in parallel on a single multi-core server or on a multi-node

cluster by changing runtime data-placement specifications.

* We introduce an external policy-driven speculative SIMD auto-vectorizer.

— Speculative SIMD vectorization frees application programmers from having to make data-
layout choices in their application code. External agents, such as an autotuner, or a low-level

expert, can make the layout selection at runtime.

— We introduce a data-layout selection policy for higher-order stencil kernels. A stencil kernel
is an iterative computation used in various scientific computations such as partial differential
operators and image-processing. The term “stencil” refers to updating an array element
according to a fixed computational pattern involving neighboring array elements in the same

or in a separate array.

* We introduce a new technique for building C++-based EDSLs.

— The new technique, Abstraction Characterization Templates (sACTs), uses metaprogramming

to generate a domain-specific IR from standard C++ templates.

— We demonstrate the efficacy of delayed or late scalarization of array expressions. In QUARC,
scalarization does not happen inside C++ templates, and is done as late as possible in the

code-generation process. This facilitates improved compiler analysis and optimization.

— We introduce a design for using scalar data-flow optimizations to optimize EDSL constructs.

1.4 Dissertation Overview

This rest of the dissertation provides the motivation, design considerations, implementation details,
and evaluation of the QUARC framework as follows:

Chapter 2 provides a background on different EDSL designs. The emphasis is on EDSL code-
generation methods and on data-placement abstractions provided by stat- of-the-art HPC EDSLs. The
end of the chapter includes a motivating example showing the impact of data-layout transformations on
SIMD vectorization performance on a modern x86 architecture.

Chapter 3 introduces the QUARC framework and its individual components.

Chapter 4 presents a formalization of the array index-space transformation algebra. The chapter
discusses these operators in general, without focusing on any aspect of their use in QUARC. Readers
with experience using APL or other array programming language already should be familiar with most of
the concepts. They can refer to Section 4.1.2 for the specific differences between our operators and the
more general APL counterparts.

Chapter 5 presents QUARC’s programming interface (METAL), describing the C++-14-based
data-parallel array operators and the overall API to construct EDSLs. Section 5.1 includes a detailed
guide to METAL’s syntax, and is aimed at programmers. General audiences may skip this chapter.
Section 5.2 describes the ACT’s design pattern and its use for preserving high-level semantics inside
METAL. Section 5.3 describes QUARC’s data-placement abstractions (ATL).

Chapter 6 describes in detail our LLVM-based domain-specific compiler’s design and implementa-
tion. It also describes a small runtime library interface for automating Message Passing Interface (MPI)
communication-generation. The chapter explains each stage of the code-generation and optimization
pipeline, including the late scalarization approach, in detail.

Chapter 7 presents an empirical performance analysis of the impact of different data-layout choices
on the SIMD vectorization performance of stencil computations. The study was conducted for multiple
generations of Intel x86-based architectures. We discuss the data-layout characteristics that drive SIMD
vectorization performance and the trade-offs required to ensure high performance.

Chapter 8 presents a data-layout selection policy based on the empirical study in Chapter 7. QUARC
uses the policy in its speculative SIMD vectorization technique.

Chapter 9 presents the steps involved in developing an EDSL for LQCD. Section 9.1 introduces the
domain of LQCD, and then Section 9.2 shows the main excerpts of our EDSL implementation. The goal
of this chapter is to evaluate the overall productivity gained in terms of lines of code by using this EDSL,
when compared to an existing production application developed in C.

Chapter 10 evaluates the performance of our LQCD DSL by comparing it both to an existing
C++-based production DSL and to a legacy application written in C. Wherever available, both sets of
evaluation include the very best hand-optimized implementations as the standard of peak performance.

Chapter 11 surveys further related work in various areas of relevance to QUARC.

Chapter 12 concludes this dissertation and lays out a vision for future extensions.

CHAPTER 2: BACKGROUND AND MOTIVATION

Designing a DSL for an HPC domain involves several important design considerations. This
chapter reviews the choices, emphasizing code-generation methods and data-placement abstractions for

domain-specific abstractions.

2.1 EDSL Code-Generation

Contemporary HPC DSLs fall into two broad categories: standalone DSLs, and EDSLs that
are embedded inside a high-level host language. Examples of standalone DSLs are the numerical
analysis DSLs Matlab (MATLAB, 2010), Julia (Bezanson et al., 2017), the machine-learning DSL Glow
(Rotem et al., 2018). Prominent EDSLs are Halide (Ragan-Kelley et al., 2013) an image-processing
DSL, SPIRAL (Piischel et al., 2005) a DSL for signal processing, and QDP++ (Edwards and Jo6,
2005), a DSL for LQCD. Our present discussion defines EDSLs as those languages whose syntax
does not differ from the host languages, i.e., every EDSL program is a completely legal host language
program. Such characterization of an EDSL excludes language extensions such as CUDA C (NVIDIA
Corporation, 2010), OpenMP (OpenMP Architecture Review Board, 2015), OpenCL (Stone et al., 2010)
and OpenACC (OpenACC.org, 2013). All these language extensions introduce new keywords, data types,
and annotations. All require custom parsers and compilers.

Standalone DSLs require more work to develop and to maintain the language front-end and parser,
but the interface can be tailored more closely to domain-specific requirements. EDSLs lower the front-
end implementation cost, but the interface is restricted to the features of the underlying high-level
language. Standalone DSLs provide their own compilers with high-level, domain-specific optimizations
and code-generation. Usually, low-level optimizations and machine-code-generation are offloaded to a
general-purpose compiler such as LLVM (The LLVM Foundation, 2018). However, the high engineering

cost of developing standalone DSLs disqualify this option for many HPC communities. EDSLs offer

quicker design and development turnaround times, and thus present a more viable option. This chapter
focuses exclusively on EDSL development methodologies.

There are several methodologies to construct EDSLs. Each methodology uses a different approach
to detect EDSL code sections embedded inside a host language program and to generate domain-specific
code for those EDSL sections. Metaprogramming within the host language, through custom source-to-
source translation, and utilizing staging are some of the most successful EDSL methodologies. The
following paragraphs review these methodologies.

Metaprogramming is a programming technique in which programs treat themselves or other pro-
grams as data. Using metaprogramming, a program generates code during compilation of itself, and
merges the generated code with the rest of its source code. Lisp and its dialects were the earliest
exponents of metaprogramming. Lisp (LISt Processor) treats source programs as linked lists of data
structures. Using Lisp’s macro system, programmers can introspect their programs as a list of data
structures. Related macro systems have evolved in other programming languages as well, e.g., Template
Haskell (Sheard and Peyton Jones, 2002), Scala (Odersky et al., 2008), and Clojure (Rich Hickey, 2007).

Generative programming (GP) is another term closely associated with metaprogramming. Czarnecki
and Eisenecker (Czarnecki and Eisenecker, 2000) described GP as an attempt to automate creation of soft-
ware components by developing programs that synthesize other programs. Template Metaprogramming
(TMP) falls into this category. Templates are program constructs that are written without binding them
to specific data types. The data types are specified later as a specialization of the template. TMP was
pioneered by ML, a language derived from Lisp. Since templates are written with generic types rather
than with concrete types, TMP is often also called generic programming. The most popular use of TMP
is found in C++. C++ TMP is widely used in C++’s standard library. C++ TMP-based methods such as
C++ Expression Templates (sC++ ETs) (Veldhuizen, 1995; Vandevoorde and Josuttis, 2002) are also
widely used to create EDSLs. C++ ETs use TMP to build expression objects that abstract complicated
loop structures. Template expansion and specialization are used to synthesize loops for different data
types and architectures without direct programmer involvement. C++ ETs has been used to develop
HPC DSLs (Edwards and Jod, 2005; Parsons and Quinlan, 1994; Reynders and Cummings, 1998), where
C++ ETs automate MPI, OpenMP, or CUDA code-generation.

C++ TMP, and specifically C++ ETs, suffer from several shortcomings. The loop synthesis happens

in the template layer and cannot incorporate various advanced loop optimizations. Loop optimizations

10

that require data dependence-based analysis are hard, if not impossible, to incorporate using C++ TMP.
C++ TMP also cannot apply high-level optimizations, such as expression fusion and other redundancy
elimination, across multiple template statements. C++ TMP code-generation is limited to a single
template recursion chain. For these reasons, C++ TMP may be used to synthesize parallel loops, but the
performance often falls short of the level obtained by the very best hand-tuned libraries. Additionally,
obfuscations introduced by C++ TMP can also impede subsequent compiler analysis and optimization.

Multistage programming (MSP) (Taha and Sheard, 1997), or staging, is a special case of metapro-
gramming that involves staging of portions of code for evaluation and compilation at a later phase.
Phased, or partial, evaluation is beneficial for scenarios in which information about a program only
becomes available at a later phase. A good example is type information in dynamically typed languages.
MSP can have both compile-time and runtime stages.

MSP is the basis for recent HPC DSL frameworks like Delite (Sujeeth ef al., 2014) and Terra (DeVito
et al., 2013). Delite is an EDSL on top of Scala (Odersky et al., 2008), a hybrid object-oriented functional
language that runs on the Java Virtual Machine (JVM). Delite uses a modified Scala compiler and MSP
to generate a domain-specific IR embedded into Scala’s byte code. Delite’s compiler optimizes this
domain-specific IR, before generating architecture-specific parallel code. Terra is a low-level language
specifically designed for MSP in Lua (LabLua, 2015), a dynamically typed functional programming
language. Terra’s design envisions two-level staging. At first, a program is implemented in Lua for rapid
prototyping, and then performance-critical sections are staged as Terra code. The Terra compiler uses
dynamic staging to enable runtime feedback-driven optimizations and auto-tuning. Chapter 11 expands
our discussion of Delite and Terra.

MSP requires an up-front decision about the portions of a program that are to be staged. MSP-based
systems use either explicit staging annotations or custom data types to denote staged code. The staged
portion of the code can be adapted to different platforms and architectures by adding new library routines
or by adding new compilation targets. The high-level staged code does not need changes. However, the
up-front demarcation of staged code limits the interaction between the staged code and the non-staged
code. The limited interaction between the staged and the non-staged code is disadvantageous in scenarios
in which optimizing the staged code requires knowing the context of the staged code inside a larger
non-staged code section. Maintaining type-safety is another issue associated with MSP. An MSP

compiler translates high-level staged code into a domain-specific IR, and after optimizations translates

11

the domain-specific IR back into the regular host language IR or directly to low-level code. It is not
trivial to ensure guaranteed type-safety during these code-generation steps, especially when MSP is used
inside a dynamically typed language. Addressing the type-safety issue was one of the major emphases
of the Terra framework. Terra required static type information to be added to every staged library
function call within the dynamically typed Lua language. Beyond maintaining type-safety, extending the
domain-specific IR of an MSP compiler requires significant engineering work. Often, that engineering
work involves rewriting a lot of the same boilerplate. The recent Forge framework (Sujeeth et al., 2013)
targets this issue within the Delite framework.

Split-languages can also fall under the purview of metaprogramming, but we choose to categorize
them separately to highlight the use of two separate programming interfaces in split-languages. The
two programming interfaces of a split-language separate domain-specific algorithms from architecture-
specific code-generation decisions. The domain-specific programming interface is embedded into a host
language, and a separate specification language drives architecture-specific code-generation. Notable
examples of EDSLs using a split-language design are Halide (Ragan-Kelley et al., 2013), SPIRAL
(Piischel et al., 2005), and Sequoia (Fatahalian ef al., 2006). All three languages are programmed
in C++/C, but use standalone specification languages for code-generation decisions. The standalone
code-generation specification interface is a main feature of these EDSLs. Using the separate interface, a
set of domain experts can rapidly prototype the algorithmic portions of an application. After that another
set of experts can tune the application by building an architecture-specific code-generation specification.

Despite their elegance, split-languages have potential pitfalls. Often, the code-generation specifica-
tion is too intricate for the average domain expert, and a separate set of experts to write the code-generation
specifications are not available. Even when experts to write code-generation specifications are available,
the best specification may require exhaustive searching of a large optimization space. Thus, the challenge
lies in splitting the two programming layers without over-complicating the code-generation specification
layer. The authors of Halide acknowledge the problem in their recent follow-up paper (Ragan-Kelley
et al., 2017). While the core Halide language is highly expressive and easy to learn for domain experts,
the programming schedules remains hard for most programmers.

JIT compilation is another common EDSL code-generation strategy. JIT refers to the fact that
low-level code-generation happens during program execution. Terra supports JIT compilation; there have

also been implementations (Winter et al., 2014) of JIT compilers within C++ ETs. Source-to-source

12

translation is a technique in which the DSL code is translated into a low-level language like C/C++ or

FORTRAN. The translated code then is compiled using a standard compiler.

2.2 Data Placement Abstractions

Data placement refers to the organization of a program’s data across a memory domain. For modern
HPC architectures, this can occur at multiple levels. Data placement across multiple nodes of a cluster is
called data-distribution or data partitioning. The organization of the members of a data structure inside
a shared-memory domain is called memory data-layout. The various levels of data-placement have to
perform well in conjunction with each other. Together, they control data-movement-related costs and
significantly impact a program’s overall performance.

The importance of data placement is closely tied to the locality of reference. Denning and Schwartz
(Denning and Schwartz, 1972) first observed that programs repeatedly access same or related storage
locations, and called the locality of reference. A significant number of optimizations, both in software
and hardware, are designed to exploit locality of reference. Such features include deeply nested multiple
levels of caches, branch predictors, and prefetchers. Operating systems tailor their virtual memory
sub-system and paging policies to depend on locality of reference. Important compiler optimizations such
as loop tiling, loop fusion, and software prefetching work with the hardware layers to exploit locality of
reference.

Several programming languages have explicit data-placement options using abstractions both for

data-distribution and for data-layout. We next survey examples of both types of abstraction.

Data-Distribution Abstractions

Data-parallel programming languages, most notably High Performance Fortran (HPF) (Loveman,
1993) and ZPL (Chamberlain et al., 1998), focused on abstractions to define data-distribution across
multiple nodes of a cluster computer. Partitioned Global Address Space (PGAS) languages first developed
in the late 1990’s took a different approach to data-distribution. PGAS languages allowed programming
with a seemingly shared-memory model, with explicit demarcation between local and shared data. All
shared data was partitioned over processors. The initial PGAS languages, Unified Parallel C (UPC) (EI-
Ghazawi and Smith, 2006), Co-array FORTRAN (Numrich and Reid, 1998), and Titanium (Yelick ef al.,

13

1998), all began as extensions to existing sequential languages. The initial implementation did not offer
much support for controlling data-distributions. Later enhancements added abstractions that provided
support for data-distributions, such as blocking of arrays. Closely related to the PGAS languages are those
developed as part of DARPA’s High-Productivity Computing System (HPCS) project (Dongarra et al.,
2008). The three HPCS languages, X10 (Charles et al., 2005), Fortress (Allen et al., 2008), and Chapel
(Chamberlain et al., 2007), offered different levels of support for data-distributions. Fortress allows
libraries to define custom data-distributions for arrays. X10 supports distributed arrays that can be blocked
across multiple processes. Chapel offers the most flexibility for array-data distributions. It supports a set
of data-distribution choices, but also allows defining application-specific custom data-distributions.

A common limitation of most of these languages is the close coupling of data-placement abstractions
with the core language semantics. The close coupling means that data-placement abstractions are
inherently intertwined with application-level algorithms. Experimenting is hard with different distribution
options without first altering the source code. The code entanglement also limits portability, and restricts
evolving an old code to a newer architecture.

A more modern framework, Legion (Bauer ef al., 2012), simplifies the problem of separating data
placements from the rest of the application logic. Legion’s programming model is built around the notion
of logical regions. A logical region is a logical data partition, and the smallest unit for data-distribution in
Legion’s programming model. Every logical region defines its access privileges, aliasing, and coherence
properties. The properties of a logical region decide the level of concurrent accesses possible on the
logical region. Legion programs are composed of tasks, each of which accesses logical regions. By
performing a task-dependence analysis, Legion’s runtime system schedules parallel execution of tasks.
Tasks can execute on different nodes of a cluster, a node-attached accelerator, or multiple cores of a node.
Programmers retain control of how the data is partitioned and of the mapping of the data partitions to
processors. The mapping interface is decoupled from the rest of the application programming interface.
Therefore, data-placement logic is separated from the main application logic, and provides flexibility in

extending an existing application to a new architecture.

Data-Layout Abstractions

Data-layouts define the in-memory organization of members of a data structure in shared-memory

architectures. The data-layout of an application’s data structures plays an important role in the appli-

14

AoS

Rrg Rig.Big Gro | Gig | Rry Ril.Bil Gry | Gip | -+ |Rray Rigl.Bigl Gray | Gisy

SoA
Rrg | Rry | Rrg | - -+ -+ | Rr3;
Rig | Riy | Rig | --- <+ | Rigy
Big | Biyp | Big | --- -+- | Bigy
Gro | Gr1 | Grg | -+ <+ |Gr3y
Gig | Gi1 | Gig | -+ - co- | Gizy
AoSoA
Rrg | Rrg |Rrie|Rrag Rry | Rrg |Rri7|Rras Rry | Rris | Rras | Rr3y
Rig | Rig | Ri1e | Rioa Riy | Rig | Riy7 | Rios Ri7 | Riys | Rigg | Rigy
Big | Big | Bijg | Biza Biy | Big | Bii7 | Bios Bi7 | Bijs | Bias | Bigy
Grg | Grg |Grig|Grag Gry | Grg [Gri7|Gras Gry |Gris5|Graz|Gray
Gig | Gig |Gi16 | Giog Giy | Gig | Gir7 | Gigs Giy | Giis | Giog | Gizy

Figure 2.1: This illustrative example shows three different data-layouts for a one-dimensional array of
size 32. Each element of this array has six nested elements {R,, R;, B;, B;, G-, G;}. The data type
represents an SU (3) complex vector. Chapter 9 provides further details on this data type and its use.
The figure shows an AOS, SOA, and an AOSOA data-layout for the array. Each data-layout leads to a
rearrangement both of the array elements and of nested elements at each index position.

15

cation’s performance, and for this reason there has been significant amount of research to optimize
data-layouts. Anderson ef al. (Anderson et al., 1995) used data-layout transformation to address false
sharing in cache-coherent shared-memory multiprocessors. Lu et al. (Lu et al., 2009) used an approach
like Anderson et al., but for improving the locality on a prototype non-uniform cache-access architecture.
Barua et al. (Barua et al., 1999) and So et al. (So et al., 2004) proposed data-layout transformations to
improve memory-level parallelism on FPGAs. Both methods transform the data-layout of an array to
interleave elements across multiple on-chip memory banks. Sung (Sung et al., 2010) targeted structured
grid applications on many-core and GPGPU platforms. Henretty (Henretty et al., 2011) looked at
data-layout transformations to improve short-vector SIMD vectorization.

Programming systems for modern architectures are increasingly exploring data-layout options to
improve application performance. Figure 2.1 illustrates three data-layout options, AOS, SOA, and
Array-of-Structs-of-Arrays (AOSOA), for a one-dimensional array. Each choice has its advantage, the
SOA data-layout is generally better for SIMD vectorization, the AOS data-layout has better spatial
locality, especially if neighboring array elements are accessed together, the AOSOA data-layout strikes a
balance between AOS and SOA. The performance of a data-layout depends on various factors, including
array size, data access patterns, and hardware architectural properties. Several recent performance studies
(Rosales et al., 2016; Giles et al., 2013) have argued for the inclusion of these type of data-layout
options via either library-based abstractions or language extensions. Still, these layout choices have
limitations, such as they do not allow arbitrary splitting and transposition of array dimensions. For
higher-dimensional arrays, the lack of the feature to arbitrarily split and transpose array dimensions
limits the number of data-layout choices. Such layout choices are required for some kernels and some
architectures. Section 2.3 presents such a scenario.

Despite the need for better support for data-layouts, very few extant programming systems support
data-layout abstractions or constructs. Most proposals have not grown beyond the research phase,
including Intel’s ispc compiler (Pharr and Mark, 2012) and a proposed extension to the OpenACC
standard (Hoshino et al., 2014). Both systems included a fixed set of layout choices as language
extensions and keywords. Terra (DeVito et al., 2013), Halide (Ragan-Kelley et al., 2013), and some
research prototype compiler systems (Majeti ef al., 2014; Xu and Gregg, 2014) support Array-of-Structs

(AOS) and Structs-of-Arrays (SOA) data-layouts. The Kokkos C++ library (Carter Edwards et al.,

16

2014) supports custom data-layouts other than Array-of-Structs (AOS) and Structs-of-Arrays (SOA) for

multi-dimensional arrays.

Conclusion

Our work looks at a general system of data-placement abstractions that is usable for defining both
data-layouts and data-distributions. Chapter 4 presents the array index-space transformation algebra that
is the basis of our data-placement abstractions. The implementation of the abstractions is in Section 5.3,

and code-generation based on the abstractions is described in detail in Chapter 6.

2.3 Motivating Example

This section presents a motivating example that highlights the need for data-layout transformations to
improve the SIMD vectorization performance of stencil computation on an Intel Haswell server. Although
this example uses a single server, the observations apply to other recent x86-based server architectures.

Stencil computations are one of the most important computational patterns in scientific computation
and HPC (Asanovic et al., 2009). Stencils are iterative computations that update each array element
according to a fixed computational pattern involving its neighboring array elements. Listing 2.1 presents
a nine-point scalar stencil computation over a four-dimensional regular grid. The loop-nest shown in the
example is perfectly nested and completely parallel, and is an ideal candidate for fine-grained inner-loop

parallelization or vectorization.

Auto-vectorization

Compiling Listing 2.1 with Intel’s ICC 17.04 compiler at a -O3 optimization level leads to auto-
vectorization of the innermost loop. Listing 2.2 shows the generated assembly code for the main loop
body. The code-generation target was an Intel Haswell architecture with 256-bit AVX?2 registers. With
single-precision floating-point values and a small problem size of 16x32x32x 32, the total data footprint
is only 4MB. The test machine for this example had 20MB of L3 cache. Therefore, the whole problem
size easily fits inside this L3 cache. For this small problem, and based solely on wall clock execution
time, the default auto-vectorization yields a 53% performance improvement compared to scalar execution

with the “no-vec” compiler option.

17

NeBie RN Be S R S

e et e e e
O 01NN AW~ O

0NN W=

—_— = = = =
A WO = O 0

constexpr std::size_t T

= 32,

Z =32, Y =3

2, X =

32;

void stencil_9pt (float % restrict Al, const float % restrict A2) {
for (auto t = 1lul; t < T-1; ++t)
for(auto z = 1lul; z < Z-1; ++z)
for(auto y = 1lul; y < Y-1; ++y)
for(auto x = lul; x < X-1; ++x) {
AL[t*Z*Y*X + zxY*X + yxX + x]

= AZ[(t—l)*Z*Y*X + z*xY*X + y*X + x]

+ A2[(t+1) *Z*Y*X + z*Y#*X + y*X + x]

+ A2[t*Z*xY*xX + (z—1)*¥*X + yxX + x]

+ A2[txZ2xY*X + (z+1) *Y*X + y*X + x]

+ A2 [t*xZxY*X + zxY*X + (y-1)*X + x]

+ A2[t*Z*xY*xX + zxY*X + (y+1)*xX + x]

+ A2[txZ2xY*X + zxY*X + y*X + x - 1]

+ A2 [t*Z*xY*X + z*Y#*X + y*X + x + 17;

}
//... Elided boundary region computations
}
Listing (2.1) A nine-point scalar stencil

shape of arrays Al,A2 is {T-Z-Y-X}. X is the fastest changing dimensions.
vmovups 4228+A2(...), %ymmO # (t-1) from O0*Z*Y*X 4+ 1xY*xX + 1xY + 1xX
vmovups 131204+A2(...), Symml # (z-1) from 1#Z*Y*X 4+ 0xY*X + 1xY + 1xX
vmovups 135172+A2(...), %Symmé # (y=1) from 1xZxY*X + 1xYxX + 0xY + 1xX
vmovups 135296+A2(...), %ymmb # (x-1) from 1*ZxY*X + 1xY*X 4+ 1xY + 0xX
vaddps 266372+A2(...), %Symm0O, $ymm2 # (t+1) from 2+Z+xY*X + 1x¥Y*X + 1xY + 1#X
vaddps 139396+A2(...), S%Symml, Symm3 # (z+1) from 1xZ*xYxX + 24Y*X + 1xY + 1xX
vaddps 135428+A2(...), %Symm4, Symm6 # (y+1) from 1xZxY*X + 1xYxX + 2xY + 14X
vaddps 135304+A2(...), S%Symm5, $ymm7 # (x+1) from 1#Z+xY*X + 1xY*X + 1xY + 24X
vaddps %ymm7, %$ymm6, $ymm9
vaddps S$ymm3, Symm2, $ymm8
vaddps S$ymml4, $%$ymml3, $ymm2
vaddps %ymm9, %ymm8, $ymmlO
vmovups $ymml0, 135300+A1(...) # (x) from 1xZ*Y*X + 1xY*X + 1xY + 1xX

Listing (2.2) AVX2 assembly generated by ICC 17.04

Hand-vectorization after data-layout transformation

Custom hand-vectorization after a data-layout transformation yielded 35% better performance over
the default ICC -O3 auto-vectorization. Our hand-vectorization used a data-layout transformation
converting the arrays A1 and A2 to an AOSOA data-layout, and the writing AVX2 vector intrinsic
manually. Chapter 6 presents in detail the data-layout transformation and auto-vectorization based on the

data-layout transformation.

18

lof1]2]3]4]s]e]7]8]o]0[11]12]13]14]15]16] -+ |- |-]---[28[29]30]31]

Default lexicographic indexing

Overlapping vector registers prevent reuse

A2x-1] o1 [2]3]4]5]e]7]|——

A2x+11 [2]3]4]5]6[7]8] 9] |8]o9[10]tt]12]13]14]15]

18] 19]20]21[22]23]24]25]

(a) Default vectorization with row-major layout

418 1(12|16(20(24|28
519 |13]17|21(25|29
6
7

10(14|18|22]26|30
11(15(19|23|27|31

W= O

Custom data-layout after reshaping and transposing the X-dimension

(x—1) vector reused after two iterations,
_— but needs a permute

A2[x—1] ’ 0 ‘ 4 ‘ 8 ‘12‘ 16‘20‘24‘28‘ (x+1) vector reused
after two iterations

A2[x+1] [2]6[10]14]18]22]26]30] | 1[5]9 [13]17]21]25]29] \

V)
o)
—
o
—_
N
—
[ee]
[\S)
[\
[\®)
(o)
[O%]
o
AN
oo
—_
\)
—
(@)
[\)
(e)
W)
~
[\)
e]
(e)

13] 7 [11]15]19]23]27]31]

(b) Custom vectorization after a data-layout transformation

Figure 2.3: Improving SIMD vectorization after a data-layout transformation

19

Discussion

Figure 2.3a illustrates why custom vectorization after a data-layout transformation is an improvement
over auto-vectorization over the default data-layout. In the default case, the two SIMD registers for the
A2 [x+1] and A2 [x—1] shares multiple elements. The overlap of the data in SIMD registers limits reuse
of the registers. Figure 2.3b shows the data reorganization done by the data-layout transformation. The
layout transformation is akin to a gather-scatter reorganization of the array elements. The effect of this
transformation creates a two-dimensional tiled vector data-layout. The tiled data-layout ensures that each
register in a tile has multiple reuses. The internal rows are directly reused after one iteration, and the only
SIMD permutations needed are at the boundaries of the vector tile. The data-layout transformation is the
primary reason why our custom hand-vectorization outperforms the existing compiler auto-vectorization
for this stencil computation. Applying this type of data-layout transformation by hand is not feasible, it
requires low-level programming skills and is error-prone. The low-level code offers minimal portability

as each architecture has a different vector instruction set extension.

Chapter Review

This chapter discussed two important issues that DSLs in HPC have to tackle. Both code-generation
methods for EDSLs and data-placement abstractions play an important role in combining high pro-
grammer productivity with high computational efficiency. Chapter 3 introduces how the QUARC
framework handles these two specific issues. Subsequent chapters then go into the specific design and

implementation details of QUARC’s code-generation technique and of its data-placement abstractions.

20

CHAPTER 3: THE QUARC FRAMEWORK

QCD’s Array-based Rapid-prototyping Compiler (QUARC) is a framework for creating EDSLs
using C++14 for lattice and grid-based domains (Deb et al., 2016, 2017). QUARC consists of a high-level
programming interface embedded in C++14, a domain-specific compiler that uses LLVM (The LLVM
Foundation, 2018), and a runtime library for MPI parallelism. Figure 3.1 presents QUARC’s high-level
system architecture. QUARC’s front-end has a split-language programming interface with two pro-
gramming layers: Minimal Expression Template Array Language (METAL) and Array Transformation
Language (ATL). METAL is the interface to build EDSLs using QUARC, and is a notational, array-
based, implicitly data-parallel C++14 header-only library. METAL programs are free of explicit parallel
constructs and make it easy for domain-experts to write readable code. ATL is a small specification
language based on YAML (Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009). ATL specifications
define the data-distribution and data-layout of abstract METAL arrays.

QUARC uses a domain-specific compiler, QUARC’s Optimizer (QOPT), to compile METAL
programs. QOPT is a plug-in to the LLVM compiler framework that defines a set of domain-specific
analysis and code-generation passes. QOPT passes execute before the standard LLVM compiler passes
and lower METAL abstractions into standard LLVM IR. This step involves domain-specific optimizations,
MPI library call generation, SIMD vectorization, array access linearization, and loop generation. After
compiling the high-level METAL code, QOPT invokes the standard LLVM optimization and code-
generation passes to optimize the code further and to lower it to a binary executable.

The QUARC’s Runtime (QUARC-RT) library is the final component of QUARC. QUARC-RT has
a parser for ATL specifications, a polyhedral analyzer to compute MPI data movement, a set of wrapper
functions for MPI routines, and a mapping interface to map distributed METAL arrays to MPI Cartesian

communicators.

21

DSLs QUICQ
. QUARC |
Y EEE——
UARC- C++14
METAL |----of QUARCL Lo o
RT - stdlib
N)
QOPT I C—
N 4 MPIL-3
AN —_ J
\\\ O
4 ISL
clang++ high-level —
opt.
External libraries
low-level
. . opt.
Policy Engine
Fa.yout codegen
Dictionary

opt

* exe

llc

Link dependency
Include dependency

<«—— Process flow

I:I LLVM component

Figure 3.1: QUARC system architecture diagram

22

3.1 EDSL Design Approach

QUARC’s EDSL design approach combines the best ideas in several established EDSL techniques,
such as metaprogramming and split-languages. Chapter 2 surveyed these EDSL code-generation
techniques. Although based on established ideas, QUARC’s EDSL design approach has important
enhancements that we list in this section.

QUARC uses C++ TMP to implement its METAL front-end. However, the use of C++ TMP differs
from conventional C++ TMP-based EDSL designs. Conventional C++ TMP-based EDSLs generate
low-level code using TMP. METAL takes an alternative approach, and uses C++ TMP to generate a
domain-specific IR. The domain-specific IR consists of a set of side-effect-free domain-specific function
calls. Using this approach, METAL communicates much of the high-level domain-specific semantics to
QOPT. QOPT then uses the information for high-level optimizations on domain-specific constructs, and
generates data-parallel code.

QUARC’s approach bears similarities to MSP. Like most MSP-based methods, QUARC involves
multiple levels of staging and code-generation. Our design offers a novel way of staging a domain-specific
IR using side-effect-free domain-specific function calls inside an industry-standard compiler IR. These
domain-specific function calls are equivalent to staging annotations in MSP. QUARC’s domain-specific
IR is legal LLVM IR, and as such, is analyzable via standard LLVM compiler passes. Analyzing
a domain-specific IR using standard compiler passes makes it easier to implement domain-specific
optimization and code-generation passes, and lowers the overall engineering cost of QOPT.

QUARUC’s use of the split-language design is limited when compared to those of other EDSLs
frameworks that take a similar design approach. Other frameworks such as Halide and SPIRAL offload a
significant chunk of the code generation logic into the specification layer of the split-language interface.
The ATL interface is much smaller in comparison, and exposes as little as possible of the code-generation
process to end users. Instead, QUARC leverages standard compiler analysis to make domain-specific
code-generation decisions.

QUARC eschews JIT compilation for ahead-of-time code-generation. The ahead-of-time code-
generation strategy generates multiple code versions based on prior application profiling. Application
profiling and subsequent feedback to QOPT is separate from QUARC’s overall infrastructure. The

primary use of the strategy is in QOPT’s SIMD auto-vectorizer. The auto-vectorizer generates multiple

23

vectorized versions of each METAL array expression based on different data-layout choices. The layout
choices are provided as compiler flags to QOPT. The decision to use ahead-of-time code-generation
instead of JIT compilation was based primarily on the ease of implementation. Integrating a JIT compiler
into QUARC-RT would have entailed additional software engineering work, with minimal benefit for

current use cases. It is a case for future consideration.

3.2 Parallel Programming Model

QUARC has an implicit data-parallel programming model exposed via METAL’s array program-
ming interface. METAL is free of explicit parallelization constructs; therefore, programmers do not
have to reason about actual data-parallel execution of their application-level code. Instead, the ATL-
specified data placement of an application’s array-data types decides the parallel execution. Due to this
programming model, programmers can adapt the execution of their application by only changing the
ATL specification. Depending on the type of ATL specification, the same application can execute in
serial, in parallel on multiple cores, or in parallel across distributed memory nodes.

The implementation of QUARC relies on MPI. Thus, QUARC shares MPI’s memory model. All
participating processors have their own private address spaces, and explicit communication is needed
to move data among processors. QUARC-RT internally uses various optimizations to ensure that the

communication overheads remain low. Chapter 6 explains these optimizations in detail.

3.3 The Core Components of QUARC

3.3.1 Minimal Expression Template Array Language (METAL)

METAL is a high-level array programming language that uses C++14 TMP. The language defines
array containers, data-parallel operators, and array-expression data types. These basic constructs are
composable into data-parallel array expressions. METAL array expressions can combine arrays and C++
scalar types. The implementation of METAL uses a new metaprogramming technique called Abstraction
Characterization Templates (sACTs). ACTs use template recursion to generate a forest of side-effect-free
function, or DSL intrinsic, calls. The DSL intrinsic calls encode the complete expression-tree of METAL
array expressions and semantic information about the expression-tree nodes into QOPT’s domain-specific

IR. QOPT reconstructs METAL expression-trees by recognizing the encoded DSL intrinsic calls.

24

METAL’s semantics are similar to other languages supporting array objects, such as FORTRAN 90
and High-performance FORTRAN (HPF). METAL behaves as though it fully evaluates the Right-Hand
Side (RHS) of an array-assignment expression without side effect, and only then modifies the Left-Hand
Side (LHS) sub-expression of an array-assignment. Chapter 5 presents the METAL language, its design,

and its implementation details.

3.3.2 Array Transformation Language (ATL)

ATL is a small specification language based on YAML that specifies data placement of high-level
METAL arrays. An ATL specification serves three main purposes: it specifies the data-distribution of
an array, it specifies the data-layout of the array, and it specifies the mapping of the array blocks, or
partitions to an MPI Cartesian communicator. Section 5.3 presents the implementation details of ATL.

Chapter 4 presents the underlying algebra that ATL uses to define data-distributions and data-layouts.

3.3.3 QUARC Optimizer (QOPT)

QOPT is an LLVM-based domain-specific compiler for METAL, and is a plug-in of LLVM’s Opt
module. QOPT handles all low-level code-generation and parallelization decision for every METAL
array expression. In the current implementation of QUARC, this includes speculative SIMD vectorization
on x86_64 platforms, shared-memory parallelism using MPI-3, distributed memory parallelism using
MPI-2, and other low-level optimizations. Chapter 6 presents the details of these optimizations, along

with a detailed elucidation of QOPT’s design and implementation.

3.3.4 QUARC Runtime (QUARC-RT)

The QUARC-RT library has wrapper functions for MPI operations, a parser for ATL specifications,

and data-distribution functions. Section 6.5 explains the library and its components.

25

CHAPTER 4: AN ALGEBRA FOR ARRAY TRANSFORMATIONS

QUARC’s data-placement abstractions are based on a more general array-transformation algebra.
This chapter presents the formal semantics, legality constraints, and composability rules of this algebra.
The algebra defines array index-space transformations using two operators, reshape (p) and transpose
(¢). A p transformation reshapes array dimensions by partitioning existing dimensions, and creates a
partitioned index-space. The ¢ transformation permutes array dimensions. Reshaping and permuting
dimensions create new array index-spaces. The p¢ algebra does not specify how an array index-space
is mapped to a memory address space. Instead, it specifies how to generate a map between an initial
index-space and a transformed index-space. Language implementations on top of this algebra must
generate the needed data transformations based on the index-space maps.

QUARC’s p and ¢ operators resemble similarly named operators defined by APL (Iverson, 1962)
and by other array programming languages. However, QUARC’s definition and usage of these operators
differ from those of other array languages. Section 4.1.2 notes the differences.

Notation. We use the following notation to describe formally QUARC s array-transformation algebra.
Lower-case Greek letters identify operators. All operators are written in C/C++ function-call syntax.
As in C++, the term “vector” is used for a one-dimensional sequence container. Some of our array
notations follow the style of Mullin’s Mathematics of Arrays (Mullin, 1988). We use angle brackets,
(), to represent vectors. Parentheses () denote arrays. For arrays with more than two dimensions, the
parentheses are nested. The uppercase letter A represents a typical QUARC array container wherever it
is used in a definition. We use the notation A™ wherever the dimensionality of an array is mentioned, n
being the number of dimensions of the array. The lowercase letter v represents an arbitrary vector. Array
and vector indices are zero-based and are read from left to right. The usual C/C++ subscript operator []
is used to denote indexing into arrays and vectors. The 2 operator is used in all definitions to denote

equivalence of two expressions. The = operator is used as a relational operator.

26

4.1 Basic Operators

Definition 4.1. Dimensionality (5(A))

The unary § operator returns the rank or dimensionality of an array.

1>

S(A™) £ n. @.1)

Definition 4.2. Shape (c(A))
The unary o operator takes either an array or a vector as its argument. For an array, it returns as a
vector the number of components in each dimension of the array. For a vector argument, o returns the

total number of elements in the vector.
A A
o(A) =s=(eo,---,e54)-1)- 4.2)

The components of vector, s, are positive integers. Each component gives the extent of an array
dimension. As QUARC does not support zero-ranked arrays, each component of s must be a positive
integer greater than one, i.e., Vi, s[i] > 1.

Note. APL users would recognize o as the same operator as APL’s monadic p shape operator. We

chose to use a different symbol to avoid confusion with the dyadic p reshape operator.

Example 4.1.

For the following two-dimensional array

abcd
Aé e fghl,
1 j k1
o(A) 2 (3,4).
Example 4.2.
Using the same array from Example 4.1.
o(o(A)) 29,

27

Definition 4.3. Product (7(v))
The binary 7 operator returns the cumulative product of the components of a vector. It requires two
input arguments: a vector and a start-index position. The start-index position argument defaults to 0, and

can be omitted.
N A .
m(v,j) = [wli (4.3)

Example 4.3.

Given a vector (v) {(a, b, ¢, d),

ﬂ(v)éw('u,O)éa-b-od

F(U,l)éb-C'd.

Definition 4.4. Stride (st)

A stride is the number of array elements that must be traversed to reach the next array element along
an array dimensional axis. The vector st denotes the stride in every dimension for an array.
m(s,i+1) if0<i<o(A)—2

E

stli ,where 0 <i < §(A). 4.4)

1 otherwise

Example 4.4.
Let A be a four-dimensional array with a row-major lexicographic data-layout, and o(A*) 2

(a,b,c,d).

st2(b-c-dc-dd1)

Definition 4.5. Block Dimension
A block dimension is a new dimension created by partitioning an existing array dimension. A block

dimension cannot be further reshaped.

28

Definition 4.6. Dimensional Attribute (da)
A vector of Boolean values, each of which specifies the type of an array dimension. The value is ‘1’

for a block dimension and ‘0’ otherwise.

Definition 4.7. Reshape (p)
The binary p operator splits every array dimension based on a corresponding reshape factor. The
operator takes an integral vector argument (p). The components of p specify the reshape factors for all

array dimensions. A legal p vector is defined as follows:

6(A) =o(p). (P1)

1< pli] < s[i], Vi|0<i < o(s). (P2)
s[ijmod p[i] = 0, Vi | 0 < i < o(s). (P3)
pli] =1, Vi | 0 <i < o(s) and dali] = 1. (P4)

* P1 states that a reshape factor is needed for each array dimension. Thus, multiple dimensions may

be reshaped together.

» P2 states that the reshape factor should be between one and the extent of a dimension. As reshaping
involves integral division, the factor needs to be greater than 0. A reshape factor also cannot be
equal to the extent of the dimension. If permitted, such a reshape operation would only create a

superfluous unit-length dimension.

* P3 states that each reshape factor should split a dimension evenly. This constraint is primarily
there to simplify indexing operations. Future extensions to QUARC may relax this constraint by

handling uneven divisions using array padding.

* P4 states that a block dimension cannot be reshaped. Block dimensions are meant to be mapped to
an address space. Thus, reshaping a block dimension is not permitted. It is treated as immutable,
once defined. Note that an original array dimension can be reshaped multiple times to create

multiple levels of block dimensions.

29

pupdates s to s, and da to da’ for A as follows:

p[%] if jmod2 = 0

(3/)?20 2 s[4] ,where 0 < i < o(s). 4.5)
—? otherwise
pl3]

L 1 ifjmod2=0
(da)?Z:o ,where 0 < i < o(s). (4.6)
0 otherwise

1>

Equations 4.5 and 4.6 add entries into the new shape and dimensional attribute vectors. Both
equations add entries in the new vectors, including a unit-reshape factor even though a unit-reshape factor
performs no reshape. Therefore, as a final step, p removes all components corresponding to unit-length

. . / / / " " "
block dimensions from s , da , and st to create three new vectors, s , da , and st .

s =s_p, 4.7

da" £ da’ ks (4.8)

where Vk| 0 < k < o(s') and s'[k] = 1 and da'[k] = 1. The notation v'_, indicates the removal

of the k" entry from a vector v.

Example 4.5.
This example uses a two-dimensional array, A, with initial s equaling (64, 64). To demonstrate
the effect of reshaping, every array element is shown as a two-tuple consisting of the element’s initial

two-dimensional index.

0,0 0,1 ... 0,63

A2
63,0 63,1 ... 63,63
0,0 0,1 ... 0,31 31,0 0,1 ...31,31
A 0,32 0,33 ... 0,63 31,32 31,33 ... 31,63
p(A,(2,2>):
32,0 32,1 ... 32,31 63,0 63,1 ... 63,31
32,32 32,33 ... 32,63 63,32 63,33 ... 63,63

30

After the reshape transformation, the new shape-vector for A is (2,32, 2, 32). The notation should
be read as a 2x 32 array of 2x 32 blocks. The index positions inside a block are contiguous. A reshape

transformation does not change the lexicographic ordering of the original indices.

Definition 4.8. Transpose (¢)
The binary ¢ operator permutes the dimensions of an array using a permutation vector (p). ¢

permutes the existing s, and da, attributes of A. A legal permutation vector, p, is defined as follows:

6(A) =o(p). (P5)
pli] # plj], Vi,j|0<1i,j <o(s)andi=j. (P6)
0 < pli] < 5(A), Vi|0<i< o(s). (P7)

P5 states that the size of the permutation vector should be equal to rank of the array. P6 states that the
permutation vector should not have repeated values. P7 states that a permutation vector should contain
only values corresponding to the position of an array dimension.

¢ updates the existing s to s',and da to da’, for A as follows:

s [pli]], (4.9)

da [i] = da [p[i]], (4.10)

where 0 < i < o(s).

Example 4.6.
This example applies a ¢ transformation to the reshaped array created in Example 4.5. The trans-
formed array’s shape was (2,32, 2, 32). Following are two examples of possible ¢ transformations of

this array.

31

0,0 ... 0,31 0,32 ... 0,63

1,0 ... 1,31 1,32 ... 1,63

A [\31,0 ... 31,31) \31,32 ... 31,63
$(A,(0,2,1,3)) =

32,0 ... 32,31\ (32,32 ... 32,63

33,0 ... 33,31 | [33,32 ... 33,63

63,0 ... 63,31) \63,32 ... 63,63

The ¢ transformation permuted the second and the third dimensions of the reshaped array. The array
was transformed from a 2x 32 array of 2x32 blocks to a 2x2 array of 32x32 blocks. Note that the ¢
transformation reorders the original indices. This transposition is useful when partitioning an array across

multiple processors.

(00 032) (320 3232)

(031 31,63) (3232 32,63)

1>

»(A,(1,3,0,2))

(31,0 3132) (330 3332)

(3131 3163) (6332 63,63)

This second ¢ transformation is a different permutation of the array dimensions. To clarify, the

overall permutation can be viewed as the following series of permutations.

?(A,(1,0,2,3)) — ¢(A,(1,0,3,2)) — (A, (1,3,0,2))

The resulting final shape of the array is (32,32, 2,2). This ¢ transformation transposes the block
dimensions in the opposite direction as compared to the previous transformation. This transformation is

useful when indices are rearranged to create an inner SIMD vector dimension that is lifted from outer

32

dimensions. Here, the innermost dimensions may be composed together to generate a four-wide SIMD

vector dimension.

4.1.1 Composing array-transformations

The p and ¢ operators both update the s and da vector of A. The transformations may be composed
together if their input arguments do not violate any legality constraints.

A ¢ transformation is invertible. A p transformation, however is not invertible. To invert a p
operation, our algebra would have to be extended via a concatenation or a ravel operator. Such operators
are present in APL and in other array algebras, such as Mullin’s Mathematics of Arrays and More’s Array
Theory (More, 1973). QUARC’s present use cases did not require a ravel operator, and it was omitted
from this algebra. As such, any sequence of array-transformations that involve a reshape transformation

is not invertible.

4.1.2 Comparison of QUARC’s array-transformations to APL

QUARC’s p and ¢ operators are eponyms of APL’s (Iverson, 1962) p and ¢ operators. The general
semantics of the two sets of operators is similar. However, QUARC’s operators differ from APL’s in
some important ways.

APL’s dyadic p operator requires as its input a new shape-vector for an array. It applies the new
shape to an existing index-space. Thus, it may increase or decrease an array’s rank. APL’s reshape
operator accepts a shape-vector argument even when the product of that vector’s components does not
equal the total number of array elements. APL handles such cases either by ignoring all extra elements
where the product is lesser, or by wrapping around when the product is greater. In comparison, QUARC’s
p operator is an index-space partitioning operator. It partitions the existing index-space to create a new
shape that can only increase an array’s rank.

Similarly, QUARC’s ¢ operator is only a subset of APL’s ¢ operator. QUARC does not permit
repeats in the permutation vector argument of ¢. The permutation vector argument to APL’s ¢ operator
can have repeated values, and produces what is known as a diagonal section of the transformed array. We

would refer readers to (More, 1973; Mullin, 1988) for a detailed elucidation of APL’s formal algebra.

33

4.2 Index-space Mapping

This last section describes the generation of mapping functions between a lexicographic index-
space and an index-space created using a p¢ transformation. These functions are the basis of writing
data-redistribution or data-layout transformation routines.

First, we introduce another auxiliary operator (¢) to help describe data-mapping functions.

Definition 4.9. Index (¢)
The binary ¢ operator returns an index offset (/) from a datum. This operator is used to calculate a
memory address within an array. It takes two vector arguments, an index vector (2) and a stride vector

(st). ¢ is defined as follows:

12 (i, st) 2 N ilj] x stj], where 6(st) = 6(i). @.11)
0

Let 2 be an index vector for an array A, and 7’ be an index vector for the array A’ that is produced

by a p transformation on A. Then, 7’ is derived as follows.

i[3] . B
—5 if jmod2 =0
(¢)?io 2 ¢ slsl . ,where 0 < k < o(s). (4.12)
7 mod s[%] otherwise
i 24y (4.13)

With this definition for the index vector for the transformed array, the mapping function from A to

A’ is derived as follows.

A7, st')] = A[(i, st)], (4.14)

where ¢ spans the space of all indices of A. The inverse mapping is simply the reverse assignment.
For ¢ transformations, 4’ is derived by permuting the original index vector using the same permutation

vector.

34

Example 4.7.

Given an A? of shape 32x 32 that is p¢ transformed as follows:

P(A,(2,2)) = ¢(A, (1,3,0,2)).

This transformation results in the layout shown in Example 4.6. Then, a possible implementation of
the mapping from the default lexicographic data-layout to the new data-layout is shown by the following

C++ loop nest.

for (auto y = 0ul; yv < Y; ++y)
for(auto x = 0Oul; x < X; ++x)

A_transformed[y%(Y/2)]1[x%(X/2)]11[y/(¥Y/2)]1[x/(X/2)] = Aly][x];

Copying data back from the transformed data-layout to the original row-major lexicographic data-

layout can be done simply by reversing the assignment.

for(auto y = 0ul; y < Y; ++y)

for (auto x = Oul; x < X; ++x)
Aly]l[x] = A_transformed[y%(Y/2)][x%(X/2)]1[y/(¥Y/2)][x/(X/2)];
Chapter Review

This chapter presented the array-transformation algebra that is used by QUARC to define its data-
placement abstractions. Although based on similar operators in APL, QUARC’s operators have different

semantics. Section 5.3 in Chapter 5 explains the use of this algebra in the ATL specification language.

35

CHAPTER 5: PROGRAMMING INTERFACE

QUARC has a two-level split programming interface. Application programs are written in the
METAL, an extension to C++14 that implements an implicitly data-parallel array programming interface.
An application-level METAL array does not have an intrinsic data-layout or data-distribution. These
attributes are added at runtime using the ATL. ATL is a small specification language based on YAML
(Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009). ATL controls the runtime data-parallel execution
of METAL programs. There are several benefits to this split programming interface. It keeps METAL
applications succinct, improves readability, and reduces maintenance overheads. It reduces the need to
recompile a program for a different data-distribution or data-layout, and allows rapid prototyping. Any
future QUARC code-generation target, such as GPGPUs, can be added by enhancing ATL and QUARC’s
code-generation and runtime libraries. Splitting ATL and METAL also enables auto-tuning in the space
of data-layouts and data-distribution for METAL arrays.

METAL’s Application Programming Interface (API) provides array containers, expressions objects,
and data-parallel operators. The API allows developing expressive array-based EDSLs that are free of
explicit parallelization constructs, elemental loops, and array accesses. Programming in METAL, or an
EDSL developed on top of METAL, requires no custom annotations, pragmas or keywords. Section 5.1
describes METAL’s grammar and API in detail. This section is primarily aimed at programmers
implementing EDSLs on top of METAL, and can be skipped by general audiences.

METAL is nominally a C++ template-only library, unlike conventional C++ template-only libraries
METAL templates do not generate low-level executable code inside C++. METAL templates do not
scalarize array expressions, i.e., they do not generate elemental loops and array accesses. Instead of
generating elemental loops and array accesses, METAL generates an architecture-neutral domain-specific
IR that encodes the expression tree for each METAL array expression. The encoded IR-generation uses
a new design pattern called Abstraction Characterization Templates (SACTs). Every ACT function call

represents a separate node of the parse tree. Internally, an ACT uses C++ TMP to generate calls of

36

specially annotated side-effect-free functions called domain-specific intrinsic (DSL intrinsic) functions.
DSL intrinsic function calls encode the METAL constructs into the domain-specific IR generated for
QUARC’s compiler, QOPT. QOPT recognizes DSL intrinsic function calls, and recovers METAL
expression trees and their properties. This allows various optimizations at the expression tree-level,
followed by architecture-specific data-parallel code-generation. ACT and DSL intrinsic function calls get
fully inlined over the course of code-generation. Section 5.2 presents the design and implementation
details for ACTs.

Finally, Section 5.3 describes ATL. An ATL specification defines a METAL array’s data-layout,
and distribution over an actual processor grid. ATL uses p¢ algebra to define operators that do these
operations. It also provides a way to map METAL array blocks or partitions to actual processors.
Depending on this mapping a METAL program can be executed serially, parallelized on multiple cores

of a shared-memory node, or parallelized at a large scale on a distributed cluster.

5.1 Minimal Expression Template Array Language (METAL)

5.1.1 Grammar

Figure 5.1 shows METAL’s complete EBNF grammar. METAL has a relatively small type system
consisting of a dynamically allocated global array container, a fixed size array container, expression
classes to define array expressions, and data-parallel operators for whole-array operations. Section 5.1.2
describes all these data types in detail.

The METAL high-level API does not implement any elemental functions for the global array
container class. The implementation of elemental functions is left as a prerogative of the EDSL-layer

developed on top of METAL.
5.1.2 Type System
5.1.2.1 Array Properties

Global shape (g1blshape)

A glblshape type defines an abstract global index-space for a METAL distributed global array. A

glblshape type is defined with two non-type template parameters. The first non-type parameter is

37

O 0 N N N kAW =

LW W W W W N N NN NN NN NN R s s e e e s e
A W D = O OV O NN KR WD = O DO NN R WD —= O

<guarc-kernel>
<asgn-expr>
<reduction-expr>

<expr>

<reduce-expr>
<bin-expr>
<unary-expr>

<if-even-choose-—

<choose-expr>
<gshift-expr>
<drill-expr>
<mddarray-term>
<sdlarray-term>
<mddarray-ty>

<binary-op>

<unary-op>

<binary-mk-ty>
<unary-mk-ty>
<supported-ty>
<sdlarray-ty>
<glblshape-ty>
<boundary-fn>
<predicate-fn>
<accumulator-£fn>
<arithmetic-ty>
<op>

<asgn-op>

<id>

= <asgn-expr> | <reduction-expr>;

= <mddarray-term> <asgn-op> <expr>;

= <supported-ty> "=" <reduce-expr>;

= <if-even-choose-expr> | <choose-expr> | <gshift-expr> |
<drill-expr> | <mddarray-term> | <sdlarray-term> |
<binary-expr> | <unary-expr> | <reduce—-expr>;

= "REDUCE" " ("<expr>","<accumulator-fn>")";

= <expr> <binary-op> <expr>;

= <unary-op> <expr>;

expr>

= "IF_EVEN_CHOOSE" " (" <gshift-expr> "," <gshift-expr> ")";

= "CHOOSE" " ("<predicate-fn>","<gshift-expr>", "<gshift-expr>")";
= <mddarray-term> ["." "GSHIFT" "<" int{ "," int} ">"];

= "DRILL" "<" uint ">" " (" <mddarray-term> ")";

= <mddarray-ty> <id>;

= <sdlarray-ty> <id>;

= "mddarray" "<" <supported-ty> "," <glblshape-ty> ">";
= (operator<op> | <id>) "<"

<expr> "," <expr> "," <binary-mk-ty>

"S"om("m o <expr> <id> ", " <expr> <id> ")";
= (operator<op> | <id>) "<" <expr>","<unary-mk-ty> ">"
"(" <expr> <id> ")";
= <supported-ty> <id> " (" <supported-ty>", "<supported-ty>
= <supported-ty> <id> " (" <supported-ty> ")";
= <arithmetic-ty> | <sdlarray-ty>;
= "sdlarray" "<" (<arithmetic-ty> | <sdlarray-ty>)","uint
= "glblshape" "<" uint "," <boundary-fn> ">";
= uint " (" "x" ")" "(" int <id> "," int <id> ")";
= bool <id> " (" uint {, unit} ")"
= <supported-ty> <id> " (" <supported-ty>", "<supported-ty>

= (x Any C++ integral or floating point types x);
= (x Any C++ overloadable operator «);
= (x Any C++ assignment operator =);

= (%x Any legal C++ identifier «);

",
’

Figure 5.1: METAL’s EBNF grammar

38

the rank of the index-space, and the second non-type parameter is a boundary function. A glblshape
instance is created with a list of unsigned integer arguments, each of which is a dimensional upper-bound

of the index-space. Every METAL global array is instantiated with a g1lblshape instance.

§Syntax
gshapeTyDef

) @ -
gshapeDef

gshapeTyDef @ 0 unsigned integerw

The glblshapeTyDef is the syntax rule for a glblshape type definition. gshapeDef is the

syntax rule for instantiating a glblshape object. ID denotes a legal C++ identifier.

§Rationale. All global view arrays in a METAL array expression are required to have the same global
shape. A separate data type for global shape makes it easier for programmers to follow this requirement.
A single glblshape instance can be created, and shared by multiple array instances. Having a separate
glblshape type also makes it easy for QUARC-RT to validate this requirement. QUARC-RT does
so using pointer comparisons of the g1lb1lshape members of the arrays in an expression.

§Implementation Note. The glblshape class constructor uses C++14’s variadic templates to
initializes the extents of a g1lblshape instance in a type-safe manner. A compile-time check ensures
that the number of extent arguments match the glblshape type’s rank. By default the array boundary

condition argument to a global shape object is set as a modulo periodic boundary function.

5.1.2.2 Array Containers
Single-dimensional local array (sdlarray)

An sdlarray is a fixed sized array container that can have numeric type elements, or can nest
another sdlarray. Every sdlarray type definition needs two template arguments. The first argument
specifies the data type of the elements of the sdlarray, and the second template argument statically

specifies the number of elements. An sdlarray cannot be zero-dimensional, and does not satisfy

39

C++’s plain-old-data-type (POD) type trait. METAL allows defining mddarray global view arrays

with an sdlarray element type.

§Syntax
arithTy
4<C++ arithmetic type s>7
sdlarrayTyDef
) @ a0,
sdlarrayDef

4‘ sdlarrayTyDef

The arithTy syntax rule is used here, and in subsequent syntax diagrams to represent all C++

arithmetic data types. The sdlarrayTyDef rule specifies an sdlarray type definition and the rule
sdlarrayDef specifies instantiating an sdlarray object.

§Rationale. The sdlarray type has similar semantics to the standard C++ std: :array type.
For QUARC’s design goal, the standard container was unsuitable and we implemented the sdlarray

type for the following reasons.

* QUARC data-layout transformations can encompass outer mddarray dimensions and nested
sdlarray dimensions. To ensure QOPT correctly translates nested sdlarray accesses after a
layout transformation, it needs to recognize these accesses inside the IR. The sdlarray subscript
operator is a METAL DSL intrinsics function that lets QOPT recognize these accesses, and recover

a full delinearized view for each access.

* The standard array container class can be zero-dimensional, and it provides no guarantee that any
nested array is allocated contiguously. Sdlarray cannot be zero-dimensional, and guarantees

contiguous allocation of nested arrays.

* By not being a POD, the sdlarray type prevents C++ compilers from implicitly optimizing
sdlarrays copy operations. For example, LLVM’s Clang C++ front-end implicitly converts
std: :array copy into memcpy calls. Such optimizations are advantageous in the general case,

but impede QUARC’s domain-specific code-generation.

40

Multi-dimensional distributed array (mddarray)

An mddarray is a distributed global view array container. Every mddarray type declaration
requires an element type argument and a glblshape type argument. An mddarray’s elements can
either be a C++’s scalar numeric type or an sdlarray type. The mddarray class constructor requires
an ATL specification (Section 5.3) as an argument. The specification is parsed at runtime, and decides the
data-distribution and data-layout of the mddarray. The data-placement of an mddarray is immutable.
The class provides separate data copy functions to copy data in and out from an mddarray. Apart from
the single constructor, the mddarray class does not provide any copy, move constructors or assignment
operators. It also does not provide a new operator. Each mddarray instance is meant to be defined
once, and then passed by reference everywhere. This is done to make reaching definition-based data-flow

analyses easier inside QOPT.

§Syntax

mddarrTyDef

gshapeTyDef

sdlarray TyDef

mddarrDef
2020 @ 920

The mddarrTyDef is the syntax rule for an mddarray type definition. mddarrDef is the rule
to instantiate an mddarray. gsID is a pointer to a glblshape instance, and dPSpecID is an ATL
spec file name.

§Rationale. C++ does not have multi-dimensional dynamic arrays. To get around this limitation,
libraries, such as Boost MultiArray (Garcia et al., 2001), Global Array Toolkit (Nieplocha et al., 2006),
and Kokkos (Carter Edwards et al., 2014), added support for such arrays. For QUARC, we required
a container that is both lightweight, and whose properties are recognizable by our underlying domain-
specific compiler. The mddarray class uses DSL intrinsic calls to identify multi-dimensional accesses,
constructor calls, and assignment operations. Recognizing these properties is a prerequisite for domain-

specific optimizations and code-generation.

41

§Implementation Note. The mddarray class does not provide any copy or move constructor or
assignment operators. It prevents scenarios such as returning and passing mddarray objects by value.
Mddarray cannot be used inside standard C++ containers, such as std: : vector. These limitations
made aspects of QOPT’s implementation simpler. QUARC provides a speculative SIMD vectorizer that
analyzes the uses of an mddarray to generate vectorized code specialized for a set of data-layouts.
The def-use analysis of an mddarray is simplified by making the mddarray class non-copyable and

non-movable.

5.1.2.3 Elemental Functions

Elemental functions, or “mkernels”, describe an operation applied to mddarray elements. As
mddarray elements may be sdlarray, mkernels may operate on sdlarray types. Mkernels must
be free of side-effects, and their definitions should be accessible inside the translation unit where they are
used. Mkernels require a pass-by-value and return-by-value semantics that is enforced by METAL’s API.
Mkernels can be both binary or unary operators. METAL does not provide any mkernels, and EDSLs

must define their own domain-specific mkernel functions.

§Syntax

supTy

sdlarray TyDef

uMkernel

LsupTy [1D (O supty [0 ()

bMkernel
0 & =0

The supTy rule specifies the allowed data types for an mkernel function argument. These are also
the types allowed as elements of an mddarray. Currently, only C++ arithmetic data types, sdlarray,
or arithmetic types are allowed. uMkernel and bMkernel are the syntax rules for mkernel function

signature. The rules specify that mkernels require both pass-by-value and return-by-value semantics.

42

§Rationale. The mkernel function’s design allows QOPT to fully analyze these functions during
code-generation. Being aware of the calling context of these functions, QOPT can make domain-specific
code-generation decisions that are not possible otherwise. QOPT takes into consideration any data-layout
transformations on the mddarray, and uses the information to SIMD vectorize the functions. QOPT
also fully inlines these functions during code-generation.

§Implementation Note. During code-generation QOPT inlines all mkernels, and possibly converts
all arithmetic operations to equivalent SIMD vectorized operations. For this reason, QUARC currently
limits the type of operations that are permitted in an mkernel function. Mkernel functions are only
allowed to have static for-loops that are defined using C++ templates. Static for-loops get fully unrolled
during template expansion. Mkernels should not have any other control flow apart from these special
template-based loop abstractions. Function calls are also not allowed within mkernel functions. In
addition, all mkernel functions must have static inline qualifiers. This qualifier ensures that the definition

of an mkernel function has internal linkage within the translation unit where it is used.

5.1.2.4 Array Operations

METAL array operation data types encapsulate mkernel functions, and generate DSL intrinsic
function calls that identify the encapsulated mkernel inside QOPT’s IR. METAL has two array operation
data types: unary operation (unary_op) and binary operation (binary_op). As part of their type
signature, both these data types require a non-type template argument specifying the mkernel function.
The data types have a static apply_-op function that calls back the encapsulated mkernel function. The
apply_op function is a METAL DSL intrinsic function, and QOPT recognizes them inside its IR. Using
this approach, QOPT identifies calls to the user defined mkernel functions inside its IR. The apply_op
calls are inlined at the end of code-generation.

The array operation classes are never directly instantiated, rather they are part of the type signature of
a METAL expression class. Template recursion generates the apply_op call at the point of evaluation
of the expression class that encapsulates the array operation. Section 5.1.2.5 discusses evaluation of

expression classes.

43

Unary operation (unary_op)

A unary_op object abstracts a unary operation that applies to a METAL sub-expression. Each
unary-op type is defined to accept a unary mkernel. Every unary_op type needs three template
arguments. The first argument is the input type accepted by the unary mkernel function encapsulated by
the unary_op. The second argument specifies the return type of the mkernel. The last argument is a
function pointer type specifying the type signature of the mkernel. A unary_op object is required to

create a unary array expression.

§Syntax

unaryOpTy

(unary.op) (<) supTy [(,) supTy |-,)| uMkemel [-(-)~(;)

Binary operation (binary_op)

A binary_op object is analogous to a unary_op, but abstracts a binary operation that applies to
two METAL sub-expressions. Each binary_op needs four template arguments. The first two are the
input types accepted by the mkernel function encapsulated by the binary_op. The third argument is the
return type of the mkernel. The fourth argument is a function pointer type specifying the type signature

of the mkernel. A binary_op object is required to create a binary array expression.

§Syntax

binaryOpTy

(binary.op)—(<) suply [=(,)| suply -(,) supTy |-(,)

§Rationale. Unary and binary operation objects serve two important roles. All mkernels in METAL

are required to be pure functions that pass and return objects by value. The required mkernel signature is

enforced by the unary and binary operation classes. These classes also free up EDSL developers from

44

having to manually annotate mkernel functions. unary_op and binary_op initialization internally
invokes a DSL intrinsic that annotate the supplied mkernel function.

§Implementation Note. The unary_op and binary_op are not exposed by METAL’s public AP
Instead, METAL provides factory functions that EDSLs need to use to define new types of expressions.

The factory functions create both the expression type and the needed operation type.

5.1.2.5 Array Expressions

METAL array expression are data-parallel operations over mddarrays. Array expressions abstract
foreach operations where the same operation is performed on each array element in parallel. METAL
supports unary, binary, and special expression types. EDSL built using METAL need to define the
operators that create unary and binary expressions. These EDSL operators are abstractions for higher
order array functions. An EDSL operator encapsulates an mkernel call back function, and generates a
METAL unary or binary expression by calling a factory function.

METAL’s API provides custom template functions that define the special expression types. The
DRILL function is applied across the whole mddarray to indirectly access sdlarray elements
nested at each location. The GSHIFT function defines a whole array shift of an mddarray. The
IF_EVEN_CHOOSE function defines a built-in predicate that provides alternative actions at each location
depending on the parity of the array index expression. The REDUCE function defines a reduction of
another METAL expression.

Each array expression type includes a member template function called evaluate_expr. This
template function needs to be invoked to evaluate an array expression. Typically, array expressions
get evaluated inside mddarray assignment statements, and reduction assignment statements. Every
expression type invokes a DSL intrinsic function when its evaluate_expr gets called. Binary and
unary expressions invoke the apply_op function of the encapsulated array operation. An mddarray
terminal expression would invoke an array_access_ fn DSL intrinsic call. The next sections discuss

the different expression types and their evaluation.

Unary expression (unary_expr)

A unary_expr abstracts a unary operation for a single METAL sub-expression.

45

§Syntax

Expr

4@ETAL array expression types)i

unaryExprTy

(unary-expr) (<) Bxpr [-(,)| unaryOpty |-(-)—(;)

Binary expression (binary_expr)

A binary_expr abstracts a binary operation that applies to two METAL sub-expressions.

§Syntax

binaryExprTy

—(pinary-expr)(S Bxpr |-(,) Expr [-() On0

Mddarray terminal expression (nddarray_term expr)

An mddarray_term_expr represents an mddarray element access. Evaluating this type of
expressions generates an access_fn DSL intrinsic call. The DSL intrinsic function call captures the

fully delinearized array access functions needed to index into the mddarray.

Scalar terminal expression (scalar_term_expr)

A scalar_term_expr is generated when a scalar arithmetic expression is used inside a METAL
array expression. Scalar expressions are used for operations such as scaling of mddarray elements by a

fixed value, and storing the output of a reduction.

Sdlarray terminal expression (sdlarray_term expr)

A sdlarray_term expr are like scalar terminal expressions, but use sdlarray values instead

of arithmetic types.

46

GSHIFT expression (gshift_expr)

A gshift_expr is a type of unary expression that represents a “shift” of an mddarray. A
gshift_expr generates an mddarray terminal expression. This expression is created by METAL’s
GSHIFT function. A shift of an mddarray conceptually returns a new array of the same shape, but
with its elements rearranged into a new configuration. METAL supports only one type of shift where
every element is moved to a new address that is at a fixed linear offset from the element’s initial location.
Boundaries are handled using the boundary function specified in the mddarray’s glblshape attribute.

A gshift_expr does not actually return a new array. It is implemented as a linear indexing
expression. GSHIFT requires a list of signed integer values. Each value in the list represents a constant
offset of a uniformly generated reference (Gannon et al., 1988; Wolf and Lam, 1991) for each dimension

of the mddarray. The linearization of each reference produces the shifted address for an element.

§Syntax

gshiftOp

(@)~ O-(esrrrD—~<) 909

gshiftExprTy

(gshi st expr)—(<)-{ mddanTyef |-(,) .. -

§Rationale. A gshift_expr allows QUARC to retain a fully delinearized view of an mddarray
access inside QOPT’s IR. Having a delinearized view of an access makes it easier to perform several
analyses used for code-generation. They are used for reuse distance calculation, and computation of
communication sets when generating code for multi-node clusters. QOPT can also perform scalar
redundancy elimination optimizations directly on gshift_expr objects.

§Implementation Note. GSHIFT is implemented as a C++14 variadic function template that takes
an n-tuple of non-type template arguments, where n equals the mddarray rank. This template generates

a gshift_expr object defined with the same non-type template arguments.

47

DRILL expression (drill_expr)

The DRILL operator generates a unary drill_expr. The expression abstracts an indirect access

of anested sdlarray element.

§Syntax
drillOp
drillExprTy

(ari1lexpr)~(<)| mddarrTyDet () ..)

§Rationale. This expression class provides the option to write METAL array expressions that access
anested sdlarray, and pass the sdlarray element to an mkernel. This allows reusing the same
mkernel across array expressions that use different types of mddarray.

§Implementation Note. The present implementation of the DRILL operator only allows drilling
into an mddarray terminal expression. DRILL cannot be used on any other expression types. For

example, DRILL does not allow gshift_expr or another drill_expr.

IF_EVEN_CHOOSE expression (i f_even_choose_expr)

An if_even_choose_expr is a binary expression that encapsulates a selection operation for each
mddarray elemental access. METAL’s ITF_EVEN_CHOOSE operator generates this type of expression.
IF_EVEN_CHOOSE allows two alternate GSHIFT operations at each mddarray index position. A
runtime selection between the two alternatives is made based on the mddarray index’s “parity”. Here

parity refers to a domain-specific global index that is separate from the mddarray’ s internal indexing.

48

01NN AW~

template <typename... Args>

bool is_even (Args... args) {
size_t sum = 0;
size_t arr([sizeof...(args)] = {(size_t)args...};
for(auto 1 = Oul; i < sizeof...(args)-1; ++i)

sum += arr[i];

o)

return sum % 2 == 0;

Listing 5.1: Implementation of an “even or odd” predicate function in C++

§Syntax

IfEvenChooseOp

4(1 fEvenChoos e>—®—‘ gshiftExprTy }—@—{ gshiftExprTy ’—@—)

(O (O m HO)-()

IfEvenChooseExprTy

4Cif,even,choose,expr e gshiftExprTy ’

§Rationale. METAL’s IF_EVEN_CHOOSE operator was designed specifically to help write “even-

odd” preconditioned iterative solvers in lattice quantum chromodynamics (LQCD). The operation splits a
multidimensional lattice or grid into sub-lattices, each of which contains either even or odd sites. Each
sub-lattice is operated independently of the other. This makes it possible to parallelize iterative solvers
by removing loop carried dependence.

§Implementation Note. Listing 5.1 shows a possible portable C++14 implementation of METAL’s

built-in “even-or-odd” predicate function. This is equivalent to the code QOPT generates.

Reduction expression

The REDUCE operator constructs a reduction expression to reduce the elements of a METAL
mddarray into a single scalar or sdlarray result. The REDUCE operator must be associative, but
may also be marked as commutative. The REDUCE operator requires three template arguments. The

first non-type integer argument conveys the commutative property of the reduction. A non-zero value

49

indicates the reduction is commutative, and a zero indicates the reduction is non-commutative. The
second template argument should be a METAL expression that the REDUCE operator reduces. The
expression argument can be any legal METAL expression except another reduction expression. The third

template argument should be a function that specifies a domain-specific reduction function.

§Syntax

ReduceOp

(epuce) () integer |-,)| Expr [-(,)~(0p)~(>)
(O Brpr [H(expr)-()~(op)1)-(-()

§Rationale. Reduction operations are a fundamental part of scientific programming. These are used

in most types of linear solvers. Providing an architecture neutral general-purpose reduction operator is
needed to support such kernels in QUARC. The compiler has more opportunities for optimization if the

operator is commutative.
5.1.2.6 Callback Functions

Boundary function

A boundary function is an indexing function defining the boundary condition of a METAL distributed
array container (mddarray). EDSLs built using METAL specify the boundary functions for their
domains. A boundary function adheres to the following function signature. The first argument is a signed
integer signifying a shifted index value for an array dimension. The second argument is the extent of that

dimension. The output of a boundary function is an index value used in memory address calculations.

§Syntax

boundFnDef
()0 - 2020

§Rationale. A differential equation system typically involves boundary value problems. A boundary

value problem defines the value of the independent equation variables at the physical boundary of the

50

size_t PERIODIC (int64_t i, size_t extent)
{
return ((i %$=extent) < 0) ? 1 + extent : 1i;

}

B WN —

Listing 5.2: Default implementation of periodic boundary conditions

domain. To handle boundary conditions scientific codes typically include conditional checks using
loop-index variables. However, as an array programming language, METAL array expressions abstract
away loops and direct array accesses. Instead, METAL includes the boundary function data type. The
actual conditional checks are added during QOPT code-generation.

§Implementation Note. METAL’s implementation presently limits an mddarray to a single
boundary function for all array boundaries. During code-generation QOPT tries to inline all boundary
function calls. To do so EDSLs must define the boundary function as stat ic within the scope of a
translation unit.

In our prototype EDSL implementation presented in Chapter 9 we used a periodic boundary condition.
Listing 5.2 shows a possible portable C++ implementation of this function. For performance reasons this
function is marked as a DSL intrinsic recognizable inside QOPT’s IR. This helps QOPT easily inline this

boundary function call with an equivalent version written in LLVM IR.

Reduction function

Reduction functions have the same signature and properties as binary mkernel functions. Refer

Section 5.1.2.3.

5.2 Abstraction Characterization Templates (ACTs)

ACTs are standard compliant C++ function templates. As with any C++ template, ACTs use
template metaprogramming to generate code at compile-time. However, unlike most C++ template
metaprogramming techniques, the code generated by ACTs does not produce an executable. Instead
of generating low-level code, such as loops and array accesses, an ACT generates a call to a specially
annotated function. The specially annotated functions called from inside ACTs are called DSL intrinsic
functions. This design pattern of using ACTs and DSL intrinsic functions allows encoding METAL

array expressions as graph-based IR into QUARC’s LLVM-based QOPT compiler with very little loss

51

Array assignment node

1
v [operator=]

quarc_-kernel_dispatch ()

/\

Mddarray terminal node Binary expression node
E [a] : [operator+(b.GSHIFT<1,0>, b.GSHIFT<-1,0>)]
i i

access_fn(a,0,0) evaluate_expr ()

apply-op () [encapsulate mkernel]

/\

GSHIFT expression node GSHIFT expression node
' [b.GSHIFT<1,0>] ' [b.GSHIFT<-1,0>]
1 1
evaluaté,expr () evaluaté,expr ()
Mddarray terminal node Mddarray terminal node
1 1
i (0] i [b]
i i
access_fn(b,1,0) access_fn(b,-1,0)

Figure 5.2: Binary expression tree for the expression a=b.GSHIFT<1,0>() + b.GSHIFT<-1,0>().

of high-level semantics. There is another advantage of ACTs when compared to using annotations and
pragmas in high-level code. DSL intrinsic function calls are invisible to application programmers. No
programmer intervention is needed to generate these calls. The complete set of annotations required by

QUARC gets generated automatically using template metaprogramming.

Example 5.1.

Every ACT function template represents a node of a METAL parse/expression tree. This example
shows the expression tree encoded using ACT function calls for a three-point stencil METAL array
expression. Figure 5.2 presents this expression tree. The expression tree is constructed recursively in
a bottom-up manner. Each ACT has an evaluation member function that in turn calls the evaluation
member function of the child nodes of the ACT. Leaf or terminal nodes end the recursion. Terminals are

either mnddarray accesses or scalar accesses. This recursive evaluation of ACT nodes, happens lazily.

52

That is the whole expression tree is evaluated only when the result needs to be computed. In this case,
the evaluation starts when the overloaded template assignment operator is instantiated.

Figure 5.2 shows the nested template instantiation hierarchy for the ACT and DSL intrinsic function
templates. Every dashed-dotted arrow leads to a DSL intrinsic function call. Solid arrows represent
parent-child relationship between nodes. All the function calls that are shown in the figure are DSL
intrinsic function calls. The quarc_kernel_dispatch call indicates the start of the RHS sub-tree of
expression. The evalaute_expr calls annotate the point of evaluation of each ACT expression node.
The apply_op call indicates an elemental operation. The function encapsulates an mkernel function.
Finally, access_fn indicates the terminal mddarray accesses. QOPT recognizes these DSL intrinsic
function calls, and can recover the whole expression tree. Section 6.2.2 discusses that process.

Aside from annotating expression tree nodes, DSL intrinsic function calls serve an important
secondary purpose. Some DSL intrinsic convey additional information that is useful during code-
generation. The apply_op calls indirectly help QOPT identify mkernel function calls inside the
generated IR. The function body for every apply_op function is empty except for a callback to the
mkernel. This domain-specific information about the code structure allows QOPT to identify user
provided mkernel functions. The arguments to an access_fn calls stores a complete delinearized view
of that mddarray access. QOPT then parses the function call arguments to recover every delinearized
mddarray access. The information is very useful in performing index calculations, reuse distance

analysis, and other important code-generation steps.

5.2.1 Types of ACTs and DSL Intrinsic

METAL uses a relatively small number of DSL intrinsic functions to encode its expression trees into
QOPT’s IR. Table 5.1 lists all the DSL intrinsic functions that are used currently. These functions are
specially annotated using Clang’s __attribute__((annotate ("string"))) feature. The string
value passed to this special macro serves as the key to recognize the functions inside the IR. This way it
is ensured that the DSL intrinsic functions are recognizable regardless of their C++ mangled function
names. The primary purpose served by each DSL intrinsic function call is to encode a type of METAL
expression tree node. Example 5.1 introduced few of them, Table 5.1 describes the rest. Some DSL
intrinsic function calls capture additional information about the high-level METAL program. Example 5.1

described the use of apply_op and access_fn functions. In addition, other DSL intrinsics serve

53

DSL intrinsic

Expression tree node

Arguments

access_fn

apply-op

binary_expr_builder

choose_expr_builder

drill_expr-builder

drill_op

evaluate_expr

gshift_expr_builder

gshift_expr_builder

quarc_kernel_dispatch

quarc_-Rkernel_dispatch

scalar_access_fn

scalar_expr_builder

sdlarray-copy

sdlarray_subop

unary_expr_builder

Denotes an mddarray access terminal
node.

Denotes the call site of an mkernel
function.

Denotes creation of a binary expression
node.

Denotes creation of a
IF_EVEN_CHOOSE expression node.

Denotes creation of a DRILL
expression node.

Denotes a drill operation that is
performed on evaluation of a DRILL
expression.

Denotes the evaluation point of a
METAL expression node. It is emitted
by all types of METAL expressions.

Denotes creation of a GSHIFT
expression node.

Denotes creation of a GSHIFT
expression node.

Denotes the start point for evaluating a
METAL expression.

Denotes the start point for evaluating a
METAL reduction expression.

Denotes a scalar terminal expression
node

Denotes creation of a scalar expression
node.

Denotes an assignment expression for
sdlarray objects.

Denotes an access to an sdlarray
element.

Denotes creation of a unary expression
node

Constant offset for the affine
access function in each array
dimension.

N/A
N/A
N/A

N/A

Constant index value for a
nested sdlarray
dimension.

Constant index value for a
nested sdlarray
dimension.

N/A

N/A

N/A

N/A

The actual scalar value
encapsulated within the
expression node.

N/A

N/A

N/A

N/A

Table 5.1: METAL DSL intrinsic functions

54

similar secondary purposes. Nested sdlarray accesses are preserved by sdlarray_subop. The
argument passed to drill_op intrinsic calls convey the index of an indirect access of sdlarray
elements of an mddarray. The first argument to reduction_kernel_dispatch indicates if a

reduction expression is commutative.

5.3 Programming Data-Placement Using ATL

Array Transformation Language (ATL) is a small specification language for programming data-
placements for METAL mddarrays. This Section describes ATL, and aspects of its overall design.
ATL is written as YAML (Oren Ben-Kiki, Clark Evans, Brian Ingerson, 2009), and each ATL entry is a
YAML “key-value” pair. Each entry defines an mddarray data-placement attribute. These include the
array’s data-layout, data distribution, and other aspects corresponding to how the array is distributed over
an MPI Cartesian communicator. An ATL file is required to initialize an mddarray, and gets parsed

only at runtime.

5.3.1 ATL attributes

P-grid defines the processor space on to which the array partitions are mapped. In QUARC’s current
implementation the p-grid corresponds to an MPI Cartesian communicator. It is specified as a list of
integers that specify the size of the communicator in each dimension.

Dist-rtf defines the blocking factors for each mddarray dimension. It too is specified as a list
of integers. The operation encoded by this attribute represents a p transformation followed by a ¢
transformation that permutes all the block dimensions outwards. The resulting new shape of the array

has a set of outermost block dimensions.

Example 5.2.
For a two-dimensional mddarray, A, the dist-rtf value of {2, 2} is equivalent to the following p¢
transformation.

p(A,(22)) — ¢(A, (021 3)).

Simd-rtf defines the blocking factors to build an innermost SIMD dimension by blocking one or
more mddarray dimensions. The semantics of simd-rtf are like dist-rtf, except that the encoded p¢

transformation is different. In this case, the ¢ transformation permutes all the block dimensions inwards.

55

{
using GS = global_shape<2>; "p-grid" : "2,2",
using ATE = mddarray<T, GS>; "dist-rtf" : "2,2",
"simd-rtf" : "2,2",
GS<2> gs(l6,16); "mapper" . "STATIC"
ATE A(&gs, "atl-spec"); }
(a) Defining a two-dimensional mddarray. (b) ATL specification as a YAML file

Figure 5.3: Example of an ATL specification.

The innermost block dimensions cumulatively show be equal to the SIMD register length for the target
architecture. The transformation defines a new data-layout for the mddarray. The simd-rtf values can
be user specified for cases where the user wants to generate code for a specific data-layout. Optionally,
QOPT can speculatively generate a set of data-layout choices that are encoded as multiple simd-rtf values.
QOPT then generates a code version for each of the data-layouts.

When an mddarray has nested sdlarray elements the effect of the p¢ transformation gets
applied to each nested sdlarray dimension. All the nested dimensions are permuted out, and the

innermost dimension is still a SIMD vector dimension.

Example 5.3.
For a two-dimensional mddarray, A, the simd-rtf value of {2, 2} is equivalent to the following p¢

transformation.

p(A,(22)) — ¢(A,(1302)).

Mapper specifies the mapping function that maps mddarray blocks on to the p-grid. The mapper
value is defined as a string. QUARC-RT internally has a dictionary mapping the string name for a mapper
to a library implementation of a mapping function.

§Implementation Note. The current scope of QUARC was limited to grid and lattice-based ap-
plications that exhibit regular data access patterns. Such applications benefit from rectilinear array
partitioning to define “blocked” data-distributions. For this reason, currently, QUARC provides only
one mapping function that statically maps mddarray blocks onto a single MPI rank within the p-grid.

Future extensions can add more types of mapping functions for other use cases.

56

{16x16} global
index-space

dist-rtf : <2,2”

0,0

0,1

{2x2x8x8} blocked

8,2

83

8,4

8,5

8,6

8,7

9,2

9,3

9.4

9,5

9.6

9,7

10,0

10,1

10,2

10,3

10,4

10,5

10,6

10,7

11,0

11,1

11,2

11,3

11,4

11,5

11,6

11,7

12,0

12,1

12,2

12,3

12,4

12,5

12,6

12,7

13,0

13,1

13,2

13,3

13,4

13,5

13,6

13,7

14,0

14,1

14,2

14,3

14,4

14,5

14,6

14,7

15,0

15,1

15,2

15,3

15,4

15,5

15,6

15,7

index-space

1,1

Static mapping of

blocks to MPI ranks

Figure 5.4: ATL specifications to define a two-dimensional block distribution for an mddarray. The
dist-rtf specification is added via ATL, and blocks the global index space into four blocks. These blocks
are mapped bijectively to the ranks of an MPI Cartesian communicator.

5.3.2 METAL-ATL interface

The mddarray class constructor requires an ATL specification as an input parameter. The ATL
specification defines the data-distribution and data-layout for the mddarray, and once defined these
attributes are immutable. Listing 5.3a shows a simple example of an mddarray constructor call.
Listing 5.3b shows the corresponding ATL specification file. This ATL specification is to define a
two-dimensional {2x2} MPI Cartesian communicator. The dist-rtf, and simd-rtf attributes are the same
as discussed in Example 5.2 and Example 5.3. Figure 5.4 provides a visualization of this data-distribution
strategy. It only shows the block distribution over the MPI Cartesian communicator, and omits the

data-layout transformation within each block.

57

5.3.3 Compile-time ATL v/s Runtime ATL

The initial design of QOPT incorporated ATL as a compile-time compiler flag. Along with data-
placement options, ATL specified even the mddarray shapes. The design provided several code-
generation advantages. Knowing an array’s shape and placement at compilation allowed specializing
array expression loops to compile time know trip counts. QOPT could avoid several extra checks that
are required when the trip counts are not known at compile time. Additionally, some auxiliary variables
needed to support data communication could be allocated statically on the stack without requiring
dynamic heap allocation at runtime.

Despite the advantages, we found it hard to extend the compile-time ATL design to real-world
applications. A fixed array shape and data-placement required a recompilation for each problem size.
Moreover, integrating with existing application code required multiple hooks to pre-compiled binaries
generated by QUARC. Another issue that proved hard to resolve was using different shaped array types
in the same QUARC program. There was no easy way to annotate the array shape and data-placement to
an array declaration with a single compiler flag. The closest solution was to add extra ATL annotations to
METAL’s source code. This was something we chose not to do to satisfy our design goal of a complete
separation of domain-level algorithms from their architecture and parallel execution concerns. The final
implementation of QUARC uses a runtime specification design for ATL due to the difficulties with a

compile-time ATL design.

58

CHAPTER 6: CODE GENERATION AND RUNTIME SYSTEM

This chapter describes QUARC’s compiler and runtime system. Section 6.1 introduces the overall
compiler architecture, the pass pipeline, and the different intermediate representations (IRs) used during
code-generation. Section 6.2 presents the high-level code-generation steps. Section 6.3 describes our
speculative SIMD vectorization technique. Section 6.4 describes QUARC’s scalarization steps for
METAL array expressions. Each section provides the necessary implementation details of the set of
compiler passes used in that stage of compilation. Section 6.5 presents QUARC’s runtime system. The
runtime is a lightweight library that uses integer set analysis to generate MPI communication. It also
provides an API to define data-distributions for METAL mddarrays, and implements the interface for

selecting a data-layout from the available options that were speculatively generated during compilation.

6.1 QOPT: QUARC’s Domain-specific Compiler

QUARC Optimizer (QOPT) is a domain-specific extension to the open source LLVM (The LLVM
Foundation, 2018) compiler framework, and is implemented as a plug-in to LLVM’s optimizer and
analyzer (Opt) module. METAL programs first get translated into LLVM IR without any optimization
(=00) using LLVM’s C++ front-end (Clang). This initial ~-O0 LLVM IR retains METAL array expression
trees as encoded DSL intrinsic function calls (Section 5.2.1). QOPT’s multi-stage code-generation process
lowers the initial LLVM IR to successive domain-specific IRs. At the end of code-generation standard
LLVM IR gets generated. Figure 6.1 shows QOPT’s pass pipeline and the transition between the different
IRs. The final residual LLVM IR is optimized further using Opt, and compiled into an executable.

Building a domain-specific compiler may seem orthogonal to an EDSL framework like QUARC.
It may be argued that a domain-specific compiler introduces engineering complexity and maintenance
cost that defeat the purpose of embedding a DSL in a general-purpose language. However, various
important optimizations cannot be designed solely using metaprogramming-based EDSL techniques.

Such optimizations require data flow and loop dependence-based compiler analysis. Moreover, EDSL

59

~ N
~. -~ -~
PN 5

. - - -

C++ Compilation (-O0)

Preprocessing
e Lower METAL DSL intrinsic to LLVM metadata
e Delete or inline METAL C++ template function calls

Extract Expression Trees

e Outline array expression trees into separate functions

Optional High-level Optimizations
e LLVM CSE redundancy elimination

Generate Polyhedral Representation
e Generate a QKSCoP polyhedral IR

Kk
LLVM IR
HIR
L,
4 LT T T
QKET * P
MIRs < / BN

N \I Optional Polyhedral Optimizations

e Apply polyhedral storage-management optimization

- ——

Low-level Optimizations and AST generation
e Split scheduling to overlap communication and computation

e Generate an AST from the QKSCoP representation

Late Scalarization
e Loop and array access generation
e Speculative IA SIMD vectorization
e MPI-3 parallelization

£
LLVM IR

~
-

> - - -
k

Further LLVM Compilation (-02/-O3)

Executable

Figure 6.1: QOPT’s compilation pipeline. The grey process boxes indicate QOPT compilation stages.
The dashed “Optional Polyhedral Optimization™ stage is a proposed QOPT step that is not presently

implemented. The white boxes are standard Clang/LLVM compilation steps.

60

generated code often has obfuscations and library calls that impede compiler analyses and optimizations.
Handling these scenarios require a domain-specific compiler. Several modern DSLs, such as the image
processing DSL Halide (Ragan-Kelley et al., 2013), and the numerical analysis DSLs Julia (Bezanson
et al., 2017) and Numba (Lam et al., 2015), bundle their own compiler back-ends for this reason. All
three languages use LLVM for low-level code generation, but have standalone optimization and analysis
modules that do not utilize LLVM.

QOPT’s approach is different from these other contemporary DSL frameworks. Our approach
integrates EDSL code-generation and optimization closely into a general-purpose compiler. Doing
this allows us to leverage compiler passes that the general-purpose compiler already provides. New
domain-specific passes are also easier to implement on industry-standard static single assigned (SSA)
(Rosen et al., 1988) control flow graph (CFG) IR. SSA is a robust and easier format for code optimization
and transformation. Most other EDSLs, like Halide, use custom non-SSA IRs. While, a non-SSA IR
may seem expedient in designing a DSL, it limits extensibility and makes implementing data flow-based
optimizations harder. EDSL compilers usually cannot interface with code outside EDSL expressions.
This may in some scenarios limit the scope of code optimization. With its integrated EDSL compiler
design, QUARC suffers from no such limitation.

Another advantage lies in the utilization of modern polyhedral code-generation and optimization
techniques; many production compilers like LLVM, GCC (Free Software Foundation, 2018), and IBM’s
XLC (IBM Corporation, 2015) already provide the necessary boilerplate interface. Therefore, domain-
specific polyhedral optimizations and code-generation require lesser engineering effort.

There are other secondary software engineering benefits of integrating an EDSL compiler into a
general-purpose compiler. All code-generation and transformation phases are part of a single infrastruc-

ture. This removes the need for glue interfaces, and stitching together of different build technologies.

6.1.1 Architecture and Pass Pipeline

Figure 6.1 presents QOPT’s compilation pipeline. As shown by this pipeline, QOPT compilation
phases interpose Clang/LLVM compilation phases. When compiling a METAL program all QOPT passes
complete first, and only then user-specified LLVM compilation options such as —02 or —03 execute. The

pass pipeline does not preclude QOPT from invoking standard LLVM analysis and transformation passes,

61

and various stages of QOPT internally utilize LLVM passes. This is one of the key engineering benefits
of implementing QOPT as a plug-in for LLVM Opt.

Table 6.1 lists all passes currently provided by QOPT. The QOPT analysis passes are listed in Table
6.1(a). Analysis passes do not alter the IR. They only extract high-level METAL language properties
encoded inside the LLVM IR. Table 6.1(b) lists the QOPT transformation passes. Both type of QOPT
passes depend on an initial set of preprocessing passes.

QOPT code-generation uses multiple forms of IRs. The initial Clang —00 compilation results in
an LLVM IR that retains all METAL ACTs and DSL intrinsic (Section 5.2.1) function calls. The DSL
intrinsic function calls are annotated by METAL. All the annotations are stored in the —OO0 IR as a global
string constant. This global string is composed of sub-strings that are key-value pairs of the METAL
annotation strings and the annotated functions. QOPT performs an initial preprocessing step to convert
the —00 IR into a form that is termed as QOPT’s High-level IR (HIR).

High-level Intermediate Representation. The QOPT preprocessing pass converts METAL annota-
tion strings into LLVM IR metadata nodes. This ensures that METAL annotations persist across different
QOPT transformation passes. Preprocessing also invokes LLVM’s mem2 reg pass to promote memory
load and store instructions to virtual registers. This step constructs the pruned static single assignment
(SSA) IR that is used by all subsequent passes. After constructing the pruned SSA form the preprocessing
pass does domain-specific inlining of METAL function calls. Domain-specific inlining has the effect
of pruning METAL expression trees, and removing all intermediate ACT function calls. The LLVM IR
constructed after preprocessing is called the HIR. Section 6.2.2 describes QOPT’s preprocessing stage in
detail.

Mid-level Intermediate Representations. QOPT transformation and analysis passes construct four
IR forms out of the HIR. These mid-level Intermediate Representations (MIRs) are separate from the
standard LLVM IR, and represented as in-memory data structures. QOPT uses the following four types

of MIRs.

* QUARC Kernel Expression Tree (QKET)

QKET is a binary expression tree format to represent a METAL array expression. A QKET is
rooted at an “assignment” node represented by an sdlarray_copy DSL intrinsic call or an

LLVM store instruction. All internal nodes are METAL DSL intrinsic calls that represent mkernel

62

Pass name Stage Dependency Description

gopt-detectgket All gopt-preprocess It detects all QKs in a function. For each QK it
builds a binary expression tree (QKET) using
recursive def-use analysis of METAL DSL
intrinsic function calls.

gopt-mka Late gopt-preprocess It analyzes METAL array element-wise

Scalarization functions (mkernels) to generate metadata that
is used by qopt-code to inline mkernels.
(a) QOPT Analysis Passes
Pass name Stage Dependency Description
qopt-preprocess Preprocessing mem?2reg? It applies domain-specific function inlining to

qopt-extractgket

qopt-inlinegket

qopt-simplifygket

gopt-codegen

High-level Opts

High-level Opts

High-level Opts

Late
Scalarization

qopt-preprocess,
gopt-detectgket

qopt-preprocess,
gopt-detectgket

qopt-preprocess,
qopt-detectgkets,
qopt-extractgket

qopt-preprocess,
gopt-detectqgket,
gopt-mka

METAL expression trees. Also, converts C++
annotations to LLVM IR metadata nodes.

It outlines QKETs into separate functions to
enable high-level optimization.

It is a custom inliner for QKETSs that were
outlined in separate functions.

Optional pass that applies high-level
optimization to outlined QKET functions.
High-level optimizations are either QKET
rewrites, or LLVM scalar redundancy
elimination applied to QKET nodes.

This pass scalarizes QKs. It generates multiple
versions of IA SIMD loops if ATL data-layout
specifications were provided, inlines all
METAL mkernel calls, and adds QUARC-RT
library calls for MPI parallelization.

2 mem?2reg is LLVM’s pruned-SSA form generation pass.
(b) QOPT Transformation Passes

Table 6.1: QOPT analysis and code generation passes

63

calls or whole array operations, i.e., DRILL, CHOOSE, REDUCE (Section 5.1.2.5). Leaf nodes are
always mddarray or scalar accesses. Section 6.2.3 formally defines the structure of a QKET
and describe the steps of building a QKET. A QKET representation stores an internal attribute to

indicate if the QKET is a reduction expression.

QUARC Kernel Expression Forest (QKEF)

A QKEF is a disjoint union of multiple QKETs. QKEFs are produced by high-level optimization
of the HIR that fuses individual QKETs. Section 6.2.4 defines the rules guiding construction of a

QKEF.

QUARC Kernel Static Control Part (QKSCoP)

QOPT uses polyhedral code-generation to scalarize METAL array expressions. It uses a polyhedral
representation called QKSCoP for that purpose. A QKSCoP is constructed for every QKET or
QKEF. The QKSCoP form is based on the static-control-parts (SCoP) format used by the Integer
Set Library (ISL) (Verdoolaege, 2010). A SCoP is a control flow graph (CFG) region that has
statically known branching and memory accesses. That is, a SCoP is generally a CFG region
with only for-loops and if-conditions. Although, certain relaxation of this condition is possible
(Benabderrahmane et al., 2010). We refer readers to (Grosser, 2011) for further details LLVM’s

SCoP representation.

QKSCoP is different in its construction than the standard SCoP format. As a QKSCoP corresponds
to a QKET or QKEEF, it does not directly meet the definition of a SCoP. Instead, a QKSCoP can
be conceptually understood as an “abstract” CFG region that corresponds to the loop-nest and

conditional branches abstracted by a METAL array expression.

QOPT’s present implementation does not include non-QKET control flow structures inside a
QKSCoP. This limits some optimizations opportunities. This work is proposed as a future extension

to QOPT.

Integer Set Library Abstract Syntax Tree (ISL-AST)

ISL is part of LLVM’s polyhedral code generator and optimization module Polly. ISL analyzes

code in the SCoP format, and produces an abstract syntax-tree (AST) representation of each SCoP.

64

Procedure codegen(Module M)
Input: LLVM -0O0 IR Module M
Output: Fully code generated Module M’
Parameter :boolean HLO, layout-choices
1 if M has no METAL DSL intrinsics calls;
2 then
3 exit;
4 end

// preprocess and convert METAL annotations to LLVM metadata
M'< preprocess (M) ;
¢ if HLO then

// outline expression trees into separate functions

7 M+ extractQkets (M) ;

// apply LLVM’s scalar redundancy elimination passes to M’
8 M’ goptHloOpts (M');

9 end

10 foreach function F in M’ that is a QK do
// Lower QKs into loops, add MPI calls.

wn

// If layout choices are provided, then generate a SIMD code version
// for every QK for each layout choice

11 lateScalarizarion (F, layout-choices);

12 end

13 return M’;

Figure 6.2: Codegen shows at a high-level QOPT’s code generation process

This AST format is called as the ISL-AST IR. QOPT uses ISL to convert QKSCoP to ISL-AST.

The ISL-AST is then lowered to standard LLVM.

Code-Generation. Figure 6.2 presents codegen, QOPT’s overall code-generation procedure. Each
sub-procedure called from codegen is discussed in detail over the next subsections. The codegen procedure
acts on an LLVM module or translation unit. Codegen is parameterized by two optional arguments:
HLO and layout-choices. HLO triggers high-level optimizations such as redundancy elimination and
QKET transformations. The layout choices are ATL simd-rtfs specifications that define data-layout
choices. QOPT does SIMD vectorization only when layout choices are specified. Codegen involves
two main steps. The first high-level code-generation step does initial preprocessing of the —00 IR and
optional high-level optimizations. The next step, called late scalarization, does all loop and array access
generation. After late scalarization the generated IR is handed off to LLVM’s standard optimization

pathway for further optimization and machine code-generation.

65

0N N W=

DD DD NN NN /= — = == = = = =
O X I AN NP WN—=,OWOVWOIANWNRA WD~ OO

using gcomplex = quarc::metal::sdlarray<2,float>;
using su3 = quarc::metal::sdlarray<3, gcomplex>;
using GS2D = quarc::metal::global_shape<2>;
using SU32DArr = quarc::metal::mddarray<su3, GS2D>;

/// Mkernel adding two su3 sdlarrays. The addition loop has been fully unrolled.

auto su3add(su3 sl, su3 s2) {

su3 ret;

ret[0][0] = s1[0][0] + s2[0][0];
ret[0][1] = s1[0][1] + s2[0][1]1;
ret[0][0] = s1[0][0] + s2[0][0];
ret[0][1] = s1([0][1] + s2[0]([1];
ret [0][0] = s1[0][0] + s2[0][0];
ret[0][1] = s1[0][1] + s2[0][1];

return ret;
}
/// Builds a binary expression encapsulating su3add. binary_expr_builder is a
/// METAL DSL intrinsic that indicates a binary array expression.
template < typename Tpl, typename Tp2 >
const auto& operator+ (const Tpl & refl,
return
quarc::metal::expression_factory::binary_expr_builder<
Tpl, Tp2, typename Tp2::value_type, su3add
>(refl, ref2);
}
/// A 2D stencil array expression
void twoDStencilQK (const SU32DArr &al, SU32DArr &a2) {
a2 = al.GSHIFT<1,0>() + al.GSHIFT<-1,0>()
+ al.GSHIFT<0,1>() + al.GSHIFT<O0,-1>();

const Tp2 & ref2) {

Listing 6.1: A two-dimensional five-point stencil using SU3 vector types

6.1.2 Running Example

Listing 6.1 presents a two-dimensional stencil written in METAL. This is a running example used
to elaborate the steps of codegen. The stencil uses a relatively simple mkernel function. The su3add
mkernel adds two su3 data type, and returns the result. The su3 data type denotes a mathematical vector
object belonging to the special unitary group of degree three SU(3). SU(3) algebra is the basic algebra
used in LQCD. Using su3 data types also illustrate code-generation involving nested arrays. All IR
Listings in this Section use an abridged form of the standard LLVM IR. For space and readability reasons
the examples omit most type signatures, replace mangled C++ function names by readable pseudonyms
that are analogous to the C++ names, and do not include LLLVM specific attributes and annotations that
are present in the full LLVM IR. In all Listings, both METAL and IR, QUARC-specific identifiers are

emphasized using boldface font.

66

0N N W=

A BEA A B W LW LW WL L W L L WIERNNNEDENDENEDNDNDNLN P = =
WO — OOV UNHAE WD, OOVRXIANNDE W=, OOV WD~ OO

; —00 IR for the operator+ function
define internal %"struct.binary_expr"x @operator_add($refl, $ref2) {
entry:
%$refl.addr = alloca %"struct.binary_expr"x
$ref2.addr = alloca %"struct.gshift_expr"x*
store %$"struct.binary_expr"* %refl, $"struct.binary_expr"xx $refl.addr
store %"struct.gshift_expr"* %ref2, $"struct.gshift_expr"xx $ref2.addr

%0 = load %"struct.binary_expr"x, %$"struct.binary_expr"xx %$refl.addr
%1 = load %"struct.gshift_expr"*, %"struct.gshift_expr"«* %$ref2.addr
%call = call %"struct.binary_expr"x @binary expr builder (%0, %1)

ret $"struct.binary_expr"x %call
}
; —00 IR for one of the GSHIFT operator calls
define internal $"struct.gshift_expr"x @GSHIFT ($"struct.mddarray"* %a) {
entry:
%a.addr = alloca %"struct.mddarray"x, align 8
store %"struct.mddarray"x %a, %$"struct.mddarray"xx %a.addr, align 8
%al = load %"struct.mddarray"x, %$"struct.mddarray"xx %$a.addr, align 8
%call = call %"struct.gshift_expr"x @gshift_expr builder (%al)
ret %$"struct.gshift_expr"x %call
}
; —00 IR for twoDStencilQK
define internal void @twoDStencilQK (%al, %a2) {

entry:
%al.addr = alloca %"struct.mddarray"=
%az2.addr = alloca %"struct.mddarray"=

o)

store $"struct.mddarray"x %al, $"struct.mddarray"xx %al.addr
store %"struct.mddarray"x %a2, %$"struct.mddarray"xx %a2.addr

%0 = load %"struct.mddarray"x, %"struct.mddarray"xx %al.addr

o\

%call = call %"struct.gshift_expr"* @GSHIFT (%0)
%1 = load %"struct.mddarray"x, %$"struct.mddarray"xx %al.addr

%$calll = call
$call2 = call
%2 = load
%$call3 = call
$calld = call
%3 = load
%$call5 = call
%calle = call

"struct.gshift_expr"x @GSHIFT (%1)
"struct.binary_expr"x Qoperator_add(%call, %calll)
"struct.mddarray"x, %$"struct.mddarray"xx %$al.addr
"struct.gshift_expr"x @GSHIFT (%2)
"struct.binary_expr"x Qoperator_add(%call2, %call3)
"struct.mddarray"x, %$"struct.mddarray"xx %$al.addr
"struct.gshift_expr"x @GSHIFT (%3)
"struct.binary_expr"x Qoperator_add (%call4, %callb)

o0 o o o d° o O° oA o° d° o° o°

%4 = load %"struct.mddarray"x, %$"struct.mddarray"xx %a2.addr
%$call7 = call $"struct.mddarray"* @sdlarray_copy (%4, callb)
ret void

Listing 6.2: -O0 IR generated by Clang from the METAL source.

6.2 QOPT High-level Code-generation

6.2.1 Clang —-00 compilation

Listing 6.2 shows the —00 IR for the twoDStencilQK, GSHIFT, and operator+ functions.
The -00 IR is very close to the high-level METAL source. It retains all high-level METAL ACT calls

and DSL intrinsic calls. Section 5.2 introduced ACTs as a metaprogramming technique to encode

67

METAL’s array expression trees into LLVM IR. This example uses three ACTs, GSHIFT, operator+,
and operator=. The four GSHIFT ACT calls of the original program (Listing 6.1) are compiled
to the four function calls on lines 30, 32, 35, and 38 of the —00 IR. A GSHIFT ACT inserts a gshift
expression node into the METAL expression tree. A gshift-expression node is detected using the
gshift _expr_builder DSL intrinsic function call. Line 14 of Listing 6.2 shows the generated code
for one of the GSHIFT ACTs, and line 19 is the DSL intrinsic function call.

The overloaded operator+ functions in Listing 6.1 build binary expression nodes. These get
compiled into the operator_add calls on lines 33, 36 and 39. These also follow the same design
pattern. Line 2 shows the generated code for one of the operator+ (operator_add) functions. This
ACT emits the binary_expr_builder DSL intrinsic call shown on line 10.

The operator= ACT generates an assignment expression node. In this case, the assignment
expression calls the copy constructor defined inside METAL’s sdlarray class. This ACT function is
annotated inside METAL’s code with Clang’s __attribute__((always_-inline)) attribute. This
caused it to get fully inlined even during —O0 compilation. Therefore, the METAL DSL intrinsic function
sdlarray_copy is directly called on line 41 of Listing 6.2.

Listing 6.2 does not show all the function calls that are part of a complete METAL expression tree.
Each expression node has a child evaluation node. An evaluation node is encoded by an eval_expr
DSL intrinsic call. An evaluation node, depending on the type of expression, may be the parent of other
evaluation nodes, mkernel wrapper nodes, array accesses, or array assignments. Each child node is

encoded with a different DSL intrinsic call (Section 5.2.1).

6.2.2 Preprocessing

The —00 IR retains the complete METAL expression tree as outlined ACT and DSL intrinsic function
calls. The first step of QOPT’s high-level code generation, preprocess, prunes the expression tree
by domain-specific inlining several of these functions. It also converts METAL’s C++ annotations into
LLVM metadata nodes. Figure 6.3 presents the steps of the preprocess procedure.

The IR generated by preprocess is called HIR. This HIR does not have any outlined ACT calls,
but some DSL intrinsic calls are still retained. Listing 6.3 shows the preprocessed HIR for Listing 6.1°s
twoDStencilQK function. The example shows the inlined quarc_access_fn DSL intrinsic calls

that were encapsulated by GSHIFT ACT calls in METAL. The parameters of these calls give the shift

68

Procedure preprocess(Module M)
Input: METAL Module M
Output: HIR Module M’
M+~ M;
foreach function F in M’ that has a METAL annotation do
convert METAL annotations to LLVM string metadata;
add the string metadata to F as an LLVM IR metadata node (MDNode);
end

N A W N =

// Identify and annotate mkernels
foreach function F in M’ that is an apply_op DSL intrinsic;
do
add ALWAYS_INLINE attribute to F;
assert that F only has a single function call instruction;
10 add an MDNode to the called function identifying it as an mkernel;
11 end

o e N

// Domain-specific inlining of METAL ACT calls

12 foreach function F in M’ that has an EVAL_EXPR metadata;
13 do

[

14 CalledFunctions <— get list of all functions called by F;

15 foreach CF in CalledFunctions do

16 if CF is not access_fn, drill_op, if_even_choose then
17 CF < add always_inline attribute to CF;

18 end

19 end

20 end

21 return M’;

Figure 6.3: Preprocess converts C++ annotations into LLVM metadata nodes, and does domain-specific
inlining of METAL expression trees to simplify future analysis steps.

offsets that were originally passed to GSHIFT. The su3add mkernel calls, previously encapsulated by
binary expression nodes, are also now inlined.

Preprocess first identifies all METAL evaluation nodes. Evaluation nodes are ACT function calls that
denote the evaluation of a METAL expression. They are encoded by an eval _expr DSL intrinsic call.
Preprocess recursively inlines all functions called from inside an evaluation node. The only exclusions
are the DSL intrinsic calls encoding mddarray accesses, DRILL, and IF _EVEN_CHOOSE expressions.

Domain-specific inlining of METAL'’s outlined expression trees is done for two main reasons. This
makes subsequent analysis and code generation simpler. All such steps only require local data flow

analysis rather than interprocedural analysis. Inlining also opens the possibility of applying high-

69

01NN AW~

e e e e
NN R WD = OO

; preprocessed HIR for twoDStencilQK
define void @twoDStencilQK (%al, %a2) {

entry:
%$sretl8 = alloca %$"struct.sdlarray"
%$sretl7 = alloca %"struct.sdlarray"
$sretl = alloca %"struct.sdlarray"
%0 = call %"struct.sdlarray"x @access_fn(%al, 1, 0)
%1 = call %"struct.sdlarray"x Qaccess_fn(%al, -1, 0)

call void @su3add(%$sretl, %0, %1)
%2 = call %"struct.sdlarray"x @access_fn(%al, 0, 1)
call void @su3add(%$sretl7, %sretl, %2)

%3 = call %"struct.sdlarray"x @access_f£fn(%al, 0, -1)
call void @su3add(%sretl8, %sretl7, %3)

%4 = call %"struct.sdlarray"x Qaccess_f£fn(%a2, 0, 0)

%5 = call %"struct.sdlarray"x @sdlarray_copy (%4, %sretl8)
ret void

Listing 6.3: HIR generated by preprocessing the -O0 IR

level optimizations on the expression tree nodes. Such optimizations involve either scalar redundancy
elimination, or domain-specific transformation of the expression tree.

Preprocess does not directly inline functions. Instead, it adds LLVM’s ALWAYS_INLINE function
attribute to all functions that are to be inlined. After that QOPT runs LLVM’s always-inline function
inlining pass.

Along with inlining, preprocess also converts METAL’s C++ annotations into LLVM IR’s CFG
nodes. LLVM provides special CFG nodes called MDNode for this purpose. METAL’s C++ annotations
are lowered into the —00 IR as a global string variable. This global variable has key-value entries for the
C++ annotation string and the function name on which the annotation was applied. Preprocess parses
this global string variable to extract the entries. It then converts them into corresponding LLVM metadata
nodes that are attached to the LLVM function definitions. Converting from C++ annotations to LLVM
metadata eases further code generation. It also removes a level of indirection introduced by wrapper
DSL intrinsic calls (Section 5.2.1). The wrapper DSL intrinsic call, apply_op, encapsulates mkernels
that are user-defined and cannot be directly annotated by METAL. Preprocess identifies the apply_op
calls, inlines them, and directly adds MDNodes to the mkernel functions. Doing this ensures QOPT can

identify user provided mkernel functions that are defined outside of METAL.

70

6.2.3 QKET Construction

All optimization and code generation stages use the QKET binary expression tree MIR. QOPT uses
a procedure called gketgen to generate a QKET from LLVM IR. Prior to describing the steps in gketgen,
we formalize the definition of a QUARC Kernel (QK) and a Reduce QUARC Kernel (RQK).

Definition 6.1. QUARC Kernel (QK)
A QK is a whole array assignment statement whose LHS is an mddarray access expression with
no shifts. The RHS sub-expression can be any METAL array expression, but not a reduction expression.

All mddarray values in a QK should have the same global shape and data placement.

Definition 6.2. Reduction QUARC Kernel (RQK)
An RQK is a METAL assignment statement where the LHS is a scalar or sdlarray variable, and

the RHS sub-expression is a reduction expression.

Qketgen is implemented inside QOPT’s qopt —detectgket analysis pass. This pass is a basic
block level pass, i.e., its scope is restricted to a single basic block inside a function. A basic block is a
maximal length sequence of branch-free instructions within a function. Qketgen uses recursive def-use
graph analysis to build the QKET. A def-use graph is a graph that contains an edge from each definition
point in a program to every possible use of the variable at runtime (Kennedy and Allen, 2002).

Qketgen builds this QKET in a bottom-up fashion. It starts by identifying the leaf nodes, i.e.,
mddarray or scalar access nodes inside a basic block. The LLVM instructions denoting leaf nodes
would have the access_fn LLVM MDNode metadata. After identifying a leaf node, it uses the def-use
graph to identify the next instruction that uses the leaf node. Typically, this would be either an mkernel,
DRILL, IF_EVEN_CHOOSE, or an assignment node. Qketgen repeats the def-use analysis after reaching
the user of leaf nodes. The recursion terminates on finding the root node of the QKET that is always an
assignment operation. For QKs that only have mddarrays with scalar elements, the root is an LLVM
store instruction. If the mddarrays used nested sdlarray members the root node of the QK is an
sdlarray copy constructor call. This structure is guaranteed by METAL. Qketgen exits once both

sub-trees of the root node are constructed.

71

6.2.4 High-level Optimizations

High-level optimization of QKs tries to eliminate redundancy, and potentially fuse QKs. The goal
is to potentially fuse array expressions that access the same memory location. There are two strategies
for high-level optimization of QKs. LLVM scalar redundancy elimination using value numbering can
identify fusion opportunities for simpler cases. Polyhedral dependence analysis can help identify fusion
cases for more complicated cases. QOPT’s prototype implementation only implements the first strategy.
We propose a design for extending QOPT for the polyhedral strategy.

The gketfusion procedure implements a local optimization, i.e., the scope is limited to a basic block.
The procedure starts by identifying QKs that can be potentially fused. The decisions rests on the following

two constraints:

Constraint 6.1. Currently, only QKs that are adjacent and access at least one common mddarray

reference are candidates for fusion.

Constraint 6.2. An LHS array reference for any QK in the set of adjacent QKs can only be accessed in

any of the RHS iff that arguments to the RHS access_fn call are all zeroes.

Qketfusion only looks to fuse QKs, and RQKs are not considered. Two QKs are considered adjacent
if the end instruction of the first QK’s QKET is immediately followed by the start instruction of the
second QK’s QKET. QOPT ignores any debug or LLVM intrinsic instructions when identifying adjacent
QKs. QOPT uses only value tracking to check if two adjacent QK share at least one array reference. Thus,
any kind of pointer-based indirection prevents fusion. If two adjacent QKs meet Constraint (6.1), then
they are evaluated against Constraint (6.2). This constraint ensures that QK fusion does not introduce a
loop carried dependence. This is a very broad check that may preclude legitimate fusion. Such fusion
cases cannot be handled with data dependence-based analysis. The future extension proposal to enhance
QOPT using polyhedral data dependence analysis addresses this issue.

Once a candidate set of QKs is identified, gketfusion outlines the set of QKETsSs into a separate
function. Outlining is done to restrict the scope of scalar redundancy elimination to only the candidate
set of QKETs inside one basic block. The outlined function is optimized using LLVM’s global value
numbering (GVN) redundancy elimination pass. After running GVN, gketfusion invokes a slightly

modified version of the QKET generation procedure. The procedure called gkefgen works the same way,

72

AW N =

NN R WD =

b = DRILL<0>(g) * a.GSHIFT<1>() + DRILL<1>(g)~*a.GSHIFT<-1>();

d = DRILL<O0O>(g) % c.GSHIFT<1>() + DRILL<1>(g)*c.GSHIFT<-1>();
(a) Shared DRILL expressions across two QK.
a = b.GSHIFT< 1 , 0>();
a += b.GSHIFT<-1 , 0>();
a += D.GSHIFT< 0 , 1>();
a += b.GSHIFT< 0 ,-1>();
(b) Multiple add-assignment expressions to write a five-point stencil.
Figure 6.4: METAL array expressions fusible using gketfusion
using GS2D = quarc::metl::global_shape<2>;

using floatArr2D quarc::metl::mddarray<float, GS2D>;

void unNormalizedBoxFilter (const floatArr2D &al, floatArr2D &a2) {
auto a3 = al.GSHIFT<-1,0>() + al + al.GSHIFT<1,0>();

a2 = a3.GSHIFT<0,-1>() + a3 + a3.GSHIFT<O0,1>();

}

Listing 6.4: An unnormalized box filter kernel from 2D image processing. These two QKs cannot be
fused using GVN-based redundancy elimination.

but instead of constructing a single QKET generates multiple QKETs each represented inside a QKEF.
Note that in a QKEF there are multiple QKETs, and one or more of these QKETs share common nodes.

Listing 6.4a and Listing 6.4b are two examples where gketfusion can use GVN to fuse the QKs. In
both cases, GVN would identify the redundant values across multiple QKs, and replace those values with
a single value. Listing 6.4a is an excerpt from a multiple RHS linear solver kernel. GVN identifies the two
DRILL<0> (g) and the two DRILL<1> (g) accesses that are common across both QKs. Listing 6.4b
is equivalent to the five-point stencil kernel from our running example shown in Listing 6.1. Instead of
writing the whole stencil as a single statement, multiple add-assignment operators are used to break it out
into multiple statements.

§Implementation Note. As currently implemented, gketfusion cannot identify some potential fusion
candidates. Listing 6.4 shows such an example. For this example, gketfusion identifies the two QKs as
potential fusion candidates. However, the QKs do not share any exact array reference, and GVN is unable
to locate any redundancy. Qkefgen fails to build a QKEF for the same reason, and the two QKETs are

deemed non-fusible. The QKs are in fact fusible using a technique known as array storage optimization.

73

The optimization uses dependence analysis to identify that the array a3 can in fact be replaced by a
temporary. Doing so then enables fusing these two QKs. This is an important optimization that is
especially useful in image processing pipelines. The Halide image processing DSL implements this type
of fusion optimization. The application of the optimization is dependent on external explicit specification
of the fusion, and Halide does not provide an analysis framework for auto-discovery. Bhaskaracharya
et al. (Bhaskaracharya et al., 2016) do provide an automated polyhedral method to discover and apply
this type of fusion.

Apart from this array storage management example, most other QK fusion cases fall under classical
loop fusion. Modern polyhedral data dependence analysis, such as the one provided by ISL, allow
identifying such cases. QOPT already integrates ISL in its compiler infrastructure. The current usage is
restricted only to code generation out of QKSCoPs and MPI communication generation. To benefit from
ISL’s data dependence analysis, we would have to expand QKSCoPs to encompass multiple QKs. Doing
that would allow an inter QK dependence analysis, and leading to discovery of additional fusion and

parallelization opportunities.

6.3 Speculative SIMD Vectorization

This section presents QOPT’s speculative SIMD code generation method. Here we only discuss
the rationale for using a speculative strategy, and how the interface is designed. The actual SIMD

vectorization is described under the late scalarization process in Section 6.4.

Large number of potential data-layout candidates

QOPT’s SIMD vectorizer is designed to generate SIMD code for a particular memory data-layout that
was specified using a p¢ transformation. Section 5.3.1 described the process for specifying data-layouts
for an mddarray. The number of possible data-layouts depends on the shape of the mddarray, and
the architectural SIMD register width. For higher dimensional arrays, this can be a large number. It
is equivalent to finding all multiplicative partitions for the vector register width, and then identifying
all the permutations to factorize the mddarray dimensions to build each multiplicative partition. The
following example illustrates this for a four-dimensional mddarray and an architecture with SIMD

register width of eight.

74

Example 6.1.

1. There are three multiplicative partitions for the number eight. These are {8}, {2,4}, {2,2,2}. These

partitions represent possible data-layouts that can be constructed using p¢ transformations.

2. Each of the multiplicative partition can be constructed by factorizing one, two, or three array
dimensions. Note that for constructing data-layouts the factors {2,4} is not the same as {4,2}.
Each represents a different way of transforming the array dimension. Therefore, when calculating
the number of possible data-layout choices, the total number of possible permutations of the factors

is required, as opposed to calculating the possible combinations.

The sum of all the permutations is 1P +4Py + 4?%, ie., 20.

We refer readers to (Odlyzko, 1995) to understand the details for these calculations.

The example shows that the number of data-layouts is already large for a four-dimensional case on
an architecture with vector register length of eight. It grows for higher dimensional arrays, and longer
architectural vector register lengths. Thus, it is not feasible to exhaustively generate code versions for
all possible data-layouts derived using p¢ transformations. This is the reason for using a speculative

strategy, and generating code for a limited set of choices.

Steps in speculative SIMD vectorization

The data-layout choices for the SIMD code versions to be generated is done outside of QOPT.
Chapter 8 describes the policy used for that purpose. The data-layout choices are provided as ATL
specifications to QOPT, and the number of choices decide the number of code versions. For every QK, a
code version corresponding to a particular data-layout is generated. A default non-SIMD code version is
always generated. Depending on what data-layout is defined for the mddarray at runtime, one of the
SIMD code versions, or the non-SIMD code version executes.

QOPT can add optional validations to ensure that a SIMD code version complies to the actual array
shape specified at runtime. A data-layout is legal if none of the shifts on a reshaped dimension exceeds
the size of that dimension. This check is to ensure no stream alignment conflicts occur, and no divisions

or modulo operations are required to compute the shifted array access for a transformed array. The notion

75

of stream alignment conflicts is formally defined in Chapter 7. Section 6.4.4 describes why this constraint
is required to avoid division and modulo operation in shifted array access calculations.

§Implementation Note. The currently implemented QOPT interface for specifying data-layout
candidates is relatively simple. It allows specifying multiple layouts in the ATL format (Section 5.3) for
mddarrays of a given rank. So, there is no provision to specify different data-layouts for two different
mddarrays that have the same rank. A standalone policy engine also means that programmers should
separately train the policy engine for it to generate data-layout candidates for their QKs. However, the
advantage is in updating the policy without having to make changes to the compiler infrastructure.

The emphasis of the current implementation was to serve as a proof-of-concept of the speculative
vectorization technique. It is possible that the system can be further automated and made more general.
The policy engine can be moved into QOPT, and data-layout candidate generation made autonomous of

programmer intervention. We propose such work for future investigation and implementation.

6.4 QOPT Late Scalarization

The last stage in QOPT’s code-generation pipeline is called late scalarization. METAL array
expressions get lowered into loops and array accesses at this stage. The term late scalarization was chosen
to draw a contrast with other C++ template-based array programming techniques such as expression
templates that perform scalarization in the template expansion stage. QUARC’s late scalarization design
overcomes inherent limitations in scalarizing early during template expansion. Scalarizing early leads
to both loop and array access linearization in the C++ front-end. It may also lead to generation of calls
to OpenMP, MPI, CUDA runtime libraries to support parallel execution. This makes it difficult for a
compiler to retain enough context to infer the programmer’s intent. Subsequent analysis and optimization,
such as standard loop optimization techniques, becomes hard. Even simple high-level optimizations such
as those discussed in Section 6.2.4 usually are impossible to apply on scalarized array expressions due to

complicated loop structures and nested library calls.

6.4.1 Preventing Invalid Scalarization

QUARC’s scalarization semantics are similar to other array languages such as FORTRAN 90 and

High Performance FORTRAN. The RHS array expressions are fully evaluated without side-effects,

76

and only then are the results stored into the LHS. Implementing this “load-before-store” semantics
requires correctness guarantees. To understand the reason, let us slightly modify the QK in our running
example. Listing 6.5a shows the modified QK with the a1 array used on both LHS and RHS. Listing 6.5b
shows a scalarized version of this modified QK. Unfortunately, the scalarized version of the QK is not
parallelizable and if executed in parallel would lead to incorrect results. The reason is that every i-th
and j—th iteration of the scalarized loop nest depends on the results obtained in a previous iteration.
This is known as loop-carried dependence (Kennedy and Allen, 2002). Given QUARC’s data parallel
programming model this type of scalarization is considered invalid. Invalid scalarization is a potential
problem for any high-level array language. Some FORTRAN 90 compilers handled the situation by doing
two-step scalarization of array assignment statements. The first step involved a “naive” scalarization
of array assignment statements. The loops generated in the first step would approximate the loop nest
shown in Listing 6.5b. A subsequent step would apply standard loop transformations to try and remove
loop-carried dependence, and make the loops parallel. Such transformations require data dependence
analysis to ensure validity. Several loop transformations can be performed after data dependence-based
analysis to introduce parallelism, e.g. loop reversal, loop interchange, loop skewing, loop tiling, and
generating array temporaries. (Kennedy and Allen, 2002) provides a detailed introduction to the methods.

QUARGC, given its limited scope, enforces a set of hard constraints to avoid invalid scalarization. Un-
like, FORTRAN 90 or similar languages where writing the kind of array statement shown in Listing 6.5a
is legal, in QUARC this is an invalid statement whose output is undetermined. QUARC allows accesses
on the same mddarray on both RHS and LHS of a QK if and only if all RHS accesses are free of shifts.
This is part of the definition of a QK, and checked during QKET construction. However, compile-time
checking using value-based analysis cannot guard against all cases. Pointer-based indirection can only
be detected at runtime. QOPT can optionally generate additional runtime checks for such cases. The
runtime checking is kept optional to allow programmer’s and EDSL designer’s control over when such a
check is required. Without the runtime check, QUARC defers to the programmer to do the correct thing,
and provides no implicit correctness guarantee. Note that this restriction cannot be violated by QK fusion
optimization. Constraint (6.2) enforced by gketfusion ensures that QK fusion does not inadvertently
introduce any loop-carried dependence.

These restrictions limit the type of programs that can be presently written using QUARC. Relaxing

these restrictions is planned as a future extension. There are multiple options to add data dependence-

77

AW N =

al = al.GSHIFT< 1, 0>() + al.GSHIFT<-1, 0> ()
+ al.GSHIFT< 0, 1>() + al.GSHIFT< 0,-1>();

(a) Same array used on both LHS and RHS

// X, Y are the extents for each array dimension.

for (auto 1 = 1ul; i < X-1; ++1i)
for(auto j = 1lul; j < Y-1; ++7)
al[i][§) = al[i+11[3] + alli-11[3] + allil[j+1] + allil([j-1];

(b) Incorrectly scalarized loop-nest

Figure 6.5: An example showing invalid scalarization of a METAL array assignment expression.

based analysis to QOPT. QOPT already uses ISL for polyhedral code-generation, and can potentially
leverage ISL’s polyhedral dependence analysis infrastructure. Even without using ISL’s dependence
analyzer QOPT can easily leverage other dependence analysis methods. METAL GSHIFT expressions
by construction only involve single subscripts and are always linear. Thus, QOPT can potentially use

simpler single-subscript dependence tests for QKs.

6.4.2 Loop Generation

QOPT uses polyhedral code-generation (Ancourt and Irigoin, 1991) to lower QKs in the QKET/QKEF
form into loop nests and array accesses. Polyhedral code-generation uses integer sets to represent loop
nests, and each integer set is mapped to a multi-dimensional time instance. This mapping, known as a
schedule, determines the relative execution order of the loop iterations.

The first step in QOPT’s loop generation is to build an index set representation for the block-local
index space of an mddarray. METAL requires all mddarrays in a QK to have the same data
placement, so a single integer set can be used per QK. The block-local index space represents the set
of mddarray elements inside a block. Section 5.3 described the notion of hypercubic blocking of
an mddarray using ATL data placement specifications. The integer set that is constructed for the
block-local index space represents a set of loops that would iterate over each mddarray element in that
block. Since, the size of a block is defined at runtime the upper bounds of the block-local index space
is kept parameterized at compile-time. The parameters get resolved at runtime once the ATL specified
partitioning is known. The block-local index set is constructed as part of the QKSCoP mid-level IR.

On the block-local index set, QOPT applies index set partitioning to represent split loops. This is done

78

for QKs that have GSHIFT expressions. Split loops allow overlapping local computation with the MPI
communication needed to gather remote data. After this step, once the final polyhedral representation
inside a QKSCoP is built, it is converted into an Abstract Syntax Tree (AST) using the ISL polyhedral
library. The ISL-AST is lowered into LLVM loops. QOPT embeds QUARC-RT library function calls at
this stage to induce MPI communication and MPI synchronization. The final step in late scalarization is
generation of the loop bodies. This step involves converting individual METAL expression tree nodes
into LLVM code; various optimizations such as if-conversion (Allen et al., 1983), scalar-expansion, and
SIMD vectorization are introduced at this point. The following sections describe in detail all of the steps
in the late scalarization.

§Implementation Note. The steps described in this section present the loop generation over a single
block of an mddarray. Conceptually, a QUARC supports overpartitioned data distributions where a
single process can own multiple blocks. In such cases, an outermost “block-loop” is required to iterate
over all the local blocks. This is currently unimplemented, and block-loops are not part of the QKSCoP
IR. QUARC and QUARC-RT prototypes only support a bijective mapping of mddarray blocks to
processes, i.e., each process owns only one block. Adding support for overpartitioned data distributions

is part of a planned future extension of QUARC.

QKSCoP construction

QKSCoP construction is the first step in generating loops for a QK. A QKET represents an abstract
perfectly nested set of loops, but the corresponding QKSCoP can represent multiple loops nests. These
loop nests are not necessarily perfectly nested. There is no difference in the QKSCoP construction
process between SIMD vectorized, and scalar loop generation scenarios. The only difference lies in
generating the loop bodies. That process is explained in Section 6.4.4 when describing array access
generation. Prior to going into the details of QKSCoP construction, the following definitions formalize

the core concepts. The definitions use operators and notations introduced in Chapter 4.

Definition 6.3. Block index vector (bz)
Given an n-dimensional mddarray, the block index vector bz of a particular element in a block
of the mddarray is a vector of integers that gives the element’s lexicographic position within that

block. The rank of the block index vector is always the same as the rank of the blocked shape (bs) of the

79

mddarray. Thus, a block index vector is given by

bi 2 [bio, biy, ..., bin_1]

where big, 0 < k < n, is the index for each dimension of bs, and Vk,0 < biy, < t(k, bs), i.e. the index

component for any dimension is less than the extent of the that dimension. A

An index vector always points to a lexicographic position, irrespective of the actual data-layout of the
mddarray. For cases where the index space is for an mddarray with a p¢ transformed data-layout,
each index vector points to a SIMD vector. All other cases the index points to a single mddarray

element. The set of all bz for an mddarray is its block-local index space.

Definition 6.4. QKSCoP

A QKSCoP is a five-tuple (domain, parameters, inner region statement, [boundary domains],
[boundary region statements]). The integer set covering all loop iterations for a QKSCoP is known as its
domain. The set of symbolic integer values that represent the upper bounds of the domain are known as
the set of parameters. A statement is a set of loop iterations. Every QKSCoP has at least one statement
known as the inner region statement. This statement includes all loop iterations that require only local
data available inside an mddarray block. If a QK has GSHIFT expressions, then the QKSCoP has set
of subsets of the domain known as boundary domains. These identify the index vectors where computing
the output requires handling boundary conditions, and may require non-local data. Corresponding to the
boundary domains, a QKSCoP may have a set of boundary region statements. Each boundary statement
is a set of loop iterations over one or more boundary domains. Boundary domains and statements are

optional attributes of a QKSCoP. A

Definition 6.5. Statement

A statement is a three-tuple (parent, domain, schedule). Parent refers to the QKSCoP to which the
statement belongs. The domain of a statement is the integer set that identifies the set of loop iterations
executed by the statement. The schedule of a statement is a mapping of its loop iterations to a multi-
dimensional point in time. The schedule determines the relative ordering of various statements included

in a QKSCoP. A

80

Procedure gkscopGenaration

=

® 9 & n

10
11
12

13

14
15
16
17
18

Input: QK ¢k
Output: QKSCoP S
define an unbounded integer set [;
// generate a set symbolic parameters
foreach dimension n of bs do
‘ create a symbolic parameter D, ;
end
// add constraints to define the full index space for ¢k
foreach dimension n of bs do
add a constraint to [setting the lower bound as 0 < for this dimension;
add a constraint to [setting the upper bound as < D,, for this dimension;

end

// generate subsets of I to represent disjoint boundary points for
// every RHS GSHIFT expression.

foreach RHS GSHIFT expression do

sv < access_fn function arguments;

S.BregSets < genBoundaryDomains (I, sv);

end

// add statement for local loop iterations of the QKSCoP
S.IregStmt < construct statement to loop over the entire index set [;
// add statements for boundary loop iterations

if there are any RHS GSHIFT expression then

msv < store maximal shift in each direction for every dimension;
S.BregStmts < addBoudaryRegionStatement (I, msv);

end
return S

Figure 6.6: Steps involved in generating a QKSCoP representation for a QK.

Figure 6.6 presents QOPT’s QKSCoP construction procedure. The following paragraphs describe

each individual step.

integer set. It is then constrained by a default set of constraints that define its lower and upper bounds.

The upper bounds use symbolic parameters, and the lower bound is always zero. For the five point stencil

Defining the domain. The domain for every QKSCoP is initially constructed as an unbounded

in our running example, the domain for the QKSCoP is given by

[DO,Dl] — {[’io,il] :0<ig< Dygand 0 < i1 < Dl}

where, Dy, D1 are symbolic parameters, and ¢, ¢; represent generic index variables for the two

dimensions.

81

Procedure genBoundaryDomains

Input: Index set [
Input: Vector of shift offsets sv
Output: Vector of boundary index sets B

// Initialize the boundary index sets vector with [

1 B+ I;

2 foreach shift offset s in sv do
3 if s # 0 then

4
5
6

2

10

11
12
13

14

15

16

foreach index set bin B do

Iﬁnp — I;
if s <0 then
// project out the upper bound for the shifted dimension

Ity < project out upper bound constraint on Iy, for the shifted dimension;
Iipp < add a new upper bound constraint <—s;

end

else if s > 0 then

// project out the lower bound for the shifted dimension
Ity < project out lower bound constraint on Iy, for the shifted dimension;
Iipmp < add a new lower bound constraint > D,,—s;
end
// create the boundary index set by intersecting I“np with b
bnew < Itmp Nb;
// subtract Igmp from b to construct subsequent disjoint boundary region
// sets for any shifts on other lower dimensions
b+ b\\Ihnp;
// add bpew to B.
insert by, into B;

17 end

18 end
19 end

// remove the first set inside B, as this is the residual non-boundary region

20 B <+ remove B[0];

21 return B;

Figure 6.7: Steps involved in generating boundary region index sets from a vector of shift offsets.

The domain does not include nested or sd1larray dimensions. Nested dimensions are only accessed
inside METAL’s mkernel elemental functions. Any loops over nested dimensions inside an mkernel

function is typically fully unrolled, and the mkernel function itself inlined. Section 6.4.4 provides further

details.

Boundary separation. The gkscopGeneration procedure performs an additional step when
there are RHS GSHIFT expressions in the QK. It constructs disjoint subsets of the domain to represent

boundary regions corresponding to each GSHIFT expressions. An mddarray access inside a boundary

82

shift shift
dimension 0 dimension 1

Figure 6.8: Separating the boundary regions for a multi-dimensional GSHIFT<1, 1> () expression. The
gray boxes depict the inner region points, and the white boxes are the boundary points. At the end of the
process the GSHIFT results in three disjoint boundary region integer sets.

region requires applying the boundary function defined for the mddarray. The access may be for a
non-local array element, in which case MPI data communication is required. The primary reason for the
boundary separation is to allow overlapping remote data communication with local computation.

The genBoundarySets procedure shown in Figure 6.7 implements the boundary region domain con-
struction. Boundary region domains are constructed individually for each GSHIFT. For each dimension
with a shift, genBoundarySets projects out the existing constraints on that dimension. The projection
operation is provided by the ISL library, and makes the integer space unbounded for the projected out
dimension. After projecting out existing constraints, a new set of constraints based on the shift’s integer
value is constructed. As shown in Figure 6.7, the constraint depends on the sign or direction of the shift.
A positive value is a forward shift, and a negative value is a backward shift. These new constraints are
applied to a copy of the original domain to create a subset of the original integer set. This subset is the
boundary region domain for the particular shift. The genBoundarySets procedure builds four boundary
region domains for out five-point stencil running example. These boundary regions can be visualized as
the last and first rows, and the last and first columns of a rectangular two-dimensional block. The four

boundary regions are
[Do,Dl] — {[D()—l,il] : DO >0and0 <11 < Dl};
[Do,Dl] — {[0,21] : D() >0and0 <11 < Dl};
[Do,Dl] — {[io,Dl—l] D1 >0and0 <1ig < Do};

[Do,Dl] — {[20,0] D1 >0and0 <ig < Do};

83

where, Dy, D; are symbolic parameters, and ig, ¢; represent generic index variables for the two
dimensions.

GenBoundarySets handles multi-dimensional shifts as well. Figure 6.8 depicts how genBoundarySets
handles multi-dimensional shifts. It starts with the outermost shifted dimension, and generates a boundary
region set for that shift. The boundary is subtracted from each existing index set produced till that point.
The new boundary set in then appended to the collection of boundary sets. This produces multiple disjoint
subsets for a multi-dimensional shift. In Figure 6.8 the multi-dimensional GSHIFT<1, 1> () produces
three boundary region sets. Note that the boundary region collection is initialized with the complete
integer set as the initial entry. At the end of genBoundarySets the first entry represents the residual inner
region, and is purged from the collection.

Statement construction is the final step in QKSCoP construction. Qkscopgen adds an inner region
statement to iterate over the whole index space for the QK. The inner region statement’s domain is the
same as the parent QKSCoP’s domain, and it includes loop iterations over all boundary regions. Boundary
checks inlined within the innermost loop of the generated loop nest handle the boundary region accesses.
Additional boundary region statements are constructed whenever the QK has GSHIFT expressions. The
domain of each boundary region statement is calculated by integer set operations.

§Implementation Note. The statement generation design is an optimization that has to do with
QUARC’s use of the MPI-3 for shared memory parallelism. The MPI-3 standard allows MPI processes on
the same shared memory domain to access each other’s memory using direct loads and stores. Therefore,
non-local data accesses inside a boundary region may in fact be on the same shared memory domain,
and if MPI ranks are provisioned carefully the non-local data may even be within the same cache block.
Scheduling the boundary iterations separately would not yield any benefit in these scenarios.

QUARC-RT decides whether to use MPI-3 load and stores, or MPI-2 one-sided communication when
it generates the communication plan. The checks inside the inner region statement use this information.
If a boundary access can be handled by a load from a shared memory address it gets executed inside the
inner region statement. Otherwise, the computation happens in a boundary region statement.

Boundary region statements are constructed whenever the QK has GSHIFT expressions. Boundary
statements do not necessarily have a one to one correspondence to boundary region domain. To minimize
the number of boundary statements that are needed, a single boundary statement can include iterations

over multiple boundary region domains. Therefore, boundary checks are also required inside boundary

84

Procedure addBoudaryRegionStatement
Input: Index set [
Input: Vector of maximum shift offsets msv
Output: Vector of boundary statements BregStmts

// Initialize a one-dimensional ‘‘time’’ to schedule the statements
1T <+ 0;
2 foreach shift offset s in msv do
3 Ihnp — I

4 if s <0 then
// project out the upper bound for the shifted dimension

5 Ity < project out upper bound constraint on Iy, for the shifted dimension;

6 Iipp < add a new upper bound constraint <—s;

7 end

8 else if s > 0O then

// project out the lower bound for the shifted dimension

9 Iipmp < project out lower bound constraint on Iy, for the shifted dimension;
10 Ity < add a new lower bound constraint > D,,—s;
11 end

// create the boundary index set by intersecting lgmp with [

12 Bregdaom < Limp N 1;

// subtract Igmp from I to construct subsequent disjoint boundary statements
13 I 1T\ Lipyp;

14 BregStmt + new QKSCoP-Statement with Bregg,,, and T';

// increment T value for the next statement

15 T+ T+1;

16 insert BregStmt into BregStmts;

17 end

18 return BregStmt;

Figure 6.9: Steps involved in generating boundary statements from the maximal shifts in each direction
for every dimension of an mddarray.

region statements. Figure 6.9 presents the genBoundaryStatements procedure that is used to the create
boundary statements for a QKSCoP. GenBoundaryStatements requires a single input vector containing
the maximum forward and backward shift for each mddarray dimension. The set operations within
GenBoundaryStatements are identical to the set operations inside genBoundarySets. However, as bound-
ary region statements are constructed for the maximal shift in a cardinal direction, the set intersection and
difference operations have to be performed only once per boundary region statement. After generating
all the boundary region statements they are scheduled with the outermost dimension boundary region
statements scheduled first, followed by inner dimension boundary region statements. Within a dimension

the forward direction boundary statement is scheduled before the backward direction boundary statement.

85

{[O,iﬂ :Dg>2and0<il < Dl} {[Do—l,iﬂ : Do >0and0 <i1 < Dl}

{[i0,0] : Dy >2and 0 <i0 < Dg—2} {[io, D1—1]: D1 > 0and 0 < i0 < Dg—2}

a. Boundary domains

I 1 1. {[Do—1,i1] : Do >0 and 0 <4 < D1}
| |
1 1 2. {[0,i1] : Do >2 and 0 <il < D1}
! I 3 4
: : 3. {[io,D1—1] : D1 >0 and 0 < i0 < Dy—2}
| |

Lo q-] 4 {[i0,0] : D1 >2 and 0 <0 < Do—2}
1 1

b. Inner-region statement c. Boundary-region statements

Figure 6.10: Boundary domains and statements for a five-point stencil. Dy, D; are the symbolic upper
bounds for each dimension. The dashed lines in (b), (c) shows the intersection with boundary domains.
The inner-region statement intersects all four boundary domains. The top and bottom boundary statements
intersect the lower dimension boundary domains.

The boundary statement domains for our the five-point stencil running example are given by
[Do,Dl] —){[Do—l,il] : DO >0and0 < 1 < Dl};
[Do,Dl] —){[O,Zl] :Dp>2and0 <il < Dl},
[Do, Dl] —>{[i0, Dl—l] : D1 >0and0 <10 < D0—2};

[D(),Dl] —){[20,0] : D1 >2and0 <0< D0—2};

where, Dy, D1 are symbolic parameters, and ig, ¢; represent generic index variables for the two

dimensions.

86

01NN AW~

e e e e
NN R WD = OO

// Inner region statement’s headers
for (int i0 = 0; 10 < DO; 10 4= 1)
for (int il = 0; il < D1; il += 1);

// Boundary regions’ loop headers
{
if (DO >= 1) {
for (int il = 0; il < D1; il += 1);
if (DO >= 2)
for (int i1l = 0; il < D1; il += 1);
}
if (D1 >= 1) {
for (int i0 = 1; i0 < DO - 1; 410 += 1);
if (D1 >= 2)
for (int i0 = 1; 10 < DO - 1; 10 += 1);

Listing 6.5: Loop headers generated for the five-point stencil running example.

Figure 6.10 shows the final boundary domains and statements generated for the five-point stencil
example. Figure 6.10.a shows the four boundary domains that each correspond to the four GSHIFT
expressions. Figure 6.10.b shows the inner-region statement. The dotted lines represent the iterations
within the statement that overlap with a boundary domain. These are handled with inline boundary check
conditions within the innermost loop body. Figure 6.10.c shows the four disjoint boundary statements.
The number inside each box shows the schedule of the boundary statement. Dotted lines are used once
more to show boundary domain intersections.

ISL-AST generation. Every QKSCoP is lowered into an ISL-AST. The AST generation translates
the domains for each statement into loop headers. This step is the final step in QOPT’s loop generation
process. Listing 6.5 shows the loop headers built for our five-point running example. Note that the loop
bodies are empty at this point. The loop bodies get populated in the array access and mkernel generation

step of late scalarization. The split loop nests in the ISL-AST format are next lowered into LLVM loops.

6.4.3 QUARC-RT library calls generation

QUARC-RT library calls abstract MPI data communication and synchronization routines. Prior
to generating the loop bodies for QK, QOPT adds the needed QUARC-RT library calls. Figure 6.11
shows the basic block-level CFG that is generated to add these calls. To make it readable, the CFG

was significantly simplified. All LLVM instructions apart from the function calls are elided. Single

87

alloca:
/*local variable allocations®*/
br label %prologue

prologue:
call void @quarc_rt_build_halo_objs(...)

br label %qk.inner.volume

|

call void @quarc_rt_get_remote_halos(...)

get.remote.data:

br label %qopt.loop_preheader

|

inner.points.loops:
br label %wait.for.mpi.data

|

wait.for.mpi.data:
call void @quarc_rt_wait_for_remote_halos(...)

br label %qopt.merge.cond74.split

|

boundary.points.loops:
br label %qopt.cond

free.resources:
call void @quarc_rt_free_remote_comm_infos(...)

Figure 6.11: Basic block CFG for a typical QK

88

superblocks are used to represent the inner region, and boundary region loop nests. The superblock
abstracts the CFG region consisting of multiple basic blocks for each loop nest.

The process of MPI communication is split into two steps. The first one builds a communication
plan. The step involves identifying neighboring MPI ranks, allocating buffers for remote data, and
calculating starting offsets into the buffers from which data would have to be read. The function all
inside the prologue basic block represents this step. The next step does actual MPI one-side data
movement. QOPT tries to overlap local computation with remote data movement. This is the reason
for creating the split loop nests for any QK that has at least one GSHIFT expression. This can also
be seen in the basic block control flow in Figure 6.11. The call inside the get . remote.data basic
block initiates an asynchronous MPI one-sided communication step. This is followed immediately by the
inner.points.loops block where the loop nest corresponding to the inner region QKSCoP state-
ment gets built. The QUARC-RT call to wait for remote data are inserted inside wait . for.mpi.data.
All boundary region loops are built inside boundary.points.loops. The global.reduction
is an optional step that is used only for reduction QKs. All final cleanups, including freeing resources,
is done inside free.resources. The following QUARC-RT library calls are part of the QOPT
code-generation processes.

A quarc_rt build halo_objs call uses the GSHIFT information for the QK to generate a
communication plan. This involves identifying the remote processors from which data needs to be moved,
and allocation of local buffers to store remote data. Note that this step only builds a communication plan,
and does not execute any actual communication. This split of the communication plan generation and
the actual communication is done for an important reason. If a QK is executed multiple times inside a
loop, as is likely when writing iterative solvers, a communication plan once created is reusable for each
execution of the QK. QOPT tries to detect such scenarios, and if successful hoists this call out of the loop
enclosing the QK.

A quarc_rt_lock_local_win call uses MPI-3 passive target synchronization (Gropp et al.,
2014) to start an exclusive access epoch on the LHS array of a QK. The call internally uses an
MPI_Win_lock operation. Inside the exclusive access epoch, the LHS array can only be accessed
by the local MPI process. This is done to prevent any remote process from accessing the LHS array using

an MPI-3 one-sided routine, before all local updates are complete.

89

A quarc_rt_get_remote_halos initiates MPI data movement. The previously generated com-
munication plan is used to access remote data. The data movement involves the non-blocking MPI
one-sided MPI_Get routine. The intent is to overlap movement of remote data to the local processor
with the local computation for the QK. Note that this call does not necessarily mean that data movement
is required. A GSHIFT can be on a non-distributed array dimension, or all array partitions may be
on the same shared memory domain. For such cases this call would return without invoking any MPI
communication.

A quarc_rt_wait_for_remote_halos call blocks execution of an MPI rank till the remote
data has been moved to a local buffer. QOPT inserts a call to the function at a point where the local
computation of a QK is known to be complete.

A quarc_rt_unlock_local_win call unlocks the LHS array and ends the exclusive access
epoch on the LHS array.

A quarc_rt_mpi_allreduce call is an optional global communication call that is used for
reduction QKs. As the name indicates, this QUARC-RT call wraps around an MPI_A1l1lreduce routine.

A quarc_rt_free_remote_comm_infos call frees up resources by deleting local data buffers
and the QUARC-RT communication plan. As with quarc_rt_build_-halo_objs, if a QK is inside a
loop nest QOPT tries to move this call out of the loop nest by sinking it after the outer loop exit block.

The sinking happens in conjunction with the hoisting of the quarc_rt build halo_objs call.

6.44 Loop body generation

Loop body generation for QKSCoP statements is the final compilation step inside QOPT. The process
starts by doing a post-order walk of the QKET’s RHS sub-tree, emitting the required code for each QKET
node that it visits. The gketBuildRHS procedure shown in Figure 6.12 presents a high-level overview
of the loop body generation steps. Each QKET node has different code-generation requirements. This
section goes over the specifics of each case.

Building a DRILL expression node requires only updating the index vector that is used to build
a linearized array access. The METAL DRILL operator generates a constant index value for a nested
sdlarray dimension. This constant value is appended to the index vector, and used during address

linearization.

90

Procedure gketBuildRHS
Input: QKET gketNode
Input: QKSCoP for the QKET gkscop
Output: Vector of LLVM virtual register values V'
switch qket Node.node_type do

1
2 case DRILL do
3 updateIndexVextor ();
4 lv < gketBuildRHS (gket N ode.leftChild);
5 end
6 case [F_EVEN_CHOOSE do
7 lv < gketBuildRHS (gketNode.leftChild);
8 rv < gketBuildRHS (gket N ode.rightChild);
9 V « applyIfConversion (v, rv);
10 end
11 case binary mkernel do
12 [v < gketBuildRHS (gket N ode.leftChild);
13 rv <— gketBuildRHS (gket N ode.rightChild);
14 V « inlineMkernel (lv, rv);
15 end
16 case unary mkernel do
17 lv + gketBuildRHS (qketNode.leftChild);
18 V + inlineMkernel (lv);
19 end
20 case array access do
21 addinlineBoundaryChecks (qkscop, gket N ode);
22 V < createArrayAccess (gket Node);
23 end
24 case scalar access do
25 ‘ V < createScalarAccess (gket Node);
26 end
27 otherwise do
28 ‘ Other
29 end
30 end
31 return V;

Figure 6.12: A recursive post-order walk is used to lower the RHS sub-tree of a QKET into LLVM
instructions. The output of gketBuildRHS is a set of LLVM virtual register that stores the output of a
memory read operation or an arithmetic operation. The LLVM virtual register values get assigned to the
LHS using LLVM memory write operation.

91

Building an IF_EVEN_CHOOSE expression node results in an implicit if-conversion optimization.
As defined in Section 5.1.2.5, METAL’s TF _EVEN_CHOOSE operator generates this type of expression
node. The expression has two children that are terminal GSHIFT expressions. The expression encap-
sulates a built-in predicate (Listing 5.1) that uses the local mddarray indices to compute a global
“parity” value at each mddarray index position. QketBuildRHS generates the predicate as an inlined
computation inside the innermost loop body. It then adds LLVM select instructions to select one of
the two accesses at runtime. Thus, generating code for IF_EVEN_CHOOSE expressions avoids adding
extra control flow into the loop.

Inlining mkernel functions is done using a QOPT’s custom domain-specific function inliner. This
custom inliner benefits from domain-specific information that a general-purpose function inliner cannot
decipher. The custom inliner applies optimizations that a general-purpose inline would not be able to
discover.

Mkernel call inlining occurs only in the context of QKET loop body generation. As gketBuildRHS
does a depth-first walk of the tree, the mkernel function inliner is aware what arguments are passed to
the mkernel call. Along with that it is also aware of guarantees provided by METAL API. For mkernels
that operate on sdlarray data types, the inliner removes all nested sdlarray accesses. These nested
accesses get replaced by a single linearized address offset from the parent nddarray’ s base address.
It may do so as METAL ensures that nested sdlarray members are allocated contiguously inside an
mddarray. For SIMD vectorized code-generation the inliner converts all scalar arithmetic operations
into SIMD vector operations.

Building scalar mddarray accesses requires two things to be considered: adding boundary condi-
tion checks when the QK has GSHIFT expressions, and generating LLVM memory operations.

Boundary condition checks are derived using integer set operations involving a QKSCoP statement’s
iteration domain and the QKSCoP’s boundary domains. A boundary check is inserted whenever a
statement’s domain intersects a boundary domain. If an mddarray access falls inside a boundary, then
it is loaded from the memory region corresponding to that boundary. The memory region can be a shared
memory address, an address inside the same block, or a memory buffer that stores data copied over from
a remote process. This distinction between memory regions is abstracted by QUARC-RT. Listing 6.6

shows the loop nests for the five-point example with the boundary condition checks added.

92

0N N W=

L) LD L LY L) WD I MBI D R M MDD o = o
GRODAEAECRIAALREORN A0 X AN E DR — O 0

// Inner region statement’s headers
for (int i0 = 0; 10 < DO; 10 4= 1)
for (int il = 0; il < D1; il += 1) {
// Check if last row

if (10 == DO-1) { }

// Check if first row

if (10 == 0) { }

// Check if last column
if (11 == D1-1) { }

// Check if first column
if (i1 == 0) { }

}
// Boundary regions’ loop headers
{
if (DO >= 1) {
for (int i1l = 0; il < D1; il += 1) {
// Check if last column

if (11 == D1-1) { }
// Check if first column
if (i1 == 0) { }

}
if (DO >= 2)
for (int i1 = 0; il < D1; il += 1) {
// Check if last column

if (11 == D1-1) { }
// Check if first column
if (11 == 0) { }

}
}
if (D1 >= 1) {
for (int i0 = 1; i0 < DO - 1; 410 += 1);
if (D1 >= 2)
for (int i0 = 1; i0 < DO - 1; i0 += 1);

Listing 6.6: Inline boundary checks inside generated loops

LLVM load instructions are inserted after the boundary checks. The code path that loads for non-
boundary domain cases, adds a load from the local MPI window for the mddarray. For the code path
where an access falls inside a boundary domain, the load is from the memory region pointer returned by
QUARC-RT. Each nested sdlarray element is loaded with a separate load operation.

Building SIMD mddarray accesses involves extra steps compared to building scalar mddarray
accesses. The boundary condition checking is same as scalar mddarray accesses, but the loads inside a
boundary iteration involves vector shuffle operations. These shuffle operations are needed due to an extra
boundary condition introduces by QUARC’s p¢-based data-layout transformations. Reshaping of an
mddarray dimension introduces an internal boundary within an mddarray block. Nearest neighbor

operation on the elements in an internal boundary region require elements from within the same block as

93

oo o] EmEE

shufflevector(v1,v2,{7,0,1,2}) shufflevector(v1,v2,{7,0,1,2})
’ 03 I 0,7 0,|1|0,|5‘ ’0,19|0,23 0,27|0,31‘ ’0,19|0,23 0,27|o,31‘ ’ 03 I 0,7 0,|1|0,|5‘
vl v2 vl v2

GSHIFT<0,-1>() 00 | 04 | 08 [0,12

0,17(0,2110,25] 0,29

02] 06 [0,10 (0,14

GSHIFT<0, 1>() 03 | 07 |0,11/0,15 0,190,223 0,27 | 0,31

’ 0,0 I 04 I 08 IO’]Z‘ ’0,16|0,20|0,24|0,28‘ ’0,16|0,20|0,24|0,28‘ ’ 0,0 I 04 I 08 IO’IZ‘
vl v2 vl v2
shufflevector(vl,v2,{1,2,3,4}) shufflevector(vl,v2,{1,2,3,4})

ol DEEn

(a) SIMD data-layout created using ATL specification v:RT(1,4). Only the inner array dimension is reshaped and
transposed to build the four-wide vector dimension.

DEEn oo

shufflevector(vl,v2,{7,0,1,2}) shufflevector(vl,v2,{7,0,1,2})
’ 0.7 |0,15 16,7|16,15‘ ’0,23|0,31 16,23|16,31‘ ’0,23|0,31 16,23|16,31‘ ’ 0.7 |0,15 16,7|16,15‘
vl v2 vl v2

0,0 | 0,8 116,0 | 16,8 0,16 | 0,24 (16,16(16,24

GSHIFT<0,-1>()
0,17 0,25 {16,17(16,25

0,6 10,14 |16,6 |16,14 0,221 0,30 (16,22(16,30

GSHIFT<O0, 1>0)

0,7 | 0,15 | 16,7 |16,15 0,23 | 0,31(16,23(16,31

’ 0.0 I 0.8 16,0|16,8‘ ’0,16|0,24 16,16|16,24‘ ’0,16|0,24|16,16|16,24‘ ’ 0.0 I 0.8 16,0|16,8‘
vl v2 vl v2
shufflevector(vl,v2,{1,4,3,6}) shufflevector(vl,v2,{1,4,3,6})

ol o EOED

(b) SIMD data-layout created using ATL specification v:RT(2,2). Both array dimensions are reshaped and
transposed to build the four-wide vector dimension.

Figure 6.13: Showing the handling of boundaries for p¢ transformed mddarray layouts using vector
shuffle operations. The example uses a 32x32 mddarray that is blocked on the inner dimension. The
sub-figures show two possible data-layouts within a block. A global two-dimensional indexing scheme
is used to help understand the data distribution and data-layout. The array uses a periodic boundary
condition.

94

well as a neighboring block. The data elements need to be shuffled to get them in the right vector lanes,
before applying any SIMD arithmetic operations.

Figure 6.13 shows two scenarios that illustrate this need for vector shuffling. The two scenarios show
two different p¢ data-layout transformations on a two-dimensional mddarray with a 32x32 global
shape. The inner dimension of the mddarray has been blocked by a factor of two. Each subfigure
shows the first row within the two neighboring blocks. Notice that after the layout transformations,
there is an inner vector dimension within each row. Therefore, each row consists of multiple vectors.
The data-layout in both scenarios is different. In Figure 6.13a, the inner mddarray dimension is p¢
transformed to build a four-wide vector dimension. In Figure 6.13b, both mddarray dimensions are
transformed to build the vector dimension. As shown, the two GSHIF T operations, GSHIFT<0, 1> ()
and GSHIFT<O0, —1> (), on the inner dimension require data to be gathered from two different vector
registers. These two vector registers must be shuffled or blended to get the needed elements in the right
position inside a single vector register. The shuffle operation uses architecture-specific blend instructions,
such as the AVX VBLENDVP S and VPBLENVP S instructions, for this purpose. A blend instruction needs
an instruction mask specified as a list of unsigned integer values to select the required elements from
either vector register. The instruction mask needs to be generated at compile time.

We ensure that all shifts in a given direction for a reshaped dimension use the same instruction mask.
That is, the instruction mask value only depends on the p¢ transformation, and not on the shift value. This
is done by enforcing a legality constraint when selecting a p¢ transformation to define an mddarray

data-layout. This constraint is defined as follows:

Constraint 6.3. The absolute value of a shift on a p¢ transformed mddarray dimension should be less

than the reshaped extent of that dimension.

Constraint (6.3) ensures that all array elements in inner-region iterations have the shifted neighbor in
the same vector lane on another vector register. For boundary-region iterations, the shifted neighbors of
the array elements are in the next or prior vector lane. Moreover, boundary region separation follows the
same logic as described in Se