830 research outputs found

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Low thrust orbit determination program

    Get PDF
    Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP)

    Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 3: Program manual

    Get PDF
    The internal structure of MAPSEP is described. Topics discussed include: macrologic, variable definition, subroutines, and logical flow. Information is given to facilitate modifications to the models and algorithms of MAPSEP

    Techniques for Decentralized and Dynamic Resource Allocation

    Get PDF
    abstract: This thesis investigates three different resource allocation problems, aiming to achieve two common goals: i) adaptivity to a fast-changing environment, ii) distribution of the computation tasks to achieve a favorable solution. The motivation for this work relies on the modern-era proliferation of sensors and devices, in the Data Acquisition Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid congestion and enable low-latency services, limits have to be imposed on the amount of decisions that can be centralized (i.e. solved in the ``cloud") and/or amount of control information that devices can exchange. This has been the motivation to develop i) a lightweight PHY Layer protocol for time synchronization and scheduling in Wireless Sensor Networks (WSNs), ii) an adaptive receiver that enables Sub-Nyquist sampling, for efficient spectrum sensing at high frequencies, and iii) an SDN-scheme for resource-sharing across different technologies and operators, to harmoniously and holistically respond to fluctuations in demands at the eNodeB' s layer. The proposed solution for time synchronization and scheduling is a new protocol, called PulseSS, which is completely event-driven and is inspired by biological networks. The results on convergence and accuracy for locally connected networks, presented in this thesis, constitute the theoretical foundation for the protocol in terms of performance guarantee. The derived limits provided guidelines for ad-hoc solutions in the actual implementation of the protocol. The proposed receiver for Compressive Spectrum Sensing (CSS) aims at tackling the noise folding phenomenon, e.g., the accumulation of noise from different sub-bands that are folded, prior to sampling and baseband processing, when an analog front-end aliasing mixer is utilized. The sensing phase design has been conducted via a utility maximization approach, thus the scheme derived has been called Cognitive Utility Maximization Multiple Access (CUMMA). The framework described in the last part of the thesis is inspired by stochastic network optimization tools and dynamics. While convergence of the proposed approach remains an open problem, the numerical results here presented suggest the capability of the algorithm to handle traffic fluctuations across operators, while respecting different time and economic constraints. The scheme has been named Decomposition of Infrastructure-based Dynamic Resource Allocation (DIDRA).Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Nonvisible Satellite Estimation Algorithm for Improved UAV Navigation in Mountainous Regions

    Get PDF
    This paper presents a very simple and computationally efficient algorithm for the calculation of the occlusion points of a scene, observed from a given point of view. This algorithm is used to calculate, in any point of a control volume, the number of visible satellites and the Dilution Of Precision (DOP). Knowledge of these information is extremely important to reject measurements of non-visible satellites and for the reconstruction of a fictitious Digital Elevation Map (DEM), that envelops all the regions characterized by a number of visible satellites lower than a given threshold. This DEM evolves in time according to the platform motion and satellite dynamics. Because of this time dependency, the Digital Morphing Map (DMM) has been defined. When the DMM is available, it can be used by the path planning algorithm to optimise the platform trajectory in order to avoid regions where the number of visible satellites is dramatically reduced, the DOP value is very high and the risk to receive corrupted measurement is large. In this paper also presents the concept of a Safety Bubble Obstacle Avoidance (SBOA) system. This technique takes advantage from the numerical properties of the covariance matrix defined in the Kalman filtering process. A space and time safety bubble is defined according to the DOP value and is used to automatically determine a minimum fly distance from the surrounding obstacles

    Geodetic Sciences

    Get PDF
    Space geodetic techniques, e.g., global navigation satellite systems (GNSS), Very Long Baseline Interferometry (VLBI), satellite gravimetry and altimetry, and GNSS Reflectometry & Radio Occultation, are capable of measuring small changes of the Earth�s shape, rotation, and gravity field, as well as mass changes in the Earth system with an unprecedented accuracy. This book is devoted to presenting recent results and development in space geodetic techniques and sciences, including GNSS, VLBI, gravimetry, geoid, geodetic atmosphere, geodetic geophysics and geodetic mass transport associated with the ocean, hydrology, cryosphere and solid-Earth. This book provides a good reference for geodetic techniques, engineers, scientists as well as user community

    On the Detection of Cyber-Attacks in the Communication Network of IEC 61850 Electrical Substations

    Get PDF
    The availability of the data within the network communication remains one of the most critical requirement when compared to integrity and confidentiality. Several threats such as Denial of Service (DoS) or flooding attacks caused by Generic Object Oriented Substation Event (GOOSE) poisoning attacks, for instance, might hinder the availability of the communication within IEC 61850 substations. To tackle such threats, a novel method for the Early Detection of Attacks for the GOOSE Network Traffic (EDA4GNeT) is developed in the present work. Few of previously available intrusion detection systems take into account the specific features of IEC 61850 substations and offer a good trade-off between the detection performance and the detection time. Moreover, to the best of our knowledge, none of the existing works proposes an early anomaly detection method of GOOSE attacks in the network traffic of IEC 61850 substations that account for the specific characteristics of the network data in electrical substations. The EDA4GNeT method considers the dynamic behavior of network traffic in electrical substations. The mathematical modeling of the GOOSE network traffic first enables the development of the proposed method for anomaly detection. In addition, the developed model can also support the management of the network architecture in IEC 61850 substations based on appropriate performance studies. To test the novel anomaly detection method and compare the obtained results with available techniques, two use cases are used

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Modeling and Intelligent Control for Spatial Processes and Spatially Distributed Systems

    Full text link
    Dynamical systems are often characterized by their time-dependent evolution, named temporal dynamics. The space-dependent evolution of dynamical systems, named spatial dynamics, is another important domain of interest for many engineering applications. By studying both the spatial and temporal evolution, novel modeling and control applications may be developed for many industrial processes. One process of special interest is additive manufacturing, where a three-dimensional object is manufactured in a layer-wise fashion via a numerically controlled process. The material is printed over a spatial domain in each layer and subsequent layers are printed on top of each other. The spatial dynamics of the printing process over the layers is named the layer-to-layer spatial dynamics. Additive manufacturing provides great flexibility in terms of material selection and design geometry for modern manufacturing applications, and has been hailed as a cornerstone technology for smart manufacturing, or Industry 4.0, applications in industry. However, due to the issues in reliability and repeatability, the applicability of additive manufacturing in industry has been limited. Layer-to-layer spatial dynamics represent the dynamics of the printed part. Through the layer-to-layer spatial dynamics, it is possible to represent the physical properties of the part such as dimensional properties of each layer in the form of a heightmap over a spatial domain. Thus, by considering the spatial dynamics, it is possible to develop models and controllers for the physical properties of a printed part. This dissertation develops control-oriented models to characterize the spatial dynamics and layer-to-layer closed-loop controllers to improve the performance of the printed parts in the layer-to-layer spatial domain. In practice, additive manufacturing resources are often utilized as a fleet to improve the throughput and yield of a manufacturing system. An additive manufacturing fleet poses additional challenges in modeling, analysis, and control at a system-level. An additive manufacturing fleet is an instance of the more general class of spatially distributed systems, where the resources in the system (e.g., additive manufacturing machines, robots) are spatially distributed within the system. The goal is to efficiently model, analyze, and control spatially distributed systems by considering the system-level interactions of the resources. This dissertation develops a centralized system-level modeling and control framework for additive manufacturing fleets. Many monitoring and control applications rely on the availability of run-time, up-to-date representations of the physical resources (e.g., the spatial state of a process, connectivity and availability of resources in a fleet). Purpose-driven digital representations of the physical resources, known as digital twins, provide up-to-date digital representations of resources in run-time for analysis and control. This dissertation develops an extensible digital twin framework for cyber-physical manufacturing systems. The proposed digital twin framework is demonstrated through experimental case studies on abnormality detection, cyber-security, and spatial monitoring for additive manufacturing processes. The results and the contributions presented in this dissertation improve the performance and reliability of additive manufacturing processes and fleets for industrial applications, which in turn enables next-generation manufacturing systems with enhanced control and analysis capabilities through intelligent controllers and digital twins.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169635/1/baltaefe_1.pd

    Opportunistic timing signals for pervasive mobile localization

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of handheld devices and the pressing need of location-based services call for precise and accurate ubiquitous geographic mobile positioning that can serve a vast set of devices. Despite the large investments and efforts in academic and industrial communities, a pin-point solution is however still far from reality. Mobile devices mainly rely on Global Navigation Satellite System (GNSS) to position themselves. GNSS systems are known to perform poorly in dense urban areas and indoor environments, where the visibility of GNSS satellites is reduced drastically. In order to ensure interoperability between the technologies used indoor and outdoor, a pervasive positioning system should still rely on GNSS, yet complemented with technologies that can guarantee reliable radio signals in indoor scenarios. The key fact that we exploit is that GNSS signals are made of data with timing information. We then investigate solutions where opportunistic timing signals can be extracted out of terrestrial technologies. These signals can then be used as additional inputs of the multi-lateration problem. Thus, we design and investigate a hybrid system that combines range measurements from the Global Positioning System (GPS), the world’s most utilized GNSS system, and terrestrial technologies; the most suitable one to consider in our investigation is WiFi, thanks to its large deployment in indoor areas. In this context, we first start investigating standalone WiFi Time-of-flight (ToF)-based localization. Time-of-flight echo techniques have been recently suggested for ranging mobile devices overWiFi radios. However, these techniques have yielded only moderate accuracy in indoor environments because WiFi ToF measurements suffer from extensive device-related noise which makes it challenging to differentiate between direct path from non-direct path signal components when estimating the ranges. Existing multipath mitigation techniques tend to fail at identifying the direct path when the device-related Gaussian noise is in the same order of magnitude, or larger than the multipath noise. In order to address this challenge, we propose a new method for filtering ranging measurements that is better suited for the inherent large noise as found in WiFi radios. Our technique combines statistical learning and robust statistics in a single filter. The filter is lightweight in the sense that it does not require specialized hardware, the intervention of the user, or cumbersome on-site manual calibration. This makes the method we propose as the first contribution of the present work particularly suitable for indoor localization in large-scale deployments using existing legacy WiFi infrastructures. We evaluate our technique for indoor mobile tracking scenarios in multipath environments, and, through extensive evaluations across four different testbeds covering areas up to 1000m2, the filter is able to achieve a median ranging error between 1:7 and 2:4 meters. The next step we envisioned towards preparing theoretical and practical basis for the aforementioned hybrid positioning system is a deep inspection and investigation of WiFi and GPS ToF ranges, and initial foundations of single-technology self-localization. Self-localization systems based on the Time-of-Flight of radio signals are highly susceptible to noise and their performance therefore heavily rely on the design and parametrization of robust algorithms. We study the noise sources of GPS and WiFi ToF ranging techniques and compare the performance of different selfpositioning algorithms at a mobile node using those ranges. Our results show that the localization error varies greatly depending on the ranging technology, algorithm selection, and appropriate tuning of the algorithms. We characterize the localization error using real-world measurements and different parameter settings to provide guidance for the design of robust location estimators in realistic settings. These tools and foundations are necessary to tackle the problem of hybrid positioning system providing high localization capabilities across indoor and outdoor environments. In this context, the lack of a single positioning system that is able the fulfill the specific requirements of diverse indoor and outdoor applications settings has led the development of a multitude of localization technologies. Existing mobile devices such as smartphones therefore commonly rely on a multi-RAT (Radio Access Technology) architecture to provide pervasive location information in various environmental contexts as the user is moving. Yet, existing multi-RAT architectures consider the different localization technologies as monolithic entities and choose the final navigation position from the RAT that is foreseen to provide the highest accuracy in the particular context. In contrast, we propose in this work to fuse timing range (Time-of-Flight) measurements of diverse radio technologies in order to circumvent the limitations of the individual radio access technologies and improve the overall localization accuracy in different contexts. We introduce an Extended Kalman filter, modeling the unique noise sources of each ranging technology. As a rich set of multiple ranges can be available across different RATs, the intelligent selection of the subset of ranges with accurate timing information is critical to achieve the best positioning accuracy. We introduce a novel geometrical-statistical approach to best fuse the set of timing ranging measurements. We also address practical problems of the design space, such as removal of WiFi chipset and environmental calibration to make the positioning system as autonomous as possible. Experimental results show that our solution considerably outperforms the use of monolithic technologies and methods based on classical fault detection and identification typically applied in standalone GPS technology. All the contributions and research questions described previously in localization and positioning related topics suppose full knowledge of the anchors positions. In the last part of this work, we study the problem of deriving proximity metrics without any prior knowledge of the positions of the WiFi access points based on WiFi fingerprints, that is, tuples of WiFi Access Points (AP) and respective received signal strength indicator (RSSI) values. Applications that benefit from proximity metrics are movement estimation of a single node over time, WiFi fingerprint matching for localization systems and attacks on privacy. Using a large-scale, real-world WiFi fingerprint data set consisting of 200,000 fingerprints resulting from a large deployment of wearable WiFi sensors, we show that metrics from related work perform poorly on real-world data. We analyze the cause for this poor performance, and show that imperfect observations of APs with commodity WiFi clients in the neighborhood are the root cause. We then propose improved metrics to provide such proximity estimates, without requiring knowledge of location for the observed AP. We address the challenge of imperfect observations of APs in the design of these improved metrics. Our metrics allow to derive a relative distance estimate based on two observed WiFi fingerprints. We demonstrate that their performance is superior to the related work metrics.This work has been supported by IMDEA Networks InstitutePrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Francisco Barceló Arroyo.- Secretario: Paolo Casari.- Vocal: Marco Fior
    • …
    corecore