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Abstract

The availability of the data within the network communication remains one of the
most critical requirement when compared to integrity and confidentiality. Several
threats such as Denial of Service (DoS) or flooding attacks caused by Generic Object
Oriented Substation Event (GOOSE) poisoning attacks, for instance, might hinder
the availability of the communication within IEC 61850 substations. To tackle such
threats, a novel method for the Early Detection of Attacks for the GOOSE Network
Traffic (EDA4GNeT) is developed in the present work.

Few of previously available intrusion detection systems take into account the
specific features of IEC 61850 substations and offer a good trade-off between the
detection performance and the detection time. Moreover, to the best of our knowledge,
none of the existing works proposes an early anomaly detection method of GOOSE
attacks in the network traffic of IEC 61850 substations that account for the specific
characteristics of the network data in electrical substations.

The EDA4GNeT method considers the dynamic behavior of network traffic in
electrical substations. The mathematical modeling of the GOOSE network traffic
first enables the development of the proposed method for anomaly detection. In
addition, the developed model can also support the management of the network
architecture in IEC 61850 substations based on appropriate performance studies.
To test the novel anomaly detection method and compare the obtained results with
available techniques, two use cases are used.

Keywords: anomaly detection, communication network, cyber-security, electrical
substations, GOOSE, IDS, IEC 61850, IEC 62351.
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CHAPTER 1

Introduction

The concept of Smart Grid (SG) refers to the enhancement of the existing power
grid with “valuable technologies that can be deployed in the very near future or are
already deployed today” according to the US Department of Energy (DoE) [69]. The
definition proposed by the European Standards Organization CENELEC refers to
the SG as “an electricity network that can integrate in, a cost-efficient manner, the
behavior and actions of all users connected to it” [14].

Some of the objectives of the SG are to offer an economical efficiency, a sustainable
power system with high levels of quality and safety of supply and to make the
consumer a prosumer i.e. an informed and active agent or a factor and possibly
a producer. In fact, one of the major promises of SGs is to enable companies
as well as households to generate electricity and to sell it on to other consumers
[14]. Integration of renewable resources such as wind turbines and solar panels in
the energy production imply design and development of adequate solutions for the
generation and storage such as DER.

To guarantee an efficient and optimal operation of the grid, securing those critical
infrastructures is a top priority. Security concerns related to modern SGs are receiving
an increasing attention within the research community. When taking up the challenge
of enhancing the security of the SG, it is clear that improvement in the system
is required as different parts including the transmission and the distribution grid
system were not developed with security as a primary concern [29]. In the present
chapter, the context of the work as well as a collection of some definitions laying the
foundations for the next chapters will be set.

1.1 The Next Generation of Energy Systems - Smart Grids
The electric power infrastructure is based on an installation of components and
equipments that enable the generation, transmission and use of electricity. To allow
an efficient management of this resource, the power industry has been growing into
an interconnected and complex system based on a two way communication i.e. grid
operator receive consumers’ information and the energy consumers get real-time
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prices and bills. Ensuring a secure and reliable transmission of the information flow
help maintain an optimal and efficient operation of the power grid.

The integration of ICT in the control, protection and monitoring of power systems
helps increase the efficiency of the production, transmission and distribution oper-
ations. The new generation of energy systems uses ICT to meet the ever-growing
demand on electricity [91].

The combination of smart components with well-designed Substation Communica-
tion Network (SCN), according to specific norms and recommendations, shall ensure
an optimal operation of the power systems with a significant economic efficiency.

In fact, integration of renewables together with a dynamic management of the
demand-response system was shown to support a balance between energy consump-
tion and demand to avoid overloads on the providers’ side and shift consumers’
consumption from peak loads [39].

Despite the considerable improvements in facilitating the management of supply
and demand of electric power in the next-generation energy systems, there is still
room for improvement especially with respect to the cyber-security of the SGs.

1.1.1 Cyber-Security Challenges in Modern Energy Systems
Use of networking technologies is essential to allow a real-time demand response and
management strategies as well as an inclusion of distributed micro-generation based
on renewable energy sources.

However, a major challenge of the increased ICT interconnection is the larger
exposure to malicious cyber-attacks. Several works in this field (e.g. [47], [28] and
[107]) has shown the different vulnerabilities of SGs.

To counter the cyber-physical threats, the required security solutions shall meet
the multiple performance requirements including the time-critical operation of the
physical power system as well as the high availability and reliability of the communi-
cation network. In order to secure the next-generation of energy systems, several
aspects shall be considered including a reliable and safe software for control systems
[59] and a secure communication network traffic.

SGs are based on a heterogeneous structure including several agents and stake-
holders resulting in a high-level of integration between the physical system and IT.
Consequently, one of the main challenges in guaranteeing a safe and secure operation
of the modern energy systems is to combine Operational Technologies (OT) and
Information Technology (IT) cyber-security.

Researchers and experts in this field agree, however, that there are considerable
differences between conventional IT security mechanisms and OT cyber-security.
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1.1.2 Main Differences with Conventional IT Security
Cyber-security solutions for the next-generation of energy systems need to be specif-
ically tailored for the features of the present heterogeneous and complex system.
Direct transfer and application of security solutions used in conventional IT systems
would not be possible due to several factors summarized in Table 1.1.

First, the underlying physical system needs to be accounted for which often implies
time criticality conditions. In fact, a low latency is crucial to guarantee a high
performance of the SG or any other industrial environment. For instance, some
specific trip signals in electrical substations require an end-to-end transfer time of 3
ms at most, whereas the requirement on the delay for multimedia services is of the
order of 100 ms.

Secondly, the lifetime span of solutions in energy systems and in ICS is, in general,
considerably longer that the one in the IT field. In the IT sector, a renewal cycle of
3 to 5 years is expected contrarily to the power plants where software and hardware
have typically a lifetime of 15 to 20 years. This leads to the presence of legacy
systems that are part of the power grid and which need to be considered in the
design of cyber-security solutions. A patch management program shall be considered
according to the EU comission recommendation on cyber-security in the energy
sector in the EU cyber-security Act that took effect in June 2019 [30].

Thirdly, cascade effect of vulnerabilities that might be also encountered in IT
systems, shall be considered. Indeed, exploit of exposure points in the network,
software or firmware used in ICS would result in cascading effects that might lead
to disturbances in the physical system as already experienced in some of the major
cyber-attacks against critical infrastructures reported in Section 2.1.

Table 1.1: Main characteristics of SGs [26]

Differences from conventional grids Differences from IT systems

Small-scale distributed resources Industrial process connected to IT and cas-
cade effects of vulnerabilities that might
lead to vulnerabilities on physical process

Smart devices to access timely informa-
tion

Difficult long-term and well-tested mecha-
nisms in legacy systems

Challenges modeling the cyber and phys-
ical parts

Different communication protocols but
Network with simpler dynamics (fixed
topology, stable user population)

Incompatibilities between legacy systems
and smart devices

Limited resources with respect to compu-
tational power and memory
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Fourthly, the differences in resources in SGs is another aspect to be taken into
account. In fact, most industrial devices have limited computational power and
memory resources. The particular nature of the industrial environments impose
limitations on the CPUs. Controllers, PLCs and IEDs have embedded processors
that are encapsulated in closed cases to avoid dust, water or insects. This results in
a lower ventilation thus power dissipation capabilities, which make the previously
mentioned processors generally slower [47]. Considerations on the limited resources
in industrial systems are particularly relevant for security studies as authentication
and encryption options need to account for those limitations as discussed further in
the present work.

Additionally, conventional security attributes shall be considered differently when
it comes to industrial or energy systems. In order to secure the network traffic in
SGs, several aspects shall be considered. From an information security perspec-
tive, confidentiality, integrity and availability of the data transmitted within the
communication network shall be tackled.

Approaches including access control to ensure the protection of the data against
unauthorized access, disclosure or theft are commonly used to guarantee the data
confidentiality.

Data integrity refers to protecting the data against any improper modification or
alteration to guarantee its accuracy and consistency. Techniques used to ensure the
integrity of the data within ICS or next generation energy systems shall account
for the strict time criticality requirements expected in such environments. Some
authentication methods adapted for these particular conditions have been proposed
in literature such as [29], [100] and [84]. Another characteristic of ICS and SGs is
the necessity of granting real-time reliability of the communication networks [12] to
ensure an optimal operation of the physical system.

Contrarily to conventional IT systems, the most critical requirement in modern
energy systems is to ensure the availability of data [80]. Attacks against SGs might
exploit security vulnerabilities to attempt to deny legitimate communications within
the network traffic that would result in blocking legitimate information and services
to allowed users.

1.2 Intrusion Detection Systems (IDSs) in Energy Systems
Extensive research works ([8, 19, 57, 67, 78, 87, 105]) have been developed in the
field of IDS in ICS and SCADA systems. However, in the present work there will be
a focus on efforts aiming at detecting anomalies in modern energy systems.

One of the most common and relevant ways to cluster the different IDSs, is based
on their ability to detect unknown or zero-day attacks.
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1.2.1 Signature-based Approaches
Signature or rule based methods are the first class of IDSs. They are based on
comparing collected data with a database of attacks’ signatures. This type of
method is very efficient in detecting anomalies with few FAs under the condition
that meaningful and relevant signatures are defined. One of the pioneer studies on
IDS in electrical substations was conducted by [87]. A Snort rule-based IDS for
IEDs in IEC 61850 substations was developed through applying blacklisting of rules
described with an experimental setup.

In [78], detection of anomalies in Modbus/TCP traffic was achieved through the
use of a preprocessor of Snort developed by Digital Bond namely Quickdraw.

Niventhan and Papa [81] presented a framework for dynamic rules generation and
DPI for use on top of Snort and Suricata. Several rules based on specifications for
Modbus/TCP, DNP3 and Ether/IP protocols are developed.

Other industrial tools such as StationGuard proposed by OMICRON are based on
a similar principle of detecting erroneous packets in IEC 61850 substations with the
help of a pre-defined set of rules.

Recent work developed in [8] proposes an efficient IDS primarily focus on the
detection of GOOSE poisoning attacks. The network IDS is based on a comprehensive
analysis of the GOOSE protocol specifications and implementation of the detection
rules in the open-source network analyzer Zeek (previously Bro). Test results in terms
of latency and jitter show an accuracy of the detection of poisoning attacks with a
low-overhead that does not hinder the performance of the GOOSE communication.

Despite their high detection rate with few to none FAs, two main drawbacks are
generally associated with specification and signature-based IDS. First, establishing
a rule dataset is challenging. Indeed, the creation of a relevant set of rules is not
sufficient as there is also the need to regularly update it and maintain it. Second,
signature-based IDS are only able to detect known attacks. When considering the
scarcity of attack databases in ICSs and energy systems due to the confidentiality
of the data, signature-based IDS might not be an optimal choice for securing the
network traffic within ICS and energy systems.

1.2.2 Anomaly Detection Approaches
Anomaly-based detection is another category of IDSs which is based on characterizing
the normal behavior of a system. Thus, an anomaly is referred to as a deviation
from the normal behavior. The main advantage of using AD methods is their ability
to detect unknown attacks contrarily to signature-based techniques. Thus, AD
methods in SGs and ICSs have been extensively used over the past few years: Indeed,
model-based detection is commonly used in conventional IDSs and can be particularly
relevant for monitoring unknown attacks in alike systems [19].
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Barbosa et al. [3] analyzed the network traffic in ICS and assumptions about
its periodicity was concluded to be further used to propose an AD method. The
developed tool, PeriodAnalyser, whitelists the traffic including Modbus/TCP and
MMS protocols according to a previously learned model.

Analysis of the communication patterns are also used for anomaly-based IDSs.
An AD method based on One-Class Support Vector Machine (OC-SVM) technique
is used to model communication patterns in [93]. Shang et al. [92] use OC-SVM
to model normal communication and detect anomalies through the computation of
a hyper-plane in the feature space to distinguish between normal and anomalous
objects. The developed method is tested on communication traffic including only
Modbus/TCP static exchanges between a client and a server. The work presented
in [92] is telemetry-oriented and based on the assumption of the periodicity of the
network traffic which is not always the case of MMS messages, for instance. Another
limitation is the absence of any semantics’ interpretation of the detected anomalous
packets which gives no explanation on the cause of the detected traffic behavior.

Some AD methods presented in the literature use statistical techniques to detect
intrusions or attacks. Indeed, the network traffic may exhibit several statistical
properties that can be analyzed to establish a model of the traffic.

Several AD methods that are based on statistical techniques, have been used in
the literature. In statistical approaches, AD methods are commonly expressed as a
change point detection problem. The network traffic may exhibit several statistical
properties that can be analyzed in order to detect intrusions or attacks.

To detect anomalies in IEC 61850 automation systems, Kwon et al. [63] use
statistics of network telemetry metrics and protocol specifications of GOOSE and
MMS. Metrics considered for GOOSE AD are GOOSE message frequency, counter
of received GOOSE messages and timestamp of most recent GOOSE messages.
Whereas for MMS, features are limited to the command type. The experiments
are performed using a dataset of network traffic from a Korean SG testbed. In the
model presented in [63], only periodic GOOSE traffic is considered while omitting
legitimate fault events. Thus, the developed AD is only based on analyzing the
mean and the standard deviation of network metrics which assumes that the network
traffic can be simply modeled as a signal embedded in WGN. Such hypothesis can
be hardly applied to the network traffic in IEC 61850 substations as demonstrated
in the present work in Section 3. The main challenge that can be encountered by
AD methods is to establish an accurate model of the analyzed system to decrease
the rate of FAs.
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1.2.3 Hybrid Approaches
To combine advantages of signature-based techniques and AD systems, another
category of IDS adopts a hybrid approach.

An IDS based on three-level was proposed by Cheung et al. in [19]. The two first
ones implement a rule-based check of the protocol specifications for Modbus/TCP
and network segmentation and access policies. The rules were implemented in
the open-source IDS software Snort. The third level is based on a learning-based
approach.

An implementation of a DNP3 parser based on a set of rules to check the packets
structure as well as the semantics was developed in [67]. To identify malicious
commands, the state estimation of the simulated system was predicted and results
were integrated within the IDS. The developed method was integrated to the open-
source network analyzer Zeek. Some other works [88] and [21] use also Zeek for
detection of intrusions in SCADA systems.

Yang et al. [104] proposed an IDS with a similar approach to [19], which is
specifically designed for IEC 61850 electrical substations that is further extended to
a multidimensional IDS [105]. A four-layer detection model is proposed that consists
of an access control, protocol whitelisting, model-based detection for station and
process bus and a multi-parameter based detection. Specific input features based
on the standard definitions and the configuration system files for GOOSE and SV
protocols, are included in the IDS. Other telemetry-based characteristics consisting
in the packet transfer rate per second, transfer byte size per second, length and size
of the packets are learned from the network traffic. The detection of deviations in
the network communication that is based on a simple thresholding procedure. This
is used to detect if any of the captured traffic characteristics goes beyond a minimum
and a maximum value.

Few of previously mentioned works take into account the specific features of IEC
61850 substations and combine good detection performance with the robustness of
the developed approach.

The limitations of the aforementioned available works are as follows:

• The works based on the network telemetrics ([62] and [103]) do not account
for the specifities of the network data in electrical substations including the
different types of communications.

• Most of the available works ([105], [62], [92] and [103]) consider simplifica-
tion assumptions with respect to the modeling and do not include a good
understanding and representation of the substation network.
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• To the best of our knowledge, none of the existing works propose an early
anomaly detection method of GOOSE attacks in the network traffic of IEC
61850 substations.

1.3 Contributions of the Present Work
The availability of the data transmitted within the communication network of the
SG is the most critical requirement when compared with integrity and confidentiality
as previously explained in Section 1.1.

Several threats such as DoS or flooding attacks caused by GOOSE poisoning
attack, for instance, might hinder the availability of the communication within IEC
61850 substations. To tackle such threats, a well-adapted Early Detection of Attacks
for GOOSE Network (EDA4GNeT) method is developed in the present work.

In addition to the numerous differences between SGs and IT security presented
in Section 1.1.2, the focus on the physical process as well as the use of several
protocols among ICS increases the complexity of studying the network traffic behavior.
The developed EDA4GNeT method accounts of the characteristics of the network
traffic in electrical substations through a comprehensive analysis of the statistical
characteristics of the communication features.

A better understanding of the characteristics of the SCN helps to define a well-
adapted mathematical model to describe the network traffic in electrical substations.
The designed model can accurately account for the SRD as well as the LRD in the
network traffic data as shown by the reported results in Section 3. The mathematical
representation of the network traffic in IEC 61850 substations developed in the
present work has as primary use the basis for the detection method EDA4GNeT.
The mathematical model can also considerably support the design of the network
architecture of future electrical substations as well as the performance studies of the
network communication.

The developed approach to the detection of attacks in the communication of
electrical substations can be formulated as the well-known change point detection
problem Chapter 4. Thus, to detect anomalies resulting from changes in the traffic
patterns such as flooding attacks, statistical methods are adopted because of their
increased reliability [4]. The detector used in EDA4GNeT is based on a novel score
function presented in Section 5.2.2.

The EDA4GNeT method developed in the present work can account for dynamic
changes in the model. It is also able to detect multiple anomalies at unknown change
times while assuming unknown model parameters and different types of changes
discussed in Chapter 4.

The developed method is based on a novel and robust score function that, on
one hand suits the characteristics and the requirements of the mathematical model
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representing the network traffic in IEC 61850 substations. And on the other hand,
the experiments carried-out to test the performance of the EDA4GNeT approach
show strong results in terms of detection accuracy and earliness of detection.

The different contributions of the present work will be clustered in major and
minor contributions. The major contributions are as follows:

• An adequate mathematical model to describe the communication network of
GOOSE network traffic in IEC 61850 electrical substations is presented. To this
end, we develop a state space approximation of an ARFIMA model based on a
structured analysis of the GOOSE network traffic. The modeling procedure
includes efficient and suitable parameter estimation and prediction techniques.
The developed mathematical model is primarily used, in the present work,
for the detection of anomalies. However, it can also help design the network
architecture of electrical substations as well as performance studies of the
network traffic. It is worth noting that one of the remarkable characteristics of
the selected model is that it can be easily extended to include more features of
the communication in the form of time-series.

• An online method EDA4GNeT adapted to the detection of flooding attacks
in the GOOSE network traffic in IEC 61850 substations is developed. Use of
multi-step ahead prediction for SS approximation of an ARFIMA model for the
EDA4GNeT method allow an early detection of anomalies. A quick detection
of the attacks helps take corrective actions through response systems which
considerably improves the overall cyber-security of the communication within
energy systems.

• The novel AD method EDA4GNeT based on the designed mathematical model
accounts for dynamic changes of the system which is shown to considerably
decrease the rate of false alarms. Even though the presented case studies
adopted in the present work are focused on availability attacks, the novel
detection method allows detection of different types of changes (additive and
non-additive). Additionally, for detection of several types of changes, the
algorithm on which EDA4GNeT is based, enables the detection of multiple
anomalies at unknown change times.

Besides the former major aspects, other contributions of the present research work
are formulated in the following:

• A novel classification of attacks threatening the smart grid is developed. The
proposed classification follows a methodical approach as it is based on the
well-known SGAM model. Contrarily to the available classifications, the one
developed in the present work takes into account the specific characteristics
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of modern energy systems to give a comprehensive overview of the attacks
threatening the cyber-physical security of smart grids.

• An investigation of the attack vectors targeting IEC 61850 substations is
performed. The risks in a systematic approach using Attack-Execution Graphs
(AEG) to describe the threats within an electrical substation are analyzed.
The proposed approach allows a qualitative security assessment of a T1-1
substation.

• The performance of the novel detection method ED4GNeT is evaluated using
two simulation case studies including different types of changes under different
conditions.

• The accuracy of the suggested model using well-established criteria from the
data-driven modeling field is evaluated including detection rate, FAs and
earliness of detection.

1.4 Thesis Outline
The present work is composed of seven chapters where Chapter 2 introduces the
motivation of the work as well as a detailed problem statement using established
methods for presenting the different types of attacks as well as a risk assessment of
possible attacks against IEC 61850 substations.

In Chapter 3, the characteristics of the GOOSE network traffic in IEC 61850 are
analyzed. A statistical analysis of the considered time series is first conducted. The
derived characteristics help select an appropriate regression model, in this case a
state-space ARFIMA model to describe the data. Techniques for the estimation of
the parameter vector to describe the model as well as the prediction of the dataset is
then presented. The evaluation of the selected state-space model on the considered
use cases is performed.

Chapter 4 is dedicated to introduce and discuss concepts necessary to the design
of EDA4GNeT method. This chapter is mainly focused on formulating the AD as
a statistical hypothesis testing for change detection. Introduction and extension of
well-known techniques for our specific detection problem are presented.

Conclusions about the mathematical modeling of the SCN traffic data lead us
to develop a novel early detection method EDA4GNeT based on an adapted score
test introduced in Chapter 5. The description of EDA4GNeT method as well as a
detailed explanation of the different steps for the estimation, prediction and detection
procedures is presented.

Chapter 6 mainly focuses on the description of the developed use cases including
normal operation of a T1-1 and a 66/11kV substation as well as the designed adversary
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models. Relevant metrics derived from well-established criteria from the data-driven
modeling field are used to evaluate the performance of the EDA4GNeT method.

The last Chapter 7, is dedicated to concluding remarks and an outlook to discuss
promising future research opportunities.

1.5 Previous Publications
Some of the results of the present work were published in international peer-reviewed
publications. In [28], an analysis of the cyber-security context for smart grids is
first presented then a novel classification method for the different types of attacks
is established. The tree-structured classification is based on the well-known SGAM
model [13].

One of the use cases adopted to validate the developed EDA4GNET method
was firstly published as a cost-efficient simulation testbed of the different network
protocols used in IEC 61850 substations in [27].

To increase the cyber-security of electrical substations, two different techniques
were proposed against integrity attacks such as FDIA or a particular type of GOOSE
poisoning attacks. Both approaches were briefly discussed in Chapter 2. In [29], an
authentication method based on the HMAC scheme for the time-critical GOOSE
authentication was developed instead of the recommended RSASSA-PSS scheme
proposed in the IEC 62351-6 standard. When implementation of an authentication
algorithm of the communication is not possible, an additional security solution
against integrity attacks and particularly GOOSE poisoning attacks was developed
in [8]. An extension of the well-known IDS Zeek, previously bro, was suggested.
In the two previous works, simulation case studies proved the performance of the
developed techniques. Interested reader might refer to the previously mentioned
publications for more details.

A first version of the developed anomaly detection approach was introduced in [25]
where a statistical detection method was presented. An ARFIMA model was used
to describe the network traffic in IEC 61850 substations which has been extended
to state space model to include the dynamics of the traffic and propose an online
detection method. The detection method presented in [25] was offline. Thus, in
the present work, estimation and prediction approaches are adapted to develop a
novel detection method EDA4GNeT that offers an early detection of attacks in the
GOOSE communication within IEC 61850 substations.





CHAPTER 2

Problem Statement

Critical infrastructures are essential for the functioning of our modern society. Due to
their vital role, critical infrastructures have been an attractive target for cyber-attacks
[60]. To offer an optimal operation and an enhanced control and monitoring features,
critical infrastructures are being equipped with IT capabilities. The interconnected
nature of those essential assets, including for instance energy systems, introduces vul-
nerabilities, that when exploited by attackers, may result in catastrophic consequences
[94].

In the present chapter, a general analysis of the different threats in energy systems
is provided with listings of the most recent cyber-attacks against Industrial Control
System (ICS) in general and Smart Grids (SGs) in particular. Due to the diversity
of the attacks against SGs, a novel classification is proposed in Section 2.1.2. From
this, it can be concluded that electrical substations are a critical part of the grid
that can be targeted by several attacks. Thus a comprehensive security assessment
of a typical IEC 61850 electrical substation is presented in Section 2.4. The risk
assessment is based on a systematic tree-based approach presented in the form of an
Attack Execution Graph (AEG).

2.1 General Analysis of Threats in Energy Systems
The main goal of energy systems is to ensure a stable and continuous electric power
to consumers. Wheareas the goal has remained the same, the structure of the future
grid is facing a rapid change. Contrarily to conventional energy systems, SGs have a
more complex and interconnected structure.

In the context of the ongoing energy transition, a major goal of the European
Union’s energy and climate policy objectives for 2020 and beyond is to integrate
renewable Distributed Energy Resources (DER) [68]. This results in a two-way
distributed flow of electricity instead of the traditional one-way hierarchical flow.
To keep up with these new characteristics of the power grid, modernization of
the Transmission System Operators (TSO) and Distribution System Operators
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(DSO) maintaining and managing the transmission and the distribution substations,
respectively, is required.

While the extensive deployement of IT solutions is necessary for the monitoring
and control of modern energy systems, it increases considerably the exposure of
the grid to cyber-attacks. Traditional protection schemes including “security by
obscurity” and physical isolation are no more effective as several components of
modern SGs are directly connected to the internet to allow, for instance, remote
control actions. This makes them vulnerable to all the range of cyber-attacks in
conventional IT systems.

In the next section, a collection of the reported simulated and real attacks against
energy and SCADA systems is presented.

2.1.1 Simulated and Real Cases of Cyber-Attacks
One of the main challenges of the future power systems is to ensure their security
against cyber-attacks. Multiple attacks targeting critical infrastructures such as SGs
are perpetrated frequently for several reasons. Recent incidents have shown that
adversaries have the required means and the motivation to perpetrate attacks against
critical infrastructures [94]. The span of the motivation of attackers to target critical
infrastructures is quite wide ranging from financial gain to political incentive. Those
aspects are out-of-scope of the present work.

The damage caused by an attack on a critical infrastructure depends on one hand
on the vulnerabilities inherent in the components and the communication within
the facility, and on the other hand on the motivation, capabilities and interest of
the attacker. Some of the major cyber attacks against critical infrastructures, in
particular SGs, in the recent years are shown in Table 2.1 and discussed in the
following:
• In 2003, a nuclear power plant in Davis-Besse in Ohio was infected by a slammer

worm that exploited a Microsoft SQL vulnerability. The malware affected over

Table 2.1: Real and experimental attacks against SGs

Real Cases Experimental Cases

Slammer Worm (2003) Aurora Attack (2007)
Stuxnet Worm (2010) Erebos Trojan (2015)
Havex Remote Access Trojan (2015) –
Ukraine Electric Grid Attack (2015) –
Industroyer (2016) –
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75000 machines causing a DoS of the safety system and the process computer for
over 5 hours [89].

• In June 2010, a wide spread of the Stuxnet worm affected SCADA systems mainly
in Uranium centrifuges in Iran. It targeted Siemens SCADA applications (PCS7,
WinCC and STEP7) and hardware (Siemens S7 PLCs). After gaining access
to the control system, attackers downloaded malicious code from a remote site.
USB devices and zero-day vulnerability exploits were used to infect the plant.
Physical damage to the plant was caused by the change of the rotational speed of
the motors as Stuxnet periodically modifies the variable-frequency drives. More
details about attacks against equipment are described in [28].

• In December 2015, an espionage campaign launched by Dragonfly using HAVEX
malware targeted ICSs in different countries including the United States, Turkey
and Switzerland. It mainly affected electric and petrochemical plants without
causing physical harm [94] as its main goal was espionage and theft of information
for potential future attacks. BlackEnergy 1-3 is another espionage malware that
targeted HMIs connected to Internet through specific HMIs applications exploits
including Siemens Simatic, GE Cimplicity and Advantech WebAccess [94].

• On December 23, 2015, the attack perpetrated on an Ukrainian power grid is
considered to be the first known successful cyber-attack targeting a power grid.
The attackers gained access to three energy distribution companies compromising
their information system which resulted in causing an outage of 7 hours affecting
more than 700.000 residents.

• In December 2016, another attack hit the electrical Ukrainian infrastructure.
Hackers took control of a Remote Transmission Unit (RTU) at the substation
Pivnichna which shutdown resulted in an outage of one hour. The two previous
attacks were both benign even though according to [41] the consequences on the
SG could have been more serious. It is believed that a modular malware, Crash
Override (also refeered to as Industroyer), targeting ICSs, was used to perpetrate
the attack. It enabled attacker to collect valuable information about the system
process and even to take direct control of switches and circuit breakers [18]. The
Industroyer malware was automatically able to gain knowledge about the targeted
process without any manual commands. The main protocols that were targeted
by the Industroyer malware are IEC 60870-5-101, IEC 60870-5-104 and IEC 61850
and it can be easily extended to other protocols [94]. During this second Ukranian
attack, the Industroyer malware was able to scan the SCADA environment and
deny service to local serial ports. It would be also possibly capable of wiping the
Windows system platform as well as exploiting vulnerabilities such as the Siemens
relay DoS.
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• The Aurora attack is a simulated vulnerability that was tested by the Homeland
security department back in 2007 [108]. It exploits the coupling of two electrical
generators. Causing an out of synchronisation by changing the operating frequency,
results in an electrical and mechanical stress and thus to a damage to the equipment
in the system.

• The Erebos attack is an experimental scenario based on a trojan malware that
was used to remotely infect 50 generators in order to overload them causing a
fictive blackout that would have affected a whole regional electric system in the
northeast of the US [74].
The reader can find more details about incidents in SCADA systems and critical

infrastructures in the survey of Miller and Rowe [77]. Considering the threats targeting
SGs, a first step towards ensuring their cyber-physical security is to discern their
specific features. In fact, the different specificities as well as the security requirements
of the SG shall be taken into account to develop an adequate classification of the
different threats.

2.1.2 Classification of Attacks in Energy Systems
Cyber security and privacy issues in the SG are relatively new areas in the field of
power industry [70]. The highly-interconnected structure of SGs rises additional
security challenges when compared with conventional power grids. A good under-
standing of the different threats and risks is essential to face those challenges and to
guarantee an optimal operation of modern energy systems.

As an attempt to unveil the various threats that endanger the SG, a new classifica-
tion of the different cyber-physical attacks was proposed by the author of this thesis
in [28]. The suggested categories were based on the different layers of the Smart
Grid Architecture Model (SGAM). We distinguish three categories of attacks. The
first one groups attacks against power and energy layer. The second one consists of
attacks against the computer/IT layer. Attacks against communication protocols
are grouped in the third category. An overview of the specificities and the security
requirements of the SG presented in [28] as well as a classification of the various
attacks threatening the cyber-physical security of the SG is depicted in Figure 2.1

The new classification proposed in this paper provides a perspective on the cyber-
physical security of the SG and forms the necessary knowledge basis for understanding
the current security challenges . The classification of attacks against SGs introduced
in [28] helps develop adequate countermeasures such as IDS, IPS, etc. towards
protecting future energy systems against the investigated cyber-attacks.

Based on the attack classification presented in [28] and the different attacks
targeting ICS and SCADA systems listed in Section 2.1.1, it was concluded that the
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Figure 2.1: Classification of attacks against SGs [28] b

b This figure is based on one of our previous works that was published in [28]

IEC 61850 electrical substations, a critical component of energy systems, is one of
the most exposed parts of modern energy systems.
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2.2 Architecture of IEC 61850 Electrical Substations
Modern electrical substations are designed according to recommendations described
in IEC 61850. The international IEC 61850 standard is proposed by the Technical
Committee (TC) 57 Working Group (WG) 10 and was first issued in 2003. It is
mainly focused on the communication networks and system within the Substation
Automation Systems. A second edition of the standard was released in 2013 to
include additional areas such as automation of wind power turbines, distributed
energy systems and hydro-power systems.

2.2.1 The IEC 61850 Standard
The IEC 61850 standard describes the information model, the communication services
and the architecture of the electrical substations. Electrical substations are an
essential part of the SG. Depending on the type of the substation, its role is to
transform voltage from high to low or vice-versa as well as distributing or switching
functions. Each substation is controlled by an administrator via an automated
structure called Substation Automation System (SAS).

Basic Concepts of IEC 61850
To offer such abilities, the model of the different functions and components of the
substation should be defined. This is one of the main challenges met by the IEC
61850 standard. It suggests interoperability between different components thus the
integration of devices and functions from different manufacturers is claimed to be
possible when respecting the recommendations suggested in IEC 61850. Another
objective of the standard is to reduce the number of protocols used in automation
systems for electrical substations and to normalize their use in order to avoid problems
of incompatibility between the different manufacturers.

The IEC 61850 standard is divided in several parts as presented in Table 2.2.
Part 1 gives an overview of the IEC 61850 standard series, basic interface and
reference model of a Substation Automation System (SAS). Part 2 and 3 provide an
explanation of the terms used throughout the document and general requirements
for electrical substation, respectively. A description of the system and project
management structure including engineering and testing tools is presented in Part 4.
Part 5 covers the communication requirements of the functions that are performed in
the substation automation system. It also explains the Logical Nodes (LNs) for each
function. In part 6, the IED related configuration languages based on the Extensible
Markup Language (XML) including the Substation Configuration Language (SCL),
IED Capability Description (ICD), System Exchange Description (SED), Instantiated
IED Description (IID), System Specification Description (SSD) and Configured IED
Description (CID) files are presented. The detailed communication architecture of
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the substation including the explanation of the logical node names and data names
for the communication, is defined from Part 7-1 to 7-4. Part 8-1 presents a data
exchange method to MMS (ISO / IEC 9506-1 and ISO / IEC 9506-2) communication.
The structure and the communication model using the SV protocol are described in
parts 9-1 and 9-2. Lastly, part 10 focuses on recommendations for the conformance
testing. It is, however, worth mentioning that besides some manufacturers’ specific
conformance tests, there is not yet a common certificate internationally acknowledged.

Object Data Model
The IEC 61850 standard has a standardized object model for all the substation
objects as shown in Figure 2.2 . Indeed, each physical device can be represented by
different logical devices each of them grouping functions performed by the physical
device. The different functions are, in fact, represented by a LN. The part IEC 61850-
7-4 defines 13 logical groups in which the nodes are grouped in categories such as
Protection, Control or Switchgear. The naming convention is, thus, defined according
to the standard. The well-defined data model is independent from the method of

Table 2.2: Different parts of the IEC 61850 standard

IEC/TR 61850-1 Part 1: Introduction and overview
IEC 61850-3 Part 2: Terms and abbreviations
IEC 61850-3 Part 3: General requirements
IEC 61850-4 Part 4: System and project management
IEC 61850-5 Part 5: Communication requirements for functions and

devices’ models
IEC 61850-6 Part 6: Configuration description language for communica-

tion in electrical substations related to IEDs
IEC 61850-7-1 Part 7-1: Basic communication structure for substation and

feeder equipment - Principles and models
IEC 61850-7-2 Part 7-2: Abstract communication service interface (ACSI)
IEC 61850-7-3 Part 7-3: Common data classes
IEC 61850-7-4 Part 7-4: Compatible logical node classes and data classes
IEC 61850-7-410 Part 7-410: Hydroelectric power plants - Communication

for monitoring and control
IEC 61850-7-420 Part 7-420: Basic communication structure- Distributed

energy resources logical nodes
IEC 61850-8-1 Part 8-1: Specific communication service mapping (SCSM)

- Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2)
and to ISO/IEC 8802-3

IEC 61850-9-1 Part 9-1: Sampled values over serial unidirectional mul-
tidrop point to point link

IEC 61850-9-2 Part 9-2: Sampled values over ISO/IEC 8802-3
IEC 61850-10 Part 10: Conformance testing
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Figure 2.2: IEC 61850 Data Object Modeling [53]

communication which enables the use of new technologies and promotes vendors’
independence. The object-oriented data model defined in IEC 61850 standard is
based on an abstract level. The abstract model is currently mapped to the MMS,
GOOSE and SV protocol. A set of logical nodes defines the mapping of the different
protocols.

Each LN is composed of different data objects each of which comprises data
attributes. The description of the properties of the different functions of a physical
device are part of the device model. Each logical node contains a predefined set
of data classes that includes data related to the different configurations. Such a
modeling hierarchy reduces significantly the costs when it comes to the integration
time and effort in power systems.

The configuration of the different IEDs is described using SCL which offers four
file formats. The description of the capabilities of each IED is available in the IED
Capabilities Description (ICD) files. The ICD is developed by the manufacturer
and it has a generic description of the functions as well as the objects supported
by a given device. Information concerning the configuration of the IEDs is part
of the configured IED Description (CID). It is used internally by the device to be
configured. The two other formats are the Substation configuration (SCD) as well as
the Substation Specification Description (SSD) files.

2.2.2 Communication Network in Electrical Substations
Given the fact that services and objects defined in IEC 61850 are abstract, there is a
need to map them into specific protocols. Theoretically, data models can be mapped
to any protocol. However, due to their complexity, the mapping of the different
abstract data models is currently available for the protocols presented in Figure 2.3.
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MMS 
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SNTP

Ethernet ISO/IEC 8802-3
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Data Link
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Physical Layer

Application Layer

IPIP

Figure 2.3: OSI mapping of IEC 61850 protocols

As presented in Table 2.2, the part IEC 61850-8-1 of the standard describes the
mapping of the abstract services and data objects to the Manufacturing Message
Specification (MMS) protocol that is defined in ISO/IEC 9506-1 and ISO/IEC 9506-2.
The MMS protocol is used for the transmission of Real-Time (RT) data as well as
the supervision and control information between the different components of the
electrical substation. The details of the protocol stack of the IEC 61850 are provided
in Figure 2.3.

The MMS protocol is an application-profile protocol implemented over TCP/IP
and based on the OSI model. It is fully specified in ISO 9506 standard [56]. MMS
messages are based on a client/server scheme and they are used for transmission of
services (control, data access, file access, etc.) and reporting.

For the time synchronization of the entire system, the SNTP protocol is used. The
2 modes of operation client/server and publisher/subscriber are supported by the
SNTP protocol. Moreover, different timestamps are used in SNTP to represent time
values.

Requirements for time synchronization are specified in Part 5 of the IEC 61850
standard (refer to Table 2.2). The SNTP protocol is widely used in the implementation
of IEC 61850 based electrical substations as it meets the requirements specified in
Part 5 of the standard (refer to Table 2.2) as well as its simplicity.

While the functioning of the MMS protocol is based on the client/server mode
that runs over TCP/IP, GOOSE and SV protocols follow the publisher/subscriber
mechanism over high speed switched Ethernet. In the client/server operation mode,
clients can access data made available by server or receive event-driven reports
over TCP/IP. The connection is first opened by a client and several clients may
communicate with the same server. However, in the publisher/subscriber mechanism,
multicast messages are sent by a publisher to all subscribers without previous
knowledge of which of the subscribers will receive the messages. And according to
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the identification number of each message, subscribers may subscribe to specific
messages they want to receive.

GOOSE and SV protocols have strict time requirements and use multicast and
non-routable messages over the automation substation LAN. SV messages are used
for the transmission of analog measurements. GOOSE protocol configuration is
detailed in the part IEC 61850-8-1 of the Table 2.2 whereas details about the SV
protocol can be found in the part IEC 61850-9.

MUCB MUCB

IED IED IED

Monitoring 
system

Engineering 
Workstation

Process Level

Bay Level

Station Level RTU

Control 
CenterWAN

Firewalls

SV

GOOSE

MMS/GOOSE/SNTP

Station Bus

Process Bus

CB: Circuit Breaker IED

MU: Merging Unit

Figure 2.4: The different bays and protocols within an IEC 61850 substation [27] a

a This figure is based on one of our previous works that was published in [27]

The data object model defined in the IEC 61850 standard is mapped to different
protocols. The GOOSE protocol [54] is a multicast publisher/subscriber data transfer
method mapped directly over Ethernet. GOOSE messages are exchanged between
process and bay levels as well as between IEDs in the bay level as shown in Figure 2.4.

The main function of GOOSE messages is to provide a fast way to exchange data
between IEDs within the substation LAN. As already briefly described, the GOOSE
protocol is event-based which implies that the publisher periodically, with a period
of 𝑇0, sends messages. But when an event happens, a burst of messages with new
data is sent as depicted in Figure 2.5. The retransmission periods 𝑇1, 𝑇2 and 𝑇3,
following a GOOSE event are much shorter than the one for stable conditions 𝑇0.

Figure 2.5: The transmission mechanism of the GOOSE protocol [53]
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A specific message transfer mechanism, depicted in Figure 2.5, is used to ensure the
reliability of GOOSE messages without the conventional acknowledgment procedure.
When an event occurs, a GOOSE message is generated and repeated first at high
frequency, then at a slower one until reaching a predefined frequency in stable
conditions.

Even though security is not the core of the IEC 61850 standard, there are some
mechanisms to comply with the strict RT requirements. A first approach consists
in mapping GOOSE messages directly to the link-layer to reduce processing time.
Another mechanism to ensure efficient processing and transmission is to select a high
priority tag to avoid slowing down the transmission of GOOSE packets.

The GOOSE message frame has a datagram complying with ISO/IEC 8802.3 and
shown in Figure 2.6. More details can be found in IEC 61850-8.1 [54]. Within the
frame structure, there is a 2-Byte field called “Additional Security” that is reserved
for digital signature according to the recommendations in IEC 62351 [52]. However,
no further details are provided in IEC 61850-8.1.
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Figure 2.6: Description of the GOOSE frame [54]

2.3 Shortcomings of Security Recommendations in IEC 62351
Over the last few years, the IEC 61850 standard has been gaining an increasing accep-
tance in different power facilities worldwide. Thus, complete support and portfolio
for IEC 61850 is already proposed by different recognized energy automation manu-
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facturers such as Siemens, Hitachi ABB, etc. Integration of the recommendations
suggested in IEC 61850 offers several assets for the electrical substations. However,
the IEC 61850 standard was not conceived with security being a primary goal. The
previous statement has been shown throughout the different attack scenarios crafted
to target IEC 61850 substations and presented in the literature [61],[47], [97].

To overcome those limitations and others present in power systems, the IEC 62351
standard, developed by the Technical Committee 57 within the Working Group 15
(TC57 WG15) was first issued back in 2007. It introduces recommendations to guar-
antee the information security of power systems using, for instance, authentication
mechanisms. The standard is split into eleven parts concerned with the end-to-end
security of the communication in power systems. Security measures for the electrical
substations based on IEC 61850 are proposed in Part 6 of the IEC 62351 standard.

As little to no focus on the threats affecting the network communication security
of electrical substations was considered, the part 6 of IEC 62351 [52] was thereafter
introduced in order to extend IEC 61850 with security measures. Further details
about the the security recommendations are discussed in the next section.

The analysis of the security recommendations suggested in the IEC 62351 [52]
standard shows few to no measures suitable for the security of the substation commu-
nication and mainly for the GOOSE protocol [29]. The main security shortcomings
will be reviewed in Section 2.3.2.

2.3.1 Main Security Recommendations in IEC 62351
Different security recommendations were suggested for the different communication
protocols used in IEC 61850 substations. Figure 2.7 represents a simplified mapping
of the IEC 61850 protocols with the corresponding security measures suggested in

SV 
(IEC 61850-9-2)

GOOSE
(IEC 61850-8-1)

MMS Suite
(ISO 9506)

SNTP 
(RFC 4330)

Ethernet ISO/IEC 8802-3

Authentication
 option

UDP/IP
(RFC 791/768)

Extended APDU with RSA signature

TLS

TCP/IP
(RFC 791/768)

Peer 
Authentication

Figure 2.7: Mapping of IEC 61850 protocols with corresponding security measures
suggested in IEC 62351
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IEC 62351. Use of TLS and peer-authentication for MMS protocol was suggested.
Authentication option for SNTP as well as for GOOSE and SV protocols was
recommended.

In the following, there will be mainly a focus on security recommendations for the
process network communication and particularly for the GOOSE protocol. Security
measures for GOOSE and SV messages were described in IEC 62351-6 [52].

One of the security measures is focused on the use of the fields Reserved 1 for the
number of the extension octets and Reserved 2 for a 16-bit cyclic redundancy check
(CRC), as depicted in Figure 2.6.

Another security recommendation, suggested in the IEC 62351-6 standard [52],
is the authentication of the GOOSE messages with a digital signature. In fact,
extension of the Application Protocol Data Unit (APDU) with an RSA-based
signature with Appendix-Probabilistic Signature Scheme (RSASSA-PSS) is proposed
as authentication scheme. It is, however, worth noticing that the RSA signature
explicitly excludes the Ethernet header and might introduce additional latency.
Adding a digital signature to GOOSE communication guarantees the authentication
and integrity of the messages. Additionally, IEC 62351-6 introduces an extension in
the SCL files to allow the use of different certificates for GOOSE messages.

Defense against replay attacks is also suggested as an additional security measure.
The proposed algorithm is based on a check of the freshness of the messages. It is in
fact based on comparing the messages’ timestamps with a clock skew. According to
the IEC 62351-6 standard [52], a skew value of 2 minutes shall not be exceeded.

Although authentication of the GOOSE communication is recommended, encryp-
tion shall however be avoided. Indeed, for hard RT applications such as for GOOSE
messages with 3 ms response time, no encryption scheme is suggested as stated in
the standard that “for applications [...] requiring 3 ms response times, multicast
configurations and low CPU overhead, encryption is not recommended.” [52].

2.3.2 Security Flaws in IEC 62351
While the measures suggested in IEC 62351-6 standard enhance undeniably the overall
security of electrical substations, there is still room for improvement. Integration
of security measures for peer-to-peer communications might lead to an undesirable
latency [47].

As previously mentioned, encryption of GOOSE messages is not recommended
[52] which increases risk of DoS attacks stemming from GOOSE poisoning attacks.
Thus, the security of GOOSE messages is limited to adding a digital signature to
their APDU. More research is however needed, to better analyze the performance of
the authentication mechanisms based on digital signatures recommended for SV and
GOOSE communications.
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In fact, strict RT requirements for specific communication messages cannot be
respected as tested by [44]. This is particularly relevant when considering GOOSE
messages of type 1A that should have a maximum of 3 ms response time as specified
in IEC 61850 [55]. Therefore, one of the current challenges is to reconcile the needs
for security and low latency [47] in electrical substations.

Works presented in the literarture ([29, 31, 44]) have been carried out with respect
to testing the authenticity and integrity of GOOSE messages according to IEC
62351-6. It was shown that the HMAC scheme has a better computational time than
the originally recommended RSASSA-PSS [29]. Thus, adjustment of the IEC 62351-6
considering the authentication scheme of GOOSE messages shall be considered in
the next edition of the standard.

As mentioned earlier in this work about the conformance of IEC 61850 standard, it
is worth noting that also for IEC 62351-6, that there is no certification tests available
besides some industrial specific ones. Thus, most energy providers do not yet consider
practical implementation of security measures due to the remaining ambiguity. The
acceptance of security recommendations proposed in IEC 62351 largely depends on
its impact on interoperability, performance, and manageability [44].

2.4 Security Assessment through a Risk Analysis of a
Transmission Substation T1-1

To describe the exposure of IEC 61850 substations to attacks, a systematic approach
to explain the different weak points is chosen. In our approach, we are interested in
a qualitative assessment of the security risks in a transmission substation based on
IEC 61850 of type T1-1.

Understanding how vulnerabilities in the network of electrical substations can be
combined by attackers to perpetrate an intrusion, is important to develop efficient
and adapted defense mechanisms. In fact, it can be identified how compromising one
resource in the substation may increase risk of compromising another one. Simulation
of the attacks scenarios of the different adversaries to evaluate further the novel IDS
will be discussed further in Chapter 6.

Getting an insight on the system security is possible using cyber-attack modeling
techniques. To unveil the vulnerabilities and in a further step present detection
and mitigation tools, different cyber-attack modeling techniques were used such
as attack graphs, diamond model, kill chain model [40]. To describe the different
steps of an attack, kill chain models can be used. For cyber-intrusions, the kill
chain model consists of seven steps namely reconnaissance, weaponization, delivery,
exploitation, installation, command and control and finally actions on objectives.
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Attack graphs help establish relationships between the different components to allow
the reconstruction of possible attacks and their consequences.

Cyber-intrusion analysis using diamond model [10] focuses mainly on the event
namely intrusion instead of the different steps as it is the case in the already mentioned
approaches. There are four basic elements used to build a diamond diagram which
are the adversary, the victim, the capability and the infrastructure. The dependencies
between the different components are underlying in the structure of the diagram.
However, the interconnections between the elements cannot be detailed. Thus, the
model is not as flexible as other approaches and it cannot be easily extended.

The attack execution graphs are tree-based diagrams that represent the different
paths in which an attack can be perpetrated [66]. An overview of all perspectives
of possible adversary attacks can thus be considered. The main components in
Attack Execution Graphs (AEGs) are the attack steps. However, there is also a
description of attack skills, system knowledge, system access and finally the goals of
the adversary. Considering the different advantages offered by AEG, our security
assessment of the electrical transmission substation would be implemented using
AEG.

2.4.1 Risk Analysis of the Station Network
The first case study considered in this work, is a simplified T1-1 transmission
substation which contains one incoming line, one bus-bar and 2 outgoing lines.

The simplified Single Line Diagram (SLD) of the transmission substation T1-1
with the Intelligent Electronic Devices (IEDs) used for the different bays is depicted
in Figure 2.8. The substation contains four bays that can be grouped into three main
ones which are the transformer bay composed of 𝐷01 and and two feeders bays (𝐸01
and 𝐸03). A Merging Unit (MU) has the function of a physical interface between
the primary equipment in the switchgear and the protective devices as it digitizes
the current and voltage measurements and sends it in the form of SV packets to the
protection & control IEDs.

The transformer bay contains two MUs namely 𝑀𝑈𝐷01 and 𝑀𝑈𝐸02 as well as one
P&C IEDs namely 𝐼𝐸𝐷𝐷01. Each of the feeder bays contain one 𝑀𝑈𝐸01and 𝑀𝑈𝐸03

together with one P&C 𝐼𝐸𝐷𝐸01 and 𝐼𝐸𝐷𝐸03.
The communication between the station level and the bay level is established using

MMS messages. A MITM attack could be launched via spoofing the ARP packets
exchanged at the station network and MMS packets transmitted between the station
Intelligent Electronic Device (IED) 𝐼𝐸𝐷𝐷01 and the P&C IEDs are then intercepted.
Further steps might result in gaining access to the process network to perpetrate
different attacks. The previously mentioned attacks are mainly targeting the integrity
of the data. However, another type of attacks against the availability of the data can
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Figure 2.8: The Single Line Diagram (SLD) of the T1-1 substations with the used
IEDs (depicted in green) and merging units (MUs) (depicted in blue)

occur in the substation level namely DoS attacks. An intruder might over-flood the
communication by sending a huge number of network packets which will result in a
disturbance of all communication-based functions. After gaining access through the
substation LAN, it is supposed that the ultimate goal of an attacker would be directly
related to the underlying physical process in the substation. Thus, attacks against
the different bays in the T1-1 substation, presented in Section 6.2, are detailed in
the following.

2.4.2 Risk Analysis of the Feeders I and II Bays
The transformer bay as described in Section 6.2.1 is composed of the two zones 𝐷01
and 𝐸02. The transformer bay is of a particular importance in the T1-1 substation
as it is the origin of the power flow. Thus, the present Section 2.4.2 is dedicated to
the study of the cyber-attacks modeling for this part of the T1-1 substation.

When considering a normal operating state of the substation, at least one of the
two breakers 𝐶𝐵𝐸03 or 𝐶𝐵𝐸01 in the feeder I bay and feeder II bay respectively
should be closed. A Man-In-The-Middle (MITM) attack between the station level
and 𝐼𝐸𝐷𝐸01 or 𝐼𝐸𝐷𝐸03 would result in loss of power in feeder I or feeder II. Tripping
only 𝐶𝐵𝐸03 or 𝐶𝐵𝐸01 is critical considering the structure of the T1-1 transmission
substation. Tripping both previously mentioned CBs would however have more
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serious consequences. Even though the interlocking function (F2) in 𝐼𝐸𝐷𝐸01 an
𝐼𝐸𝐷𝐸03 should prevent tripping both corresponding CBs, a false GOOSE message
injected in the communication between 𝐼𝐸𝐷𝐸01 and 𝐼𝐸𝐷𝐸03 or from 𝐼𝐸𝐷𝐸02 to
𝐼𝐸𝐷𝐸01 and 𝐼𝐸𝐷𝐸03 could disturb the normal operation state of the substation.

To study the CPS of the T1-1 electrical substations based on IEC 61850, hypothet-
ical attack scenarios are proposed in Figure 2.9. Attack Execution Graphs (AEGs)
are used to analyze the different details of some cyber-attacks examples such as the
skills and the knowledge required by the intruder to reach his or her goal. The focus
of the analysis is the transformer bay. According to IEC 61850-5, there are different
states of operation namely normal, abnormal and post-fault state of operations. In
the presented security assessment method, there will be a focus on the normal and
the emergency states of operation.

Normal state of operation
In normal state of operation, supervision and control tasks are carried out. A normal
state of operation of the T1-1 substation is first considered. The study is only focused
on undesirable events caused by malicious actions.
𝐷01 zone is a critical part in the T1-1 substation as it is the entry point of the power

flow. In the simple case considered, the threats are grouped into two main goals that
are learning useful information concerning the electrical substation and the second
one is to trip or close a Circuit Breaker (CB) (𝐶𝐵𝐷01). In fact, tripping 𝐶𝐵𝐷01 would
lead to the loss of power in the whole substation. It is supposed that access to the
electrical substation network can be gained through the control center, the corporate
network or the neighboring substation through the Wide Area Network (WAN) after
compromising any firewalls as well as from a remote access (e.g. VPN, dial-up). The
first goal of the intruder which is to gain an insight on the process can be reached by
spoofing the communication packets exchanged between the station level and the
different Intelligent Electronic Devices (IEDs). Fake GOOSE messages to trip the
Circuit Breaker (CB) can be published after modification of the captured messages
or directly generated from masqueraded IEDs replicating the GOOSE messages sent
by 𝐼𝐸𝐷𝐷01 or 𝐼𝐸𝐷𝐸02. Another way to reach the goal of tripping the CB is to
compromise the 𝑀𝑈𝐸02 and to generate fake SV messages. Receiving corrupted
measurements, 𝐼𝐸𝐷𝐷01 and 𝐼𝐸𝐷𝐸02 generates genuine GOOSE that triggers the
overvoltage or overcurrent protection functions (F7) and (F8) respectively or the
transformer differential protection (F6). The mentioned actions results in tripping
𝐶𝐵𝐷01 to avoid damage to the substation. A more detailled overview about the
different functions is given in Section 6.2.1.
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Emergency state of operation
When a fault occurs, an emergency state is established and protection actions such
as alarms, trip and events are activated. In the transformer bay, such a state leads
to sending messages from 𝐼𝐸𝐷𝐷01 or 𝐼𝐸𝐷𝐸02 to genuinely trip 𝐶𝐵𝐷01. In that case
an MMS message is sent from the concerned IED to the station level to report the
tripping actions. If an intruder who gained access to the station network would
whether temper with the transmitted MMS packet or even drop it, components of the
station level such as the local or remote supervision center or the Human-Machine
Interface (HMI) will not be aware of the real state of the breaker 𝐶𝐵𝐷01. As a
consequence, all related functions such as state estimation and control operations
will be invalid. This will lead to the propagation of the fault in the whole substation
and even to neighboring ones which may cause a power outage. In an emergency
state requiring the isolation of a fault, the function (F4) is triggered and 𝐶𝐵𝐸02 is
supposed to trip. However, a fake GOOSE message from 𝐼𝐸𝐷𝐸01 or 𝐼𝐸𝐷𝐸03 might
reveal a normal state of operation which will lead also to a fault propagation.
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CHAPTER 3

Analysis and Long-Range Memory Modeling of the IEC 61850
Network Traffic

List of Symbols
Notation Description

𝑎𝑖 An element of the A matrix

A The state transition matrix ∈ R𝑛×𝑛

𝐵 Backshift operator

C The measurement matrix ∈ R𝑔×𝑛

𝑑 The difference coefficient

D A selection term for the measurement equation

e[𝑘] Value of the sequence {e[𝑘]} at discrete-time 𝑘

𝐻 Hurst parameter

K The Kalman filter gain

𝑙 Delay order of the back-shift operator

𝐿 Length of non-overlaping intervals composing a time-series

𝑚 The level of aggregation

𝑁 Size of a time-series

𝑝 The order of the autoregressive polynomial

𝑞 The order of moving the average polynomial
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Notation Description

Q A 𝑛× 𝑛 covariance matrix of the states or process noise

𝑆𝑖 The standard deviation of a subset x calculated over the inter-
val [𝑖,𝑢]

𝑊𝑖,𝑢 The partial sum of a subset x calculated over the interval [𝑖,𝑢]

x A stochastic time-series

x (𝑚) The aggregated sequence by 𝑚 of x

𝛼[𝑘] The state vector at sample 𝑘

𝛤 (.) The gamma (generalized factorial) function

𝜂[𝑘] A state disturbance vector ∈ R𝑔×1

𝜀 Model residuals

𝛩(𝐵) Moving average (MA) polynomial operator of an ARFIMA
model

𝛩 The parameter vector

𝜇 The conditional mean of the state vector

𝜎 The conditional variance of the state vector

𝜎2
e Variance of a white Gaussian noise process

𝜑(𝐵) Autoregressive (AR) polynomial operator of an ARFIMA
model

𝜓𝑗 Parameters of the MA part of the ARFIMA model for 𝑗 =
1,...,𝑚

The present chapter provides an analysis of the characteristics of the network
traffic in IEC 61850 substations. Findings from the analysis of the network traffic
in the dataset in the considered case study presented in [7] show the presence of
short and long range dependencies. Those findings agree with works presented in the
literature [103], [100], [32] and [42]. However, the few works that have dealt with the
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analysis of the communication in IEC 61850 substations do not propose an adequate
mathematical modeling of the data. Indeed, this is one of the contributions introduced
in the present work. We design in the present chapter an SS-AR approximation
of an ARFIMA model that fits the statistical characteristics of the network traffic.
Adequacy of the chosen model is shown using the case study presented in Section 6.3.
Justification of the model choice as well as discussion of the modeling procedure
is presented in Section 3.4. Additionally to the main contribution of this chapter,
theoretical background necessary for the understanding of the previously mentioned
contributions is also introduced.

Integration of recommendations suggested in the IEC 61850 standard allows the
use of IT technologies including standardized protocols, a systematic object-oriented
structure for the configuration of the Substation Automation System (SAS). The
support of Ethernet-based communication as well as the possibility of remote control
actions is also offered within the IEC 61850 norm.

Typical IEC 61850 substation models have a hierarchical structure with three
different levels, being the station, bay and process layers. The station level includes
engineering workstations, Human-Machine Interfaces (HMIs) and gateways to the
Energy Management System (EMS) and SCADA systems. The bay and process level
network is an Ethernet network. More details about the architecture of IEC 61850
including basic concepts and object data model are presented in Section 2.2.

The particular structure of the electrical substation and the use of different
protocols throughout the Substation Communication Network (SCN) results in an
increased challenge for the understanding of the network communication patterns.
In the present Chapter, different characteristics of the process network traffic is
described and analyzed. Based on this, mathematical modeling of the network
traffic in IEC 61850 substation is introduced. The required theoretical background
is described in Section 3.2 and Section 3.3. Validation and further discussion of the
modeling procedure by help of a use case is presented in Section 3.4.

3.1 Characteristics of the Network Traffic
Different types of messages are exchanged within the substation and can be divided
from a data flow perspective into three types namely, cyclic, stochastic and burst data
flows [109]. Cyclic data flows are time-driven data commonly used for transmitting
power measurements from field devices within the process layer.

Sampled Values (SV) messages generated from MUs and transmitted to Protec-
tion and Control (P&C) IEDs in the bay level, result in cyclic data flows. This
communication is used to transmit time-critical information and large amounts of
data.
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In case of a fault, protection actions need to be taken through, for instance, a
status change of one or multiple CBs. In a similar situation, GOOSE messages
change from a cyclic mode to a burst mode to transmit timely information about
control and protection actions.

Therefore, the network traffic in IEC 61850 electrical substations has unique
features as it includes large multicast traffic that is periodic in general but which
also includes bursty sequences. Such characteristics can be challenging to analyze
using conventional models. In the following subsections, an analysis of the network
traffic in IEC 61850 electrical substations is presented.

A set of relevant characteristics is established based on [33]. Floyd and Paxson
introduce a method to ”search for invariants“ to tackle the difficulties in modeling
Internet traffic [33]. The term invariant is used to refer to a behavior that was
empirically proven to hold in a very wide range of environments. In the present
work, three invariants that are the most relevant to characterize the process traffic
are considered.

3.1.1 Diurnal Patterns
The variation of activity, for instance depending on specific times, is one of the
properties that can be observed in the network traffic. This variation does not only
depend on human activity but can also result from specific network protocols, for
instance, some used in the industrial field [33] or from automated operations. Indeed,
correlation with the network activity is not always human-initiated. Inspection of
the number of active connections, packets per second and bytes per second and other
network telemetry measures might reveal diurnal patterns in the network activity.
Thus, the analysis of diurnal patterns can be conducted on different network metrics.
A relatively large dataset, of at least of one week or several days in the case of
electrical substations, shall be available to deduce the presence of diurnal patterns.

3.1.2 Distributional Considerations of the Data
Several works ([109], [103], [42] and [100]) characterize the data flow in electrical
substations using several models depending on the type of the messages. Depending on
the type of the transmitted information, seven categories of messages are introduced
in IEC 61850 [51], namely fast message, medium speed message,low speed message,
raw data message, file transfer function, time synchronization message, and access
control command . The classification of the messages is mainly based on the type
of information broadcasted through the substation including information such as
the protection commands or the measurement values from physical devices. Fast
or medium speed messages have different features from, for instance, file transfer
function or access control command messages. However, from the perspective of
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a data flow characteristics in the time domain, they can be split in three different
categories namely, cyclic, stochastic and burst data [109]. For instance, in [109], a
Pareto distribution for analysis of burst data flow was suggested, whereas in [100],
a Weibull distribution was adopted instead. Indeed, Ustun et al. [100] claim that
a Weibull distribution fits better the increasing retransmission scheme of bursty
GOOSE messages. Network traffic in general Internet can be represented by heavy-
tail distributions such as Ethernet bursts and FTP activity [101].

In the previously mentioned works [100, 101, 109], the distributions in general
internet traffic or only specific message types in substations are considered. Modeling
the network traffic in IEC 61850 substations is a challenging task due to the various
operation modes including normal and burst data flows in the case of faults. Studies
focusing on describing the network traffic ([32], [103] and [42]) show that the network
traffic in electrical substations exhibits short-range and long-range dependencies.
Some research works ([32], [103] and [42]) have been developed to model the substation
communication network. Considerations of the self-similarity of the network traffic
in IEC 61850 was already investigated in only few of the previously mentioned works
[42, 103] and similar conclusions were shown in Section 3.1.3 with data presented in
our case studies. In the next Section 3.1.3, the possible presence of self-similarity
features in the process traffic of IEC 61850 electrical substations will be studied.

3.1.3 Self-Similarity
The self-similarity can be seen, in practice, by the presence of extended periods where
the traffic is larger than the sample mean at different time scales, for instance for
the number of bytes per second. The degree of self-similarity in the network traffic
is commonly determined by using the Hurst parameter [49].

These periods of “spikes” in the traffic are referred to as “burstiness” [65]. Let
{x [𝑘]}, 𝑘 = 0,...,𝑁 − 1 be a time-series of size 𝑁 . If the time series x is self-similar,
the following holds [3]

x [𝑘] 𝑑= 𝑚1−𝐻x (𝑚)[𝑘] for all 𝑚 ∈ N (3.1)

where 𝑑= is an equality in the sense of finite dimensional distribution, 𝐻 is the
Hurst parameter and x (𝑚) is the aggregated sequence by 𝑚 of x:

x (𝑚)[𝑘] = 1/𝑚
𝑗𝑚∑︁

𝑘=(𝑗−1)𝑚+1

x [𝑘], 𝑗 = 1,2,3 . . . (3.2)

Several tests have been commonly used in the literature ([33, 65]) to show self-
similarity of the data. Two of the most known visual methods to show self-similarity
are the R/S analysis and the variance-time plot [73].
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For the next description of both tests, let x [𝑘] be the throughput at time 𝑘 with
𝑁 being the size of the time series.

Variance time plots
The first test to verify the self-similarity of a time- series is the variance-time plot.
The presence of self-similarity can be checked by observing the variance function of
x (𝑚)[𝑘] defined in (3.2) versus the aggregation level 𝑚.

The variance 𝜎2 of the aggregated process defined in (3.2) is calculated as follows:

𝜎2 = 𝑆2(x(𝑚)) = 1
(𝑁/𝑚)

𝑁/𝑚∑︁
𝑘=1

(︀
x (𝑚)[𝑘] − x̄ (𝑚))︀2 (3.3)

The variance plot shown in Figure 3.1, is defined by plotting the variance of the
aggregated process x (𝑚)[𝑘], versus different aggregation levels in log-log scale.
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Figure 3.1: Variance time diagram

The Hurst parameter 𝐻 can be obtained from the previous plot with a line fitted
to the curve, representing 𝛽 using least-squares with the relation 𝐻 = 1 + 𝛽/2 which
gives a value of �̂� = 0.87.

Rescaled adjusted range (R/S)
The R/S method is based on first dividing the time-series into non-overlapping
intervals of length 𝐿. The partial sum for each of the intervals is then calculated.
Let �̂� or x̄ be the sample mean of the time series x with starting point 𝑘𝑖 and size 𝐿,

�̂�[𝑘𝑖, 𝐿] = x̄ [𝑘𝑖,𝐿] = 1
𝐿

𝑘𝑖+𝐿∑︁
𝑘=𝑘𝑖

x [𝑘] (3.4)
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and �̂�[𝑘𝑖, 𝐿] be the sample standard deviation of a the time series x with starting
point 𝑘𝑖 and end point 𝑘𝑛𝑖

= 𝑘𝑖 + 𝐿

𝑆[𝑘𝑖, 𝐿] = �̂�𝑖 =
(︃

1
𝐿

𝐿−1∑︁
𝑘=𝑘𝑖

(x [𝑘] − x̄ [𝑘𝑖, 𝐿])2

)︃1/2

(3.5)

The partial sum 𝑊𝑖,𝑢 is defined as follows:

𝑊 [𝑘𝑖, 𝐿, 𝑢] =
𝑘𝑖+𝑢∑︁
𝑘=𝑘𝑖

(x [𝑘] − x̄ [𝑘𝑖, 𝐿]) (3.6)

where 𝑢 a running index of 𝑘 within the interval [0, 𝐿].
The rescaled adjusted range (R/S) statistics is defined as the quotient of the

difference between the maximum and the minimum of the partial sum and the
standard deviation of the considered time series and is calculated as follows [71]:

𝑅/𝑆[𝑘𝑖, 𝐿] = 1/𝑆[𝑘𝑖, 𝐿]
[︂

max
0≤𝑢≤𝐿

𝑊 [𝑘𝑖, 𝐿, 𝑢] − min
0≤𝑢≤𝐿

𝑊 [𝑘𝑖, 𝐿, 𝑢]
]︂

(3.7)

Figure 3.2 represents the log10(𝑅/𝑆) versus log10(𝐿) for the considered dataset. The
slope of the regression with the least-squares method of log10(𝑅/𝑆) versus log10(𝐿)
represents the estimate of the Hurst parameter �̂� which is equal to 0.58 for the
dataset described in Section 6.2.1.
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Figure 3.2: RS diagram

According to both tests, results show that the estimate of the Hurst parameter �̂�
of the considered dataset lies between 0.5 and 1 which indicates the self-similarity
of the considered process. The time series representing the GOOSE network traffic
in electrical substation has a statistical Long-Range Dependency (LRD) between
the current value and values in different times of the series. One of the most used
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models to describe long-memory characteristics is the Auto-Regressive Fractionally
Integrated Moving Average (ARFIMA) model [9].

3.2 Mathematical ARFIMA Modeling of the Traffic in IEC
61850 Substations

After discussing the unique features of the IEC 61850 process network traffic, we
select an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model
to describe the GOOSE network traffic. In the following, explanations of concepts
necessary to describe a suitable model for the process network traffic as well as an
adapted Anomaly Detection (AD) for DoS attacks in GOOSE communication is
presented.

3.2.1 ARFIMA Model
Considering the particular characteristics of the IEC 61850 GOOSE traffic presented
in Section 3.1, an ARFIMA model is, thus, suitable to describe the substation
communication network. Signals containing spikes that exhibit properties of self-
similarity and LRD cannot be processed by conventional time series models such as
AR or ARMA.

An ARFIMA model consists of an Auto-Regressive (AR) part, a Moving Average
(MA) filter, and an integration term (I) which is employed for differencing the raw
measurements selected for modeling the IEC 61850 GOOSE traffic. (ARFIMA model
is also referred to as Fractional ARIMA (FARIMA) model in some references [103]
and [42]).

The ARFIMA model is a generalization of the integer order models being the
autoregressive integral moving average (ARIMA) and autoregressive moving average
(ARMA) model – two of the most known filters of these models.

The use of fractional difference operator rather than an integer one as in ARIMA
models, was suggested by Hosking et al. [46] in the context of hydrology in order to
represent the LRD.

An ARFIMA process is expressed as following:

𝜑(𝐵)(1 −𝐵)𝑑x [𝑘] = 𝜃(𝐵)e[𝑘], e[𝑘] ∼ 𝒩 (0,𝜎2
e ) (3.8)

where x [𝑘] is the GOOSE traffic in the SCN, 𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵
2 − ...− 𝜑𝑝𝐵

𝑝

is the autoregressive average polynomial and 𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵
2 + ... + 𝜃𝑞𝐵

𝑞

is the moving average polynomial. Thereby, 𝑝 is the auto-regressive order, 𝑞 is the
moving average order and 𝑑 is the level of differencing. The term e[𝑘] is a sequence of
independent and identically distributed (i.i.d) random variables, representing noise
(error in data), i.e., white noise with variance 𝜎2

e .
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(1 − 𝐵)𝑙 is called the difference operator with 𝑙 being the delay order of the
back-shift operator and 𝐵 being the backshift operator and defined by

𝐵𝑙x [𝑘] = x [𝑘 − 𝑙] (3.9)

Contrarily to the ARMA or ARIMA model that can only represent the short-range
dependency, the ARFIMA model can capture the LRD as the parameter 𝑑 is no
longer restricted to integer values [46]. Accordingly, the difference operator can be
expressed using a binomial expansion of the real number 𝑑 with the Gamma function:

(1 −𝐵)𝑑 =
∞∑︁

𝑘=0

(︃
𝑑

𝑘

)︃
(−𝐵)𝑘 (3.10a)

=
∞∑︁

𝑘=0

𝛤 (𝑑+ 1)
𝛤 (𝑘 + 1)𝛤 (𝑑+ 1 − 𝑘)(−𝐵)𝑘 (3.10b)

where 𝛤 (.) represents the gamma (generalized factorial) function that is defined as:

𝛤 (x) =
� ∞

0
𝑒−𝑡𝑡x−1𝑑𝑡 (3.11)

Indeed, after computing the Hurst parameter 𝐻 and concluding the value of 𝑑 such
as 𝑑 = 𝐻 − 0.5 [46].

In the following, general approaches for the parameter estimation and the model
prediction will be discussed.

3.2.2 General Model Predictor
In a good model, the prediction errors shall be small [35] which indicates that the
model can describe well the data. The general prediction model is expressed as a
function of past data and parameters as:

x̂ [𝑘] = 𝑓(x [𝑘 − 1],�̂�) (3.12)

where x̂ [𝑘] depends on measurement of x up to 𝑘−1 and �̂�, the estimated parameter
vector. The prediction errors are thus expressed as follows:

𝜀[𝑘] = x [𝑘] − x̂ [𝑘] (3.13)

where 𝜀[𝑘] is the model residual at time 𝑘.
Estimation methods attempt to compute the parameter vector 𝛩 that minimizes

a cost function based on 𝜀[𝑘] in (3.13).
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The ARFIMA model was described in Section 3.2.1. According to Haslett and
Raftery [43] an approximate one-step ARFIMA predictor of x [𝑘] is given by

x̂ [𝑘] = 𝜑(𝐵)𝜃−1(𝐵)
𝑘−1∑︁
𝑗=1

𝛷𝑘𝑗x [𝑘 − 𝑗] (3.14)

with

𝛷𝑘𝑗 = −
(︃
𝑘

𝑗

)︃
𝛤 (𝑗 − 𝑑)𝛤 (𝑘 − 𝑑− 𝑗 + 1)

𝛤 (−𝑑)𝛤 (𝑘 − 𝑑+ 1) , for 𝑗 = 1,...,𝐾 (3.15)

where 𝛤 (.) represents the gamma (generalized factorial) function that is defined
in (3.11).

The prediction errors 𝜀[𝑘] can be derived by replacing (3.14) in (3.13). Then, by
maximizing (3.16), an estimation of the parameter vector 𝜃 is obtained.

3.2.3 Maximum Likelihood Estimation
The Maximum Likelihood Estimator (MLE) is one of the most popular approaches
to obtain a practical estimator that has an optimal performance when large enough
data records are used [58]. The MLE is defined as the value of 𝛩 that maximizes
the likelihood function 𝑝(x ; 𝛩). The MLE is asymptotically efficient for large data
records which defines the nature of the approximation obtained using the estimator.

The parameter vector can be estimated by maximizing the likelihood function [96]:

𝑝(x ; 𝛩) = 1
(2𝜋𝜎2)𝑁

2 [det𝛬]
exp

[︃
−1

2

𝑁−1∑︁
𝑘=0

𝜀[𝑘]𝑇𝛬−1𝜀[𝑘]
]︃

(3.16)

where 𝛬 is the covariance matrix of the noise, 𝛩 represents the model parameters and
𝜎2 is the noise variance. In (3.16), 𝑁 represents the size of the estimation dataset.

As a first example, the computation of the MLE of a parameter vector of a signal
consisting in a signal embedded in White Gaussian Noise (WGN) is considered.

Explanatory example: signal embedded in WGN
Let us consider the data

x [𝑘] = 𝐴+ e[𝑘], 𝑘 = 0,1,...,𝑁 − 1 (3.17)
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where 𝐴 is a constant and e[𝑘] is WGN with variance 𝜎2. The vector parameter
𝛩 = [𝐴 𝜎2]𝑇 is to be estimated. The Probability Density Function (PDF) is defined
as follows

𝑝(x; 𝛩) = 1
(2𝜋𝜎2)𝑁

2
exp

[︃
− 1

2𝜎2

𝑁−1∑︁
𝑘=0

(x [𝑘] − 𝐴)2

]︃
(3.18)

Taking the first derivatives of Equation (3.18) yields

𝜕 ln 𝑝(x; 𝛩)
𝜕𝐴

= 1
𝜎2

𝑁−1∑︁
𝑘=0

(x [𝑘] − 𝐴) (3.19a)

𝜕 ln 𝑝(x; 𝛩)
𝜕𝜎2 = − 𝑁

2𝜎2 + 1
𝜎4

𝑁−1∑︁
𝑘=0

(x [𝑘] − 𝐴)2 (3.19b)

When solving for 𝐴 from Equation (3.19a), the following equality holds:

𝐴 = x̄ = 1
𝑁

𝑁−1∑︁
𝑘=0

x [𝑘] (3.20)

When solving for 𝐴 from Equation (3.19b) and using Equation (3.20):

�̂�2 = 1
𝑁

𝑁−1∑︁
𝑘=0

(x [𝑘] − x̄)2 (3.21)

The MLE is obtained as follows:

�̂� =

⎡⎣ x̄

1
𝑁

𝑁−1∑︀
𝑘=0

(x [𝑘] − x̄)2

⎤⎦ (3.22)

The MLE will be further applied for parameter estimation as part the proposed
AD method. In the following, the model used for the description of the substation
network traffic is presented.

The MLE of an ARFIMA model can be estimated numerically. For the computa-
tions of the ARFIMA MLE, approximations have been developed such as [43] and
[34]. An overview of different likelihood-based methods for estimation of long-memory
time series models was presented in [16]. Since the statistical hypothesis testing
considered in this work depends on the MLE of the ARFIMA model, a numerical
approximation will be used.
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3.3 State Space Modeling
Using state space methods for long-memory fractional integration modeling has been
presented in several works ([15, 37, 85]). In the pioneer research of [15], the modeling
of an LRD process is developed in which a univariate Auto-Regressive Fractionally
Integrated Moving Average (ARFIMA) model was considered. The work in [37]
evaluated the truncation lag 𝑚 of the state space representation for ARFIMA models
and validated it in different case studies including structural breaks and missing
values.

3.3.1 State Space Representation of ARFIMA
Contrarily to standard ARIMA models, there are no finite-dimensional state space
representations of ARFIMA models with long-memory parameter 𝑑 as demonstrated
by Chan and Palma in [15].

For the sake of generality, a multivariate case of the time series x[𝑘] is considered
in the present Section 3.3. The general representation of a state space model includes
two equations. The first equation, namely the transition equation, defines the
evolution of the state vector 𝛼[𝑘] and is described by the (3.23):

𝛼[𝑘 + 1] = A𝛼[𝑘] + H𝜂[𝑘], 𝜂[𝑘] ∼ 𝒩 (0,Q) (3.23)

where A ∈ R𝑛×𝑛 is the state transition matrix and H ∈ R𝑛×𝑔 is a selection matrix.
𝜂[𝑘] is a disturbance term with zero mean and covariance matrix Q. The initial
state 𝛼[0] is assumed to be Gaussian with known mean 𝜇0 and variance 𝛴0.

The second one, namely the measurement equation, describes the relation between
the time series x ∈ R and the state vector 𝛼[𝑘] and is defined as follows (see [37]):

x [𝑘] = C𝛼[𝑘] + De[𝑘], e[𝑘] ∼ 𝒩 (0,𝜎2
e) (3.24)

where C ∈ R1×𝑛 is the output matrix and 𝛼[𝑘] ∈ R𝑛 is the state vector. D ∈ R is
a selection term.

According to [15], the previously presented state space system can be written in
two different ways, namely, 𝐴𝑅(∞) and 𝑀𝐴(∞) for long-memory models. Choosing
a large enough truncation lag 𝑚 allows the evaluation of an approximation of the
likelihood function. Thus, 𝐴𝑅(𝑚) and 𝑀𝐴(𝑚) models can be presented in state
space form and the states can be estimated using Kalman Filter (KF) recursions
[37]. The multivariate representation of AR and MA are called VAR and VMA,



3.3.1 State Space Representation of ARFIMA 45

respectively [50]. For sake of simplicity, the univariate case is considered and the
𝑆𝑆-𝐴𝑅 or 𝐴𝑅(𝑚) approximation can be presented as follows:

D = 0, (3.25a)
C = (1,0,...,0), (3.25b)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑎2 · · · 𝑎𝑚

1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.25c)

H = (1 0 · · · 0)𝑇 (3.25d)

where the parameters 𝑎𝑖 for 𝑗 = 1,...,𝑚 are computed according to [37]. Thus,
expressing an ARFIMA (𝑝,𝑑,𝑞) model using a truncated infinite AR expansion yields

x [𝑘] =
𝑚∑︁

𝑗=1
𝑎𝑗x [𝑘 − 𝑗] + e[𝑘] (3.26)

A second way to write the state space of a long-memory model is using an 𝑀𝐴(𝑚)
approximation defined as follows:

C = (1,0,...,0) (3.27a)
D = 0, (3.27b)

A =
[︃

0 𝐼𝑚

0 0

]︃
, (3.27c)

H = (1 𝜓1 𝜓2 · · ·𝜓𝑚)𝑇 (3.27d)

with 𝜓𝑗 being the parameters computed according to [46]. Thus, the resulting
ARFIMA (𝑝,𝑑,𝑞) model using a truncated infinite MA expansion is expressed as
follows:

x [𝑘] =
𝑚∑︁

𝑗=0
𝜓𝑗e[𝑘] (3.28)

Parametric approaches for calculating the maximum likelihood estimation of
stationary generalized long-memory models are generally computationally demanding.
A Bayesian sampling algorithm for a bivariate process including one stationary long-
memory component was proposed in [48]. To compute the maximum likelihood
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estimator, the authors in [75] propose a sampling schema for stationary generalized
long-memory models with one or more latent ARFIMA components. They showed
the increasing numerical computation when more than two latent long-memory
factors are present. In the following paragraphs, an SS-AR model to approximate
the ARFIMA model is considered.

3.3.2 Estimation of State Space Models
In order to have consistent estimates of state-space models for long-range fractionally
integrated systems, subspace methods were shown to be good candidates [6]. Subspace
methods offers several attractive features. Their concept can be described as a model
reduction applied to an initial high-order vector autoregression estimate. Their
conceptual simplicity allows an easy handling of problems of missing values or
demeaning and de-trending [6]. The efficiency of their numerical implementation is
also, a considerable asset. However, the representation introduced in (3.25) requires
alternative estimation methods due to the special form of the state space matrices.
The expectation maximization (EM) algorithm has be shown to be a robust tool for
parameter estimation of models as in (3.25).

The conditional mean 𝜇 and variance 𝛴 of the state vector are defined as follows:

𝛼[𝑘|𝑘 − 1] = 𝐸(𝛼[𝑘]|x [𝑘 − 1]) = 𝜇, (3.29a)
P[𝑘|𝑘 − 1] = 𝑉 𝑎𝑟(𝛼[𝑘]|x [𝑘 − 1]) = 𝛴 (3.29b)

An iterative maximum likelihood estimator of the parameters of the state space
model is derived from the following log-likelihood [23]:

log𝐿 = −1
2 log |𝛴| − 1

2(𝛼 − 𝜇)T𝛴−1(𝛼 − 𝜇)

− 𝑁

2 log |Q| − 1
2

𝑁∑︁
𝑘=1

(𝛼[𝑘] − A𝛼[𝑘 − 1])TQ−1(𝛼[𝑘] − A𝛼[𝑘 − 1])

− 𝑁

2 log |R| − 1
2

𝑁∑︁
𝑘=1

(x[𝑘] − C𝛼[𝑘])TR−1(x[𝑘] − C𝛼[𝑘])

(3.30)

where R is the variance of the sequence defined by x [𝑘] − C𝛼[𝑘]. Only the estimated
log likelihood is accessible since some hidden states are unknown and the observations
x [0], . . . ,x [𝑁 − 1] are accessible.
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𝐺(𝛩) =𝐸(log𝐿|x [1], . . . ,x [𝑁 ]|)

= − 1
2 log |𝛴| − 1

2 Tr
[︀
𝛴−1(P[0|𝑁 ] + (𝛼[0|𝑁 ] − 𝜇)(𝛼[0|𝑁 ] − 𝜇)T)

]︀
− 𝑁

2 log |Q| − 1
2 Tr

[︀
Q−1(F − EAT − AET + ADAT)

]︀
− 𝑁

2 log |R|

− 1
2 Tr

[︃
R−1

𝑁∑︁
𝑘=1

(x [𝑘] − C𝛼[𝑘|𝑁 ])(x [𝑘] − C𝛼[𝑘|𝑁 ])TCP[𝑘|𝑁 ]CT

]︃ (3.31)

The maximization of 𝐺(𝛩) is obtained by setting its derivative to zero following
those updating rules:

A𝑟+1 = ED−1 (3.32a)

Q𝑟+1 = 1
𝑁

(F − ED−1ET) (3.32b)

R𝑟+1 = 1
𝑁

𝑁∑︁
𝑘=1

(︀
(x [𝑘] − C𝛼[𝑘|𝑁 ])(x [𝑘] − C𝛼[𝑘|𝑁 ])T + CP[𝑘|𝑁 ]CT)︀ (3.32c)

where,

D =
𝑁∑︁

𝑘=1
(P[𝑘 − 1|𝑁 ] + 𝛼[𝑘 − 1|𝑁 ]𝛼T[𝑘 − 1|𝑁 ]) (3.33a)

E =
𝑁∑︁

𝑘=1
(P[𝑘|𝑁 ] + 𝛼[𝑘|𝑁 ]𝛼T[𝑘 − 1|𝑁 ]) (3.33b)

F =
𝑁∑︁

𝑘=1
(P[𝑘|𝑁 ] + 𝛼[𝑘|𝑁 ]𝛼T[𝑘|𝑁 ]) (3.33c)

The quantities required in (3.33) are computed using the Kalman smoother as in
(3.38). At each iteration, the rules in (3.32) are computed using (3.33).

Convergence properties of the Expectation Maximization (EM) algorithm
In the following, an introductory example to analyze the convergence properties of
the Expectation Maximization (EM) algorithm is considered.

Consider an example of an ARFIMA(1,d,1) model which is approximated using a
state space (SS-AR) model whose parameters are estimated with the EM algorithm.
A total of 25 experiments is performed on the ARFIMA model.

The log-likelihood function is maximized in the estimation algorithm and the
results are shown in Figure 3.3 for each experiment.
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Figure 3.3: Maximization of the log-likelihood function

The EM algorithm can guarantee for the present case study convergence of the
log-likelihood function after relatively few iterations. The estimated value of the
model parameters is presented in the following.

D = 0, (3.34a)
C = (1 0 . . . 0), (3.34b)

A =

⎛⎜⎝0.33 0.21 0.24
1 0 0
0 1 0

⎞⎟⎠ , (3.34c)

R = 1.02, (3.34d)

Q =

⎛⎜⎝0.47 0 0
0 1.73
0 0 0.16

⎞⎟⎠ (3.34e)

H = (1 0 0)𝑇 (3.34f)

In the discussion Section 3.4, the parameters of the A matrix are further analyzed
and discussed.

3.3.3 Kalman Filter (KF)
The problem of finding an optimal solution of the state estimation for a discrete-time
stochastic linear dynamic system can be solved using the Kalman filter [24, 37].
The KF [24] is used to build the one-step-ahead predictor of x[𝑘] as it produces the
minimum mean square estimator of the state space vector and the mean square error
matrix under the assumption of White Gaussian Noise (WGN). The likelihood can be
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evaluated according to the prediction error decomposition due to the independence
of the one-step-ahead prediction errors [37].

The input to the KF algorithm are the observations and the system matrices
and it returns the innovations or the one-step-ahead prediction errors 𝜈[𝑘] with the
variance R, the one-step-ahead predictor of the states as well as their conditional
covariance matrix.

The recursive expressions for 𝑘 = 1,...,𝑇 of KF equations is the following:

𝛼[𝑘 + 1|𝑘] = A𝛼[𝑘|𝑘 − 1] + K[𝑘]𝜈[𝑘] (3.35a)
P[𝑘 + 1|𝑘] = AP[𝑘|𝑘 − 1](A − K[𝑘]C)T + HQHT (3.35b)

The innovation process 𝜈 and the Kalman filter gain K are defined as follows:

The innovation process: 𝜈[𝑘] = x [𝑘] − C𝛼[𝑘|𝑘 − 1] (3.36)

The Kalman gain: K[𝑘] = AP[𝑘|𝑘− 1]CT(CP[𝑘|𝑘− 1]CT + RDDT)−1 (3.37)

where Q ∈ R𝑛×𝑛 is the covariance matrix of the states or process noise and R ∈ R is
the variance of the measurement or signal noise. The estimation of 𝛼[𝑘 + 1] given
x [𝑘], x [𝑘 − 1]... is expressed by P[𝑘 + 1]

The Kalman smoother is proposed for state estimation based on the values of the
signal x [𝑘]. The equations for the Kalman smoother are expressed as following for
𝑘 = 𝑛, 𝑛− 1, . . . ,1:

J[𝑘 − 1] = P[𝑘 − 1|𝑘 − 1]AT(P[𝑘|𝑘 − 1])−1 (3.38a)
𝛼[𝑘 − 1|𝑛] = 𝛼[𝑘 − 1|𝑘 − 1] + J[𝑘 − 1](𝛼[𝑘|𝑛] − A𝛼[𝑘 − 1|𝑘 − 1]) (3.38b)
P[𝑘 − 1|𝑛] = P[𝑘 − 1|𝑘 − 1] + J[𝑘 − 1](P[𝑘|𝑛] − P[𝑘|𝑘 − 1])J[𝑘 − 1]T (3.38c)

The initial values for the smoother are the final estimates of the filter.

3.3.4 Multi-step ahead Predictor for State Space Models
Depending on the the length of the data and at the step-ahead number of the
estimator, several predictors can be defined [36]. The vector of one step-ahead
predictor 𝛼[𝑘 + 1] or Kalman filter estimators is defined based on (3.24) and (3.23).
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The state vector at 𝑘 + 𝑗 can be written as follows [36]:

𝛼[𝑘 + 𝑗] = A𝑗−1𝛼[𝑘 + 1] + 𝑤[𝑘] (3.39a)
𝑤[𝑘] = A𝑗−1H𝜂[𝑘] + A𝑗−2H𝜂[𝑘 + 1] + · · · + H𝜂[𝑘 + 𝑗 − 1] (3.39b)

The general expression of the j-step ahead forecast with 𝑗 > 1 of the state vector
�̂�[𝑘 + 𝑗|𝑘] is expressed from the conditional expectation of (3.39)

�̂�[𝑘 + 𝑗|𝑘] = A𝑗−1�̂�[𝑘 + 1|𝑘] (3.40)

The error of the forecast of the state vector can be calculated as follows:

𝛼[𝑘 + 𝑗] − �̂�[𝑘 + 𝑗|𝑘] = 𝛼[𝑘 + 𝑗] − A𝑗�̂�[𝑘|𝑘] (3.41)

The previously introduced equation (3.40) can be used to describe the 𝑗-step ahead
forecasts of the observation vector x [𝑘 + 𝑗].

x̂[𝑘 + 𝑗|𝑘] = CA𝑗�̂�[𝑘|𝑘] (3.42)

The error of the forecast calculated in (3.42) is:

x[𝑘 + 𝑗] − x̂[𝑘 + 𝑗|𝑘] = x[𝑘 + 𝑗] − CA𝑗�̂�[𝑘|𝑘] (3.43)

3.4 Modeling Process Network Traffic using SS-AR
Considering the different characteristics of the network traffic analyzed in the previ-
ous sections, an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA)
model can be used to describe the Long-Range Dependency (LRD) in network commu-
nication of IEC 61850 substations [25]. Review of the theoretical and mathematical
features of an ARFIMA model shows that using a state space representation of an
ARFIMA model is adapted and offers several advantages as explained in Section 3.3.

For the modeling of the network traffic, a state space AR (SS-AR) model is
selected to describe the communication. The state space modeling of long-range
dependent data, that was first considered as an ARFIMA model, is achieved through
a state-space representation reported in [15].

In the present section, modeling of the network traffic in an IEC 61850 substation
using an SS-AR model is performed. The modeling process explained in the previous
section (Section 3.3) is applied to the second use case described in Section 6.3.1.
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Results of the obtained model are discussed and validation of the modeling accuracy
is achieved using well-established criteria.

Given the model order 𝑛, the parameter vector 𝛩 that includes A,Q and R is
estimated from the univariate signal xest.
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Figure 3.4: Estimation and validation datasets

The datasets xest and xval, shown in Figure 3.4 are derived from the network traffic
presented in the 66/11kV testbed [7].

The model predictions are computed using a validation dataset xval. The obtained
values are compared with the signal measurements for model validation. The
validation of the model through this last step is necessary to evaluate its accuracy. If
after the validation step the model is accepted, it can be further used for prediction
and detection. Otherwise, the estimation step shall be repeated changing user-defined
parameters until satisfactory results about the estimated model are obtained.
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Figure 3.5: Substation network traffic used for estimation (depicted in black) and
SS-AR model prediction (depicted in red)

The previously described modeling procedure is applied to one of the use cases
presented in Section 6.3.1. It represents 10 mins of network traffic in bytes per second
(bps) of an IEC 61850 substation.
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As an example, the estimated parameters for the normal use case without variable
load is presented. The definition of the parameters of the state space-AR model are
introduced in (3.24), (3.44) and (3.23).

The estimated parameters for the SS-AR model of order 𝑛 = 10 that is obtained
empirically, are the following:

D = 0, (3.44a)
C = (1 0 . . . 0), (3.44b)

A =

⎛⎜⎜⎜⎝
−0.45 −0.01 0.005 −0.01 0.017 −0.005 −0.002 0.015 0.007 −0.008

1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎠,
(3.44c)

R = 0.3464, (3.44d)
Q = diag(0.49, 1.13, 1.48, 1.82, 0.91, 0.60, 0.16, 0.60, 0.77, 0.63), (3.44e)
H = (1 0 . . . 0)T (3.44f)

Evaluation of the modeling of the substation traffic
The model is evaluated using the validation dataset xval presented in Figure 3.4.

Figure 3.5 shows the real and the estimated signals, xval[𝑘] and x̂val[𝑘] respectively.
The output of the SS-AR model for the validation GOOSE traffic, x̂val[𝑘], in red, and
the dataset used for comparison xval[𝑘], in black, are shown in Figure 3.5.

To further assess the model performance, the goodness-of-fit is used as evaluation
criterion which is defined as follows:

fit = (1 − NRMSE (xval[𝑘],x̂val[𝑘])) · 100 % (3.45)

where a perfect fit is 100 %. Thereby the Normalized Root Mean Square Error
(NRMSE) is defined by:

NRMSE =

⎯⎸⎸⎸⎸⎸⎸⎷
𝑁∑︀

𝑘=1
(xval[𝑘] − x̂val[𝑘])2

𝑁∑︀
𝑘=1

(xval[𝑘] − x̄val[𝑘])2
(3.46)

where x̄val[𝑘] = 1
𝑁

𝑁∑︀
𝑘=1

xval[𝑘] is the sample mean of the validation dataset, xval[𝑘] is

the measured substation network traffic at discrete time 𝑘 and x̂val[𝑘] is the model
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prediction. The fit of the data to the state space AR approximation of an ARFIMA
model as expressed in (3.45) yields 73.65 % which indicates that the chosen model
can describe well the time series.
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Figure 3.6: Auto-correlation of state-space model residuals

In addition to the model fit, an analysis of the residuals confirms the adequacy
of the chosen model. The residuals obtained in the validation step are computed
using the predictor of the model with the parameters of the SS-AR model and the
validation dataset x̂val.

The Auto-Correlation Function (ACF) of the residuals are computed and shown
in Figure 3.6. The ACF of 𝜀[𝑘] (see (3.13)) falls into the confidence level which
indicates that the residuals can be considered as WGN and confirms that the model
describes the GOOSE traffic data satisfactorily.

3.5 Discussion
In the present chapter, an analysis of the network traffic for the modeling the
communication in electrical substations is investigated. A mathematical ARFIMA
was first introduced to describe the Long-Range Dependency (LRD) of the traffic. A
more general representation based on state space (SS) modeling is thereafter adopted
to approximate the ARFIMA model.

Estimation and convergence properties of the SS-AR model regarding the log-
likelihood function are discussed. The model parameters of the example considered
in Section 3.3.2 are reported. In the following, the parameters of the A are analyzed.



54 3.5 Discussion

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

Iteration number

a
1
[n
]

Figure 3.7: Convergence of the first element 𝑎1[𝑛] of the A matrix in the SS-AR
model
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Figure 3.8: Convergence of the second element 𝑎2[𝑛] of the matrix A matrix in the
SS-AR model
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Figure 3.9: Convergence of the third element 𝑎3[𝑛] of the A matrix in the SS-AR
model

The different values of the estimated parameters 𝑎𝑖 of the matrix A of the obtained
SS-AR are shown respectively in Figure 3.7, Figure 3.8 and Figure 3.9. The parameter
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converge after some iterations for the same experiment. However, the parameter 𝑎2[𝑘]
ranges over a larger span of values in the first iterations in comparison with the other
parameters. The cost function in the expectation-maximization (EM) algorithm is
minimized for different combination of the parameters depicted in Figure 3.7 and
Figure 3.9. The convergence properties are similar to Figure 3.3. The expectation-
maximization algorithm can be adjusted by fixing the value of some parameters and
computing the remaining ones. Knowledge about the signal under analysis is, thus
required since the initial values of the parameters should be assigned based on the
experience of the user.





CHAPTER 4

An Extension of the Detection Problem to IEC 61850 Network
Traffic

List of Symbols
Notation Description

A The state transition matrix ∈ R𝑛×𝑛

C The measurement matrix ∈ R𝑔×𝑛

D A selection term for the measurement equation

𝑔 The CUSUM decision function

H A selection matrix for the state equation

Q A 𝑛× 𝑛 covariance matrix of the states or process noise

𝑠[𝑘] Log-likelihood ratio increment

x A stochastic time-series

𝛽 The signature of additive change on the estimates

𝛾 The threshold for the statistical detector

𝛤x Gain matrix for 𝛶x

𝛿 The signature of additive change on the states

𝜂[𝑘] A state disturbance vector ∈ R𝑔×1

𝜀 Model residuals

𝛩 The parameter vector
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Notation Description

𝛯𝛼 Gain matrix for 𝛶𝛼

𝜌 The signature of additive change on the innovations

𝜎𝑘 Variance matrix of the innovations

𝛶𝛼 Term to represent additive change in the states

𝛶x Term to represent additive change in the observations

Chapter 4 is mainly focused on formulating our detection problem as a statistical
hypothesis testing for anomaly detection. Hence, introduction and extension of
well-known techniques for our specific detection problem are presented. Setting the
foundations of the detection problem is necessary to formulate the attack detection
in IEC 61850 network traffic as a statistical hypothesis testing.

In fact, basics and extensions of well-known techniques for statistical anomaly
detection are investigated in Section 4.1.1 and Section 4.1.2. After establishing the
foundations for the basic statistical anomaly detection problem, the adaption of
detectors to the state space model introduced in Section 3 as a well-suited model to
describe the network traffic in IEC 61850 substations are described.

It is considered that anomalies affecting the communication traffic can be referred
to as changes from the normal behavior. In order to better specify the considered
attacks, different types of changes, namely additive and non-additive changes [5]
are introduced in Section 4.2. According to the type of change, the adaption of the
detectors used in our anomaly detection problem is presented. Discussion of the
particular case of modeling the DoS attacks is presented in Section 4.4 using state
space modeling adopted for IEC 61850 network traffic and the adequate formulation
of the type of change.

4.1 Introduction to the Detection Problem
4.1.1 Statistical Hypothesis Testing
The network traffic in electrical substations based on IEC 61850 exhibits long-range
dependency which can be described using models that account for those properties
such as the state space representation of an ARFIMA model introduced in Chapter 3.
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The problem of detecting attacks in the communication network traffic can be
formulated as a change point detection problem which can be stated using statistical
hypothesis related to the state of the system. The task to be addressed, is to decide
between acceptance or rejection of anomaly that are formulated using two competing
hypotheses. The hypothesis ℋ0, referred to as the null hypothesis, indicates absence
of anomaly. Furthermore, the hypothesis ℋ1 indicates presence of an anomaly. In
the most general situation, noise parameters such as variance or covariance matrix
are also assumed to be unknown and need to be computed within the detection
problem. This case is referred to as composite hypothesis testing [58].

To address the previously introduced problem, detectors are tools used to decide
between two competing hypothesis. To better explain the detection problem, an
example of a well-know detector, namely the Generalized Likelihood Ratio Test
(GLRT) detector will be adopted. The GLRT detector [72] decides for ℋ1 if

𝐿𝐺(𝑥) = 𝑝(x; 𝛩1,ℋ1)
𝑝(x; 𝛩0,ℋ0)

> 𝛾 (4.1)

The numerator and denominator in (4.1) represent the Probability Density Function
(PDF) under the hypotheses ℋ0 and ℋ1, expressed by 𝑝(x; 𝛩0,ℋ0) and 𝑝(x; 𝛩1,ℋ1),
respectively. 𝛾 is the threshold that should be chosen as a trade-off between the
Detection Rate (DR) and False Alarms (FAs). The term 𝛩 contains the different
model parameters.

Since the occurrence time of an anomaly is assumed to be unknown, the network
traffic measurements x [𝑘] should be analyzed sequentially for the computation of
(4.1). The problem as stated in (4.1) is solved by computing the PDF under each
hypothesis using different data windows. Some detectors such as the cumulative sum
(CUSUM) test [83] can be formulated recursively depending of the type of change
analyzed [5]. This will be further investigated in the next Section 4.1.2.

4.1.2 Introduction of Detectors
A commonly encountered problem in detection tasks is to locate an unknown abrupt
change in a system. To formally state this problem, decision rules are defined in
the form of statistical hypothesis testing as introduced in Section 4.1.1. Detectors
commonly used to distinguish between the two competing hypothesis are based on
likelihood ratio statistics. The cumulative sum (CUSUM) test proposed by [83] is
a very well- known detection test based on the probability density functions of the
system in the case of independent and identically distributed (i.i.d) random variables.
The CUSUM is the optimal solution to the detection problem that, given a fixed
false alarm rate, yields the smallest mean time delay [5, 83].
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The CUSUM algorithm, first presented in [83], is used as a convenient detector for
the problem presented in (4.1). The CUSUM decides for ℋ1 if

𝑔[𝑘] > 𝛾 (4.2)

The 𝛾 is a user-defined threshold and 𝑔[𝑘] is the decision function that is defined
depending on the analyzed case as follows:

𝑔[𝑘] = (𝑔[𝑘 − 1] + s[𝑘])+

where (𝑔[𝑘 − 1] + s[𝑘])+ = sup(0, 𝑔[𝑘 − 1] + s[𝑘])
(4.3)

The decision function is initialized as following 𝑔[𝑘] = 0 and reset each time the
condition (4.2) holds.

The log-likelihood ratio increment 𝑠[𝑘] is expressed in (4.4) according to [5]:

s[𝑘] = 1
2 ln �̂�

2
0
�̂�2

1
+ (𝜀0[𝑘])2

2�̂�2
0

− (𝜀1[𝑘])2

2�̂�2
1

with 𝜀𝑖[𝑘] = x𝑖[𝑘] − x̂𝑖[𝑘], 𝑖 = 0,1
(4.4)

𝜀𝑖[𝑘] and �̂�2
𝑖 are the residuals and sample variance at time 𝑘 for the 𝑖-th hypothesis.

The model output x̂𝑖[𝑘] is computed using (3.14). In our case and most of the
practical cases, the model parameters are unknown prior to the experiment, Maximum
Likelihood Estimator (MLE) estimates of the model are used instead.

It is worth noting that the developed algorithm is able to detect multiple anoma-
lies at unknown change times and assuming unknown noise parameters. This is
particularly relevant in attacks such as double strike DDOS attacks that exhibits
two consecutive pulses in the traffic intensity.

4.2 Types of Changes
To distinguish between the different types of changes, change point models can be
adopted. There are two main approaches when determining when the change can
occur namely Bayesian or non-Bayesian. Following the Bayesian approach, a change
point is considered to be a random variable where a prior distribution of the change is
assumed. Whereas for the non-Bayesian approach, the change point is not necessarily
assumed to be a random number. For example, the minimax is a non-Bayesian
approach for which Lorden formulated an optimization problem presented in [72].

Changes can be classified into two different categories namely additive and non-
additive changes. The different characteristics of each type of change will be intro-
duced in the present section. In Figure 4.1 and Figure 4.2, the qualitative difference
between an additive and a non-additive change point is depicted.
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Figure 4.1: Additive change in the mean of a WGN process
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Figure 4.2: Non-additive change in the model of a WGN process

On one hand, an additive change in a signal is related, for instance, only to a
change in the mean value of the signal and is represented for a step by a jump as
shown in Figure 4.1. On the other hand, a non-additive change can be intuitively
associated to a change, for instance, in the variance as depicted in Figure 4.2.

An example of change in the mean value of the sequence of observations is
represented in Figure 4.1. The process depicted in Figure 4.1 is zero-mean White
Gaussian Noise (WGN) before the change at 𝑘 = 1000 and from that instant, the
mean changes to 𝜇 = 1.5 and the Probability Density Function (PDF) remains
unchanged. In this case, the system dynamics remain the same.

Non-additive changes are also referred to, in the literature, as spectral changes.
In fact, they are more general as they can represent changes in the variance, in the
spectral characteristics and in the system dynamics. Non additive changes, including
changes in the variance and spectral changes, act in a non-linear way with respect to
the observations x [𝑘], as reported [5].
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An example of non-additive change is depicted in Figure 4.2 where the variance of
the WGN is 𝜎2 = 1 before the change and 𝜎2 = 1.5 after the change.

Different detectors should be derived for each type of non-aditive change. In fact,
non-additive changes introduce additional complexity in the detection process as the
log-likelihood ratio shall be modified.

For ease of understanding, additive and non-additive changes are only considered
separately. However, it is important to notice that the two types of changes can
occur simultaneously and particular considerations shall be taken into account in
this case.

4.2.1 Modeling of Changes in State Space Models
In the present section, additive changes in the state or observation equation of a
linear time invariant system of a state space model are presented.

This type of changes result, for instance, in changes in the mean of the time-series
x. Additive changes are modeled as follows:

x [𝑘] = C𝛼[𝑘] + De[𝑘] + 𝛤x𝛶x [𝑘,𝑘0], e[𝑘] ∼ 𝒩 (0,𝜎2
e) (4.5a)

𝛼[𝑘 + 1] = A𝛼[𝑘] + H𝜂[𝑘] + 𝛯𝛼𝛶𝛼[𝑘,𝑘0], 𝜂[𝑘] ∼ 𝒩 (0,Q) (4.5b)

The term A ∈ R𝑛×𝑛 is the state transition matrix, H ∈ R𝑛×𝑔 is a selection matrix
and 𝜂[𝑘] is a 𝑔× 1 disturbance vector. Q is a 𝑔× 𝑔 covariance matrix of 𝜂[𝑘] . 𝛯𝛼 is
a matrix of dimensions 𝑛× �̃� and 𝛶𝛼(𝑘,𝑘0) is the the dynamic profile of one of the
assumed changes of dimensions �̃�× 1.

Thereby, C ∈ R1×𝑛 is the measurement matrix and 𝛼[𝑘] ∈ R𝑛×1 is the state vector.
D ∈ R is a selection scalar and 𝜉[𝑘] ∈ R is the measurement error. R is the variance
of 𝜉[𝑘]. 𝛤x is a vector of dimensions 1×𝑟 and 𝛶x(𝑘,𝑘0) of dimensions 𝑟×1, represents
the the dynamic profile of the change in the states.

The form of the matrices 𝛶x(𝑘,𝑘0) and 𝛶𝛼(𝑘,𝑘0) depends on the type of change
being studied. The change time 𝑘0 is assumed to be unknown i.e. 𝛶 (𝑘,𝑘0) = 0 for
𝑘 < 𝑘0.

Additive changes are represented by different dynamic profiles observed in 𝛶x and
𝛶𝛼.

Consequently, an additive change at 𝑘 = 𝑘0, in form of a step signal, can be
expressed as follows:

𝛶 (𝑘,𝑘0) =
{︃

0 if 𝑘 < 𝑘0

1 if 𝑘 ≥ 𝑘0
(4.6)

It should be noted that other types of additive changes can be considered by using
appropriate functions for 𝛶x and 𝛶𝛼.
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Non-additive changes include change in the variance and spectral changes. The
changes in the variance result in a change in the covariance matrix Q and in the
variance R. The other class of non-additive changes that affect the dynamics of the
system are referred to as spectral changes and can be modeled by changes in the
transition matrix A as follows [5]:

A =
{︃

A0 if 𝑘 < 𝑡0

A1 if 𝑘 ≥ 𝑡0
(4.7)

To simplify the mathematical formulation and connection to the considered case
studies in the present work, there will be mainly focus on additive changes in the
following sections.

4.2.2 Estimation of State Space Models including Changes
For the detection of additive changes, an important fact to consider is that the effect
of such changes is reflected as a change in the mean on the residuals or innovations
[5].

The detectability depends on the actual change on the innovations. In fact, if the
change consists of a dynamic profile, the definition of the detectability is less obvious
than when the change is a step [5]. Since the detection presented in Section 4.1.2,
is based on the log likelihood it is essential to consider the innovations. Thus, the
investigation of the additive changes on the states and the observations is necessary.

For the detection of additive changes, Kalman Filter (KF) is used to express
the transformation from observations to innovations. The model of change can be
reflected in a specific profile of the innovations. In fact, it was demonstrated in
[5] that a step change in the signal results in a change with a dynamic profile in
the innovation. Additive changes introduce additional terms in the KF equations
presented in Section 3.3.2. The estimation of the model state with the additive
change using the KF is stated in the present section. The effect of the change
(𝛤x𝛶x ,𝛯𝛼𝛶𝛼) on the state, the state estimate and the innovation is defined as follows
[5]:

𝛼[𝑘] = 𝛼[𝑘] + 𝛿[𝑘,𝑘0] (4.8a)
�̂�[𝑘|𝑘] = �̂�0[𝑘|𝑘] + 𝛽[𝑘,𝑘0] (4.8b)

𝜈[𝑘] = 𝜈0[𝑘] + 𝜌[𝑘,𝑘0] (4.8c)

The index 0 in (4.8) refers to the unchanged state and estimate (3.24) and (3.23).
The terms 𝛿, 𝛽 and 𝜌 are functions representing the signature of additive change on
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the states, the estimates and the innovations. The previously mentioned functions
are computed recursively as follows

𝛿[𝑘,𝑘0] = A𝛿[𝑘 − 1,𝑘0] + 𝛤x𝛶x [𝑘 − 1,𝑘0] (4.9a)
𝛽[𝑘,𝑘0] = (I − K[𝑘]C)A𝛽[𝑘 − 1,𝑘0] + K[𝑘](C𝛿[𝑘,𝑘0] + 𝛯𝛼𝛶𝛼[𝑘,𝑘0])

= A𝛽[𝑘 − 1,𝑘0] + K[𝑘]𝜌[𝑘,𝑘0] (4.9b)
𝜌[𝑘,𝑘0] = C(𝛿[𝑘,𝑘0] − A𝛽[𝑘 − 1,𝑘0]) + 𝛯𝛼𝛶𝛼[𝑘,𝑘0] (4.9c)

with the initial conditions

𝛿[𝑘0,𝑘0] = 0 (4.10a)
𝛽[𝑘0 − 1,𝑘0] = 0 (4.10b)

The detailed derivation of the recursive equations and explicit formulas for the
dynamic profile of the signature of the change on the innovation is explained in [5].

4.3 Detectors for State Space Models
The detection problem is unchanged under the transformation from the observations
to the innovations [98]. Indeed, the effect of additive changes is observed in the
model innovation i.e. residuals. The innovations have different distributions before
and after a change. The innovations 𝜈[𝑘] resulting from the application of the KF
has the following distribution:

𝑝(𝜈[𝑘]; 𝛩) =
{︃

𝒩 (0,𝜎𝑘) if no change occurs
𝒩 (𝜌[𝑘,𝑘0],𝜎𝑘) after change

(4.11)

with 𝜎𝑘 is the covariance matrix of the innovations and 𝜌 is the signature of additive
change on the innovation when considering the KF reaching the steady-state, and is
defined in the following:

𝜌[𝑘,𝑘0] =
𝑘−𝑘0−1∑︁

𝑖=0

(︀
𝐶𝐴𝑖𝛤x𝛶x [𝑘 − 𝑖− 1,𝑘0]

)︀
−

𝑘−𝑘0−1∑︁
𝑖=0

(︀
𝐶𝐴𝑖𝐴𝛯𝛼𝛶𝛼[𝑘 − 𝑖− 1,𝑘0]

)︀
+ 𝛯𝛼𝛶𝛼[𝑘,𝑘0]

(4.12)
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The statistical detection problem of additive changes with unknown parameter
vector is presented as following:

𝑘𝑎𝑙𝑎𝑟𝑚 = min{𝑘 : 𝑔[𝑘] ≥ 𝛾}

𝑤𝑖𝑡ℎ 𝑔[𝑘] = max
1≤𝑗≤𝑘

𝑘 − 𝑗 + 1
2 ({𝜈}𝑗

𝑘=1)T𝜎−1
𝑘 {𝜈}𝑗

𝑘=1

(4.13)

For detection of non-additive changes (changes in variance and spectrum), the
generalized likelihood ratio (GLR) statistics were proposed in [5].

The innovations of the models before and after the change are necessary for the
detection of non-additive changes contrarily to the detection of additive changes
where only the innovation of the model before the change is required.

For demonstration purposes, let us consider the following the state-space model
[90].

𝛼[𝑘 + 1] = 0.9𝛼[𝑘] + 𝜂[𝑘] + 𝛯𝛼𝛶𝛼[𝑘,𝑘0] (4.14a)

x [𝑘] = 1
2𝛼[𝑘] + e[𝑘] + 𝛤x𝛶x [𝑘,𝑘0] (4.14b)

with,(︃
𝜂[𝑘]
𝜉[𝑘]

)︃
∼ 𝒩

(︃(︃
0
0

)︃
,

(︃
0.1 0
0 0.1

)︃)︃
(4.14c)

with the following definitions

𝛯𝛼 = 𝛤x = 𝑏 (4.15a)

𝛶𝛼[𝑘,𝑘0] = 𝛶x [𝑘,𝑘0] =
{︃

0 if 𝑘 < 𝑘0

1 if 𝑘 ≥ 𝑘0
(4.15b)

where 𝑏 is a scalar to indicate the magnitude of the change.
In Figure 4.3, the detection of an additive change in a white Gaussian noise using

the CUSUM test is depicted. The decision function 𝑔[𝑘] and the log-likelihood ratio
increment 𝑠[𝑘] are defined as in (4.3). The change was injected at 𝑘 = 500 and
detected at 𝑘𝑎𝑙𝑎𝑟𝑚 = 508 as depicted in the bottom subfigure in Figure 4.3.
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Figure 4.3: CUSUM detection of an additive change in WGN

4.4 Discussion
In the present chapter, basic concepts related to the detection problem are defined.
The developed anomaly detection problem is formulated as a statistical hypothesis test
with an adapted detector. In fact, change point detection algorithms using statistical
tests have been gaining increasing interest within the research community since
raising concerns regarding Cyber-Physical Security (CPS) of critical and industrial
infrastructures.

As explained previously in Section 4.3, the CUSUM test was chosen, for the
particular case of the off-line detection, as a suitable detector for the considered
changes in the network traffic. In fact, the CUSUM statistical test, one of the
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most widely used approaches, offer several advantages. Besides representing the
optimal solution in case of i.i.d variables, see [79] for the minimax criterion developed
by Lorden [72], it has a good tradeoff between the detection performance and the
detection delay. Contrarily to other approaches such as neural networks, detectors
based on sequential test account explicitly for the time.

Introduction of different changes in the network traffic is analyzed and modeled as
state space representation. Thus, the detection problem is extended according to
the type of changes being additive and non-additive. In the present work, detection
of DoS attacks resulting for a GOOSE poisoning are the main focus. Indeed, the
different types of DoS were shown to result in spikes in the packets flows [22]. Thus,
they can be considered as additive changes i.e.changes in the mean within the network
traffic time-series.





CHAPTER 5

EDA4GNeT: Early Detection of Attacks for GOOSE Network
Traffic

List of Symbols
Notation Description

A The state transition matrix ∈ R𝑛×𝑛

C The measurement matrix ∈ R𝑔×𝑛

Q A 𝑛× 𝑛 covariance matrix of the states or process noise

R The variance of the measurement or signal noise

𝑆[𝑘] The novel score function

x A stochastic time-series

𝛾 The threshold for the statistical detector

𝜀 Model residuals

𝛩 The parameter vector

In the previous Chapter 4, the detection of attacks in electrical substations has been
formulated as a change point detection using statistical hypothesis testing. However
despite the different statistical advances, within the community, those statistical
approaches have not been translated into convenient algorithms for adoption in
operational cyber-physical systems [20]. The Smart Grid security in particular
requires specific analysis of the network traffic in order to propose a suitable Intrusion
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Detection System (IDS). In the present chapter, we first present the requirements
and properties of a suitable detection method against availability attacks.

The mathematical modeling presented in Section 3.2 and Section 3.3 that accounts
for the specific features of IEC 61850 substations is used as basis for our novel
detection method EDA4GNeT. A detailed overview of the algorithm including
the different steps as well as the novel score function is provided in Section 5.2.
The different design parameters of EDA4GNeT are introduced and discussed and
suggestions on optimal choice for the parameters are given.

5.1 General Properties
Traditionally, the network traffic in industrial control systems generally and in energy
systems particularly is assumed to be at steady-state. However, the network traffic
in ICS or energy systems might exhibit time-varying characteristics due, for instance,
to change of the operating conditions of the physical system or the grid [3].

One of the main advantages of the developed detection method is the adaptability
to the dynamics of the systems since the different traffic fluctuations are taken into
account as part of the normal operation. Despite fluctuations in the traffic, the test
statistics designed within the EDA4GNeT method remains within the normal range
when no attacks are injected. Adapting to changes of the network traffic reduces
considerably the rate of false alarms and thus improves the overall performance of
the developed novel detection method.

Besides the adaptability to normal network fluctuations in IEC 61850 substations,
another important feature that was included in the novel detection method is a
recursive implementation property. In fact, the capability of recursive computations
in the anomaly detection approach developed in the present work is suitable for
model adaption in a real-time application similar to the case of GOOSE messages.
In the developed EDA4GNeT approach, re-building the whole model from scratch
at each collected network traffic sample is not necessary. This avoids the increasing
computational complexity and memory problems due to appending a new collected
sample to the training set at each iteration. The calculation of the predictions of the
state-space AR model developed in the present work is recursive i.e. the prediction
at the current sample is estimated using only previous samples which avoids the
previously mentioned limitations.

Together with the former presented features, EDA4GNeT is designed with the
detection time as a central requirement. In fact, performance metrics for detectors
include the delay for detection which refers to the time difference when an alarm occurs
w.r.t. the instant an anomaly actually happens. In EDA4GNeT, early detection of
GOOSE attacks in the substation network is possible since it incorporates a robust
forecasting algorithm. Early detection of attacks helps preventing loss of energy and
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revenues due to possible physical consequences of attacks such as fatigue damage or
resonance attacks [28].

5.2 Developed Detection Method
In the present section, an overview of the algorithm developed in EDA4GNeT is
explained. Details about the different steps as well as the parameters used for the
modeling, prediction and detection are presented.

5.2.1 Overview of the Algorithm
The collected network traffic is first analyzed thoroughly to better understand its
characteristics in electrical substations. Relevant invariants of the communication
network presented in [33] were studied in order to model the network traffic xest. Long-
Range Dependency (LRD) characteristics of the network were showed which helps
choose an appropriate model. The description of the network traffic characteristics
can be reviewed in Section 3. In the modeling procedure depicted in Figure 5.1, a
state-space AR model is selected to describe the communication. The state space (SS)
modeling of long-range dependent data that was first considered as an Auto-Regressive
Fractionally Integrated Moving Average (ARFIMA) model is made possible thanks to
the approximation using an SS model introduced in [15] and explained in Section 3.3.
The parameter vector of the considered model �̂� is estimated using the sequence xest.
The Expectation Maximization (EM) algorithm is used to estimate �̂� which contains
the parameters of the state-space model (A, Q, R) as defined in (3.24), (3.23) and
(3.44). The estimation algorithm is adapted to consider the specific description of
the AR approximation of an ARFIMA model i.e. the structure of the A and C as
defined in (3.44). The values obtained from the estimation algorithm are used for
initialization in the Kalman Filter (KF). Use of KF is suitable to efficiently fit the
dynamics of the network traffic in IEC 61850 substations. Appropriate initialization
values for the KF help guarantee a good detection performance of ED4GNeT. The
Expectation Maximization (EM) algorithm is suitable as it allows fast convergence
and a good performance is achieved after few iterations [23].

To estimate states on linear dynamic systems represented as state space models,
KF are used. The KF is well-adapted for the estimation of the system state by
minimizing the mean squared error. In fact, KF provides optimal estimates in the
case of linear models with additive White Gaussian Noise (WGN). The statistics
of the noise are estimated within the Expectation Maximization (EM) algorithm.
However, in most practical cases, the statistics of the noises are generally unknown
and hence also non-Gaussian. The covariance matrix Q and the variance R are, thus,
one of the tuning parameters that can be adjusted to reach the required performance.



72 5.2 Developed Detection Method

N
et
w
or
k
T
ra
ffi
c
D
at
a

A
n
al
y
si
s
of

th
e

N
et
w
or
k
T
ra
ffi
c

L
R
M

M
o
d
el
in
g

�
A
R
F
IM

A

�
S
ta
te
-S
p
ac
e

A
R

P
re
d
ic
ti
on

V
al
id
at
io
n

M
u
lt
i-
st
ep

P
re
d
ic
ti
on

D
et
ec
ti
on

x̂
[k
]

−
ε v

a
l[
k
]

Θ̂
x e

st
[k
]

x v
a
l[
k
]

x
[k
]

Θ̂
x̂
[k

+
j|k

],
j
=

1,
2.
..
j k

−
ε[
k
]

A
la
rm

s

N
O
K

O
K

F
ig

ur
e

5.
1:

Bl
oc

k
di

ag
ra

m
of

th
e

ED
A

4G
N

eT
m

et
ho

d



5.2.2 New Score Function 73

The parameter vector �̂� is further used to compute the predictions that are
denoted by x̂off. The performed computations are explained in (3.35), (3.36) and
(3.37).

Two criteria can be used for validation namely, the prediction computed with the
model and residuals analysis. Firstly, the prediction is compared with the real signal
and a measure such as the NRMSE can be used to define the quality of the model.
The distribution of the residuals 𝜀off[𝑘] resulting from the difference between the real
signal xval and the predicted one x̂off is also evaluated to determine the performance
of the modeling procedure.

Depending on the accuracy of the model, the estimation step using the EM
algorithm with adjusted user-defined parameters, shall be repeated until satisfactory
results are obtained. Whenever the validation yields an acceptable model, the
parameter vector can be further used for recursive computations using the KF. Once
a model is validated and accepted, the parameter �̂�0 is used for further computations.

In Figure 5.1, the “multi-step prediction” block takes as input �̂�0 and computes
the equations (3.35), (3.36) and (3.37). The prediction x̂ [𝑘 + 𝑗|𝑘] is computed using
the output of the former block �̂�𝐾 . The value 𝑗 with 𝑗 = 1,2, . . . ,𝑗𝑘 refers to the
𝑗 step-ahead prediction. In fact, when 𝑗 = 1, x̂ represents the commonly known
one-step ahead predictor.

An anomaly can be observed in the measurement or in the transition equations
(cf (4.5)). Presence of an anomaly will affect the states and, consequently, it will be
observed also in the residuals. For 𝑗 = 1, the EDA4GNeT method is based on the
CUSUM detection test that receives as input the residuals 𝜀on[𝑘] resulting from the
difference between the signals x [𝑘] and x̂ [𝑘|𝑘 − 1].

For early detection, 𝑗 is chosen as 𝑗 > 1 and the detector for EDA4GNeT is based
on a novel score function instead of the residuals as described in Section 5.2.2. The
input to the score function is the 𝑗-step ahead prediction.

5.2.2 New Score Function
We investigate the detection procedure within the developed ED4GNeT method. Our
detection problem can be formulated as an early change point detection where the
anomalies can occur at unknown times and would result in changes in the statistical
properties of the network traffic. The novel detection procedure shall allow an early
detection of network attacks while respecting an acceptable False Alarm (FA) rate.

Two competing hypotheses are described in Section 4.1.1. To decide for the null
or the alternative hypothesis, the CUSUM test is a known change point detection
procedure with interesting optimal properties [5, 83]. However, for the early detection
of anomalies in the substation network traffic, a change point detection procedure
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based on the residuals such as the basic CUSUM test can not be used as the values
of the measurements at sample 𝑘 + 𝑗 are not available.

Instead, a new score function is introduced to detect the changes based on [98].
The concept proposed by Tartakovsky et al. in [98] is extended in the present work
for an early parametric approach.

A further extension of the score function is used in our detection method. In the
following, the test statistic 𝑔[𝑘] is described

𝑘𝑎𝑙𝑎𝑟𝑚 = min{𝑘 : 𝑔[𝑘] ≥ 𝛾}
𝑤𝑖𝑡ℎ 𝑔[𝑘] = max(0, 𝑔[𝑘 − 1] + 𝑆[𝑘])

(5.1)

A novel score function 𝑆[𝑘] is based on the predictions of x̂ [𝑘 + 𝑗|𝑘]. The term
ŷ corresponds to a scaled and centered values so that 𝑆[𝑘] fits applications with
different amplitudes.

𝑆(ŷ [𝑘 + 𝑗|𝑘]) = 𝑎1ŷ [𝑘 + 𝑗|𝑘] + 𝑎2ŷ
2[𝑘 + 𝑗|𝑘] − 𝑎0

where ŷ [𝑘|𝑘 + 𝑗] = x̂ [𝑘|𝑘 + 𝑗] − x̄

𝜎x

(5.2)

The score function is represented in a linear-quadratic form with 𝑎0, 𝑎1 and 𝑎2 being
positive design parameters that accounts for changes in the mean and in the variance
whenever an anomaly occurs.

5.2.3 Early Detection
Known methods for early detection can be ineffective due to the high false alarm
rates and their lateness of detection.

One of the many advantages of an early detection system is to considerably
reduce operational costs by avoiding loss of availability of the network in IEC 61850
substations resulting of a disturbance of the electric grid or even outages in same
cases.

The developed method allows, in one hand an early detection of anomalies in the
IEC 61850 network traffic and in the other hand a false alarm rate that is comparable
to the standard anomaly detection implemented for comparison. Analysis and further
results are listed in Section 6.3.3.

In fact, few approaches allow an online implementation with a low computational
load and a short time for the model calibration [82]. Techniques using ARIMA
models, for instance, are widely spread. However, they have shown to require a
considerable time for model estimation [95]. As alternative methods, techniques based
on machine learning algorithms, such as support vector machines can be applied in
real time with the main disadvantage that they require high quality datasets [82].
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Early detection using EDA4GNeT is based on the novel score function presented
in Section 5.2.2 and computed with the j-step ahead prediction. The equations of the
KF are extended to compute x̂ [𝑘 + 𝑗|𝑘]. The one-step ahead prediction of the state
is used in (3.42) for computation of the j-step ahead. Then, the model prediction is
computed as in the right side of (3.36) based on the estimation of the state described
previously.

In the simplest case of 𝑗 = 1, the method reduces to the one-step ahead prediction.
This particular case is further analyzed in Section 6.2. The larger 𝑗 is, the higher FA
rate is since the quality of the prediction degrades when 𝑗 is large. This statement
will be further discussed in Section 6.4.

The developed approach is possible because the novel score function is based on
model prediction that are obtained as in (3.42) and not on the residuals that are
defined for the one-step ahead predictor.

5.3 Design Parameters
General guidelines about the choice of the design parameters of EDA4GNeT is
provided in the present section. More details about the general concepts can be,
however found in [5, 98]. On one hand, for the modeling and forecasting of the
network traffic in IEC 61850 substations, two main design parameters are required,
being the order of the state space model and the number of step ahead for the
forecasting. On the other hand, two additional design parameters need to be set for
the detection which are the parameters of the novel score function and the detection
threshold 𝛾.

For the mathematical modeling of the network traffic, choosing a suitable state
space model order helps in obtaining accurate results for the further detection of
anomalies. The order 𝑛 and initial values for the Expectation Maximization (EM)
algorithm are initially set. The order of the model 𝑛 is adjusted according to the
simulation results. It is however, worth mentioning that the model order 𝑛 can be
also determined based on the Akaike Information Criteria (AIC) and the Bayesian
Information Criteria (BIC). Independent use of any of them can result in overfit
and underfit modeling problem. Thus, a combined use of both criteria is proposed
in [17] as an appropriate approach to define the model order based on the data.
This procedure is repeated iteratively until acceptable results are obtained. In case
knowledge about the process is available, this information might help choose the
model order. A tradeoff between the model complexity and preservation of generality
shall be, however, kept in account. Once an acceptable model is computed then its
parameters are used for computations in the Kalman Filter (KF).

Acceptable model parameters allow validation of the model for use in the multi-step
prediction as explained in Section 5.2.1 and depicted in Figure 5.1. The proposed
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approach allows forecasting the network traffic for more than one-step ahead. This
is particularly relevant as it can be efficiently implementable online to guarantee an
early detection of attacks against the network traffic.

The forecasting for j-step ahead depends mainly on the one-step ahead prediction
of the estimated state and on the value of the A estimated in the modeling stage.
The performance of the early detection is linked to the results of the forecasting.
The one-step ahead predictor can be generalized by shifting the terms of the state
vector as explained in [96].

The value of the parameters for the score function are set according to the type of
anomaly addressed. In some works [98], it is assumed that attacks such as TCP SYN
result only in changes in the mean or in changes in the variance that is significantly
smaller than a change in the mean. This results thus in setting the coefficient 𝑎2 to
zero.

Last but not least, one of the most common design parameters in anomaly detection
methods is the detection threshold. Choice of threshold 𝛾 in the developed detection
test (5.2) might be challenging as it is tightly associated to the number of false
alarms and to the detection of anomalies. The detection threshold shall be set so as
to obtain the desired level of false alarm rate. Generally, selection of the threshold
can be done using Monte-Carlo simulations sampling-based methods for stochastic
optimization problems [98].

5.4 Discussion
Description of the traffic using a state space model allows representation of multi-
variate signals that can be evaluated for anomaly detection. Analysis of multivariate
signals will yield adaption of the detection test since the forecasting consists of
multiple signals. In fact, the detection test is based on the quality of the forecasting
that are used in the computation of the novel score function.

The number of step-ahead for computation of forecasting needs to be set. In fact,
the earliness of detection is associated with the number of steps ahead. However, it
is worth noticing that setting a high value of the number of steps ahead would affect
the false alarms rate.

Indeed, to show the effect of the number of selected step ahead on the forecasting,
let us recall the introductory example introduced in Section 3.3.2. The forecasting of
x [𝑘], shown in gray, with different number of steps ahead, is depicted in Figure 5.2.

The accuracy of the j-step ahead predictions x̂ [𝑘+ 𝑗|𝑘] degrades with an increasing
value of 𝑗. Indeed, the x̂ [𝑘 + 5|𝑘] is the closest to the real time series whereas
x̂ [𝑘 + 20|𝑘] follows the general trend of x [𝑘] however with a quite large deviation as
shown in Figure 5.2.

More details about the previously mentioned tradeoff is analyzed in Section 6.3.
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Figure 5.2: Forecasting with different number of steps ahead

The score function in EDA4GNeT is able to retrieve changes other that in the mean
i.e. the non-additive changes for e.g. change in the variance. In fact, the parameters
associated to the quadratic terms can account for non-additive changes. For additive
changes, the parameter associated to the linear term in the score function defined in
Section 5.2.2 is used to detect changes in the mean.





CHAPTER 6

Case Studies

List of Symbols
Notation Description

𝐵 base rate representing the probability that there is an intru-
sion in the observed data set

𝐶 The ratio of the cost of an IDS failing to detect an intrusion
and its cost when it generates a false alarm

𝐶𝑒𝑥𝑝 The expected cost metric

𝐶𝐼𝐷 The intrusion detection capability metric

𝑔 The CUSUM decision function

𝑘 Discrete time index

x A stochastic time-series

𝛾 The threshold for the statistical detector

𝜎2
e Variance of a white Gaussian noise process

To assess the performance of the developed method, relevant metrics grouped
in three categories namely, basic and advanced metrics and Receiver Operating
Characteristic (ROC) plots are introduced in the present chapter. ROC plots are a
graphical illustration of the basic performance metrics that shows the connection
between the true positive rate (sensitivity) in function of the false positive rate
(specificity).
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To test the effectiveness of EDA4GNeT method, two case studies, T1-1 and
66/11kV substations are introduced. Different adversary models are introduced to
cover a large spectrum of attacks that might target the electrical substations. Those
attacks result in various changes in the network traffic including the time and the
amplitude of the changes.

The different experiments carried out in both use cases are presented. The obtained
results are analyzed and evaluated using relevant criteria that are introduced and
explained at the beginning of the present chapter. Detailed interpretation of the
acquired results is presented in Section 6.2.3 and Section 6.3.3 as well an overall
discussion including the most relevant conclusions is analyzed at the end of the
chapter.

6.1 Performance Assessment
6.1.1 Basic Performance Metrics
A False Alarm (FA) indicates that ℋ1 is selected by the detection method when ℋ0 is
true. FAs are also referred to as false positives (FPs). True positives (TPs) (i.e. a hit)
refer to the case where the detector decides correctly for ℋ1. A true negative (TN)
(i.e. correct rejection) indicates that ℋ1 is correctly rejected. A false negative (FN)
(i.e. miss) occurs when ℋ0 is selected even though the hypothesis ℋ1 is true. The
presented concepts are further used to define the performance assessment criteria.

The accuracy is one of the considered performance metrics and it refers to the
frequency with which the anomaly detection test identifies properly the anomaly.
However, considering only the accuracy might be misleading for the assessment of
an anomaly detection method in case of a high imbalance between false positives
and false negatives.

When the cost of FNs is high, the TPR also called DR or recall, might help give
additional information about the model. The TNR, also called specificity, indicates
the proportion of correctly classified non-anomalous samples w.r.t. the total number
of samples of the dataset. The FPR represents the rate of FAs which is also referred
to as type I errors in statistics. FNR or miss rate represents the proportion of type
II error, i.e the hypothesis ℋ0 is selected when ℋ1 is true.
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The computation of the basic performance metrics are presented in the following:

𝐹𝑃𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(6.1a)

𝐹𝑁𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(6.1b)

𝐷𝑅 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
= 1 − 𝐹𝑁𝑅 (6.1c)

𝑇𝑁𝑅 = 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
= 1 − 𝐹𝑃𝑅 (6.1d)

The detection time is another performance indicator used to assess intrusion detection
algorithms and describes the instant when an anomaly is detected. Subtracting the
detection time from the real time of the attack gives an indication of the detection
delay in the case of an offline detection and the earliness of detection in the case of
an early detection. The previously introduced metrics can be combined with other
criteria to deduce advanced performance measures introduced in Section 6.1.3 and
that allow a simpler and straightforward comparison between the different anomaly
detection methods.

6.1.2 ROC Plots
ROC curves depicts the probability of detection against the probability of false
alarms and are used to quantify the detection performance. ROC curves gives an
overview of the relation between the detection rate and FAs for different threshold.
Without an accurate domain-knowledge of the system at different operation modes,
it might be difficult to choose the best operation point which depends on a particular
configuration.

The ROC plots can be, however, helpful for the comparison of the performance
of different intrusion detection systems. It is worth noting that the comparison is
only accurate when the curves of two IDSs do not cross which means that the IDS
with the curve always above has a higher detection rate with a lower number of false
alarms. In the other case, if the curves cross then the comparison might not be easy
or relevant as no clear decision can be made

As an additional performance criteria, we consider the previously introduced
metrics as well as additional advanced parameters, refereed to in the next sections
as composite detection metrics.

6.1.3 Advanced Performance Metrics
To better compare the performance of the IDSs, the two composite detection metrics
presented in [76] are used. The composite metrics give an overall overview of the
detection performance and are computed using the basic performance criteria. Those
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additional metrics do not however, replace the basics ones [38]. The expected cost
metric 𝐶𝑒𝑥𝑝 requires a user-defined parameter 𝐶 which is the ratio of the cost of an
IDS failing to detect an intrusion and the cost when an IDS generates an alert when
an intrusion has not occurred. The expected cost metric 𝐶𝑒𝑥𝑝 is computed as follows:

𝐶𝑒𝑥𝑝 = 𝑚𝑖𝑛(𝐶 ·𝐹𝑁𝑅 ·𝐵,𝑇𝑁𝑅 ·(1−𝐵))+𝑚𝑖𝑛(𝐶 ·𝑇𝑃𝑅 ·𝐵, 𝑇𝑃𝑅 ·(1−𝐵)) (6.2)

where 𝐵 is the base rate i.e. the probability that there is an intrusion in the observed
data set and in the following experiments it is assumed that 𝐵 = 0.1.

For our experiments, the cost of a FNR is considered to be much higher than the
cost of FPR i.e. the value of 𝐶 is chosen to be equal to 10 following [76]. In fact,
missing an anomaly within the communication of electrical substations might result
in an increased risk on the physical system and thus affecting the stability of the
electric grid.

To compare the performance of the different IDSs, the approach with the lowest
𝐶𝑒𝑥𝑝 is considered to be the best [76]. 𝐶𝑒𝑥𝑝 gives a practical way to relate the different
basic metrics however it is a cost-based metric that depends on a subjective measure
which is 𝐶. In fact, it might be challenging to define the cost of generating a false
alarm versus the one of detecting an intrusion as this depends on several factors
specific, for instance, to the size of the substation.

A second composite metric 𝐶𝐼𝐷, first introduced in [38], provides a more objective
evaluation of the performance of the considered IDSs. Thus, the 𝐶𝐼𝐷 metric is more
adequate to compare in an objective form the performance of intrusion detection
systems. The intrusion detection capability 𝐶𝐼𝐷 presents the ratio of the mutual
information between the IDS input and output to the entropy of the input. For
derivation details of this metric, the reader is referred to [38]. To compare IDSs, the
maximum value of 𝐶𝐼𝐷 obtained for each approach shall be compared between them.

6.2 Case Study: T1-1 Transmission Substation
6.2.1 Description of a Simplified T1-1 Substation
In order to meet the need to carry power for long distances while keeping or stepping
up or down the voltage, several types of transmission substations exist based on their
size. Small transmission substations may contain only one bus and few switches and
Circuit Breakers (CBs) whereas large size transmission substations include several
bus levels as well as huge number of components, thus a complex monitoring and
control structure. A small transmission substation of T1-1 is chosen the first use
case in the present work. Indeed, it is assumed that security investigation analyzed
in the present contribution might be scaled to larger electrical substations.
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The first case study considered in the present work, is a simplified T1-1 transmission
substation. It mainly contains one incoming line, one bus-bar and 2 outgoing lines.

The simplified SLD of the transmission substation T1-1 is presented in Figure 2.8.
It is composed of four bays grouped into three main ones which are the transformer
bay composed of 𝐷01 and and two feeders bays (𝐸01 and 𝐸03). The IEDs used for
the different bays are represented in Figure 2.8. The transformer bay contains two
MUs namely 𝑀𝑈𝐷01 and 𝑀𝑈𝐸02 that have the function of a conventional MU. There
is also a P&C IEDs namely 𝐼𝐸𝐷𝐷01 in the transformer bay. Each of the feeder bays
contain one 𝑀𝑈𝐸01and 𝑀𝑈𝐸03 as well as one Protection and Control P&C 𝐼𝐸𝐷𝐸01

and 𝐼𝐸𝐷𝐸03.
The mapping to Logical Nodes (LNs) of the different IEDs and MUs used in

the three bays is presented in Figure 6.1. LN that do not refer to any function
such as LLN0, that contain generic information about the device and which is,
thus, contained in all devices, are omitted in Figure 6.1 for simplification purposes.
Considering the flexibility offered by the IEC 61850 standard, there are different
configuration options of LNs. The choice is conditioned upon design issues and the
expected features. The different LNs are clustered and structured in functions used
to establish the associated protection and control scheme of the T1-1 substation.
For instance, in the Feeder I, the interlocking function is composed from the CILO
and CSWI nodes in the bay level of the substation. It needs however, the states of
their related CBs and switches 𝐶𝐵𝐸01 and 𝑆𝐸01 available trough the nodes XSWI
and XCBR in the 𝑀𝑈𝐸01 from the process level as shown in Figure 6.1. For the
ease of reading, only the functions related to the bay level and used in our example
are mentioned in Figure 6.1. Another example consists in the nodes PTOV, PIOC
and ATCC, part of the 𝐼𝐸𝐷𝐷01, that are used for the overcurrent and overvoltage
functions. The distance protection function F4 in the two feeder bays E01 and E03
contains several LNs among which TCTR, TVTR and XCBR in the process level,
PDIS in the bay level and ITMI, ITCI and IHMI in the station level. It shall be
noticed that back-up functions such as RBRF, which is a breaker failure protection,
are not considered in the analyzed mapping.

The previously described use case is implemented using the cost-efficient testbed
described in [28]. The power system is used to simulate the physical model using
Simscape toolbox. For the process level, merging units are simulated as virtual
machines (VMs) and implemented in C using the libiec61850 library [110] to have
an interface that merges sampled data of the measurements between electronic
measurement transformers and protection and control IEDs. Virtual IEDs are used
in the bay level. They are computing units implemented as hosts or VMs that are
responsible for protection and control functions. The libiec61850 project offers to
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convert IED Capability Description (ICD) files into C files creating a complete static
data model of the server that is further compiled into the application.

For the simulation of the communication protocols between the different IEDs,
the open-source library libiec61850 [110] is used. A server/client as well as a pub-
lisher/subscriber communication models from the available examples were modified
to be adapted to our particular case. For the interfacing between the network
communication and the power model, a basic synchronization schema was chosen.
A predetermined communication time was fixed. This means that both processes
simulating the network and the physical system are running separately and at
predetermined time points with the execution being paused before exchanging data.

6.2.2 Description of the Threat Model
Loosing availability in critical infrastructures’ networks can have a more severe
impact than, for instance, in commercial systems. Thus, a denial of service attack
resulting from a GOOSE poisoning attack in communication of the T1-1 substation is
considered as the adversary model based on the risk analysis presented in Section 2.4.
Different variants of this attack are considered in the literature. In fact, The
GOOSE poisoning attack reported in [47] can result in a DoS. When an attacker
injects a spoofed GOOSE packet with a very high status number (StNum), all the
messages with a smaller StNum will be discarded according to the definition of the
transmission mechanism of the GOOSE protocol described in the IEC 61850 standard
[51]. Another variant is the high rate flooding attack that injects multiple GOOSE
packets with incremental StNum that exceed the StNum of a legitimate packet. The
last situation, called semantic attack, is based on monitoring the network traffic
and spoofing the GOOSE packets with a higher rate of changing StNum than the
normal one. As a result of the semantic attack, the subscribers would be prevented
from processing legitimate packets. In [45], another variant of GOOSE DoS attack is
demonstrated in [45] by causing an IED to loose functionality caused by the injection
of a consequential number of GOOSE packets that is greater than the limit allowed
for the packet transmission time.

Other situations that might lead to a GOOSE DoS attack are a non-matching
between the actual length of the PDU in the GOOSE frame and its PDU which can
occur when injecting a malformed PDU. Other conditions leading to a DoS attack
are described in [1]. A DoS attack can also be perpetrated when a GOOSE frame is
delayed until the expiration of the time allowed to live. A detailed description of the
previously mentioned attack can be found in [64].

The adversary model consists in the simulation of a GOOSE DoS attack resulting
from a poisoning attack as described in Figure 6.2. More details about the trans-
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GOOSE Publisher

Attacker

GOOSE Subscriber

Step1, CBD01 = 1, StNumN−1 Step5, CBD01 = 1, StNumN

Step3, CBD01 = 1, StNumA

Step2, CBD01 = 1, StNumN−1 Step4, CBD01 = 1, StNumA

Figure 6.2: DoS attack resulting from a GOOSE poisoning attack

mission mechanism of the GOOSE protocol depicted in Figure 6.2, is explained in
Figure 2.5.

The attack script is implemented in Python based on the work presented in [47]
and a traffic attack replay tool such as Tcpreplay [99] was used. The first step
consists in compromising the GOOSE communication by spoofing the transmitted
messages. The attack model is based on compromising the GOOSE communication.
By spoofing the transmitted messages, the attacker can masquerade a legitimate
IED to inject maliciously crafted GOOSE messages. By masquerading a legitimate
IED, maliciously crafted GOOSE messages with a high StNum would result in a DoS
attack.

The injection of the maliciously crafted packet is possible when the attack flooding
rate is higher that the legitimate transmission rate. When the attacker’s sending
advantage of packets with a higher StNum over the legitimate GOOSE publisher is
reached, the poisoning attack can start. If it is assumed that the attacker in previous
reconnaissance steps was able to monitor the network traffic thus he has an idea
about the legitimate GOOSE frame rate. From a defender perspective, the worst
case scenario would be an attacker that can launch a successful poisoning attack
with a small flooding rate that would be hardly distinguished from the normal traffic.
In the present work, this worst case scenario is assumed in order to demonstrate the
capabilities of the EDA4GNET detection method. It is worth noting that further
analysis of the success rate of poisoning attacks required to cause a DoS attack shall
be conducted. However, the success of an attack in terms of malicious GOOSE
flooding causing a DoS attack is out of the scope of the present work. Interested
reader can, however find further details in [47, 97, 102].
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6.2.3 Results and Discussion
To test the performance of EDA4GNeT and compare it to the closest works to ours in
the literature, the results of several experiments are reported in the present section.

In [63] and [103], statistical anomaly detection methods against attacks in IEC
61850 substations, are proposed. The authors in [63], present a statistical detection
based on a comparison of the residuals with a variance-based threshold while assuming
a white Gaussian noise model for the network traffic in electrical substations. In
contrast to [63], where the residuals are obtained from a signal embedded in WGN,
a modified version with the residuals computed from the appropriate mathematical
model developed in Section 3 are considered instead.

The approach presented in [103] is based on an anomaly score resulting from the
comparison of the network traffic with a minimum and a maximum value extracted
from real measurements. No details were provided in [103] for the choice of the
user-defined parameters necessary for the anomaly detection score. Thus, empirically
adapted values are chosen which would allow a high probability of attack detection
for the considered use case. Both approaches are implemented for comparison with
EDA4GNeT method.

The implementation of several experiments including a flooding attack at time
𝑘 = 500 are generated following the threat model and the network traffic described
previously in Section 6.2.1. WGN with sample variance derived from the estimated
model is used for simulation.

The performance of the EDA4GNeT detection method is evaluated for several
thresholds 𝛾s.
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Figure 6.3: Example of simulated GOOSE network traffic with a DoS attack

The experiments are performed using a computer equipped with an Intel processor
i7-2.00 GHz and 32GB RAM. A total number of 25 Monte-Carlo simulations are
performed for each threshold and under different realizations of WGN for each
experiment. A realization of one of the experiments is shown in Figure 6.3. The
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generated network traffic, depicted in Figure 6.3, include a flooding attack that starts
at 𝑘 = 500 and ends at 𝑘 = 605. The result of the detector based on the particular
case of the score function in EDA4GNeT introduced in Section 5 for one of the
experiments is shown in Figure 6.4.
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Figure 6.4: Results of the detection test

Before a change occurs, the values of the score functions oscillate within a certain
range. The detectors 𝑔𝑢[𝑘] and 𝑔𝑙[𝑘] corresponds to the detection of the lower and
the upper bound of the attack
𝑔𝑢[𝑘] is computed according to (4.3) and 𝑔𝑙[𝑘] is computed similarly but the log-

likelihood ratio is subtracted in the computation of 𝑔[𝑘]. When a change occurs, the
values of the detectors 𝑔𝑢[𝑘] and 𝑔𝑙[𝑘] change abruptly which indicates that the start
and the end of the attack was successfully detected as shown in Figure 6.4. In case
of the 𝑔𝑢[𝑘] and 𝑔𝑙[𝑘] detectors, as shown in Figure 6.4, no FAs were present and
the threshold 𝛾 (dashed red line) was only exceeded in the case of a change in the
network traffic.

The test statistics 𝑔𝑢[𝑘] and 𝑔𝑙[𝑘] are reset in the EDA4GNeT detection approach
after a change is detected. Further changes can be, thus, detected which makes our
novel approach are able to detect several attacks.

Even though, in this first use case, we focused on the detection of one change, in the
second use case of a 66/11kV electrical substation model, presented in Section 6.3.1,
the detection of several changes was analyzed as depicted in Figure 6.8.

The performance of EDA4GNeT in comparison with the closest literature [63,
103] is further analyzed using Receiver Operating Characteristic (ROC) plots. In
fact, as described in Section 6.1.2, ROC plots help inspect the tradeoff between FPR
and FNR over a complete spectrum of operating conditions including the settings
of the decision threshold 𝛾. The ROC curve represents the relation between the
probability of detection 𝑃𝐷 i.e. TPR and the probability of false alarm 𝑃𝐹 𝐴 i.e. FPR
to help assess the performance of the detectors depending on the requirements of the
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application. An algorithm is considered to be good if the ROC curve reaches rapidly
the upper left-hand corner i.e. if the area under the curve is large. Under simple
assumptions such as the analysis of a signal embedded in Gaussian noise, the ROC
curve can be typically derived analytically. This is not the case in the present work
as a more complex model is used which requires experimental computation of the
ROC curve.

The detection results of EDA4GNeT, [103] and [63] are depicted in Figure 6.5.
Considering that our threat model corresponds to the worst case scenario of a high
rate flooding attack where the DoS attack results in a small and short fluctuation of
the network traffic, the three methods have a relatively low number of false alarms.
The EDA4GNeT method has, however, the highest detection rate with lowest number
of false alarms.

To further evaluate the performance of the EDA4GNeT method with one-step ahead
detection, three scenarios for different signal-to-noise ratios (SNRs) are considered.

The SNR is defined by:

SNR = 10 log10
𝜎2
x

𝜎2
e

dB (6.3)

where 𝜎2
x and 𝜎2

e are the variances of the signal x and noise e, respectively. SNR
values in network traffic of electrical substations oscillates typically between 13 dB
and 38 dB [86]. To better evaluate the performance of the developed method, low
values of SNR are considered to cover worst case scenarios The performance of
EDA4GNeT degrades, overall, for lower SNR values ( i.e. a high noise content) is
shown in Figure 6.6. This can be explained by high deviations of the estimates with
respect to the true values when the noise variance increases.
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Figure 6.5: Comparison of the ROC curve of the different methods
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Figure 6.6: ROC curve of EDA4GNeT with different SNR

For small values of the threshold, the detection test has a good DR but also a
high FPR. To alleviate the previously described situation, the threshold 𝛾 should be
adjusted in order to have few FAs, low FNR and an acceptable accuracy and DR.

In the following, a more detailed analysis of the detection performance of EDA4GNeT
in comparison with the available approaches is presented. To that end, the basic and
complex metrics, described in Section 6.1.1 and Section 6.1.3 are used to assess the
performance of the different approaches.
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Table 6.2: Comparison of the one-step ahead detection results with available methods

Threshold
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

[63] [103] EDA4GNeT* [63] [103] EDA4GNeT* [63] [103] EDA4GNeT* [63] [103] EDA4GNeT*
0.1 5.2015 5.4982 4.1987 0.2124 0.8697 0.2004 0.1124 0.1978 0.1061 0.3748 0.1938 0.3287
0.2 5.7047 5.5014 4.0030 0.2124 0.9158 0.2124 0.1129 0.1898 0.0950 0.4769 0.2111 0.4196
0.3 4.1024 3.7037 3.1975 0.2305 1.0000 0.2204 0.1138 0.1807 0.0901 0.5318 0.2145 0.5896
0.4 3.1043 3.1990 2.5049 0.2305 1.1884 0.2204 0.1143 0.1704 0.0869 0.5346 0.2594 0.5361
0.5 2.6999 2.1042 1.7020 0.2305 1.3547 0.2305 0.1144 0.1593 0.0838 0.4836 0.2749 0.4515
0.6 1.2043 0.8030 0.6998 0.2345 1.7034 0.2505 0.1148 0.1522 0.0815 0.4318 0.3034 0.4205
0.7 0.3042 0.4034 0.1483 0.2605 1.9679 0.2425 0.1149 0.1451 0.0791 0.3898 0.3183 0.3499
0.8 0.2597 0.1004 0.1728 0.3307 2.6493 0.2345 0.1149 0.1398 0.0749 0.3696 0.3446 0.3548
0.9 0.2204 0.2042 0.2735 0.3647 3.4689 0.3527 0.1155 0.1342 0.0715 0.2802 0.3583 0.2594
1 0.2047 0.5993 0.2524 1.1122 4.5391 0.7014 0.1152 0.1276 0.0681 0.2871 0.3648 0.3016

* A special case of the EDA4GNeT method
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Our AD statistical method is compared with the most relevant approaches available
in the literature [63, 103], described at the beginning of this subsection, and the
results are listed in Table 6.2.

Under similar operating conditions and using the same scenario, the average values
of 50 Monte-Carlo simulations are presented in Table 6.2.

Table 6.2 shows the performance of the detection approaches for SNR = 10 dB.
The first column in Table 6.2 represents normalized values of the thresholds for the
different anomaly detection methods.

Initially, there will be a focus on the basic performance metrics presented in
Section 6.1.1. For a better readability of the different results in Table 6.2, only the
FPR and the FNR are included as the other basic detection criteria can be directly
concluded from (6.1c) −(6.1b).

The EDA4GNeT approach has for each threshold the lowest FPR. For instance, its
value is 1.7 % for a normalized threshold of 0.5. The FPR of the detection algorithm
presented in [103] and [63] are, in general, higher than our method.

The EDA4GNeT method exhibits FNR values that are similar or lower than the
two other detection approaches. For instance, for a normalized threshold equal to
0.5, the corresponding FNR has a value of 0.23 % thus a DR value of 99.77 %. The
modified approach from [63] has a rather low FNR ranging between 0.21 % and
1.11 % whereas the FNR for the approach based on [103] has the largest range among
the different normalized thresholds.

It is worth mentioning that for all three approaches, the FNR increases with a
bigger values of normalized threshold as less changes i.e attacks can be detected.

In summary, our EDA4GNeT approach has overall the the lowest values of FPR
and FNR when compared with the techniques developed in [63] and [103]. To further
compare the different intrusion detection, combined assessment metrics are also
included in Table 6.2.
𝐶𝑒𝑥𝑝 is the first composite criteria used to compare IDSs. The minimal value of

𝐶𝑒𝑥𝑝 for each approach is shown in bold in the Table 6.2. Our EDA4GNeT anomaly
detection method has the lowest expected cost, among all considered normalized
thresholds, approximately equal to 𝐶𝑒𝑥𝑝 = 0.07 compared with the closest works
to ours available in the literature. The cost-based metric 𝐶𝑒𝑥𝑝 presents only a
preliminary metric to compare the anomaly detection as it depends on the parameter
𝐶 which is a subjective measure. Indeed, we consider 𝐶 = 10 which refers to the
fact that the cost of not responding to an attack is 10 times higher than the cost of
responding to a false alert.

The second composite criteria, proposed in [38] and used to compare the perfor-
mance of intrusion detection methods is 𝐶𝐼𝐷. The maximum value of 𝐶𝐼𝐷 obtained
for each approach shall be compared between them. According to [76], higher values
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of the intrusion capability 𝐶𝐼𝐷 represents a better performance of the corresponding
IDS. The maximum value of 𝐶𝐼𝐷 for each approach is depicted in bold in Table 6.2.
The lowest value of 𝐶𝐼𝐷 is computed with the approach proposed [103]. The value
of 𝐶𝐼𝐷 of EDA4GNeT method is around 5.9 which is the highest value among
all the considered approaches. Those observations support the results concluded
from the first composite metric 𝐶𝑒𝑥𝑝. Under similar operating conditions, our novel
EDA4GNeT anomaly detection approach is experimentally proven to perform better
than the two closest works to ours ([103] and [63]) for the detection of DoS attacks
resulting from GOOSE poisoning attack.

6.3 Case Study: 66/11kV Substation
6.3.1 Description of the Use Case
In the present section, a synthesized dataset generated by the Advanced Digital
Sciences Center (ADSC) [7] is used. The testbed describes the operation of a 66/11kV
electrical substation model including circuit breakers and IEDs depicted in Figure 6.7.
A typical network architecture was adopted using the recommended protocols in
IEC 61850 standard i.e. GOOSE and SV communication between CTs, VTs and
IEDs via Ethernet VLAN and MMS protocol at the station level for the connection
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Figure 6.7: The single-line diagram of a 66/11kV substation [7]
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between Human-Machine Interfaces (HMIs) and IEDs. All 18 simulated IEDs are
within the same multicast group.

The normal operation in an electrical substation might also include disturbances
such as a breaker failure or a busbar protection where specific GOOSE messages are
sent to address such event changes.

6.3.2 Description of the Threat Model
Normal operation in the electrical substation might be hindered by disturbances or
malicious actions. In the following, a description of the considered threat model is
introduced. In modern electrical substations, HMIs are equipped with monitoring
and control interfaces that are remotely accessible. Attackers are assumed to be able
to compromise this entry point through for instance social engineering in order to
connect to IEDs.

The simulated attack was generated synthetically using an attack-free network
scenario, an attack script and a traffic attack replay tool such as Tcpreplay [99].
An automatic trace generator program is used to get an attack-induced trace by
injecting malicious GOOSE packets. The attack model is based on compromising
the GOOSE communication. By spoofing the transmitted messages, the attacker can
masquerade a legitimate IED to inject maliciously crafted GOOSE messages. There
are several ways to perpetrate a DoS attack. Impact of loosing availability in critical
infrastructures’ networks can be much more severe than, for instance, in commercial
systems. In the considered case, the simulated DoS results from flooding the network
with bogus frames. More details about the generation framework of the different
attack and attack-free scenarios can be found in [7]. Among others, a DoS attack on
the GOOSE communication was simulated and resulting network data is recorded.
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Figure 6.8: Simulated GOOSE network traffic with several changes

In order to thoroughly test our EDA4GNeT method, several experiments with
different noise realizations are run. As an adversary model, a similar attack technique
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as described in Section 6.2.2 where a high rate flooding attack results in a GOOSE
DoS attack is used. In this second use case, a coumpound case study is considered
where several attacks in the network traffic of an IEC 61850 substation are considered
with different characteristics including the duration and the amplitude of the changes.
The designed use case is depicted in Figure 6.8.

A normal GOOSE network traffic is simulated based on the modeling procedure
described in Section 3.4. The first attack starts at 𝑘 = 198 and lasts 215. The second
simulated attack starts at 𝑘 = 413 and ends at 𝑘 = 625. The start of the attack
can hardly be distinguished with the naked eye. The third and last attack starts
at 𝑘 = 1024 and finishes at 𝑘 = 1215. It is worth noting that although the changes
representing some of the attacks can be perceived in Figure 6.8, it is difficult to tell
with the naked eye when it actually begins. It can be also remarked that a change
in the dynamics of the system was introduced from the sample 𝑘 = 809. In electrical
substations, such changes can occur in case of modification in the physical system
that require adaption of the operating conditions.

6.3.3 Results and Discussion
A similar hardware set-up as in Section 6.2.3 is used. A Monte-Carlo simulation of
100 experiments is run to test the performance the EDA4GNeT method.

To test the performance of EDA4GNeT, the detection rate and the false alarm
rate considering a one-step ahead detection versus multi-step detection are compared.
The ROC plot depicted in Figure 6.9 shows, as expected a better performance
when considering only one-step ahead. It is however important to notice that the
performance with multi-step ahead is still acceptable especially that this case would
offer an early detection of the attacks in GOOSE network traffic.
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Figure 6.9: ROC curve of the one step versus the multi-step configuration of
EDA4GNeT
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Table 6.3: Comparison of detection results using EDA4GNeT

Change Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
1 – −22.08 3.0772 3.2357 0.2013 0.3033 0.0938 0.1120 0.9880 0.4535
2 – −17.24 2.6179 3.0211 0.2501 0.3067 0.0915 0.1032 0.9665 0.5359
3 – −20.92 2.1123 2.8405 0.3499 0.3000 0.0891 0.0975 0.9409 0.8666
4 – −23.02 1.9458 2.6419 0.0401 0.1800 0.0849 0.0912 0.9320 0.5197
5 – −33.68 1.5386 2.5436 0.0667 0.1433 0.0815 0.0873 0.9274 0.6100
6 – −14.84 1.4764 2.3410 0.2014 0.1100 0.0781 0.0830 0.9770 0.3117

* Detection delay expressed in discrete time 𝑘
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In the following, an average of the results of the different Monte-Carlo experiments
is presented in Table 6.3. The optimal thresholds for the 1-step as well as for the
multi-step ahead detection are used, respectively for computations for the values in
Table 6.3. As explained at the beginning of the present section, in the multi-step case
of EDA4GNeT, an early detection of attacks is possible in average 21 samples ahead.
To the best of our knowledge, none of the currently available anomaly detection
methods based on an accurate mathematical model is able to offer an early detection
which accounts for the dynamics of the network traffic.

For all the changes, the average FPR values for the 1-step ahead detection are
smaller than for the multi-step ahead. The FNR values range between 0.07 % and
0.35 % for the one-step ahead EDA4GNET. For most of the changes, the multi-step
ahead case of EDA4GNeT has a higher FNR than for the one-step ahead case.

Those results of the basic metrics are consistent with the ones obtained from the
composite metrics as for all the considered changes the cost metric 𝐶𝑒𝑥𝑝 is smaller
than the multi-step case. The lowest value of 𝐶𝑒𝑥𝑝 is equal to around 0.078, whereas
for the multi-step ahead it corresponds to around 0.083 as depicted in bold in
Table 6.3. Whereas, the intrusion capability 𝐶𝐼𝐷 of all the values of the changes in
the second use case are bigger for the one-step case than the ones for the multi-step
ahead case.

It is however important to highlight that despite the superior detection performance
of the simplified case of EDA4GNeT with one-step ahead, the performance, in terms
of basic and composite metrics, of the general case of EDA4GNeT with the multi-step
ahead detection have acceptable results. This can be explained by the adequacy of
the selected model for the description of the network traffic in IEC 61850 substations
as well as the accuracy of our detector introduced in Section 5.2.2.

EDA4GNeT offers a remarkable advantage in comparison with the available
approaches as it is able to detect in average the start of the attacks introduced in
Section 6.3.2. The earliness of detection is expressed in samples and it represents
the number of discrete time samples after which the anomaly is detected. Regardless
of the amplitude and duration of the change, EDA4GNeT is able to detect them in
average 20 samples in advance with an approximate detection rate of 97.3 %.

Even though, the detection statistics (i.e basic and composite metrics) remain
better in the case on a step-ahead detection, the multi-step ahead detection offers
a good compromise between the detection time and the detection statistics. It is
worth mentioning that the one-step and multi-step ahead prediction can be computed
simultaneously in EDA4GNeT. In fact, the multi-step ahead prediction allows an
early detection of attacks whereas the one-step ahead can be used as a highly accurate
detection system with an associated detection delay.
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6.4 Discussion
For different case studies, authors in [106] report a detection rate of 100 %, however
a hybrid approach using whitelisting and deep packet inspection (DPI) is adopted.
This method requires additional data processing and computational complexity that
can constraint its application in real scenarios. Similar detection results are reported
in [11] with the use of critical state analysis that are based on a comprehensive
description of the physical models of the considered power system. To achieve a good
performance, IDSs based on ML approaches generally use supervised algorithms
which require two different datasets for training of the detection algorithm. This is a
considerable limitation as they increase the deployment and operational costs and
a large amount of data sets are required for setting the algorithm. In the field of
statistics, methods related to change point detection have been successfully applied
in different research areas. However, literature research shows that use of these
robust approaches for anomaly detection for smart grids, especially for IEC 61850
electrical substations has not been explored.

The proposed technique in the present chapter has a comparable detection rate as
other approaches for detection of DoS attacks. But a major advantage of EDA4GNeT
method is that it does not require to include DPI or to build a set of rules that
need to be constantly maintained. Reliable detection rates are achieved using a
novel method which combines robustness of change point detection adapted to the
particular field of IEC 61850 substations. The performance of the developed novel
detection method is evaluated and discussed under different scenarios in two case
studies.

In the first case study, one DoS attack resulting from a GOOSE poisoning attack
is considered which is a typical threat an IEC 61850 substation can be exposed to.
The developed method shows a superior performance when compared to related
approaches reported in the literature in terms an average a DR of 99.72% and
FPR of 1.97%. Better detection performance confirms the advantageous properties
of the ED4GNeT method. Basic performance criteria such as FPR and FNR are
reported and its use for representation of ROC curves also shows the capabilities of
the proposed method to successfully address the considered type of attacks.

Early detection is explored in a second case study under different forecasting
conditions for prediction. The early detection feature aims at predicting as fast
as possible attacks to avoid propagation of the consequences of an attack on the
physical grid. The ED4GNeT method shows acceptable performance for different
values of 𝑗-step ahead prediction. However, the forecasting degrades for large values
which coincides with results reported in the literature for model prediction. The
choice of suitable values, that are adjusted empirically for the score function and
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forecasting allows early detection of attacks in IEC 61850 substations and represents
a novel feature in ED4GNeT method when compared with available approaches.





CHAPTER 7

Conclusions and Outlook

7.1 Conclusions
Integration of Information and Communication Technology (ICT) in modern energy
systems has considerably improved the interconnection between the different parts of
the grid. Critical infrastructures are highly dependent on digital control, supervision
and monitoring for a safe and optimal operation. Secure communication in Smart
Grids (SGs) is a key component in ensuring a reliable and stable operation of power
facilities. Besides the advantages offered by the use of ICT, additional threats might
rise due to the modern communication structure of SGs, as for instance, the infamous
Stuxnet worm back in 2010. According to to ICS-CERT, the energy sector was the
number one target of incidents in 2014. Thus, modern infrastructures such as SGs
are encountering increasing exposure to different cyber-attacks.

The interconnection between the different parts of the grid is carried out using
specific network protocols. Those protocols particularly used in energy systems are
not primarily designed with security in mind which exposed the whole power grid
domain as an attractive target for attackers.

Developing defense techniques for authentication, integrity and real-time availabil-
ity of the communication networks in SGs is part of the presented research work.
One of the first steps is to review and analyze the different attacks against SGs that
are summarized in a novel classification that gives an overall view of the state of
cyber-physical security of power systems in Section 2. It is concluded from this first
work that considering the new generation of energy systems, secure communication is
a key component in ensuring a reliable and stable operation of electrical substations
based on IEC 61850 standard.

In order to help improve the overall Cyber-Physical Security (CPS) of the SG,
the present work tackles the challenge of enhancing the availability of the data in
communication networks in electrical substations based on IEC 61850. Modeling of
the network traffic in IEC 61850 substations in order to design an online method for
early detection of attacks in GOOSE network traffic is established within this work.
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Indeed, the Substation Communication Network (SCN) traffic is analyzed in order to
gather necessary knowledge for the characterization of the GOOSE network traffic.

Based on the studied characteristics presented in Section 3.1, the mathematical
modeling is discussed using a state space representation of an ARFIMA model of
the network traffic. The primary goal of modeling the GOOSE network traffic is to
design an efficient anomaly detection method for early detection of flooding attacks.
However, modeling of the communication network can also support the research in
forecasting the traffic with a high accuracy and in designing the GOOSE network
architecture of electrical substations. The estimated model is evaluated on two use
cases and described in Section 3.4.

Thereafter the obtained model is used for developing a novel Anomaly Detection
(AD) based on statistical hypothesis testing. EDA4GNeT is an efficient anomaly
detection that addresses limitations of available methods and achieves remarkable
results in terms of detection rate and detection time. In fact, the recursive implemen-
tation adopted for EDA4GNet is suitable for online model adaption in a real-time
application similar to the case of time-critical operations. The EDA4GNeT method
consists in a robust statistical method to distinguish between the absence and the
presence of an anomaly based on a novel detection test defined in Section 5.2.2. To
validate the performance of EDA4GNeT, two use cases are adapted including the
simulation of different attacks. The results reported in Chapter 6 show an improved
performance when compared with the closest works to ours in the literature. The
adopted state space representation used to approximate the ARFIMA model can
describe well the network traffic as shown in Section 3.4.

In the case study of Section 6.2, basic and composite performance properties are
considered for analysis. A DoS attack is simulated in the communication network
which causes an increase in the traffic flow. The CUSUM test is adapted with the
state space representation assumed for modeling. Computation of the test statistic
𝑔[𝑘] allows the detection of the change regardless of its duration or amplitude. Results
obtained for the false positive and false negative rates show a better performance for
EDA4GNeT which is confirmed with the ROC curves Figure 6.5. Values from 𝐶𝑒𝑥𝑝

and 𝐶𝐼𝐷 confirm the performance of the proposed method discussed previously.
The EDA4GNeT method is extended for early detection which can detect attacks

within acceptable confidence levels. Early detection is performed using a novel score
function based on the 𝑗-step ahead predictions (see Section 5.2). The equations of the
Kalman filter are extended to compute the predictions required by the score function.
The performance of the proposed approach is evaluated in a second case study and
discussed in Section 6.3.1. Different values for steps ahead are used to analyze the
capability of anomaly detection based on forecasting Section 5.4. The proposed novel
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method is able to detect possible future attacks while keeping acceptable false alarm
rates.

7.2 Outlook
The anomaly detection method developed in the present work offers a reliable solution
to enhance the cybersecurity of IEC 61850 substations. This research direction is
very promising as it can be extended in several directions that can be further explored.

Use of multiple signals
Use of a state space model to represent the network traffic in electrical substations
facilitates extension to address multiple signals.

In order to detect other types of attacks, additional features of different protocols
of the network traffic can be integrated in the same model instead of considering each
feature separately as proposed in [2]. A total of 25 features of the network traffic are
considered for experiments in [2] where they are modeled separately as ARFIMA
models. Detection of the anomalies is based on the comparison of the parameters
of normal behavior and parameters of the real network traffic of the different time
series separately. However, challenges found in modeling of multivariate time series
such as possible correlations and non-unique representation are not discussed.

Different features to analyze and detect anomalies in GOOSE network traffic is
presented in [64]. A preprocessing step shall be carried out to select the most relevant
features that can be further used in the state space model to represent the network
traffic within the substation. The developed anomaly detection method can then be
directly used on the obtained model to detect attacks resulting in deviation in the
characteristics of the network traffic.

Adaption of the score function
The novel score function proposed for early detection can be adapted to consider
different types of attacks. Moreover, other polynomials can be proposed based on
the 𝑗-step ahead predictions obtained with the adapted Kalman filter. Choice of
alternative score functions should be oriented based on the results related to true
positives rate and false alarms. The goal of forecasting possible attacks can yield
easy-trigger detectors with high false alarms. Indeed, the values parameters of
alternative score function can also be adapted depending on the changing conditions
of the network traffic.

Extension to different case studies
The EDA4GNeT method is implemented and tested on two simulation case studies
presented in Section 6 that are based on systems typically found in real applications.
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The network traffic as well as the physical grid are simulated using adequate software
to replicate as close as possible the real conditions in an electrical substation. It
would be however relevant to evaluate the developed AD method on data retrieved
from a substation operating in real conditions. The main challenge we faced is
the scarcity of real data from electrical substations which is due to several reasons.
First, protocols recommended in IEC 61850 such as GOOSE and SV are not always
adopted in legacy substations. Secondly, the network traffic is not always collected
and even when it is the case, only the communication traffic at the higher level of the
substation is monitored. The next limitation that is commonly found when designing
IDS for energy systems or ICS in general, is the confidentiality of the data that
can be rarely shared with the community for research purposes. Evaluation with
data from real system can enrich the discussion on the performance of the proposed
method and will yield to further improvements.

Integration and extension to process knowledge
Our work focuses on the network traffic in IEC 61850 substations. However, the
EDA4GNeT can be extended to detect anomalies at the process level. Signals
based on the process variables can be adopted in the EDA4GNeT method with a
corresponding adjustment of the developed score function in order to detect physical
attacks. For instance, resonance attacks are caused when an adversary induces
repeatedly small variations until reaching the resonance. Another type of attacks
that have results on similar effects such as DoS is surge attacks which damages the
equipment by introducing malicious commands within the Process Control System
(PCS) to exceed the boundaries of the process variables or result in a DoS alike
state due to emergency shutdown. Provided that relevant process signals are chosen,
the EDA4GNeT AD method can detect attacks at the process level such as the
previously mentioned ones.

Coupling detection of attacks at the process and the communication level using
EDA4GNeT would lead to the detection of a wider range of attacks. This would
enable integration of physical process information to the detection system. Combin-
ing physical information to EDA4GNeT allows to leverage semantic content of the
communication traffic i.e. of the inspected packets.

Alarm correlation for help in decision-making process
Alarms collected from the EDA4GNeT AD or other IDS techniques shall be further
analyzed. These alarms can be retrieved from the network traffic, physical system or
the logging software. Developing a method for an alert management and risk analysis
system including an alert aggregator and corresponding manager might be relevant
to help in decision-making process. In fact, a relevant further step of the research
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introduced in the present work would be to design and implement a system for help
in decision-making process through analysis and clustering of alarms including an
evaluation of the alarms and possibly an automated response system through their
post processing.

Integration into a global SIEM architecture
NSM provides system security awareness through the use of data objects to manage
and monitor the information through the grid infrastructure. Recommendations for
the development of the NSM platform are provided in IEC 62351-7 edition 2017.
A well-defined use of the NSM data objects for the system security to mitigate
possible cyber-attacks is however not directly addressed in IEC 62351. Integration
of the EDA4GNeT anomaly detection method on top of the platform built following
guidelines in IEC 62351-7 can be further pursued. In fact, the large amount of data
collected through the NSM corresponds to information about the IEDs and their
communication. It can be used to model the network traffic and detect anomalies
using EDA4GNeT AD method. A promising research direction is to propose a global
security information and event management (SIEM) including the IDS designed in
this work and an appropriate NSM according to recommendations in IEC 62351-7.
This will help centralize all the information sent to the SIEM in order to possibly
carry out adequate response actions.

Application to the KASTEL Security Lab Energy and to the Energy
Lab 2.0
Cyber-Physical Security (CPS) is a substantial concern in critical infrastructures. The
interconnected structure of SGs increases considerably its exposure to cyber-attacks
such as Man-in-the-Middle, data theft, False Data Injection and other manipulations.
Such attacks can have severe consequences on the stability of the electric grid and
might lead to blackouts. To defend against those threats, designing and developing
effective countermeasures for the CPS for the transition to future energy systems is
essential.

The KASTEL Security Lab Energy is a facility that is being built at the IAI
institute within the KASTEL project as one of three planned labs: mobility, energy
and production. Within the KASTEL Security Lab Energy, the cyber-security of
smart grids in which power generators, storage, distribution and consumers are
interconnected to ensure optimal operation, is investigated.

The comprehensive use of ICT offers many advantages such as effective integration
of renewable energies and ability to respond to fluctuations of the demand and
response. The interdependence of more networked devices might however lead to
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additional threats. The research carried out in the present work, shows that secure
communication is key for a reliable and stable operation of energy networks.

The KASTEL Security Lab Energy is composed of three subsystems with the
first one mainly consisting of components from Siemens and will be referred to as
the homogeneous Subsystem. A similar facility to the first Subsystem is present
at the E-Lab 2.0. The second one represents a scale substation with components
from different manufacturers and will be referred to as the heterogeneous Subsystem
where IEC 61850 interoperability challenges will be investigated.

As mentioned above, the first subsystem is a small-scale SG with an energy supply
part (wind turbine, battery and solar panels) and a transmission substation are
implemented as Matlab/Simulink model. Siemens PLCs and IEDs are responsible
for controlling the dynamic behavior of the different models and for taking corrective
actions. An engineering and monitoring workstation is used to carry out supervisory
actions. The Network Security Monitoring (NSM) station provides a continuous
collection, attack detection and analysis of communication data.

As a high-level control system for cyber-security research for future energy systems,
the KASTEL Security Lab Energy and the SecLabE at the Energy Lab 2.0 facilitate
the implementation of attack scenarios and manipulation of hardware and software
components. This enables the analysis of risks and possible malfunctions in the
electric system caused by cyber-attacks. The KASTEL Security Lab Energy is used
for development of efficient methods and algorithms for detection and prevention
of cyber-attacks. This includes the development of supervision tools, the design of
security features in protocols, software and systems as well as recovery strategies.

The contributions of the present work including mainly the investigation of the
security standards for energy systems in IEC 62351 and the early detection method
EDA4GNeT helped design our security Labs i.e. SecLab-E and KASTEL Security
Lab Energy. In fact, the Subsystem 2 of the KASTEL Security Lab Energy has been
designed based on knowledge explored within the present work. Essential questions
about the interoperability of the components from different manufacturers, integration
of specifications described in IEC 61850 as well as security recommendations proposed
in IEC 62351-6 were established in the present work. Technical application and
verification will be achieved through implementation of those questions within the
Subsystem 1 and 2. To answer the first question of how far are the specifications
in IEC 61850 are integrated in components from different manufacturers, different
experiments and scenarios will be implemented. This will leverage one of the main
challenges in integrating IEC 61850 in substations. Technical recommendations to
facilitate the engineering and configuration process for the utilities will be tested and
published.
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The second main question that would be investigated within the homogeneous and
heterogeneous Subsystems of the KASTEL Security Lab Energy, is to which extend
can the security recommendations proposed in IEC 62351 be implemented in a small
scale substation without affecting the normal operation and respecting the resources
constraints. Work on the integration of the IEC 62351 standard is being carried out
not only to address the security of communication protocols, as it is the case in the
present work, but also to further work on network management, role-based access
control as new research topics developed within the IAI and the KASTEL institutes
or together with partners.





A Description of the Cost-Efficient Software Testbed

A.1 Communication Interface with IEC 61850 Logic in
Matlab/Simulink

The main goal is to establish a communication based on link-layer protocols in IEC
61850 between a Matlab/Simulink simulation of an electrical substation and Intelligent
Electronic Devices (IEDs). For the transmission of voltage and current measurements,
Sampled Values (SV) messages shall be used whereas the transmission of the state
of breakers and switches, is done using Generic Object Oriented Substation Event
(GOOSE) messages. Additional details about the configuration of the communication
according to the IEC 61850 standard are described in Section 2.2.

Some communication interfaces in protocols such as Modbus/TCP exist in Mat-
lab/Simulink. However, no interface for publishing GOOSE and SV messages is
available. Considering the increasing compliance of several substations with the
IEC 61850 standard, it is particularly relevant and useful to develop a GOOSE/SV
interface to integrate in Matlab/Simulink simulations. Such an interface or library
is not directly available in Matlab as previously mentioned, which is one of the
contributions of the present work.

The overall simulation consists of the following elements depicted in Figure A.1

• a substation - A simulation of a T1-1 substation in Matlab/Simulink is used.
More details about the different measurements values retrieved from the simu-
lation are described further in Section A.2.

• GOOSE/SV library - The open-source C library available in [110] is integrated
in the developed interface to send the data from the Matlab/Simulink model as
GOOSE and SV packets. Detailed explanation of the developed communication
interface is given further in this section.

• GOOSE/SV interface - GOOSE/SV interface is created using C Caller blocks
in Simulink. In the C Caller blocks, specific functions for GOOSE and SV
packets are defined. Once the data is received, the control commands are
transferred to the function call and then executed. The formed GOOSE and
SV packets are sent out. Detailed steps about creation of the C Caller blocks
is explained in the present section.
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• Intelligent Electronic Device (IED) - The communication with an Intelligent
Electronic Device (IED) is simulated on a virtual machine. The local host or
loopback interface is used to view the transmitted GOOSE and SV messages
on a network protocol analyzer software for instance in this case Wireshark.

GOOSE/SV
Interface

Substation
simulation

IEC 61850
library

IEDs
(Virtual Machines)

Event data and
measurement values

GOOSE/SV
messages

Matlab/Simulink

Figure A.1: Description of the communication setup

A representation of the different blocks constituting the developed communication
interface is depicted in the following diagram Figure A.2 below.

GOOSE/SV Interface
(C Caller)Values from simulated substation

Configuration

GOOSE/SV Library
(source and header files)

Figure A.2: Schematic representation of the communication interface

The open-source IEC61850 library [110] is used for the GOOSE and SV communi-
cation and compiled into a new library in Matlab/Simulink.

The C Caller function makes it possible to integrate new or existing C code into
Simulink models. To create custom blocks in Simulink models, the C Caller block
allows to call external C functions specified in external source code and libraries.

To integrate the libiec61850 library into the Simulink model, the following steps
are required:

1. The Configuration Parameters should be first specified in the Simulink tool
strip



111

2. The Simulation Target shall be selected

3. To enable code parsing by the C Caller block, it must be ensured that the
Import custom code box is selected. The directories and file paths can be
absolute or relative file paths to model directories or current working directory.

4. The Header file is selected including the declaration of the C file called directly
in the Simulink model

5. The Source file with the adequate path shall be selected.

6. When the requested function through the C Caller is encountered during the
simulation, the control is transferred to the function call and the C program
will be executed. The Eclipse C compiler is used for compiling and executing
the piece of software.

7. The next step is to configure the model parameters. It is worth noting that
the configuration parameters like the Solver selection and step size shall match
with the ones from the substation model.

A.2 The Matlab-Simulink Model
The goal of the communication interface developed in the present work, is to simulate
the communication behavior between the circuit breakers, merging units and a
substation model.

In fact, measurements values shall be sent periodically using the sampled values
protocol from the Matlab/Simulink model to the simulated intelligent electronic
device. The previously described behavior is implemented in a C Caller block to
simulate a SV publisher. A simulated GOOSE subscriber using also a C caller
function continuously runs to listen to the status of the circuit breakers and update
control commands accordingly.

The developed communication interface is integrated into the T1-1 simulated
substation described in Section 6.2.1.

The substation consists of a 100 MVA, 220 kV three phase source connected, in
external mode to a three phase circuit breaker as depicted in Figure A.3. When in
external switching time mode, a Simulink logical signal is used to control the breaker
operation. The three phase current and voltage are measured and refereed V-D01
and I-D01, respectively. The block 10km represents a three phase transmission line.
The model consists of one set of RL series elements connected between input and
output terminals and two sets of shunt capacitance lumped at both ends of the
line. The three phase current and voltage are measured at the transformer bay
and referred to as V-E01 and I-E01, respectively. A three phase circuit breaker in
external switching time mode is connected between the transformer and the bus line.
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The 3 phase PLL blocks are used to measure the frequency at both parts of the
substation i.e. at D01 and E02 and named 𝐹𝑟𝑒𝑞𝐷01 and Freq_E02, respectively. All
the measured frequencies, voltages and currents are given as input to the C Caller
blocks to transmit the information as GOOSE and SV packets. The substation
delivers to two loads of 90 MW. Two circuit breakers in internal switching mode and
the three phase voltage and current measurement circuits are connected between
the buse and loads. Three phase voltage and current delivered to the first load are
referred to VI-E01 whereas the ones delivered to the second load are referred VI-E03.
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Figure A.3: Substation simulation in Simulink

GOOSE and SV C Caller interface blocks are implemented as subsystem in the
substation simulation as shown in Figure A.3. The subsystem after adding GOOSE
calls for all the circuit breaker status and SV calls for all the three phase current
and voltage values will look as in the figure below Figure A.4:
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Figure A.4: GOOSE and SV communication subsystem

To test the interface, the GOOSE and SV messages are transmitted to a simulated
IED on a virtual machine.

For testing the GOOSE/SV interface in the Simulink simulation, Wireshark is
used. Figure A.5 and Figure A.6 represent an example of the captured packets.

Figure A.5: GOOSE message on Wireshark
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Figure A.6: SV message on Wireshark

The circuit breaker status and the measurement data is also sent to Matlab
workspace from where it can be stored into .xls or csv file which can be used later if
needed. This is mainly done for data storage and may be used for analysis of data
at later stage.

A.3 The GNS3 network model
A.3.1 The GNS3 Network Model and Available Hardware Resources
The network topology of the whole network is depicted in Figure A.7.

The network simulation tool, GNS3, is used to model the communication between
the different virtual machines simulating Intelligent Electronic Devices (IEDs).

The host PC used for most of the testing is equipped with an AMD Ryzen 5
2600 CPU with 6 cores and 12 threads and 16 GB RAM. The virtual machines are
generally set up according the following configuration. In fact, the attacker machine
has access to all cores at 100% performance and 1300 MB RAM, all other VMs are
restricted to use 1 CPU core with a 40% execution cap. It is worth mentioning that
below this value, the IEDs were not able to satisfy the desired time constraints. In
the following subsections, a description of the behaviour of the main virtual machines
is given, under normal circumstances.
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1Figure A.7: GNS3 network topology

IED-D01
The server IED listens to the Sampled Values (SV) messages sent by MU_D01
and analyzes them according to the configured protection and control functions.
A simplified operation of a server IED is implemented. Indeed, if any of the
measurements transmitted from SV messages is above a certain threshold, a circuit
breaker must be activated indicating a possible fault. According to this, a boolean
attribute value on the server is set which triggers a burst GOOSE. In normal operation,
IED_D01 resends the same unchanged packet. When a fault occurs, a burst of
GOOSE messages is triggered. In this case, the fault packets are retransmitted
with increasing time delays of [𝑚𝑖𝑛𝑇𝑖𝑚𝑒 * 2𝑛], 𝑛 = 1,2, . . . for 1000 ms. One second
after the fault, the GOOSE communication returns to the normal 1000 ms repetition
process.

These changes in the server attribute values are also sent to the Station PC in
form of MMS reports. The MMS connection between IED_D01 and Station PC is
TLS encrypted as recommended in [52].

B-IED-D01
The circuit breaker IED listens to the GOOSE transmission from IED_D01, and
when the respective boolean attribute value is set to true, the device interrupts the
flow of current. Then, as a confirmation message, a burst of GOOSE messages with
the new circuit breaker state is sent back to IED_D01. For demonstration purposes,
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the timestamp in the prefix of the incoming GOOSE packet with the command from
IED_D01 is included in the dataset of the outgoing GOOSE. This means that a
change in timestamp of the incoming GOOSE message triggers a burst GOOSE for
B_IED_D01, however, it does not change the desired behaviour since the prefix
timestamp change occurs as a consequence of a change in the dataset. The same
GOOSE timing rules apply as for IED_D01.

Station PC
The Station PC serves the purpose of a Human-Machine Interface as it provides
monitoring and controlling possibilities. As mentioned above, the server IED reports
the anomalies to the Station PC.

A.3.2 Logging
The data transmitted between the different simulated components of the substation
are recorded in log files. The logs produced by each simulated device is presented in
the following.

• MU_D01 writes out the content of all sent SV messages.

• IED_D01 prints all incoming SV and GOOSE packets reaching the receiver
module. In fact, if they are considered to be valid, the same packets are printed
when reaching the listener module. Once the Time-allowed-To-Live (TTL)
timespan has been exceeded, the internal counters of the receiver module are
reset, assuming the connection is lost. So the next incoming GOOSE packet
can be evaluated as valid irrespectively of their stNum and sqNum.

• B_IED_D01 prints the same information as IED_D01. However, it is worth
mentioning that the simulated B_IED_D01 wt does not subsrcibe to any SV
messages contrarily to IED_D01.

• The station PC prints out the received MMS reports (there was an error while
recording so these logs are missing at the moment).
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Figure A.8: Log of a GOOSE message



118

Figure A.9: Log of a SV message



B Analysis of Parameters Convergence of SS-AR Model

An SS-AR model of order 𝑛 = 10 was used for modeling the network traffic of the
substation introduced in Chapter 3. The choice of 𝑛 = 10 is based on a trade-off
between model complexity and description of the corresponding time series. Different
experiments were performed using the estimated model to generate simulation data.
An SS-AR model was computed for each experiment and the parameters are shown
in Figure B.2 and Figure B.1. The initialization values were kept constant for all the
experiments. After approximately 25 iterations, the parameters converge to the final
values.
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Figure B.1: Convergence of 𝑎7 to 𝑎10
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C Details of the Detection Results in the Second Use Case

In the present appendix, detailed results related to the case study of Section 6.3
summarized in Table 6.3 are presented. Tables Table C.1 to Table C.6 corresponds to
the detection of the changes for different thresholds reported in the aforementioned
case study. The detection performance including the detection time are described.
The smallest values among the different thresholds of the expected cost 𝐶𝑒𝑥𝑝 of
EDA4GNeT are depicted in bold. The maximum values of the intrusion capability
𝐶𝐼𝐷 of the different threshold values of each change in the second use case are shown
in bold.
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Table C.1: Comparison of detection results of first change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −22.80 3.2730 3.8417 0.1245 0.1185 0.0962 0.1001 0.9002 0.5488
0.2 – −22.72 2.5375 3.7980 0.2303 0.1260 0.0996 0.1190 1.0139 0.5154
0.3 – −21.69 1.2511 1.7688 0.1554 0.1304 0.1694 0.1020 1.0040 0.9131
0.4 – −22.69 5.5811 3.0741 0.1233 0.1370 0.0174 0.1090 1.0048 0.8198
0.5 – −22.78 3.6245 2.4879 0.0333 0.1493 0.0758 0.1112 0.9628 0.5286
0.6 – −20.19 2.7281 3.0663 0.3067 0.1549 0.0717 0.1100 0.9701 0.3284
0.7 – −22.44 3.8151 3.5628 0.1395 0.1592 0.0906 0.1500 0.9101 0.4912
0.8 – −21.86 3.4238 3.0522 0.1307 0.1999 0.0912 0.1000 1.0017 0.9896
0.9 – −22.53 3.6641 3.4166 0.2430 0.2613 0.1090 0.1020 0.9017 0.7999
1 – −21.11 0.3643 3.3020 0.2731 0.3073 0.1097 0.1100 1.2057 0.5985

* Detection delay expressed in discrete time 𝑘
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Table C.2: Comparison of detection results of second change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −16.96 3.1320 3.1778 0.0912 0.3056 0.0962 0.1032 0.9599 0.5189
0.2 – −17.82 3.4391 2.8778 0.2333 0.2545 0.0965 0.0932 0.9685 0.5249
0.3 – −17.22 2.4742 2.9778 0.2617 0.2139 0.0964 0.0914 0.9688 0.5613
0.4 – −17.08 1.4417 3.1356 0.2060 0.3220 0.0992 0.1036 0.9601 0.5488
0.5 – −17.63 1.7340 3.2104 0.2333 0.2460 0.0951 0.0890 0.9635 0.5125
0.6 – −17.06 1.4723 2.2889 0.2024 0.1138 0.0801 0.1034 0.9516 0.5849
0.7 – −17.32 4.0056 3.1067 0.2307 0.3217 0.0899 0.1033 0.9798 0.5497
0.8 – −17.01 3.5346 3.1556 0.2058 0.3085 0.0890 0.1133 0.9682 0.5281
0.9 – −17.00 2.0442 3.4219 0.2800 0.2397 0.0809 0.1133 0.9698 0.5024
1 – −17.31 2.0794 2.1122 0.1890 0.3260 0.0894 0.1095 0.9676 0.5201

* Detection delay expressed in discrete time 𝑘
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Table C.3: Comparison of detection results of third change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −21.40 2.0692 3.0713 −0.4015 0.4017 0.0990 0.0904 0.9152 0.8642
0.2 – −19.99 2.1903 2.0713 −0.3148 0.4074 0.0938 0.0903 0.9462 0.9484
0.3 – −20.84 2.1081 2.0851 −0.4143 0.4072 0.0886 0.0920 0.9472 0.9187
0.4 – −20.08 1.7895 2.0752 −0.3130 0.4274 0.0712 0.1001 0.9418 0.8944
0.5 – −21.00 2.5214 3.0733 −0.3350 0.4127 0.0864 0.1001 0.9418 0.8102
0.6 – −20.96 1.9709 3.0752 −0.3120 0.4017 0.0808 0.1001 0.9418 0.8630
0.7 – −21.94 2.2801 3.0733 −0.3911 0.4274 0.0904 0.1001 0.9409 0.8315
0.8 – −21.00 1.6651 3.1792 −0.2105 0.4173 0.0952 0.1000 0.9418 0.8157
0.9 – −20.95 2.3883 2.8851 −0.3290 0.3122 0.0935 0.1002 0.9418 0.8128
1 – −20.94 1.9745 2.9752 −0.3520 0.3148 0.0903 0.1002 0.9418 0.8951

* Detection delay expressed in discrete time 𝑘
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Table C.4: Comparison of detection results of fourth change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −24.57 0.9245 2.5144 0.0402 0.0992 0.0803 0.0912 0.9348 0.6152
0.2 – −21.28 1.4050 2.6144 0.0400 0.1980 0.0830 0.0902 0.9266 0.5014
0.3 – −23.66 1.3285 2.7881 0.0401 0.1877 0.0839 0.0911 0.9250 0.5110
0.4 – −19.29 1.3765 2.8124 0.0401 0.1791 0.0848 0.0901 0.9398 0.5106
0.5 – −22.84 2.3085 2.9122 0.0400 0.1800 0.0854 0.0902 0.9352 0.5020
0.6 – −23.06 2.5382 2.9148 0.0401 0.1809 0.0836 0.0902 0.9347 0.5117
0.7 – −23.04 2.5775 2.1179 0.0403 0.1799 0.0844 0.0879 0.9324 0.5097
0.8 – −26.92 2.3902 2.1589 0.0401 0.1838 0.0841 0.0919 0.9335 0.5193
0.9 – −22.19 2.2164 2.5151 0.0401 0.1000 0.0850 0.0934 0.9313 0.5074
1 – −23.36 2.3711 2.8167 0.0401 0.1820 0.0855 0.0947 0.9224 0.5002

* Detection delay expressed in discrete time 𝑘



126

Table C.5: Comparison of detection results of fifth change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −33.69 1.5206 2.5117 0.0669 0.1390 0.0806 0.0871 0.9292 0.6154
0.2 – −33.96 1.5605 2.5417 0.0667 0.1391 0.0817 0.0911 0.9229 0.6094
0.3 – −29.05 1.5104 2.5518 0.0663 0.1390 0.0810 0.0891 0.9292 0.6103
0.4 – −35.53 1.5003 2.5071 0.0663 0.1390 0.0821 0.0810 0.9225 0.6012
0.5 – −34.00 1.5004 2.5317 0.0663 0.1390 0.0829 0.0881 0.9478 0.6081
0.6 – −34.97 1.5004 2.5317 0.0669 0.1390 0.0830 0.0910 0.9225 0.6125
0.7 – −34.00 1.5904 2.5217 0.0673 0.1391 0.0829 0.0880 0.9252 0.6106
0.8 – −33.91 1.5104 2.5267 0.0670 0.1390 0.0804 0.0870 0.9295 0.6105
0.9 – −33.82 1.5518 2.5492 0.0669 0.1390 0.0802 0.0872 0.9225 0.6101
1 – −33.87 1.5793 2.5417 0.0670 0.1390 0.0806 0.0840 0.9224 0.6102

* Detection delay expressed in discrete time 𝑘
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Table C.6: Comparison of detection results of sixth change using EDA4GNeT

Threshold Earliness of Detection*
Basic Composite

FPR [%] FNR [%] 𝐶𝑒𝑥𝑝 𝐶𝐼𝐷

1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step 1-step multi-step
0.1 – −14.88 1.5288 2.3510 0.1645 0.0912 0.0944 0.0930 0.9837 0.4613
0.2 – −14.02 1.5090 2.3610 0.1144 0.0935 0.0719 0.0650 0.9372 0.5746
0.3 – −14.83 1.9858 2.3491 0.0347 0.1147 0.0820 0.0801 0.9937 0.2724
0.4 – −16.00 1.9517 2.3401 0.1936 0.0978 0.0764 0.0804 1.3708 0.2560
0.5 – −18.98 0.8422 2.3110 0.2217 0.1680 0.0626 0.0903 1.0037 0.0866
0.6 – −10.58 0.8358 2.3310 0.1667 0.1178 0.0847 0.1003 0.8469 0.2506
0.7 – −14.24 1.2989 2.3510 0.0399 0.0888 0.0848 0.1101 0.8987 0.2925
0.8 – −13.25 1.7929 2.3310 0.3940 0.0985 0.0992 0.1001 0.9798 0.1229
0.9 – −17.17 1.6989 2.3410 0.2917 0.1348 0.0617 0.0103 0.8474 0.4160
1 – −14.44 1.3192 2.3428 0.3925 0.0948 0.0624 0.1011 0.9072 0.3811

* Detection delay expressed in discrete time 𝑘
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