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Abstract

The proliferation of handheld devices and the pressing need of location-based services call for

precise and accurate ubiquitous geographic mobile positioning that can serve a vast set of devices.

Despite the large investments and efforts in academic and industrial communities, a pin-point so-

lution is however still far from reality. Mobile devices mainly rely on Global Navigation Satellite

System (GNSS) to position themselves. GNSS systems are known to perform poorly in dense ur-

ban areas and indoor environments, where the visibility of GNSS satellites is reduced drastically.

In order to ensure interoperability between the technologies used indoor and outdoor, a perva-

sive positioning system should still rely on GNSS, yet complemented with technologies that can

guarantee reliable radio signals in indoor scenarios. The key fact that we exploit is that GNSS sig-

nals are made of data with timing information. We then investigate solutions where opportunistic

timing signals can be extracted out of terrestrial technologies. These signals can then be used as

additional inputs of the multi-lateration problem. Thus, we design and investigate a hybrid sys-

tem that combines range measurements from the Global Positioning System (GPS), the world’s

most utilized GNSS system, and terrestrial technologies; the most suitable one to consider in our

investigation is WiFi, thanks to its large deployment in indoor areas. In this context, we first start

investigating standalone WiFi Time-of-flight (ToF)-based localization. Time-of-flight echo tech-

niques have been recently suggested for ranging mobile devices over WiFi radios. However, these

techniques have yielded only moderate accuracy in indoor environments because WiFi ToF mea-

surements suffer from extensive device-related noise which makes it challenging to differentiate

between direct path from non-direct path signal components when estimating the ranges. Existing

multipath mitigation techniques tend to fail at identifying the direct path when the device-related

Gaussian noise is in the same order of magnitude, or larger than the multipath noise. In order to

address this challenge, we propose a new method for filtering ranging measurements that is better

suited for the inherent large noise as found in WiFi radios. Our technique combines statistical

learning and robust statistics in a single filter. The filter is lightweight in the sense that it does not

require specialized hardware, the intervention of the user, or cumbersome on-site manual calibra-

tion. This makes the method we propose as the first contribution of the present work particularly

suitable for indoor localization in large-scale deployments using existing legacy WiFi infrastruc-

tures. We evaluate our technique for indoor mobile tracking scenarios in multipath environments,

and, through extensive evaluations across four different testbeds covering areas up to 1000 m2,
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the filter is able to achieve a median ranging error between 1.7 and 2.4 meters.

The next step we envisioned towards preparing theoretical and practical basis for the aforemen-

tioned hybrid positioning system is a deep inspection and investigation of WiFi and GPS ToF

ranges, and initial foundations of single-technology self-localization. Self-localization systems

based on the Time-of-Flight of radio signals are highly susceptible to noise and their performance

therefore heavily rely on the design and parametrization of robust algorithms. We study the noise

sources of GPS and WiFi ToF ranging techniques and compare the performance of different self-

positioning algorithms at a mobile node using those ranges. Our results show that the localization

error varies greatly depending on the ranging technology, algorithm selection, and appropriate

tuning of the algorithms. We characterize the localization error using real-world measurements

and different parameter settings to provide guidance for the design of robust location estimators

in realistic settings.

These tools and foundations are necessary to tackle the problem of hybrid positioning system

providing high localization capabilities across indoor and outdoor environments. In this con-

text, the lack of a single positioning system that is able the fulfill the specific requirements of

diverse indoor and outdoor applications settings has led the development of a multitude of local-

ization technologies. Existing mobile devices such as smartphones therefore commonly rely on

a multi-RAT (Radio Access Technology) architecture to provide pervasive location information

in various environmental contexts as the user is moving. Yet, existing multi-RAT architectures

consider the different localization technologies as monolithic entities and choose the final nav-

igation position from the RAT that is foreseen to provide the highest accuracy in the particular

context. In contrast, we propose in this work to fuse timing range (Time-of-Flight) measurements

of diverse radio technologies in order to circumvent the limitations of the individual radio access

technologies and improve the overall localization accuracy in different contexts. We introduce

an Extended Kalman filter, modeling the unique noise sources of each ranging technology. As a

rich set of multiple ranges can be available across different RATs, the intelligent selection of the

subset of ranges with accurate timing information is critical to achieve the best positioning accu-

racy. We introduce a novel geometrical-statistical approach to best fuse the set of timing ranging

measurements. We also address practical problems of the design space, such as removal of WiFi

chipset and environmental calibration to make the positioning system as autonomous as possi-

ble. Experimental results show that our solution considerably outperforms the use of monolithic

technologies and methods based on classical fault detection and identification typically applied in

standalone GPS technology.

All the contributions and research questions described previously in localization and positioning

related topics suppose full knowledge of the anchors positions. In the last part of this work, we

study the problem of deriving proximity metrics without any prior knowledge of the positions of

the WiFi access points based on WiFi fingerprints, that is, tuples of WiFi Access Points (AP) and

respective received signal strength indicator (RSSI) values. Applications that benefit from prox-

imity metrics are movement estimation of a single node over time, WiFi fingerprint matching for
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localization systems and attacks on privacy. Using a large-scale, real-world WiFi fingerprint data

set consisting of 200,000 fingerprints resulting from a large deployment of wearable WiFi sen-

sors, we show that metrics from related work perform poorly on real-world data. We analyze the

cause for this poor performance, and show that imperfect observations of APs with commodity

WiFi clients in the neighborhood are the root cause. We then propose improved metrics to pro-

vide such proximity estimates, without requiring knowledge of location for the observed AP. We

address the challenge of imperfect observations of APs in the design of these improved metrics.

Our metrics allow to derive a relative distance estimate based on two observed WiFi fingerprints.

We demonstrate that their performance is superior to the related work metrics.
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Chapter 1

Introduction

The aim of this thesis is the design and evaluation of a full-fledged system architecture for

pervasive mobile positioning. This problem is timely since the rapid proliferation of smartphones,

tablets and more recently wearable devices is driving the market to create innovative services. In

particular, the geographical location is at the core of a number of Location Based Services (LBS)

on mobile devices, in a market expected to reach 40.99 billion US dollars by 2022 while it only

accounted for 5.22 billion US dollars in 2016 [2].

Yet, a seamless positioning system is far from reality: the ossification of scientific approaches

for indoor localization is proved by the fact that in the last decade no significant progresses have

been made in the commercial market out of a vast research literature, where services provide

similar accuracy as years ago and improvements are mainly in terms of coverage and mapping

of indoor buildings [67], and ”new” solutions such as iBeacon still rely on the cell identifier

messages broadcasted by nodes such as iPhones [1]. The above shortcomings are caused by the

lack of pervasive support of the output of a navigation system (e.g. the position) at the quality

(for instance: positioning accuracy) requested by the mobile services. We motivate that through

a simple but concrete problem, which prevents from realizing a seamless experience. (P) A user

walks in the city center until she enters in some narrow roads with three-floors buildings. GPS

originally worked fine, and then started displaying a wrong position, until no location estimate is

available. Mobile sensors are also not helpful, since they continuously require accurate landmarks

to compensate for dead reckoning.

There are plenty of terrestrial radio signals in range in the aforementioned areas. Why are they

not helpful when needed? In simple terms, problem (P) is caused by the general low accuracy

of satellite navigation systems in absence of clear view of the sky, and the inability of current

systems to use the right data from nearby space. Existing scientific approaches based on WLAN

networks can only deliver median accuracy in the order of a few meters or being environmental-

specific calibration intensive [8, 15, 80]. More demanding metrics, such as the 80-percentile of

precision, often provide unacceptable results.

As a potential killer use-case, we imagine to be in the gray zone, where signals from one

1
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positioning technology do not suffice to locate the device. Supposing we can receive signals from

two GPS satellites and from 2 WLAN APs, 3D-multilateration cannot be computed with only two

independent signals from one technology. In contrast, it can be computed with four independent

signals from two technologies (GPS and WLAN). As a result, the mobile could now position

itself. However, current devices do not allow such an integration since the different technolo-

gies work as monolithic blocks. We address this fundamental problem in the thesis. Therefore,

within the timeline of the present thesis, we investigate and demonstrate the feasibility of a fine-

grained and seamless mobile positioning with accuracy and coverage not possible nowadays. We

provide results applicable to real-world scenarios and, therefore, of interest for academia and

industry. Hereby, manufacturers of mobile devices (smartphones, tablets, etc,. . . ), wearable cog-

nitive assistance (glasses, watches, etc,. . . ) and network infrastructure (APs, controllers, etc,. . . ),

are envisioned first adopters. Users and LBS will all benefit from the new concrete vision and

tangible results that this thesis brings.

As of today, satellite navigation and data network communication have operated according to

isolated structures. Satellite navigation systems process the incoming satellite signals and com-

putes the PVT (Position, Velocity, Time) data. Conversely, technologies such as Wireless Local

Area Network (WLAN) and cellular networks are natively designed to address the communi-

cation problem, and, just more recently, they provide support for simple navigation. However,

their focus remain on communication. In the realm of navigation, Global Positioning System

(GPS) is the ”de-facto” standard technology, while it is well-known to fail indoor. Interest for

the indoor location ecosystem is mainly spawn by the need of users to navigate indoor, as well

as social applications, emergency response and augmented reality. An arising area of interest

that requires precise indoor location is physical analytics, that aims to understand and better plan

the physical space [56]. Given the additional benefit of the densification of APs deployment

and the large availability of WLAN chipsets in most today’s mobile devices, the result is that

802.11 WLAN is currently the driving assisting technology for location services, also beating

other short range communication technologies like infrared [73], RFID [36], ultrasonic [63] and

ultra-wideband [27]. In the commercial sector, big industrial players, such as Google, have in-

troduced indoor navigation services based on 802.11 WLAN and indoor maps. There has been

limited attention in the literature to introduce an architecture to integrate data and signals of

terrestrial communication and satellite navigation signals at a high granularity [69]. The most

successful approach so far is Assisted-GPS (AGPS), that greatly helps to reduce the time-to-first

fix (TTFF) by sending ephemeris and almanac data through communication networks. These ap-

proaches do not help to neither increase the coverage nor the accuracy of the navigation service,

and do not integrate signals but rather data [58]. Standards of cellular networks such as LTE also

provide support for timing information, but there has been little exploitation so far for commercial

services.
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1.1. Publications that have led to this Thesis

The ideas and investigations briefly described above resulted in the following refereed pub-

lications [22–24, 65]. All papers are already published. [65] is published in IEEE/ACM Trans-

actions on Networking, a Q1 journal. Moreover, the author presented [22] at IEEE WiOpt

2016, [23] at ACM/IEEE IPSN 2018 and [24] at European Wireless 2018. IEEE WiOpt and

ACM/IEEE IPSN conferences are respectively rated B and A* according to CORE 2018 confer-

ences ranking. Finally, [13] is a contribution that emanated from a collaboration with Roberto

Calvo, PhD student at the same university. It is published in IEEE INFOCOM 2017 (CORE 2018

A*) but is not considered as part of the present PhD thesis report submitted for evaluation.

[24] A.Fakhreddine, N.O.Tippenhauer, D.Giustiniano, ”Design and Large-Scale

Evaluation of WiFi Proximity Metrics”, EUROPEAN WIRELESS 2018, Catania, Italy, May

2018.

[23] A.Fakhreddine, D.Giustiniano, V.Lenders, ”Data Fusion for Hybrid and Au-

tonomous Time-of-Flight Positioning”, IEEE/ACM IPSN 2018, Porto, Portugal, April

2018.

[65] M.Rea, A.Fakhreddine, D.Giustiniano, V.Lenders, ”Filtering Noisy 802.11

Time-of-Flight Ranging Measurements with Commoditized WiFi Radios”, IEEE/ACM

Transactions on Networking 2017.

[22] A.Fakhreddine, D.Giustiniano, V.Lenders, ”Evaluation of Self-Positioning Al-

gorithms for Time-of-Flight based Localization”, WiOpt 2016, Tempe, Arizona, USA, May

2016.

[13] R.Calvo-Palomino, D.Giustiniano, V.Lenders, A.Fakhreddine, ”Crowdsourcing

Spectrum Data Decoding”, IEEE INFOCOM 2017, Atlanta, GA, USA, 1-4 May 2017.

1.2. Main Contributions and Organization of the Thesis

We highlight in this section the principal findings of this thesis and how the latter is structured.

Chapter 2 discusses the notions and research questions we attempt to tackle in this thesis, and

related work from the literature on the general topic regarding pervasive and indoor localization,

with a special focus on WiFi ToF-based ranging and technology fusion for positioning.

In Chapter 3 we provide a thorough analysis and experimental results related to WiFi Time-of-

Flight ranging with Commercial-Off-The-Shelf (COTS) Wifi radios. Apart from the last Section

of Chapter 3 (Section 3.8), the content of this Chapter is essentially published in [65], a work

co-authored with the PhD student Maurizio Rea. We point out that the contributions of the author

of the present thesis to the experiments shown in Section 3.3.3, Section 3.3.4 and Section 3.3.5

are very limited, nevertheless, we show them in the thesis for completeness and a smooth flow
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of ideas and contributions. The author rather worked on the modeling of the non-Gaussian noise

affecting the ToF measurements, contributed to the design and evaluation of the adaptive filter for

ToF shortest path estimator (Section 3.7) and proposed the environment training-free shortest path

estimator (Section 3.8). After introducing principles of the WiFi echo technique for ToF compu-

tation, an exhaustive investigation of the noises affecting the ToF measurements is presented in

Section 3.3. This is a prerequisite for a design of a ToF shortest path estimator. Two methods

are proposed, an adaptive filter based on environment training described in Section 3.7, and an

environment calibration-free shortest path estimator built on a robust Gaussian Mixture Model

(GMM) fit.

Chapter 4 poses the problem of hybrid positioning. As the considered technologies for this

hybrid positioning system are GPS and WiFi ToF (see Chapter 3), an overview of the well-known

GPS ranging is given in this Chapter in order to make this thesis book self-contained. Before dig-

ging into the multi-technology multilateration problematic, we first inspect the Extended Kalman

filter (EKF) in the context of single-technology positioning and compare it to the widely used

Least-Squares approach. A study of the EKF parameters’ tuning is also presented in Section 4.5

as this step is crucial to optimize the EKF and later on tune it properly in the context of fusing

heterogeneous ranges. This is exhaustively analyzed in Section 4.6. Another relevant problematic

we examine here and illustrate in Section 4.7.1 is how to estimate the bias introduced by the WiFi

AP while using the ToF echo technique, discussed in the previous Chapter. We propose to alle-

viate the need of any knowledge concerning this bias which is chipset dependent and estimate it

taking benefit of GPS ranges, we also show a fingerprinting approach to compute this chipset bias

in the context of pure WiFi positioning. Finally, in the scenario in which an abundant number of

anchors (GPS SVs and WiFi APs) is available, we come up with a novel Statistical-Geometrical

method (Section 4.9) to infer the optimal set of anchors to consider for the position fix and thus

remove the unreliable ones that negatively affect the positioning accuracy.

Chapter 5 depicts the design and large-scale evaluation of WiFi-proximity metrics in a context

in which the positions of the anchors are unknown. After illustrating the real and artificial datasets

used for this study, we show how related work metrics are inaccurate in the considered context.

Then we show that the probabilistic observation of APs is the main cause of this inaccuracy.

Thus, we address this issue in the design of improved proximity metrics in Section 5.4.3 and

demonstrate their accuracy and robustness.

Finally, in Chapter 6, we wrap-up the main ideas and concepts studied in this thesis, draw

relevant conclusions before giving ideas of future work that could potentially extend this work.



Chapter 2

Background & Related Work

2.1. Indoor Localization

The indoor localization literature is vast, including techniques using signal strength [7, 15,

32, 50, 80], the angle of arrival [30, 66, 78] or combining WiFi signals with inertial sensors as

found in smartphones [64]. In this section, we aim to give an brief overview on different indoor

localization techniques in addition to some general Non-Line-Of-Sight (NLOS) mitigation based

solutions.

Common proposals to combat the multipath problem are for example the use of ultrawideband

signals [18,27,46] or frequency diversity [45,62]. However, these approaches require specialized

hardware or software-defined radios which increase costs and hinders localization at larger scales.

ToneTrack [79] tries to overcome the problem of limited bandwidth, inherent to WiFi time-based

localizations. It combines channels to form virtual larger bandwidths without increasing the ra-

dio’s sampling rate, taking benefit of frequency hopping, to increase the resolution of Time of

Arrival (ToA) profiles. SpotFi [44] uses APs equipped with 3 antennas and commodity WiFi

chipsets. It jointly estimates the Angle of Arrival (AoA) and ToF pairs of each path using the

channel state information, and estimates the likelihood that these pairs correspond to the direct

path between the AP and the target. [44] does not use ToF to compute the ranges, so its util-

ity is limited to the likelihood estimation unlike our solutions presented in Sections 3.7 and 3.8

where the ranges are estimated from filtered ToF measurements. The need for intervention of the

user may be unwanted in setups where the objective of positioning the user is to understand and

better plan the physical space [56]. A solution that can independently run on the infrastructure

side has also the advantage of disentangling the core of the positioning tracking from the mobile

application where additional services and higher accuracy could be provided only if the user is

interested to install the application. Other solutions try to identify and mitigate the NLOS ef-

fects like [77] that uses WiFi RSS measurements to do so. The proposed solution combines a

machine learning technique to first extract typical features from the training data collected during

extensive indoor measurement campaigns and estimate the ranges using a regression model, and

5
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an identification approach based on hypothesis testing. The approach still needs a training phase

that requires an offline classification or calibration. Still in RSS based ranging, [72] proposes to

use a GMM model to filter corrupted range estimations caused by NLOS radio propagation by

modeling distributions of LOS and NLOS sets of estimates. To mitigate the NLOS effect based

on ToA measurements, in [37] the authors propose to use in a multiple model framework two

filters in parallel, an Extended Kalman Filter (EKF) that performs well in LOS environments and

a robustified EKF based on a regression that uses a redescending score function to deal with harsh

NLOS environments.

In the following, we classify different indoor localization approaches in key categories. Solu-

tions requiring specialized hardware, Angle-of-Arrival techniques, RSS-based WiFi localization

and we finally dedicate the next section to WiFi ToF techniques.

Solutions requiring specialized hardware. The earliest indoor localization schemes were

based on specialized hardware. Cricket [63] used ultrasound devices and the Active Badge [73]

system relied on infrared equipment. RFID-based [36] or ultra-wideband systems [27] have also

been proposed. While dedicated systems with specialized hardware may achieve higher accuracy

than techniques that rely on signals from existing infrastructures such as WLAN or GSM, their

application is limited to dedicated deployments. 802.11 WLAN is the driving assisting technology

for location services, also beating other short range communication technologies like infrared

[73], RFID [36], ultrasonic [63] and ultra-wideband [27].

RSS-based WiFi localization techniques. The research community has been striving to find

a pin-point positioning solution for WiFi based on the radio-frequency signal strength. A draw-

back of using the RSSI is that the signal attenuation in indoor environments becomes not only de-

pending on the distance but also highly dependent on the material of the obstacles between radio

devices like walls, doors, etc. As a consequence, RSSI-based indoor localization systems require

extensive site-specific calibration, in order to match RSSI measurements against the training data.

Several matching techniques have been proposed, either deterministically such as k-nearest neigh-

bor [7], or probabilistically such as Bayesian inference [80], or using side-channel information

like inertial sensors and maps [39, 51, 64]. Recent effort to remove the offline radio calibration is

leading to models which usually result in lower accuracy [15, 32, 50]. Studies conducted by [81]

have shown that commercial products are less accurate (median error of 74 m) and may fail to

provide the published accuracy specifications. Over the last years, many WiFi-based localization

systems have been proposed [50,64,80]. The vast majority of these systems rely on the Received

Signal Strength Indicator (RSSI) to estimate the position.

Angle of arrival localization techniques. Recent approaches in 802.11 also exploit the An-

gle of Arrival (AoA), which requires advancements in the hardware. ArrayTrack uses sophisti-

cated rectangular array of 16 antennas [78]. CUPID [66] works on COTS APs and it reduces the

effect of multipath with respect to signal-strength measurements. However it is highly suscep-

tible to indoor shadowing, which results in distance errors of more than 10 m. Differently from

our system, it further needs inputs from the inertial sensors of the smartphones. [30] is a work
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that addresses some of the practical challenges to apply AoA in commodity hardware, it shows

that 802.11 NICs can be calibrated and synchronized to a tolerance of 15 degrees median phase

error using three and five antennas. AWL [14] uses a spatial aliasing scheme to improve the AoA

estimation accuracy, it achieves a sub-meter accuracy using a single AP equipped with 6 antennas.

2.2. ToF-based WiFi localization

ToF-based localization holds the promise of WLAN-based localization without environmen-

tal calibration requirements. ToF Echo techniques based on packet exchanges in WiFi networks

were first proposed in [49, 54] and refined in [16, 29, 31, 34]. However, unlike our work, none of

these approaches address the effect of non-Gaussian noise such as in multipath-rich environments.

ToF measurements are subject to severe noise and have thus long been considered impracticable

for WLAN localization. Back then, Li et al. [49] suggested in their work that the accuracy of

spacing between a DATA and ACK frame that are defined to be separated by a SIFS time is up to

2µs, equal to 600 m of error, and too high for indoor localization. Later on, echo techniques have

however been proposed by [54] to resolve the absence (or low precision) of clock synchronization

in Wi-Fi chipsets. Because of hardware limitations and limited access to low-level functionali-

ties, ToF measurements conducted by [16, 31, 34] were subject to variable jitter and significant

post-processing. In [26], the authors introduced directional Yagi antennas to eliminate the effect

of multipath and other noise sources from WiFi echo techniques. They achieved a positioning

accuracy of less than 5 m in 8 from 10 positions. In contrast, the filter and shortest path estimator

we introduce in Chapter 3 work with omnidirectional antennas in environments with multipath.

Our approach has the additional advantage of reducing the time estimation uncertainty for

weak signal-to-noise ratios transmissions. More recently, CAESAR [29] has shown a method-

ology to extract ToF measurement using driver-level operations. A direct comparison to [29] as

presented in this work (Section 3.7.3) shows that the error with our statistical filter can be reduced

in indoor environments by a factor of more than two compared to classical estimators that do

not compensate for the bias of the multipath. [26] introduced directional Yagi antennas to elimi-

nate the effect of multipath and other noise sources from WiFi echo techniques. They achieved a

positioning accuracy of less than 5 m in 8 positions over 10. In contrast, our system works with

single omnidirectional antennas in environments with multipath. SAIL [53] is a ToF system using

WiFi that has been designed for localization in multipath environments. However, SAIL requires

inputs from the inertial sensors in the smartphone. SAIL achieved median error of ≈ 1 m and

80-percentile error of ≈ 5 m, which is comparable to our filter, at the drawback of requesting the

collaboration from the mobile user through the installation of a dedicated application on smart-

phones. The need for intervention of the user can be unwanted in setups where the objective of

positioning the user is to understand and better plan the physical space [56]. A solution that can

independently run on the infrastructure side has also the advantage of disentangling the core of the

positioning tracking from the mobile application where additional services and higher accuracy
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could be provided only if the user is interested to install the application.

2.3. Fusion of different technologies

As of today, satellite navigation and data network communication have operated according

to isolated structures. Satellite navigation systems process the incoming satellite signals and

computes the position Conversely, technologies such as WiFi and cellular networks are natively

designed to address the communication problem, and, just more recently, they provide support for

simple navigation. However, their focus remain on communication. In the realm of navigation,

Global Positioning System (GPS) is the ’de-facto’ standard technology, while it is well-known to

fail indoor. Interest for the indoor location ecosystem is mainly spawn by the need of users to

navigate indoor, as well as social applications, emergency response and augmented reality. The

types of assistance from radio-terrestrial communication technologies can be segmented in either

through assistance and measurements from the infrastructure or from the user. Given the addi-

tional benefit of the densification of APs deployment and the large availability of WiFi chipsets

in most today’s mobile devices, the result is that 802.11 WiFi is currently the driving assisting

technology for location services.

Techniques based of ranges include signal strength [7, 15, 32, 50, 80], angle of arrival [30,

66, 78] and time-of-flight (ToF) [29, 53, 79]. There has been limited attention in the literature to

introduce an architecture to integrate data and signals of terrestrial communication and satellite

navigation signals at a high granularity [69]. The most successful approach so far is Assisted-

GPS (AGPS), that greatly helps to reduce the time-to-first fix (TTFF) by sending ephemeris and

almanac data through communication networks. These approaches do not help to neither increase

the coverage nor the accuracy of the navigation service, and do not integrate signals but rather

data [58]. To this end, solutions such as real-time differential GPS are necessary, which can

minimize some of the systematic errors. These methods are complementary to our work as they

correct any bias at one location by measuring the bias at known locations and using a network

of additional satellites and ground-based reference stations [55]. This highly reduces the errors

affecting the GPS pseudoranges, however, they remain inefficient in scenarios with reduced GPS

visibility. There has also been very little attention to the problem of understanding how to merge

timing measurements for ranges coming from different technologies. [25] studies the ambiguity in

the position that may be caused by using both GPS and WiFi range measurements, yet it does not

try to outperform standalone GPS’s accuracy. Some works like [15] investigate complementarity

between GPS and WiFi positioning, but not a ranging-level fusion. [15] proposes a localization

algorithm that relies on GPS to infer the WiFi APs positions when localizing mobile devices using

WiFi signal strength. Our system can be extended introducing similar functionalities. Combining

GPS with inertial sensors is widely used in outdoor environments to enhance the GPS positioning

accuracy [5].



Chapter 3

WiFi ToF-based Ranging with COTS
Radios

3.1. Introduction

Localization using the Time-of-Flight (ToF) of RF signals is today the most popular technique

to track moving objects in outdoor environments. The most prominent usage of ToF is the Global

Positioning System (GPS) which exploits signal propagation times from different satellites to

localize mobile devices on earth. Also, radar systems commonly rely on the propagation time of

RF signals to localize aircrafts in the airspace. While the ToF technique has been widely adopted

in outdoor environments, its application for indoor localization in WiFi environments has been

relatively modest so far. When it comes to WiFi based localization, the research community has

instead focused more intensively on different approaches such as the signal strength [7,15,32,50,

80], the angle of arrival [30,44,66,78] or combining WiFi signals with inertial sensors as found in

smartphones [53,64]. The problem with the latter approaches is that they either require extensive

manual on-site calibration, the need for intervention of the user, or specialized hardware. These

factors limit the deployment of these approaches at larger scale.

The challenge with ToF is that very precise signal propagation time estimates are required.

At the speed of light, a measurement error of 1µs already results in a distance estimation error

of 300 meters which is intolerable for most indoor applications. In order to achieve meter-level

localization accuracy, a precision in the order of a few nanoseconds is therefore needed. However,

at this level the ToF is affected by various sources of noise [16, 29, 31, 34, 49, 54]. For example,

the relatively small bandwidth of WiFi signals and the limited clock rate of commercial off-

the-shelf (COTS) WiFi radio receivers hinder the exact determination of the time of arrival of a

signal. In echo techniques, the target may further add significant jitter before acknowledging the

reception of the echo. Specially indoors, the signal may additionally be obstructed and reflected

over multiple paths which adds a positive bias to the estimated range.

In order to mitigate the impact of noise in ToF measurements, several techniques have been

9
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proposed in the literature. To combat the device-related Gaussian noise, unbiased estimators that

rely on the mean or median of the collected ToF samples provide a good estimate of the true

ToF [29]. To combat the multipath noise, biased estimators that aim at identifying the direct

path such as the MUSIC algorithm [48, 79] can provide good results as well. Other approaches

such as the expectation-maximization algorithm have been successfully applied to signal strength-

based localization [32], and we could envision their application to combat the multipath noise

of ToF measurements. However, we show in this work that, in WiFi ToF, the noise follows a

Gaussian mixture model with each Gaussian component being in the same order of magnitude as

the multipath bias, and we demonstrate that these estimators fail to provide an accurate estimate

of the true ToF as we need for ranging.

In this chapter, we present two filters that are specially designed for estimating the range in

WiFi indoor environments based on noisy ToF measurements. Our first filter relies on a combi-

nation of statistical learning techniques to train an environmental-specific linear regression model

for the multipath bias and robust statistics for range estimation. This approach does not require

any specialized hardware and relies exclusively on the ToF information that can be extracted from

COTS WiFi radios. In addition, our environmental-specific linear regression model can be learned

in-situ and thus does not require any manual calibration. Moreover, we challenged this result to-

wards a new ranging technique (second filter) that does not require any environment calibration

while keeping the accuracy at an acceptable level.

We have used our filter to estimate the ranges of WiFi radio devices to the APs in range

in three different experimental testbeds. Our results show that our filtering technique is able to

significantly reduce the median ranging error over classical estimators. We further compared our

new environment-training-free ranging technique to the previous filtering technique we propose

in the largest of the previous testbeds. Our main contributions in this chapter are the following:

We present a firmware-based ranging architecture for round-trip time measurements

running in the MAC processor of WiFi chipsets, and we quantify and compare the amount

of noise that comes from the WiFi devices and the noise from the WiFi radio signal propa-

gation over the wireless channel.

We propose a filter based on statistical learning and robust statistics to estimate the

distance range from a series of noisy ToF measurements. Our filter does not require any

manual calibration and manages to estimate the distance to a remote WiFi device with

median error between 1.7 and 2.4 meters.

Finally, we propose a GMM fit based ranging method that does not require environ-

ment training while guaranteeing a very insignificant loss in accuracy with respect to the

previous filter that calibrates the environment.
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Figure 3.1: Principle of WiFi ToF echo technique

3.2. WiFi ToF Echo Technique

This section describes the principles of ToF ranging and the noise effects that arise when

applying this technique to off-the-shelf WiFi devices.

While traditional ToF-based echo techniques as employed in radar systems rely on uncoded

RF signals and their reflections, WiFi echo techniques use regular frames of communication [16,

29, 31, 34, 49, 54]. In WiFi communication, every DATA frame is acknowledged by the receiver

with an ACK frame. Since the interframe time between the DATA and ACK frames is fixed by the

802.11 standard (the Short InterFrame Symbol, SIFS, time), the delay between DATA and ACK

frames can be used to infer the distance between two nodes.

In reality, sources of time offset exist at the local (mobile client) and target (access point)

stations and that affects the accuracy of the ranging measurement. Let us refer to Fig. 3.1. If

d is the true distance between a local station and a target, the local station measures the time

tMEAS(d) between a sent DATA frame and a received ACK frame:

tMEAS(d) = 2 · tToF (d) + tACK + δ, (3.1)

where tToF (d) is the signal propagation time between the transmitter of the DATA frame and the

target (channel reciprocity is assumed), tACK is the time needed to transmit the ACK, and δ is

the measurement offset.

The offset δ is the sum of the offset due to the local station δL and the offset due to the target

station δT :

δ = δL + δT . (3.2)

The local offset δL arises at the measuring device due to the local imprecision in the timing in-

formation extraction, and the target offset δT is equal to the SIFS time plus any device-dependent

deviation from this number. The presence of multipath effect causes a positive offset to single

measurements and increases δL and/or δT .
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From eq. (3.1), we can then define the ToF measurement as

tToF (d) =
tMEAS(d)− tACK − δ

2
. (3.3)

At distance d = 0, we then have

tToF (d = 0) =
tMEAS(d = 0)− tACK − δ

2
= 0. (3.4)

And therefore eq. (3.3) can be rewritten as:

tToF (d) =
tMEAS(d)− tMEAS(d = 0)

2
. (3.5)

The distance from the measuring station to the target device can be computed for the generic

sample1 m as:

dm = c · tToFm (d), (3.6)

where c is the speed of signal propagation which is close to the speed of light in air.

In the more general case, let L denote the set of links to a mobile station andM the set of

samples. We can then express the generic sample as:

di,m i ∈ L,m ∈M.

Once M samples have been collected for a link i ∈ L, the distance d̂i between the local station

and the mobile device is estimated as follows:

d̂i = f(di,1, di,2, . . . , di,M ), i ∈ L (3.7)

where f is an estimator of the distance that aims at filtering out the noise of individual mea-

surements. The major contribution of this work is the development of a robust estimator f that

estimates the distance to a target device using WiFi ToF, in the presence of rich multipath as found

in common indoor environments, and severe noise as found in commodity WiFi chipsets.

3.3. Noise Analysis of WiFi ToF-based Ranges

While the firmware-based approach we introduce later in Section 3.5 can allow us to measure

the ToF with the best precision using commoditized WiFi radios, the ToF measurements are still

affected by large noise coming from severe sources of noise which we discuss in the following in

more details. In order to collect samples {di,m} for this analysis, we first determine the reference

value tMEAS(d = 0) (cf. eq. (3.5) and eq. (3.6)). To this end, we directly connect the AP oper-

ating as ToF measuring station to a device to be calibrated and perform reference measurements

1A sample is collected per 802.11 DATA/ACK handshake.
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Figure 3.2: Noise introduced by ToF ranging. Tests in a controlled environment (Cable) show
that there are sources of large dispersion in the estimation. Tests over the air (LOS and NLOS
propagation) show that the distribution greatly depends on the channel conditions. All the tests
are in addition subjected to quantization noise and other spurious noise sources.

over three coaxial cables of different lengths. We then infer tMEAS(d = 0) for the distance at

0 m by means of linear regression. This process is required only once per chipset.

3.3.1. Target ACK delay

The 802.11 standard specifies the SIFS time between the reception of a DATA and the trans-

mission of an ACK at the receiver as a fixed interval. In 802.11b, for example, this time is

specified as 10µs [4]. However a relatively high tolerance of 1 µs is tolerated which can result

in significant noise and distance estimation errors up to 300 meters if the target would fully ex-

ploit this specified tolerance level. While most chipsets may not fully exploit this tolerance, the

dispersion is still quite significant. To illustrate this, Fig. 3.2 on the left represents the resulting

dispersion of a typical Broadcom WiFi chipset. The shown histogram was obtained by collecting

sequences of samples {di,m} according to Eq. (3.6) for 10, 000 packets. To avoid any dispersion

from environmental effects, the measurements were performed over a coaxial cable of 13.5 me-

ters. We observe that there are sources of noise that can lead to distance estimations that range

from 0 to 25 meters, even under ideal signal propagation conditions such as cables.

3.3.2. Multipath reflections

It is well known that signal propagation in complex indoor environments is subject to multi-

path effects in which multiple copies of the transmitted signal arrive at the receiver over different

reflected paths. It is even possible that the direct component is entirely attenuated and the signal

is received only over indirect paths. Since signals that travel over indirect paths will take longer

time to arrive at the receiver, they introduce a non-Gaussian error in the distance estimation when

considering the time-of-flight. This situation is shown in Fig. 3.2 in the middle and on the right

where the same experiment as on the left was repeated but for a line-of-sight (LOS) and non-line-
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of-sight (NLOS) signal propagation link over omnidirectional antennas. In the LOS experiment,

there is a visible connection between the measuring station and the target, while in the NLOS

experiment, they are obstructed. The dispersion spans a range of 40 and 60 meters for the LOS

and NLOS links, respectively, and the large noise in the measurement can also result in negative

di,m samples (see Fig. 3.2 in the middle), especially when the true distance di is relatively small.

In addition, the NLOS link shows a non-Gaussian distribution. Multipath effects must therefore

be taken into consideration in order not to overestimate the distance when dealing with reflected

signal propagation paths. Finally, multipath may also happen in LOS links, and thus a method

robust to the propagation conditions must be designed.

3.3.3. Quantization and measurement uncertainty

Off-the-shelf WiFi chipsets have not been designed to provide accurate ToF measurements.

A main source of noise comes from the coarse clock resolution of the radios. For example,

the Broadcom chipset operates with a reference clock of 88 MHz, corresponding to a maximal

distance resolution of 1.7 meters. In addition to this quantization noise, off-the-shelf chipsets

introduce all sorts of considerable additional noise. As we could see in the histograms of Fig. 3.2,

the shape of the distribution is far from being smooth despite using 10, 000 samples to create

the histograms, suggesting that the radios must have some bias when measuring the time. Other

sources of noise must therefore also be factored in order to estimate the distance. On the other

hand, the effects of the clock drift are negligible. See details in [29].

3.3.4. Congestion and interference

Wireless congestion and interference have no impact on the ACK delay (that is, δT ) since the

802.11 channel is reserved during the SIFS period to the receiving node (i.e. the target station) as

dictated by the 802.11 carrier sense multiple access with collision avoidance (CSMA/CA) proto-

col [4]. However, collisions occur on the wireless medium, causing data retransmissions. Only

acknowledged data frames are considered as valid ToF samples, while unacknowledged frames

do not generate any ToF measurement. Since the wireless resources are shared, the presence of

congestion can increase the time required to obtain a sufficient number of samples for ranging.

We study the problem of wireless congestion in an open space room (to reduce as much as possi-

ble the multipath, and focus on the impact of interference), with one link of 19 meters in LOS. In

this setup, the AP transmits DATA at PHY rate of 1 Mb/s. The AP computes the distance averag-

ing over the collected ToF samples. We then repeat the ranging measurement for the same link,

adding 802.11 traffic from another wireless station that saturates the channel with interfering traf-

fic (UDP traffic of 4 Mb/s) sent at PHY rate of 1 Mb/s. The results are presented in Fig. 3.3. The

Figure shows the average of the distance estimation, both in absence and presence of interference.

While the long-term ranging accuracy is the same in absence of interference and in presence of

interference saturating the channel, the latter causes a longer time to converge to the true distance
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Figure 3.3: ToF distance estimation in a LOS link of 19 meters in absence and presence of inter-
fering traffic. In the experiment, the ToF measuring station sends DATA at PHY rate of 1 Mb/s.

di. We can conclude that, in order to efficiently handle interference, it is important to design a

system that requires only a few samples M for the ranging estimation.

3.3.5. Device-related Noise Analysis

In this section, we analyze in details the noise originated at the measuring station and at the

target station. The goal of this analysis is to quantify the device-related noise and determine

whether the non-Gaussian noise we observe in ToF measurements is only due to environmen-

tal effects such as multipath or the local and target devices also add non-Gaussian noise to the

measured values.

In order to address this question, we use a low-noise oscilloscope to measure the offset distri-

bution of {δT }. This high-end wideband oscilloscope is an Infiniium 90000A model with a fast

sampling rate of 10 GS/s [12]. The internal noise of the oscilloscope can be regarded as negligible

compared to the noise introduced by the WiFi radios and therefore provides us a mean to analyze

the target offset δT in isolation.

On the left of Fig. 3.4, we show the histogram of the target offset δT as measured with the

oscilloscope using approximately 300 samples, and the resulting Gaussian fitting function. We

run the Lilliefors test and find that the hypothesis that the distribution of δT is Gaussian cannot be

rejected, with a high p-value equal to 0.43 while setting the significant level to 0.05. Therefore

it is safe to assume that δT can be approximated with a Gaussian distribution N with standard

deviation equal to σδT .

We then statistically compare the distribution of {δT } measured with the oscilloscope with

the distribution {tMEAS(d)} measured at the local station with our firmware-based approach

presented in Section 3.5. For the comparison, we collect samples of tMEAS(d) in LOS links with

limited multipath at d = {1, 15, 60}m and draw the quantile-quantile (QQ) plots, a graphical

method for comparing two probability distributions. If the distributions are linearly related, the
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Figure 3.4: On the left: distribution of {δT }, as measured with our oscilloscope, and its Gaussian
fitting function. On the right: QQ plots of δT versus tMEAS(d).

points in the QQ plot will approximately follow a line. The resulting QQ plots are shown on

the right of Fig. 3.4. We observe a linear pattern, which indicates that {δT } and {tMEAS(d)}
have very similar noise distributions in presence of limited multipath. We also observe that the

dispersion of the two distributions is very similar, with a standard deviation of 4.0 − 4.1 WiFi

clock cycles in both cases. As a result of these investigations, we conclude that:

The noise of tMEAS(d) in LOS links with limited multipath is largely dominated by

the Gaussian noise of the target offset δT .

The dispersion of the local offset δL in LOS links has a negligible impact on the

distribution of tMEAS(d), and our approach to implement the ToF measurement in the

firmware does not add a significant dispersion.

The non-Gaussian ToF noise that we observe in many indoor links of our testbed is

not related to the local or target noise of the WiFi devices but rather to environmental effects

such as multipath.

3.4. Dealing with Non-Gaussian Noise

Existing multipath-resistant estimators assume that the non-Gaussian noise from the reflected

signal path components are the dominant sources of noise. However, as we have shown in the

previous Section, the device-related Gaussian noise is extensive in WiFi radios. In order to deal

with these combined sources of noise, the focus of this section is to analyze different robust

estimators f to estimate the true distance d for multipath-rich indoor environments.
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Figure 3.5: Generation of a direct path and a reflected path in simulation using the GMM model,
with small Gaussian noise of the target station. As expected, the EM algorithm can reliably
estimate the two modes.

3.4.1. Noise Model

While the device-related noise can be approximated as an environmental-independent Gaus-

sian distribution, this is not the case for the noise that arises from the effect of multipath re-

flections. The amount of multipath is very much dependent on the environment and the exact

position of the devices. Under multipath propagation between two WiFi nodes, the distribution

of ToF measurements will be non-Gaussian, as a result of those data frames where the 802.11

transceiver synchronizes to a delayed copy of the signal.

Estimating the true distance using this noisy data is not trivial with WiFi radios. In fact, we

cannot directly measure the individual multipath components at the signal-level on off-the-shelf

WiFi radios since the WiFi chipset only synchronizes to the strongest path, resulting in a positive

or null bias bi,m ≥ 0.

In order to design a reliable estimator f of the distance, we model the ToF noise in presence

of multipath rich environment as follows. Let us consider a link i ∈ L. The true distance di of this

link is affected by an additive Gaussian noiseN , generated by the target station, with the standard

deviation equal to σδT (cf. Section 3.3.5). di is further affected by a distance bias bi,m ≥ 0 caused

by the absence (bi,m = 0) or presence (bi,m > 0) of multipath. Therefore, for each sample, we

can model the distance di,m as follows:

di,m = di + bi,m +N (0, σδT ), (3.8)

where di is the true distance.

Grouping together the samples with the same bias after clock quantization (that limits the

distance resolution per sample to 1.7 m, cf. Section 3.5), we have a finite Gaussian Mixture

Model (GMM) with a small number of modes. One of these modes corresponds to the samples
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synchronized to the direct path (the samples with bi,m = 0), while the others correspond to the

samples synchronized to any of the reflected paths. In general, no component is dominant and we

can conclude that the Gaussian mixture is non-Gaussian distributed.

3.4.2. Reliability of the Estimation of the Gaussian Components

A fundamental difference with respect to classical GMM applications is that the multipath

noise superimposes to the large noise σδT added by the target device. The deviation due to σδT
can be much stronger than the bias error caused by synchronizing to a delayed copy in a multipath

propagation2. Classical techniques for learning the modes of the GMM model need instead that

the modes are either sufficiently apart or consider that only a small number of samples is received

as reflected paths representing a few outliers [35].

In order to verify how well current learning mechanisms for a GMM model could be applied

to WiFi ToF, we generate in simulations 1, 500 samples using the GMM model and suppose that

there exist only two modes, one mode representing the direct path and one mode representing the

reflected path. We then apply the expectation–maximization (EM) algorithm [11] (the details of

the algorithm are presented in Section 3.6.3) to cluster the samples. In the scenario, we consider

that the direct path has a distance of 10 m and that the reflected path has a traveled distance of

26 m. The mixture weights of the Gaussian components are equal to 0.12 and 0.88, respectively.

This indicates that the 802.11 WiFi chipset synchronizes more often to the reflected path, which

is in general the stronger signal component. We first make the (ideal) assumption that δT is

much smaller than in real measurements. We call it ”Simulation of Ideal Case”. In the second

scenario, we consider that δT is equal to the one empirically measured in Section 3.3.5. We call

it ”Simulation of Real Case”.

We plot the results of ”Simulation of Ideal Case” in Fig. 3.5. We observe that the EM algo-

rithm estimates the parameters of the components of the Gaussian mixture almost perfectly: the

estimated mean of the direct path’s distribution is equal to 9.8 m and the mean of the reflected

path’s distribution is 25.9 m. It follows that we are able to estimate the distance of the direct path

with an error of only 0.2 m. We then plot the results of ”Simulation of Real Case” in Fig. 3.6.

Clearly visible from the Figure, we do not have anymore a clear separation of the two Gaussian

components. The parameters are here overestimated: the estimated mean of the direct path’s dis-

tribution is 19.3 m and the mean of the reflected path’s distribution is 29.1 m. Concluding, we

have a high error in the estimation of the direct (and shortest) path, used for ranging, of 9.3 m.

2For instance, in the example in Section 3.3.5, we have a standard deviation of 4 clock cycles of the noise of
the target device in LOS conditions. This results in a 99-percentile dispersion of the error of approximately 2.58 ∗
4(deviation in clocks)∗2∗1.7(conversion of clock to ToF distance) = 35.1m, higher than a typical error caused
by synchronizing to a delayed copy of the 802.11 signal in a multipath propagation in indoor scenario.
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Figure 3.6: Generation of a direct path and a reflected path in simulation using the GMM model,
with Gaussian noise of the target station as found in our experiments. The EM algorithm fails to
reliably estimate the two modes.

3.5. ToF on COTS WiFi Radios and Testbeds

The design of a robust estimator f requires first to characterize the noise sources of WiFi ToF.

For this reason, we implement a ToF ranging system using commodity hardware. To alleviate any

unnecessary source of noise or instability from the operating system, ToF measurements have to

be performed as close as possible to the radio hardware. Rather than in the driver [29] or upper

layers [34], the best method is therefore implementing the code for ToF measurements in the

firmware of the WiFi radio chipset. To measure tMEAS(d) in the firmware, we have customized

the open-source 802.11 openFWWF firmware3. This firmware is written in assembler and runs

on off-the-shelf 802.11 Broadcom chipsets, such as the ones widely used in Linksys access points

(APs). Our customized firmware reports tMEAS(d) for each successful DATA-ACK frame pair.

The timing is regulated by the general purpose timer, running based on the wireless card’s internal

clock at a rate of 88 MHz. The timer starts to count clock cycles just after the 802.11 processor

sets up a register to indicate that a frame has been sent. Once the ACK frame has been received

(or the ACK timeout has elapsed), another register gets updated and the timer gets stopped. Every

time a measurement is made, the firmware writes tMEAS(d) into a defined address of the shared

memory (SHM). The architecture is shown in Fig. 3.7. Since the driver has also access to the

shared memory block, it can retrieve the measurement every time an ACK is received4. In the

driver, we gather additional data about the incoming ACK such as the data rate, the AP MAC

address, etc, and store them all in a buffer. Once this buffer is full or a timeout has elapsed, the

data is transferred to the user space with the help of UDP sockets. We use UDP sockets since it

allows to easily send the data to user-space, and forward it to a central server for further processing

3http://www.ing.unibs.it/openfwwf/
4We operate in promiscuous mode which allows us to know in the driver when an ACK has been received and thus

a new data is available in the shared memory block.

http://www.ing.unibs.it/openfwwf/
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Figure 3.7: TOF measurement architecture. The figure shows the interaction between firmware,
driver and user space. Measured ToF data from the firmware is transferred to the driver through
shared memory (SHM). Buffered ToF measurements are then sent to user space.

or directly to the central localization unit.

3.5.1. System Setup

We have built a prototype ToF system that consists of COTS APs operating as ToF measuring

stations. In our deployments, the AP are static stations. The APs use Soekris net5501 embedded

machine with a 500 MHz AMD Geode LX single chip processor. The APs are part of the same

802.11 extended basic service set (ESS) and broadcast the same service set ID (SSID). The APs

are equipped with Broadcom AirForce54G 4318 mini PCI type III cards and an omnidirectional

antenna. The Broadcom chipset is operated with our customized firmware and the b43 driver

presented above. The APs are connected over Ethernet to the location computing unit, that is

responsible to process the raw data and compute the position.

As target station we use unmodified Dell Inspiron 5150 laptops equipped with Broadcom

AirForce54G 4318 mini PCI type III cards and the integrated antenna of the laptop. In our de-

ployments, the target station may be static or mobile according to the type of experiment (see

Section 3.5.2 on deployment scenarios for the details). The target station is associated to the ESS

network connecting to one of the APs. At any point in time, the target device is associated to only

one AP of the ESS, as in typical 802.11 wireless networks.

In order to perform ranging measurements, the APs use regular DATA frames that are ac-

knowledged by ACK frames from the targets. The ranging measurements are performed in a

round-robin fashion among the APs. For every DATA frame, a round trip time tMEAS(d) is mea-

sured by the AP from the end of the transmission to the end of the reception of the corresponding

ACK (or when a timeout occurs in the case of a loss). Since the target is associated to a single

AP, the other APs send their DATA frames with the source MAC address of the AP to which the

target is associated. In order to adapt the source MAC address of the APs, we rely raw sockets

and the PCAP library5 which allows us to generate a custom MAC header with any MAC address

as the source.

5http://www.tcpdump.org/

http://www.tcpdump.org/
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3.5.2. The WiFi Localization Testbeds

We consider two types of scenarios for the deployment. The first scenario considers controlled

experiments, where we avoid any environmental effects by connecting two stations using coaxial

cables. The cables are of length 13.5 m and are based on the standard RG-58. In the second

scenario, we perform experiments with transmissions over the air in four indoor testbeds, namely

Testbed I, II, III and IV. The maps of the four indoor testbeds are shown in Fig. 3.8. Testbed IV

uses the same environment as in Testbed I, but APs are partially placed at different locations.

We deploy 9 APs in Testbed I, 9 APs in Testbed II, 10 APs in Testbed III, and 9 APs in

Testbed IV. Testbed I, II and IV are office environments. The environment of Testbed I is shown in

Fig. 3.8a. It covers a surface of almost 1000 m2. We use 25 randomly selected locations (marked

as a cross) to test our algorithms. We conducted tests over two different days, with some positions

repeated again with different locations of some furniture, and collect a total of 207 wireless links.

Testbed II is depicted in Fig. 3.8b. It features 180 links and it covers a smaller space of around

200 m2. The target station is placed in 20 different positions. Testbed III is shown in Fig. 3.8c. It

has been deployed at the facilities of the IEEE/ACM IPSN 2014 - Microsoft Indoor Localization

Competition [3]. The testbed has 200 links and it covers 320 m2. The target device is placed at

20 positions in two rooms and a hallway.

Testbed IV is deployed to study the performance of mobile device tracking. In this testbed,

we measure the position when a mobile device is moving from position 1 to 19 as marked in

Fig. 3.8d. For these mobility tests, a user moves at a speed of approximately 0.4 m/s. At the

time that the user passes at one of the marked positions, we estimate the position with our filter

and record the value. We then repeat the tests in the following setups: when the user stops at the

marked locations for 2 and 5 seconds, respectively.

In all the testbeds, a mixture of line-of-sight and non-line-of-sight wireless links are present.

During all experiments, people are moving within the testbed areas. The testbeds also contain

several obstructions, including concrete walls, tables and glasses. All experiments are conducted

with other active WiFi networks in the neighborhood. We operate the testbeds on a fixed frequency

channel of the 2.4 GHz ISM band. The PHY automatic selection rate is active, such that the

measurements include probes sent at different rates.

3.6. ToF shortest Path Estimation: Background

3.6.1. MUSIC Algorithm

First, in order to apply MUSIC to WiFi ToF, we consider that the ToF sequence of sam-

ples {tToFi,1 , tToFi,2 , . . . , tToFi,M } characterizes the wireless link i ∈ L between the WiFi AP i and

the receiver. We see this sequence as equivalent to the time impulse response of the propaga-

tion radio channel. The purpose here is to estimate the P multipath delays; including the first

one (the direct path or, in general, the shortest path). So we apply the MUSIC algorithm to
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(a) Testbed I.
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(c) Testbed III.













































(d) Testbed IV. (same as Testbed I. with a different placement of the APs)

Figure 3.8: Testbeds to assess the ranging and positioning capabilities of our system in static
conditions. Circles correspond to AP locations and crosses to target locations.

{tToF
i,1 , tToF

i,2 , . . . , tToF
i,M } in the same way it is applied in [48] to the impulse response. The MU-

SIC algorithm relies on the eigen-decomposition of the autocorrelation matrix of the frequency
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domain channel response, which will analogically be in our case the Fast Fourier Transform of

{tToFi,1 , tToFi,2 , . . . , tToFi,M } in NFFT points. In our evaluation we set NFFT = 100. The frequency

domain signal is then decomposed by projection into two orthogonal subspaces. The signal sub-

space generated by the eigenvectors corresponding to the P largest eigenvalues of its autocorrela-

tion matrix and the noise subspace generated by the eigenvectors corresponding to the remaining

NFFT -P smallest eigenvalues. The problem is reduced finally to finding the P multipath delays

that maximize the inverse of the norm of the projection vector into the noise subspace followed

by applying a peak detection algorithm to find the positions of the local maxima. The position

of the first peak corresponds then to the estimated ToF for the direct path component for distance

computation.

3.6.2. CAESAR

Third, CAESAR relies on comparing the standard deviation σi of {di,1, di,2, . . . , di,M} to a

threshold ts to decide whether the shortest path component is predominant for the considered link

or not. It exploits the fact that the presence of severe multipath results in a higher σi with respect

to links with only a direct path. So a correction factor γs is subtracted to reduce the overestimated

distance caused by the multipath. γs = 0 if σi < ts which means that no correction is needed and

γs = σi/2 if σi ≥ ts to mitigate the multipath effect on a sequence of samples partially received

via a reflected path.

3.6.3. Basic EM Algorithm

Second, the EM algorithm [11] estimates the parameters πk, µk, and σk of a Gaussian mix-

ture g(x) =
∑
k∈κ

πk ∗ gN (µk,σk)(x), where κ indicates the set of modes. It relies on the iter-

ative maximization of the log-likelihood function weighted by the conditional probability that

a considered sample belongs to the mode k ∈ κ. In our evaluation we decompose the se-

quence {di,1, di,2, . . . , di,M} in two modes (with the first one indicating the shortest path)6 in

order to estimate the mean of the first Gaussian distribution, used to compute the distance esti-

mate. The initialization of the parameters πk, µk and σk is done as follows: i) πk = 1/card(κ),

where card(κ) refers to the cardinality of the set of modes κ (i.e. we start by assigning equal

weights to the Gaussian components of the Gaussian Mixture distribution), ii) for µk we ran-

domly select card(κ) points from the overall set of data to serve as the initial means, and

finally, iii) concerning the initial values of the standard deviations of the Gaussian compo-

nents, we simply start from the standard deviation of the overall GMM sequence as follows:

∀k ∈ κ, σk =
√
var{di,1, di,2, . . . , di,M}.

6Higher order modes did not show better performance.
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Figure 3.9: Same simulation data set as in Fig. 3.6: We conjecture that, by taking a percentile
below 50%, we can counterbalance the biased values bi,m > 0 in the estimation process and
estimate the mean of the direct path’s Gaussian distribution.

3.7. ToF shortest Path Estimation: Adaptive filter design

The results of the previous section have shown that classical algorithms fail to estimate the

distance in WiFi echo techniques. In this section, we explore a different methodology for the

estimation of the distance. First of all, in WiFi ToF, we are only interested in the direct path’s

distance or, in general, the shortest path’s distance. Indeed, we do not need an algorithm (as the

EM algorithm) that estimates the distance of all the paths, including the longer ones. In GMM

links with only a direct path (∀m ∈ M, bi,m = 0), the median or the mean would be a reliable

estimator of the direct path’s distance. However, as a result of the GMM model in WiFi ToF, the

sequence is in general mixed with samples where the local station synchronizes to a delayed copy

of the WiFi signal (∃ m ∈ M : bi,m > 0). In the latter case, using the median of the sequence,

e.g. the 50% percentile of the distribution as estimator would result in an over-estimation of the

distance. We then conjecture that, by taking a percentile below 50%, we can counterbalance the

biased values bi,m > 0 in the estimation process. In the example shown in Fig. 3.9, a percentile

equal to 9 would be effective to counterbalance the biased value and report the true distance.

Formally, let us consider a link i ∈ L and collect a sequence of M measurements

{di,1, di,2, . . . , di,M}. We define the optimal percentile piopt as the percentile that provides, for

each link i, the minimum absolute distance estimation error with respect to the true distance di:

pi
opt = argmin

0≤p≤0.5
|di − d̂i(p)|, (3.9)

where d̂i(p) is the estimated distance using the p-percentile of the distribution {di,m}. The goal

is to design a statistical estimator f that estimates the optimal percentile piopt based on some

observables and gives as output the estimated distance ̂di(piopt).
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Table 3.1: The absolute value of Pearson correlation coefficient ρ between different moments of
the RSSI and ToF versus the optimal percentile popt (0=no correlation, 1=maximal correlation).
It is worth noting that the ranging is always performed using ToF measurements. For example,
the use of moments of RSSI is limited to infer the optimal percentile, it should not be confused
with RSSI-based ranging.

unfiltered pre-filtered
median of RSSI 0.62 0.63

standard deviation of RSSI 0.04 0.05

skewness of RSSI 0.23 0.24

median of ToF 0.76 0.76

standard deviation of ToF 0.19 0.21

skewness of ToF 0.20 0.51

We train various options for the observables in the estimator f in an extensive evaluation in

one of our testbeds (Testbed I, Fig. 3.8a) with all links. As candidate observables, we consider

the first three moments (median, standard deviation, and skewness) of the ToF as well as of

the received signal strength indicator (RSSI). All three moments could in principle be indicators

of multipath. For example, when the median of the ToF is low (or the median of the RSSI is

high), the two ranging devices are close to each other and hence likely to have a short line-of-

sight connection between each other with little multipath delay. An increased standard deviation

of the ToF or the RSSI may indicate that signals are received over several paths with different

propagation delays and/or attenuations. The skewness of the ToF and RSSI distributions will also

be intuitively larger over links with multiple propagation paths. For each of these six observables,

we evaluate two variants, leading to a total of twelve candidate estimators. In the first variant, we

determine the moments directly on the raw samples {di,1, di,2, . . . , di,M}. In the second variant,

we attempt to pre-filter obvious outliers that arise from the device-related measurement noise

prior to determining the moments. These outliers are filtered out applying the Thompson Tau

technique [75], a statistical method for deciding whether to keep or discard samples based on the

expected value and the expected deviation of the sequence of samples.

We evaluate the precision of these estimators by determining their correlation to the a priori

known optimal percentile piopt. For this analysis, we compute piopt for a set of links with known

distance, i.e. placing the mobile device at known positions. To quantify the correlation between

the different moments and piopt, we rely on the Pearson correlation coefficient [9]. The Pearson

correlation coefficient ρ is an indicator of the linear correlation of the variables, where absolute

values close to zero indicate a low correlation and absolute values close to one represent a high

linear dependence of two variables. A value close to one thus indicates that a moment is a good

estimator to predict the percentile that will filter out the multipath noise effectively.

We consider the entire set of links in one of our testbeds (Testbed I). Table 3.1 shows the

resulting correlation coefficient ρ for all twelve variants. The best correlation is provided by the

median of the ToF, followed by the median of the RSSI and the skewness of the ToF. All other
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Figure 3.10: Median ToF versus optimal percentile popt for all links of Testbed I - Linear regres-
sion using offline and online calibration

moments have a correlation coefficient below 0.5 which indicates a low correlation. We note that

not all moments profit from pre-filtering to remove the outliers. For example, the median of the

RSSI and ToF perform worse when outliers are pre-filtered. On the other hand, the skewness of

the ToF increases from 0.20 to 0.51 and is therefore considerably better when pre-filtering the

outliers.

One may ask why the skewness of the ToF has a worse correlation than the median ToF.

Intuitively, the skewness of the distribution should be a good indicator of the multipath, given

that links with strong reflected (delayed) components are left-skewed, with popt smaller than for

right-skewed link. Our results suggest that the combined device-related noise of the receiver and

the measuring station have a strong negative effect on the correlation on the skewness. This is

reflected in the pre-filtered version of the skewness which has a considerably better correlation

than the unfiltered version. In contrast, the median of the ToF is much more robust to any device-

related noise and therefore outperforms the skewness. The reason for the median ToF working

best can be associated to the tendency of having longer reflected paths (and thus longer delays)

for links with longer distances and vice versa. In other words, when the ToF is small, the devices

are close to each other and the multipath noise will likely not affect much the ToF measurements.

On the other hand, when the median ToF is large, the devices are further apart and the links may

be affected more severely by the noise from reflected paths.

3.7.1. Proposed Filter Design

Provided the good correlation ρ between the median ToF and the optimal percentile piopt, we

design a linear model for the estimator f that relies on this correlation to estimate the percentile

from ToF measurements. The model is specific to the environment and we therefore train a model

for each testbed. The training works as follows. For each environment, we compute the median
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Figure 3.11: Adaptive filter design. A sequence of ToF measurements {d1, d2, . . . , dM} are fil-
tered by selecting a percentile p of the distribution according to the median of the measurements
d̄ which serves as an estimate of the amount of multipath on the link. The multipath estimator
is trained using a linear regression model of the median ToF versus the optimal percentile that
minimizes the error from ToF measurements between the APs.

ToF and the corresponding piopt. Note that this requires extensive training at many locations, but

we will show how to train a model without manual efforts in the next Section by training using

data collected only between the APs. The empirical distribution of the median ToF versus piopt

for all the 207 links of Testbed I is shown in the top of Fig. 3.10.

We note that piopt is widely distributed between 0 and 50%. Therefore, it does not exist

one value of percentile p that it is optimal for all the links, but it rather changes from link to

link. Nevertheless, there is a clear linear trend which we will exploit in our estimator f . To

get the model, we perform a linear regression on these data points and obtain an environment-

dependent linear model, as represented by the continuous line in the figure. Formally, let p̂iopt be

the estimated optimal percentile popti for a link i ∈ L. p̂iopt is computed with the following linear

regression equation:

d̄i = a · p̂iopt + c a ≤ 0, c ≥ 0 (3.10)

where d̄i = ̂di(p = 0.5) is the median ToF (estimated distance using the median), and the regres-

sion parameters a and c are trained by environment calibration on a given set of known distances,

minimizing the sum of squared residuals. Applying classical linear regression theory [19], we can

then state that a ρ2 ratio of the total variation of piopt can be explained by looking at the median

ToF d̄i. Small values of p̂iopt indicate that stronger multipath is statistically expected using the

median ToF for the distance estimation, while values closer to p = 0.5 indicate smaller multipath

delay.

3.7.2. Automatic Model Calibration

In real deployments, it is desirable to avoid any manual offline calibration to estimate the

regression parameters a and c of the linear regression model. We therefore propose to run the

calibration methodology based on ToF measurements between pairs of access points (APs) from

which we know the exact positions (the assumption of known AP positions generally applies
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Figure 3.12: ECDF of the distance estimation error for our adaptive filter compared to adaptive
filters based on other metrics and classical estimators based on the mean and the median of ToF
(Testbed I).

to many localization scenarios such as in airports, malls, museums or companies which have

a single wireless network operator.). This can be therefore performed online without human

intervention. The results of this online calibration between APs of Testbed I are shown in the

bottom of Fig. 3.10. We find that the calibration results in a very similar linear regression. This

suggests that in order to calibrate the model for a particular environment, the ToF measurements

between each pair of APs are sufficient. We illustrate our filter in Fig. 3.11. The individual steps

are as follows:

1. We train a linear regression model from online measurements between the APs and determine

the parameters a and c of eq. (3.10). The model characterizes the relationship between the median

ToF and the optimal percentile piopt (cf. eq. (3.9)).

2. For each link i ∈ L, we take a sequence of M measurements {di,1, di,2, . . . , di,M} and deter-

mine d̄i (median ToF).

3. The median ToF d̄i is used to estimate the multipath delay using the linear regression model

from step 1. The output of the estimator is a percentile value p̂iopt.

4. For each link i ∈ L, we apply a linear interpolation to the sequence of ToF measurements

{di,1, di,2, . . . , di,M}, select the p̂iopt-percentile of that sequence, and estimate the distance as

di(p̂iopt).

3.7.3. Evaluation

We analyze the performance of the filter we propose by evaluating the distance estimation

error across the aforementioned testbeds.
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Figure 3.13: ECDF of the distance estimation error for our adaptive filter compared to other
algorithms (Testbed I).

3.7.3.1. Distance Ranging Accuracy

We first evaluate the ranging accuracy using all links of Testbed I and offline calibration for

our filters (the impact of online calibration is evaluated later). Similar experiments are performed

in Testbed II and III. For each link, we compute the distance estimation error with 20 samples, and

then calculate the average error using 500 sequences. We consider our filter that uses the median

ToF, the median of the RSSI and the skewness of the ToF for estimating the optimal percentile.

We also provide the error for CAESAR, the MUSIC algorithm, the GMM model using the EM

algorithm, as well as classical estimators such as the mean and median of the ToF.

From Fig. 3.12 we see that our three new estimators outperform the mean and the median

metrics by comparing the Empirical Cumulative Distribution Function (ECDF) of the ranging

errors. We then compare our best performing filter, based on the median of ToF, against the

EM algorithm, CAESAR and the MUSIC algorithm. We show in Figure 3.13 that our filter

outperforms the other evaluated approaches. The best performance is achieved by our filter using

the median ToF. We obtain a median error of 2.4 m and a 80-percentile error of 5.3 m. The filter

that uses the median RSSI slightly outperforms the skewness of the ToF. This is not surprising

since Table 3.1 shows higher correlation coefficients of the filter with median RSSI. The mean

and median have roughly equal estimation error. Their median error is approximately 4.5 m and

the 80-percentile error is approximately 11.5 m. CAESAR gets a median error of 4.1 m and a 80-

percentile error of 7.3 m. Our evaluation of CAESAR is also very consistent to the one recently

presented in the indoor evaluation of [53]. With regard to the MUSIC algorithm, this approach

is ineffective as a result of the large noise introduced by the target station (cf. Section 3.3.5),

which is not taken into account in the model used by the MUSIC approach. The 80-percentile of

the MUSIC algorithm shows better performance than the mean and the median metrics, but still

worse than our new estimators. Finally, the EM algorithm outperforms CAESAR and MUSIC.

However, the median error of 3.9 m and an 80-percentile error of 7.1 m shows its inefficiency with
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median of ToF. Results are provided for different number of samples for Testbed I, II and III.

respect to our filter using the median ToF.

3.7.3.2. Robustness to Different Environments/Testbeds

Fig. 3.14 shows the median and 80-percentile of the distance error for the three different

testbeds using sequences of M = 20 samples and offline calibration. As shown in the x-label

of the figure, we measure a high Pearson correlation coefficient between the median of ToF and

the optimal percentile, in the range of 0.76 − 0.89. The median distance error is in the range

1.7− 2.4 m, and the 80-percentile error is in the range 3.7− 5.8 m. For comparison, the median

(80-percentile) real distances for Testbed I, II and III are equal to 12.3 m (19.2), 8 (11.9) m, 10.2

(15.7) m, respectively. We then examine the relative ranging error. It accounts for the ratio of the

ranging error over the real distance separating the AP and the target station. This metric, likewise

the previous ones, does not differ significantly along Testbeds I, II and III since the median relative

error remains in the range 21.5% - 23.7%.

Further, we show in Fig. 3.16 the distance error versus the true distance in all the evaluated
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Figure 3.16: Distance error versus the true distance in all the evaluated links in Testbeds I, II and
III.

links in Testbeds I, II and III. The correlation between the ranging error and the true distance is

0.20 considering the totality of the links in the 3 testbeds. This shows that the ranging error does

not depend on the true distance but it is more related to the existence of a LOS link. There are

cases where the true distance is relatively short while the shortest path follows a longer path due to

the absence of Line-of-Sight and the multiple reflections that the signal might experience before

reaching its destination, and thus a high ranging error. On the other hand, the true distance may

be relatively large, but with the existence of a LOS link, the ranging error can be consequently

small. Concluding, our filter is robust across different environments.

3.7.3.3. Impact of Number of ToF Samples

We evaluate the number of samples M necessary in our filter. Figure 3.15 shows the error for

our filter that relies on the median of the ToF as a function of the number of samples. The error

is stable with ten or more samples for the median of the distance error. Only the 80-percentile of

Testbed III can benefit from a higher number of samples.

3.7.3.4. Ranging Capacity

We study the capacity of the WiFi ranging technique, defined as the time C required to collect

M samples in a WiFi network ofN users. In order to find the capacity of the ToF ranging method,

we apply Little’s formula [71]:

C =
M ·N
S/P

, (3.11)

where S is the throughput and P indicates the payload bits of the single frame. We conduct

the analysis in saturation conditions and we apply the Bianchi’s formula to compute S [10]. We

also consider that the traffic for ranging does not have data content and it only consists of MAC
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Figure 3.17: Capacity analysis for ranging, considering N target stations and M = 20 samples
for the ranging estimation.

overhead. Considering M = 20 for the ranging estimation, the results versus the number of users

in the system are shown in Fig. 3.17. As expected, increasing the PHY rate helps reduce the time

C required to compute ranging estimates for N users. For instance, C = 0.25 s is needed to

compute the ranges to 30 users with PHY rate of 11 Mb/s, while C = 0.1 s is needed with PHY

rate of 18 Mb/s.

3.7.3.5. Online vs offline calibration

Our proposal for online calibration is to train our model for the adaptive filter using the links

between the fixed APs. Since the APs are at fixed known locations, this type of calibration does

not require any additional manual effort and can therefore be performed online; indeed, in order

to implement a practical tracking system, it is highly beneficial to avoid the need for offline

calibration in order to minimize the deployment efforts and costs.

We compare online versus offline model calibration for Testbed I in Fig. 3.18. We have three

findings. First, the online calibration achieves similar results with respect to the offline tests, and

we can then apply the calibration online without significant performance loss. Second, online

calibration outperforms the results we could achieve applying the linear regression achieved in

Testbed II and III to Testbed I, which implies that it is better to calibrate online than using the

calibration coefficients of other environments. Third, we find that the regression parameters {a, c}
of Testbed I and Testbed IV are very similar. This is mapped to very similar performance observed

in Fig. 3.18 using the offline calibration of Testbed IV. These testbeds use the same environment

but different placements of the APs. This result suggests that the calibration is largely AP-position

independent, but rather a feature of the environment.
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Figure 3.18: Comparison of offline and online calibration for Testbed I, and comparison with
different placements of the APs (i.e., Testbed IV).

3.8. ToF shortest Path Estimation: Robust GMM fit

In this section, we propose to investigate a new ranging approach for a shortest path estimator

that does not require any offline or online environment calibration, without a substantial loss of

accuracy with respect to the adaptive filter presented in Section 3.7. This would greatly benefit

pervasive positioning system that suppose no prior environment-related knowledge or to remove

this APs-cooperation requirement discussed in the previous section for online environment cali-

brations needs. Online calibration requires to generate additional wireless traffic, which may be

undesired.

In order to address this problem, we consider that, given N measurements, some of them use

the Line of Sight (LOS) path (or the shortest Non Line of Sight (NLOS) path in case the LOS

path does not exist), and others have one or more NLOS paths. For each single path, we consider

a Gaussian distribution for the noise generated by the AP replying with ACKs. Experimental

observations of Gaussianity of the single path is demonstrated in Section 3.3.5. We model the

sum of all these multipath components as a Gaussian Mixture Model (GMM). A key aspect of

the model is to identify the number of dominant paths (clusters) κ, which is up to 5 in indoor

environments [44]. We infer the optimal κ ∈ {1, . . . , 5} for the GMM statistical model computing

the lowest Akaike Information Criterion (AIC) for the N measurements [42]. We then divide the

N measurements in k paths with the GMM components likelihood optimized using the iterative

Expectation-Maximization (EM) algorithm initialized by k-means++ [6]. We then compute the

means of the k paths.

Our estimator rejects the paths with negative means, as they do not correspond to a physical

propagation path, and uses the path with the least positive mean as the shortest path to consider

for range computation. We use the raw data set collected in Testbed I. and we consider rounds

of 20 measurements as we did in Section 3.7 to estimate the distance. We show in Fig. 3.19 how
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close is the ranging error using the GMM fit model to the filter presented in Section 3.7 without

the need of performing any environment calibration. For this reason, the approach we propose

is a valid alternative for systems where it is undesired to generate additional wireless traffic for

online calibration. It brings more flexibility with respect to the approach proposed in the previous

section while keeping the accuracy at a relatively similar level.

3.9. Wrap-up & Summary

We have demonstrated the feasibility of mobile device tracking using ToF information ac-

quired from COTS WiFi access points and developed a new filter based on statistical learning

and robust statistics to improve the ranging accuracy in the presence of noisy ToF measurements.

Our estimators do not require additional information form the devices or the user besides the ToF

values which makes it applicable to a wide range of applications. We have shown how to apply

our estimators for indoor localization of COTS WiFi devices with legacy 802.11 Access Point in-

frastructures. In indoor deployments with multipath, both our estimators outperform conventional

ToF based range estimators by a factor of more than two. We have demonstrated the accuracy of

the filter to estimate the position in static and mobile settings. We have shown that the perfor-

mance of our filter can be achieved with online model calibration, and hence does not require any

cumbersome onsite pre-calibration efforts. We further challenged this approach and proposed a

shortest path estimator for ToF measurements that does not require any environment calibration

and have shown that with respect to the aforementioned adaptive filter, there is no substantial loss

in accuracy. This is of a tremendous interest in the following chapter as the autonomy of the

system is at the core of the investigation.



Chapter 4

Data Fusion for Hybrid and
Autonomous Positioning

4.1. Introduction

The proliferation of handheld devices and the pressing need of location-based services call for

precise and accurate ubiquitous geographic mobile positioning that can serve a vast set of devices.

Despite the large investments and efforts in academic and industrial communities, a pin-point so-

lution is however still far from reality [52]. Mobile devices mainly rely on the Global Positioning

System (GPS) to position themselves, known to perform poorly in dense urban areas and indoor

environments where the visibility of GPS satellites is reduced drastically. In order to ensure inter-

operability between the technologies used indoors and outdoors, a pervasive positioning system

should still rely on GPS, yet complemented with technologies that can receive radio signals in

indoor scenarios using commercial mobile clients.

Existing mobile devices such as smartphones commonly rely on a multi-RAT (Radio Access

Technology). One critical aspect for the localization problem is that the various technologies op-

erate as monolithic radios entities. Here the principle is to compute the final positioning selecting

the radio technology that is foreseen to provide the highest accuracy [74], with GPS used as a

black box with its position reading that could be simply turn on/off [58].

In this chapter, we pose the question of how a client could enrich the set of high-quality

ranging measurements for those scenarios with limited number of GPS satellites (no position can

be computed), or in presence of GPS pseudoranges largely affected by multipath (a rich set of

GPS measurements, yet low accuracy of the position). We propose to fuse range measurements

of diverse radio technologies in order to circumvent the limitations of the individual radio access

technologies and improve the overall localization accuracy. The concept of fusion has been a key

to achieve reliable position fixes in outdoors with GPS measurements and inertial sensors [5]. In

contrast, the literature has only scratched the surface of the problem of how to model and exploit

raw ranging measurements from heterogeneous technologies [69].

35
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For practicality of our design, we consider a system that computes the position based on

timing information (Time-of-Flight (ToF)) extracted from GPS and WiFi technologies. The latter

technology has been selected thanks to its large deployment in indoor areas and widespread usage

in mobile devices. Yet, new problems emerge in presence of new and diverse ranges:

Heterogeneous sources of noise. We exploit the fact that accurate ToF is today one of the

turnkeys of Global Positioning System (GPS) and we investigate how to bring this concept to a

multi-RAT (Radio Access Technology) systems where ranging inputs are made available from

diverse technologies for the final positioning calculation. Ranges from diverse technologies are

subjected to heterogeneous sources of noise that must be accurately modeled, otherwise making

the fusion ineffective.

What ranges measurements to use. A large number of multi-RAT ranges could be available

and we question how to select these ranges to achieve both accurate and pervasive position esti-

mates. This diversity can be detrimental in the presence of one or more bad quality measurements

which may bias the final position.

WiFi chipset-specific problems. For practicality of the solution, the computation of WiFi

ranges must not be hindered by chipset-specific problems, which should be properly removed and

solved to achieve an autonomous positioning system.

For this new architecture, our contributions are listed as follows:

We study EKF-based positioning and how it can be adapted to each technology first

by properly setting the right parameters (Section. 4.5).

We carry out a performance evaluation in terms of positioning accuracy using experi-

mental studies in both outdoor and (multipath-rich) indoor environments to assess the EKF

for single-technology multilateration and compare it to the Least Squares approach broadly

used in this context.

We propose the Extended Kalman Filter as a data fuser and we properly model the

covariance matrix of the filter. The filter operates in two phases and it can compute at the

same time the receiver’s position and WiFi chipset bias of new APs in range (Section 4.6).

Constrained environments can be successfully addressed with this approach (Sec. 4.8).

We consider diversity as an asset by detecting and identifying faulty measurements to

discard them from the positioning problem, and propose a solution that is more suitable to

hybrid localization systems than methods presented in the literature for single technology

(Section 4.9).

We evaluate the system in an indoor testbed using commodity hardware, using a GPS

receiver and a WiFi chipset. We collect raw ToF ranging measurements from both tech-

nologies. Our system achieves an average accuracy gain equal to 18.75 with respect to

pure GPS positioning (when GPS gets a position fix) and 1.38 with respect to pure WiFi

positioning (Sec. 4.9.3).
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Figure 4.1: GPS availability in (top) Madrid’s downtown, (center) PHX international airport and
(bottom) the UC3M university campus

4.2. Motivation

We undertake two different types of measurement set to observe the number of visible GPS

satellites that can be used for a position fix in key scenarios and how a commercial hybrid solution

works in a constrained environment.

4.2.1. GPS availability

We perform a measurement campaign using the U-Center application from U-Blox for An-

droid smartphones. The measurements are stored in a proprietary .ubx format that are further

converted to .nmea data format. The raw data collected using a smartphone is not as complete

as the one using the U-Blox receiver that we will present in Section 4.3, but it is enough to show

the number of GPS satellites in range with the advantage of assessing a real use-case scenario.

Fig. 4.1 shows the number of visible GPS satellites (Space Vehicles, SVs) over time observed in

three different indoor and urban areas where users may need location-based services: Madrid’s

downtown, Phoenix (PHX) international airport in the USA and the UC3M (University Carlos III

of Madrid) university campus. Figure 4.1 (top) shows that while moving around the Madrid’s city

center during around 2 hours and 45 minutes, the smartphone’s GPS receiver does not receive

the minimum SVs measurements required for a position computation all along the 62% of the

time. Figure 4.1 (center) reports that while moving inside PHX airport, the GPS receiver does

not receive at any time the sufficient number of SVs to compute its position. Figure 4.1 (bottom)

demonstrates that the GPS receiver is able to calculate its position only amongst 34% of the test’s

duration.

These experiments show that pure GPS could fail to provide the user with precise positioning

capabilities in indoor and dense urban areas.
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Figure 4.2: The accuracy of the Skyhook Wireless mobile location service.

4.2.2. Hybrid solution in the market

In the same university campus, we test the accuracy of the Skyhook Wireless mobile location

service using an Android smartphone. Skyhook is a hybrid positioning system leveraging optimal

combinations of WiFi, GPS, and Cellular 1. The test is performed indoor. While testing it, we

deactivate the communication through cellular networks to make sure we use only GPS and WiFi.

Figure 4.2 (bottom) shows the number of visible GPS satellites. Being in a university campus,

several APs are also in range. We show the accuracy in Fig. 4.2 (top). As GPS requires at least

5 satellites, this positioning system computes the receiver’s position in the time intervals when

standalone GPS cannot provide it using WiFi APs in range. The best accuracy is achieved in the

short time when 6 satellites are available. The root mean square error of Skyhook Wireless com-

puted after convergence of the position estimation in the aforementioned environment is around

20.4 m.

While the position error experienced by commercial solutions suffice to achieve a coarse

position estimate, only a seamless position error in the order of meters or even sub-meters can

enable novel analytics and new functionalities and services in the network. The main bottleneck

in the radio access is that existing mobile devices use the different chipsets as monolithic entities

to solve the localization problem. The consequence is that a fine integration of their measurements

is not possible. As 5G networks will strongly rely on the concept of multi-RAT (Radio Access

Technology), a fine integration in every layer of the stack is needed and in this work we study

how to bring this concept to the localization problem, as discussed in the next section and choose

the final navigation position from the RAT that is foreseen to provide the highest accuracy in the

particular context (see Fig. 4.3 (left)).

1http://www.skyhookwireless.com/products/precision-location

http://www.skyhookwireless.com/products/precision-location
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Figure 4.3: High level architecture.

4.3. Evaluation environments

For the evaluation of the proposed system, unless otherwise stated, we place the client in a

total of 10 indoor positions as shown in Fig. 4.4, where it can receive signals from different SVs

(yet at low accuracy) and a total of 5 APs. The environment features a rich-multipath experience

with several offices and walls. The measurements were collected at different days and time of

the day in order to have distinct GPS satellites constellations and indoor conditions. Ground truth

evaluated positions and WiFi AP positions were determined in the LLA (Latitude, Longitude

and Altitude) coordinate system using an API to integrate the office’s building map to Google

Earth and thus determine those positions as precisely as possible. The coordinates are further

converted to the ECEF (earth-centered, earth-fixed) coordinate system for homogeneity with the

GPS satellites coordinates. Regarding the WiFi hardware, we used exactly the same APs as

in Testbed I described more in details in Section 3.5.2 of the previous Chapter. We refer to

this main evaluation indoor scenario as Indoor Scenario #2. We additionally collected other

GPS measurement in another indoor scenario with a reduced number of GPS satellites that we

name Indoor Scenario #1, and an Outdoor Scenario with unobstructed GPS visibility to illustrate

better some of the results we present later and prove their robustness across different evaluation

scenarios.

GPS measurements. We collect real traces using the Evaluation Kit with Precision Timing

manufactured by U-blox and equipped with an active GPS antenna of type u-blox ANN-MS.

Data traces contain pseudoranges as well as other parameters such as satellite clock offset, the

ephemeris data broadcasted by the satellites that includes the SV clock bias, drift and drift rate,

the Keplerian parameters [55], perturbation parameters, etc. More details concerning the Matlab

GPS simulator we implemented can be found in the Appendix.

WiFi measurements. For WiFi ranging, we use the ToF two-way ranging based on regular

802.11 DATA frames as explained in details in Chapter 3. The approach that we consider is

readily suitable for scenarios where the firmware only provides the number of WiFi clock cycles
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Figure 4.4: Testbed map.

tToF between the end of the DATA transmission and the end of the ACK reception. We fix σWiFi

equal to 6 clock cycles in our tests given that the clock resolution of the single measurement is

equal to the WiFi main clock (88 MHz in this work).

4.4. GPS ToF-based Ranging: Background

WiFi Time-of-Flight ranging theoretical and practical foundations are given in Chapter 3. In

this section we recall relevant basics of the GPS Time-of-Flight ranging.

4.4.1. Pseudorange Computation

GPS signals are modulated with a Pseudo-Random Noise (PRN) code unique to each satellite

(SV). Each satellite’s signal is modulated additionally with a navigation message transmitted in

30 sec. The message consists of 5 frames (of six seconds each) and it includes the ”ephemeris

data” and the ”clock corrections and satellite health”, used to calculate the position of each satel-

lite in orbit and compute the distance from each satellite to the client (called pseudorange pr).

Each GPS satellite has an on-board atomic clock and includes the timestamp [time sent] of the

signal it broadcasts. GPS signals take from 64 to 89ms to travel from a satellite to the Earth’s

surface. A GPS receiver also keeps track of time (with its clock) of the received signal [time

received].

The receiver first performs a coarse estimation to compute tToF by comparing [time sent] and
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[time received] at packet level. The accuracy of this process is in the order of ms. A fine estimation

is then obtained computing the sub-millisecond part of tToF at PRN code level, measuring the

time shift tToF between the local copy and received PRN code. Finally, the pseudorange is

estimated as pr = c · tToF (d).

4.4.2. Correction of GPS Pseudoranges Errors

We give a succinct depiction of the sources of errors in the GPS pseudoranges:

4.4.2.1. Satellite clock offset

The satellite’s atomic clock experiences a bias and a drift that must be corrected by the receiver

for each satellite it is receiving signal from individually. This correction is approximated by a

second order polynomial:

CSV Clock = a0 + a1(ttr − toc) + a2(ttr − toc)2, (4.1)

where ttr is the transmission time at the satellite that corresponds to the GPS satellite’s time at

the receiver tGPS minus the travel time: ttr = tGPS − pr/c, and toc is a GPS reference time

available in the ephemeris data. The polynomial coefficients for clock correction a0, a1 and a2
are broadcasted by the satellites in the ephemeris data and denote respectively the clock bias, the

clock drift and the clock drift rate.

4.4.2.2. Satellite relativistic effect error

The relativistic effects influence the conversions of clocks proper times at the level of the

satellite and on the earth’s surface to GPS time and the expression of the positions in a turning

geocentric system. The relativistic correction for Earth-Centered Earth-Fixed (ECEF) coordinates

and a GPS satellite of eccentricity e and an orbit with semi-major axis A, eccentric anomaly Ek
and group delay tgd, is given by:

CRelativistic = F · e ·
√
A · sin(Ek)− tgd. (4.2)

The inputs parameters are given in the ephemeris data.

4.4.2.3. Ionospheric error

The ionosphere is a dispersive medium ionized by the action of solar radiations, so as

GPS signals pass through this atmospheric layer they suffer a delay proportional to the ion

density that has a very large spatial and temporal variability, hence the difficulty of modeling the

ionospheric time delay. For the implementation, we consider the analytical model developed by
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Klobuchar [41] to estimate the correction factor CIonospheric related to this delay.

4.4.2.4. Tropospheric error

An additional delay is added in the tropospheric layer. We did not correct this error in our

implementation because the needed inputs are not available in the raw measurements2. Moreover

the overall error introduced by this delay in the final distance computation is not more than 0.5

meters [59], which affects very slightly the accuracy of our distance estimation. The tropospheric

layer is electrically neutral and non-dispersive for frequencies under 30 GHz. Therefore the ef-

fect is identical for both carriers L1 and L2. The tropospheric delay is due to the refraction of

GPS signals, the refractive index is function of the temperature, the pressure and the humidity

at the receiver’s antenna location. This correction is effectuated based on empirical models like

Saastamoinen [1973] and Hopfield [1969]. The later is the one widely used according to [refer-

ence]. We did not correct this error due to the tropospheric delay in our implementation because

the needed inputs are not available in the raw measurements, since they are local metrics they are

either gotten from an online server broadcasting this information, which we do not consider in our

implementation since we mentioned before that we build a GPS simulator that relies exclusively

on data collected by the receiver, or gotten by means of particular sensors that our receiver does

not have. Moreover the overall error introduced by this delay in the final distance computation is

not more than 0.5 meters, which affects very slightly the accuracy of our distance estimation.

4.4.2.5. Earth-rotation during the travel-time

After using the ephemeris data broadcasted by the satellites to compute their positions at

GPS epoch, we have to consider that during the time the GPS signals travel to the receiver at

the earth’s surface, the earth rotates and consequently the ECEF coordinates system, thus the

necessity of transforming the old satellites coordinates. Given a travel time tToF from a satellite

with coordinates XSV to the receiver, the rotated coordinates are:

XRot
SV = MRot ·XSV, (4.3)

MRot =

 cos(ΩtToF ) sin(ΩtToF ) 0

− sin(ΩtToF ) cos(ΩtToF ) 0

0 0 1

 , (4.4)

where ΩtToF = ωearth · tToF and ωearth = 7.292115 · 10−5rad/s is the earth’s rotation rate.

2They are local metrics they are either gotten from an online server broadcasting this information, or gotten by
means of additional sensors.
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4.4.2.6. Multipath

Multipath may cause an enlargement of the travel time and thus an overestimation of the

range.

Finally the measured pseudoranges from the receiver’s antenna to the satellite SV is computed

as follows:

crSV = prSV + c · (CSV Clock − CRelativistic − CIonospheric), (4.5)

where crSV indicates the corrected pseudorange.

4.5. Extended Kalman filter for Single-Technology multilateration

4.5.1. Least Squares-based positioning

Before introducing the Extended Kalman filter positioning, we succinctly present the Least

Squares approach widely used for positioning systems as a baseline for evaluation of some con-

cepts among those we study in this chapter.

Given a set of estimated ranges {d̂i}1≤i≤M with M the number of anchors used for position-

ing, the LS algorithm finds the coordinates p =
[
x y z

]T
of the mobile client that satisfy the

following minimization problem:

p̂ =
[
x̂ ŷ ẑ

]T
= argmin

x,y,z

M∑
i=1

(‖xi − p‖ − d̂i)2, (4.6)

where xi =
[
xi yi zi

]T
is the position of the anchor i. We use the Newton-Raphson

method for the computation.

For a fair comparison with the EKF presented in the following subsection, we use an Expo-

nentially Weighted Moving Average (EWMA) smoothing of the position fixes estimated by the

LS. The reason is that the EKF takes the previous position fix into account to estimate the next

one, and then the smoothing property is inherent to this filter. When we refer to LS-positioning

in the rest of the chapter, we always mean the LS followed by the EWMA smoothing.

4.5.2. Extended Kalman filter for positioning

We define the state vector to be estimated by the EKF for GPS positioning as x =[
x y z bGPS

]T
where p =

[
x y z

]T
represents the Cartesian coordinates of the receiver,

and bGPS the GPS receiver’s clock bias in meter unit (multiplying by c) to have an homogeneous

state vector. For WiFi positioning, as we suppose the WiFi AP bias known at this level (this

assumption is to be eliminated in the next sections), the state vector x = p. The positioning
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problem is a discrete-time process with a state model:

xk = f(xk−1) + wk−1, (4.7)

and a measurement model:

zk = g(xk) + vk, (4.8)

f is the process equation that models the kinematic movement equation of the mobile device,

while the measurement equations are technology dependent as follows: gGPS(x) = ‖p−pSV‖+
ckB for the case of GPS positioning and gWiFi(x) = ‖p−pAP‖ for WiFi positioning (pSV and

pAP refer to the coordinates of the position of the anchor considered for ranging measurements,

a satellite SV or a WiFi Access Point AP). The usage of the EKF rather than the Kalman Filter

(KF) results from the non-linearity of these measurement equations.

wk ∼ N (0,Qk) and vk ∼ N (0,Rk) represent respectively the process noise and the mea-

surement noise with autocovariance matrices Q and R. In the next section, we provide an analysis

about the measurement autocovariance matrix R and its impact on the EKF-positioning accuracy.

Adequately characterizing the measurement noise is a decisive step to achieve acceptable per-

formance with the EKF [20]. Given the differences between the two ToF localization technologies

we are considering for our analysis, we give hereafter different methods that we use to estimate

this measurement noise covariance.

4.5.3. Extended Kalman filter Parameters Tuning

For each technology, GPS and WiFi ToF positioning, we provide in this Section methods and

analysis of the characterization of the measurement noise autocovariance matrix R. This step is

crucial for a proper tuning of the EKF.

4.5.3.1. Covariance Estimation for GPS-positioning

For GPS, we consider different two ways to estimate RGPS . First, a method that uses a fixed

noise covariance and then a method that dynamically estimates this noise covariance. We will

provide details regarding both methods before comparing their performances.

Using a fixed value based on HDOP and dRMS

One of the accuracy metrics commonly used to characterize the magnitude of the horizontal

error is the Distance Root Mean Square dRMS . It is defined in [40] as: dRMS = σPR ·HDOP
where HDOP indicates the horizontal dilution of precision (DOP), that relates to the multiplica-

tive effect of the anchor geometry on positional measurement precision error. To capture the

localization error intrinsic to the positioning algorithms we are evaluating and avoid including

measurement data with high error due to a bad deployment of the AP positions, we calculated the
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Figure 4.5: The Root Mean Square Error (RMSE) of the positioning versus Tavg in different
scenarios

horizontal DOP values for all the positions and removed the ones which we considered too high,

i.e., we removed the positions with a DOP value higher than five. We did this only for WiFi ToF

positioning evaluation since we can have control on the WiFi AP locations but not on the GPS

satellites where the DOP is something inherent to the localization process. The probability that

the computed receiver’s position is not greater than dRMS from the actual position is 0.63. and it

ranges between 0.95 and 0.98 within the circle of radius 2 · dRMS . For our mobile client, we per-

form several experiments to conclude that the value dRMS = 8 m depicts well our receiver since

the error falls under 7.81 meters 68% of the time (7.81 < dRMS). and under 10.87 meters 95%

of the time (10.87 < 2 · dRMS) in an outdoor environment. However, when we perform the same

analysis in a multipath-rich indoor environment we notice that since the 2D error is higher, the

previous value of dRMS does not fulfill the aforementioned accuracy requirements. The dRMS

value that fulfills them is dRMS = 23 meters instead. This can be explained by the additional

bias introduced by the multipath effect. Nevertheless, what is encouraging is that considering the

dRMS value got after the tests carried out in the outdoor environment, the overall performance in

terms of positioning accuracy is practically the same as with the one proved to achieve the previ-

ous accuracy requirements. Therefore, we use the following formula that gives an estimated value

of σPR given the expected accuracy dRMS of the GPS receiver: in a multipath-poor environment,

and thus the autocovariance matrix R: Therefore we use the following expression to estimate the

standard deviation of the satellites’ pseudoranges, and thus the autocovariance matrix R

σPR =
dRMS

HDOP
, (4.9)

R = σ2PR · Insv×nsv , (4.10)

nsv is the number of satellites in range, and Insv×nsv ∈Mnsv ,nsv(R) is the identity matrix.



46 DataFusionforHybridandAutonomousPositioning

TheEarlyminusLateDelayLockLoopmodel

ThismethodtakesintoaccountthemeasurementsateveryGPSepochandtreatseverysingle

satelliteseparately.Themodelreliesonthestructureofthedelaylockloop(DLL)usedbymost

GPSreceivers,includingtheoneweareusinginourexperiments,thatisbasedonthecorrelation

ofthereceivedGPSsignalwithslightlyearlyandlateversionsofthatsignal. Basedonthis

functioningoftheDLL,[55]derivedthefollowingformulatocomputeσPRofagivensatellite

si∈SV,SV={si1,si2,...,sim}beingthesetofvisiblesatellitesattheconsideredGPSepoch:

σPR(si)=c·Tc·
d

4·Tavg·{C/N0}(si)
, (4.11)

d:thecorrelatorspacing.Itcorrespondstothefixedtimebetweentheearlyandlate

correlatorsamples.Weused=0.1,asimplementedbymanyreceivermanufacturers.

Tc:thechiptimesettoTc=1µsasinnormalGPSreceivers.

Tavg:theaveragingtime. WeexperimentallyderiveTavgusedinourchipsetcon-

sideringdifferentscenarios(outdoorandindoor)andtestingdifferentvaluesofTavg.The

resultsarereportedinFig.4.5andshowthatTavg=1sprovidesrobustresults.

{C/N0}(si)(indB-Hz):thecarrier-to-noise-densityratiofromsatellitesi.

Theautocovariancematrixcanthenbewrittenas:

R=









σPR(si1) 0 ... 0

0 σPR(si2) ... 0
...

...
...

...

0 0 ... σPR(sim)








, (4.12)

4.5.3.2. CovarianceEstimationforWiFi-positioning

AlsoinWiFi,weconsidertwomethodsforthecovarianceestimation.InWiFipositioning,

theanchorsareinfixedlocationswhichmakestheestimationofRmucheasierthaninthecase

ofGPSwherethesatellitesarepermanentlymoving.

Estimationusingareceiver-dependentfixedstd-value

ThestandarddeviationoftheToFmeasurementsislowerboundedbythelargenoiseadded

byδ. Weexperimentallymeasurethatthisnoiseisintheorderof[4.0,4.1]WiFiclockcycles3.

3ConsideringthattheWiFiclockinourmobileclientrunsat88MHz,theclockcycleisequalto 10 6

88
≈1.13·

10−8sec.
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In practice, the multipath adds additional noise in the system. Consequently, we fix σWiFi = 5.0

clock cycles and have RWiFi = σ2WiFi · In×n, with n being the number of WiFi APs used for

ranging.

The Covariance Matching method for a fixed number of APs

[5] presented an adaptive estimation of R using the covariance matching principle. It makes

the residuals ν̂k = zk − g(x̂k) that are the differences between the observation zk and its cor-

rected estimated value g(x̂k) consistent with their theoretical values (x̂k is the corrected state

vector). Rk is then computed based on the estimated variance-covariance matrix of the residuals

sequences Cν̂
k over a moving window of m time instants.

Cν̂
k =

1

m

m∑
i=1

ν̂k−i · ν̂Tk−i (4.13)

We only apply this method to WiFi since it requires a stable set of anchors for a sufficient number

of measurements, something we do not observe in GPS environments that are affected by the

movement of the satellites and consequent variation of the ranging quality.

[5] presented an adaptive estimation of R using the covariance matching principle. It makes

the elements of the innovation ν̄k = zk−g(x̄k) or residuals ν̂k = zk−g(x̂k) that are respectively

the difference between the obeservation zk and its predicted value g(x̄k) or its corrected estimated

value g(x̂k) consitent with their theoretical values. x̄k is the predicted state vector and x̂k is the

corrected one. Rk is then computed based on the estimated variance-covariance matrix of the

innovation sequence Cν̄
k over a moving window of m epochs.

4.5.4. EKF vs LS single positioning: Experimental Results

In this section we present the results of the experimental studies we carried out.

Experimental study: GPS ToF localization. The top of Fig. 4.6 shows the 2D-accuracy over

time of GPS localization. We observe that the EKF with a dynamic estimation of the measure-

ment noise autocovariance matrix achieves the best performance with a median positioning error

of 3.02 m. Using the aforementioned version of the EKF, we gain more than 4 m with respect to

the EKF using the same value of the variance of the pseudoranges for all the satellites, that has a

median error of 7.39 m. The reason is that a dynamic estimation of the measurement noise is a

more accurate model, that considers at the same time the properties of the receiver and the quality

of every single satellite where the GPS signals are coming from. The LS-positioning algorithm

has a median error of 6.95 m, and it slightly outperforms the EKF-positioning using a fixed value

for the noise covariance estimation. Yet the EKF-version with the dynamic estimation of the

noise is significantly better. Indeed, when it is well tuned, the EKF performs better than the LS in
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Figure 4.6: On the top of the figure we provide a comparison of the accuracy of different GPS
positioning techniques in outdoor scenario, on the bottom we show the median accuracy of GPS
positioning techniques in different scenarios.

estimating a discrete-time dynamic process, which is the case here: although we are considering

a static GPS receiver, the motion of the satellites makes the whole system dynamic. Fig. 4.5

supports these results while considering different scenarios, for instance an indoor environment

with a very reduced SV visibility (Indoor Scenario #1), an indoor environment with acceptable

SV visibility (Indoor Scenario #2), and an outdoor environment. Finally, on the bottom of

Fig. 4.6, we compare the median accuracy of GPS positioning techniques in different outdoor

and indoor scenarios that confirm that we encounter high errors in the indoor scenarios.

Experimental study: WiFi ToF localization. In Fig. 4.7, we compare the accuracies of the EKF

and LS based positioning taking as a baseline the positioning approach that takes the nearest AP’s

position in terms of shortest ToF as the mobile station’s position. We evaluate the EKF under

different schemes: i) EKF where the inputs are sequences of tToF obtained after a calibration

using the true offset value and ii) under different noise autocovariances matrices, one using a

fixed standard deviation (std) value of the noise and the other one using the covariance matching

method explained in Section 4.5.3.2, and iii) EKF having as inputs the sequences of tMEAS

calibrated using the estimated offset as described in Section 4.7.1 with a fixed autocovariance

matrix. For the LS, we only use calibrated measurements using the true offset. Overall, the EKF

and the LS have similar performance (median error of 4 meters for the EKF and 4.26 meters

for the LS). This is unlike the GPS localization, where the EKF clearly outperforms the LS. The

reason for this different result with respect to GPS stands in the ranging computation, where an

adaptive filter is needed in WiFi to correct the impact of large indoor multipath. Finally, LS and

EKF both perform better than the ”Nearest AP’s position” approach with a gain of the median

error of more than 2 m.

Using the covariance matching method for the EKF instead of a fixed autocovariance ma-
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Figure 4.7: Comparison of the accuracy of different WiFi positioning techniques for different
positioning algorithms.

trix did not improve the positioning accuracy (both schemes achieve practically the same perfor-

mance). In fact, we are evaluating a static scenario, wherein the variance of the measurement

noise does not considerably change. In this setting, the autocovariance matrix is sufficiently well

characterized by the standard deviation value presented in Sec. 4.5.3.2. However, in dynamic

scenarios, the number of anchors will change frequently, and we foresee that this will cause

problems of convergence of the covariance matching method. Finally, comparing the positioning

accuracy between using the true offset versus the estimated one for the chipset calibration, we

observe in Fig. 4.7 that using the estimated one we do not have a noticeable loss of performance

in terms of positioning accuracy which confirms the robustness of the KF algorithm presented in

Section 4.7.1.

4.6. EKF as Data Fuser

In this section, we assume that the client opportunistically exploits any available anchors

(GPS satellites and WiFi APs in the study) and infers the ranges to these anchors to compute its

position. A high-level representation of the system with ranges from GPS and WiFi technologies

is shown in Fig. 4.8.

We compute ToF ranges using WiFi and GPS technologies. A linear relation holds between

the ToF (propagation time) tToF of radio signals and the distance d, d = c · tToF(d), where c

indicates the speed of light. Ranges (regardless of the technology) are computed by the device

that aims to pervasively position itself. ToF ranging requires one way ranging for GPS. We use

two-way ranging for WiFi, which has the advantage of being 802.11 standard-compliant [28].

Our client operates as follows:

(a) It receives the GPS signals from satellites (SVs) and sends DATA frames to WiFi APs

in communication range.
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Figure 4.8: Positioning with ranges from different technologies.

(b) It estimates the ToF from the SVs and APs.

(c) It computes its position with a multilateration multi-technology algorithm. Computation

of the position could be also partially offloaded to the cloud.

4.6.1. Data fuser for positioning

When the total number of ranging measurements of the different technologies is higher than

the number of variables to estimate, the location problem can be posed as an optimization prob-

lem. We opt for the Extended Kalman filter (EKF) as a data fuser for the raw ranges as it gives us

the possibility to treat any measurement differently, taking into account factors related to the tech-

nology used for the specific measurement. Using the EKF fuser, we express the positioning prob-

lem as a discrete-time process with state model xk = f(xk−1) + wk−1, and measurement model

zk = g(xk) + vk where xk is the state vector, zk the measurement vector, and wk ∼ N (0,Qk)

and vk ∼ N (0,Rk) represent, respectively, the process noise and the measurement noise with

autocovariance matrices Q and R.

4.6.2. Measurement model

Both GPS and WiFi are affected by a measurement bias:

GPS bias: it is caused by the clock of the receiver, and it is then client dependent

(bGPS). The bias is expressed in meter unit (to have a homogeneous state vector) multiplying

the time measurement by the speed of light c. The bias is also subject to the drift dGPS in

meter/sec, and thus it must be estimated continuously [55].

WiFi bias: as mentioned in Section 3.3.5, the WiFi bias is caused by the delay of

the receiver to schedule the ACK. Therefore, we have a vector bWiFi with size equal to the

number of APs in range. This bias is corrupted by large noise [28], but it is not affected by

drift. As such, estimating the bias once is sufficient.
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Using one-way ranging in GPS and two-way ranging in WiFi, we express the measurement

function g(xk) as follows:

g(xk) =

[
{‖p− panchor,i‖+ bGPS}i∈I

{2 · ‖p− panchor,j‖+ bWiFi,j}j∈J

]
, (4.14)

where panchor refers to the coordinates of the position of the anchor considered for ranging mea-

surements, I indicates the set of satellites and J the set of APs. We assume that the APs position

can be fetched from an online database (similarly to Skyhook, Google, and other localization

systems). The multiplication factor ’2’ in WiFi in Eq. (4.14) accounts for the use of two-way

ranging.

Model of the autocovariance noise of the measurement. The terms of the measurement

autocovariance matrix Rk corresponding to GPS can be computed considering typical GPS re-

ceivers that use the early-minus-late discriminators method [55] for tracking the code delay of the

incoming GPS signal. Here, we use the model of the standard deviation for the early-minus-late

discriminators described in [55], with raw data collected with our GPS receiver (cf. Sec. 4.3).

For the terms of the measurement autocovariance matrix Rk corresponding to WiFi, the noise

of the measurement is mainly due to the uncertainty added by the AP replying with ACKs, which

can be of several clock cycles [28], and by the presence of multipath [53]. Multipath is handled by

our ranging filter proposed in Section 3.7. We assume that the noise in the measurement consists

only on the noise on the shortest path added by the AP replying with ACKs. Taking into account

that the range is estimated using N consecutive ToF values, the components of the measurement

covariance of WiFi are equal to σ2
WiFi
N ∀j ∈ J .

4.7. WiFi chipset bias computation: from fingerprinting to GPS-
aided estimation

The standard approach to perform ToF in WiFi is to consider that bWiFi for each AP is cal-

ibrated offline using controlled measurements, for instance using cables connected to the WiFi

transceiver [29]. However, bWiFi depends on the chipset’s manufacturer and the transmission rate.

This presents the drawback of calibrating each WiFi chipset. This is unfeasible considering the

application scenario of a mobile that aims to measure the ToF to any AP in range to position itself.

We first introduce a methodology to estimate bWiFi in an iterative way using fingerprinting relying

on the data previously collected for the environment training for pure WiFi positioning (i.e. no

additional manual work) and further in technology fusion scenario, we propose to opportunisti-

cally take benefit of available GPS ranges to estimate this fixed bias/offset bWiFi while still being

able to compute the position fix.



52 Data Fusion for Hybrid and Autonomous Positioning

Filter outliers 
(Thompson-Tau 

technique) 

Estimate Ranges: 
Mean of the 

measurements 

Collected 
Measurements AP’s positions 

Known Receiver’s 
positions 

1-state KF run for 
each link 

Offset estimate per link 

Average over all 
the links 

Final Offset 
estimate 

Figure 4.9: Block scheme for the offset estimation
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Figure 4.10: Offset estimation for various links. The estimator converges quickly, after approxi-
mately 10 iterations (802.11 frames).

4.7.1. WiFi ToF bias estimation: Fingerprinting

Using the Kalman Filter (KF)4, and following the measurement model of GPS that we pre-

sented in Sec. 4.5.2, we observe that there is an analogy between the WiFi ToF measurement

offset bWiFi and the clock bias at the GPS receiver side bGPS, since both of them add an offset to

the ToF. From eq. (3.5), we can then express the measurement model as:

g(x) = 2 · ‖p− pAP‖+ bWiFi, (4.15)

where bWiFi is equivalent to the bGPS in GPS estimated iteratively in the state vector. The block

scheme for the offset estimation is depicted in Fig. 4.9.

For the estimation, we collect {tMEAS(dn)}1≤n≤N sequences for a given set of positions of

the mobile device in the indoor testbed (known beforehand), and for a fixed position of the AP

in range. This procedure is performed once, as it is also needed for the environmental training of

4The eq. (4.15) is linear because the positions of the mobile client are known. Therefore, we use the KF instead of
the EKF.
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WiFi ranging presented in the previous chapter (cf. Section 3.7).

Since the coordinates (x, y, z) of the mobile client are known, the only remaining unknown

is the offset bWiFi. We use the mean of the sequences {tMEAS(dm)}1≤m≤M after that the outliers

are filtered using the Thompson-Tau technique to estimate the WiFi ranges that will be the inputs

of the KF later on to estimate bWiFi. For the implementation, we use M = 30 samples to reliably

perform this outliers filtering. As mentioned before, we use a 1-state KF to estimate the bWiFi,

which means that only one equation is needed. We then take the average value of all these

values for the set of links with the same WiFi chipset in the AP5 as a final bWiFi estimate. In

Fig. 4.10(a) we illustrate the offset estimation for 3 different links to show that the convergence

is very fast, considering as initial state the nominal value of bWiFi, given by δ = 10µs and tACK
derived based on the transmission rate [70]. The final estimated offset value for a given link is

the average over all the iterations after convergence. Additionally, Fig. 4.10(b) shows how the

estimated offsets per links are spread around the true offset value, thus the use of the averaging

to find the final offset estimate.

Robustness of the offset estimation for different transmission rates. The previous analysis

was carried out using the ToF measurements with ACK transmitted at 11 Mb/s transmission

rate. We perform the same algorithm using the collected samples with ACK transmitted at

1 Mb/s transmission rate to show that this method gives accurate estimation of bWiFi for different

transmission rates. Table 4.1 summarizes the results. We observe that the estimated offset is

remarkably close to the true offset, measured in a controlled test using coaxial cables between

the WiFi chipsets.

Impact on the environmental training model. We use the environmental training presented in

Section 3.7 to achieve a fine estimation of the distance. In this section, we study how robust is the

environmental training using an offset bWiFi that is estimated as in Fig. 4.9.

5In this work, the APs have the same WiFi chipset. The algorithm works as well for APs with different WiFi
chipsets.

Table 4.1: True and estimated offset for the Broadcom AirForce54G 4318 wireless card in the
APs.

Rate [Mb/s] (802.11b) 1 11

True Offset [clock cycles] 27854.0 18967.3

Estimated Offset [clock cycles] 27855.6 18966.6

Table 4.2: Coefficients of the linear regression models used for the environment calibration for
estimated and true offset values

regression coefficients using true offset −0.17 11.29

regression coefficients using estimated offset −0.18 11.68
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Figure 4.11: Environment training: the linear regression model using the estimated offset does
not differ considerably from the one using the true offset.

Since the environment training is defining a linear regression model linking the optimal per-

centile and the median of sequences of tToF , this environment training depends in fact on the

chipset calibration because it is what allows us to obtain tToF starting from tMEAS (see Eq. (3.5)).

Fig. 4.11 shows that the new environment training model we get using the estimated offset value

is close to the one we get using the true offset, which shows the robustness of our approach to

calibrate the chipset offset. In Table 4.2 we give the numerical values of these coefficients.

4.7.2. GPS-aided estimation - Two-phases state model

We propose a two-phases model of the state that takes advantage of the fact that the bias of

GPS must be estimated continuously while the one of WiFi should be estimated only once. The

client first connects to an online database to verify if the AP bias is available. If not, it goes to

phase I, where bWiFi is unknown and part of the state vector. Here, the client estimates itself the

set of WiFi bias bWiFi. As bWiFi depends on the chipset of the AP [28], calibration of each WiFi

AP chipset is needed. In fact, every AP may add a bias different from other APs. Once the bias

per AP has been estimated, the value is added to the online database. On the other hand, the GPS

bias bGPS is added at the level of the GPS receiver as GPS is a one-way Time-of-Flight ranging

technology. It is estimated at every time epoch iteratively as a component of the EKF state vector.

Despite there is the very new 802.11mc standard providing the methods to support timing

measurements, it is not realistic to suppose that it will be implemented in every AP worldwide in

a reasonable time frame. Our method to solve this problem is to focus on scenarios with only one

AP (APj) and enough GPS SVs. For instance, this occurs when the mobile is outdoor with good

satellite visibility andAPj (indoor or outdoor) is in communication range. Under this hypothesis,

the state vector is composed by 5 unknowns (x, y, z, bGPS and bWiFi,j , where j indicates the

specific AP that we have to model) and the EKF filter can be solved using at least 5 ranges (one

AP and at least 4 SVs). Once bWiFi,j is estimated (together with the other unknowns), the AP can
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Figure 4.12: Accuracy of the WiFi bias chipset estimation with state model in phase I.

be used for fused positioning (phase II). In phase II, bWiFi is removed from the state vector and a

state vector with 4 unknowns (x, y, z, bGPS) is used, as in standalone GPS.

Model of the autocovariance noise of the process. For the autocovariance matrix of the

process noise Qk, we use the kinematic equation of movement for the terms of the state vector

related to position and velocity, and similarly for the bias and drift. For the WiFi bias in the

process noise Qk, we use the same fixed standard deviation value σ2WiFi for each AP.

WiFi bias online estimation. We study the accuracy of phase I of the EKF model, consider-

ing all available GPS SVs (without removing any range) for position. We have two observations.

First, from Fig. 4.12, we notice the robustness of the estimator that shows similar performance

regardless of the selected position. Second, the value is close (approximately 2 cycles smaller) to

the empirical value measured experimentally in controlled experiments.

4.8. Hybrid Positioning in Constrained Environment

The fusion of ranges as performed by the proposed data fuser allows to locate the client

in constrained environments where there are only a few SVs and APs for positioning. For the

evaluation, we consider a scenario with only 3 SVs and 2 APs available for positioning. We use

only a subset of 2 WiFi APs from the 5 APs deployed in the indoor testbed described in Sec. 4.3

to understand well how the GPS and WiFi range fusion performs in this specific context. As

standalone GPS requires at least four SVs for 3D positioning to find the four unknown variables

(x, y, z, bGPS) and standalone WiFi requires at least 3 APs for 2D positioning, none of them is

capable to locate the device using a traditional multilateration algorithm. The best that can be

done with this data set alone is to use the two APs and simply consider the position of the WiFi

AP with strongest signal strength as position fix. We show the results in Fig. 4.13 as a function

of time. In the same figure, we also show the accuracy achieved fusing ranges of GPS and WiFi

with the EKF introduced in Sec. 4.6. We observe that our approach gives better accuracy than a
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uniquely identify a GPS satellite, ”PRNs:0” corresponds here to the pure WiFi case).

monolithic architecture. The RMSE (Root Mean Square Error) of fusing ranges is 3.90 m while

selecting the AP with the strongest signal strength gives an error of 10.80 m.

4.9. Hybrid Positioning with Rich Number of Ranges

It is also fundamental to study scenarios where there is the availability of a rich set of GPS

ranges and WiFi APs, which poses the problem of which ranges to use as input to the EKF. Our

study is conducted using the main indoor scenario presented in Section 4.3, where some ranges

can be largely affected by multipath.
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4.9.1. Geometrical-Statistical approach

First Observation.
In order to understand the problem space to select the set of anchors, we consider a client

in a given position and in range of at least 5 anchors (GPS satellites and WiFi APs). Here, we

perform a brute force analysis to understand what configuration of anchors would help getting an

accurate position fix, measured with the root-mean-square error (RMSE) metric. For the setup

of the scenario, we shortlist the satellites that are available all over a trace of 200 seconds. The

accuracy is computed removing the transitory time to let the EKF filter converge. For an easy

readability, we only show the specific case in Fig. 4.16 that summarizes the results for the case of

4 SVs and 3 APs. The figure shows that the choice of the GPS SVs (labeled using the PRN codes

of each satellite, e.g. ”PRNs: 25 14 32 2”) affects much more the performance than the one of the

WiFi APs (labeled as ”APs ids”).
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Geometrical Metrics.

We propose to use two geometrical metrics for the selection of the anchors. First, we adopt

the centroid of the APs as a reference point with respect to the estimated position of the client

p̂. Second, the horizontal dilution of precision (HDOP) of all the anchors, we recall this metric

that was previously introduced in Section 4.5.3.1 and provide further specific aspects. In GPS

systems, the HDOP is a term that accounts for the multiplicative effect of the geometry of the

satellites on the positioning accuracy [57].

dRMS = σPR ·HDOP (4.16)

where σPR is computed as in eq. 4.11 and dRMS indicates the positioning error with 63% prob-

ability [57]. Smaller is the HDOP, smaller is the sensitivity of the position solution with respect

to the errors in the ranges. We can use the same formulation for a multi-technology position-

ing system. In fact, the HDOP only depends on the unit vector of the direction between the

receiver and the anchor rather than the coordinates and the distance separating them, that is,

(panchor− p̂)T /‖panchor − p̂‖, where panchor indicates the position of the generic anchor of the set

M = S{I, J}. and p̂ indicates the estimated position of the client.

Let P =
[
P1 P2 . . . PM

]
∈ R3×M be the matrix containing the ECEF (Earth-Centered

Earth-Fixed) coordinates of these anchors and p the estimated position of the receiver at the epoch

we want to compute the HDOP.

A =


(P1 − p)T /‖P1 − p‖ −1

(P2 − p)T /‖Pn − p‖ −1
...

...

(Pn − p)T /‖Pn − p‖ −1

 (4.17)

We then formulate the matrix Q ∈ R4×4 as Q = (AT ·A)−1 and finally compute the HDOP as:

hdop =
√

Q11 + Q22 (4.18)

We estimate the position in all the locations in the testbed using all possible set of anchors

and plot the results in Fig. 4.14. The color of each result in the figure indicates the (Distance to

Centroid, HDOP) pair for a specific set of SVs among all the ones in range. Different values with

the same color indicate a different set of APs. We observe that the pairs (Distance to Centroid,

HDOP) are clustered based on the set of SVs used for the position fix, alongside with all the

combinations considering from one to the maximum number of WiFi APs.

Fig. 4.15 shows that based on the minimum variance over the principal component, the best

cluster is the one that corresponds to ”PRNs: 32 2” (the actual PRNs are only shown for key cases

in the figure to avoid heavy notations) while Fig. 4.18 tells that it is only a sub-optimal solution

and that the optimal one is ”PRNs: 25 14 32”. The reason why this approach does not find the
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Figure 4.17: Distance to centroid versus HDOP pair after clustering
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Figure 4.18: RMSE accuracy as a function of the variance over the principal component after
clustering.

optimal solution is that the variance metric is sensible to the length of the data. The lengths of the

clusters with few satellites are lower than the ones with a higher number of satellites since at least

a total of 4 anchors is required for a position fix. To address this problem, we propose to perform

a sub-clustering to the high-lengths clusters. In this way, we can apply the previous approach on

clusters with relatively homogeneous sizes to alleviate the problem of variance sensitivity to the

length of the data.

Subclutering with K-means clustering. We perform the k-means clustering on the sets of se-

lected SVs with large sizes (corresponding to multiple options for the selection of APs). This

allows us to operate with relatively homogeneous sizes. We then perform a principal component

analysis (PCA) to compute the variance of the clustered data. Results are shown in Fig. 4.18. With

this approach we are able to choose the best set of SVs ”PRNs: 25 14 32”. In fact, computing

the RMSE of the position errors for a given selection of SVs, we observe that less spread of the
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cluster tends to correspond to better accuracy. The reason is that the geometry of the considered

GPS SVs remains robust regardless of the set of APs they are fused with. In turn, this indicates

that the selected set of SVs is relatively reliable. In the final step, we select the APs within the se-

lected set of satellites such that the overall HDOP is minimal, which, as stated above, guarantees

low sensitivity with respect to small variations in the noise in the ranges. The presented approach

could run either on the mobile or could be offloaded to the cloud (that would receive GPS and

WiFi range estimations).

4.9.2. The Geometrical-Statistical based Algorithm

Based on the study of the previous section, in Algorithm 1 we illustrate the pseudo-code. For

clarity, the notation is given in what follows:

Let S{I, J} defined below be the mixed GPS-WiFi constellation formed by the set of

satellites I and the one of APs J :

S{I, J} = {{svi}i∈I , {apj}j∈J/I ⊆ SV, J ⊆ AP}

Ck(E) denotes the set of all k-combinations of the set E. C0(E) simply corresponds

to the empty set ∅.

CJk,lK(E) denotes the set of all k-combinations to l-combinations of the set E.

The cardinality of the previously defined set is computed as follows:

#[CJk,lK(E)] =
l∑

i=k

(
#[E]

i

)

dxe denotes the ceiling of the real number x.

nmin corresponds to the number of unknowns in the EKF state vector that are used

for a position fix.

4.9.3. Evaluation of Anchor Selection

We perform an evaluation of our proposed solution for anchor selection. We conduct the

evaluation with our system in phase II, using bias values of WiFi APs estimated in phase I

(cf. Sec. 4.7.2). Fig. 4.19 shows the RMSE positioning error for different single and multi-

technologies localization algorithms. On the left side we show a comparison of the different fu-

sion strategies, while on the right we show a comparison of the fusion approach versus standalone

WiFi with SNR measurements and standalone GPS estimator. For the SNR-based approach, we
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Algorithm 1 Geometrical-Statistical Algorithm for Anchors Selection
Input: SV , AP

1: for I ∈ CJ0,#[SV]K(SV) do
2: Form CI , the set of all the mixed-constellations containing the set of satellites I (for the

pure WiFi case I = ∅) and all the possible combinations of WiFi APs of at least nmin total
anchors

3: CI is then the set of combinations of APs: CJmax[1,(nmin−#[SV])],#[AP]K(AP)
4: for J ∈ CJmax[1,(nmin−#[SV])],#[AP]K(AP) do
5: Compute the position using the set S{I, J},
6: Compute its corresponding distance to the centroid of AP
7: Compute the mixed-constellation HDOP of S{I, J}: hdop[S{I, J}]
8: Construct the matrix M(CI) containing the previously computed metrics.
9: end for

10: Compare #[CI ] to the pre-computed threshold η based on combinatorial analysis:
kI = d#[CI ]/ηe,

11: Perform kI -means clustering to sub-cluster CI with respect to M(CI) into
{C1I , C2I , . . . , C

kI
I }.

12: ∀i ∈ J1, kIK, apply the principal component analysis on CiI to compute its variance σ2I,i
over its main component.

13: end for
14: C î

Î
= argmin

I∈CJ0,#[SV]K(SV)
i∈J1,kI K

{σ2I,i}I,i,

15: Find Ĵ that minimizes the hdop such that S{Î , Ĵ} ∈ C î
Î

and compute the final position fix.

16: S{Î , Ĵ} = argmin
J∈C î

Î

{hdop[S{Î , J}]}
J∈C î

Î

17: return S{Î , Ĵ}
18: Compute the final position fix using the constellation S{Î , Ĵ}

use the k-Nearest Neighbor machine learning algorithm (as typical in current WiFi-based location

systems [52]).

Simply fusing pseudoranges from these SVs with all the available WiFi ranges is better than

relying exclusively on GPS, with an overall accuracy of 11.78 m. As reference methodology,

we use the RAIM algorithm that is designed for integrity monitoring [60] (cf. Appendix A.2).

RAIM has the objective of removing one faulty range in case there is redundancy in the number

of measurements. However, although some multipath can be detected by RAIM, it is known to

fail to detect short delay multipath, which abounds in urban and indoor environments. This is

confirmed by our study: trying to reject the non-reliable anchors using RAIM algorithm does

not significantly enhance the positioning accuracy, with an average error of 11.07 m. Fig. 4.19

(left) shows that the statistical-geometrical selection outperforms any other fusion strategy. Using

the anchors selection approach with clustering, we achieve an accuracy that is 74.2% higher than

applying the anchors selection method without first sub-clustering the sets. From Fig. 4.19 (right),

we can observe that our statistical-geometrical anchor selection algorithm drops down the average
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Figure 4.19: The ECDF of the RMSE (Root Mean Square Error) of the 2D positioning accuracy
in meters across different indoor positions.

RMSE positioning error to 3.29 m, providing a gain of 8x with respect to standalone GPS, and

better than standalone WiFi positioning with an average of 49.4% accuracy improvement. The

latter would be the technology used by current monolithic architectures that do not exploit raw

measurements and select the radio providing the best performing localization system.

4.10. Wrap-up & Summary

We proposed the idea that consists in complementing GPS pseudoranges measurements with

terrestrial Time-of-Flight ranges to compensate the lack of visible SVs in indoor and dense urban

environment. We introduced a two-phases fusion approach that estimates first the WiFi AP bias

is introduced to greatly increase the autonomy of the system, the only assumption we kept is the

prior knowledge of the APs positions’ coordinates. Moving from technology selection to technol-

ogy fusion approaches raise the problem of optimal selection of set of anchors in hybrid systems

that we solved by introducing the Geometrical-Statistical method. In constrained environment we

achieved a gain of 2.77x with respect to baseline approach, and in rich number of ranges scenario,

gain of 8x versus pure GPS positioning and 50% versus pure WiFi.



Chapter 5

WiFi Proximity Metrics with Unknown
Anchors Positions

5.1. Introduction & Motivation

In recent years, mobile smart devices have become ubiquitous, e.g., smart phones, personal

health devices, smart watches, and other smart home appliances. Low cost requirements and

integration with legacy networks lead to wide adoption of IEEE 802.11-based wireless commu-

nication (WiFi). Many such devices, and devices that are part of the so-called Internet-of-Things

(IoT), interact with their physical environment and physically close communication partners ei-

ther directly or via cloud platforms.

To determine the physical locations of such devices, WiFi-localization based approaches have

become widespread. Typically, the mobile device collects a wireless fingerprint at their current

location. This consists of set of MAC addresses of nearby Access Points (APs), and their received

signal strength indicator called RSSI. This fingerprint data is sent to a third-party cloud service

(such as Google, Apple, Skyhook, etc.), that estimates the device’s location. The motivation for

using a third-party cloud service is that fingerprint data is noisy, and it requires a large set of

measurements from a large number of users and access to a large database of positions of APs in

order to provide high-to-medium accuracy level.

In this work, we look at the problem of WiFi proximity metrics in positioning systems, i.e.,

metrics that allow to estimate the spatial correlation or physical distance between two WiFi fin-

gerprints. Such metrics can be valuable in a number of scenarios:

Measurement sanitization for user-assisted WiFi localization database building [33,

38];

Fingerprint ambiguity estimation in an unknown environment [68];

Detection of co-location for mobile applications on mobile devices (as attack on

users’ privacy, see [43] for Bluetooth).

63
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There are three main challenges to address to effectively solve the problem of WiFi proximity

metrics.

Challenge 1: Design of proximity metrics without using any external sensors. To the best of

our knowledge, metrics that do not require any external sensors have received limited attention in

related work. Yet, the availability of a solution in this space would allow a widespread adoption

to any WiFi transceiver, from low-end IoT device to more powerful smartphone device.

Challenge 2: Metrics that can cope with probabilistic observations. Fingerprints might not

contain information of all APs in range. There are two reasons:

storage constraints might limit the number of APs stored for each fingerprint;

collisions, time-out, and channel hopping during WiFi scanning can prevent deter-

ministic observations of nearby APs.

Storage of WiFi fingerprints can require relatively large amount of memory, if the MAC address

(6 Bytes) and an RSSI value (1 Byte) is stored for each AP. Given the growing density of WiFi

APs, single scans for neighboring APs can easily return 30 and more results. Storing an unlimited

number of APs per fingerprint can thus violate memory constraints.

Challenge 3: Metrics that do not have access to large databases of known locations of APs.

In this work, we are interested in metrics that do not require prior knowledge of the locations of

APs in the environment. In particular, large-scale records of AP locations are proprietary data

owned by few companies, and not accessible by the public.

Finally, related work lacks of large scale real-world data evaluation of proximity metrics,

which are needed to assess the soundness of the proposed solution.

Our main contributions are listed in what follows:

We perform an extensive evaluation of a novel Jaccard Index-based metric and two

prior work metrics over two main datasets: i) an artificial dataset based on simplified prop-

agation models and perfect knowledge of the true locations, and ii) a large-scale, real-world

WiFi fingerprint data set consisting of 200, 000 fingerprints resulting from a large deploy-

ment of wearable WiFi sensors [76].

We identify key drawbacks of all three metrics using our real-world dataset, analyze

the causes and propose a model to explain the issue. Further analysis of our dataset confirms

that our model closely matches observed data.

Based on our error model, we propose three improved distance metric definitions. Our

proposed metrics only require two WiFi fingerprints readings, and enable mobile devices to

compute the results i) without continuous requests to the third-party cloud service, ii) with-

out disclosing the location to the cloud service and to neighbor nodes, and iii) with limited

requirements of local storage and low computational and implementation complexity.
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This work is structured as follows. In Section 5.2, we introduce the system model, metrics

from related work and the datasets used (real and simulated data). In Section 5.4.1, we introduce

the detailed problem, our first attempts at addressing it, and investigations into mismatch between

performance on simulated data versus real data. To address performance drop with real data, we

introduce improved metrics Section 5.4.3 and show that they perform well in both settings. We

conclude in Section 5.5.

5.2. Background

5.2.1. System Model and WiFi Fingerprints

In this work, we focus on IEEE 802.11b (which we will refer to as WiFi), but general princi-

ples hold for other wireless standards as well. We consider a node with wireless transceiver that is

capable of observing the presence of WiFi APs and their RSSI values. To simplify the discussion,

we assume that the infrastructure is static, and the node is moving over time. We also assume that

omnidirectional antennas are used. The density of APs in range can vary from 0 to more than 40.

The node gathers measurements of WiFi fingerprints over time. Then, the node uses the

proximity metric to find an estimate of the moved distance for consecutive fingerprints. We use

the following notation in this work to refer to WiFi fingerprints. We define n as our node of

interest, a set A of all APs in the target area, and N ⊂ A as the subset of nearby APs within A
that are in range of node n. We use |N| to indicate the cardinality of a set, i.e. the count of distinct

items in the set. For integers |x| is the absolute value of x.

Let oi = (RSSIi,MACi) denote the AP observation of n for AP i. If i is not in N, then

RSSIi = 0. Then, F = {oi} , ∀i ∈ N is a WiFi fingerprint which corresponds to the list of

observations of currently neighboring WiFi APs. In case of multiple fingerprints, we will use a

notation of Fa with Na as set of neighbors.

5.2.2. Related Work Metrics

In the following, we use Na,Nb as set of neighboring APs of fingerprint Fa, Fb, respectively.

The observation oai refers to AP i ∈ Na in fingerprint Fa. We consider the following two metrics,

MetricE and MetricM, from related work. We present them only for the sake of comparing them

to the ones we design in this work.

MetricE (Euclidean Distance): In [8], the authors discuss RSSI proximity metrics. They

propose to compute the Euclidean distance between the RSSI vectors {RSSIai}i∈Na∩Nb
and

{RSSIbi}i∈Na∩Nb
from the set of APs Na ∩ Nb present in both fingerprints Fa and Fb:

m(Fa, Fb) =

√ ∑
i∈Na∩Nb

[
RSSIai − RSSIbi

]2 (5.1)



66 WiFi Proximity Metrics with Unknown Anchors Positions

MetricM (The ”Manhattan” distance): In [8], the authors also propose to use the Manhattan

distance that refers to the sum of the absolute differences instead of the Euclidean one.

m(Fa, Fb) =
∑

i∈Na∩Nb

|RSSIai − RSSIbi| (5.2)

5.2.3. NSE Dataset

Our evaluation uses a large-scale real-world dataset, collected as part of the National Science

Experiment (NSE) project in Singapore. We now briefly introduce the SENSg devices that are

used to gather the dataset.

(a) MetricE (b) MetricM (c) MetricJ

Figure 5.1: Simulation-based evaluation of initially proposed vs prior work metrics.

SENSg sensors: A total of 50,000 devices are produced and used by students at schools. The

students wear the devices for a week or longer, and collect data about their daily life. The data is

automatically uploaded to a cloud platform, and made available to the students to analyze. The

devices are called SENSg [76], and they record WiFi fingerprints (as defined in this work) every

12 seconds. Using a third party API, the WiFi fingerprints are mapped to location estimates after

the data is uploaded to the cloud. The SENSg devices store only the 20 APs with highest RSSI per

fingerprint. Storing the MAC address and received signal strength for each AP requires 7 Bytes,

so a fingerprint with 20 observed APs is 140 Byte large.

Measurements and data gathering: The real world datasets used in this work are gathered by

students during the NSE project. In particular, the dataset used in this work is a subset of all

fingerprints taken. For all fingerprints used, we also have a location estimate by the third party

API. Location provided by the third party API is subject to accuracy errors, as in typical cloud-

based location based-systems.

5.2.4. Simulation setup

In addition to the real world dataset, we generate an artificial dataset with 200, 000 fingerprints

as in the real measurement data. The fingerprints are randomly distributed in an area which is

roughly equivalent to the area covered in the real-world dataset. We generate this second dataset to

have a better control over noise and other factors that lead to unexpected behavior in the observed
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APs, and their RSSI values. In addition, this allows us to know the true location of fingerprints,

which will be exploited in the evaluation.

To simulate path loss L(d) and the resulting RSSI, we use the 802.11 propagation model E

presented in [21] that takes into account LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight)

channels, breaking point distance in which the attenuation slope drastically changes because of

the scattering effect, log-normal shadowing, fading and other physical channel phenomena. L(d)

consists in the sum of a freespace component LFS(d) whose slope depends on the distance d

in comparison to the aforementioned breakpoint distance dBP and a shadow fading component

SF (d) that accounts for the large scale scattering.

L(d) =

LFS(d) + SF (d) d ≤ dBP
LFS(dBP ) + 10α2 log10

(
d

dBP

)
+ SF (d) d > dBP

(5.3)

α2 is the attenuation slope after dBP while LFS(d) is computed with a lower attenuation

slope α1 before dBP .

LFS(d) = 10α1 log10

(4πfd

c

)
(5.4)

f denotes the frequency and c the speed of light in vacuum. The shadow fading component

is modeled by a log-normal distribution centered in zero with a standard deviation σSF . The

constants for model E as introduced in [61] are the following: dBP = 20 meters, α1 = 2,

α2 = 3.5 and σSF = {3, 6}.

5.3. NSE Experiment and Artificial dataset

5.3.1. SENSg sensors

A total of 50,000 devices are produced and used by students at schools. The students wear

the devices for a week or longer, and collect data about their daily life. The data is automatically

uploaded to a cloud platform, and made available to the students to analyze. The devices are called

SENSg [76], and they record WiFi fingerprints (as defined in this work) every 12 seconds. Using

a third party API, the WiFi fingerprints are mapped to location estimates after the data is uploaded

to the cloud. The SENSg devices store only the 20 APs with highest RSSI per fingerprint. Storing

the MAC address and received signal strength for each AP requires 7 Bytes, so a fingerprint with

20 observed APs is 140 Byte large.

5.3.2. Measurements and data gathering

The real world datasets used in this work are gathered by students during the NSE project. In

particular, the dataset used in this work is a subset of all fingerprints taken. For all fingerprints
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used, we also have a location estimate by the third party API. Location provided by the third party

API is subject to accuracy errors, as in typical cloud-based location based-systems.

5.3.3. Simulation setup

In addition to the real world dataset, we generate an artificial dataset with 200, 000 fingerprints

as in the real measurement data. The fingerprints are randomly distributed in an area which is

roughly equivalent to the area covered in the real-world dataset. We generate this second dataset to

have a better control over noise and other factors that lead to unexpected behavior in the observed

APs, and their RSSI values. In addition, this allows us to know the true location of fingerprints,

which will be exploited in the evaluation.

To simulate path loss L(d) and the resulting RSSI, we use the 802.11 propagation model E

presented in [21] that takes into account LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight)

channels, breaking point distance in which the attenuation slope drastically changes because of

the scattering effect, log-normal shadowing, fading and other physical channel phenomena. L(d)

consists in the sum of a freespace component LFS(d) whose slope depends on the distance d

in comparison to the aforementioned breakpoint distance dBP and a shadow fading component

SF (d) that accounts for the large scale scattering.

5.4. Proximity metrics for WiFi Fingerprints

5.4.1. Proximity Metrics for WiFi Fingerprints

In this section, we summarize our problem statement, and then present a number of candidate

proximity metrics that will be evaluated later.

5.4.1.1. Problem Statement

Our goal is to provide a metric m(Fa, Fb) able to estimate the expected spatial correlation

between two fingerprints. The metric will be optimized for accuracy in the estimate, and low

computational cost. Intuitively, that metric should be 1 if two fingerprints are taken at the exact

same location, and 0 if they are completely uncorrelated (e.g., no single access point was observed

by both fingerprints).

Consequently, we define the proximity metric as a function m(Fa, Fb) = y between the

fingerprints Fa and Fb, with 0 ≤ y ≤ 1.

5.4.1.2. Problems with Metrics from Related Work

We evaluate MetricE and MetricM from related work over our simulated data set. We sum-

marize the results in Figure 5.1 (a) & (b). From our study, we find that both have several issues:

i) they are not normalized, but return a value ≥ 0, with smaller values indicating proximity; ii)
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they do not work well for distances larger than 15 meters, for which only few mutual APs are ob-

served. We note that the original work used the metrics to find closest matching fingerprint pairs,

and not to estimate exact distances. As it can be seen in Figure 5.1, for distances greater than 15

meters, the metric score is decreasing on average, leading to values indicating closer proximity.

One explanation for that behavior could be that with increasing distance between the fingerprint

locations, fewer mutual APs are observed and the sum of RSSI differences will decrease with

increasing distance. This is a practical issue, as low metric score could either indicate close prox-

imity, or distances of more than 15 meters. To the best of our knowledge, such issues were not

discussed before in related work.

5.4.1.3. Using Jaccard-Index to Reward Mutual Observations

Based on the above findings, intuitively, a metric should score high if a large fraction of the

APs observed in two fingerprints are shared, i.e. mutually observed. Based on that, our initial

proposal is to use a metric that contains a factor relating to the Jaccard Index [47], defined as:

m(Fa, Fb) =
|Na ∩ Nb|
|Na ∪ Nb|

(5.5)

In other terms, for two fingerprints, the Jaccard Index is a ratio of number of mutually observed

APs, divided by the total number of observed APs. To simplify the discussion, our first proposed

metric MetricJ is exactly the Jaccard Index, see Eq. 5.5.

(a) MetricE (b) MetricM (c) MetricJ

Figure 5.2: Real data-based evaluation of initially proposed vs prior work metrics.

We note that MetricJ is range-free, i.e. RSSI values are not directly used, while MetricE and

MetricM measure the similarity of RSSI values of APs that are observed in both fingerprints.

Nevertheless, we evaluate the use of MetricJ as distance metric, and discuss the results. We later

discuss the use of the Jaccard Index as factor to scale other range-based metrics.

We evaluate the performance of MetricJ compared to MetricE and MetricM with two sets of

data: simulated fingerprints, and a large set of real-world data (see Section 5.2).

5.4.1.4. Simulation-based Evaluation

We start with a simulation-based evaluation, using the dataset described in Section 5.3.3. To

evaluate the quality of the metric, we compare the metric score to the true distance between the
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Metric Dataset Correlation Improv. Correlation

MetricJ Artificial 0.91 0.91
MetricE Artificial 0.59 0.94

MetricM Artificial 0.72 0.94
MetricJ Real-world 0.46 0.49
MetricE Real-world 0.31 0.53

MetricM Real-world 0.41 0.54

Table 5.1: Summary of Spearman correlation values of original and improved metrics on our
datasets.

locations at which the fingerprints are taken. We compute the Spearman correlation [17] between

the two values to obtain a quantitative result. Unlike the widely used Pearson correlation, the

Spearman correlation evaluates the monotonic relationship and it is then a better fit for non-linear

correlation studies. In addition, the Spearman correlation is proven to be robust in the sense of

being resistant to outliers [17].

From visual inspection of our simulation results presented in Figure 5.1, MetricJ is superior

to the two related work metrics. This is confirmed by the correlation scores of 0.59 (MetricE),

0.72 (MetricM) and 0.91 (MetricJ) (see Table 5.1).

5.4.1.5. Real-World Data-based Evaluation

For this dataset (introduced in Section 5.2.3), we do not have accurate ground truth locations

available. Instead, we will use the distance between the fingerprints based on the third party’s

localization result (which itself is a noisy estimate) for the performance evaluation. We evaluate

around 200, 000 fingerprints located all around Singapore.

As it can be observed in Figure 5.2, all three metrics perform much worse than expected on

the real dataset. We note that for MetricJ, a value of 1 should correspond to a small distance, while

for the other two metrics, smaller values mean shorter distances. For all three metrics, distances of

<10m generally do have expected metric scores, but the Spearman correlation between distance

and score is not very strong: 0.46 (MetricJ), 0.31 (MetricE), 0.41 (MetricM). While MetricJ’s

correlation score is still better than the other two metrics, MetricJ has very low values even for

short distances, and high scores are almost never reached. Clearly, the performance predicted

based on simulations is not achieved when the evaluation is done using our real-world dataset.

Surprised by those results, we set out to investigate the cause, and possible mitigations.

5.4.2. Analysis of MetricJ

We now present our analysis of the causes for the bad performance of MetricJ on the real

data set. We start by analyzing metric scores for fingerprints that are estimated to be taken at

the same locations. We find that MetricJ scores are low because the actual number of mutually
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Figure 5.3: Jaccard index components: the number of mutually observed APs versus the total
number of APs observed in two fingerprints that are at most 1 meter distance apart.

observed APs is much smaller than expected compared to the total number of APs observed in

both fingerprints.

To confirm that finding, we select 11, 433 fingerprint tuples that are within respective esti-

mated distance according to the third-party cloud service of 1 meter or less. We then compute

the numerator and divisor of the Jaccard index and show the results in Figure 5.3. Points on the

dashed diagonal lines indicate that both fingerprints contain the same set of observed APs. We

expected to see the same or similar set of APs in both fingerprints, with diagonal up to a divisor

score of 20 (c.f. Section 5.2.3), and only few cases of divisor scores higher than 20. Instead, the

results show that there are two distinct clusters: around (7,12) and (14,28). Given the construction

of MetricJ, those clusters would lead to metric scores of around 0.5, although scores of 1 would

be expected given the short distance between the fingerprints. The question is now: why there are

so few APs mutually observed for fingerprints taken at the same location?

5.4.2.1. Probabilistic Observations of APs

Our hypothesis is that the fingerprint collection process on the devices suffers from a

probability e to miss a nearby AP completely (in addition to expected RSSI variations). More

formally, e would lead to the following expected ratio of mutually observed APs versus total APs

in the shared neighborhood:

(a) Probability of mutual observation: Pm = (1− e)2.

(b) Probability of having at least one observation: Po = 1− e2.

This results in the following maximal Jaccard Index MJI for n APs in the shared neighbor-
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hood:

MJI =
Pm ∗ n
Po ∗ n

=
Pm
Po

=
1− e
1 + e

In other words, an effective upper bound for our metric score depends on e, even if fingerprints

are taken from the same location.

5.4.2.2. Probability e of missing a nearby AP

First cluster. As expressed above, we have identified two clusters. Our guess is that the

cluster around (14,28) is likely due to the limited cache of 20 best APs per fingerprint.

Second cluster. For the cluster around (7,12), we speculate that this is due to the limited

scanning capabilities of WiFi chipsets. WiFi nodes scan each WiFi channel for APs for a limited

time (e.g. 120-180 ms). As WiFi APs typically transmit beacons every 100 ms, channel conges-

tions may cause that beacons transmitted during the time spent on that channel are lost due to

the likelihood of beacons collisions and hidden nodes. We leave a more detailed investigation for

future work.

Based on the clusterization above, we analyze the real-world dataset to attempt to give an

estimated value of e due to caching and channel congestion. We compare the number of APs

within a range of 20 meters from two fingerprints separated by a maximum distance of 1 meter to

the total number of APs present in both fingerprints. The 20 meters radius we choose corresponds

to the breakpoint distance after which the signal is more likely to suffer from an attenuation of a

higher slope factor due to obstacles.

e =
E(# of APs in FPs of d ≤ 1m)

E(# of APs within 20m)
=

17.16

67.62
= 0.25 (5.6)

5.4.3. Improved Metrics

5.4.3.1. Candidate Metrics

We now present a set of candidate metrics to improve on MetricJ with regards to imperfect

observations of APs, and to leverage RSSI values. In general, the metric should incorporate

two properties: a) a factor reflecting on similarity in observed APs in both fingerprints, and b)

counterbalance as much as possible the effect of the previously computed probability e.

We now explore options for both a) and b), leveraging our insights as presented in Sec-

tion 5.4.4. In particular, we will convert the a)-related components of MetricE and MetricM

into factors that range from 0 (for no similarity) to 1 (for maximal similarity) by imposing a limit

on the RSSI difference for mutually observed APs, and a scaling factor s. In addition, we will

introduce the same b)-related factor for all three metrics discussed.

Similarity score for mutually observed APs: In MetricE and MetricM, differences of RSSI

values for mutually observed APs are computed, of which the squared or absolute value is then

summed up. The resulting values are in practice between 0 and 250 (see Figure 5.2). We now
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replace that with a construction that returns values between 0 and 1 for each mutually observed

AP. Together with the normalization factor, that will lead to an overall metric score between 0 and

1 (where larger scores indicate higher spatial correlation). We define that similarity score for two

fingerprints Fa, Fb as follows:

δ(oai, obi) = 1− |RSSIai − RSSIbi|
max(|RSSIai|, |RSSIbi|)

(5.7)

Counterbalance the effect of the probability e: In MetricJ, normalization (through the divisor)

was based on the size of the union set of observed APs. As discussed in Section 5.4.2, the

observed value of that size (and size of the intersection set) is biased by e. The idea we adopt

limits the number of considered mutually observed APs for metrics computations. As the main

peak in Fig. 5.3 is around (7,12), we propose to set a maximum number of APs, #APs
max = 7 over

which the similarity score defined in Eq. 5.7 is computed, rather than the whole set Na∩Nb. These

#APs
max APs are chosen as those in Na ∩ Nb with the lowest absolute difference of corresponding

RSSIs between both FPs (Fingerprints) |RSSIai − RSSIbi|, we denote this set as: La,b(#APs
max)

MetricJ+i (improved MetricJ): In this metric, we extend MetricJ with the upper bound on the

intersection size to compensate e as discussed above. The resulting metric is:

m(Fa, Fb) =

∑
i∈La,b(#APs

max)
1

#APs
max

(5.8)

Here, we choose to represent |La,b(#APs
max)| as

∑
i∈La,b(#APs

max)
1 to highlight similarities to the

other two improved metrics.

(a) MetricM+i (b) MetricE+i (c) MetricJ

Figure 5.4: Artificial data-based evaluation of improved metrics.

(a) MetricM+i (b) MetricE+i (c) MetricJ+i

Figure 5.5: Real data-based evaluation of improved metrics

MetricM+i (improved MetricM): The next metric is the Manhattan distance-based MetricM,
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Figure 5.6: The standard deviation of metrics scores computed for FPs separated by distances
ranging from 1 to 150 m (real measurement dataset).

improved with our new similarity function δ(Fa, Fb) and the compensation for the effect of the

probability e.

m(Fa, Fb) =

∑
i∈La,b(#APs

max)
δ(oai, obi)

#APs
max

(5.9)

MetricE+i (improved MetricE): The last metric is MetricE with our new similarity function

δ(Fa, Fb) and the compensation for the effect of the probability e.

m(Fa, Fb) =

√∑
i∈La,b(#APs

max)

[
δ(oai, obi)

]2
#APs

max
(5.10)

5.4.4. Evaluation

We evaluate the metrics with simulated and real data, with results shown in Figure 5.5. The

Spearman correlation scores are as follows: 0.49 (MetricJ+i), 0.54 (MetricM+i), and 0.53 (Met-

ricE+i). All correlation results are summarized in Table 5.1. We conclude that both proposed

improvements (similarity score and e-effect compensation) together improve the previously dis-

cussed metrics, with all three metrics performing similarly in terms of Spearman correlation.

The Spearman correlation is a good indicator of metrics performance. However, it does not

capture other aspects necessary to compare the proposed metrics, such as the robustness. We

introduce robustness as a performance measure in the sense that for a specific physical distance

between FPs, the corresponding metric score should be as consistent as possible across different

conditions and scenarios. For the real measurement dataset, we show in Fig. 5.6 the standard

deviation of metrics scores vectors of size 3000 for each distance from 1 to 150 meters with a±0.1

m margin. Naturally, the lower this standard deviation is, the more robust is the corresponding

metric. Although the 3 metrics compared in this Section show more or less similar Spearman
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correlation coefficients, Fig. 5.6 demonstrates that MetricM+i is the most robust one compared to

MetricE+i and MetricJ+i.

5.5. Wrap-up & Summary

In this work, we discussed proximity metrics for WiFi fingerprints that do not need external

sensors and do not have access to the locations of APs. Using real data from a large dataset as

well as simulated data, we have shown that metrics proposed in related work do not perform as

expected in noisy real datasets, and we have proposed a range of alternatives. We have also shown

that access points might be missed in real environments with some probability e and proposed an

upper bound for metric scores as a function of e. Based on those insights, we have improved our

proposed metrics. The best performing metric (MetricM+i) has resulted in a Spearman correlation

score of 0.54 with the real dataset and 0.94 with the artificial one.





Chapter 6

Conclusion and Future Work

We have proposed to fuse timing (Time-of-Flight (ToF)) range measurements of GPS and

WiFi technologies, in order to circumvent the limitations of the individual radio access technolo-

gies and improve the overall localization accuracy and pervasiveness in several contexts. We

first investigated WiFi echo technique, sources of noises affecting WiFi ToF measurements, and

proposed two different shortest path estimators, one that requires environment training, and one

that alleviates this need towards more autonomous systems without a substantial loss of accuracy

with respect to the first. We have shown that fusing ranges is beneficial both in the scenarios

where the standalone technology does not have enough anchors to provide a position fix and in

the scenarios where there exists a rich set of multiple ranges. For the latter case, we have found

that the intelligent selection of the subset of ranges with accurate timing information is the key

to achieve the best positioning accuracy. We have introduced a novel geometrical-statistical ap-

proach to select only the ranges that could provide high accuracy and low horizontal dilution of

precision (HDOP). In each scenario, a two-phase EKF algorithm is responsible to provide the po-

sition fix. In constrained environments, our system can provide a position fix in scenarios where

single technologies with limited anchors in range need to rely on simple metrics. In an indoor

scenario with a rich set of visible ranges, yet with GPS and WiFi measurements affected by mul-

tipath errors, our results show that our system can achieve a performance gain of 8x versus pure

GPS positioning and 50% versus pure WiFi. Our approach is a step beyond classical approaches

where technologies in multi-radio access are considered as monolithic entities. It can be extended

to other communication technologies that provide timing information such as cellular networks.

Eliminating the assumption of prior knowledge availability of WiFi APs positions’ coordinates

as well as the computational overhead of the solution we propose with a rich number of ranges

that needs further investigation are the plan for our future work. Additionally, we came up with

the design of proximity metrics for WiFi fingerprints that do not need external sensors and do not

have access to the locations of APs. The best performing metric we propose has resulted in a

Spearman correlation score of 0.54 with the noisy real dataset considered for the evaluation, and

0.94 with the artificial one.
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Appendix

A.1. The GPS position simulator based on real traces

We collect real traces using the Evaluation Kit with Precision Timing manufactured by U-

blox and equipped with an active GPS antenna of type u-blox ANN-MS, connected by a 5 meters

coaxial cable. This device runs the U-center software for configuring the GPS receiver’s settings,

and testing, visualizing and analyzing the collected data. We choose this device because it presents

the advantage of storing the raw data that we need to evaluate the positioning algorithms and

deeply analyze the sources of error, these logs are stored as a single .ubx file.

A.1.1. The RINEX format

Since the GPS log data is stored in a proprietary file format .ubx proper to the u-blox receiver,

we convert it to a more manufacturer independent file format. We opt for the Receiver Indepen-

dent Exchange Format (RINEX), a raw navigation system data format that does not depend on

the receiver’s manufacturer or its special features. The data logs are classified in different files;

the ones of interest for this study are the observation and navigation files (.obs and .nav).

A.1.1.1. Observation file

This file contains the pseudoranges, the code phase, the Doppler shift and the signal strength

measurements from every single visible satellite mapped by their pseudorandom noise numbers

(PRN) at every GPS epoch when the measurements were carried out.

A.1.1.2. Navigation file

Additionally to the ephemeris data broadcasted by the satellites that includes the SV clock

bias, drift and drift rate, the Keplerian parameters, perturbation parameters and additional infor-

mation proper to each SV, this file contains the ionospheric correction parameters and the terms

of polynomial that are necessary to compute the satellite clock offset.
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Figure A.1: Flowchart of our GPS simulator based on real traces

Figure A.2: Graphical representation of the GPS position, satellite and their orbits.
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To convert the data logs from .ubx to RINEX we use RTKLIB, an open source program package

for GPS positioning.

A.1.2. The MATLAB implementation of the Simulator

We implement a GPS simulator in Matlab that starts from the raw data logs in a RINEX format

to perform all the functions related to the satellites’ positions computation and the pseudoranges

corrections introduced in Section 4.4. The flowchart of the simulator is depicted in Fig. A.1

and a graphical representation of the GPS position, satellite and their orbits in Fig. A.2. The

simulator allows us to run the positioning algorithm we want to evaluate for the receiver’s position

calculation at every epoch.

A.2. RAIM for Multi-Technology Positioning

As reference methodology, we use the RAIM algorithm that is designed for integrity moni-

toring. RAIM is used for applications such as aviation and naval navigation for the case of pure

GPS localization.

However, RAIM is designed for integrity monitoring and specially for aviation applications,

where the prevalent source of errors are quite different to those in urban environments. Although

some multipath can be detected by RAIM, it fails for detecting short delay multipath, which

abounds in urban and indoor environments. However, it can be used to detect strong multipath

components. The approach described in [60] takes benefit of the redundancy provided by the

availability of more satellite signal measurements than the minimum required for the system to be

capable to compute the receiver’s position. This minimum corresponds to 4 (receiver’s 3D coordi-

nates (x, y, z) + the receiver’s clock bias bGPS). The linearized measurement matrix H undergoes

a QR decomposition to derive the parity vector p (from a submatrix P of this decomposition and

the residuals vector) that provides a measure of the biases affecting the measurements, to extract

the redundancy information as follows:

y = H · x + e

Measurements are fault-free (H0) if b = 0 and at least one measurement is corrupted

(H1) if b 6= 0.

y = Q ·R · x + e

QT · y = R · x + QT · e[
Q1

P

]
· y =

[
R1

0

]
· x +

[
Q1

P

]
· e

Supposing that the measurement error follows a Gaussian model e ∼ N (b,C), the

parity vector is also Gaussian p ∼ N (P · b,P ·C ·PT)
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We apply RAIM to scenarios with mixed GPS and WiFi ranges considering the most general

case of the Rao test to the parity vector p introduced in [60]. The test computes the statistic TR(p)

and the p-value(observed significance level):

TR(p) = pT · (P ·C ·P)−1 · p (A.1)

where C is the measurement covariance matrix. We apply RAIM setting C = Rk.

In the specific case of uncorrelated measurements with the same variance: C = σ2 · I and

thus TR(p) can be simply computed in the subsequent way:

TR(p) =
∥∥p

σ

∥∥2 (A.2)

If this p-value exceeds the predefined significance level, at least one measurement is faulty.

If at least 6 anchors are available, the faulty anchor can be detected by dividing the initial set of

anchors into subsets of 5 anchors and computing the p-value for each subset.
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