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ABSTRACT

This thesis investigates three different resource allocation problems, aiming to achieve

two common goals: i) adaptivity to a fast-changing environment, ii) distribution of

the computation tasks to achieve a favorable solution. The motivation for this work

relies on the modern-era proliferation of sensors and devices, in the Data Acquisition

Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid con-

gestion and enable low-latency services, limits have to be imposed on the amount

of decisions that can be centralized (i.e. solved in the “cloud”) and/or amount of

control information that devices can exchange. This has been the motivation to de-

velop i) a lightweight PHY Layer protocol for time synchronization and scheduling in

Wireless Sensor Networks (WSNs), ii) an adaptive receiver that enables Sub-Nyquist

sampling, for efficient spectrum sensing at high frequencies, and iii) an SDN-scheme

for resource-sharing across different technologies and operators, to harmoniously and

holistically respond to fluctuations in demands at the eNodeB’ s layer.

The proposed solution for time synchronization and scheduling is a new proto-

col, called PulseSS, which is completely event-driven and is inspired by biological

networks. The results on convergence and accuracy for locally connected networks,

presented in this thesis, constitute the theoretical foundation for the protocol in terms

of performance guarantee. The derived limits provided guidelines for ad-hoc solutions

in the actual implementation of the protocol.

The proposed receiver for Compressive Spectrum Sensing (CSS) aims at tackling

the noise folding phenomenon, e.g., the accumulation of noise from different sub-

bands that are folded, prior to sampling and baseband processing, when an analog

front-end aliasing mixer is utilized. The sensing phase design has been conducted

via a utility maximization approach, thus the scheme derived has been called Cogni-

tive Utility Maximization Multiple Access (CUMMA). The framework described in
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the last part of the thesis is inspired by stochastic network optimization tools and

dynamics. While convergence of the proposed approach remains an open problem,

the numerical results here presented suggest the capability of the algorithm to han-

dle traffic fluctuations across operators, while respecting different time and economic

constraints. The scheme has been named Decomposition of Infrastructure-based Dy-

namic Resource Allocation (DIDRA).
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CHAPTER 1

INTRODUCTION

This thesis discusses new techniques to address the problem of scheduling in wireless

networks. In 2013, the number of devices with a wireless connection has overcome

the world population and it is indisputable such a dramatic increase will continue in

the next years (see Fig.1.0.1). The broadly used, and often inflated, term to represent

the proliferation of connectivity is “Internet of Things” (IoT). The main benefit of

the IoT are tied with making it easy to overcome the limits of myopic decisions in

everyday life activities and services, by creating an ecosystem of data that relate to

many interdependent human activities and processes, that can be used to compute

socially optimum decisions. Naturally, these two trends feed each other success:

the easier it is to gather and process data collected over wide areas by a myriad of

disparate sensors, the greater and broader are the benefits of deploying sensors and

controllers everywhere. What is still not clear is how the IoT, introducing the human-

to-thing and thing-to-thing communications, will change human behaviour and social

interactions: how deep the Internet of Things will change our habits and everyday

lives? The answer for this question is probably going to be revealed in the next ten

Figure 1.0.1: Prediction on the Number of Connected Devices in the early future
(Source: Forbes)
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years and many experts expect the success of Internet of Things to be application

driven but, as for any other technology, the standardization process is mandatory to

enable any kind of investment in Research and Development. Oleg Logvinov, chair,

IEEE P2413 WG and director, special assignments, Industrial and Power Conversion

Division, ST Microelectronics:

“This is one of those rare watershed moments, where the world gets to

witness the dawn of a new age of technology innovation. The growing in-

tersection of smart technologies and high-speed communications will pro-

duce profound, positive changes in nearly every aspect of our daily lives.

Smart cities, homes, and workplaces, e-health, resilient, self-healing power

grids, digital factories, cleaner transportation, immersive entertainment:

these are just a few areas of economic opportunity that would benefit

from the increased interoperability and portability that a standardized

IoT architecture brings.”

We can view the IoT network services as being partitioned into two relatively flat

layers (Fig.1.0.2): 1) a top layer including the cloud computing systems; 2) beneath,

a layer that includes what we refer to as Data Acquisition Systems (DAS).
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Figure 1.0.2: Layer structure of future Internet of Things

Both layers are distributed: the cloud comprises servers farms and a high speed

network backbone, while DAS either rely on cellular or WiFi services or are essentially

instantiations of Sensor Networks (SNs). The DAS are primarily based on IEEE.11 or

IEEE.15 standards, and leverage on over thirty years of research on wireless packet-

switched ad-hoc networks. Another useful medium for IoT applications is the often

overlooked power-line communication medium, which also has a variety of standards

available as G3-PLC, PRIME, HomePlug Green PHY, HomePlug AV2, the standards

IEEE 1901/1901.2 and ITU-T G.hn/G.hnem. The question for communication and

network researchers is if the SN models available for DAS today cover well the DAS

needs of all possible applications and what else can fall in the IoT model. Specifi-

cally, what are the key performance metrics that could expand the applicability of

the IoTs so that data processing can migrate to the cloud instead of being limited

to a single, possibly complex and multi-modal sensor platform. As the number of

“requests” to access a communication resource (whether a spatial frequency in mas-

sive MIMO, a time block in a TDMA system, a frequency band in an FDMA system

or any combination of these) increases, it becomes of fundamental importance to

3



solve the scheduling problem of finite resources as efficiently as possible. For cellular

communications, the emerging interest in Cloud Radio Access Network (C-RAN) to

centralize scheduling decisions is motivated by a potential lower deployment cost of

base stations and a gain in degrees of freedom for the scheduling optimization: how-

ever moving the processing entirely in the cloud becomes unfeasible in dense areas

and the communication overload in the front-haul (from the base station to the C-

RAN) unsustainable. Additionally, there could still be scenarios were a C-RAN is

not accessible for prohibiting costs or for complete absence of the C-RAN itself. Fur-

thermore, Ultra-Reliable Low-Latency Communications (URLLC) would still prefer

the processing and the computation to occur closer to the UE’s and this motivates

the research in decentralized solutions for allocating resources.

In Wireless SNs (WSNs), the two most widely used protocol are WiFi and Zig-

bee, which are inherently asynchronous and resolve medium access conflicts either

through centralized management or through decentralized Carrier Sensing Multiple

Access (CSMA) methods. The need for network synchronization, on the other hand,

is typically addressed through out-of-band control channels, like the Global Position-

ing System (GPS), or through an application layer protocol such as the the Precision

Time Protocol (PTP). While GPS and PTP can provide time information for syn-

chronous sensing, they do not solve the communication scheduling problem which can

be difficult, especially in large mesh networks of sensors. This motivates the study

of a protocol that can simultaneously provide Synchronization and TDMA Schedul-

ing of communication activities in clustered WSNs. The first chapter of this thesis

presents the PulseSS protocol, where synchronization and scheduling are attained via

updates of local variables: the main contribution of this thesis is the study of con-

vergence properties of such updates, whereas practical implementation details and

a testbed evaluation can be found in my former colleague Reinhard Gentz’s PhD

4



thesis [Gentz(2017)] and publications [Gentz et al.(2016),Gentz et al.(2015)].

The second chapter is dedicated to a Cognitive scheme to opportunistically ex-

ploit transmission opportunities in the spectrum, in an FDMA-TDMA based system,

namely the Cognitive Utility Maximization Multiple Access (CUMMA) Receiver. Mo-

bile devices are increasingly been used for entertainment (gaming, video streaming).

The coexistence of these networks with the IoT and Machine-to-Machine (M2M) com-

munications means that wireless applications may quickly become starved for band-

width. Increasing the spectrum to millimeter waves can provide the much needed

linear increase in throughput, but it poses the challenge of reversing the trend of

bringing high speed sampling closer and closer to the antenna. Also, for IoT, a better

match would be decentralized cognitive opportunistic spectrum access rather than

scheduling in a Cloud Radio Access Network. But that requires somehow overcoming

the bottleneck of Nyquist sampling when sensing the large spectrum available. The

problem is formulated in terms of maximizing the utility a decision-maker can accrue

by exploiting transmission opportunities, while being penalized for interfering on pre-

existent communications. Since the number of sub-band potentially accessible can be

very large, especially in the mm-Wave spectrum where 5G is going to land, it would

be desirable to obtain informations from multiple sub-bands at the same time, and

the infeasibility of sampling at such high frequencies calls for the use of Sub-Nyquist

sampling, for which however the noise folding creates a severe limitation for the non-

coherent detection scheme proposed. To overcome this we look at the performances

of a group-testing inspired strategy, which can be seen as a very low-density sensing

matrix.

In the last chapter of this thesis we look at a new optimization framework for a

holistic resource allocation, across different operators and different technologies, in

the backhaul layer of the network architecture. A bottleneck of modern networks
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is the lack, or limited presence, of statistical multiplexing (sharing) of network re-

sources among wireless operators and technologies. The new generation of cellular

communications, currently under standardization by 3GPP, has been named 5G NR-

SS which stands for New Radio Shared Spectrum, to emphasize the importance of

developing methods to effectively enable an harmonious coexistence of different radio

access schemes and/or different Mobile Network Operators (MNOs). Although ex-

tensive research effort has been done at the PHY layer to mitigate interference, here

we argue that a complimentary solution could be offered by optimization of the site

where the different wireless service streams meet: the network backhaul. We built our

optimization framework on top of a newly defined SDN architecture, named LayBack,

and proposed by our collaborators Prof. Martin Reisslein and his former PhD stu-

dent Akhilesh Thyagaturu. We combine a multi time-scale decomposition, inspired by

the extensive work on Network Utility Maximization (NUM) approaches to solve re-

source allocation problems, with a Lyapunov-drift-plus-penalty relaxation to enforce

an economic-fairness among operators and prevent them from gaming the system in

the long run. The scheme proposed is named Decomposition of Infrastructure-based

Dynamic Resource Allocation (DIDRA). We show, numerically, that under certain

conditions, the suggested optimization can benefit the different operators minimizing

the end-to-end delay experienced in uplink traffic management, with respect to a

static allocation. In our approach, we explicitly consider the network latencies and

the temporal constraints the resource redistributions at different levels of the archi-

tecture (Operator core network, Gateways and eNBs) needs to abide. The work here

presented is a preliminary investigation: convergence of the proposed approach and

incorporation of multiple constraints at different layers of the protocol stack is beyond

the scope of this thesis.
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CHAPTER 2

DECENTRALIZED SYNCHRONIZATION AND SCHEDULING-

THE PULSESS PROTOCOL

2.1 Chapter Outline

In this chapter, we propose a new protocol, PulseSS to attain Synchronization and

Scheduling in a decentralized fashion, leveraging the bio-inspired dynamics of Pulse

Coupled Oscillators (PCOs). We start by giving a background on the solutions for

network synchronization and research in PCOs. We then describe the two basic com-

ponents of PulseSS, namely the scheduling and the synchronization rule and updates,

simplifying some of the protocol details that pertain the signaling and the topology

formation. This description allows to shed light on the protocols fixed points and

its expected trends. We then revisit the analysis of PCO based synchronization and

scheduling over locally connected networks and contribute to establish performance

guarantees for the convergence of the algorithm and design guidelines for implemen-

tation of the protocol. This work constitutes the analytical foundation for the de-

sign and implementation of the PCO-based distributed scheduling protocol presented

in [Gentz et al.(2016),Gentz(2017)] for multi-hop networks. The key-strength of the

protocol is that it offers a decentralized solution for two major problems in network

communications: a) clock network distribution and b) channel resource allocation. It

is then natural to study the attainable clock distribution accuracy when propagation

delays come into play (see Section 2.4.2) and the equivalent capacity available to each

node in the network for our scheduling mechanism. In Remark 2.5.10 we also discuss

the connection between our algorithm’s achievable schedule and the solution of the

minimum coloring graph problem.
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Compared to previous research, we want to highlight that: (a) the dynamics

we chose to analyze simplify the implementation both through digital as well as

analog circuits [Wang et al.(2011), Wang and Apsel(2007b), Wang et al.(2009)]; (b)

we do not need to assume that nodes can separate the signals fired by different nodes

when the firing occurs at unison, which may happen when the nodes are close to

synchrony (since the absorption property treats multiple interfering pulses as one)

(c) our results hold irrespective of the initial conditions. Furthermore, the absorption

property allows perfect synchronization to occur after some time t when no delay

exists; and, when there are delays, it allows (thanks to the refractory period) the

nodes phase difference to remain fixed and converge to a value that is bounded by

the maximum sum of the propagation delays over any path in the network after some

time t. In most of the competing models mentioned above, convergence occurs only

asymptotically, as time goes to infinity.

The main contributions are as follows: 1) we show that, for any positive coupling

strength, the synchronous state is the unique fixed point for our model (see Section

2.4) and for a 3 nodes locally-connected network, convergence to the synchronous state

occurs almost surely; 2) we study the effect of propagation delays, and extrapolate the

synchronization accuracy expected for more complex topologies and random delays

by characterizing the set of fixed points for our model in the presence of delays; 3) we

adapt the PCO-based scheduling scheme introduced in [Pagliari et al.(2010)] to locally

connected networks and analyze its convergence in a general class of these networks,

which includes both star and line networks (see Section 2.5). The simulations in

Section 2.6 corroborate our claims.
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2.2 Background on Network Synchronization and Scheduling

We can divide sensor network synchronization algorithms in two main classes. The

first class of methods is master slave; a good example is represented by the Network

Time Protocol (NTP) that requires the flooding of a message from a master node with

accurate time information over the entire network [Su and Akyildiz(2005), Maróti

et al.(2004)]. Typically the transmission time of the master is measured with an

absolute time reference coming from a GPS receiver and a timestamp is contained

in the payload of the message. Every node is aware of the delays due to multihop

transmissions and medium access waiting time, so it is able to modify and correct

properly its own lock at the reception of the message from the master. The second

class of algorithms is decentralized: a good representative is the Reference Broad-

cast Synchronization (RBS) [Elson et al.(2002)] protocol, where the transmission of

a reference signal to the neighborhood initializes the synchronization process, then

the nodes exchange a timestamp of their reference signal reception time and com-

pute their relative clock difference (improvements of RBS are in [Sichitiu and Veer-

arittiphan(2003), Römer(2001), Mock et al.(2000)]). An iterative average consensus

protocol [Li(2004)] suggests how to calculate the clock average and perform a decen-

tralized computation of the clock skew. The idea of establishing synchronization in a

decentralized way without the presence of an external input reference signal makes the

system safe from spoofing and other illegitimate intrusion tries. Providing common

timing is often necessary but not sufficient to attain TDM scheduling. Basically we

can divide the schemes to access the communication medium in two main categories:

• Random Access (ALOHA, CSMA and their variants)

• Centralized Scheduling (TDMA, CDMA)

Usually, due to their decentralized nature, random access schemes are suitable for
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environments where:

• the size of the network is unknown,

• the topology is dynamically changing,

• the traffic demands are bursty.

The advantage of centralized scheduling is the reliability to transmit over the medium

at a high and constant rate: the downside is the need of a master node to take

charge of the process and this might result in a weakness to face dynamic changes

of the environment or the failure of the master node itself. These considerations

have prompted research on decentralized approaches for scheduling that would merge

the benefits of the two schemes. In applications with large number of sensors with

slow duty-cycles Time Division Multiplexing (TDM) has advantages over other mul-

tiplexing methods, as nodes can have both transmitter and receiver in sleep mode

while their wait their turn, conserving energy, therefore especially useful for battery

powered devices. TDM solutions attaining an optimal allocations are NP-hard [Ra-

manathan(1997)] but there are several heuristic solutions for TDM scheduling, aimed

at allocating regularly a portion of a time frame to each node while meeting a given

criterion of fairness [Huang and Bensaou(2001)] or maximizing data throughput. Pro-

tocols such as the USAP [Young(1996)], DTSAP [Pond and Li(1989)] or FLUSH [Kim

et al.(2007)] use a message-passing approach, while DRAND [Rhee et al.(2006)] and

the method in [Herman and Tixeuil(2004)] formulate the time scheduling problem as

an instance of graph-coloring problem. These TDM scheduling algorithms typically

give the availability of global synchronization for granted, and require updating global

control information (such as the nodes’ ID, destination, neighbors, data rates, routing

information etc.), prior to eventually assigning a portion of transmission time (or a

non-conflicting color) to each user in the transmission channel. This entails overhead
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and reduced resilience compared to random access protocols, which are often preferred

over their synchronous alternatives. A popular centralized protocol for synchroniza-

tion and scheduling is WirelessHART [Foundation(2007),Lennvall et al.(2008)]. Pub-

lished in 2007, it has archived widespread acceptance for Wireless Sensor Networks

(WSNs). However there are two main drawbacks which we believe would make Wire-

lessHART less competitive, as seen in the comparison with our protocol in Table 2.1:

first scheduling in WirelessHART is centrally managed by a dedicated node called

Network Manager, limiting the size of the application and introducing a single point

of failure. In contrast, in our proposed protocol each cluster is managed locally, thus

our solution is naturally scalable. Second, WirelessHART requires global knowledge

of the network topology, whereas in our proposed protocol the nodes of each cluster

will assign themselves a fair share by communicating locally within their cluster. The

Protocol WirelessHART PulseSS

Medium Access Control Central, by the Network Manager
Decentral, each cluster operates independently

from other clusters

Knowledge of global network required Yes No

Source of Timing Built in, but only basic mechanics defined Build in

Timing Provided to Sensors Yes Yes

Timing Accuracy few µs per hop have been shown [Kim et al.(2008)]
Simulations show errors of <5ns per hop depending

on Bandwidth and Transmission power

Network Layer Defined Yes No

Table 2.1: Comparison between WirelessHART and PulseSS

protocol ISE100.11a is very similar to WirelessHART and has its key differences in

the network layer and above. Therefore ISE100.11a suffers from the same problems

as WirelessHART: central management requiring global knowledge of the network

topology.

We propose an easy to deploy protocol for clustered ad-hoc networks, combining

decentralized synchronization and medium access control, named the Pulse coupled

Synchronization and Scheduling (PulseSS) protocol. PulseSS works in an ad-hoc mesh

network scenario, where clusters coexist and contend for the same spectrum resources

11



adaptively. Each cluster has a special node acting as cluster head (CH), with similar

properties to the IEEE 802.11 standard: 1) transmissions are only allowed from and

to the CH; 2) CH’s acknowledge the reception of signals from nodes in their range,

so that hidden terminals can learn about conflicts.

Previous Work on Pulse Coupled Oscillators Synchronization

In 1975 Charles Peskin introduced the pulse coupled oscillator (PCO) model to

explain the synchronization of pacemaker cells in heart tissues [Peskin(1975)]. Prior

to that, swarm synchronization among pulsing agents, such as pacemaker cells, was

observed frequently in nature [Buck and Jology(1988)] but could not be well ex-

plained mathematically. Fifteen years later Mirollo and Strogatz in [Mirollo and

Strogatz(1990)] proved that fully connected networks of PCOs with excitatory cou-

pling and convex dynamics always converge to fire at unison, except for a measure-

zero set of initial conditions. They also exhamined the case of inhibitory coupling,

in which the oscillators emergent behavior turns into a uniformly spaced daisy-

chain of pulsing activities among the agents, which can be viewed as a conflict-

free schedule of the pulsing activities [Degesys et al.(2007)]. In the early 2000s

several groups recognized the applicability of PCO models for network synchroniza-

tion [Hong and Scaglione(2005),Campbell et al.(1999),Mathar and Mattfeldt(1996),

Timme et al.(2004), Motter et al.(2005), Izhikevich(1999), Frigui and Rhouma(2000),

Lee and Chen(2008), Barbarossa and Celano(2005), Torikai and Saito(2004), Nakano

and Saito(2002)] as well as scheduling [Degesys et al.(2007), Pagliari et al.(2010)],

albeit less directly for the latter. The key difference of this work is that the Puls-

eSS interlaces the PCO signaling with the scheduling signals, allowing to naturally

separate the control traffic from the data traffic. Typically, protocols using these

models have a fairly simple signaling mechanism that couple the dynamics of the
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nodes transmission activities. In turn, these protocols help integrate the physical

and the medium access control layers with network synchronization (typically appli-

cation layer) activities. However, PCO synchronization does not work well if it is

merged with CSMA protocols [Werner-Allen et al.(2005)]. Efficient implementations

of the PCO protocol disable CSMA [Pagliari and Scaglione(2011)] or use a separate

radio band all-together [Wang and Apsel(2007a)]. Additionally, while the conver-

gence of PCOs to the synchronous state has been studied extensively in the literature,

e.g., [Mirollo and Strogatz(1990),Kuramoto(1991),Ernst et al.(1995),Vreeswijk(1996),

O’Keeffe et al.(2015)], little is known for the convergence in locally connected net-

works [F.Nunez et al.(2015), Rothkegel and Lehnertz(2014), Wang et al.(2012b)], es-

pecially when propagation delays come into play. The problem of establishing almost

sure convergence for locally connected networks remains open, and has only been par-

tially addressed in recent works by imposing additional assumptions on the update

dynamics and the initial conditions of the oscillators’ phases (see e.g [Proskurnikov

and Cao(2015)] which extends the analysis in [Wang et al.(2012b), Nez et al.(2015)]

for Phase Response Curves (PRC) maps of the delay-advanced type [Izhikevich(2007)]

and references therein). In [Tyrrell et al.(2008)], a claim on the convergence of the

synchronization for a line network was provided, but was only verified through nu-

merical simulations. Other works, such as [Lucarelli and Wang(2004), Werner-Allen

et al.(2005),Degesys and Nagpal(2008),Degesys et al.(2007),Patel et al.(2007)], looked

at the asymptotic behavior considering very small coupling between oscillators and

focused on the effect of different functions modeling the dynamics of the oscillators,

which can be approximated by a continuous-time Kuramoto model [Kuramoto(1991)].

These models do not apply for scheduling algorithms [Degesys et al.(2007), Pagliari

et al.(2010)] that in all regimes are known to not produce the desired emergent be-

havior, unless the network is fully connected.
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Figure 2.3.1: Illustration of the PulseSS coarse and the fine clocks maintained by
each node.

Notation

Unless specified otherwise, we represent matrices and vectors with capital bold-

face letters (i.e., B), we use calligraphic letters to indicate sets of nodes (i.e., A), and

the greek letters Φ and Ψ for the internal clocks of the nodes. The letter π is used

to refer to an index after a permutation and the lowercase letters α, β, δ are positive

parameters of the coupling equations. When not used as a node index, j =
√
−1. The

notation t+ refers to an instant after time t when an event triggered a clock update.

We use suffixes to refer to a specific node, pair of nodes or a specific clique in Section

2.5.

2.3 Overview of the PulseSS Protocol

Let the WSN be described by the graph G = (V , E), where V is the set of stationary

sensor nodes and E (i.e., the set of edges) captures the pairs of nodes that are in range

of each other. The network consists of a set of cluster heads (CHs) denoted by the set

C ⊂ V and a set of regular nodes N , V − C that communicates only with the CHs.

For each c ∈ C, we define Nc ⊂ N as the set of regular (non-CH) nodes that lie within
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the transmission range of CH c; and, for each v ∈ N , we define Cv , {c ∈ C : v ∈ Nc}

as the set of CHs that are within the transmission range of v.

We shall assume that CHs are preassigned, such that each node has at least one

CH in communication range. Nodes that have multiple CHs in communication range

are referred to as shared (or gateway) nodes. The management of these nodes is

crucial to ensure that all neighboring clusters can self-organize and attain conflict

free schedules.

In PulseSS, each node maintains two local clocks, namely a fine clock with period T

and a coarse clock with period LT , as illustrated in Fig. 2.3.1. Each cycle of the coarse

clock is advanced by the expiration of L cycles of the fine clock and each cycle of the

fine clock represents a transmission time slot of duration T . The PulseSS signaling is

used to locally update the phases of both clocks, as will be explained mathematically

next. These updates synchronize the phases of the fine clocks at all nodes at the

slot level (see Section 2.4) and set the phases of the coarse clocks apart so as to

schedule for each node a portion of the L time slots available in the frame, enabling

proportional fairness and spatial reuse (see Section 2.5). These goals are achieved by

having each node transmit two control signals, a preamble which we call the start

beacon and a post-amble, called end beacon, meant to reach neighboring CHs. As in

the 802.15.4 MAC these two signals delimit the period allotted for the two way data

transmission between a node and is CH. However the beacons emissions are controlled

by the regular nodes and not the CHs and there is no contention in this interval. The

times of emission of these beacons governed by the local coarse clock expirations (every

frame); the reception of such beacons by other nodes triggers adjustments of their own

coarse clocks (and, thus, their schedules) as the CHs’ corresponding acknowledgment

is received. The notion of being coupled through an acknowledgment is new in PCO

based protocols, and it is the key ingredient to attain collision avoidance.
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Mathematically, let the state of the local fine clock at node v ∈ V be described by

the phase variable

Φv(t) =
t

T
+ φv (mod 1), (2.3.1)

where t is the absolute time and φv ∈ [0, 1) is the offset of the clock relative to the

absolute time origin. The phase variable increases from 0 to 1 linearly in each period

and marks the portion of time that has elapsed within each time slot. Moreover,

to determine its transmission schedule, node v maintains not one but two ascending

timers for the coarse clock, i.e., a start timer and an end timer, as depicted in Fig.

2.3.1. The state of the start and the end timers can be described by the phase

variables

Ψ(s)
v (t) , t

T
+ φv + ψ(s)

v (mod L) = sv(t) + Φv(t), (2.3.2)

Ψ(e)
v (t) , t

T
+ φv + ψ(e)

v (mod L) = ev(t) + Φv(t), (2.3.3)

where ψ
(s)
v and ψ

(e)
v are integer offsets of the timers and sv(t) , bΨ(s)

v (t)c and ev(t) ,

bΨ(e)
v (t)c are the indices of the start and end time slots. The timers expire when

their respective phase variables reach the value L and are reset to 0 afterwards. As

mentioned before, the expiration of the start and end timers marks the first and last

time slots that node v is scheduled to transmit (for a duration of [Ψ
(s)
v (t) − Ψ

(e)
v (t)

(mod L)] = [sv(t)−ev(t) (mod L)]) and the transmission begins with the start beacon

and ends with the end beacon. The two control signals inform the CH that a node v in

range is transmitting for that time. The corresponding acknowledgments by the CHs,

called start and end acknowledgments, warn other nodes in range that the channel

towards the CH is busy. By having each node u, that hears the acknowledgements,

update the discrete portions of its own start and end timers to avoid overlap (i.e., su(t)

and eu(t)), nodes avoid conflicts (c.f. Section 2.5). At the same time, synchronization

is achieved by using the estimated emission times of these beacons modulo T to
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update the fine-clock phase Φv(t) (c.f. Section 2.4).

Note that, even though each node update is based only on the acknowledgment of

its CHs’ in range, the synchronization information will eventually propagate through

the whole network via the updates and firings of shared nodes. It is important to

remark that a node v updates its start and end timers based on the acknowledge-

ments that occur right before and right after its start and end beacons, respectively.

These acknowledgements may belong to different CHs. In fact, as time elapses, these

acknowledgements will most likely come from CHs of the densest clusters. This will

be made clearer in later sections.

PulseSS exhibits the following three main features:

• Synchronization – The network is synchronized at the slot level, i.e., Φu(t) =

Φv(t), for all u, v ∈ V .

• Collision Avoidance: The transmission schedules of all nodes within the

neighborhood of the same CH are disjoint, i.e., for any c ∈ C and u, v ∈ Nc,

Ψ(s)
v (t)−Ψ(e)

v (t) ≤ Ψ(s)
v (t)−Ψ(s)

u (t),

where the above operations are modulo L.

• Proportional Fair Scheduling: Transmission schedules of nodes that are in

the same cluster, with no other conflicts and that are transmitting in succession

of each other, are proportional to their demands.

Moreover, in each time slot, we divide the duration T into uplink and downlink

transmission periods with durations Tu = λT and Td = (1− λ)T , respectively, where

λ ∈ (0, 1). This approach not only enables two-way communication between each node

and its CH, but also avoids conflict between the uplink and downlink transmissions of

two exposed nodes, i.e., two nodes that are in range of each other but are transmitting
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Figure 2.4.1: Example of a locally connected network of PCOs at the time node
vfires, triggering the phase update of nodes ` and j. The location of the ball relative
to the red mark on the top of each circle indicates the phase of each node, and a ball
reaching the red mark indicates the occurrence of a firing.

and receiving simultaneously with different CH partners. Note that in the setup we

assume that there is no direct CH to CH communications. However, they could occur

if CHs were to operate also as normal nodes for a neighboring cluster.

2.4 PulseSS Synchronization

All PCO based algorithms rely on two common features: 1) the emission of beacon

signals (or pulses) by each agent in the network and, 2) on the agents updates of their

local timers (i.e., PCO clocks) upon reception of beacon signals from their neighbors.

The emission of a beacon signal is referred to as the event of firing. An agent fires each

time its local timer expires and, in this way, triggers its neighbors to adjust their local

PCO clocks ahead, reducing the time until their next firing. The preamble signals

commonly defined at the physical layer of communication systems can be used as the

firing signals of PCO based algorithms, without additional overhead at any layer to

support these protocols. The timer at node v can be modeled by the phase variable

introduced in (2.3.1), which is normalized to 1 without loss of generality. When

placed within the transmission range of each other, the firing of each node will trigger
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a phase update at any node that receives the firing. In Peskin’s leaky integrate-and-

fire model, upon hearing node v’s firing at time tv, node u updates its local auxiliary

state variable Xu(tv) = g(Φu(tv)) by the amount ε. The inverse mapping of the

updated state variable then leads to a jump in the phase of the timer as follows:

Φu(t
+
v ) = min

{
g−1(Xu(tv) + ε), 1

}
, (2.4.1)

where the constant ε is called the coupling strength and t+v represents the time im-

mediately following tv. The function g is called the PCO dynamic and governs the

behavior of the PCO network. It has been shown in [Mirollo and Strogatz(1990)] that,

if g is smooth, monotonically increasing, and concave down, then synchronization in

a fully connected network of PCOs is guaranteed to occur, except for a set of initial

conditions with measure zero. More specifically, by choosing g such that g(x) = log x

and ε = log(1 + α), (2.4.1) equals [Buck and Jology(1988)]:

Φu(t
+
v ) = min {(1 + α)Φu(tv), 1} (2.4.2)

where α > 0 is the excitatory coupling factor. Such choice for g(x) is motivated by

the convenience in the implementation of (2.4.2), while convergence for the fully con-

nected network is guaranteed in [Mirollo and Strogatz(1990)]. If the phase of node u

falls between 1
1+α

and 1 at the time of firing by node v(i.e., if Φu(tv) ∈ ( 1
1+α

, 1]), then

the phase of node u will become 1 upon detection of the firing event of node v(i.e.,

Φu(t
+
v ) = 1) and will be triggered to fire immediately as well. The event is called the

absorption of node u by node v. In a fully connected network, the absorption between

two nodes remains permanent and will continue to occur progressively between clus-

ters of nodes until synchrony is attained. In the next subsection we analyze the PCO

synchronization with local connectivity of the network neglecting the propagation

delays that will be included in 2.4.2.
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2.4.1 PCO Synchronization with Local Connectivity

Let G = (V , E) be an undirected graph that represents the network topology, not

necessarily fully connected, and let euv = 1, if uv ∈ E , and euv = 0 otherwise. We set

evv = 0 ∀v ∈ V . The update equation in (2.4.2) can be modified as

Φu(t
+
v ) = min {(1 + αeuv)Φu(tv), 1} (2.4.3)

Let us define the vector ∆(t) with entries:

∆uv(t) = min{(Φv(t)− Φu(t))mod 1, (Φu(t)− Φv(t))mod 1} (2.4.4)

for all uv such that euv = 1 (by definition we have ∆uv(t) = ∆vu(t), ∀t). We then

introduce the following:

Definition 2.4.1. A network G = (V , E) of PCOs is said to reach a fixed point at

time t∗ if ∀t > t∗ we have ∆(t) = ∆(t∗). If, in addition, we have that ∆(t∗) = 0 we

say the network is synchronized (or has reached the synchronous state).

We can now show:

Proposition 2.4.2. For a locally connected network of PCOs that follow the dynam-

ics in (2.4.3) with α > 0, the synchronous state is the unique fixed point (as per

Definition 2.4.1) i.e.,

∀t > t∗,∆(t) = ∆(t∗)⇔∆(t∗) = 0. (2.4.5)

The proof is in Appendix A. We also have the following proposition, proven in

Appendix A:

Proposition 2.4.3. On any connected network of |V| = 3 PCOs following the dy-

namics in (2.4.2) with α > 0, convergence to the synchronous state (∆ = 0) occurs
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almost surely from any initial condition. In addition, if we attach a node with a ran-

dom initial phase to a synchronized network with an arbitrary topology, the overall

network will convergence to the synchronous state almost surely.

The second part of our proposition provides the practical insight that if protocol

that allows nodes to join one by one during system setup starting from an arbitrary

group of three nodes, then almost sure convergence is guaranteed. Note that we define

almost sure convergence for the case |V| = 3 as done in [Mirollo and Strogatz(1990)],

where we have convergence to synchronization (i.e. to the fixed point ∆ = 0) except

for a measure zero set of initial conditions. The proof focuses on the case not covered

by [Mirollo and Strogatz(1990)], of the line network with nodes {1, 2, 3} and edges

{(1, 2), (1, 3)}.

2.4.2 PCO Synchronization with Local Connectivity and Delays

To account for the propagation delays, which include the signal duration, travel

time, processing time etc., we define:

ruv = tv + τuv (2.4.6)

where tv is the time node v fires and τuv is the delay (expressed in time units equal

to the T = 1). If node u is not in node v’s neighborhood (i.e. euv = 0), τuv = 0

and ruv = tv, otherwise ruv represents the time node u is aware of node v’s firing.

We assume that all propagation delays are shorter than the PCO period, i.e. ∀uv ∈

E , τuv < 1 and that the delays are symmetric, i.e. τuv = τvu. In the presence of these

propagation delays, PCO protocols cannot converge unless they include a refractory

period [Peskin(1975)], i.e. a portion of the cycle, right after their firing event, during

which the node does not update its phase. Notice that, in the absence of the refractory

period, the firing of a node may trigger the neighboring node to fire right after the
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propagation delay, causing the node that originally fired to update after a roundtrip

propagation delay from its initial firing event. Let ρ be the duration of the refractory

period; this is the so-called echo effect which can be avoided if:

ρ > 2 max τuv. (2.4.7)

The update equation in the presence of delays is:

Φu(r
+
uv)=





min{(1 + αeuv)Φu(ruv), 1}, ρ <Φu(ruv) mod 1

Φu(ruv) mod 1, else.
(2.4.8)

Note that, if euv = 1:

Φu(ruv) = Φu(tv) + τuv (mod 1) (2.4.9)

is the value of the clock phase of node u at the time it detects node v’s firing. In this

case, τuv can be viewed as an additive timing error and the update can be written as

follows:

Φu(r
+
uv)= min{(1 + αêuv(tv))(|Φu(tv) + τuv| mod 1), 1} (2.4.10)

where êuv(tv) is defined as:

êuv(tv) =





1 if euv = 1 and |Φu(tv) + τuv| mod 1 > ρ

0 else

(2.4.11)

and can be seen as the element of a time varying adjacency matrix. We then can

prove the following:

Proposition 2.4.4. For deterministic τuv < +∞ ∀u, v, if we include a refractory

period 2 max τuv ≤ ρ < 1
2

+ min τuv, we have that for any locally connected network of

PCOs following the dynamics in (2.4.3):

∀t > t∗,∆(t) = ∆(t∗)⇔∆(t∗) ∈ F (2.4.12)
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Figure 2.4.2: Convergence of the PCO protocol as stated in Proposition 2.4.4 for
the network topology of Fig.2.4.1 with v as the head node.

where

F , {∆ : 0 ≤ ∆uv ≤ τuv ∀u, v s.t. euv = 1} (2.4.13)

represents the set of possible fixed points for the algorithm.

The proof can be found in Appendix A where the upper-bound for ρ is also

discussed. A direct consequence of this proposition is that in order to have a possible

choice for the refractory period ρ we need maxuv τuv <
1
2

+ minuv τuv The convergence

of the protocol is represented in Fig. 2.4.2 for the same topology as in Fig. 2.4.1. Let

Puv be the set of edges forming the shortest path between node u and node v. We

can define the accumulated propagation delay on the path from v to u:

τu→v =
∑

`m∈Puv
τ`m (2.4.14)

where τ`m is the time that has elapsed between the actual firing by node ` and the

observation of the firing by node m. Clearly τu→v = τuv if euv = 1, i.e., if node u can

directly hear the firing of node v. Then we notice that, as long as maxuv τu→v <
1
2

for any fixed points in F it is possible to consider a node h we name the head (not

necessarily unique) such that its minimum distance ∆hu defined in (2.4.4) ∀u ∈ V is:
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∆hu = (Φh − Φu) mod 1 (2.4.15)

since the node is ahead of every other node. We indicate this condition by saying the

head node “preceeds all the other nodes”. Since we have ∆ ∈ F it is clear we have

the following upper-bound:

∆hu ≤ τh→u, (2.4.16)

Our simulation shows that the bound in (2.4.16) is actually tight, and that is due to

the fact that when the initial phases are spread around the PCO cycle, absorptions

tend to occur in a cascade and each u node that is absorbed by node v remains at

distance τuv. The reason why Proposition 2.4.4 has an inequality instead of an equality

is if the initial conditions are such that two nodes are closer than their propagation

delay they can remain at that closer distance relative to their propagation delay, due

to the presence of the refractory period that makes all these cases fixed points. The

residual synchronization error can be defined as:

∆max = max
uv

∆uv. (2.4.17)

At this point, as a direct consequence of the bound (2.4.16) and the property of the

head-node in (2.4.15) we can derive the following expression for the expected residual

synchronization error:

E{∆max} ≤
N∑

h=1

ph

(
max
u

τh→u
)

(2.4.18)

where ph indicates the probability that h is the head node which depends on the

topology and the initial conditions. Although a general characterization of ph is

complex, the expression in (2.4.18) allows us to bound the residual synchronization

error considering the best and the worst case scenario for the term maxu τh→u, which

is immediately derivable from the topology. A note of caution is that the term best
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case indicates the smallest possible bound over all possible choices of the head node,

and not the best attainable synchronization error, since in principle the synchronous

state ∆ = 0 is a fixed point also for the model with delays. E{∆max} is the metric we

consider in the simulations to evaluate the performances of a line and a star network

of fixed length and increasing density of nodes. The expected value E{∆max} is

an interesting metric to characterize the protocol performance and may be more

insightful compared to the worst and the best case scenario, directly computable

through our analysis in this section, because the latter remain identical over a wide

variety of networks while E{∆max} changes.

Remark 2.4.5. If the propagation delays are random and bounded by τmax, the result

continues to apply as long as ρ > 2τmax. The fixed point is still compatible with the

last realization of random delays characterizing all absorptions until the last.

The direct consequence of Proposition 2.4.4 is that in multi-hop networks, prop-

agation delays tend to accumulate worsening the overall synchronization accuracy.

This limits the application of PCO as a clock distribution mechanism in very large

networks. To overcome this problem, we propose in [Gentz et al.(2016)] to couple the

synchronization and scheduling with the purpose of separating firing events to give

each node the possibility to estimate the propagation delays τuv and compensate for

them in their updates, thus improving the final synchronization accuracy which will

be bounded by the cumulative error in these estimates.

2.5 PulseSS Scheduling

Different from the synchronization updates, the scheduling of PulseSS for collision

avoidance and proportional fair scheduling is achieved through the update of the

discrete portions of the nodes’ start and end timers (i.e., sv(t) and ev(t)) in each cycle

of the coarse clock. The updates and messaging mechanisms can be viewed as an
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extension of the theory of PCO desynchronization studied in [Pagliari et al.(2010)]

and are described as follows. We use this section to describe the general structure of

the scheduling update, represented by the block named update function and dithering

in Fig. 2.5.3. Within this section we assume that a node has infinite amounts of data

to transmit and its queue never runs empty. Activating the update is an option in

the actual reference architecture, because the amount of data to transmit is finite and

the resources available may be in excess of some or all nodes individual needs. This

means that in the actual implementation of the solution the system has to decide if the

update is necessary and how to pick the parameter that defines the desired demand.

Specifically, suppose that the initial state of the start and end timers already satisfy

the collision avoidance criterion, that is, for any c ∈ C and u, v ∈ Nc,

Ψ(s)
v (t)−Ψ(e)

v (t) ≤ Ψ(s)
v (t)−Ψ(s)

u (t) (mod L). (2.5.1)

This can be achieved by letting the initial difference of the start and end timers at

each node be sufficiently small. If this holds true, we can denote by πck(t) the kth

index at time t of the permutation of the nodes’ indices that sorts the phase variables

of the nodes in Nc in descending order at time t i.e., in the order such that

Ψ
(s)
πc1(t)(t) > Ψ

(s)
πc2(t)(t) > · · · > Ψ

(s)
πc|Nc|(t)

(t).

In the following, we shall omit the time index t in Ψ
(s)
πk(t)(t) whenever its dependence

on t is clear. For this algorithm, as it will be clear later, the firing order does not

change over time. To simplify the notation, let us consider two functions pre, suc :

N × C → N , defined by:

pre(v, c) = πck−1 ∈ Nc (2.5.2)

suc(v, c) = πck+1 ∈ Nc (2.5.3)
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Figure 2.5.1: Update procedure for the scheduling algorithm when su reaches the
firing point and node v identifies it as its successor.

for all c ∈ C and for all v ∈ Nc such that i = πck, where πc0 = πc|Nc| and πc|Nc|+1 = πc1

(the above quantities are not defined if i /∈ Nc). Here, pre(i, c) and suc(i, c) represent

the nodes in Nc that produce a firing event (the expiration of one of the two timers)

immediately before and after the firing of the start and the end timers of node v. The

update procedure for node v at the time of firing of node u = Suc(v) is illustrated in

Fig.2.5.1 for a topology with two cliques. Introducing:

Γπck(t) =
sπck(t)− eπck(t) (mod L)

L
(2.5.4)

Θπck
(t) =

epre(πck,c)
(t)− sπck(t) (mod L)

L
(2.5.5)

for k = 1, . . . , |Nc|, it is possible to describe mathematically the evolution of the

schedule for every cluster c by describing the dynamics of the vector:

Υc(t) , [Θπc1
(t),Γπc1(t), . . . ,Θπc|Vc|

(t),Γπc|Vc|(t)]
T . (2.5.6)

Notice that the entries of this vector are the portions of the frame allocated to each

node at time t and the corresponding intermediate guard-spaces. Therefore the fixed

points of the algorithm represent the final schedule, assuming the demands remain
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unchanged for a sufficiently long period. It is of interest to understand if the schedule

will correspond to an efficient use of the bandwidth and this is the aim of the analysis

in the next sections. Our solution tries to implement, in a decentralized fashion, a

linear update of the vector Υc(t) whose dynamics converge to a schedule that has

favorable properties as fairness and efficiency.

Definition 2.5.1. We define a PulseSS Scheduling primitive any linear update of the

vector in (2.5.6) which can be written as

Υ(t+) = JUΥ(t) (2.5.7)

where Υ = [ΥT
1 ,Υ

T
2 , . . . ,Υ

T
|C|]

T , J is a permutation matrix and U is any matrix that

has the following block structure

U =




A 0

B I


 (2.5.8)

with A being a stochastic matrix and I the identity matrix.

Such update could be triggered by any CH acknowledgment, broadcasted to all

nodes in the communication range. The PulseSS Primitive which is described in the

next subsection has been named PulseSS Pairwise Update but similar analysis could

be extended to different sequences of primitives that respect Definition 2.5.1.

2.5.1 PulseSS Pairwise Update

Since node v may be in the range of more than one CH, it is necessary to define

Pre(v, t) = pre

(
v, arg min

c′∈Cv
{Ψ(e)

pre(v,c′)(t)−Ψ(s)
v (t)}

)
(2.5.9)

Suc(v, t) = suc

(
v, arg min

c′∈Cv
{Ψ(e)

v (t)−Ψ
(s)
suc(v,c′)(t)}

)
(2.5.10)
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as the two nodes (not necessarily in the same cluster) which transmit immediately

before and after node v among all the ones in clusters node v belongs to. Notice that

we need node v to have no conflicts with all the nodes in the clusters that it belongs

to, which can be more than one. The identification of these two nodes is fundamental

for the bio-inspired procedure we are going to introduce in the next subsection1 .

To discriminate the firing times of Pre(πck) from the others, node πck can prepare an

update for any firing it hears and discard the update if a more recent firing event is

registered. Suc(πck) is easy to identify since is the first to fire after the expiration of

node πck’s own end clock. The value of ΨPre(πck)(t), which is the reference for node πck to

make its update, can be calculated simply measuring the time it elapsed between the

firing of Pre(πck) and the local clock. Hence all the information needed to advance the

protocol is implicitly available and firing beacons do not need to carry data, but rather

can be special preambles that are easy to detect at the PHY layer. The expiration of

the start and end timers marks the start and end of a node’s transmission period in

each cycle. Once the start (or the end) timer of a node, say node v, expires, a start (or

an end) beacon is emitted by it in the UL period of the time slot. The beacon emitted

by node v will then be acknowledged by all CHs in range, to inform all other nodes in

the neighborhood of the CHs of the beacon emission. In case the collision avoidance

criterion is violated, admission control at CHs would not acknowledge, i.e., may deny

1To discriminate the firing times of Pre(πck) from the others, node πck can prepare an update

for any firing it hears and discard the update if a more recent firing event is registered. Suc(πck)

is easy to identify since is the first to fire after the expiration of node πck’s own end clock. The

value of ΨPre(πc
k)

(t), which is the reference for node πck to make its update, can be calculated simply

measuring the time it elapsed between the firing of Pre(πck) and the local clock. Hence all the

information needed to advance the protocol is implicitly available and firing beacons do not need

to carry data, but rather can be special preambles that are easy to detect at the PHY layer [Gentz

et al.(2016),Gentz(2017)].
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a second start beacon, before an end beacon is received, so that only one node at a

time has channel access. We assume that all CHs in range acknowledge at unison with

an identical beacon signal, such that acknowledgments are processed at the receiving

node as a single signal affected by multi-path (we view this as a cooperative-channel

acknowledgement). Let pre(v) ∈ ∪c∈CvNc and suc(v) ∈ ∪c∈CvNc be the nodes that

transmit immediately before and after node v, i.e., the predecessor and successor of

node v. Node v adjusts its local timers in each cycle based on the expiration times of

the end and start timers of nodes pre(v) and suc(v) respectively. Therefore the fixed

points of the algorithm represent the final schedule, assuming the demands remain

unchanged for a sufficiently long period. It is of interest to understand if the schedule

will correspond to an efficient use of the bandwidth and this is the aim of the analysis

in the next sections.

Let t
(s)
v ∈ {t : Ψ

(s)
v (t) = L} be the expiration time instant of the start timer of

node v in a given cycle of the coarse clock and let t
(e)
v = min{t > t

(s)
v : Ψ

(e)
v (t) = L}

be that of the end timer of node v that follows immediately after. Moreover, let

t
(e)
pre(v) =max{t<t(s)v :Ψ

(e)
pre(v)(t)=L} be the most recent expiration time instant of the

predecessor’s end timer and let t
(s)
suc(v) = min{t > t

(e)
v : Ψ

(s)
suc(v)(t) = L} be that of the

successor’s start timer. The corresponding time estimates2 at node v are denoted by

t̂
(e)
pre(v),v and t̂

(s)
suc(v),v.

Immediately after receiving the acknowledgment to the start timer of suc(v), node

v, at time t
(s)+
suc(v), updates its local timers in an attempt to move the discrete portion

of the clocks phases (i.e., the time slot index) towards the target values

sv,target =
Dv+δ

Dv+2δ
epre(v)

(
t
(s)+
suc(v)

)
+

δ

Dv+2δ
ssuc(v)

(
t
(s)+
suc(v)

)
(2.5.11)

2Note that the time instants t
(e)
pre(v) and t

(s)
suc(v) can be estimated by node v through the recep-

tion time of CH’s acknowledgments to these beacon signals, but the accuracy may be affected by

synchronization errors and propagation delays, as described in the previous section.
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ev,target =
δ

Dv+2δ
epre(v)

(
t
(s)+
suc(v)

)
+
Dv+δ

Dv+2δ
ssuc(v)

(
t
(s)+
suc(v)

)
(2.5.12)

where Dv is a parameter capturing the demand of node v, δ is the portion of time slots

reserved as guard period in between transmissions. If the target values are achieved,

a portion of Dv/(Dv + 2δ) of the time between the transmissions of its predecessor

and successor is left for node v’s transmission of its payload data and δ/(Dv + 2δ)

portion of the time is left before and after its own transmission as guard intervals.

When t
(s)
suc(v) and t

(e)
pre(v) are perfectly known and that no updates have been made

to predecessor’s phase before time t
(s)
suc(v),v, node v can infer that ssuc(v)(t

(s)+
suc(v)) = 0,

since the timer must have reset to 0 after it has expired and that epre(v)(t
(s)+
suc(v)) =

(t
(s)+
suc(v) − t

(e)
pre(v))/T , which is the time that has elapsed after the expiration of the end

timer of node pre(v). However, in reality, these target values cannot be obtained

precisely since only the estimates t̂
(s)
suc(v),v and t̂

(e)
pre(v),v are known at node v and also

since the phase of the predecessor may in fact have been updated before time t̂
(s)
suc(v),v

due to the beacon emission of node v. In this case, node v can only obtain the

estimated target values

ŝv,target =
Dv+δ

Dv+2δ

t̂
(s)+
suc(v),v − t̂

(e)
pre(v),v

T
(2.5.13)

êv,target =
δ

Dv+2δ

t̂
(s)+
suc(v),v − t̂

(e)
pre(v),v

T
. (2.5.14)

Since the target values are not precise3, it is necessary to further limit the adjustment

of the timers at node v so that the relative order of its timers and the timers of its

predecessor and successor are not altered, causing overlap in the schedules. This is

3The time values used are based on possibly outdated information about the predecessor node’s

state at the time it last fired.
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achieved by further modifying their target values as

s̃v,target =min




ŝv,target,

sv(t̂
(s)+
suc(v),v)+

t̂
(s)+
suc(v),v

−t̂(e)
pre(v),v

T

2





ẽv,target =max

{
ev,target,

ev(t̂
(s)+
suc(v),v)

2

}
.

Finally, the local timers at node v are updated as

sv(t̂
(s)+
suc(v),v)=Q

[
(1−β)sv(t̂

(s)
v,suc(v))+βs̃v,target

]
(2.5.15)

ev(t̂
(s)+
suc(v),v)=Q

[
(1−β)ev(t̂

(s)
suc(v),v)+βẽv,target

]
(2.5.16)

where β ∈ (0, 1) andQ(·) is a dithered quantization function [Wannamaker et al.(2000)]

that maps the phase to the integer set {0, 1, . . . , L} defined as Q(x) = round(x+ v),

where v ∼ U(−1/2, 1/2). As shown in [Aysal et al.(2008)], the dithering operation

ensures the convergence of the quantized consensus policy and has similar effects

on PulseSS. In fact, as time elapses and synchronization is achieved, the dithered

quantized desynchronization protocol mentioned above has been shown to converge

for all-to-all networks in [Ashkiani and Scaglione(2012)]. Its properties in a locally

connected networks are discussed in the next subsection.

The scheduling primitive just described only relies on the signaling of a node’s

respective pre- and successor while all other nodes are ignored for scheduling purposes.

As per Definition 2.5.1 multiple nodes could update at the same time with knowledge,

obtained via physical signaling, of the other state variables and this could potentially

give a faster convergence.

2.5.2 Convergence of the Single Clique Scheduling Algorithm

In this section we recall the convergence result in [Pagliari et al.(2010)] and analyze

the convergence rate of the algorithm. The analysis in the next sections is conducted
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considering the node local timers sv(t) and ev(t) as continuous variables that evolve

between 0 and 1 (for L large enough, this approximates the normalized values over the

number of cycles L quite accurately), and considering the linear mapping in (2.5.15)-

(2.5.16) without dithering and the target values in (2.5.11)-(2.5.12). In the case of a

single clique c in our graph, due to the updates, the state vector Υc(t) evolves linearly

with system matrix Mc is defined as:

Mc =

|Vc|∏

k=1

Mπck
(2.5.17)

and each Mπck
is the matrix for the update of node πck in the clique c. This matrix

has the following form:

Mπck
= J(2k−2) ·




Uπck
03×(2|Vc|−3)

0(2|Vc|−3)×3 I(2|Vc|−3)


 · JT (2k−2)

(2.5.18)

where J represents the circular shift matrix:

J ,




0 0 · · · 0 1

1 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0




. (2.5.19)

and

Uv ,




1− β Dv+δ
Dv+2δ

β δ
Dv+2δ

β δ
Dv+2δ

β Dv
Dv+2δ

1− β 2δ
Dv+2δ

β Dv
Dv+2δ

β δ
Dv+2δ

β δ
Dv+2δ

1− β Dv+δ
Dv+2δ



. (2.5.20)

The proof in [Pagliari et al.(2010)] shows that for this configuration there exists a

unique fixed point:

Υ?
c =

γc

Dc (δ,Dπc1
, δ,Dπc2

, . . . , δ,Dπc|Vc|
)T (2.5.21)
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where Dc =
|Vc|∑
k=1

Dπck
and γc =

Dc

Dc + |Vc|δ
.

For the specific case of a single clique c with all nodes having the same demand

(Dπck
= D ∀k = 1, 2, . . . , |Vc|) it is actually possible to complement the result with

an estimate for the rate of convergence. In fact, when the evolution of the system

can be modeled with a linear update, as in average consensus algorithms [Dimakis

et al.(2010)], it is well known that the rate of convergence can be estimated via the

second largest eigenvalue of the system matrix (i.e., convergence towards a fixed point

is guaranteed if the highest eigenvalue is equal to 1 and the others are strictly smaller).

Assuming equal demand for all nodes, it is possible to rewrite the system matrix in

(2.5.17) as:

Mc =







U 03×(2|Vc|−3)

0(2|Vc|−3)×3 I(2|Vc|−3)


 · J2




|Vc|

(2.5.22)

where the dependence of the block matrix U on the node vhas been lost setting an

equal demand D for all nodes. At this point it is possible to derive the exact 2|Vc|-

th degree characteristic equation for the product matrix inside the brackets, find an

approximation for the second highest solution and then take the |Vc|-th power of that

value to find the second highest eigenvalue for the system matrix Mc. We claim:

Proposition 2.5.2. The second largest eigenvalue of Mc if all the nodes have the

same demand D is:

|λc2| ≈ 1− 2βµπ2

|Vc|2
(2.5.23)

where 0 < β < 1 is the coupling factor in the update equation in (2.5.15),(2.5.16) and

µ =
δ

D + 2δ
.

The proof of this proposition is in Appendix A. Clearly, the convergence time

increases with the number of nodes in the clique and decreases with the values of β

and µ. However, augmenting µ by increasing the guard time δ relative to the demand
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D lowers its efficiency. Furthermore, in non-ideal conditions in which in the measure-

ment of ΨPre(i),ΦSuc(i) are not precise (see footnote 1) or the local timers are quantized

(for more detailed discussion we refer to [Gentz et al.(2016)]), aggressively increasing

β may result in lack of convergence. While the rate of convergence is indicative of

the trends we found in locally connected networks, the study of the fixed points re-

quires appropriate changes, since the presence of shared nodes changes the structure

of Mπck
, introducing coupling among the sub-cliques. To describe these changes next

we need to introduce new quantities, definitions, assumptions and notations, which

precede our main convergence result. Nevertheless, we wish to remark that the result

of Proposition 2.5.2 has been found, via simulation, to be a good approximation also

for the behaviour of multiclique networks, if we consider for Vc the largest clique of

the graph.

2.5.3 Convergence of the Multi-Cliques Scheduling Algorithm

In this section we analyze what are the possible schedules that are fixed points

for the algorithm.

Definition 2.5.3 (Partial proportional fairness criterion). We say a schedule meets

a partial proportional fairness criterion if, once convergence is reached (i.e. ∀t > t∗

for some t∗), ∀(v, u) v 6= u if v, u ∈ Lc and u = pre(v, c) the following condition

is met :

(sv(t)− ev(t)) mod L

Dv

=
(su(t)− eu(t)) mod L

Du

Definition 2.5.4 (Global proportional fairness criterion). We say a schedule meets a

global proportional fairness criterion if the two following properties are satisfied once

convergence is reached (i.e. ∀t > t∗ for some t∗):
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1. ∀(v, u) v 6= u if v, u ∈ Lc, then:

(sv(t)− ev(t)) mod L

Dv

=
(su(t)− eu(t)) mod L

Du

2. ∀u [(su(t)−eu(t)) mod L]
L

≥ min
c:u∈Vc

Du∑
v∈Vc (Dv+δ)

The second property indicates that the solution guarantees that every node gets

the minimum possible duration among all cliques in its range. Let us first introduce

the following:

Assumption 2.5.5. For every clique Vc, all the local nodes (i.e. the set Lc), occupy

consecutive portions of the frame.

We can then claim the following:

Theorem 2.5.6. For a network with two cliques, the update rule in (2.5.15)-(2.5.16)

will converge to a unique fixed point Υ?
c ∀c ∈ C that respects the partial proprtional

fairness criterion in Definition 2.5.3 , irrespective of the initial phases of the timers. If

Assumption 2.5.5 holds, the resulting schedule will also respect the global proportional

fairness criterion in Definition 2.5.4.

The proof can be found in Appendix A.

In Fig. 2.5.2 we can see the convergence of the scheduling algorithm to a fixed

point where the target (sv,target, ev,target) = (sv(tv), ev(tv)). Therefore, the timers of

node v (as well of those of every other node) will no longer change from that update

on.

Following a similar argument as in the proof of Theorem 2.5.6 we can claim

Proposition 2.5.7. For topologies with more than two cliques we have, in general,

fixed points for (2.5.15)-(2.5.16) form sets with measure greater than zero. All these

points respect the partial proportional fairness criterion in Definition 2.5.3.
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Figure 2.5.2: Convergence of the scheduling for the topology in Fig.2.5.1.

See Proof in Appendix A. In a nutshell, for general topologies we do not have

enough contraints on the attainable schedule to guarantee a unique fixed point as

in the two-clique case. Nevertheless, additional definitions and assumptions allow to

characterize very peculiar cases in which a unique fixed point is attainable with more

than two cliques. Let us introduce the partition Ac of the nodes set V as:

Ac =



v

∣∣∣∣∣∣
c = arg max

c′∈Cv

∑

v∈Vc′
(Dv + δ)



 (2.5.24)

It is clear that ∀c, Ac ⊆ Vc and, with distinct overall demands for cliques that have

shared nodes (i.e., if Scc′ 6= ∅ then
∑

v∈Vc(Dv + δ) 6= ∑
v∈Vc′ (Dv + δ)), the sets Ac

form a proper partition of V . Then we order these sets in decreasing order of demand

size:
∑

v∈A1

(Dv + δ) ≥
∑

v∈A2

(Dv + δ) ≥ . . .
∑

v∈A|C|

(Dv + δ) (2.5.25)

Let us introduce:

Assumption 2.5.8. All the nodes in a clique are at most in two partitions Ac as

defined in (2.5.24). Mathematically, ∀c ∈ C, there is only a single c′ ∈ C such that

Vc ⊂ Ac ∪ Ac′ (2.5.26)
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The following claim is proven in Appendix A.

Proposition 2.5.9. If Assumptions 2.5.5-2.5.8 are met, the scheduling algorithm and

its global proportional fairness property can be extended to topologies with an arbitrary

number of cliques.

Remark 2.5.10. In the limit for δ → 0, if the schedule meets Property 2 in Definition

2.5.4, then it is also one of the possible solutions of the minimum coloring graph

problem for that conflict graph.

To meet Assumption 2.5.5 the topology of the conflict graph has to allow an

assignment which leaves a portion available in any frame for nodes that belong only to

one clique. However, this assumption may be violated in dense networks, as reported

in [Gentz et al.(2016)] and a version of Assumption 2.5.8 that explains what conflict

graphs can possibly meet Assumption 2.5.8 is elusive. Nonetheless, the presentation in

this work should give the reader the necessary tools to analyze the possible attainable

schedules on a case by case basis, given that a general treatment remains elusive.

An example where this assumption is violated and the trend is still predictable is

discussed in the proof of Proposition 2.5.7 and in the simulation results. In the next

section we provide a description of the specific fixed point Υ?
c ∀c ∈ C for the case

where the demand is equal. For the treatment is advantageous to explicitly indicate

the dependence on the frame duration T = LT . Note that star and line networks

are multi-clique graphs with maximum clique size equal to 2. For them we can state:

Corollary 2.5.11. The line and the star networks have always a unique fixed point

for the schedule consistent with the description in subsection 2.5.3.1.

The proof is in Appendix A. If all the nodes have equal demand D, under both of

these topologies, ∀i:

(sv − ev) mod L ·T =
D

D + δ

T

2
(2.5.27)
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which is about half of the resources as expected. From Proposition 2.5.9 we can also

infer the following:

Corollary 2.5.12. In the tree network, if parents have always higher demand than

the children, there is a unique fixed point consistent with the description in Subsection

2.5.3.1.

This is due to the fact that the condition in this corollary can be seen as an

alternative way to state Assumption 2.5.8 for this topology, where we recall that the

assignment to every partition Ac is based considering the overall demand of nodes

(see (2.5.24)). This is also a pleasing result, because if the tree is used for data

aggregation, it would be natural to have higher demand at the higher level of the

tree.

2.5.3.1 Fixed Points

Next we describe what are the unique fixed points attainable under Proposition 2.5.9

(for brevity we assume a single demand value Dv = D, ∀v ∈ V). Let us call Tc the

portion of the frame available for the nodes in Ac. We have:

Tc =





T if Ac = Vc

T − |Scc′ |(Tc′ + δc′) + δc′ if Ac⊂Vc,Ac′⊃Vc \ Lc
(2.5.28)

and Assumption 2.5.8 guarantees the existence of such unique cluster c′. In (2.5.28),

Tc′ and δ′c represent respectively the time slot and the guard space before and after

every node v ∈ Ac′ . They can be computed recursively following the decreasing order

in (2.5.25) as follows:

Tc =





D

D + δ

Tc

|Ac|
if Tc = T

D

D + δ

Tc

|Ac|+ δ
D+δ

if Tc < T

(2.5.29)
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δc =
δ

D
Tc (2.5.30)

At the fixed point, ∀i ∈ Ac, we will have

(Φv −Ψv) mod L · T = Tc (2.5.31)

To prove this represents a fixed point we will evaluate Φ∗v and Ψ∗v at time tv (the time

when node vmakes its update) with (2.5.13),(2.5.14) (see also Fig.A.0.1):

sv,target(tv)T =
D + δ

D + 2δ

D + 2δ

D
Tc =

δ

D
Tc + Tc = sv(tv)T

ev,target(tv)T =
δ

D + 2δ

D + 2δ

D
Tc =

δ

D
Tc = ev(tv)T

So the update procedure will be:

sv(t
+
v ) = (1− β)sv(tv) + βsv,target(tv) = sv,target(tv)

ev(t
+
v ) = (1− β)ev(tv) + βev,target(tv) = ev(tv)

which shows that the timers will keep their positions unchanged. Here we have

assumed that v ∈ Ac where Tc < T but the derivation would be exactly the same

if we remove the additional term δ
D+δ

in (2.5.29). The interest in the derivation of

the fixed points is given by their natural connection with the portion of the frame

made available to each node. Before presenting the numerical results, we illustrate

the complete diagram of a PulseSS protocol implementation in Figure 2.5.3.

2.6 Simulation Results

2.6.1 PCO Synchronization

We first show an example in Fig. 2.6.2 of convergence to the fixed point with

and without propagation delays for the PCOs network in Fig. 2.6.1, where we plot

only the components of ∆ relative to an arbitrary node in L1. We considered all
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Figure 2.5.3: Overview of the components in the system for implementation of
the PulseSS Protocol. Additional implementation details can be found in [Gentz
et al.(2016),Gentz(2017)]

V1

V2

V3

S23

L3

L2

L1 S12

Figure 2.6.1: Topology for Experiments in Fig.2.6.2-2.6.6-2.6.7

the distances between the nodes to be equal such that τuv = τ, ∀v 6= u. We

can see that without delays in Fig.2.6.2a we achieve perfect synchronization, while

with delay the nodes remain separated by their propagation delays (see Fig.2.6.2b,

where we also plot the components in log-scale.). In fact, observing the plot in

log-scale in Fig. 2.6.2b we can see that there is a component of ∆ equal to 2τ

for the node in S23, the components for the nodes in L2 ∪ L3 ∪ S12 are equal to τ

and the components for the other nodes in L1 are equal to 0, from which we can
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Figure 2.6.2: The evolution of the synchronization with and without delays given
the topology in Fig. 2.6.1, and the light blue node as arbitrary chosen reference.
Parameters: T = 1s, α = 1e − 2, distance between each connected node 1m, signal
travel-speed 2e8m/s, refractory period 1e− 2, uniform random initialization.

conclude that the head node is the one node in S23 and all the differences are in

perfect agreement with our analysis. Furthermore, in light of Proposition 2.4.4 and

equation (2.4.18), we simulated the average residual synchronization error E{∆max}

for the line and the star networks with a variable number of nodes. The probabilities

ph for h = 1, 2, . . . , N are not known, however for any given topology it is possible

to bound the residual synchronization error considering the best and the worst case.

In Fig. 2.6.3a we show the synchronization accuracy averaged over random initial

conditions for line-networks with an increasing number of nodes but a constant

end to end delay between the nodes at the two network edges. The worst case is

represented by τmax (which is the only possible case for N = 2), while the best case

for a generic N > 2 is τmax/2 with the head node being at the middle of the line.

From Fig. 2.6.3a it is possible to notice the saturation of E{∆max} ≈ 3
4
τmax, half way

between the two extremes.
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(a) Line network (b) Star network

Figure 2.6.3: Average maximum displacement vs. network size.

In Fig. 2.6.3b, assuming that the delay is proportional to the relative distance, we

plot the results for a star topology where the nodes are uniformly distributed over

a disc with equal radius, leading to equal delay τmax, except two nodes that are kept

fixed at the center and at the edge of the disc. In this case, as expected, increasing

the number of nodes degrades the performances. The initial case with N = 2 is the

best case with E{∆max} = τmax. For this topology the worst case is represented by

2τmax. We notice an oscillation first (due to ph) and then, again, a saturation to

E{∆max} ≈ 4
3
τmax.

2.6.2 Scheduling Convergence

In Fig. 2.6.4 we show the accuracy of the approximate eigenvalues derived in

Proposition 2.5.2 for the single clique update matrix Mc. The circles correspond to our

approximations in (A.0.2) and (A.0.3) (see Appendix A) and the crosses correspond

to the numerical computed values. As expected, the accuracy of our estimate of the

second largest eigenvalue grows with Vc. In Fig. 2.6.5 we present the attainable

TDMA scheduling by a two clique topology with |L1| = 5, |S12| = 2, |L2| = 2

(Dv = D = 4 ∀v ∈ V and δ = 1). The local nodes in both L1 and L2 occupy
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Figure 2.6.5: TDMA Scheduling for a two cliques topology

consecutive portions of the frame, therefore Assumption 2.5.5 is satisfied and in light

of Theorem 2.5.6 we have convergence to the unique fixed point that satisfies the

global proportional fairness criterion. In the plot, the start and end timers of each

node are shown with the same color, solid lines represent the evolution of the timers

and dashed lines represent the predicted fixed point from our analysis in 2.5.3.1. In

Fig. 2.6.6 we present the case discussed in Appendix A where we have a set of possible

fixed points, i.e. a set of attainable schedules. While each node in V1 and in V3 reaches

its one and only possible schedule, the guard-space between the two shared nodes in

V2 allows a range of fixed pointsfor the local node in V2. The range is limited on
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Figure 2.6.6: TDMA scheduling of the topology in Fig. 2.6.1. Note that the plots
a-b-c are circular, thus ‘1’ is adjacent to ‘0’, and thus the ‘jump’ of the yellow node
in V3.

both sides such that the local node in V2 is never the predecessor or successor of any

of the two shared nodes. In Fig. 2.6.6b we show the range of possible start beacons

Φ with two dashed lines and the range of end beacons Ψ with a dash-dotted line of

the same color in the simulation. In Fig. 2.6.7 we plot the histogram of different

shares obtained by the node in L2 obtained by MonteCarlo simulations. We can see

the range is the one predicted by our equations in Appendix A. A pleasant result

is that in larger number of cases (∼ 43%) the local node gets the maximum share

possible, i.e. global proportional fairness is often obtained, even though the conditions

in Assumption 2.5.8 are not met.
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CHAPTER 3

COGNITIVE UTILITY MAXIMIZATION MULTIPLE ACCESS-

THE CUMMA RECEIVER

3.1 Chapter Outline

In this chapter we discuss the design of a Cognitive Utility Maximization for

Multiple Access (CUMMA) Receiver for opportunistic transmission. Our receiver

combines the theory on sequential sensing with the principles of Sub-Nyquist sam-

pling, and therefore this chapter starts by giving a background on the research in

these two fields. In Section 3.3, we consider single-band spectrum sensing and formu-

late the optimization of the receiver as a partially observable Markov decision process

(POMDP). To extend the application of our framework beyond spectrum sensing, we

formulate the problem abstracting the PHY Layer: the connection will then be tight-

ened in Section 3.5. In this abstraction, we can refer to each sub-band as a “resource”

and indicate the spectrum occupancy with a binary vector s of states, that can be

declared empty (si = 0, absence of communication over this sub-band) or busy (si = 1

presence of communication over this sub-band). If a sub-band is correctly identified

as “empty” the decision-maker can accrue a reward, vice versa if the decision-maker

declared as empty a busy sub-band, then a penalty is charged. A policy of the for-

mulated POMDP consists of three components: 1) a set of selection rules indicating

which resources to sense at each time, 2) a set of stopping rules, and the induced

stopping times, indicating when to terminate the sensing phase of each resource, and

3) a set of decision rules governing whether to exploit or discard a resource after

sensing. In 3.3.1 we explicitly characterize the optimal decision rules and show that

the optimal stopping rule is given by two time-varying thresholds that also depend on
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the resources with pending decision and, since characterizing the time-varying thresh-

olds and the optimal resource selection rules is analytically intractable, we develop a

low-complexity suboptimal policy (described in 3.3.2): based on insights gained from

the monotone properties of the thresholds in the single-resource case, we develop

a recursive algorithm for computing approximate thresholds. A discussion on the

asymptotical regret can be found in 3.3.3. Since the number of sub-band potentially

accessible can be very large, especially in the mm-Wave spectrum where 5G is going

to land, it would be desirable to obtain informations from multiple sub-bands at the

same time, and the infeasibility of sampling at such high frequencies calls for the use

of Sub-Nyquist sampling. In Section 3.4 we then investigate the possibility of mixing

different sub-bands. Unfortunately, the study of a similar POMDP approach would

suffer from a curse of dimensionality in the action space: to gain insight on the op-

portunity of mixing different sub-bands, a group-testing inspired strategy is proposed

and set functions optimization tools are used to optimize the sensing phase. First, we

connect this different strategy with the Direct Inspection case (i.e. same hardware

limitation of 3.3) in 3.4.1, then we move to consider the mixing of the sub-bands in

3.4.2 starting from a pairwise test, i.e. test that mix only two sub-bands in 3.4.2.1, to

then move to consider extension to a higher number of sub-bands in 3.4.2.2. Under

the constraints on the strategy we are able to develop a constant factor approximation

greedy algorithm, whose complexity remains polynomial in the number of resources.

We also discuss the impact of noise in the non-coherent detection scheme proposed,

and derive a Compressive-Sensing maximum likelihood estimate in 3.4.2.4. In Section

3.5 the analog front-end sampling of our non-coherent receiver is described and the

parameter of the value function for the proposed POMDP and group testing strategy

are mapped into the physics of the real application scenario. Finally in Section 3.6

we present simulation results to provide numerical evidence of the advantages of our
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proposed strategies.

3.2 Background

3.2.1 Sequential Sensing

A majority of existing work on sequential sensing focuses on typical detection

metrics: minimizing the expected detection delay subject to constraints on detection

accuracy in terms of the probabilities of false alarm and miss detection. This body

of work can be partitioned into two general categories: passive sequential hypoth-

esis testing and active sequential hypothesis testing. The former was pioneered by

Wald in 1947 [Wald(1947)], which introduced the procedure known as Sequential

Probability Ratio Test (SPRT). Under this formulation, the observation model under

each hypothesis is predetermined, and a test only needs to determine when to stop

taking observations and which hypothesis to declare at the time of stopping. The

latter was pioneered by Chernoff in 1959 [Chernoff(1959)]. Active hypothesis testing

has a control aspect that allows the decision maker to choose the experiment to be

conducted at each time. Different experiments generate observations from different

distributions under each hypothesis. An active test thus includes a selection rule (i.e.,

which experiment to carry out at each given time) in addition to a stopping rule and

a declaration rule. Following these seminal results, there has been an extensive body

of work on both passive (see, for example, [Arrow et al.(1949), Woodroofe(1976),

Siegmund(1985), Veeravalli et al.(1993), Ganesan et al.(2008), Sahu and Kar(2016)]

and references therein) and active (see [Bessler(1960), Lai et al.(2011), Nitinawarat

et al.(2013), Naghshvar and Javidi(2013a), Naghshvar and Javidi(2013b), Cohen and

Zhao(2015a)] and references therein) hypothesis testing. of delay and miss detec-

tion and false alarm probabilities (see, for example, [Wald and Wolfowitz(1948), Ar-
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row et al.(1949), Woodroofe(1976), Siegmund(1985), Veeravalli et al.(1993), Ganesan

et al.(2008), Lai et al.(2011)]). In these models a decision maker designs a set of

tests for over K instants in order to determine the state of certain resources [Caromi

et al.(2013)]. It is well known this problem has a dual unconstrained formulation,

where the objective that has to be minimized is the sum of a sensing cost and a so-

called “Bayesian-risk” term. However there is no closed form result that indicates how

to compute the multipliers in the Bayesian-risk for given error probabilities target,

and the previous literature provides different approximations to address this duality.

In our framework, no hard constraints are placed on the error probabilities and the

decision market strategy is exclusively devoted to maximize a utility function which

includes a sensing cost and a reward/penalty depending on the action and the real

state of the resource. The main novelty of our model relies on a “time-dependent”

utility after the decision. This is motivated by many applications, where a delay cost

associated to the time devoted for testing can have different physical reasons than the

utility a right or wrong action (i.e. declaration) can provide for the remaining time.

The key difference between this work and the vast body of results on hypothesis

testing is that the design objective in the problem studied here is the utility maximiza-

tion that directly addresses the trade-off between exploration (i.e., detecting the state

of each resource) and the time that remains for exploitation (of the resources, based

on the information gathered during the sensing phase). Hypothesis testing problems,

passive or active, are pure exploration problems. There are a couple of studies on

sequential sensing for anomaly detection under the objective of minimizing opera-

tional cost [Cohen et al.(2014), Cohen and Zhao(2015b)] which can be considered as

a utility function. Different from our work, these studies either restrict admissible

sensing strategies to those that declare the state of one process before starting sensing

another process (i.e., no switching across processes) [Cohen et al.(2014)] or focus on
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asymptotically (when the horizon length approaches infinity) optimal policies. The

problem considered in this thesis allows switching across resources and focuses on

a finite horizon, resulting in a full-blown POMDP that is significantly more diffi-

cult to tackle (for a discussion on the general complexity of POMDP see [Mundhenk

et al.(1997)]).

In the Cognitive Radio literature our utility maximization problem can be seen as a

parametric formulation of the energy efficiency metric maximization [Wu et al.(2014),

Pei et al.(2011)]. In [Wu et al.(2014)] the presence of PU communication is inferred via

energy detection (known to be optimal when no prior information is available) and a

single PU channel was considered. Multiple PU channels and the capability of switch-

ing between different channels, known as spectrum handoff, is investigated in [Wang

et al.(2012a)] and an efficient convex optimization procedure is developed to solve for

the optimal values of the sensing slot duration and the channel switching probability

in order to minimize energy consumption while guaranteeing satisfying throughput.

In [Pei et al.(2011)] prior knowledge (the vector ω in our model) over the state of

different channels is considered, but the sequential decision process terminates when

the SU decides to transmit over one single channel. The problem is formulated as DP

but no heuristic is provided to tackle the combinatorial complexity and no further

insight on the threshold structure of the decision is proposed. The threshold structure

for the channel probing stopping rule that has been proved in [Chang and Liu(2009)]

and that [Pei et al.(2011)] refers to, also considers only one possible transmission and

a constant data time scenario, i.e. the transmission time is not affected by the time

spent in sensing the channels. Moreover, in [Wu et al.(2014)]- [Wang et al.(2012a)]

no prior information is available and all the channels are equal. Therefore, there is no

ordering of the channels to take into account and no SPRT procedure to be optimized

for the sensing (performed via energy detection with a deterministic sensing time),
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whereas our model tackles both aspects.

More general utility maximization approaches for cognitive networks can be found

in [Zheng et al.(2013)] and [Zheng et al.(2016)], which leverage the class of utility

maximization functions for optimal congestion and contention control introduced in

[Lee et al.(2006)]. A censored truncated sequential spectrum sensing procedure is

presented in [Maleki and Leus(2013)], where different cognitive radios sense the same

channel and decide whether to send their estimates to a fusion center that then

performs the final decision over the presence of a PU. We instead consider a single

cognitive radio that can sense different channels (but only one at a time), which could

be seen as using only one sensor per channel, and therefore each sensor is sensing a

different state. The limit of one sensing operation at a time, in our formulation, could

be seen as a rigid censoring constraint, with the possibility of suspending the decision

over a channel, while continuing to sense and/or exploit others, and then potentially

reconsider whether to sense or exploit that channel after some time instants. A

concatenation of SPRT is proposed as a low-complexity, asymptotically optimal policy

in [Caromi et al.(2013)].

Additional relevant works can be found in [Liang et al.(2008), Zhao et al.(2007),

Yucek and Arslan(2009),Oksanen et al.(2010),Quan et al.(2008),Akyildiz et al.(2008),

Letaief and Zhang(2009), Kim and Shin(2008), Zeng and Liang(2009), Bagheri and

Scaglione(2015)]. The vast majority considers a rigid separation between exploration

and exploitation phase, while in our framework we enable a combination of the two

over different resources, by accessing some channels and simultaneously sensing a

different resource at each time. Several works have adopted a Multi-Armed Bandit

(MAB) formulation (see for example [Bagheri and Scaglione(2015),Gai et al.(2010)]),

whereas others (including this work) followed a Partially Observable Markov Decision

Process (POMDP) framework [Zhao et al.(2007), Krishnamurthy et al.(2016)]. It is
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important to highlight the following difference: in the MAB formulation the utility

obtained by the player that selects a certain ”arm” (i.e. an action) is the only infor-

mation that is used to optimize the future choices. The concept of POMDP, instead,

can be used to cast a wider class of decision problems where at each time epoch a

certain action needs to be designed, that provides indirect information on what strat-

egy the player should use to harness the maximum utility. In other words a ’sensing’

action informs what the player should do. The MAB formulation is a special case of

the POMDP in which the sensing action and the action that brings the utility to the

player are the same thing. Therefore, the POMDP formulation allows in principle

for a richer action space than a MAB problem and a POMDP cannot necessarily

be mapped into a MAB problem. Other optimal sequential sensing methods to ad-

dress the problem of optimally choosing the band to explore can be found in [Zhao

et al.(2008),Unnikrishnan and Veeravalli(2010),Wang and Chen(2012)].

3.2.2 Xampling Architectures

In the second part of the Chapter, we look at the opportunity of using a sub-

Nyquist sampling front-end which, in principle, can scan the entire spectrum at once,

reducing significantly the sensor analog to digital conversion hardware complexity

and its energy cost, at the expenses of increased complexity in the reconstruction

of the underlying signal. The theoretical foundation for the design of sub-Nyquist

sampling front-end lies in the representation of the signal as a nonlinear Union of

Subspaces (UoS) [Lu and Do(2008)]. A common framework to cover several acquisi-

tion and reconstruction approaches under the umbrella of the UoS model was defined

in [Mishali et al.(2011)], which named these analog to digital conversion techniques

Xampling architectures. Xampling architectures preprocess the signal in the analog

domain, and then sample at a lower rate compared what the Nyquist theorem dic-
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tates. The aim is to reduce the complexity and energy cost for the analog-to-digital

conversion hardware. The downside is the increased complexity in the reconstruction

of the underlying signal. Our work focuses on multiband signals, whose UoS repre-

sentation is a finite union of subspaces with infinite, but countable dimensions, in

the space spanned by orthogonal sinc functions. Examples of Xampling architectures

for multiband signals are in e.g. [Fudge et al.(2008),Mishali and Eldar(2009),Mishali

and Eldar(2010),Venkataramani and Bresler(2000)]. There are other CSS algorithms

in the literature that are related. Typically, they start directly from a discrete time

model (see e.g. [Zeng et al.(2011), Zeinalkhani and Banihashemi(2012)]) where the

receiver has a fixed number of measurements, forming an underdetermined system of

equations, whose solution is a sparse vector with support equal to the spectrum oc-

cupancy. We provide two arguments to study alternatives in the cognitive spectrum

access problem. First, in the spectrum sensing problem, the objective is the detection

of the idle channels, not the signal reconstruction: this suggests that the Xampling

complexity may still exceed what is really necessary for this task, as previously dis-

cussed in [Cohen and Eldar(2014)]. Note also that, when considering the detection

problem, most of the standard results in Compressive Sensing (CS), that bound the `2-

norm of the estimation error, do not directly express the detection performance. The

architecture studied in this thesis has the advantage of being sequential, requiring in-

coherent observations and being robust to time inaccuracies in the sampling hardware,

as opposed to e.g. the multi-coset approach in [Venkataramani and Bresler(2000)].

For the spectrum sensing detection problem, the additive noise at the receiver plays

an important role in the performance of interest. Hence, rather than focusing on re-

construction in noiseless scenarios, in our work we directly tackle the so called noise

folding problem in the design [Arias-Castro and Eldar(2011)]. Noise folding gives an

SNR deterioration approximately linear in the number of bands that are aliased prior
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to sampling [Arias-Castro and Eldar(2011)]. This can cause poor performance for

several Xampling approaches at low SNR. As discussed in [Baron et al.(2010)], low

density measurement matrices represent an effective countermeasure to noise fold-

ing. Additionally sparse matrices enable belief propagation techniques (i.e. message

passing) for signal recovery (or detection in our context). These advantages com-

pensate the drawbacks of using matrices that are generally worse conditioned than

dense matrices. Second, in the cognitive sensing problem the direct application of

Xampling architectures (see e.g. [Fudge et al.(2008),Mishali and Eldar(2009),Mishali

and Eldar(2010),Venkataramani and Bresler(2000),Lexa et al.(2011),Ariananda and

Leus(2012),Cohen and Eldar(2014)]), or any receiver that does not adapt its measure-

ment strategy, poses a limitation: if the spectrum is not sufficiently sparse, neither

the signal reconstruction, nor the detection of its presence in a certain band, can

be accurate, even in the absence of noise. In fact, for general non-sparse signals,

in a noiseless setting, [Cohen and Eldar(2014)] proved that half the Nyquist rate

is necessary (see also [Lexa et al.(2011), Ariananda and Leus(2012)] for related dis-

cussions). This inability to adapt to the ever changing spectrum occupancy rate,

makes its real application to cognitive spectrum sensing impractical. More recently,

other authors have proposed and studied sensing strategies that would reduce the

required number of measurements adaptively using compressive sensing, optimizing

the sensing actions based on previous observations [Bagheri and Scaglione(2015),Hao

et al.(2012), Malioutov et al.(2010), Zhao et al.(2015), Braun et al.(2015)]. The com-

mon goal in these works is the recovery of the full support of a given vector. Typically,

the techniques proposed are shown to be able to cope with lower SNR in the signal

reconstruction with low complexity. What these optimization do not capture is the

fact that in cognitive spectrum sensing applications it is also desirable to have enough

time to exploit the spectrum by making a timely decision. A cross-layer framework

55



to jointly optimize spectrum sensing and scheduling is presented in [Michelusi and

Mitra(2015)], where however the sensing phase duration is pre-determined and the

policy optimizes the average sensing traffic, whereas in our model a dynamic opti-

mization on the number of measurement is discussed based on recovery guarantees. In

fact, the receiver collects energy measurements sequentially (sampling at a fraction of

the Nyquist rate) under the assumption that the activity of the Primary Users (PUs)

in a certain spectrum will persist for several sampling periods (which is a reasonable

assumption in this context). The novelty in the proposed architecture stems from

the idea of selecting opportunistically the signal used for aliasing the wide-spectrum

input, so as to mix selective portions of the spectrum differently each time we perform

an energy measurement.

Notation

We use bold lower-case to represent vectors, bold upper-case for matrices and

calligraphic letters to indicate sets. For vectors, we use the same letter upper-case

to indicate the || · ||1 norm (i.e. Ω = ||ω||1) and with the notation sA we select the

entries i ∈ A of vector s. With ‖y‖2
A we indicate the weighted `2 norm yTAy. For

any set function f(A) we define the marginal increment for adding element a, as

∂af(A) = f(A+ a)− f(A).

3.3 A POMDP Formulation

We consider the problem of optimally utilizing N resources over a horizon of length

K. The state of each resource is either 0 (“good”) or 1 (“bad”) and is unknown a

priori. Utilizing resource i results in either a reward ri or a penalty ρi per unit

time, depending on its state. To infer the states of the resources, only one of them

can be sensed at each given time, accruing a random measurement drawn from a
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s = [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1]

Decision-maker

Observations

Actions

Figure 3.3.1: The decision-maker needs to determine the true state si of the re-
sources in order to accrue the maximum utility.

distribution determined by the state of the chosen resource. We study the optimal

sequential strategy governing the decision of sensing and exploitation at each time,

that maximizes the expected utility (i.e., total reward minus total penalty) over the

finite horizon (see Fig.3.3.1). Since sensing reduces the available time for utilization,

the essence of the problem is in balancing the overhead associated with sensing and the

penalty of utilizing resources in a bad state. Due to the limited sensing capability (i.e.,

only one resource can be sensed at a given time), it is also crucial to choose judiciously

which resource to sense at each time. This problem arises in cognitive radio systems

where the resources are channels that can be either busy or idle. Assume an agent

has K instants of time available for the sensing and exploitation of a set of resources

N = {1, 2, . . . , N}. The agent accrues a reward that is a function of an underlying

state vector

s , (s1, . . . , sN)T ∈ S ≡ {0, 1}N , (3.3.1)

where the entries si ∈ {0, 1} and S is the set of all possible states. We consider the

si as indicators of good (0) or bad (1) state of a resource. For instance, the “idle”

or “busy” state of a sub-band, where the decision maker has to explore/sense the

channels and gets a reward for utilizing an idle channel and a penalty for utilizing a
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busy channel. We assume the states si are mutually independent Bernoulli random

variables with known prior probabilities given by:

ω[1] = {ωi[1] : i = 1, 2, . . . , N} (3.3.2)

ωi[1] , P (si = 0). (3.3.3)

Let Ak denote the set of resources for which a final decision of utilizing or discarding

has not been reached at time k (k = 1, . . . , K). Clearly, A0 includes all N resources.

Our model then allows to access multiple resources (removed from Ak) and to sense

one resource (φk) at each time instant k. Underneath the decision there is a sequential

binary hypotheses testing problem where a sample y[k] from the selected resource φk

is collected and the conditional probability density functions of the observations are

assumed to be known:

Hφk
0 : sφk = 0, y[k]

i.i.d∼ fφk0 (y) (3.3.4)

Hφk
1 : sφk = 1, y[k]

i.i.d∼ fφk1 (y) (3.3.5)

We want to maximize a utility function that strikes the best trade-off between the

need of acquiring information on the state s of the channels and the desire of exploiting

good resources as early as possible. The decision maker needs to design: 1) a set of N

stopping rules for the stopping times τ , {τi : i = 1, 2, . . . , N}, one for each resource,

indicating when a final decision of utilizing or discarding the resource can be made; 2)

a set of N decision rules δ , {δi ∈ {0(utilize), 1(discard)} : i = 1, 2, . . . , N}, one for

each resource, indicating the final decision at the time τi of stopping; 3) a sequence

of selection rules φ , {φk : k = 1, . . . , K} indicating which resource to sense at time

k (if Ak is not empty). Let τi denote the time instant at which a final decision on

whether to utilize or discard resource i is made and τ̃ = maxi τi be the total sensing

time, all depending on the two sets of rules (τ ,φ). The decision maker’s actions are
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the solutions to the following optimization problem:

max.
τ ,δ,φ

E[U(s,N , K, c, τ , δ,φ)],E
[
−cτ̃+

N∑

i=1

(K − τi)Ri(si; δi)

]

subject to τ̃ ≤ K.

(3.3.6)

where the objective function has two terms:

• −cτ̃ represents an effective sensing cost, and c is the sensing cost per unit of

time;

• the function Ri(si; δi) is the utility per unit time for exploiting resource i:

Ri(si; δi) =





ri if δi = si = 0

−ρi if δi = 0, si = 1

0 if δi = 1

(3.3.7)

where ri, ρi > 0 indicate, respectively, the reward and the penalty for utilizing

a good resource and utilizing a bad resource.

We can immediately notice an asymmetry in the function corresponding to the ex-

ploitation reward in (3.3.7) since, if one decides the resource is in bad state (i.e. that

si = 1), the utility accrued is the same regardless of the real state of the channel.

Note that, since c can be moved out of the expectation in (3.3.6), E [U∗(s,N , K, c)] =

max
τ,δ,φ

E [U(s,N , K, c, τ , δ,φ)] decreases monotonically with c, therefore the value of

c is typically limited by an effective cost (i.e. the energy required for the receiver to

continue sensing a channel in a spectrum access problem) and is not chosen to further

optimize the achievable expected utility. We now procede to show how the optimiza-

tion in (3.3.6) can be modeled as a Partially Observable Markov Decision Problem

(POMDP), and use dynamic programming tools to describe the optimal τ ∗, δ∗,φ∗.

The state vector s is not directly observable, therefore the decision maker has to rely
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on her belief regarding the occupancy of the resources in order to make a decision.

Let ω[k] denote the belief vector at instant k (i.e., the vector of posterior probabilities

that a resource is in state 0 given all past observations). We can use Bayes rule to

derive the belief update after a new observation and write

ω[k + 1] = Π(ω[k], y[k], φk) (3.3.8)

ωi[k + 1] = Πi(ωi[k], y[k], φk) (3.3.9)

Πi(ωi, o, φ) ,





ωif
i
0(y)

ωif i0(y) + (1− ωi)f i1(y)
if i = φ

ωi if i 6= φ

(3.3.10)

The optimization problem in (3.3.6) can therefore be formulated as a POMDP

where the belief vector ω[k] represents the state for the decision maker and the state

transitions equations are given by the belief update rule in (3.3.8). At each time

instant k, based on the current belief ω[k], the decision maker first removes from Ak
all those resources for whom a final decision of utilizing or discarding can be made

(we refer to this set as D), and then she chooses one of the remaining resources to

sense at time k. The value function of the POMDP problem can be expressed as:

V (ω,Ak, k) , max
D⊆Ak

{
(K − k + 1)Vd(ω,D) + max

i∈Ak+1≡Ak\D
V i
t (ω,Ak+1, k)

}
(3.3.11)

where Vd(ω, D) indicates the maximum expected reward given by the resources in D

for each of the (K − k + 1) remaining instants and V i
t (ω,A, k) represents the value

accrued for deciding to sense the resource i at time k (i.e. φk = i).

It is easy to see from the utility function (3.3.7) that Vd has an additive structure,

i.e. Vd(ω,D) =
∑

i∈D V
i
d (ωi). Mathematically the functions V i

d (ωi) and V i
t (ωi,A, k)

can be expressed as follows:

V i
d (ωi) , max

δi∈{0,1}
E [Ri(si; δi)] (3.3.12)
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V i
t (ω,A, k),−c+

∫
V (Π(ω, y, i),A, k + 1) f i1−ωi(y)dy (3.3.13)

for k = 1, . . . , K where we need a final condition V (ω,A, K+1) = 0,∀A,ω, to encode

the constraint in (3.3.6). In (3.3.13) we have defined

f i1−ωi(y) , ωif
i
0(y) + (1− ωi)f i1(y) (3.3.14)

It is easy to see that

V i
d (ωi) = max{(ri + ρi)ωi − ρi, 0}. (3.3.15)

Thus the optimal final decision δ∗i is given by

δ∗i = u

(
ρi

ρi + ri
− ωi

)
(3.3.16)

where u(·) is the unit step function. The value function V (ω,Ak, k) can be seen as

the result of the maximization of a set function under set constraints, that is:

V (ω,Ak, k) = max
D⊆Ak

J(D) (3.3.17)

where

J(D) ,
{

(K − k + 1)Vd(ω,D) + max
i∈Ak\D

V i
t (ω,Ak\D, k)

}
(3.3.18)

and this formulation will be used in the remainder of this work to show the structure

of the optimal policy. We would like to point out that the formulation of the POMDP

in (3.3.11) gives no indication on the fact that the channel sensed at time k should

continue to be sensed at time k + 1 or included in the set D, i.e. a concatenation

of independent truncated SPRT over each channel represents a suboptimal strategy

for our problem and is optimal only for K → ∞. It is useful to remark that, by

considering a time-dependent utility after the decision, in our model the constraints

on the detection metrics vary between channels and over time, whereas in the majority
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of other works the detection metrics constraint are typically constant over time (see

[Wald(1947)] for analysis of truncated sequential hypothesis). To be more precise,

our model can be seen as a Bayesian-risk formulation, where our utility terms can

be seen as the Lagrangian multiplier of the constraints associated to the detection

metrics, that change over time in light of the time-dependent utility function.

Remark 3.3.1. Our formulation can be modified to account for correlation between

group of resources. If we keep the condition that it is possible to sense only one

resource at each time, the belief update rule in (3.3.8) should be modified to update

also the ωi’s of resources correlated with the sensed one. The subset of resources, that

can be accessed at each time, should contain all the ones correlated with each other,

i.e. if two resources are correlated, they should be added to D at the same time, due

to the possibility of gaining knowledge on a resource for which a terminal decision has

already been made. It follows that, for each group of correlated resources, we have

to consider a sub multi-hypothesis problem for all the possible combinations of binary

states, and find a similar approximation as the one presented in the next section for

the decision regions in the plane of the belief vector over these resources (for details

on the geometry of such structure see [Baum and Veeravalli(1994)]). This in principle

can be handled for small groups of correlated resources, but makes the problem even

more complex.

3.3.1 The Optimal Stopping Rule and Decision Rule

In this section we first describe the correspondence between the actions of our de-

cision process as solution of (3.3.11) and the optimal rules (τ ∗,φ∗) introduced above,

that the decision maker needs to determine. Then we introduce a low-complexity

policy to approximate the optimal action. Let us start by considering the solution of
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(3.3.17) at time k, i.e.:

D∗ = arg max
D⊆Ak

J(D). (3.3.19)

By definition of the set of optimal stopping times τ (see (3.3.6)), for each resource i,

the optimal stopping time τ ∗i is:

τ ∗i =





k − 1, for i ∈ D∗

k′ > k − 1 for i ∈ Ak \ D∗.
(3.3.20)

Notice that since we start from instant k = 1 if we decide to immediately stop the

sensing we have τ = 0 and this is consistent with the formulation in (3.3.6) and the

following mapping to the value function. In light of the outer maximization over D

in (3.3.11), the optimal selection rule for the decision maker will be:

φ∗k = arg max
i∈Ak+1≡Ak\D∗

V i
t (ω,Ak+1, k) (3.3.21)

From (3.3.20) and (3.3.21) it emerges how the optimal selection rules φ∗ and the

optimal stopping times τ ∗ are coupled. We then introduce the following lemma:

Lemma 3.3.2. ∀Ak ⊆ N , i, j ∈ Ak and for k = 1, . . . , K, both V i
t (ω,Ak+1, k),

V (ω,Ak, k) are convex functions of ωj.

Proof. The proof is in Appendix B. It is similar to the approach used in [Zhao and

Ye(2010)] to prove the convexity of the Q-functions.

Lemma 3.3.2 induces the structure of the optimal stopping rules, which describe

the optimal stopping times τ ∗i , i = 1, 2, . . . , N that we formally present in the follow-

ing theorem:

Theorem 3.3.3. The optimal stopping time τ ∗i ,∀i ∈ N is described by two thresholds

(νi1, ν
i
0) that depend on the remaining time and channels to be explored, i.e. (νi1 =

νi1(Ak, k), νi0 = νi0(Ak, k)) such that at any k the optimum action for the resource i is
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• take a final decision over resource i (i.e. τi = k) if

ωi[k] ≥ νi0(Ak, k) ∨ ωi[k] ≤ νi1(Ak, k)

• postponing the decision on resource i (i.e. τi > k), if

νi1(Ak, k) < ωi[k] < νi0(Ak, k)

Furthermore ∀i,Ak, k

νi1(Ak, k) ≤ ρi
ρi+ri

≤ νi0(Ak, k) and from (3.3.16) it follows that:

δ∗i =





1 if ωi[k] ≤ νi1(Ak, k)

0 if ωi[k] ≥ νi0(Ak, k).

(3.3.22)

Proof. Following the same approach we used to show the convexity of V (ω,Ak, k) in

Appendix B, we rewrite (3.3.11) for an arbitrary resource i as follows:

V (ω,Ak, k)=max

{
max

{i}⊆D⊆Ak
J(D), max

D⊆Ak\{i}
J(D)

}
(3.3.23)

where the function J(D) has been defined in (3.3.18), and then we refer to the two

terms of the outer maximization as f1 = max
{i}⊆D⊆Ak

J(D) and f2 = maxD⊆Ak\{i} J(D).

Note that f1 corresponds to the maximum value from the actions that immediately

decide on resource i, whereas f2 indicates the maximum value from the actions that do

not decide on resource i at time k. The convexity of f1 and f2 is proven in Appendix

B. Clearly f1 ≥ f2 for ωi = 0 and for ωi = 1 since, when the state of the channel is

known, is clearly preferable (or equivalent) to immediately decide on it, and also f1 is

a piece-wise linear function of ωi with only two segments that intersect in ωi = ρi
ρi+ri

(see definition of V i
d (ωi) in (3.3.15)). Hence, there are only two possibilities:

• f1 < f2 for νi1(Ak, k) < ωi[k] < νi0(Ak, k) where

0 ≤ νi1(Ak, k) ≤ ρi
ρi+ri

≤ νi0(Ak, k);

• f1 ≥ f2 ∀ωi ∈ [0, 1].
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In this second case, we will say the two functions do not intersect, i.e. there is

no region where the decision maker should prefer to not include the resource in D;

therefore we set νi1(Ak, k) = νi0(Ak, k) = ρi
ρi+ri

to indicate the decision maker should

immediately decide on resource i and this concludes the proof.

!i
⇢i

⇢i + ri
1

0

ri

V i
d (!i)

f1

f2

V (!, Ak � i, k)

⌫i
1(Ak, k) ⌫i

0(Ak, k)

(K � k + 1)ri + V (!, Ak � i, k)

Figure 3.3.2: Representation of the functions of ωi: f1,f2 from (3.3.23) at time k

It is not entirely surprising that the problem we defined leads to an optimal pol-

icy with a two thresholds structure, since analogous policies have been found to be

optimal for a general truncated SPRT [Wald and Wolfowitz(1948)] with a deadline

constraint either deterministic [Tartakovsky et al.(2015)] or stochastic [Frazier and

Yu(2008)] and in general many different sequential decisions schemes. However, as

described in the Introduction, our formulation is different in light of the time depen-

dence of the Bayesian term, i.e. the different utility that a decision over a certain

resource can produce at different times.

Theorem 3.3.3 is a description of the optimal stopping rules but does not indicate

how to compute the two thresholds nor how to select the resource φ∗k to be sensed

at time k. Due to the recursive nature of the function V i
t (ω,Ak+1, k) in (3.3.13) and

the dependence on the rest of the system, the exact computation of these optimal

thresholds remains elusive. In order to provide a suboptimal strategy that is com-

putationally manageable in Section 3.3.2, let us look at the situation where we have
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only one resource and we have to choose between testing the resource or taking a

final decision, either δi = 1 or δi = 0. We will refer to the two single-resource decision

thresholds as νi1[k] = νi1(i, k), νi0[k] = νi0(i, k), where we introduce this short notation

for convenience. We then introduce the following lemmas.

Lemma 3.3.4. ∀i ∈ N , k = 1, . . . , K − 1 the two single-resource thresholds will

monotonically contract, i.e.

νi1[k] ≤ νi1[k + 1] (3.3.24)

νi0[k] ≥ νi0[k + 1] (3.3.25)

Proof. The intuition behind this lemma is that, as the decision deadline approaches,

the urge to decide whether to utilize or discard the resource increases and the decision

thresholds shrink. For a rigorous proof see Appendix B.

Lemma 3.3.5. ∀i ∈ N , k = 1, . . . , K, A′ ∈ 2N−i, the following inequalities hold

νi1[k] ≤ νi1(A′ + i, k) (3.3.26)

νi0[k] ≥ νi0(A′ + i, k) (3.3.27)

Proof. The intuition behind this lemma is that adding resources to the state A pro-

duces a similar effect to removing time dedicated to each resource. Thus a similar

intuition as for Lemma 3.3.4 applies. The full proof is in Appendix B.

Lemma 3.3.6. ∀k, k′ = 0, . . . , K, k′ ≥ k, A ∈ 2N , i ∈ A

νi1[k] ≤ νi1(A, k′) (3.3.28)

νi0[k] ≥ νi0(A, k′) (3.3.29)

Proof. Follows from Lemmas 3.3.4-3.3.5 and setting A = A′ + i.
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Lemma 3.3.6 gives us insight on the behavior of the thresholds (νi1(Ak, k), νi0(Ak, k))

that motivates our heuristic strategy in Section 3.3.2, which uses a single-channel

thresholds approximation to replace the optimal thresholds. In the next section we

will first discuss how to approximate the thresholds νi1[k], νi0[k] and then we will in-

troduce a manageable strategy to sense the resources and decide which action to take

based on the approximate decision thresholds.

3.3.2 A Low Complexity Approximation Algorithm

For the rest of this subsection, we will use underline to indicate a lower bound

and overline for upper bound of a given quantity or function, i.e. a ≤ a ≤ a. For

our heuristic, as we will motivate in the following, we will use the bounds νi1[k]

and νi0[k] that correspond to the single-resource decision thresholds, derived from

the formulation previously introduced. In principle, the tighter are the bounds we

can provide for the thresholds, the better our heuristic will perform. Let us start

by finding simple bounds. The decision thresholds (νi1[k], νi0[k]) at time k are the

solutions with respect to ωi of

(K − k + 1)V i
d (ωi) = V i

t (ωi, i, k). (3.3.30)

From the convexity of V i
t (ωi, i, k) (see Lemma 3.3.2) and the values of the function

for ωi = 0, 1 we know that (see Fig.3.3.3)

V i
t (ωi, i, k) ≤ −c+ (K − k)riωi. (3.3.31)

Furthermore, V i
d (ωi) is piece-wise linear with only two segments that intersect in

ωi = ρi
ρi+ri

.

Remark 3.3.7. A more general formulation with 4 different rewards/penalties for

(3.3.7) would not alter the structure of the problem nor invalidate our results. Our
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Figure 3.3.3: Representation of the two functions of ωi: V
i
t (ω, i, k) associated to

the test of resource i and (K − k+ 1)V i
d (ωi) for the immediate decision on resource i.

definition has been motivated by the emphasis we want to put on the utilization of

the resources, which we assume occurs only if the detected state is 0, but if one had

defined

Ri(si; δi) ,





Ci
00 > 0 if si = 0, δi = 0

Ci
10 < 0 if si = 0, δi = 1

Ci
11 > 0 if si = 1, δi = 1

Ci
01 < 0 if si = 1, δi = 0

(3.3.32)

then with some manipulations, one can find the strategy would have the same struc-

ture, where Fig.3.3.3 would be “rotated”.

By intersecting the upper bound for V i
t (ωi, i, k) in (3.3.31) with (K−k+ 1)V i

d (ωi)

it follows:

νi1[k] = min

{
c

(K − k)ri
,

ρi
ρi + ri

}
(3.3.33)

νi0[k] = max

{
(K − k + 1)ρi − c
(K − k + 1)ρi + ri

,
ρi

ρi + ri

}
(3.3.34)

νi1[k] = νi0[k] =
ρi

ρi + ri
(3.3.35)

where we consider νi1[k] = νi0[k] = ρi
ρi+ri

if (3.3.30) has no solutions for ωi ∈ [0, 1]. The
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bounds above can be very loose depending on the parameters of our problem and lead

to a poor approximation. Potentially tighter upper and lower bounds than the ones

directly obtainable from (3.3.33)-(3.3.34)-(3.3.35) can be found using a probabilistic

approach to write the value function of our dynamic program. The general idea is to

consider a worst and a best case scenario any time the belief over a certain resource

has not crossed one of the two thresholds. This is possible since the belief update (for

a given observation) and the value function are monotonically increasing functions

of ωi (details are reported in Appendix B). Let us define the following functions for

s = 0, 1

F̄ `
ωi[k+`](ω|ϕ, s),P{ωi[k + `] ≥ ω|ωi[k]=ϕ∩si=s} (3.3.36)

µi[k|s] , F̄ 1
ωi[k+1](ν

i
1[k]|νi0[k − 1], s)− F̄ 1

ωi[k+1](ν
i
0[k]|νi1[k − 1], s) (3.3.37)

µi[k|s] , F̄ 1
ωi[k+1](ν

i
1[k]|νi1[k − 1], s)− F̄ 1

ωi[k+1](ν
i
0[k]|νi0[k − 1], s) (3.3.38)

where (3.3.36) is the complementary CDF of the updated belief, which is a random

variable while (3.3.37)-(3.3.38) refer to the probability of not overcoming the belief

thresholds.

We will then prove

Lemma 3.3.8. ∀i ∈ N , k = 1, . . . , K we can derive the following upper and lower

bound for the function V i
t (ωi, i, k)

V i
t (ωi, i, k) = −c

+ min

{
K−1∑

`=k

[
ωi
∏̀

m=k+1

µi[m|0] + (1− ωi)
∏̀

m=k+1

µi[m|1]

]

max
{
−u[`− k]c+ (K − `)

[
νi0[`]riF̄

1
i

(
νi0[`+ 1]|νi0[`], 0

)

−(1− νi0[`])ρiF̄
1
i

(
νi0[`+ 1]|νi1[`], 1

)]
, 0
}
, (K − k)riωi

}
(3.3.39)

V i
t (ωi, i, k) =−c+

K−1∑

`=k

[
ωi
∏̀

m=k+1

µi[m|0] + (1− ωi)
∏̀

m=k+1

µi[m|1]

]
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max
{
−u[`− k]c+ (K − `)

[
νi1[`]riF̄

1
i

(
νi0[`+ 1]|νi1[`], 0

)

−(1− νi1[`])ρiF̄
1
i

(
νi0[`+ 1]|νi0[`], 1

)]
, 0
}

(3.3.40)

where we used the step function u[k] = 1 for k > 0 and u[1] = 0 and the short notation

F̄ 1
i (ω|ϕ, s) for F̄ 1

ωi[`+1](ω|ϕ, s).

Proof. See Appendix B. Notice that, since we evaluate these bounds at time k in ωi,

the bounds for the thresholds at time ` = k can be replaced with ωi.

Gathering these results, we can now present our thresholds approximation in Al-

gorithm 3.1. Note that our approach is valid irrespective of the sensing model. In

fact, in order to express in closed form the bounds in (3.3.39)-(3.3.40) one only needs

to evaluate the functions F̄ 1
ωi[k+1](ω|ϕ, s) in (3.3.36).

We highlight it is important to run the algorithm for decreasing value of k in order

to use potentially tighter bounds when we compute (3.3.39)-(3.3.40) for lower values of

k. The last step in the algorithm is a direct consequence of Lemma 3.3.4. In Section

3.6 we will numerically illustrate how the tightness of the bounds from Algorithm

3.1 is highly dependent on the value of the parameters of our utility function and

on the quality of the test (i.e the sensing SNR ζi for our application). Having

introduced two methods to approximate the thresholds, we now introduce our low-

complexity strategy. The pseudocode for our heuristic is presented in Algorithm 3.2.

Interestingly, the distance between the two bounds can be used to find an on-line

(not computable a priori) non trivial upper-bound for the cumulative utility loss of

Algorithm 2.

Lemma 3.3.9. The expected sensing time for resource i, given we continue to sense

it from time k until we make a final decision at time τi, can be upper-bounded as
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follows:

E[τi − k|k] ≤ min



ωi[k]

ς
(
νi0[k], ωi[k]

)
+ D̂(f i0||f i1)

D(f i0||f i1)

+(1− ωi[k])
ς
(
ωi[k], νi1[k]

)
+ D̂(f i1||f i0)

D(f i1||f i0)
, K − k



 (3.3.41)

where ς(x, y) , log
(
x(1−y)
(1−x)y

)
and

D̂(f i0||f i1) , E

{
log

(
f i0(y)

f i1(y)

) ∣∣si = 0, f i1(y) ≤ f i0(y)

}
(3.3.42)

D̂(f i1||f i0) , E

{
log

(
f i1(y)

f i0(y)

) ∣∣si = 1, f i1(y) ≥ f i0(y)

}
(3.3.43)

Proof. See Appendix B

The reason for immediately deciding on the resources whose belief has crossed

one of the two single-channel thresholds follows from Lemma 3.3.6, which implies

that at any time instant k′ after k the decision maker will always decide not to test

resource i adding kV i
d (ωi) to the overall utility. Therefore postponing that decision

after k will give a lower or equal expected utility. In other words, if V i
d (ωi) > 0 and

we expect to select to exploit resource i at some point, we will have a lower utility

postponing that decision; if, instead, V i
d (ωi) = 0 and we discard channel i we accrue

zero utility irrespective on when we take that action. Using larger thresholds than

the optimal ones appears a legitimate choice for applications where the accuracy of

the test has a larger impact on the performances than the time devoted to sensing.

We then approximate the optimal selection rule φ∗ with the index ωi[k]ri
E[τi−k|k]

which is

computed by using the upper-bound introduced in Lemma 3.3.9. The motivation for

the index and its asymptotic optimality are discussed in Appendix B.
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3.3.3 Asymptotic Regret

Even if this work focuses on finite horizon, it is useful to briefly discuss the asymp-

totic regret. Let us define the regret Ψ(L) as the cumulative loss over the entire

horizon K

Ψ(K) = K
∑

i∈N
ωi[1]ri − E [U(s,N , K, c)] (3.3.45)

where K
∑

i∈N ωi[1]ri represents the maximum achievable expected utility by a genie

that knows exactly the state of each resource. To find an asymptotically optimal

strategy in term of regret per slot, i.e. a strategy that achieves limK→∞
Ψ(K)
K

= 0, one

can simply consider a strategy that senses for a fixed amount of time growing with

logK, that would asymptotically achieve zero probability to declare the wrong status

for each resource, and then directly derive the limit. This proposed static strategy

would give a cumulative regret with order O (logK). In our simulation, we will then

consider, for the different proposed strategies, the growth rate of the regret with

logK, specifically limK→∞
Ψ(K)
logK

to highlight the importance of the resource sorting

in reducing this quantity. The static approach, however, is clearly not feasible in the

regime of small K and this motivates our study of the optimum policy structure and

our heuristic for such scenarios.

3.4 A Group Testing Inspired Strategy

In this Section we want to investigate the opportunity of texting multiple bands

at the same time, i.e. with one test. The first consideration is that a combined

test would introduce correlation between resources and as we highlighted in Remark

3.3.1, this would significantly complicate the formulation of the problem. We then

take a different route with respect to the previous section and add the limitation

that resources can only be sensed once, even directly inspected or in a combined
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test with other sub-bands. In light of this assumption we then need to explicitly

take into account the false alarm and missed detection probabilities in our utility

function, whereas, without loss of generality we can consider the sensing cost c = 0.

We consider the same vector state s and ω as in the previous section. However, to

be consistent with general notation rules, e.g., calligraphic letters to indicate sets, we

will slightly modify the notation: instead of the sets of stopping and selection rules

andτ ,φ we will use κ for the total number of tests and A‖ for the set of sub-bands

mixed in the test at time k. Differently from the previous section, we assume the

player acquires information about the entries via random observations coming from

a known pdf parameterized by an unknown vector. In each measurement at time

k = 1, 2, . . . , κ < K the player has the possibility to dynamically and adaptively select

a subset of entries through a sensing vector bk = [bk1, bk2, . . . , bkN ], i.e. we assume

the observation y[k] is drawn from fθ[k](y) where θ[k] = θ(bk, s). The decision maker

needs to design:

1. the κ×N measurement matrix B whose rows are the measurement vectors bk

for k = 1, 2, . . . , κ for each test and κ indicates the sensing (exploration) time

to acquire information on the states si via the observations y[k],

2. a set of N decision rules δ = {δi ∈ {0, 1} : i = 1, 2, . . . , N} over the unknown

states si of the resources at the end of the exploration phase

The total utility for the player will be proportional to the time left for exploitation

(K − κ). Let us consider a reward ri > 0 for correctly detecting an empty/busy

resource and a penalty ρi < 0 for failing to detect a busy/empty resource, the utility

can be written as

U(s,N , K,B, δ) ,





(K − κ)
∑N

i=1 ωiri (1− αi) + (1− ωi)ρiβi case 0

(K − κ)
∑N

i=1(1− ωi)(1− βi)ri + ωiαiρi case 1

(3.4.1)
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where αi, βi denote the type I and type II errors probability respectively, i.e. αi =

P (δi = 1|si = 0) and βi = P (δi = 0|si = 1). To differentiate between case 0/1 allows

to consider applications where the utility comes from an action on the entries detected

as empty/busy: i.e., in a spectrum sensing application, the utility would come from

the decision on transmitting over frequency bands found empty, whereas for a radar

application, it makes more sense to consider the utility comes from taking action on

the frequency (spatial directions) found busy. Finding the optimal policy corresponds

to solve the following optimization problem

maximize
B,δ

E [U(s,N , K,B, δ)] (3.4.2)

The theory presented in this thesis could be easily modified to fit different ob-

servation models and assumptions, but in light of our application we will limit to

consider the following form for θ:

θ[k] = θ(bk, s) = bk
(
ϕT + wT

)
(3.4.3)

where ϕ = [ϕ1, ϕ2, . . . , ϕN ] is a non-negative vector, such that the state variable

si = 1 when ϕi > 0 and 0 when ϕi = 0, w = [w1, w2, . . . , wN ], in the context of

spectrum sensing, represents the background noise on each frequency band. The

theory developed in this chapter concerns the detection of the non-negative entries

of ϕ and consequently the maximization of the utility accruable from the resources

declared to be in the empty/busy state (3.4.1). The observation model also assumes

that fθ[k](y) ≡ Exp(θ[k]), i.e.

y[k] ∼ fθ[k](y) =
1

θ[k]
e−

y
θ[k] (3.4.4)

where, for convenience, we use the alternative parameterization for the exponential

distribution.
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3.4.1 Direct Inspection (DI) Case

In the Direct Inspection (DI) case, we limit bk to have only one non-zero entry

i, i.e. bki 6= 0, bkj = 0 ∀j 6= i. This means that there is an underlying hypothesis

testing:

H0 : y[k] ∼ Exp (θ0[k])

H1 : y[k] ∼ Exp (θ[k])

with θ0[k] = bkiwi and θ[k] = bki(ϕi +wi) > θ0[k]. In this context, it is know that the

the signal energy is a sufficient statistic for the test and the energy detection is opti-

mal. Assuming no prior knowledge over the ϕi’s in case of existing communication,

we only need to set the test threshold which we set in order to maximize the utility

defined in (3.4.1). With few algebraic steps we get:

y[k]
H1

≷
H0

ln
(
γi
θ?[k]
θ0

)

1
θ0
− 1

θ?[k]

(3.4.5)

where θ?[k] , max{y[k], bki(ϕmin + wi)} and

γi ,





riωi
|ρi|(1−ωi) case 0

|ρi|ωi
ri(1−ωi) case 1

(3.4.6)

Notice that, assuming a minimum average received signal power ϕmin > 0 in case of

existing transmission, makes the test meaningful also for values of γi < 1.

Assumption 3.4.1. To simplify the decision problem, we will assume every resource

has to be sensed before being declared empty/busy. This can be enforced as a stan-

dard/protocol rule or numerically guaranteed by setting ∀i ∈ N , ωi < ρi
ρi+ri

(case 0) /

ωi >
ri

|ρi|+ri (case 1).
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It is clear that the optimality 1 of the test completely characterizes the set of

decision rules δ for the sensed resources, while Assumption 3.4.1 gives us the decision

rule for the non-sensed resources. This implies that for the DI case, the optimization

in (3.4.2) can be expressed solely in terms of B. It is also known that for this type

of text, where there is uncertainty in a parameter of the alternative hypothesis, one

does not know the exact miss probability β, thus we will use an upper-bound, which

will reflect in a lower bound for the achievable utility. Since this test is the one used

in the DI strategy, we add the superscript DI to the test error probabilities αi and βi

and write

αDIi = min






 |ρi|(1− ωi)
riωi

(
1 + ϕmin

wi

)




1+
ϕmin
wi

ϕmin
wi

, 1





(3.4.7)

βDIi = 1−
(
αDIi

) 1

1+
ϕi
wi (3.4.8)

where as expected the false alarm probability is independent from the alternative

hypothesis, whereas the detection improves with the true average transmitted power

ϕi. What we can guarantee, since ϕi ≥ ϕmin is that

βDIi ≤ 1−


 |ρi|(1− ωi)
riωi

(
1 + ϕmin

wi

)




wi
ϕmin

= βDIi,max (3.4.9)

Remark 3.4.2. The test performance for the DI case does not depend on bki, there-

fore, for the DI case no further optimization is needed over the sensing matrix B,

other than selecting the non-zero entries.

1The threshold in (3.4.6) is the optimal threshold that minimizes the Bayesian risk (maximize

our utility) for the case of binary hypothesis testing, where ϕi is known. It is of common practice

to replace the MLE estimate for the unknown parameter ϕi (GLRT) and then reduce to the binary

case, using the same threshold. A local most powerful test exists for θ → θ0 but the GLRT is

preferred since we want to consider high SNR range.
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The impossibility of knowing the true βi of each test motivates us to optimize the

minimum guaranteed achievable utility, using the bound in (3.4.9). This consideration

together with Assumption 3.4.1 leads to rewrite the optimization problem in (3.4.2)

for the DI case as

maximize
A⊆N

UDI(A) (3.4.10)

where

UDI (A) , (K − |A|)
∑

i∈A
uDIi (3.4.11)

uDIi , ωiri(1− αDIi ) + (1− ωi)ρiβDIi,max (3.4.12)

We then introduce the following Lemma

Lemma 3.4.3. UDI(A) is a normalized, non-monotone, non-negative sub-modular

function of A.

Proof. See Appendix B

Lemma 3.4.3 implies that there are diminishing returns in augmenting sets by

adding a certain action to bigger and bigger sets. The maximization of a non-

monotonic sub-modular function is generally NP-hard, but the case of interest is

not as difficult. In fact, it is clear that by sorting the resources i so that:

uDI1 ≥ uDI2 ≥ . . . ≥ uDIN (3.4.13)

than the set of size i, Ai = {1, . . . , i} will be such that for any set X of size |X | = i

i∑

k=1

uDIk ≥
∑

k∈X
uDIk

Therefore, what remains is to find the best set size i such that

UDI(A) ≤ UDI(Ai) ≤ max
i

(
(K − i)

i∑

k=1

uDIk

)
(3.4.14)
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The maximum in (3.4.14) is attained for

i∗ = inf
i
{i : ∂i+1U

DI(Ai) < 0} (3.4.15)

where ∂i+1U
DI(Ai) = (K − i)uDIi+1 −

∑i+1
k=1 u

DI
k . In fact, given the function is sub-

modular as soon as this condition is attained it is maintained for i + 2, i + 3 etc.

given that the marginal returns continue to decrease. This maximization is greedy

and stops when the marginal reward becomes negative.

3.4.2 Mixing Sub-bands

We now allow the test to mix different sub-bands, i.e. the vector bk to have more

than one non-zero entry. The main idea of this section is to develop a relatively

simple dynamic strategy, to choose a sensing matrix that can be characterized, in

closed form, and that outperforms the DI alternative. To mitigate the noise folding

effects it is necessary to use low density measurement matrices. A common approach

for recovery with low density measurement matrices is to use belief propagation via

message passing2, whose most well known application is Low Density Parity Check

(LDPC) optimum error correction decoding. However, for LDPC methods (but also

for CS methods) the design usually guarantees asymptotical bounds on the `2-norm

and little is known for optimal design in the finite regime. The difficulty of such

design arises from the inherent multi-hypothesis testing problem of sensing several

resources at the same time. This is why, to develop our dynamic design, we look at

a Group Testing (GT) approach, which allows us to have a binary hypothesis testing

for each measurement. In this way, we keep the complexity of the analysis relatively

low, and we can derive the expected performance for any sensing matrix, under mild

assumptions. The main assumption to enable our analysis is that the sensing matrix

2In our model, an uninformative prior can be assigned to the ϕi’s to run the belief propagation

message-passing algorithm on the obtained measurements
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must not have length-4 cycles, i.e. two different measurements do not mix more than

one sub-band in common. Such condition is also favorable, and typically required, for

belief propagation algorithms, e.g. message passing, which suffer from loopy networks

with short cycles. Additionally, in the context of group testing, little is known in

presence of measurement errors that depend on the group size, which is the scenario

we are here considering, as the remainder of the chapter will detail. Asymptotic

results on the targeting rate for measurement-dependent noise, using an information-

theoretic approach, are given in [Kaspi et al.(2015)], where the noise is modeled as

independent additive Bernoulli with bias dependent on the test size, giving therefore

the same false-alarm and missed-detection probabilities, relative to the single test. An

additional noise, called dilution effect was considered in [Atia and Saligrama(2012)],

where each resource could independently flip from 1 to 0 before the grouped test,

and information-theoretic bounds were provided. In our model the false alarm and

miss-detection probabilities are dependent on the optimization of the test threshold,

therefore the noise is not independently added (nor an independent dilution can be

considered). Furthermore, the strategy derived depends on the finite horizon for

K, i.e. our results are not asymptotic. The same considerations apply to similar

information-theoretic approaches in [Scarlett and Cevher(2016), Chan et al.(2011),

Sharma and Murthy(2015)]. Let us then start by considering a matrix B without

length-4 cycles. From the sensing matrix B, let us define the sets Ak = {i ∈ N :

bki 6= 0} and Bi = {1 ≤ k ≤ κ : bki 6= 0}. Note that at times we use B as an argument

in functions that, strictly speaking, are just functions of the sets Ak just defined. As

outlined in the introduction, aliasing of the spectrum comes with an associated noise

folding phenomenon. Its impact is particular severe in a non coherent scheme as ours.

In fact, the samples are collected sequentially and not in parallel, which means that we

do not have multiple observations of the same value but only sequential observations
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tied to the same underlying random process.For each test we define a binary group

testing-like hypothesis testing where:




H0 : ∀i ∈ Ak si = 0

⇒ θ0[k] = bkw
T

H1 : ∃i ∈ Ak s.t. si = 1

⇒ θ[k] ≥
(
min
i
bki

)
ϕmin+bkw

T = θmin[k]

(3.4.16)

We envision that such test would be useful for a downlink transmission in which the

Access Point may want to allow multiple communications at the same time and can

alert the SUs over a narrowband signaling channel to access the spectrum. The test

can be written as:
max

θ[k]≥θmin[k]
fθ[k](y[k])

fθ0[k] (y[k])

H1

≷
H0

γk (3.4.17)

for which we can derive:

α(bk, γk) =


 1

γk

(
1 + θmin

θ0

)




1+
θmin
θ0

θmin
θ0

(3.4.18)

β(bk, γk) = 1− (α(bk, γk))
1

1+ θ
θ0 (3.4.19)

The decision declares that resource i is busy (H1 is true) if the majority of the tests

where resource i is involved is positive, else it accepts the null hypothesis H0 for

resource i. Thus:

π0(i,b, γ) =


1−

∏

j∈Ak\i
ωj


(1−βi(b, γ; 0)) +α(b, γ)

∏

j∈Ak\i
ωj (3.4.20)

π1(i,b, γ) = 1− βi(b, γ; 1) (3.4.21)

where the functions πj(i,b, γ), j = 0, 1 are only defined when bi 6= 0. These func-

tions represent the probabilities of declaring H1 in a grouped test defined by b with

80



threshold γ and given si = j, j = 0, 1. Notice that the error probabilities α,β refer

to each binary hypothesis testing defined in (3.4.16). The notation for βi(b, γ; si)

indicates the probability of having a missed-detection conditioned on the state si of

one of the resources. It then follows that

αGTi (B,γ) ,1−FPBD
(⌈ |Bi|

2

⌉
− 1; |Bi|, {π0(i,bk, γk) :k ∈ Bi}

)
(3.4.22)

βGTi (B,γ) , FPBD

(⌈ |Bi|
2

⌉
− 1; |Bi|, {π1(i,bk, γk) :k ∈ Bi}

)
(3.4.23)

where FPBD(k;n,p) indicates the CDF of a Poisson Binomial Distribution parame-

terized by p ∈ [0, 1]n. One can then replace (3.4.22)-(3.4.23) in (3.4.1) to then solve

the optimization in (3.4.2), where the equivalence between the decision rules δ and

the selection of the thresholds γ is essentially the same as for the DI case. Notice

that the condition of no length-4 cycles for B allows to write (3.4.22)-(3.4.23), i.e. to

consider each of the Bi tests independent, conditioned on the state of the resource

i. The optimization remains extremely complex due to the complexity of the deci-

sion space for B and the sum of an exponentially growing number of terms for the

probabilities defined in (3.4.22)-(3.4.23). Nevertheless, it gives a method to evaluate

the objective of our optimization for any sensing matrix B, where the optimization

over γ can be numerically solved. Notice in fact that, (3.4.22)-(3.4.23) are monotonic

functions of the probabilities π0, π1 defined in (3.4.20)-(3.4.21), which are monotonic

in the γk’s, and therefore a unique solution for γ exists.

Next, we introduce additional constraints to (3.4.2), in particular on the structure

of B, in order to evaluate whether a GT strategy could be superior to the DI approach.

Note that an ML or a MAP estimator, for a rank-deficient sensing matrix, do not

provide optimality guarantees in terms of minimum error probability or minimum

Bayesian risk. Nevertheless, for the same sensing matrix, we expect the MAP esti-

mator to outperform the binary group-testing hypothesis in (3.4.16) by simply adding
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more degrees of freedom to the decision δ in the κ-th dimensional space of the ob-

servations. Therefore the evaluation of the objective in (3.4.2) via (3.4.22)-(3.4.23)

provides a benchmark for the utility obtainable with a more refined detection method.

3.4.2.1 The Pairwise Tests Case

We start by considering matrices B that have the following property: each resource

is sensed only one time, either directly inspected or mixed with another resource, and

no test mixes more than 2 resources, i.e. |Ak| ≤ L = 2, |Bi| ≤ 1 ∀k = 1, . . . , κ, i =

1, . . . , N . Let us discuss the test that mixes entries i and j. According to the strategy

derived at the beginning of the section one can use (3.4.20)-(3.4.21)-(3.4.22)-(3.4.23)

to write out the per-time instant utility obtainable after the decision. First, from

(3.4.22), without prior knowledge over ϕi, ϕj other than the threshold ϕmin, the best

choice to minimize α is to set bi = bj (we refer to this false alarm probability as αij).

Therefore, as similarly derived for the previous DI case, one can then consider binary

coefficients for bk, i.e. bki 6= 0 → bki = 1. This will hold true also for the extension

of L > 2 and will give implementation advantages discussed in 3.5.2. After that, a

missed detection in (3.4.16) can occur for 3 different states of the resources i, j but we

upper-bound these by always considering θ = θmin (we refer to this missed detection

probability as βij,max). We then obtain

uGTij , ωiωj(ri + rj)(1− αGTij ) + [(ωi(1− ωj)(ri + ρj)+

ωj(1− ωi)(rj + ρi) + (1− ωi)(1− ωj)(ρi + ρj))] β
GT
ij,max (3.4.24)

where the threshold for this test γij has been set to maximize (3.4.24), i.e.

γij =
ωiωj(ri + rj)

(1− ωi)(|ρi| − ωjrj) + (1− ωj)(|ρj| − ωiri)
. (3.4.25)

Let us then consider a graph where each resource is a vertex and the edge weight uij

between two vertices ij is the utility (per time instant) uGTij just defined ( the weight
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of the loops uGTii are given by uDIi in (3.4.12) ). We can then translate our problem

into a particular instance of a max-cut problem: picking a subset of the edges and

form a subgraph, where each edge represents a test, to maximize the objective in

(3.4.2). Formally, we can write

maximize
E

UGT (E)

subject to degE(i) ≤ 1 ∀i ∈ N
(3.4.26)

where

UGT (E) ,(K− |E|)
(∑

ij∈E
uGTij

)
(3.4.27)

and degE(i) is the nodal degree of node i induced by the undirected graph G = (N , E).

It is possible to map the constraint on the nodal degree in the objective of (3.4.26)

by adding a penalty for the violation of such constraint. This guarantees the optimal

solution will be equivalent to (3.4.26), i.e. no set of edges that does not respect the

constraint can improve the objective, and any feasible set of edges would have the

same objective in the two problems. We rewrite our optimization as

maximize
E

UGT (E)−M
∑

i∈N
Υ(degE(i)) (3.4.28)

where

Υ(n) ,





0 for n ≤ 1

n− 1 for n ≥ 2

(3.4.29)

and M is a positive constant.

Lemma 3.4.4. For M > 0 the objective in (3.4.28) is a non-monotone sub-modular

function of E and it is possible to find M∗ > 0 such that for any M > M∗ the two

optimizations (3.4.26)-(3.4.28) are equivalent.

Proof. See Appendix B

We know discuss the extension of our approach for L > 2.
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3.4.2.2 Extension to L > 2

The approach in the previous section can be extended to tests that mix more than 2

channels. However, instead of just edges or self loops to indicate the tests, we could

have cycles of length up to L. The nodal degree in (3.4.28) will then be interpreted

as the number of cycles a node is in, and the set of edges will be replaced with the

set of cycles. The validity of Lemma 3.4.4 naturally extends to this case as well.

We then replace the set E of edges with the set C of possible cycles, and use C to

indicate the generic cycle (which could be a self-loop, an edge or a cycle with length

3 or greater). In light of the constraint |Bi| ≤ 1 we will have that no node can be

in two cycles. In Fig.3.4.1 we show two possible set of cycles of length up to 4. On

the right we have a set of tests that respect our constraint: there is a test that only

considers one resource and three tests that combine 2, 3, and 4 resources respectively,

but no resource is considered in two different tests. On the left, instead, a resource is

considered in two tests: one where is combined with other 3 resources and one where

is inspected directly, and such configuration is therefore not acceptable.

✓ ✗ 

C1

C2

C3

C4 C1

C2

C3

C4

Figure 3.4.1: Example of two sets of tests. The right configuration has 4 tests and
no resource is considered in two different tests therefore it respect our constraints,
whereas the left configuration has a resource included in two tests and is not a feasible
solution.

In the greedy procedure in Algorithm 3.3 there is a constant number of operations

per query, which indicates the overall complexity of the algorithm is dominated by

the sorting of the cycles utilities. The set C̄ indicates the set of cycles that are not
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adjacent (share a node) with any of the cycle in C . Since in the worst case, sorting n

values require O(n2) operations, the complexity will be given by the total number of

possible tests O

((∑L
`=1

(
N
`

))2
)

= O
(
N2L

)
, i.e. polynomial in N and exponential

in L.

3.4.2.3 The Factor Approximation of the Greedy Algorithm

Having proven the sub-modularity of (3.4.28) in Lemma 3.4.4, it is natural to resort to

a greedy procedure, however it is important to highlight that the objective in (3.4.28)

does not respect the non-negativity property. To the best of our knowledge, there is

no known procedure in the literature on approaching the maximization of a general

sub-modular non monotone function, if the minimum value is not known: no constant

approximation factor guarantee can therefore be given in general. Nevertheless, due

to the particular structure of our problem it is possible to find a factor approximation

for the output of the greedy algorithm.

Lemma 3.4.5. Algorithm 3.3 guarantees a α-constant factor approximation of the

optimal solution for (3.4.28), where α = 1
min{Leff,

K
2
}

K−1
K−min{Leff,

K
2
} .

Proof. See Appendix B.

Note that

∂C′U
GT (C ) = −

∑

C∈C

uC + (K − |C | − 1)uC′ (3.4.30)

so, as long as the number of tests |C | added in the greedy maximization is less than

the time horizon K, we have

arg max
C∈C̄

∂CU
GT (C ) = arg max

C∈C̄

uC. (3.4.31)

This relation indicates that, in the greedy procedure, edges are added in decreasing

order of utility, respecting the constraint on the nodal degree in light of Lemma 3.4.4.
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Notice, also, that from (3.4.30) it is easy to find that the optimal |C | will never be

greater than
⌈
K−1

2

⌉
.

3.4.2.4 The Approximate ML Estimate for Mixed Tests

In the previous sections we have provided methods that find a low density mea-

surement matrix. As will be apparent in our numerical results, the noise folding

phenomenon justifies the use of sparse sensing matrices, which are ideal when one

wants to use belief propagation to the decision problem. However, for the sake of

comparison here we propose a possible alternative approach, which can be applied

to any measurement matrix B. Let us in fact consider κ measurements have been

collected, that involve the mixing of a set A ⊆ N of resources. One could ignore the

prior ωi and derive the ML estimate for ϕ. First, let us write the log-likelihood

log (f (y|ϕA)) = −
κ∑

k=1

log θ[k] +
y[k]

θ[k]

θ[k]→y[k]≈ −
K∑

k=1

1 + log y[k] +
1

2

(
y[k]− θ[k]

y[k]

)2

(3.4.32)

where the linearization corresponds to the Taylor expansion of the likelihood for the

observations around their mean (recall (3.4.3)-(3.4.4)). One could them aim at solving

the following weighted `1 minimization in a LASSO fashion

ϕ̂A = arg min
ϕA

‖ΓAϕTA‖1 +
1

2
‖
(
y −B(ϕTA + wT

A)
)
‖2
C−1 (3.4.33)

with Γ = {γi from (3.4.6) : i ∈ N} and C = diag(y) being the covariance of the

observations. The first penalty term in the objective enhances sparsity, favoring the

entries with lower threshold γi to have ϕi > 0; the second term in the objective

comes from the ML estimate in (3.4.32). Note that, compared to the non-sequential

sampling models (i.e. those using a filterbank), the application of the LASSO in

this context is an approximation. The random demodulator in [Tropp et al.(2010)],
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similar to our scheme in terms of architecture, is an Xampling ADC converter for

signals that are sum of harmonics with constant amplitude, i.e. each subspace, in the

UoS representation, has finite dimension. This is not the case we are interested in, as

mentioned in the introduction. For our multiband signal model, instead, rather than

having observations that are noisy linear combination of a sparse input, the samples

p.d.f. depends on those linear combinations.

3.5 The PHY Layer of the CUMMA Receiver

We now map the sequential decision models in Section 3.3-3.4 to find a single/multi-

band spectrum sensing technique for cognitive radio systems. In the context of spec-

Primary Receiver

Secondary Receiver

Primary Transmission

Secondary Transmission

1 1 1 1 1 10 0. . .

f

. . .

f1 fi fN

X(f)

W = NRc

RcRc

Figure 3.5.1: Cognitive radio scenario

trum sensing for cognitive radio, since data transmission includes large amounts of

control overhead in addition to the data payload, it is natural to assume that the

activity of the Primary Users (PUs) in a certain spectrum will persist for several

sampling periods (see Fig.3.5.1). However, assuming this interval lasts T = KTs,

the sensing mechanisms should be providing the fastest decision it can. In fact, the
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objective of the cognitive receiver is to sequentially sense the spectrum for the first

portion of the interval and transmit the most it can during the remaining time the

sub-channels it found empty.

3.5.1 Analog Front-End Sampling

The aliasing sequence, folds the spectrum present in specific sub-bands onto the

center frequency of the wake-up radio receiver. The samples are spaced by intervals

of duration Ts = 1/Rs and, as the diagram in in Fig. 3.5.2 shows, rather than having

a filter bank architecture as in [Bagheri and Scaglione(2015)], our approach is to do

sequential non-coherent tests, according to the strategy, i.e. the sensing matrix B

designed via our greedy algorithm, to maximize the utility accruable from utilizing

the sub-bands (channels) detected as free. We assume that the complex envelope of

⇥+

w(t)

x(t)
y(t) c(t)

kTs

c[k] | · |2 y[k]

 	
⇠ ⇠1

. . .
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s 
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Ak , {i : bki 6= 0}

Design constraint 

B
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⇥ ⇥. . .

|Ak|  L

L

Figure 3.5.2: The CUMMA Receiver diagram for cognitive sequential sensing: the
circuit of VCO’s select the different bands to mix at each time instants with weights
controlled by the sensing matrix B. For the DI scenario, L = 1.

the analog signal we are exploring is a multicomponent signal, whose components are
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a frequency band width equal to W = NRs and, hence, during the interval 0 ≤ t < T

the received signal is:

y(t) = x(t) + w(t) (3.5.1)

x(t) =
N∑

i=1

si[m]xi(t)e
−j2πRs(i−1)t (3.5.2)

where we already introduced the state variables si[m] previously, w(t) ∼ N (0, N0δ(τ))

is Additive White Gaussian Noise, and xi(t) are the transmitter signals modeled as

band-limited random processes with bandwidth Rs, i.e. it is equal with probability

one to:

xi(t) =
K∑

k=1

xi[k]sinc(π(Rst− k + 1)). (3.5.3)

The sequential receiver we propose first modulates the received signal at each antenna

over the period (k − 1)Ts ≤ t < kTs with:

βk(t) =
N∑

i=1

√
bkie

j(2πRs(i−1)t+φi), (3.5.4)

where bki are the coefficients of the sensing matrix B previously introduced and the

phase φi = −2πRs(i − 1)τi accounts for the delay in generating the tone at the i-th

frequency, i.e. our receiver can be implemented by combining different oscillators that

do not require to be synchronized. Then, after convolving the modulated signal with

an ideal low-pass filter with impulse response sinc(πRst), it samples the output c(t)

at times kTs, k = 1, . . . , κ. This operation is equivalent3 to an orthogonal projection,

as shown below:

c[k] = [y(t)βk(t)] ? Rssinc(πRst)|t=kTs =
N∑

i=1

√
bkie

jφiYki (3.5.5)

3If the periodic signals where not truncated in time the relationship would be exact, in practice

there will be some approximation error due to the windowing of the signal over the prescribed

interval [(k − 1)Ts, kTs]. The effect of this can be mitigated by using raised cosine filtering and a

non rectangular window to reduce the effect of side lobes.
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where Yki represent the orthogonal projections over the period (k − 1)Ts ≤ t < kTs

of y(t) over the following signals:

Yki =< y(t), Rse
j2πRs(i−1)tsinc (π (Rst− k + 1)) > (3.5.6)

Considering that the signals

{
ej2πRs(i−1)tsinc (π (Rst− k + 1))

}
i,k∈Z

form a orthogonal basis, and that (3.5.1) is equivalent to:

x(t) =
K∑

k=1

N∑

i=1

sixi[k]ej2πRs(i−1)tsinc(π(Rst− k + 1)) (3.5.7)

Yki = sixi[k] + w[k] (3.5.8)

where w[k] ∼ CN (0, N0). If we model xi[k] also as i.i.d. xi[k] ∼ CN (0, ϕi) we get

that for a given state s:

Yki ∼ CN (0, ϕi +N0). (3.5.9)

where ϕ (introduced in the presentation of our model) is a vector collecting the

average, unknown a priori, power received from the existing communications. The

receiver samples for k = 1, . . . , κ are:

c[k] =
N∑

i=1

√
bkie

jφi (sixi[k] + w[k]) (3.5.10)

and therefore (assuming the delays φi’s are independent and uniformly distributed)

they are also conditionally zero mean Gaussian random variables:

c[k] ∼ CN
(

0, θ[k] , bk
(
ϕT + wT

))
. (3.5.11)

It follows that the information for the detection of Primary communications is in the

variance and by considering as observations

y[k] , |c[k]|2 (3.5.12)
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then one has y[k] ∼ Exp(θ[k]) in accordance with the hypothesis for the model

developed in Section 3.4.

Remark 3.5.1. Note that while modulated signals are discrete and non-Gaussian,

here it is reasonable to assume that its distribution is well approximated by a Gaus-

sian p.d.f since the receiver is not synchronized with the active source and the signal

received, while remaining in its original band, is most likely subject to linear distor-

tion due to a multi-path channel. It would be more appropriate potentially to include

a certain correlation among the samples xi[`] and it is just for simplicity that we do

not consider it, given the generalization is straightforward and does not impact the

derivation of the opportunistic strategy.

3.5.2 Hardware Limitations

Naturally, the mapping of the signal in general will be imperfect and, like in any

ADC, calibration is necessary [Chen et al.(2010),Israeli et al.(2014)]. For most ADCs

the assumption is that this calibration is done during an initial training phase, in

which an known input signal can be used to estimate the equivalent matrix B. As far

as the proposed architecture is concerned, the circuit diagram of Fig.3.5.2 assumes

a settling time for the VCOs much smaller than Ts, i.e. the sampling period for the

single channel sub-band. If this assumption does not hold, one should use a LPF

with a smaller bandwidth and collect the samples c[k] at an even slower rate than

Rs, to wait for the VCOs to settle. This modification would not alter the statistical

characterization of the samples, derived in the previous subsection. The drawback of

taking samples less often is that (assuming the same occupancy coherence time) one

would have harnessed less information than what is available in the received signal,

and would have less than K slots to decide. Given that our strategy is derived as a

function of K, this would not invalidate our findings. Another possibility would be to
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replace the L tunable VCOs with N oscillators at constant frequencies, corresponding

to the N possible bands of the signal. Using N oscillators would increase the power

consumption and cost of the circuit but would significantly reduce the switching time

between two measurements. Hence, this would be the natural choice if one wants to

exploit a dense sensing matrix. Instead, the use of a bank of VCOs is preferable if the

matrices are sparse because a small number of VCOs can synthesize the mixing signal.

The switching would be in fact performed by a multiplexer, that would take the sum

of the up to L tones selected by the vector bk. In general, since we focus on the

detection of the signal, with reasonably good components we expect that calibration

will either far less demanding or unnecessary, if one accepts loss in sensitivity. In fact,

the binary coefficients for the vector b can be set to ones and zeros, as discussed in

3.4.2.1. Controlling the gains is unnecessary for the system to work and it is preferable

to not add tunable gains as they can be another possible source of uncertainty and

complexity in the system. Finally, imperfect tuning of the VCOs will reduce the SNR,

either by spreading or misplacing the center frequency of the components of interest,

but not fundamentally impair its detection.

3.5.3 Utility Parameters

In this section we derive the mapping between the utility function parameters

and the PHY Layer of our CUMMA Receiver, in order to numerically evaluate the

Algorithms introduced in Sections 3.3-3.4

The decision maker is a secondary transmitter and each resource i is associated

with a “channel” to communicate with a secondary receiver. The term channel is used

in a broad sense and it could represent a frequency band with certain bandwidth, a

set of tones in an OFDM system or a collection of spreading codes in a Code Division

Multiple Access (CDMA) system.
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Figure 3.5.3: The CUMMA Receiver Cognitive Scenario

We denote with γP,Si the two instantaneous Signal-to-Noise Ratios at the receiver

for the primary and secondary communication respectively. ξi represents the instan-

taneous SNR from the secondary transmitter that could interfere with the primary

communication and ζi indicates the instantaneous SNR at the secondary transmitter

for the primary transmitter, which is the information the secondary transmitter uses

to detect the primary communication (see Fig.3.5.3). We consider all the communi-

cation channels of interest as Rayleigh fading channels, therefore all the SNR’s are

exponentially distributed, i.e.

pη(x) =
1

η̄
exp

(
−x
η̄

)
for η ∈

{
γPi , γ

S
i , ξi, ζi

}
(3.5.13)

where η̄ indicates the average value of η. The phase of the received signal is uniform.

If the secondary transmitter decides to transmit over the i-th channel (δi = 0)

and the Primary Transmitter is not transmitting (si = 0) then it accrues a utility

per time instant which is a function of γSi . For our model, we decide to choose the

outage rate (RS
i,out) as the reward per time instant left (ri), since it is reasonable

to assume a slowly varying channel and that the instantaneous CSI (Channel Side

Information) is not known at the receiver, therefore the secondary transmitter uses a

constant data rate to transmit. We refer to a design parameter P S
i,out that indicates the

probability that the system can be in outage, i.e. the probability that the secondary

93



transmitter cannot successfully decode the transmitted symbols. Since we assume

Rayleigh fading, we can express our reward per time instant left

ri =
(
1− P S

i,out

)
W0 log2

[
1− γ̄Si ln

(
1− P S

i,out

)]
(3.5.14)

where the derivation can be found in [Choudhury and Gibson(2007)]. If instead,

the secondary transmitter decides to use the channel (δi = 0), interfering with the

Primary Transmitter communication (si = 1), then it receives a penalty equal to the

loss in outage rate caused to the Primary User, considering its interference adds to the

noise at the Primary Receiver. Let us in fact assume that the Primary Transmitter

also transmits at a certain outage rate, given by its value of P P
i,out. In presence of

interference from the secondary user its effective transmission rate becomes

RP
i,ξi

= (1− P P
i,ξi

)W0 log2

[
1− γ̄Pi ln

(
1− P P

i,out

)]
(3.5.15)

where

P P
i,ξ̄i

=
P P
i,out − ξ̄i ln

(
1− P P

i,out

)

1− ξ̄i ln
(
1− P P

i,out

) (3.5.16)

(for details see Appendix B). The penalty ρi is therefore defined as the loss in rate

caused by the interference

ρi = RP
i,out −RP

i,ξi
=
(
P P
i,ξ̄i
− P P

i,out

)
W0 log2

[
1− γ̄Pi ln

(
1− P P

i,out

)]
(3.5.17)

In our model, we assume that cross-channel interference is negligible, i.e. the only

possible interference for the primary communication over channel i is given by a

secondary transmission over the same channel.

In the first part of this chapter we considered the decision maker has perfect

knowledge of the averages γ̄Pi , γ̄
S
i , ξ̄i, ζ̄i and the designed P P

i,out, P
S
i,out for all the N

resources. For the POMDP, following the discussion on the signal model in Section

3.5.1, we then consider f i0(y), f i1(y) exponential with parameter θi0, θ
i
1 and the ratio
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θi1
θi0

= 1 + ζ̄i = 1 + ϕi
wi

. For this particular sensing model, the KL distances are known

and the two terms D̂(f i0||f i1), D̂(f i1||f i0) can be computed directly from their definition

in (3.3.42)-(3.3.43):

D̂(f i0||f i1) =
log(1 + ζ̄i)

1−
(
1 + ζ̄

)− ζ̄i+1

ζ̄i

− ζ̄i
1 + ζ̄i

, D̂(f i1||f i0) = ζ̄i.

We can then directly evaluate the upper-bound in (3.3.41) for E[τi−k|k]. We can also

give a closed form expression for the complementary CDF F̄ `
ωi[k+`](ω|ϕ, s) in (3.3.36),

that will be used for different results that we will present in the next section. For

our specific sensing model, by simple algebra and use the belief update equation in

(3.3.8) we can prove that:

F̄ `
ωi[k+`](ω|ϕ, 0)= F `

Γ

(
(1 + ζ̄i)ς(ϕ, ω)

ζ̄i
+ln

(
1 + ζ̄i

)`
)

(3.5.18)

F̄ `
ωi[k+`](ω|ϕ, 1) = F `

Γ

(
ς(ϕ, ω)

ζ̄i
+ln

(
1 + ζ̄i

)`
)

(3.5.19)

where F `
Γ(x) is the CDF of the sum of ` exponential random variables with unitary

mean. The key step to derive (3.5.18)-(3.5.19) is noting that, conditioned on the state

s of the resource, we have that y[k]
θis

i.i.d.∼ Exp(1). Once we have a closed expression for

F̄ `
ωi[k+`](ω|ϕ, s) for s = 0, 1 and expressions for ri, ρi in (3.5.14)-(3.5.17) respectively,

we can follow Algorithm 3.1 to find bounds on the thresholds and use Algorithm 3.2.

In the second part of the chapter, we then moved to the more realistic assumption

that ϕi is not known at the receiver. So in this context one can set ρi ∝ %i, where

%i is a parameter that accounts for different QoS over a certain band in the utility

maximization, and use an estimate for the possible level of interference.

3.6 Simulation Results

We now present our simulation results for the two problems proposed.
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Figure 3.6.1: Utility for the single-resource case with different decision thresholds
in the regime of small K

3.6.1 POMDP

We highlight that, for the case of a single resource, we can compute the optimal

decision thresholds (νi1[k], νi0[k]) obtained by MonteCarlo evaluation of the integral in

(3.3.13). In our simulations we will show the improvement in the utility we can get

by using the decision threshold bounds obtained with our approach in Algorithm 1

instead of using the easy bounds in (3.3.33)-(3.3.34), that are obtained by convexity

of the function Vt. For the cognitive radio case we have the following parameters:

ωi[1] = 0.5, ri = 2, ρi = 2, ζ̄i = 3.

In Fig. 3.6.1a we can see how for K ≤ 10 our thresholds approximation in

Algorithm 3.1 can reach the same utility of the optimal decision thresholds, while for
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higher values of K it acquires the same utility of the easy bounds obtainable from

(3.3.33)-(3.3.34). The reason for this is that, when K increases, our upper-bound

for Vt in (3.3.39), which is essentially a sum of upper-bounds, becomes looser. We

also looked at the performance obtainable by constant decision thresholds (further

referred to as CT strategy), i.e.

νi1[k] = νi1[1] = min

{
c

(K − 1)ri
,

ρi
ρi + ri

}
(3.6.1)

νi0[k] = νi0[1] = max

{
Kρi − c
Kρi + ri

,
ρi

ρi + ri

}
(3.6.2)

∀k = 1, . . . , K which always achieve worse utility than the others, being the looser

approximation of the optimal thresholds. Notice that for higher value of c and %, in

Fig.3.6.1b, the optimal strategy is to not start sensing and simply accepting utility 0.

Our thresholds approximation (Algorithm 3.1) is able to capture this and follows the

optimal strategy, while using the bounds in (3.3.33)-(3.3.34) or constant thresholds

gives a negative utility. We can notice how the difference in utility between the opti-

mal strategy and our approximation is higher for the marketing strategy application

and developing new bounds for this case will be the object of future research. For

the second experiment we analyze the case with multiple channels to be sensed for

the cognitive radio application. We consider a heterogeneous network with 4 Primary

Transmitters located at the corners of a square with side 500m. Our entire band-

width goes from 800 to 900MHz (see Fig. 3.5.1). A secondary transmitter wants

to find opportunities to communicate with N = 20 secondary receivers randomly

spread around. The 20 channels have a bandwidth of 5MHz and we assume they

are equally divided among the 4 Primary transmitter: observations are then col-

lected at the Nyquist rate for the single channel, i.e. 2µs. We assumed that the

primary transmitter power is 10dBm and the height of the transmitter is 10m, while

for the secondary we chose power equal to 5dBm and a transmitter height of 3m. The
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height of all the receivers is equal to 1m. We assume the secondary transmitter has an

estimate for γ̄Si (the average SNR at the secondary receiver from the secondary com-

munication) and ζ̄i (the average SNR at the secondary transmitter from the primary

communication), considering a deterministic path loss propagation model. We used a

deterministic two-ray model to predict the average SNR received [Rappaport(2001)],

i.e. the ϕi value introduced in Section 3.4
(

i.e. ϕi = PtG
h2
th

2
r

d4
i

)
. The value of G has

been set to 2 · 10−4 to have average received SNR (ζi) at the secondary (in case

of primary transmission) in the range of 5 − 10dB, which is a reasonable range if

we assume to only have thermal noise and no additional interference over the chan-

nel. The secondary transmitter does not know the position of the potential primary

receiver but he estimates γ̄Pi (the average SNR at the primary receiver from the

primary communication, without interference) and ξi (the average SNR from the

secondary transmitter to the primary receiver, that could interfere with an existing

primary communication), by considering the closest point the primary receiver could

be in the coverage area, i.e. the highest interference he could create (which does not

necessarily correspond to the highest ρi). As explained in Section 3.3, the value of c

is limited by the actual cost of testing. We want to study how the performances in

terms of utility for different strategies (stopping rule and selection rule) change for

different values of % and c. We compared the performances of Algorithm 3.2 with

three possible alternatives:

1. A selection rule that follows an initial arbitrary order (indicated in our plot

with NS= “No Sorting”), i.e. φk = arg maxi∈Ak+1
i.

2. Constant decision thresholds (indicated in our plot with CT= “Constant Thresh-

olds”), as in (3.6.1)-(3.6.2) ∀i ∈ N

3. both 1) and 2) (indicated with CTNS)
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Notice that the NS procedure corresponds to conducting a sequence of concatenated

truncated SPRT, which, as highlighted in Section 3.3, represents a suboptimal strat-

egy for our problem (even with optimal thresholds). We will study the performances

in three different regimes of K. For low values of K (generally K ≤ N) the cou-

pling of the problem becomes more relevant since there is no time for the decision

maker to sense all the resources and the single-resource decision thresholds are a loose

approximation of the actual optimal thresholds which are much tighter. In light of

this, we add the following step in our Algorithm 3.2. After computing the quantities

E [τi − k|k] for i ∈ Ak from (3.3.41) and sort the resources according to our index in

(3.3.44), we keep in Ak+1 all the resources with higher index as long as the following

condition is satisfied:

∑

i∈Ak+1

E[τi − k|k] < (1 + ε)(K − k + 1) (3.6.3)

and add to D the remaining ones. The motivation for this additional step is that, since

we expect to not have time to sense all of them, we might start acquiring positive

utility in expectation from some of them. In Fig.3.6.2 we indicate this additional

removal with “AR”. We can see that for K ≤ 10 the CT modification of Algorithm 2
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Figure 3.6.2: Utility of our heuristic in the regime of small K (N = 20, c = 1, % = 1
and ε = 0.5 in (3.6.3)).
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can achieve higher utility, by including the additional removal of resources, than the

original Algorithm 3.2. For K = 20 the importance of the additional removal becomes

almost negligible for Algorithm 3.2, while it continues to have an impact on the CT

modification. In this regime of K, we can see the importance of the selection rule by

looking at the two strategies that do not sort the resources (dashed lines) and are

clearly outperformed by the other strategies. In Fig. 3.6.3 we show the utility achieved

by the 4 strategies previously introduced: Alg 3.2, CT, NS, CTNS for moderate values

of K (i.e. 70 ≤ K ≤ 100). We can see how Algorithm 3.2 outperforms the other

strategies and also that when we increase the cost c, the performances of CT, initially

close to our complete heuristic, get worse and considering time-varying threshold

becomes more important than sorting, i.e. the NS utility is higher than CT. The

CTNS approach is always the worse. The same trend was observed for different

values of %. Finally, we look at the regime for high K. Following the discussion in

Section 3.3.3, in Fig.3.6.4 we plot the growth rate of the regret Ψ(K)
logK

for the 4 different

strategies. We can see this quantity is approximately constant, and the key factor to

reduce this constant relies in the selection rule, other than the time-varying behavior

of the decision thresholds. Similar trends were observed for different values of c and

% where both higher c and % increase the regret Ψ(K).

3.6.2 Group Testing

We now look at the performances of the strategy derived in Section 3.4. In par-

ticular, we showcase the ability of our approach to dynamically switch between a DI

(scanning receiver) and a GT approach, based on the expected occupancy (the vec-

tor of priors ω), the time available K, the minimum SNR threshold SNRmin = ϕmin

w

and the number of resources N . For the cognitive radio application, the concept of

exploitation of the resource is tied to the discussion in 3.5.3, for which the utility is
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Figure 3.6.3: Utility of our heuristic in the regime of moderate K
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Figure 3.6.4: Asymptotic growth rate of the regret Ψ(K) with logK for our heuristic
(c = 2, % = 2)

expressed in bits/s/Hz4 The longer the time available to transmit the larger is num-

ber of bits that can be transmitted over that band. For the other case, i.e. when the

reward comes from detecting correctly which resources that are busy (for example a

RADAR application), it is not immediately clear why the utility would be propor-

tional to the number of remaining time instants. To interpret this, we model the

action upon declaration of si = 1 as a Bernoulli trial which accrues a reward ri if such

action is successful (i.e. the target is actually hit) and this happens with a certain

probability pi for each attempt. The number of attempts Ti necessary to hit the target

will then be geometrically distributed. One can find then that the expected reward is

equal to riP (Ti ≤ (K−κ)) = ri
∑K−κ

k=1 pi(1−pi)k−1 = ri(1−(1−pi)K−κ) ≈ (K−κ)ripi

for small pi, which would motivate having an expected utility which increases linearly

with time. The ρi associated with this case would model an intervention cost, which

main purpose is to limit the false alarm rate. It is important to highlight, however,

the time dependency in the objective would prevent our formulation to return a stan-

4From (3.4.1)-(3.4.2), ri’s and ρi’s can be normalized over the communication bandwidth without

altering the optimization.
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dard constant false alarm rate CFAR detection method. Nevertheless, our model can

apply to electronic warfare (tentatives of create jamming), wake-up radio and other

problems where the action (and the associated utility) is on the channels that are de-

clared busy. Notice that, in light of the symmetry in the definition of the threshold γi,

one can switch the r’s and ρ’s to go from case 0 (cognitive radio) to case 1 (RADAR)

and find the same trends, even for the combined tests. However, we highlight the dif-

ference in the two scenarios in the first simulation we present. For this experiment we

set K = 30, N = 60 and ri = r, ρi = ρ and ωi = ω, SNRi = SNRmin(10dB) ∀i ∈ N

we have that for ω equal to ρ
ρ+r

or r
ρ+r

for case 0 and case 1 respectively. These are

the threshold values given in Assumption 3.4.1, to guarantee no resource can give

positive utility if not tested. As we can see, in both scenarios the utility increases

with the ratio ρ
r
, since the prior increases favorably with respect to the utility func-

tion. However, for the spectrum sensing application, the GT approach gives higher

utility than the DI when ρ
r

increases, i.e in the same direction of increasing utility.

For the RADAR application, instead, the GT is preferable when ρ
r

decreases, i.e. in

opposed direction to the increase in utility. The motivation is that when the penalty

increases with respect to the reward, the GT approach for spectrum sensing will be

conservative by not transmitting in any of the channels in a pool if one is found busy.

Nevertheless, the increasing prior ω allows, at the same time, to find multiple empty

sub-bands with just one test and gain in utility. For the RADAR application, when

the penalty increases with respect to the reward, there is a disadvantage in declaring

as busy all the elements in the test, even if the prior ω decreases. Clearly this limits

the benefit of combined tests, whereas when ρ
r

decreases, there is a gain since one el-

ement found busy in the pool guarantees higher reward. Apart from this asymmetry,

both cases show the same trends in utility over number of available resources and the

value of SNRmin. For all the figures we refer to L = 2, 3 as the maximum number of
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Figure 3.6.5: Comparing utility for different approaches vs the ratio ρ
r

(horizon
K = 30, number of resources N = 60, SNRmin = 10dB). The utility for the radar
application (case 1) is normalized over the unit measure of ri and ρi

resources per test allowed in our greedy procedure in Algorithm 3.3. In principle, the

optimal value for UGT monotonically increases with L since increasing L introduces

additional degrees of freedom. However, as proved in our Lemma 3.4.5, the approx-

imation factor of the greedy maximization is potentially worse for higher values of

L, as the following numerical results will show. We indicate with “Group Testing”

the utility obtained with our GT approach. The “MAP Estimator” is the estimator

that knows the true values ϕi, uses the same matrix B of the GT approach, but then

decides on each resource, based on the posterior for ωi, using belief-propagation. In
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Fig.3.6.6 we plot the utility (normalized over K2) over the ratio K
N

for two different

horizons, i.e. K = 10 and K = 30 and SNRmin = 10dB. We can see that, only for

K
N

/ 0.75, the GT approach outperforms whereas when the horizon increases, almost

no benefit is given by mixing resources: roughly speaking, there is enough time to

test them independently and have higher accuracy. For this experiment, we looked

at case 0 and set ωi ∼
(

0.7, ρi
ρi+ri

)
, where ri = log(1 + SNRi,S) and ρi = 5ri with

SNRi,SdB ∼ U([10, 20]). The SNR for the test, i.e. ϕ
w

is generated uniformly between

10 and 20 dB, but the only information used in our algorithm is the minimum value,

i.e. in this case 10dB. In the regime we show, the DI is approximately constant since

it is easy to show UDI,OPT ≤ K2

4
umax: for a fixed K there is basically no benefit in in-

creasing N over K
2

except for having K
2

higher rewards due to the random generation

of the parameters of the utility function. We then looked at how the utility behaves

versus the SNR of each test. In this case the SNR was drawn uniformly between

SNRmindB and SNRmindB + 10, and once again only the value of SNRmin = ϕmin

w
was

used in the algorithm, which is shown in the abscissa of the figures. Matching our

intuition, we can see how the GT approach outperforms the DI only when SNRmin

is high enough and also that the gain in utility is larger for K = 10 than for K = 30.

In fact, for this experiment the number of resources has been set constant to N = 20

and as previously highlighted, increasing K for fixed N diminishes the advantages

of combining resources in a test. In this case we also plotted the utility obtainable

with the ML estimate via Compressive Sensing, described in Section 3.4.2.4, with

a dense matrix that has the same aspect ratio of the one found via GT approach

(i.e. that scans the same set of resources for the same number of tests). Only for

the ML estimate via CS, we actually took the sample mean over 10 observations for

each observation y[k]. We can see that, despite having more measurements, such

approach gives a much lower utility than DI or the proposed GT. This illustrate the
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negative effect of noise folding. For K = 30, we also compared our approach with the

belief propagation in a loopy network, obtained by using a LDPC matrix (see [Baron

et al.(2010)] for details). With N = 20 resources and an expected sparsity approx-

imately equal to 4, we chose a regular LDPC matrix with a row weight of 5 (20/4

as suggested in [Baron et al.(2010)]) and a column weight of 3 to have 12 tests. The

LDPC has not been implemented for K = 10 since the constraints on the regularity

would have given either a diagonal matrix (same as DI), or a relatively dense matrix.

The absence of any optimization in the choice of which and how many resources to

test produces a utility which, for low SNR, is lower than the DI approach proposed.

For high enough SNR, LDPC method can outperform the DI approach, but still

gives a utility lower than our GT strategy with L = 2. This highlights the benefit

of having an active sub-Nyquist receiver compared to a static offline selection of the

parameters.
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Figure 3.6.6: Comparing utility for different approaches vs the ratio horizon K over
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107



Algorithm 3.1: Thresholds Approximation Algorithm

∀i ∈ N

1) set νi1[K] = νi1[K] = νi0[K] = νi0[K] =
ρi

ρi + ri

2) for k = K − 1 : −1 : 1 do

• Compute V i
t (ωi, i, k) from (3.3.39) and V i

t (ωi, i, k)

from (3.3.40)

• find the numerical solutions ω1 < ω2 of

V i
t (ωi, i, k) = (K − k + 1)V i

d (ωi)

where ω1 = ω2 = ρi
ρi+ri

if no solutions.

Set

νi1[k] = ω1

νi0[k] = ω2

• find the two numerical solutions ω1 < ω2 of

V i
t (ωi, i, k) = (K − k + 1)V i

d (ωi)

where ω1 = ω2 = ρi
ρi+ri

if no solutions.

Set

νi1[k] = min(ω1, ν
i
1[k + 1])

νi0[k] = max(ω2, νi0[k + 1])

end
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Algorithm 3.2: Heuristic for the joint design of τ and φ

k = 1, Ak = N ;

while k ≤ K and Ak 6= ∅ do

D = ∅;

1) Search for channels i such that ωi[k] < νi1[k] ∨ ωi[k] > νi0[k];

if there are such channels then

for every channel i that has been found do

D = D ∪ {i};

end

end

2) Take a decision over the resources in D, accrue utility

(K − k + 1)Vd(ω,D) and remove D from the state (Ak −D → Ak+1).

3) Test channel

φk = arg max
i∈Ak+1

ωi[k]ri
E[τi−k|k]

(3.3.44)

and update ω[k] from (3.3.8).

4) k → k + 1;

end

Algorithm 3.3: Greedy Maximization of UGT (C )

1: Initialize: C = ∅.

2: While ∃ C ∈ C̄ such that ∂CUGT (C ) > 0

3: Find c∗ = arg maxC∈C̄ ∂CU
GT (C )

4: C ← C ∪ C∗

5: End
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CHAPTER 4

DECOMPOSITION OF INFRASTRUCTURE-BASED DYNAMIC

RESOURCE ALLOCATION- THE DIDRA SCHEME

4.1 Chapter Outline

In this chapter we discuss a new multi-time scale optimization proposed to en-

able resource sharing in new generation backhaul operator networks. We start by

providing the context for the application of our optimization: a holistic network ar-

chitecture, named Layback, that has been proposed by our collaborators Akhilesh

Thyagaturu and Prof. Martin Reisslein in [Thyagaturu et al.(2017)]. In their vision,

Software Defined Networking (SDN) represents the key element to enable an inte-

grated signalling infrastructure, which allows to develop the optimization framework

here proposed. In Section 4.2, we discuss previous works that investigated the possi-

bility of sharing resources across different technologies, thus enabling a more dynamic

resource allocation intra operator. Due to the extensive body of work that could fit

under this umbrella, we will focus, for this chapter, on works that have proposed an

architectural framework and/or an optimization that followed a Network Utility Max-

imization (NUM) formulation. We then move to detail our optimization framework

in Section 4.3 and give a general formulation for utility decomposition in networks,

where agents have the capability of performing different tasks at different time-scales:

the framework is then applied to minimize the end-to-end delay with a max projec-

tion scheduling policy. For the specific application of uplink traffic management in

the backhaul, we combine the modified primal dual decomposition [Palomar and

Chiang(2006)], to suit the different operating time-scales of the architecture, with a

Lyapunov drift-plus-penalty relaxation [Georgiadis et al.(2006),Neely(2006)] to meet

111



an economic constraint on the resource allocated to each operator in the long run. In

Section 4.4, the simulation results showcase the effectiveness of the method propose:

the natural oscillations of the system can harmoniously redistribute the communica-

tion resources along the network, thus minimizing the uplink end-to-end delay from

the eNBs to the core network.

4.2 Background

Some of the communication bottlenecks in wireless access networks are not due

to resource shortages but to the lack of resource sharing among the different wireless

operators and wireless technologies. In fact, each wireless operator typically runs its

own network. Similarly, each wireless technology, such as LTE or Wi-Fi, operates

in its own radio access network and corresponding backhaul network, with a static

subdivision of resources. The optimization is proposed as part of a holistic network

architecture, named Layback, proposed in [Thyagaturu et al.(2017)]. The LayBack

architecture is enabled by software defined networking (SDN) and consists of five main

layers (see Fig. 4.2.1), namely: the devices layer, the radio node (e.g., eNB, WiFi

AP) layer, the gateway (e.g., small cell gateways, CRAN), the SDN switching layer,

and the SDN backhaul layer (e.g., legacy enhanced packet core (EPC) controlled by

SDN applications). While there have been some efforts in wireless standards [Liu

et al.(2016b)], [Taleb et al.(2015)] and in academic research to define a framework to

share network resources across wireless technologies, the solutions available to date

provide very limited flexibility, such as sharing only among individual LTE cells [Liu

et al.(2016a)], [Samdanis et al.(2016)]. Thus, there is only very limited statistical

multiplexing (sharing) of network resources among wireless operators and technolo-

gies [Niu et al.(2016)], [Biermann et al.(2012)]. The limited sharing of networking

resources across wireless operators and technologies is to a large degree due to (i)
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the lack of a convenient effective signaling infrastructure across the wireless access

network, and (ii) the lack of an optimization framework that could accommodate

signalling delays incurred between different network components. To address these

issues we recently proposed in the LayBack network architecture. The LayBack ar-

chitecture is enabled by software defined networking (SDN) and consists of five main

layers (see Fig. 4.2.1), namely: the devices layer, the radio node (e.g., eNB, WiFi

AP) layer, the gateway (e.g., small cell gateways, CRAN), the SDN switching layer,

and the SDN backhaul layer (e.g., legacy enhanced packet core (EPC) controlled by

SDN applications).

The seminal paper of Kelly et al. in 1997 [Kelly et al.(1998)] introduced the

concept of NUM to solve the problem of resource allocation in a network. The ben-

efit of the NUM formulation is that it can be readily decomposed, and this inspired

extensive work in the last 20 years that generated new algorithms and cross-layer

optimization protocols to solve a variety of network flow control problems. These

problems often lie at the intersection between distributed optimization and stochas-

tic network theory; comprehensive surveys can be found in [Lin et al.(2006), Chiang

et al.(2007), Chiang(2008), Pham and Hwang(2017)]. This body of work also moti-

vated a reverse engineering process over former network protocols, expressed often

times as a deterministic set of rules, to cast them as NUMs and gain insights on

their efficient performances, or lack thereof (see [Kelly(2001)] for NUM applications

in TCP traffic). For instance, the work of L. Tassiulas, and A. Ephremides [Tassi-

ulas and Ephremides(1992),Tassiulas and Ephremides(1993)] on Queue-length Max-

imum Weight (QMW) scheduling, paved the way for several other researchers who

extended the condition under which throughput optimality can be established, or

other performance guarantees can be met [Andrews et al.(2004), Kar et al.(2008), Ji

et al.(2013)]. In particular, in terms of delay, QMW scheduling is not guaranteed

113



to carry optimal performance [Cui and Yeh(2014)], leading to the investigation of

variations of the algorithm that enhance its delay performances in general multi-hop

networks [Cui et al.(2016), Birmiwal et al.(2012)] or provide better guarantees [Kar

et al.(2012),Neely(2013)]. A common feature of these problems is that a centralized

optimal scheduler can be, for several reason, impractical, hence the decomposition

via the NUM formulation can provide the desired implementation scalability. In the

decomposition of NUM problems, it is known that different decomposition techniques

impose different constraints on the layers timescales [Palomar and Chiang(2006),Jo-

hansson et al.(2006)]: a common assumption, however, is the so-called time-scale

separation assumption, which states that the session interval Ts is much larger than

the convergence time Tr of the greedy resource allocation policy [Chiang(2008)]. In

other words, under this assumption, the distributed optimization is abstracted from

the dynamic control and they can be considered separately (hence the term sepa-

ration). Under this principle, decentralized algorithms for link scheduling based on

queue lengths have been proposed in [Gupta et al.(2009),Bui et al.(2009), Jiang and

Walrand(2011)], and more recently in [Teng and Song(2017)]. In this work, we ab-

stract the PHY layer and consider the management of uplink traffic in the backhaul,

where the SDN operates by keeping the queues logically separated at each eNB,

while the shared resources are granted from the orchestrator to the operator, from

the operator to the GWs, and from the GWs to the eNBs: under this assumption,

and in the simplified case of continuous flows and infinite queue backlogs, QMW is

also delay optimal [Banirazi et al.(2014)]. In the decomposition of the associated

max product utility over the layers of the architecture, we consider realistic net-

work latencies, which make the time-scales separation assumption unrealistic. The

works that remove the time-scale separation assumption are divided in two classes: 1)

those that use intermediate iterates as decisions and assume continuous underlying
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flows [Lin et al.(2008),Srikant(2004)] and 2) those that propose a multi-time scale ap-

proach across different layers of the protocol stack [Altman et al.(2012),Van Nguyen

et al.(2013), Pham et al.(2015)]. In [Lin et al.(2008)], the authors show that a β-

fairness utility function can be maximized, while guaranteeing system stability, under

the assumptions that the number of users per class follows a recurrent Markov Chain.

We follow a similar rationale as that in [Lin et al.(2008)] for the intermediate decisions.

However, since we are not considering a proper utility function, but rather the implicit

one that corresponds to the optimal QMW policy, convergence remains an open issue.

Like in the second class of works we consider multi-time scales but those correspond

to different layers of the architecture rather than to different allocation problems that

take place in different layers of the protocol stack. To illustrate what the Layback

architecture could enable, our specific goal in this thesis chapter is to focus on the the

benefits obtained by sharing the backhaul resources dynamically, rather than shar-

ing all resources available at the different layers. In addition to considering different

time-scales across the different Layback layers, we also incorporate an economic con-

straint in the allocation across different operators, which is enforced via the Lyapunov

drift plus penalty: a method introduced in [Georgiadis et al.(2006),Neely(2006)], and

extensively used in recent years for dynamic control. Numerical results suggest that

the proposed approach can effectively minimize delays, by enabling a flexible resource

redistribution of backhaul resources across different operators.s

4.3 Optimization Framework

Let us consider a general rooted tree network with P+1 layers and useAp to denote

the set of agents at the p-th layer, with p = 0, 1, . . . , P . By convention A0 = {0}: we

refer to this agent as root or orchestrator. The agents’ goal is to maximize, at each
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a1[t]

a2[t]

...

aN [t]

Radio Node 
(eNB) Layer

GW 
Layer

Operator 
Layer

Unifying SDN Orchestrator 
Centralized

Figure 4.2.1: High level diagram of LayBack architecture: The centralized unifying
SDN orchestrator orchestrates the operation of all LayBack layers.

instance t, a NUM at the P -th layer, e.g.

maximize
x

∑

b∈AP
ub(xb; t) (4.3.1a)

subject to A(t)x ≤ c(t) (4.3.1b)

We limit here to consider linear constraints in (4.3.1b): for non linear constraints,

typical approaches are either a linearization of the constraint looking at the Hessian,

or a relaxation of the problem by adding a penalty term in the objective that “reflects”

the constraint. The formulation in (4.3.1) is typically complex to implement, since

it requires information from all agents at the bottom layer P to be “centralized” to

solve the optimization. This leads to use the vector x to indicate the decisions of all

the agents in the network; the notation xA, as previously, indicates the sub-vector

with entries i ∈ A. The set Ap|a is the set of elements b ∈ Ap that have the same

father a ∈ Ap−1. For the sake of solving (4.3.1), the decision variables of agents

at intermediate layers are slack variables. As we will see however, these additional

variables represent actual network decisions in the distributed and time-decomposed

implementation of (4.3.1b). We then introduce the following recursive optimization

problem by defining U?p,a(xa; t), for p = 0, . . . , P − 1 (a ∈ Ap) as the optimal value of
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the subproblem

maximize
xAp+1|a

∑

b∈Ap+1|a

U?p+1,b (xb; t) (4.3.2a)

subject to Aa(t)xAp+1|a ≤ ca(xa; t) (4.3.2b)

As a starting point of the optimization, we have that x0 is not a variable of the problem

but a constant, e.g. at the root level we have U?0 (x0, t) = U?0 (t) and c0(x0, t) = c0.

Finally, U?P (xa; t) is the optimal value of the bottom layer utility maximization, i.e.:

maximize
xAP |a

∑

b∈AP |a

ub(xb; t) (4.3.3a)

subject to Aa(t)xAP |a ≤ ca(xa; t) (4.3.3b)

We now derive the sequence of updates of each variable to iteratively solve the problem

we have just decomposed in different layers. The next subsection serves as a basis

to tackle the problem at different timescales, imposed by the network infrastructure,

which will be discussed in 4.3.2. It is however easier to derive them in the ideal static

case first, given that the expressions in the dynamic case will have the same form,

albeit having a different meaning.

4.3.1 Iterative Solution via Gradient Descent

The chain of optimization problems formulated in a recursive manner in (4.3.2)-

(4.3.2) can be written as a unique optimization, by introducing the set of Lagrangian

dual vectors {λp|a} for each constraint in (4.3.2b) and (4.3.3b). The notation Aa,b

indicates the b-th column of the matrix Aa. We define

Φ2p+1

(
xa,λp|a

)
, λTp|aca(xa) +

∑

b∈Ap+1|a

max
xb

Φ2p(λp|a, xb) (4.3.4)
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for p = 0, 1, . . . , P − 1, a ∈ Ap.

Φ2p(λp|a, xb) ,





−λTp|aAa,bxb + min
λp+1|b

Φ2p+1

(
xb,λp+1|b

)
for p = 1, . . . , P − 1

−λTp|aAa,bxb + ub(xb) for p = P

,

(4.3.5)

for b ∈ Ap+1|a.

Note that we have used the same convention, above described, for the pseudo-variable

x0 and functions of it. By gradient descent from the functions just defined, we can

derive the sequence of updates

λ
(k+1)
p|a =


λ(k)

p|a − α
(k)
2p+1


ca(xa)−

∑

b∈Ap+1|a

arg max
xb

Φ2p+2

(
λ

(k)
p|a, xb

)





+

(4.3.6)

x
(k+1)
b =

[
x

(k)
b + α

(k)
2p

(
arg min
λp+1|b

Φ2p+3(x
(k)
b ,λp+1|b)− λTp|aAa,b

)]+

for b ∈ Ap+1|a

(4.3.7)

Notice that, to ensure the convergence of the decomposition, the updates in (4.3.6)–

(4.3.7) have to be read as follows: to reach the optimal λp|a, the agent a needs to

perform a sufficient number of iterations in (4.3.6). However, before computing one

iteration of (4.3.6), all the agents, children of a in the network, should perform a

sufficient number of iterations of (4.3.7) upon receiving the Lagrangian λp|a, and so

on. Unless a value can be computed in closed form in one shot, each update that

includes the solution of an optimization problem (i.e., it has an arg max / arg min

term in the update) requires a sufficient number of gradient descent updates at the

lower level to approximate the solution of the maximization. Therefore, the indices

k in (4.3.6)–(4.3.7) are not associated with the same time scale (i.e., they are not

the same updates counter). If the computation at each layer and the communication

delays among layers were all negligible, we would be in the time-scale separation
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regime that we mentioned in the discussion on prior works. However, this is not

possible in a real system, since latencies play an important role and the framework

we are about to explain explicitly takes these latencies into consideration. We use

τ pp+1, p = 0, 1 . . . , P − 1 to indicate the Round Trip Time (RTT) between layers p and

p+1. Let us start by considering the optimization at the bottom layer as the one that

operates at the minimum latency, i.e., the time difference between the time indexes

t and t + 1 is the RTT τP−1
P (considered equal, for simplicity, for all agents between

the two layers). For our application this layer will be the closest one to the user

and to the information regarding traffic. To map all the time instants into integer

values of t it is convenient to normalize all times with respect to τP−1
P (i.e. we set

τP−1
P = 1). The first aspect considered in our framework is that in actual network

infrastructures one has constraints that prevent the redistribution of resources across

different layers, i.e. the frequency at which xAp|a can change is different for different

p; typically layers with lower p, i..e closest to the root, can be changed at a slower

frequency than layers closer to the bottom. Therefore, even if a genie could compute

the optimal solution of the decomposed problem at each instant t, it might not be

possible to implement the decision. Denoting with Tp the minimum refresh times for

the decisions on the (p+ 1)-th layer, time t can be written according to a poly-phase

decomposition as follows:

t =
P−1∑

p=0

mpTp, m0 ∈ N, 0 ≤ mp ≤ T̃p − 1 for p = 1, . . . , P − 1 (4.3.8)

T̃p ,
Tp∏P−1

p′=p+1 Tp′
(4.3.9)

where Tp > Tp and mod (Tp,
∏P−1

p′=p+1 Tp′) = 0, ∀p = 0, . . . , P − 1. In the next

subsection, to comply with the refresh time limits, the greedy optimization, decoupled

at any instant t, is mapped into the stochastic optimization we solve. Changing the

objectives from deterministic values to expected values is necessary to capture the
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uncertainty of the impact of the decisions x on the utility obtainable at the bottom

layer, which varies with time at a faster pace than the refresh times Tp, 0 ≤ p < P −2.

4.3.2 Stochastic Optimization and Temporal Decomposition

Since the different layers cannot communicate instantaneously, the parameters

of the utility ub(xb; t), b ∈ AP might change dynamically underneath, while decision

from the upper layers are not updated. Clearly, the objectives of the optimization have

to be defined in such a way that they stay constant while the bottom layer changes

stochastically from one state to the other. The proposed framework can be seen

as a special case of stochastic gradient descent where the network dynamics impose

the sequence of training samples’ updates. In particular, the root agent operates its

optimization at every time instant tm0 , m0T0 and in general the agent a ∈ Ap, p < P

performs its optimization at every tmp
0
,
∑p

p′=0mp′Tp′ . The recursive formulation is

then modified to account for the different time scales and we obtain the following

optimization, solved by the agent a ∈ Ap, p < P

maximize
xAp+1|a

∑

b∈Ap+1|a

1

T̃p+1

T̃p+1−1∑

mp+1=0

E
{
U?p+1,b

(
xb; tmp+1

0

)}
(4.3.10a)

subject to Aa

(
tmp

0

)
xAp+1|a ≤ ca

(
xa; tmp

0

)
(4.3.10b)

for which the optimal value is defined as U?p,a(xa; tmp
0
). The same considerations over

the starting point and the bottom optimization at every TP−1 apply here as well. The

updates derived in (4.3.6)–(4.3.7) will then be used to update the decisions xAp|a at

every Tp, for p = 0, . . . , P − 1, as if convergence to the solution of a static problem

has been achieved in the time horizons of length Tp, respectively. Note, however,

in practice the problem is not static, due to the underlying evolution of the utility

function ub, b ∈ AP at every unit of time: we then proceed to discuss the nature and

significance of the static approximation.
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First, in light of the discussion on the updates in Sec. 4.3.1, we note that the

number of iterations of each update needs to “fit into” the time intervals Tp that

separate the decisions. Let us introduce K2p+1 as the number of iterations of each

update in (4.3.6) for λp|a and K2p for the number of iterations of each update in

(4.3.7) for xb, b ∈ Ap|a. We then have the following relations

Tp ≥ max

{
P−1∑

p′=p

τ p
′

p′+1

2p′+1∏

p′′=2p+1

Kp′′ , Tp

}
for p = 0, 1 . . . , P − 1 (4.3.11)

where, as anticipated, by convention we have τP−1
P = 1 and, if the bottom layer

optimization can be computed in one shot, then K2P−1 = 1. The inequalities in

(4.3.11) indicate that, if we want to act fast, e.g., reduce Tp (possibly to the minimum

refresh times) we need to perform fewer iterations. Vice versa, if we want to perform

more iterations, we have to be willing to act slower in updating the decisions xAp|a .

For the the particular case-study in the remainder of this chapter we will consider

a fixed design for Tp, and Kp′ , and explore the performance only numerically (see

Section 4.4). Note that, the impact of the choice of the Kp′ has not been fully

addressed in the literature, where these parameters are implicitly predetermined in

the formulations studied. If we look at the static problem, as a “surrogate” for

the dynamic problem (up to the next decision), increasing the number of iterations

and delaying future decisions can guarantee a better accuracy for a static scenario;

however, the ability of the algorithm to incorporate new dynamic information is

compromised. The question just described is beyond the scope of this thesis. The key

to distribute the updates at different time scales, as information changes underneath,

is to view them as stochastic gradient descent iterations where the network dynamics

impose the sequence of training samples’ updates, i.e., samples of the gradient are

used in lieu of expectations. As mentioned in Section 4.2 of this chapter, the work

in [Lin et al.(2008)] gives a convergence result for a special case of the framework
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proposed. In particular, reformulating their result according to our notation, it has

been proven that

Theorem. [Lin et al.(2008)] For a network with P + 1 = 3 layers, where the number

of users per class follows a recurrent Markov Chain, and the utility to maximize at

the bottom layer is a β-fairness function, i.e.:

ub(xb) =





wb
x1−β
b

1−β , for β > 0, and β 6= 1

wb log xb, for β = 1

(4.3.12)

then with Kp = 1 ∀p = 0, 1, 2 the optimal stability region can be achieved.

Even if the rationale of Lagrangians’ updates for intermediate decisions is similar,

optimality and convergence of the proposed approach when a different type of utility

function is used, and when there is no Markovian assumption on the exogenous traffic,

remains an open problem. In the example that follows, in the utility function (that

corresponds to a max-projection scheduling) the rates are weighted by the different

users (eNBs)’ queues and they are therefore not statistically independent from the

decisions, as the parameter wb of the β-fairness function in (4.3.12). In the simulations

however we consider Poisson arrivals with a non-stationary rate, which is a Markov

process.

4.3.3 A Study Case for Minimum Delay

We consider a network with O distinct operators, indexed by o ∈ A1. Each

operator manages a set of Smart-Gateways (GWs), indexed by g ∈ A2|o. In turn,

each GW g manages a set of e-NodeBs (eNBs), indexed by n ∈ A3|g. The operators

are coordinated by the SDN orchestrator (e.g. the root element in A0). The set of

all eNBs is naturally A3 =
⋃O
o=1

⋃
g∈A2|o

A3|g and similarly for the upper layers. The
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queues of each eNB n ∈ A3 are denoted by Pn and their dynamics are

Qn[t+ 1] = [Qn[t]− xn[t]]+ + an[t+ 1] (4.3.13)

where an[t] and xn[t] represent, respectively, the exogenous packets arrival process

and service rate granted at eNB n, during the t-th slot. The work in [Thyagaturu

et al.(2016)] introduced the concept of Smart Gateways and discussed the possibility

of sharing bandwidth between operators to improve uplink throughput and efficiency.

Let us start from the centralized optimization we wish to emulate. If the SDN or-

chestrator, having full control of the total service rate denoted by c0, could allocate

it directly the eNBs, the optimization:

minimize
xA3

lim sup
τ→∞

1

τ

τ−1∑

t=0

∑

n∈A3

E{Qn[t]} (4.3.14a)

subject to
∑

n∈A3

xn[t] ≤ c0 ∀t, (4.3.14b)

0 ≤ xn[t] ≤ Qn[t] ∀t, n ∈ A3. (4.3.14c)

by minimizing the long term average queue, as a result of Little’s theorem [Allen(1990)],

would also minimize the end-to end delay in the network (4.3.14a). As discussed in

Section 4.2, in the simplified scenario considered, a QMW policy is delay-optimal.

We adapt such policy for our context, and write it as the greedy maximization, at

each t, in Algorithm 4.1. Note that this corresponds to the formulation in (4.3.1)

with a linear utility un(xn) = Qnxn. The problem of uplink traffic management via

SDN orchestrator falls naturally under the decomposition characteristics discussed in

the previous section. The constraints for each layer correspond to a different rate

allocation at each agent, e.g., at the operator level, at the GW level or at the eNB

level. As a simplification for this case we will consider a scalar constraint for (4.3.2b)

where Aa = 1T and c(xa; t) = xa, e.g. in the architecture we can grant any rate to
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Algorithm 4.1: Ideal centralized scheduler (QMW)

At every t = 0, 1, . . . , τ − 1

• receive Qn[t] from the operators

• allocates the vector xA3 [t] by solving

max
z

∑

n∈A3

Qn[t]zn s.t.
∑

n∈A3

zn ≤ c0, 0 ≤ zn ≤ Qn[t] ∀n ∈ A3 (4.3.15)

the “children” as long as the sum is below the rate assigned to the father. For this

case, however, it is important however to remark that the allocation of xA1 needs to

respect an “economic” constraint across the operators, that defines a contractual ser-

vice obligation and prevents any operator from gaming the system (i.e., consistently

acquiring more resources than what it paid for). This constraint is imposed on the

long-run average of the decisions xA1 , i.e.:

lim sup
τ→∞

1

τ

τ−1∑

t=0

xo[t] ≤ c(o) ∀ o ∈ A1 (4.3.16)

where, for consistency of the problem, it is necessary to have
∑

o∈A1
c(o) ≤ c0.

At the same time, by having an inequality constraint, we are not forced to assign

resources to an operator that would be wasted if there is not sufficient uplink demand.

We use the idea of virtual queues, following the Lyapunov drift-plus-penalty approach

[Georgiadis et al.(2006)] to encode the constraint in (4.3.16), and modify (4.3.10) for

p = 0 into:

maximize
xA1

∑

o∈A1

−Θoxo
V

+
1

T̃1

T̃1−1∑

m1=0

E
{
U?1,o

(
xo; tm1

0

)}
(4.3.17a)

subject to
∑

o∈A1

xo ≤ c0 (4.3.17b)
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After deciding xA1 [tm0 ], the virtual queues Θo’s are updated as:

Θo[tm0+1] =
[
Θo[tm0 ] + (xo[tm0 ]− c(o)), 0

]+
. (4.3.18)

The parameter V represents the “flexibility” of the constraint in (4.3.16), e.g., the

higher V the more inclined we are to temporarily violate the constraint. The general

formulation derived in the previous section can be used to derive the sequence of

updates for λ0, {λ1|o : o ∈ A1}, {λ2|g : g ∈ A2} and the decisions {xo : o ∈ A1}, {xg :

g ∈ A2}, {xn : n ∈ A3}. Note that, in light of the addition of the Lyapunov penalty

on the operators’ redistribution, the update for xo, o ∈ A1 will be

x(k+1)
o =

[
x(k)
o + α

(k)
2

(
arg min

λ1|o
Φ3(x(k)

o , λ1|o)− λ0 −
Θo

V

)]+

(4.3.19)

The pseudocodes for the procedures at each layer (i.e. agent of the network) are

reported in Algorithms 4.2-4.6 and Fig.4.3.1 illustrates the message exchange between

layers and the time decomposition of the problem.

Algorithm 4.2: Iterates for λ0 (at the SDN orchestrator)

Input : λ
(0)
0 , k1 = 0

Output: λ
(K1)
0 ,xA1

while k1 < K1 do

Call Algorithm 4.3 with input λ
(k1)
0 to all operators;

Receive x
(K2)
A1

(
λ

(k1)
0

)
and update λ

(k1+1)
0 via (4.3.6);

k1 ← k1 + 1;

Decide xA1 [tm0 ] by projecting x(K2)
(
λ

(K1−1)
0

)
onto the feasible set in

(4.3.10b);

m0 ← m0 + 1;

Call Algorithm 4.2 with input λ
(0)
0 ← λ

(K1)
0 ;
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Algorithm 4.3: Iterates for xo (at the operator)

Input : λ0, k2 = 0, (x
(0)
o only if first call)

Output: x
(K2)
o

while k2 < K2 do

Call Algorithm 4.4 with input x
(k2)
o ;

Receive λ
(K3)
1|o

(
x

(k2)
o

)
and update x

(k2+1)
o via (4.3.19);

k2 ← k2 + 1;

x
(0)
o ← x

(K2)
o

Algorithm 4.4: Iterates for λ1|o (at the operator)

Input : xo, k3 = 0, (λ
(0)
1|o only if first call)

Output: λ
(K2)
xo

while k3 < K3 do

Call Algorithm 4.5 with input λ
(k3)
1|o ;

Receive x
(K4)
A2|o

(
λ

(k3)
1|o

)
and update λ

(k3+1)
1|o via (4.3.6);

k3 ← k3 + 1;

Decide xA2|o [tm1
0
] by projecting x

(K4)
A2|o

(
λ

(K3−1)
1|o

)
onto the feasible set in

(4.3.10b);

m1 ← m1 + 1;
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Algorithm 4.5: Iterates for xg (at the GW g ∈ A2|o)

Input : λ1|o, k4 = 0, (x
(0)
g only if first call)

Output: x
(K4)
g

while k4 < K4 do

Call Algorithm 4.6 with input xg to solve (4.3.3);

Receive λ?2|g(x
(k4)
g ) and update x

(k4+1)
g via (4.3.7);

k4 ← k4 + 1;

Algorithm 4.6: Solution of (4.3.3)

Input : xg, {Qn : n ∈ A3|g}

Output: λ?2|g

if
∑

n∈A3|g
Qn ≥ xg then

Find the permutation π = {πi : i = 1, . . . , |A3|g|} to

sort the queues Q such that i ≥ j ⇒ Qπi ≤ Qπj ;

Find i∗ = inf{i :
∑i

j=1 Qπj ≥ xg};

xπj = Qπj for j < i∗, xπi∗ = xg −
∑i∗−1

j=1 Qπj , xπj = 0 for j > i∗,

λ?2|g = Qπi∗ ;

else

xn = Qn ∀n ∈ A3|g, λ?2|g = 0;

Decide xA3|g [tm2
0
] by solving the procedure in this Algorithm for xg = xg[tm1

0
];

m2 ← m2 + 1;
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Figure 4.3.1: Illustration of the dynamics of the multi-timescale optimization frame-
work within context of LayBack infrastructure: the optimal policy to minimize end-to-
end delay is decoupled into multiple layers of sub-problems. The decisions’ timescale
decreases by moving down to the lower LayBack layers. The figure shows the dy-
namics between different layer, which are performed by the multiple entities in each
Layback layer.

4.4 Simulation Results

In this section, we show the effectiveness of the proposed method in handling

demand peaks across different operators by multiplexing resources dynamically. The

bottleneck of the proposed approach is that, due to network latencies, high level de-

cisions cannot be instantaneous and if one of the operators experiences a demand

peak right after the other, the first of the event creates a response lag in addressing

the subsequent events. In our experiments we test different values of the parameter

V in (4.3.17). Our baselines are: 1) absence of the LayBack orchestrator, e.g. fixed

allocation for xA1 (labeled “no LB” in the plots) and 2) a centralized optimal sched-

uler, e.g. the solution of Algorithm 4.1, with no latency and no long term constraints

limiting operators (labeled “QMW” in the plots). The parameters in Fig. 4.3.1 are

set to K1 = 1, K2 = 5, K3 = 1, K4 = 10, τ 0
1 = 100, τ 1

2 = 10, which correspond to 1s

and 100ms for an RTT between GWs and eNBs of 10ms latency respectively. The

Lagrangians λ0 and λ1|o are initialized as standard uniform random variables. T1 and

T0 are set to 20 and 200 respectively (T2 = 1). For all the updates α = 0.4. For
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numerical stability, the computation of λ?2|g uses the following queues’ normalization

Qn∑
n∈A3|g

Qn

|A3|g |
2

, which does not alter the solution. The network has the following

parameters: O = 2, |A2|o| = 2 ∀ o, |A3|g| = 10 ∀ g ∈ A2, c
(o) = 100Mbps ∀ o, c0 =

200Mbps. For our simulations we have considered a time interval of 100s. The ag-

gregate rate demand for each operator is kept constant at 80Mbps, except for a peak

of 10s duration of 160Mbps, for each operator. Operator 1 experiences the peak in

demand rate at time t = 10s, whereas for Operator 2 the peak happens at time

t = (10 + ∆t)s. At all times, the traffic is homogeneous across the same operator’s

eNBs. For the selected time parameters and a packet size of 12.5 KBytes, the sce-

nario just described corresponds to a process an[t] in (4.3.13) as Pois(0.4) in normal

conditions and Pois(0.8) when the demand peak occurs. In Fig. 4.4.1, we show three

different simulations over time for different values of ∆t: for ∆t = 0 traffic is per-

fectly balanced, hence no redistribution across operators is enabled, for ∆t = 15s the

aforementioned overshadowing effect can be seen in the delay to which the system for

V = 100 responds to the demand peak for operator 2. Finally for ∆t = 30s, there

is enough time for our decomposition to redistribute the resources and have both

operators benefit from sharing.

The phenomenon just described is summarized in Fig. 4.4.2, where we plotted

the time average queue size (over the whole simulation time) vs. the interval ∆t that

separates the two demand peaks. Notice how for small values of V (e.g V = 1) sharing

is limited and performances are not significantly different from the absence of SDN

orchestration. As V increases, we enable sharing, and when the demand peaks are

sufficiently separated, we can guarantee smaller average queues for both operators,

closing the gap with the optimal curves for the centralized solution. The shadowing

effect described for small ∆t is evident since Operator 1 has a smaller average queue

size than in the centralized optimization, where it is not prioritized because there is
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Figure 4.4.1: Aggregate rate allocation for the two operators for different values of
V and when no sharing across operators is enabled
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no lag in responding to events occurring later.
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CHAPTER 5

CONCLUSIONS

In this thesis we have proposed three different problems for resource allocation that

the new generation of Wireless Communications could benefit from. In the first part

of the thesis we focused on the time resource, and proposed a cross-layer lightweight

protocol (PulseSS) that, through signalling at the PHY layer, can achieve synchro-

nization and scheduling in a locally connected network of sensors. The main benefits

of the proposed protocol are resilience and robustness to network failures, attained via

its decentralized nature, and lightness of the control overhead required: two features

that make it highly desirable for industrial control and large area sensor deployments.

The mathematical analysis of the updates’ dynamics has provided important perfor-

mance guarantees and design guidelines for the protocol implementation: a testbed

evaluation and micro-controller implementation of the protocol has been conducted

by my group and this has lead to two journal publications, two conferences and a

filed provisional patent application. In the second part of the thesis, we moved our

focus to the frequency resource: a newly defined analog front-end, named the Cog-

nitive Utility Maximization Multiple Access (CUMMA) receiver, was proposed to

enable sequential and adaptive Cognitive Spectrum Sensing. We started by intro-

ducing a POMDP formulation for a sequential single-band scanner: in doing so, we

relaxed previous constraints in the literature and studied a more general case, en-

hancing the receiver’s flexibility in the tests’ design and decisions over the different

sub-bands. We proposed a set of sub-optimal, numerically accessible, heuristics to

approximate the optimal strategy, analytically derived. We then moved to formulate

a set optimization problem to incorporate Compressed Sensing tests, e.g., tests that

via a spectrum aliasing analog mixer, fold the spectrum prior to sampling and aim
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at providing informations over multiple sub-bands at the same time. We designed

our measurements, following the spirit of prior works that have advocated for the use

of sparse matrices to tackle the noise-folding phenomenon, caused by the spectrum

aliasing. However, we show that the set optimization proposed and the feature of

adaptivity in selecting the best combinations of tests can guarantee better perfor-

mances, in the finite regime, than static methods as LASSO with dense matrices or

belief propagation via message-passing and LDPC matrices. The performances have

been measured via a utility function, which strikes the trade-off between exploration

and exploitation. The utility function parameters have been derived considering out-

age rate and interference in a Cognitive Radio scenario, where the Secondary Users

wants to avoid interfering with the Primary Users. For both scenarios considered, our

strategies guaranteed a higher utility than prior schemes. Finally, we have proposed

a new scheme for Decomposition of Infrastructure-based Dynamic Resource Alloca-

tion (DIDRA), to tackle the problem of rate allocation in uplink traffic management

at the backhaul. Inspired by the extensive work on Network Utility Maximization

(NUM) approaches to solve resource allocation problems, we have derived a unifying

framework for redistribution of transmission resources across operators’ core networks

and gateways. Realistic latencies and time constraints have been included in our for-

mulation to propose a distribution of computation tasks, governed by the Layback

SDN architecture, proposed by Prof. Martin Reisslein’s group here at Arizona State

University, with whom we have collaborated. The proposed method combines the

dynamic of Lagrangian updates (for gradient descent in primal-dual decomposition),

with Lyapunov-drift-plus-penalty relaxation. The numerical results indicate that,

while guaranteeing an economic fairness across the different operators, a flexible re-

distribution of resources can be enabled: if two operators experience demand peaks in

uplink, separated in times by at least 15− 20 s, the method proposed can effectively

133



guarantee a lower end-to-end delay for both, compared to a static redistribution of

resources between the two. Convergence of the proposed approach, optimality-gap

from the centralized implementation, and additional constraints at the different layers

of the protocol stack are beyond the scope of this thesis.
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Proof of Proposition 2.4.2

We first show ∆(t∗) = 0⇒ ∀t > t∗ ∆(t) = ∆(t∗) which indicates the synchronous

state is a fixed point. The argument is straightforward, since all the firings events

are received instantaneously by nodes that are also firing, i.e. their phase is equal to

0 mod 1 and it is immediate to see no node will change its phase, i.e. min{(1 + α)0

mod 1, 1} = 0 mod 1 therefore no change in ∆ will occur from this point on. Then

we prove ∀t > t∗ ∆(t) = ∆(t∗) ⇒ ∆(t∗) = 0 by contradiction. Let us assume

∆uv(t
∗) 6= 0 for some uv. Without loss of generality we can assume euv = 1, in fact

if ∆uv 6= 0 and euv 6= 0 then, by looking at the edges k` over the path Puv we must

find a nonzero phase difference ∆k` 6= 0, ek` = 1. Then, without loss of generality

let us consider the firing of node vheard by node u. Node u will update its phase

and ∆uv will either increase or decrease, unless the phase of node u is 0 when node

vis firing, which would contradict the hypothesis that ∆uv 6= 0. We can consider the

isolated event “node j hears node v firing and updates its phase”, since each other

event that occurs simultaneously will not change the phase of node v(which is equal

to 0 mod 1) and will only potentially move even forward node u, further increasing

or decreasing ∆uv.
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Proof of Proposition 2.4.3

In order to prove the almost sure convergence of a |V| = 3 nodes network to

∆ = 0, let us label the center node as 1. It is easier to focus on the evolution of the

variables

Ξ , {Ξ12,Ξ13}, Ξuv = (Φv − Φu) mod 1 (A.0.1)

and, since by definition (2.4.4) we have ∆uv = min{Ξuv,Ξji}, if we have convergence

to 0 (synchronization) for Ξ we also have it for ∆. We focus on the line network with

nodes {1, 2, 3} and edges {(1, 2), (1, 3)} since the case of a fully connected network is

covered by [Mirollo and Strogatz(1990)]. Since the evolution of Ξ(t) occurs in jumps

that are triggered by the firing events, we can define Ξ[k] , Ξ(tf [k]), where f [k] is

the index of the node that is generating the k-th firing and tf [k] is the time for which

the k-th firing occurs and focus on the evolution of Ξ[k],Ξ[k + 1], . . . .

We highlight that for the case of 3 nodes (or any tree network for that matter)

it is possible to consider each firing event separately, since the only case for which a

node is affected by two simultaneous firing events is when node 1 can hear node 2

and node 3. To handle this case we first introduce

Lemma A.0.1. Suppose Φ2(t) = Φ3(t) and, equivalently, Ξ12(t) = Ξ13(t). Then,

Ξ12(t′) = Ξ13(t′), for all t′ ≥ t, regardless of the sequence of firing events occurring

after t.

Proof. The statement follows from the fact that at the firing events of node 1, the

two nodes update simultaneously and change their phase by the same amount, while

when one of the two fires, the other one is also at the firing point and they do not

affect each other.

Lemma A.0.1 also implies that when node 2 and 3 are synchronized, we have

equivalently a fully connected two-node network whose convergence occurs for all

152



initial values of the nodes’ phases, except for a set of measure zero, as shown in

[Mirollo and Strogatz(1990)]. Hence, the network converges almost surely to the

fixed point ∆ = 0 in this case. We can then proceed in our proof treating each

firing event separately, and in particular consider two cases: the case where the

firing order is maintained and the case where overtaking of the firing order may

occur among nodes. We initially assume all nodes have different phases. Case 1:

Suppose that the firing order does not change after some k0 (the k0-th firing event)

and that the nodes are labeled in the order of their firing after this point, with

node 1 being the node firing in the middle. That is, suppose that, for some k0,

Ξ12[k] < Ξ13[k], for all k ≥ k0. If f [k] = 1 and no absorption occurs then, we

have Ξ13[k + 1] − Ξ12[k + 1] = (1 + α)(Ξ13[k] − Ξ12[k]) > Ξ13[k] − Ξ12[k], that is,

the phase difference between nodes 3 and 2 increases. If f [k] = 2 or 3 and still

no absorption occurs we can see that the phase difference between nodes 3 and 2

remains the same (i.e., Ξ13[k+ 1]−Ξ12[k+ 1] = Ξ13[k]−Ξ12[k]). This implies that, if

no absorption occurred after each node has fired, the phase difference between nodes

3 and 2 must strictly increase, that is, 0 < Ξ13[k]− Ξ12[k] < Ξ13[k + 3]− Ξ12[k + 3].

Since Ξ13[k′]−Ξ12[k′] < 1, for all k′, an absorption must eventually occur in one of the

cycles. If absorption occurs between nodes 2 and 3, then we are done since, by Lemma

A.0.1, we have Ξ12[k] = Ξ13[k] from that point on. If node 3 absorbs node 1, then

the next one to fire is node 2 and that will trigger node 1 to overtake the position of

node 3, which violates our assumption in Case 1. Finally, if node 1 absorbs only node

2 at some firing event k′′ (that is, if Ξ12[k′′] = 0 and Ξ13[k′′] > 0), then the firing of

node 3, which comes immediately after will cause either an absorption of both nodes

1 and 2 (which occurs if Ξ13[k′′] ∈ [ 1
1+α

, 1)) or an update of Ξ12[k′′ + 1] = αΞ13[k′′],

if Ξ13[k′′] ∈ (0, 1
1+α

). In the former case, the nodes become synchronized and we are

done; in the latter case, it must be true that Ξ12[k′′+ 1] < α
1+α

and, thus, node 1 will
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again absorb node 2 when it fires. Therefore, even though the phases of nodes 2 and

1 may temporarily deviate from each other, they will always become absorbed again

once node 1 fires. In this case, we again have an equivalent two-node fully connected

network (formed by node 3 and the combination of nodes 1 and 2) and, thus, the

convergence to the fixed point ∆ = 0 again follows from [Mirollo and Strogatz(1990)].

Case 2: Suppose that a node may overtake the position of another node in the firing

order. This can occur only when the firing of node 2 triggers node 1 to increase its

phase beyond the phase of node 3 (causing node 1 to fire again before node 3 fires).

This is because, when node 3 fires (i.e., f [k] = 3), either node 1 (and, maybe also

node 2) is absorbed (in which case the firing order is considered to be maintained) or

no node is absorbed and the following update occurs: Ξ13[k + 1] = (1 + α)Ξ13[k] >

Ξ12[k]+αΞ13[k] = Ξ12[k+1], which also implies that the firing order remains the same;

and, when node 1 fires, we again have Ξ13[k + 1] ≥ Ξ12[k + 1] and, thus, the firing

order is again maintained. Now, suppose that the firing of node 2 causes node 1 to

overtake the position of node 3 (that is, Ξ13[k] ≥ Ξ12[k] but Ξ13[k + 1] < Ξ12[k + 1]).

This can occur only when Ξ12[k] ∈ (0, 1
1+α

); otherwise, the firing of node 2 would

have absorbed both nodes 1 and 3 (in which case the convergence to the fixed point is

immediately achieved). However, if overtaking occurs due to the firing of node 2, then

this means that Ξ13[k + 1] = Ξ13[k] + αΞ12[k] mod 1 < Ξ12[k + 1] = (1 + α)Ξ12[k].

Since Ξ13[k] ≥ Ξ12[k], this is possible only when Ξ13[k] + αΞ12[k] ≥ 1. Therefore,

Ξ13[k + 1] = Ξ13[k] + αΞ12[k] mod 1 = Ξ13[k] + αΞ12[k] − 1 < α
1+α

since Ξ13[k] < 1

and Ξ12[k] ∈ (0, 1
1+α

). In this case, the firing of node 1, which comes immediately

after, will again absorb node 3, causing the two nodes to be absorbed from that point

on. Even though the firing of node 2 may trigger node 1 to temporarily overtake

node 3, they will always become absorbed again once node 1 fires. Consequently, we

again have an equivalent two-node fully connected network (formed by node 2 and
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the combination of nodes 1 and 3); convergence to the fixed point ∆ = 0 follows

from [Mirollo and Strogatz(1990)]. In light of this extensive treatment, we can then

consider the case where a node is added to a synchronized network. At the time

this additional node fires, the nodes connected to it will jump in front of the others

but, since no additional firing events will occur before the neighbors of the new node

node fire, all the absorption with the other nodes will be restored at the end of the

firing round and so we have again an equivalent two-node fully connected network

(formed by the added node and the previous synchronized network) and convergence

to synchronization will occur almost surely as previously discussed.
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Proof of Proposition 2.4.4

We first prove ∀t > t∗,∆(t) = ∆(t∗) ⇒ ∆(t∗) ∈ F by contradiction, i.e. by

showing that any point ∆ for which ∆uv > τuv for some uv s.t. euv = 1, cannot

be a fixed point. We can initially assume, without loss of generality that (Φv − Φu

mod 1) < (Φu−Φ1 mod 1) and look at what happens when node vfires. At the time

node vfires, say tv > t∗, since ∆uv(tv) > τuv and (Φv−Φu mod 1) < (Φu−Φ1 mod 1)

we have that 1
2
< Φu < 1 − τuv. Let us initially assume nothing happens (no firing

events) before node j hears the firing of node vat time tv+τuv. The phase of node u at

time tv + τuv will be 1
2

+ τuv < Φu(tv + τuv) < 1 and therefore outside of the refractory

period, as long as ρ < 1
2

+ minuv τuv. This implies that node j will jump forward and

the difference ∆uv will decrease, which means it is not a fixed point. If some firing

events happen before the update, i.e at time t where tv < t < tv + τuv then node vwill

not move since its phase will be Φv(t) < τuv,∀tv < t < tv + τuv and therefore it is

inside the refractory period ρ > 2 maxuv τuv. Node u instead, can either move even

forward by hearing these additional events (and ∆uv would further decrease, therefore

keeping our argument by contradiction valid) or not move (and therefore there is no

problem in neglecting such events), and this concludes our proof. The key aspect of

the proof is that nodes can only jump forward after receiving a firing event. We then

prove ∆(t∗) ∈ F ⇒ ∀t > t∗,∆(t) = ∆(t∗) which indicates that all the points in F

are fixed points. Let us consider a general node v and show it will note update its

phase. In order to update its phase, node v needs to receive one or more firing events

by its neighbours when its phase is outside the refractory period. Since ∆uv ≤ τuv

∀u, euv = 1 there are then 2 cases.

Case 1: A set U of node v’s neighbours fire at time t′ when 0 ≤ Φi(t
′) ≤ minu∈U τuv.

All these firings will be heard by node vwhen minu∈U τuv ≤ Φv ≤ minu∈U τuv +
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maxu∈U τuv ≤ 2 maxuv τuv ≤ ρ, therefore no update will occur.

Case 2: A set U of node v’s neighbours fire at time t′ when 1−minu∈U τuv ≤ Φi(t
′) ≤ 1.

All these firings will be heard when (1 − minu∈U τuv + minu∈U τuv) mod 1 ≤ Φv ≤

maxu∈U τuv → 0 ≤ Φv ≤ maxu∈U τuv < ρ, therefore no update will occur. If no

node updates its phase, then ∆(t) remains constant over time and this proves that

all ∆ ∈ F are fixed points.
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Proof of Proposition 2.5.2

We know Mc is a stochastic matrix and then all of its eigenvalues are inside the

unit circle except for one. After a few tedious but straightforward manipulation the

2n-degree characteristic equation of Mc is (n = |Vc|):

λ2n − λn − (β − 1)2(λn − 1) + β2µ(2λn − λn−1 − λ)

− βµ(λ2n−1 + λn+1 − λn−1 − λ) = 0. (A.0.2)

This specific form highlights that λ = 1 is solution and, also, that for µ = 0 λn = 1.

For µ > 0 small, the n− 1 roots of (A.0.2) inside the unit circle can be approximated

as:

λ(k) = (1− ε)ej( 2πk
n
−ϑ) (A.0.3)

with k = 1, 2, ...., n − 1 and here j =
√
−1 indicates the imaginary unit. We are

interested in the second largest eigenvalue of the system, thus in the highest of these

n − 1 perturbed roots. For µ small enough we assume that ε, ϑ � 1. Then it is

possible to substitute (A.0.3) in (A.0.2) and consider:

(
(1− ε)e−jϑ

)n ≈ (1− nε− njϑ)

We are then able to solve (A.0.2) as a first order equation in z = ε + jϑ and then

consider the real part of the solution (ε) and the imaginary part (ϑ) to find the

eigenvalues from (A.0.3). The solutions will have the following form:

z∗(k) =
1

n

(
1− cos 2πk

n

)

1− 1
2 exp{−j 2πkn } − 1

n sin 2πk
n + 1

βµ (1− β
2 − µ cos 2πk

n )
(A.0.4)

It is possible to show that the real part of z∗(k) is concave down with respect to k,

and thus from (A.0.3) the second largest eigenvalue is reached for k = 1 or k = n− 1.

A simple comparison leads to choose k = n− 1 irrespective of the value for β and µ.

At this point for n large enough, we can use the Taylor series for the trigonometric
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functions in (A.0.4) and approximate |λ(n− 1)| ≈ 1− 2βµπ2

n3 . Thus to find the second

highest eigenvalue of Mc we take:

|λc2| ≈
(

1− 2βµπ2

|Vc|3
)|Vc|

≈ 1− 2βµπ2

|Vc|2
(A.0.5)
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Proof of Theorem 2.5.6

One Shared Node

We will study the evolution of Υ1(t),Υ2(t), as defined in (2.5.6). We will show

that there is a unique fixed point irrespective of the initial configuration. If we have

only one node shared between the two cliques we can define, without loss of generality,

the two system vectors such that π1
|V1| = π2

|V2| = v′ with v′ being the shared node.

Except for the update of node v′, the updates of the other nodes impact variables

only in their clique, i.e. in only one of the system vectors. We can then consider for

c = 1, 2 the following matrix

M̃c ,
|Vc|−1∏

k=1

Mπck
=




M̃c
(2|Vc|−1)×(2|Vc|−1) 0

0 · · · 0 1


 (A.0.6)

Note that each Mπck
is a left stochastic matrix and so is the product M̃c. Because of

the structure of M̃c, M̃c
(2|Vc|−1)×(2|Vc|−1) is also left stochastic and it is primitive because

it contains all positive elements. Thus the Perron-Frobenius Theorem ensures that

M̃c
(2|Vc|−1)×(2|Vc|−1) has exactly one eigenvalue equal to 1 and 2|Vc| − 2 eigenvalues

inside the unit circle. Arguing as in [Pagliari et al.(2010)] we can show that the

matrix M̃c, has the following two eigenvectors for the eigenvalue equal to one:

Υ̃
?

c,1 =
γ̃c

D̃
c (δ,Dπc1

, δ,Dπc2
, . . . , δ,Dπc|Vc|−1

, δ, 0)T (A.0.7)

Υ̃
?

c,2 = (0, 0, 0, 0, . . . , 0, 0, 0, 1)T (A.0.8)

with D̃
c

=
∑|Vc|−1

k=1 Dπck
and γ̃c =

D̃
c

D̃
c

+ |Vc|δ
.

The complexity introduced by the presence of the shared node vis that the two

nodes Pre(v, t), Suc(v, t) defined in (2.5.9)-(2.5.10) might change over time and belong
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ePre(v0,t)sv0,targets0v0sv0ev0e0v0ev0,targetsSuc(v0,t)

Figure A.0.1: Update of the shared nodes and representation of the variables
Θs,Γ,Θp,Θns,Θnp.

to different cliques. We introduce the following two sets

Pre(v, t) ,
⋃

c∈Cv
pre(v, c) \ Pre(v, t) (A.0.9)

Suc(v, t) ,
⋃

c∈Cv
suc(v, c) \ Suc(v, t) (A.0.10)

In the case of two cliques, the sets Pre(v′, t), Suc(v′, t) contain only one node and ac-

cording to our notation, if for example, Pre(v′, t) = π1
|V1|−1 then Pre(v′, t) = {π2

|V2|−1}

and so on. The update of node v′ might cause change in 5 variables (see Fig.A.0.1)

that for short notation we indicate with

Θs(t) ,
ev′(t)− sSuc(v′)(t) (mod L)

L
(A.0.11)

Γv′(t) ,
sv′(t)− ev′(t) (mod L)

L
(A.0.12)

Θp(t) ,
ePre(v′)(t)− sv′(t) (mod L)

L
(A.0.13)

Θns(t) ,
ev′(t)− sSuc(v′)(t) (mod L)

L
(A.0.14)

Θnp(t) ,
ePre(v′)(t)− sv′(t) (mod L)

L
(A.0.15)

Ignoring the dependence on time and using the apex to indicate the updated quan-

tities we can write

[
Θ′s,Γ

′,Θ′p,Θ
′
ns,Θ

′
np

]T
= M̂ v′ [Θs,Γ,Θp,Θns,Θnp]

T (A.0.16)
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where

M̂ v′ =




0 0

Uv′ 0 0

0 0

−β D+δ
D+2δ

β δ
D+2δ

β δ
D+2δ

1 0

β δ
D+2δ

β δ
D+2δ

−β D+δ
D+2δ

0 1




(A.0.17)

where the first three rows are given by the submatrix Uv′ defined in (2.5.20) and the

last two rows are obtained from

Θ′ns = Θns −Θs + Θ′s (A.0.18)

Θ′np = Θnp −Θp + Θ′p (A.0.19)

From the structure of the matrix M̂v′ , we can conclude it has 3 eigenvalues equal to

1 and 2 strictly smaller than 1. In fact, the two right columns are two eigenvectors

with eigenvalue 1 and the top-right block Uv′ is positive stochastic, therefore gives

a unique eigenvalue equal to 1 and others 2 smaller than 1. It is then possible to

verify the third eigenvector associated with eigenvalue 1 has to satisfy the following

constraint

Θ∗s = Θ∗p =
δ

Dv′
Γ∗v′ (A.0.20)

The fixed point for Υ1(t),Υ2(t) needs to be such with respect to both the linear map

Υ′c = M̃cΥc (i.e the updates of all the local nodes) and the update of the shared

node just described. To be eigenvectors in (A.0.7)-(A.0.8) and meet the constraint

||Υc||1 = 1 we have

Υ?
c = (1− λc)Υ̃

?

c,1 + λcΥ̃
?

c,2 for c = 1, 2 (A.0.21)

with λc ∈ (0, 1). However, since Γπ1
|V1|

= Γπ2
|V2|

= Γv we have λ1 = λ2 = λ and it is

possible to verify there is only one value for λ that satisfies the constraint in (A.0.20),
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which correspond to the update of the shared node, according to the definition of

Θs(t) and Θp(t) in (A.0.11)-(A.0.13). This value is given by λ = min
c=1,2

{
γc

Dc

}
Dv

which also tells us that both Pre(v′, t) and Suc(v′, t) at the steady state belong to the

densest cluster, i.e. the cluster c′ = arg min
c=1,2

{
γc

Dc

}
.

Two or More Shared Nodes

If we have |S12| > 1 shared nodes among two cliques, we need to differentiate

between the case where shared nodes occupy or not occupy consecutive portions of

the frame. For the first case there is a straightforward extension from the previous

argument. Let us define the two system vectors (Υ1(t),Υ2(t)) such that the variables

associated to the shared nodes occupy the last positions in both vectors. Then for

c = 1, 2 adjust the definition of M̃c, D̃
c
, γ̃c making the index k ranging from 1 to

|Vc| − |S12| instead of |Vc| − 1. With a similar argument as before, we conclude that

the fixed points for the two system vectors, taking into account the update of local

nodes, lie in the space spanned by:

Υ̃
?

c,1 =
γ̃c

D̃
c (δ,Dπc1

, . . . , δ,Dπc|Vc|−|S12|
, δ, 0, . . . , 0)T (A.0.22)

Υ̃
?

c,u = e2(|Vc|−|S12|)+u for u = 2, . . . , 2|S12| (A.0.23)

If we now consider the consecutive updates of the shared nodes we find the following

additional for the fixed point where the node Θs is defined with respect to the last

(in order of firing) of the shared nodes and Θp is defined with respect to the first of

the shared nodes:

Θ?
s = Θ?

πc|Vc|−|Sc|+2
(A.0.24)

Θ?
p = Θc

πc|Vc|
(A.0.25)

Γ?v =
Dv

δ
Θ∗πci+1

for v = |Vc| − |Sc|+ 1, . . . , |Vc| (A.0.26)
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The fixed point for each of the system vectors (c = 1, 2) needs to have the following

form

Υ?
c =


1−

2|S12|∑

u=2

λc,u


 Υ̃

?

c,1 +

2|S12|∑

u=2

λc,uΥ̃
?

c,u (A.0.27)

and once again we have λcu = λu for c = 1, 2. By imposing the constraints in (A.0.24)-

(A.0.25)-(A.0.26) we find there is a unique solution that respects the constraints and

is consistent with the definition of the predecessor and successor nodes (relative to

the firing order), i.e.

λu =





min
c=1,2

{
γc

Dc

}
δ

for u = (2m+ 1),m = 1, . . . , |S12| − 1

min
c=1,2

{
γc

Dc

}
Dπc|Vc|−|S12|+m

for u = 2m,m = 1, . . . , |S12|

(A.0.28)

For the case 2), the notation is significantly more complicated but the proof can

follow the same conceptual steps. Let us start by considering two shared nodes that

are not consecutive in the firing order in at least one of the two cliques. In each clique

c we will have two subsets of Lc, namely Lc,1,Lc,2 such that the nodes in each of the

two subsets are all consecutive in the firing order. Then we can define two different

matrices

M̃c,u ,
∏

k: πck∈Lc,u
Mπck

(A.0.29)

for u = 1, 2. and also extend the definitions for D̃
c,u
, γ̃c,u, accordingly for u = 1, 2.

Reasoning as before we can see the fixed point Υ?
c needs to mantain the proportion-

ality between the nodes in Lc,1 and the ones in Lc,2 separately. Furthermore, the

constraint in (A.0.20) continues to hold and applies to both shared nodes. Let us

assume we are at the fixed point, and there is a certain “distance” (portion of the

frame) between the two non-consecutive shared nodes, which is assigned in the two
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cliques to Lc,1 and Lc,2 respectively. If we indicate by v1 and v2 the two shared nodes

(i.e., the counterclockwise order of nodes is v1,Lc,1, v2,Lc,2) we find that at the fixed

point, i.e., ∀t > t∗:

Suc(v1, t),Pre(v2, t) ∈ L1,1 ↔
γ̃1,1

D̃
1,1 <

γ̃2,1

D̃
2,1 (A.0.30)

Suc(v2, t),Pre(v1, t) ∈ L1,2 ↔
γ̃1,2

D̃
1,2 <

γ̃2,2

D̃
2,2 (A.0.31)

In fact, if this is a fixed point, the distance between the two shared nodes is fixed and

the other local nodes in each clique share that schedule proportionally, according to

their demands. This implies the guard-spaces in each of the subframes are smaller

if the overall demand of that subset of nodes is bigger, giving (A.0.30)-(A.0.31).

But from this condition, we have a unique fixed point given by the condition in

(A.0.20) that forces the two guard-spaces for any of the shared nodes to be equal and

therefore we have enough constraints on the coefficients λ to write the two system

vectors and find the schedule attainable. By introducing for u = 1, 2 the cluster

c∗u = arg min
c=1,2

γ̃c,u

D̃
c,u we have that the scheduling attainable by the unique fixed point is

such that (c, u = 1, 2)

Γi =





Dv

Dv1+Dv2+ D̃
c∗1,1

γ̃
c∗1,1

+ D̃
c∗2,2

γ̃
c∗2,2

, for i = v1, v2

γ̃c,u

D̃
c,u

D̃
c∗u,u

γ̃c
∗
u,u

(
Dv1+Dv2+ D̃

c∗1,1

γ̃
c∗1,1

+ D̃
c∗2,2

γ̃
c∗2,2

)Dv for v ∈ Lc,u
(A.0.32)

and the guardspaces before the first node in Lc,u (c, u = 1, 2), after the last one and

in between are all equal to

δLc,u , γ̃c,u

D̃
c,u

D̃
c∗u,u

γ̃c∗u,u
(
Dv1 +Dv2 + D̃

c∗1,1

γ̃c
∗
1,1

+ D̃
c∗2,2

γ̃c
∗
2,2

)δ (A.0.33)

For the extension to an arbitrary number of shared nodes |S12| one should consider

the shared nodes iu in S12 and the subsets of local nodes Lc,u (u = 1, 2, . . . , |S12|) and
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apply the same argument to each subset of consecutive nodes to find the unique fixed

point.
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Proof of Proposition 2.5.7

The proposition is proved by considering a generic subset of consecutive local

nodes in any possible clique i.e., a generic Lc,u (see notation introduced in the previous

proof, Appendix A). The matrix M̃c,u will then have an eigenvector associated with

eigenvalue 1 where the proportional fairness is enforced between the nodes in Lc,u and

other several eigenvectors associated with eigenvalue 1 where the variables Γi, v ∈ Lc,u
are equal to 0. Therefore, all the possible fixed points for the algorithm will respect

the partial proportional fairness criterion as per Definition 2.5.3. To prove that for

more than two cliques we can have in general a set of non-isolated fixed points let us

consider the sample topology with 3 clusters (c = 1, 2, 3) and the following properties:

|V1| = |V3| = 4, |V2| = 3, |S12| = |S23| = 1, S13 = ∅, δ = 1, Dv = D = 4 ∀v ∈ V . Then

we have that the following configuration (the order of nodes in Υ?
2 is S12,L2,S23)

Υ?
1 = Υ?

3 =

(
1

20
,
1

5
,

1

20
,
1

5
,

1

20
,
1

5
,

1

20
,
1

5

)T

Υ?
2 =

(
θ,

1

5
,

1

10
− 1

6
θ,

2

5
− 2

3
θ,

1

10
− 1

6
θ,

1

5

)T

is a fixed point for any θ ∈
[

1
20
, 3

10

]
, since for all these values Pre(v, t) and Suc(v, t)

for v ∈ S13 ∪ S23 continue to remain in V1 or V3 and the space left for the only node

in L2 is proportionally distributed between the time schedule assigned to that node

and the two guardspaces before and after the schedule.
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Proof of Proposition 2.5.9

First, recalling the order of the partitions Ac introduced in (2.5.25), A1 is the

partition with the highest demand. One can apply Theorem 2.5.6 to each pair of

cliques (V1,Vc) with 1 < c ≤ |C| and obtain a possible assignment. In fact, if there

are nodes shared among one of these pairs that belong also to other cliques, they have

to belong to one of these two partitions by Assumption 2.5.8. In this case, we can

see there is a unique fixed point by having the partitions A1,Ac assigning the unique

schedule obtainable by Theorem 2.5.6 and then apply the argument to each pair of

cliques (V2,Vc) with 2 < c ≤ |C|. The only additional case we have to consider is that

nodes that belong to the pair (V2,Vc) also belong to V1; but these nodes schedules

have been already set by the pair (A1,Ac). For the generic pair case (A2,Ac) Theorem

2.5.6 applies directly if we consider the quantity T2 defined in (2.5.28) in subsection

2.5.3.1. The procedure is then iterated for every pair of cliques until every conflict

has been considered, and this proves the Proposition.

Proof of Corollary 2.5.11

For a star network, the central node (say 1) can hear all the rest (i.e. v =

2, . . . , n+1). There will be n cliques Vc = {1, c+1} with c = 1, . . . , n. We simply have

to enumerate nodes from 2 to n+ 1 in decreasing demand order to have A1 = {1, 2}

and Ac = {c+ 1} for c = 2, . . . , n. Then Proposition 2.5.9 applies directly and there

will be a unique fixed point that respects Definition 2.5.4 in light of Theorem 2.5.6.

For a line network, Assumption 2.5.8 is not needed, since every node can belong to

no more than two cliques, and then we can just apply Theorem 2.5.6 starting from

the two cliques that contain the highest demand node, and then repeat a similar

argument as in the proof of Proposition 2.5.9 until we reached the edges of the line.
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Proof of Lemma 3.3.2

We first notice that ∀ω,A, V (ω,A, K+1) = 0 implies V j
t (ω,A, K) = −c, ∀ j ∈ A

and therefore

V (ω,A, K) = max
D⊆A
{Vd(ω,D)+ max

j∈A\D
V j
t (ω,A, K)} = Vd(ω,A) =

∑

j∈A
V j
d (ωj) (B.0.1)

which is convex in any ωj, j ∈ A, since it is a positive sum of piece-wise linear functions

(see (3.3.15)). We then prove the lemma by induction. We assume V (ω,A, k + 1) is

convex in ωj and we show V (ω,A, k) is convex by showing all the possible functions

V i
t (ω,A, k) are convex in ωj. We start by the case j = i. Without loss of generality, let

us consider two ω say (ω1,ω2) which differ only in the j-th entry (i.e ω1
` = ω2

` ,∀` 6= i).

We want to prove that for 0 ≤ λ ≤ 1 we have λV i
t (ω1,A, k) + (1− λ)V i

t (ω2,A, k) ≥

V i
t (λω1 +(1−λ)ω2,A, k). From (3.3.13) we can write (we will use the short notation

ω`,o = Π(ω`, y, i) for ` = 1, 2)

λV i
t (ω1,A, k) + (1− λ)V i

t (ω2,A, k)

=−c+

∫
λV (ω1,o,A, k + 1)f i1−ω1

i
(y) + (1− λ)V (ω2,o,A, k + 1)f i1−ω2

i
(y)dy

=−c+

∫[
µV (ω1,o

i ,A, k+1)+(1−µ)V (ω2,o,A, k+1)
][
λf i1−ω1

i
(y)+(1−λ)f i1−ω2

i
(y)
]
dy

(a)

≥−c+

∫ [
V (µω1,o + (1− µ)ω2,o,A, k + 1)

][
λf i1−ω1

i
(y)+(1−λ)f i1−ω2

i
(y)
]
dy (B.0.2)

where (a) follows from the assumption that V (ω,A, k + 1) is convex in ωi and µ =
λf i

1−ω1
i

(y)

λf i
1−ω1

i

(y)+(1−λ)f i
1−ω2

i

(y)
. Now, if we define ω3 = λω1 + (1− λ)ω2 we have

f i1−ω3
i
(y) = λf i1−ω1

i
(y) + (1− λ)f i1−ω2

i
(y) (B.0.3)

since f i1−ωi(y) is a linear affine function of ωi and also

Πi(ω
3
i , y, i) =

ω3
i f

i
0(y)

f i
1−ω3

i
(y)

=
[λω1

i + (1− λ)ω2
i ]f

(i)
0 (y)

λf i
1−ω1

i
(y) + (1− λ)f i

1−ω2
i
(y)
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=

λf i
1−ω1

i
(y)

ω1
i f

(i)
0 (y)

f i
1−ω1

i
(y)

+(1−λ)f i
1−ω2

i
(y)

ω2
i f

(i)
0 (y)

f i
1−ω2

i
(y)

λf i
1−ω1

i
(y) + (1− λ)f i

1−ω2
i
(y)

= µΠi(ω
1
i , y, i)+(1−µ)Πi(ω

2
i , y, i)

which implies

Π(ω3, y, i) = µΠ(ω1, y, i) + (1− µ)Π(ω2, y, i). (B.0.4)

Therefore, by replacing (B.0.3),(B.0.4) in (B.0.2) we have

λV i
t (ω1,A, k) + (1− λ)V i

t (ω2,A, k) ≥ −c+

∫
V (Π(ω3, y, i),A, k + 1)f i1−ω3

i
(y)

= V i
t (ω3,A, k) = V i

t (λω1 + (1− λ)ω2,A, k) (B.0.5)

and this proves the convexity of V i
t (ω,A, k) in ωi. The convexity of V i

t (ω,A, k) in ωj,

j 6= i can be proved by considering two points (ω1,ω2) with the same i-th coordinate

(i.e ω1
i = ω2

i = ωi) and following similar steps as before, where this time we have

Π(ω3, y, i) = λΠ(ω1, y, i) + (1− λ)Π(ω2, y, i). (B.0.6)

and we do not need to introduce µ to conclude our proof. To show the function

V (ω,φk, k) is convex in ωj we rewrite the maximization over D in (3.3.11) as follows:

V (ω,Ak, k)=max

{
max

{j}⊆D⊆Ak
J(D), max

D⊆Ak\{j}
J(D)

}
(B.0.7)

where the function J(D) is defined in (3.3.18). Let us then call f1 and f2 the two

maximizations inside (B.0.7) in the order they appear and let us omit the arguments

for brevity. Now if we see f1 and f2 as functions of ωj we have that both f1 and

f2 are convex functions of ωj. In fact ωj in f1 appears only as argument of V j
d (ωj)

which is a piece-wise linear function of ωj and therefore convex, whereas in f2, ωj is

an argument of the second term of J(D), which is the maximization over the index i

of the functions V i
t (ω,Ak+1, k) (i, j ∈ Ak+1) that are all convex in ωj. Therefore the

maximum is convex and we can conclude f2 is convex. The convexity of V (ω,Ak, k)

follows from the fact it is the maximum of two convex functions.
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Proof of Lemma 3.3.4

Let us first introduce the following lemma

Lemma B.0.1. ∀i ∈ N , ωi ∈ [0, 1], k = 1, . . . , K − 1:

V i
t (ωi, i, k) ≥ V i

t (ωi, i, k + 1) + V i
d (ωi) (B.0.8)

Proof. We will prove once again by induction. First we show that (B.0.8) is true for

k = L− 2 (we use the short notation ωyi = Πi(ωi, y, i) and dF y
i = f i1−ωi(y)dy).

V i
t (ωi, i,K − 1) + c =

∫

Y

V (ωyi , i,K) dF y
i =

∫

Y

V i
d (ωyi ) dF

y
i

(a)

≥ V i
d



∫

Y

ωyi dF
y
i


(b)

=V i
d (ωi)=V i

t (ωi, i,K) + V i
d (ωi) + c

where (a) holds for the convexity of the function V i
d and (b) holds for the martingale

property of the prior belief update

∫

Y
Πi(ωi, y, i)f

i
1−ωi(y)dy =

∫

Y

ωif
i
0(y)

f i1−ωi(y)
f i1−ωi(y)dy = ωi.

Then we show that if (B.0.8) holds for k, then it holds for k − 1.

V i
t (ωi, i, k − 1) + c =

∫

Y

V (ωyi , k) dF y
i

=

∫

Y

max
{

(K − k + 1)V i
d (ωyi ), V

i
t (ωyi , i, k)

}
dF y

i

(a)

≥
∫

Y

max
{

(K − k + 1)V i
d (ωyi ), V

i
t (ωyi , i, k + 1) + V i

d (ωyi )
}
dF y

i

=

∫

Y

[
max

{
(K − k)V i

d (ωyi ), V
i
t (ωyi , i, k + 1)

}
+ V i

d (ωyi )
]
dF y

i

= V i
t (ωi, i, k) + c+

∫

Y

V i
d (ωyi )dF

y
i
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(b)

≥ V i
t (ωi, i, k) + c+ V i

d

(∫

Y
ωyi dF

y
i

)
(c)
= V i

t (ωi, i, k) + c+ V i
d (ωi)

where (a) holds for the induction hypotheses, (b) for the convexity of V i
d and (c) for

the martingale property of the belief update.

Now, to show the two thresholds respect (3.3.24)-(3.3.25) it is equivalent to prove

the following statement

∀ωi ∈ [0, 1], (K − k + 1)V i
d (ωi) ≥ V i

t (ωi, i, k)⇒ (K − k)V i
d (ωi) ≥ V i

t (ωi, i, k + 1)

and this can be proved since

(K − k)V i
d (ωi) = (K − k + 1)V i

d (ωi)− V i
d (ωi)

(a)

≥ V i
t (ωi, i, k)− V i

d (ωi)
(b)

≥ V i
t (ωi, i, k + 1)

where (a) holds by hypothesis and (b) follows from Lemma B.0.1, and this completes

the proof.
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Proof of Lemma 3.3.5

We start our proof by highlighting a property of the value function defined in

(3.3.11) with the following lemma

Lemma B.0.2. ∀i ∈ N ,A′ ∈ 2N−i, ωi∈ [0, 1], k = 1, . . . , K

V (ω,A′, k) + V (ωi, i, k) ≥ V (ω,A′ + i, k) (B.0.9)

Proof. Let us consider the function J(D) defined in (3.3.18) refers to the value func-

tion when Ak = A = A′ + i and J ′(D) refers to the value function when Ak = A′.

We will again use induction. Clearly (B.0.9) holds for k = K where

[
Vd(ω,A′) + V i

d (ωi)
]
≥ Vd(ω,A)

Then, assuming (B.0.9) holds for k + 1, we prove it holds for k. Let us write (B.0.9)

as

max
D⊆A′

J ′(D) + V (ωi, i, k) ≥ max
D⊆A

J(D) (B.0.10)

and call D̃ = arg max
D⊆A

J(D). There are three possible cases:

1. If i ∈ D̃,

max
D⊆A′

J ′(D) + V (ωi, i, k) ≥ J ′(D̃ − i) + (K − k + 1)V i
d (ωi) = J(D̃) = max

D⊆A
J(D)

2. If i /∈ D̃ and i = arg max
j∈(A)\D̃

V j
t (ω,A \ D̃, k)

max
D⊆A′

J ′(D) + V (ωi, i, k)
(a)

≥ (K − k + 1)Vd(ω, D̃) + V (ω,A′ \ D̃, k) + V i
t (ωi, i, k)

≥ (K − k + 1)Vd(ω, D̃) + V (ω,A′ \ D̃, k + 1)− c+

∫

Y

V (ωyi , i, k + 1) dF y
i

(b)

≥ (K − k + 1)Vd(ω, D̃)− c+

∫

Y

V
(
Π(ω, y, i),A \ D̃, k + 1

)
dF y

i
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= (K − k + 1)Vd(ω, D̃) + V i
t (ω,A \ D̃, k) = max

D⊆A
J(D)

where (a) follows from the definition of our value function in (3.3.11) and (b)

holds by the induction hypothesis.

3. If i /∈ D̃ and i 6= j∗ = arg max
j∈A\D̃

V j
t (ω,A\D̃, k) the proof is similar to the previous

case.

Proving (3.3.26)-(3.3.27) is equivalent to prove:

∀ωi ∈ [0, 1], (K − k + 1)V i
d (ωi) ≥ V i

t (ωi, i, k)⇒ max
{i}⊆D⊆A

J(D) ≥ max
D⊆A′

J(D).

To prove this, we call D∗ = arg max
D⊆A′

J ′(D) and use the chain of inequalities

max
{i}⊆D⊆A

J(D) ≥ J(D∗ + i) = (K − k + 1)V i
d (ωi) + (K − k + 1)Vd(ω,D∗)

+ max
j∈A′\D∗

V j
t (ω,A′ \ D∗, k)

(a)
= V (ωi, i, k) + V (ω,A′, k)

(b)

≥ V (ω,A, k)
(c)

≥ max
D⊆A′

J(D)

where (a) holds by hypotheses, since if (K−k+1)V i
d (ωi) ≥ V i

t (ωi, i, k), then V (ωi, i, k) =

(K − k + 1)V i
d (ωi) and definition of J ′(D), (b) follows by Lemma B.0.2 and (c) by

definition of value function in (3.3.11), and this completes the proof.
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Proof of Lemma 3.3.8

Since we are focusing on a specific resource i next, for brevity we drop the index

i and define the following events:

Ak , {ω[k] ≥ ν0[k]}, Bk , {ω[k] ≤ ν1[k]}, Ck , Ak ∪Bk, C`k =
⋂̀

m=k

Cm

We then write the function Vt(ω, k) as follows (we use the short notation P0(A) =

P (A|s = 0) and same for P1(A)):

Vt(ω, k) = −c+
K−1∑

`=k

P
(
C`k+1

)
E [−u[`− k]c+ (K − `)

[ω[`]rP0 (A`+1)−(1− ω[`])ρP1 (A`+1)]
∣∣C`k+1

]
(B.0.11)

To find bounds for Vt(ω, k) we will use:

1. an upper/lower bound for P
(
C`k+1

)

2. an upper/lower bound for P0

(
A`+1

∣∣C`k+1

)

3. an upper/lower bound for P1

(
A`+1

∣∣C`k+1

)

First we write:

P
(
C`k+1

)
= P

(
C`
∣∣C`−1
k+1

)
P
(
C`−1
k+1

)
=
[
1− P

(
A`
∣∣C`−1
k+1

)
− P

(
B`

∣∣C`−1
k+1

)]
P
(
C`−1
k+1

)

(B.0.12)

We now find 2). 3) follows a similar approach and 1) will be otained using 2) and 3)

(in our derivation with P (·|ϕ) we indicate we are conditioning on ω[`] = ϕ).

P0

(
A`+1

∣∣C`k+1

)
=

∫

C`

P0 (A`+1|t)
P0

(
t
∣∣C`−1
k+1

)

P0

(
C`
∣∣C`−1
k+1

)dt

u.b.

≤ max
ν1[`]<t<ν0[`]

P0 (A`+1|t) = P0

(
A`+1

∣∣ν0[`]
)
≤ P0

(
A`+1

∣∣ν0[`]
)
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= F̄ 1
ω[`+1] (ν0[`+ 1]|ν0[`], 0) ≤ F̄ 1

ω[`+1]

(
ν0[`+ 1]|ν0[`], 0

)

l.b.

≥ min
ν1[`]<t<ν0[`]

P0 (A`+1|t) = P0 (A`+1|ν1[`]) ≥ P0

(
A`+1|ν1[`]

)

= F̄ 1
ω[`+1]

(
ν0[`+ 1]|ν1[`], 0

)
≥ F̄ 1

ω[`+1]

(
ν0[`+ 1]|ν1[`], 0

)

where the upper and lower bound start by taking out of the integral the maximum

and minimum value of

P0(A`+1|ω[`] = t) and notice that

∫

C`

P0

(
ω[`] = t

∣∣C`−1
k+1

)
dt = P0

(
C`
∣∣C`−1
k+1

)
(B.0.13)

Following similar steps for the event B`+1 we can derive:

P0

(
A`+1

∣∣C`k+1

) u.b.
≤ F̄ 1

ω[`+1]

(
ν0[`+ 1]|ν0[`], 0

)
(B.0.14)

P0

(
A`+1

∣∣C`k+1

) l.b.
≥ F̄ 1

ω[`+1]

(
ν0[`+ 1]|ν1[`], 0

)
(B.0.15)

P0

(
B`+1

∣∣C`k+1

) u.b.
≤ 1− F̄ 1

ω[`+1]

(
ν1[`+ 1]|ν1[`], 0

)
(B.0.16)

P0

(
B`+1

∣∣C`k+1

) l.b.
≥ 1− F̄ 1

ω[`+1]

(
ν1[`+ 1]|ν0[`], 0

)
(B.0.17)

Exactly the same bounds can be found for the case s = 1, replacing the index of P

and the conditioned state on F from 0 to 1. For the case of ` = k, which corresponds

to the probabilities in the first term of the sum in (B.0.11), we can use the bounds in

(B.0.14)-(B.0.15) by considering ν0[k] = ν1[k] = ω. We can then use the recursion in

(B.0.12) and the bounds previously found to derive:

P
(
C`k+1

) u.b.
≤ ω

∏̀

m=k+1

µ[m|0] + (1− ω)
∏̀

m=k+1

µ[m|1] (B.0.18)

P
(
C`k+1

) l.b.
≥ ω

∏̀

m=k+1

µ[m|0] + (1− ω)
∏̀

m=k+1

µ[m|1] (B.0.19)

Once we upper and lower bound the probabilities for each term of the sum in (B.0.11),

then the argument of the expectation is a monotonically increasing function of ω[`].
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Therefore, since we are conditioning on the event C`k+1, the expectation will be lower

or upper-bounded by choosing ω[`] = ν1[`] or ω[`] = ν0[`] respectively. Gathering

these results and considering the convexity of V i
t (ωi, i, k), we can write the upper and

lower bound Vt(ω, k), Vt(ω, k) as in (3.3.39)-(3.3.40) where we introduce the max to

make sure our functions remain above c.
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Proof of Lemma 3.3.9

Without loss of generality we can prove the lemma at k = 1 and for general k

simply consider the time translation and the equivalent problem for k′ = 1, 2, . . . , K−

k + 1. For the remainder of the proof the index k is used as the time index for the

test of resource i that starts at time 1. We indicate with Λk
i ,

∑k
`=1 log

(
f i1(y[`])

f i0(y[`])

)
the

log-likelihood of the samples collected for resource i up to time k+ 1. By considering

the belief update in (3.3.8) and the optimal policy structure in Theorem 3.3.3, a final

decision on resource i can be made as soon as

Λk
i ≥ Υi

1 (Ak, k) ∨ Λk
i ≤ Υi

0 (Ak, k) (B.0.20)

where Υi
0,1(Ak, k) , ς(ωi[1], νi0,1(Ak, k)), and we recall the resources in the set Ak are

the resources for which a decision is still pending at time k. From (B.0.20) it follows

that τi

τi , inf
{

0 ≤ k ≤ K − 1 : Λk+1
i ≥Υi

1 (Ak+1, k + 1)∨Λk+1
i ≤Υi

0 (Ak+1, k + 1)
}

(B.0.21)

is a stopping time. From (3.3.28)-(3.3.29) with k′ = 1 we can deduce

∀k = 1, . . . , K,∀Ak ⊆ N

Υi
0(Ak, k) ≥ ς(ωi[1], νi0[1]) = Υi

0, (B.0.22)

Υi
1(Ak, k) ≤ ς(ωi[1], νi1[1]) = Υi

1. (B.0.23)

Therefore

τ i , inf
{

0 ≤ k ≤ K − 1 : Λk+1
i ≥ Υi

1 ∨ Λk+1
i ≤ Υi

0

}
(B.0.24)

is a stopping time always greater than τi, i.e. P (τ i > τi) = 1. We then derive a

bound on the expected value of τ i and this will also hold for τi. We will use a similar
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technique as the one used for the thresholds approximation (see Proof of Lemma 3.3.8

in Appendix B) to write

E1

[
Λτ i
i

]
= E1

[
Λτ i−1
i + Λ1

i

]
≤ Υi

1 + E1[Λ1
i |Λ1

i > 0] (B.0.25)

E0

[
Λτ i
i

]
= E0

[
Λτ i−1
i + Λ1

i

]
≥ Υi

0 + E0[Λ1
i |Λ1

i < 0] (B.0.26)

where the bounds follow by τi being the stopping time, therefore we know

Υi
0 < Λτi−1

i < Υi
1 and Λτi

i > Υi
1 or Λτi

i < Υi
0. By Wald’s identity we have

E
[
Λτi
i

]
= E[τi]E

[
Λ1
i

]
(B.0.27)

and since E0 [Λ1
i ] = −D(f i0||f i1), E1 [Λ1

i ] = D(f i1||f i0) we can write

E0 [τi] ≤
−Υi

0 − E0[Λ1
i |Λ1

i < 0]

D(f i0||f i1)
(B.0.28)

E1 [τi] ≤
Υi

1 + E1[Λ1
i |Λ1

i > 0]

D(f i1||f i0)
(B.0.29)

and combining (B.0.28)-(B.0.29) (conditioned on the status of the resource) and eval-

uating the two bounds in (B.0.22)-(B.0.23) at any time k 6= 0 we can obtain the

bound in (3.3.41).

180



Motivation for the index in our decision algorithm

The reason to approximate the optimal selection rule with the index ωi[k]ri
E[τi−k|k]

finds

its motivation in the asymptotic utility growth. Let us consider L large enough such

that we can neglect the probability of taking a wrong decision over a certain resource,

and we can assume the sensing time for each resource is not affected by having spent

time sensing other resources before. We also further limit our strategy to sequentially

sense each resource until a decision is made and then switch to a different resource.

Then there is an optimal sorting for this strategy which maximizes the expected

utility. To find such sorting, we use an interchange argument. Let us consider a pair

of arbitrary resources, say 1 and 2, and show the sorting 1, 2 at time 1 with K instants

available is optimal if (we use the short notation E[τi] for E[τi − k|k] when k = 0):

− cE[τ1] + (K − E0[τ1])ω1r1 − cE[τ2 − τ1|τ1] + (K − E[τ1]− E0[τ2 − τ1|τ1])ω2r2 >

− cE[τ2] + (K − E0[τ2])ω2r2 − cE[τ1 − τ2|τ2] + (K − E[τ2]− E0[τ1 − τ2|τ2])ω1r1
(a)⇒

− cE[τ1] + (K − E0[τ1])ω1r1 − cE[τ2] + (K − E[τ1]− E0[τ2])ω2r2 >

− cE[τ2] + (K − E0[τ2])ω2r2 − cE[τ1] + (K − E[τ2]− E0[τ1])ω1r1

⇔ −E[τ1]ω2r2 > −E[τ2]ω1r1 ⇔ ω1r1

E[τ1]
>
ω2r2

E[τ2]

where (a) follows from the assumption the sensing time for the second resource is

not affected by the time spent in sensing the previous one, which is a reasonable

assumption for L large enough. However, due to the time variant threshold and the

finite horizon scenario, the expected sensing time strongly depends on the time k the

test starts, and is therefore affected by the sorting. Nevertheless, this index represents

a good approximation that takes into account the identifiability of the resource and

simulation results will corroborate our intuition.
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Derivation of (3.5.15)

The instantaneous SNR at the primary receiver in presence of interference from

the secondary transmitter can be expressed as γP
i,ξ̄i

=
γ̄Pi |hP |2
1+ξ̄i|hS |2

, where hP , hS are the

two complex channel gains and for Rayleigh fading their absolute value squared is

exponential with unitary mean. The primary transmitter is transmitting at constant

rate

CP
i,out = W0 log2

(
1 + γPi,min

)
(B.0.30)

according with a certain threshold γPi,min that corresponds to its designed outage

probability P P
i,out such that

P P
i,out = P

(
γPi < γPi,min

}
. (B.0.31)

which gives the inverse relationship (assuming Rayleigh fading) [Choudhury and Gib-

son(2007)]

γPi,min = −γ̄Pi ln
(
1− P P

i,out

)
(B.0.32)

Thus, in presence of interference, the probability of the primary receiver to not be

able to decode succesfully the symbols transmitted by the primary receiver becomes

P P
i,ξ̄i

= P
(
γ̄Pi
∣∣hP
∣∣2 − ξ̄iγPi,min

∣∣hS
∣∣2 < γPi,min

)
(B.0.33)

where γPi,min = −γ̄Pi ln
(
1− P P

i,out

)
. By assuming independence between

∣∣hP
∣∣2 and

∣∣hS
∣∣2 this probability can be computed by defining a random variable Y = X1 −X2,

where X1 ∼ Exp(α1), X2 ∼ Exp(α2) and deriving the cdf P (Y ≤ y) for y > 0. The

result gives

P (Y ≤ y) = 1− α1

α1 + α2

e
− y
α1 y > 0.

Therefore, we can substitute this CDF in (B.0.33) to find

P P
i,ξ̄i

=
P P
i,out − ξ̄i ln

(
1− P P

i,out

)

1− ξ̄i ln
(
1− P P

i,out

) (B.0.34)

and the effective rate for the primary receiver will be the one expressed by (3.5.15).
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Derivation of F̄ `
ωi[k+`](ω|ϕ, s) in (3.5.18)-(3.5.19)

We focus on the derivation of (3.5.18) for s = 0. The proof for s = 1 in (3.5.19)

follows a similar argument. From the update belief rule in (3.3.8) we know

ωi[k + `] =
1

1 +
1− ωi[k]

ωi[k]

`−1∏
w=0

f i1(o[k + w])

f i0(o[k + w])

(B.0.35)

therefore we can rewrite F `
ωi[k+`](ω|ϕ, 0) as follows

F `
ωi[k+`](ω|ϕ, 0) = P

(
`−1∏

w=0

f i1(o[k + w])

f i0(o[k + w])
<
ϕ(1− ω)

(1− ϕ)ω

∣∣∣∣∣si = 0

)
(B.0.36)

But for our choice of distribution f ij(y), j = 0, 1 in (3.5.13) we can write

`−1∏

w=0

f i1(o[k + w])

f i0(o[k + w])
=

(
θi0
θi1

)`
exp

{(
1− θi0

θi1

) `−1∑

w=0

o[k + w]

θi0

}
(B.0.37)

and if we condition on si = 0 then y[k]

θi0

i.i.d.∼ Exp(1) which implies
∑`

k=1

y[k]

θi0
∼ Γ(`)

where Γ(`) is the sum of ` exponential random variables with unitary mean. Equation

(3.5.18) is then obtained by substituting (3.5.14)-(3.5.17)-(B.0.37) in (B.0.36) and

doing simple algebraic steps, given that
θi1
θi0

= 1 + ζ̄i. For k = 1, it will never be more

convenient to make a test since there would be no time instants to achieve the utility.

This is equivalent to set νi0[1] = νi1[1] and from simple geometric consideration, it is

possible to see that setting νi0[1] = νi1[1] = ρi
ρi+ri

will be consistent with the Lemma,

since ∀k νi0[k] ≥ ρi
ρi+ri

and νi1[k] ≤ ρi
ρi+ri

.
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Proof of Lemma 3.4.3

To prove the submodularity of UDI(A) we show that to prove the property

f(A+ a) + f(A+ b) ≥ f(A+ a+ b) + f(A). (B.0.38)

is equivalent to prove

Ua(ωa) + Ub(ωb) ≥ 0 (B.0.39)

which is true by assumption on the function Ui(ωi): since Ui(ωi) = 0 for αi = 1, βi = 0,

we have Ui(ωi) ≥ 0, ∀i ∈ N for the optimized α∗i , β
∗
i .
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Proof of Lemma 3.4.4

The function is the sum of two terms, to prove the first one is sub-modular one can

follow the same steps in Appendix B. For the second term, it is enough to show that,

for any i, −Υ(degE(i)) is a sub-modular function of E . The function is clearly sub-

modular since is a concave function of the nodal degree, and from this we can conclude

the second term is a positive sum of sub-modular functions, hence sub-modular. To

prove the equivalence of the two optimizations in (3.4.26)-(3.4.28), we first note that

for any E that satisfies the constraints in (3.4.26), the second term of the objective in

(3.4.28) is equal to 0 and the two objectives are equal. It follows that we simply need

to verify that no set of edges that violates the constraint on the nodal degree would

be the optimal solution for (3.4.28). To show this, we note that any unfeasible set of

edges (according to (3.4.26)) can be made feasible by removing some edges. For M

large enough, i.e. M > K maxij uij it is relatively straightforward to verify that such

remotion of edges would improve the objective, preventing an infeasible solution for

(3.4.26) to be optimal for (3.4.28), and this concludes the proof.
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Proof of Lemma 3.4.5

We want to prove

UGT
(
C G
)
≥ αUGT (C OPT ) (B.0.40)

where α = 1
min{Leff,

K
2
}

K−1
K−min{Leff,

K
2
} and Leff ≤ |φk| is the largest test size returned by

the greedy algorithm. We also rewrite

UGT
(
C G
)

= (K − |C G|)UCG

UGT (C OPT ) = (K − |C OPT |)UCOPT

To prove the claim we look at the graph obtained by the union of the cycles in the

optimal and the greedy solution. Since in each of the solution, no node can be in two

cycles it follows that in the obtained graph, no node can be in more than two cycles.

Let us start by assuming there is a cycle C with associated utility uC in the optimal

solution that does not share any node with the greedy solution. This means

UCOPT − uC
K − |C OPT | ≤ uC ≤

UCG

K − |C G| − 1
(B.0.41)

→ UCOPT ≤ (K − |C OPT |+ 1)uC ≤ UCG
K − |C OPT |
K − |C G| (B.0.42)

where (B.0.41) follows from the fact that adding C to C OPT \ {C} improves the

objective but would no improve the objective for the greedy solution. From (B.0.42)

we could then conclude |C G| > |C OPT |, since for |C G| ≤ |C OPT | we would find from

(B.0.42) that UGT
(
C G
)
≥ UGT (C OPT ). This means we can replace a cycle in C G

with this isolated cycle, to form a set of cycle C̃ G whose objective is lower than C G

by greedy search, and that in light of (B.0.42) we can iterate this process by always

picking the cycle to be replaced in such a way that all the cycles in the optimal

solution share at least one node with the set of cycles in C̃ G. Now we have that

all the cycles in the optimal solution share at least one node with a cycle in C̃ G. If
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instead one has that no cycle C in the optimal solution is isolated and that there are

isolated cycles in the greedy solution, then the set C̃ G is formed by removing these

cycles from C G, lowering the objective (by submodularity and greedy search) and one

would again obtain that all the cycles in the optimal solution share at least one node

with the set of cycles in C̃ G. We now iteratively remove cycles from C̃ G and C OPT ,

while bounding the loss in performance and therefore obtain the factor approximation

we want to prove. We can remove cycles from C̃ G in decreasing order of utility and

since we know that for each cycle C ′ of length L in C̃ G there are at most L different

cycles in the optimal solution that share a node with C ′, by greedy search we have

that L · uC′ is greater than the utility given by the cycles in the optimal solution that

are adjacent to cycle C ′. Let us then define Ĉ G as the minimal subset of C̃ G that

can cause the removal of all the cycles in the optimal solution when iterating the

procedure just described, i.e. the set containing the first |Ĉ G| in decreasing order of

utility contained in C̃ G. Again by sub-modularity and greedy search one can easily

find that the objective for Ĉ G is lower than C̃ G, since if the objective could not be

improved by removing a cycle from C G, then it also cannot improve the objective for

C̃ G which has utility strictly greater than C G. At this point we can prove (B.0.40)

for Ĉ Gand this will prove it for C G. We then use dC to define the number of cycles

in C OPT that can be removed by removing the cycle C in Ĉ G and d , max
C∈ĈG

dC. By

then iterating our procedure described above we end up having

(K − |Ĉ G|)UĈG =
1

d

K − |Ĉ G|
K − |C OPT |(K − |C

OPT |)d · UĈG

≥ 1

d

K − |Ĉ G|
K − |Ĉ G| − d+ 1

(K − |C OPT |)d · UĈG

≥ 1

d

K − |Ĉ G|
K − |Ĉ G| − d+ 1

(K − |C OPT |)UCOPT

≥ 1

min{Leff,
K
2
}

K − 1

K −min{Leff,
K
2
}(K − |C OPT |)UCOPT
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and since (K−|C G|)UCG ≥ (K−|Ĉ G|)UĈG this concludes the proof. We have used the

fact that d ≤ Leff and that the function d(K−d) has its maximum in d = K
2

. Fig.B.0.1

shows an example of the iterative procedure to obtain the bound just derived.
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, dC2
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K � 4
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Figure B.0.1: Representation of the iterative procedure to obtain the factor approx-
imation of the greedy algorithm
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