General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MISSION ANALYSTS PROGRAM FOR SOLAR ELECTRIC PROPULSION (MAPSEP)
CONTRACT NAS8-29666
(Revised)
October, 1974

VOLJME III - PROGRAM MANUAL

Prepared by:
K.R. Huling
R.J. Boain
T. Wilson
P.E. Hong
G.L. Shults

Fianetary Systems Mission Analysis and Operations Section
Denver Division Martin Marietta Corporation

FORENORD

MAPSEP (Mission Analysis Prograrn for Bolar Electric Propulsion) is a computer program developed by Martin Mariatta Aerospace, Denver Division, for the NASA Marshall Space Flight Center under Contract NAS8-29666. MAPSEP contains the basic modes: TOPSEP (trajectory generation), CODSEP (Iinear error analysis) and SIMSEP (simulation). These modes and their various options give the user sufficient flexibility to analyze any low thrust mission with respect to trajectory performance, guidance and navigation, and to provide meaningful system related requirements for the purpose of vehicle design.

This volume is the third of three and contains a description of the internal structure of MAPSEP including logical flow. Prior volumes relate to analytical program description and to operational usage.
Foreword i
Table of Contents ii

1. Introduction 1
2. Macrologic 2
2.1 Input/Output 3
2.2 Overlay Structure 4
2.3 Subroutine Hierarchy 7
2.4 Blank Common 7
2.5 Program Loading 13
2.6 Labeled Conmon Blocks 16-A
2.6.1 MAPSEP $16-\mathrm{B}$
2.6.2 TOPSEP 27
2.6.3 GODSEP 35
2.6.4 SIMSEP 51
3. Subroutine Descriptions 54
3.1 MAPSEP 54
3.1.1 BLKDAT 56
3.1.2 DATAM 61
3.1.3 TIME 68
3.2 T \emptyset PSEP 69
3.2.1 BUCKET 71
3.2.2 DATAT 75
3.2.3 DELU 87
3.2.3A DIRECT $92-B$
3.2.3B DTDUO 92-I
3.2.4 FEGS 93
Page
3.2.5 FGAMA 103
3.2.6 GENMIN 111
3.2.7A GRID 119
3.2.7B INJECT (MODINJ, TUGINJ) 123-B
 124
3.2.9 PGM 132
3.2.10 PRINTO (PRINT1, PRINT2) 142
3.2.11 PRTNTD 147
3.2 .12 SIZE 151
3.2 .13 STEP 166
3.2.14A STEST 167
3.2.14B STMTAR 171-B
3.2.15 TEST 172
3.2.16 TREK 175
3.2.17 WEIGHT (UNWATE) 188
3.3 C ODSEP 194
3.3.0 ASTØB S 196-B
3.3.1 AUGCNV 197
3.3.2 3LKDTG 200
3.3.3 BøMB 201
3.3.4 C \emptyset RREL 202
3.3.5 C0VP 207
3.3.6 CYE QEC 217
3.3.7 DATAG 219
3.3.8 DEFALT 220
3.3.9 DIMENS 226
3.3.10 DYN \varnothing 232
3.3.11 EIGPRN 235

Page

3.3.12 ESCHED 239
3.3.13A ESIE 242
3.3.13B FRURN 244-A
3.3.14 FILTR (FILTR2) 244-E
3.3.15 GAINF 249
3.3.16 GAINUS 251
3.3.17 GUIDE 252
3.3.18 INPUTG 262
3.3.19 LøADRC (LøDCøL, LøDRøW) 264
3.3.20A LøCLST 267
3.3.20B MASSIG 268-A
3.3.21 MEAS 268-C
3.3.22 MEASPR 270
3.3.23 MN \emptyset ISE 274
3.3.24 MSCHED 276
3.3.25 NMLIST 281
3.3.26 ØBSERU 282
3.3.27 ØUTPTG 295
3.3.28 PARKEP 301
3.3.29 PARSTA 302
3.3.30 PCNTRL 303
3.3.31 PPAK 306
3.3.32 PRøP 308
3.3.33 PRPART (PRC $\varnothing \mathrm{RR}$, PUNC $\varnothing \mathrm{R}$) 312
3.3.34 PRSDEV (PUNSD) 115
3.3.35 RELCOV 317
3.3.36 SCHED 320
Page
3.3.37 SETEVN 324
3.3.38 SETGUI 329
3.3.39 STMGEN 335
3.3.40 STMPK 338
3.3.41 STMRDR 340
3.3.42 STMISE 346
3.3.43 VERR 349
3.4 SIMSEP 350
3.4.1 CSAMP 360
3.4.2 DATAS 363
3.4.4 EPHSMP 375
3.4.5 ERR SMP 380
3.4.6A EXGUID 384
3.4.6B GUIDMX 387-B
3.4.7 LGUID 388
3.4.8 NLGUID 390
$3.4 .9 \mathrm{~A} \quad 6 \mathrm{D}$ 403
3.4.9B 6PSEAT 407-B
3.4.9C REFTRJ 407-E
3.4.9D SDAT1 407-I
3.4.9E SDAT2 407-M
3.4.10A SET 408
3.4.10B SPRNT1 413-B
3.4 .11 STAT 414
3.4 .12 THC 417
Page
3.5 TRAJ 420
3.5.1 DNळISE (NळISE) 427
3.5.2 DPHI 431
3.5.3 EP 433
3.5.4 EPHEM 440
3.5.5 FIND (FINDI, FIND3) 446
3.5.6A GRAVAR 449
3.5.6B GRAVF \emptyset 452
3.5.7 LøADFM 457
3.5.8 LdCATE 464
3.5.9 МฎТІ 465
3.5.10 NEVTON 467
3.5.11 NUMIN (RUNG2, RUNG4, SETUP) 469
3.5.12 PATH (FLIGHT) 472
3.5.13 PD PT 494
3.5.14 PWNER 496
3.5.15 PRINTT 500
3.5.16 RPRESS 504
3.5.17 S $\emptyset \mathrm{LAR}$ 506
3.6 Utility Routines 507
3.6.1 Minor Routines 507
3.6.2 BPLANE 512
3.6.3 CARTES 520
3.6.4 CONIC 526
Page
3.6.5 ECDMP 530
3.6.6 ENCON (REFINE, $\emptyset S C U E)$ 534
3.6.7 GENINV 539
3.6.8 MPAK 542
3.6.9 MINPAK 546
3.6 .10 RNUM 549
3.6.11 TCळMP (TCOMP1) 551
3.6 .12 THCOMP 554
3.7 REFSEP 559
3.7.1 DATREF 560
3.7.2 DETAIL 562
3,7.3 TRAR 569
3.7.4 TSCEED 574
4.0 References 577

Abstract

1.0 INERODUCTION

MAPSEP (Mission Analysis Program for Solar Electric Propulsion) is intended to provide sufficient flexibility to analyze a variety of problems related to trajectory performance, guidance and navigam tion. However, since low thrust technology is never static, future changes are expected to the models and algorithms contained in MAPSEP. This volume, along with the program listings, is intended to provide the programer/analyst with sufficient information about MAPSEP structure to enable him to make suitable modifications. The program itself is structured such that computational modules are as selfcontained as possible thus facilitating their replacement. It is highly recomended that the programmer/analyst review the two preceding volumes (analytical and user's manuals) before making program changes in order to understand the reasoning behind many of the models and analysis techniques that are coded.

2.0 MACROLOGIC

MAPSEP is composed of three primary modes: TOPSEP, GODSEP and SMASEP (Figure 2-1). A fourth primary mode. REFSEP, is actually a submode of TOPSEP in a functional sense. In addition, a secondary mode, TRAJ, is used by all four primary modes to provide integrated trajectory information. As described in both the Analytic and User's Manuals, the primary modes each serve a specific function in the mission and system design sequence.

Figure 2-1. MAPSEP Modes

All of the routines and structure of MAPSEP are constructed to minimize core storage (thus reducing turn-around time and computer run cost) yet retain the flexibility needed for broad analysis requirements. Furthermore, routines are built as modular as possible to reduce the difficulties in future modifications and oxtersions.

2.1 Input/Output

The user interface or input to MAPSEP is primarily through cards using the NAMELIST feature, with supplementary means depending upon mode and function (Table 2-1), All modes require the \$TRAJ nemelist which defines the nominal trajectory and subsequent

Mode	INPUT			OUTPUT	
	Namelist	Formated Cards	$\begin{aligned} & \text { Tape } \\ & \text { (or dise) } \end{aligned}$	Punched Cards	$\begin{aligned} & \text { Tape } \\ & \text { (or disc) } \end{aligned}$
TOPSEP	\$TRAJ \$TgPSEP	None	STM	None	STM GAIN
GODSEP	\$TRAJ \$GdDSEP sGEvent	Event Data	STM GAIN	States Covariances Guidance	STM GAIN SUMARY
SIMSEP	\$TRAJ \$SIMSEP \$GUID	None	STM	Statistics	STM GAIN SUMARY
REFSEP	\$TRAJ	Print Events	STM	None	STM

TABLE 2-1. MAPSEP User Input/Output
mode usage. However, if recycling or case stacking is performed
it is not necessary to input \$TRAJ again unless desired. The second namelist required for each mode corresponds to mode peculiar input and bears the name of that particular mode. Additional namelist, formated cards, and tape input are generally optional. Besides
the standard pintout associated with MAPSEP, auxiliary output can be obtained which will facilitate subsequent runs.

From an operational viewpoint, MAPSEP employs a maximum of six data files (Table 2-2). Most of these files are not normally saved from run to run, the primary exceptions being STMFILE and GAINFIL used in GODSEP.

I/0 File Number	File	Mode Usage		
		TOPSEP AND REFSEP	GODSEP	SIMSEP
TAPE 3	STM	\$TRAJ namelist	\$TRAJ namelist, trajectory and state transition matrix data	\$TRAJ namelist
TAPE 4	GAIN	-	```a-priori covar- iances and filter gain matrices```	SGUID namelists
TAPE 5	INPUT	input data	input data	input data
TAPE 6	OUTPUT	printout	printout	printout
TAPE 7	PUNCH	-	punched covariances	punched statistics
TAPE 8	SUNMARY	trajectory summaries	event data summaries	\$SIMSEP namelist

TABLE 2-2. Data Files

2.2 Overlay Structure

The structure of MAPSEP is organized into three levels of
"overlays" which are designed to minimize total computer storage.
At any given time, only those routines which are in active use are
loaded into the working core of the computer. The main overlay (Figure 2-2) is always in core and contains the main executive, MAPSEP, and ali utility routines that are common to the three modes. The primary overlays contain key operating routines of each mode, that is, those routines which are always needed when that particular mode is in use. Also included as a primary overlay is the data initialization routine, DATAM, where STRAJ namelist is read, trajec-tory and preliminary mode parameters are initialized, and appropriate parameters are printed out.

The secondary overlays contain routines which perform various computations during a particular operational sequence. Included are data initialization routines, analgous to DATAM, which operate on mode peculiar input and perform mode initialization. An example of core usage in the changing overlay structure may be provided by a standard error analysis event sequence. Error analysis initialization is performed by the overlay DATAG. Transition matrices are then read from the STM file, the state covariance is propagated to a measurement event, and the overlay MEAS is called, which physically replaces, or overlays, the same core used previously by DATAG. Similarly at a guidance event, overlay TRAJ will replace NEAS to compute target sensitivity matrices and overlay CUID will then replace TRAJ to compute guidance corrections. Overlay switching is performed internally and is transparent to the user.

a

Figure 2-2. overtay structure

2.3 Subroutine Hiererchy

Each major overlay is supported by 2 number of routines, some of which are contained in that overlay, others are in higher overlaye. Figurea $2-3,2-4,2-5,2-6$, and $2-7$ illustrate the subroutine hierarchy for the major overlays TRAJ, TOPSEP, GODSEP, SIMSEP, and ' REFSEP, respectively. Multiple calls to subroutines and entry points are not shown, but may be found in the detailed subroutine descriptions (Chaper 3). The hierarchies also do not distinguish between routines called from different overlays.

2.4 Blank Common

One convenfent feature of the CDC 6000 series computer (on Which MAPSEP was developed), is the ability to specify the location in core where blank common is loaded. This allows blank common to be loaded behind the Iongest secondary overlay to be loaded for the current mode. Thus, the length of blank common may be adjusted merely by changing the amount of core requested for the job. The resultant convenience factor is a core saving on many runs. Wherever possible, large arrays whose dimensions vary as a function of input parameters are loaded in blank common. Each mode in its data overlay computes the locations of these arrays as required by the input. Each mode starts using blank common from the first word, and defines for the TRAJ overlay the first available word of blank common it may access. TRAJ stores all information evaluated for integration steps in blank common. For an example of the disparity in blank common lengths required for different rums, the sample error

Figure 2-3. TRAJ Subroutine Hierarchy

Figure 2-4. TOPSEP Subroutine Hierarchy

Figure 2-5. GØDSEP Subroutine Hierarchy

Figure 2-5. GøDSEP Subroutine Hierarchy (Continued)

Figure 2.6 SIMSEP Subroutine Hierarchy

Figure 2-7. REESEP Subroutine Hierarchy
analysis included in the User's Manual (VoI. II Sec. 3.2.2) requires 5184 decimal or 12100 octal words of blank common. The same run without guidance would require oniy $2304_{10}\left(4400{ }_{8}\right)$ words of blank common. A TppSEP run which does no targeting or optimization -merely integrates a reference trajectory -- requires less than 1.00_{10} words of blenk common.

2.5 Program Ioading

The recomended usage of MAPSEP, which also minimizes computer core for a given run, is to load only those overlaye and related routines which are nesessary for the run. This is performed by "satisfying" from a naster library file which contains all of the MAPSEP routines. In this case the deck necessary to run MAPSEP consists only of the overlay structure and the input data decks. The advantage is a direct result of not having to load all utility routines in the main overlay. Instead, the utility routines are loaded only in the overlays where they are used. In addition, blank common can easily be set to the size necessary to handle specific mode runs, thus, reducing further the overall core requirements. Figure 2-8 illustrates core utilization when satisfying from a library file.

If a library file is not used, then the utility routines would be loaded after the $1 / 0$ buffers in Figure 2-8 and before the primary overlays. Although the core required for each primary overlay would be maller, the total core (utility + primary) would be greater. Furthermore, blaak commoa would start at the end of the last routine

(DATAS) so that the overall core penalty, if the entire program is loaded at once, would be approximately 3 k to 20 k , depending upon the operating mode.

For those users who can vary the amount of blank comonon storage in their runs, a guideline to estimate the total MAPSEP core requirements is given below. Blank common length is related directly to the dimension of the dynamic state (NDIM) used in transition matrix (STM) computation, and, the total augmented (knowledge) state (NAUG). The values of "program" and "blank common" must be added to compute the total decimal core for a CDC 6500. Other operating systems must scale these requirements appropriately.

TOPSEP:	$\begin{aligned} & \text { program }=23400 \\ & \text { blank commen }=800+68(\mathrm{~N})+(\mathrm{N})^{2} \end{aligned}$	$\left(N \leq \begin{array}{c} \text { number of } \\ \text { control } \\ \text { meters } \end{array}\right) \text { para- }$
GODSEP:	$\begin{aligned} \begin{array}{l} \text { program } \\ \text { blank common } \end{array} & =23900 \\ & =100+9 \text { (NDIM }^{2} \\ & =5(\text { NAUG })^{2} \\ & =100+13 \text { (NDIM }^{2}+ \\ & =1 \end{aligned}$	(if STM created) (if STM used) (if PDOT used)
SIMSEP:	$\begin{array}{ll} \text { program } & =39100 \\ \text { blank coumon } & =900+\mathrm{N}(\text { NAUG })^{2} \end{array}$	$\begin{aligned} (N= & \text { number of } \\ & \text { guidance } \\ & \text { events }) \end{aligned}$
REFSEP:	program + blank common $=21000$	

) 2.6 Labeled Commons

The labeled common blocks are grouped according to the principal overlays in which they are used: MAPSEP, TOPSEP, GODSEP, and SIMSEP. The type of each variable will be specified as follows:

Type
Designation
Real R
Integer I
Logical L
Hollerith H
Assigned $\mathrm{G} \not \mathrm{f} \mathrm{T} 6 \mathrm{~S}$ Statements
All units will be in $\mathrm{km}, \mathrm{km} / \mathrm{sec}$, days, radians, kg , $\mathrm{kW}, \mathrm{km} / \mathrm{sec}^{2}$, or $\mathrm{km}{ }^{3} / \mathrm{sec}^{2}$ unless otherwise noted.

The following index of common blocks is intended to facilitate their location by the reader.

Common	Principal Overlay	Page
conics	MAPSEP	17
CONST	MAPSEP	16-B
CYCLE	TOPSEP	27
DATAGI	GODSEP	35
DATAGR	GODSEP	36
DIMENS	GODSEP	36
DYN¢S	SIMSEP	51
EDIT	MAPSEP	17
ENCON	MAPSEP	17
EPHEM	MAPSEP	17
GRID	TOPSEP	27
GUIDE	GODSEP	38
IASTM	MAPSE]	18-A
ISIMII	SITHETE1	51
ISTH2	STMAEP	52
KEPCón	GODSEP	39
IABEL	GODSEP	39
LGICATE	GODSEP.	40
LfGEIC	GODSEP	41
MEASI	GODSEP	42
MRASR	Godsisp	44
PRTNT	TOPSEP	28

Common	Principal Overlay	Page
PRINT	TOPSEP	28
PRINTH	TOPSEP	28
PRofPI	GODSEP	46
PR¢PR	GODSEP	46
SCHEDI	CODSEP	47
SCHEDR	GODSEP	49
STMIAB	STMSEP	52
STMI	STMSEP	53 -A
STM2	STMSEP	53-B
ST@REC	STMSEP	$53-\mathrm{C}$
TARGET	MAPSEP	$18-\mathrm{B}$
THIE	MAPSEP	19
TすP1	TOPSEP	28
T $\mathrm{P}^{\text {P2 }}$	TOPSEP	32
TRAJ 1	MAPSEP	19
TRAJ 2	MAPSEP	22
TRKDAT	MAPSEP	26
TUG	TOPSEP	34
W¢RK	MAPSEP	26

2.6.1 MAPSEP Labeled Commons

Most common blocks that appear in MAPSEP primarily are used to save information created by the overlays DATAM and TRAJ. Other common biecks that appear in MAPSEP are used to transmit information from the Conic subroutines, a) Common/CdNST/Program_constants

Name	Dimension	Type	Definition
AU	1	R	149597893. (km/AU)
BIG	1	R	10^{20}
ECEQ	3×3	R	Transformation matrix from Earth equatorial to Earth ecliptic coordinates
F6P	1	R	10^{-15}
FDV	1	R	10^{-25}

Name	Dimension	Type	Definition
CINC	4×10	R	Inclination constants of the planets
CIEAN	4×10	R	Mean anomaly constants of the planets
C \quad MEG	4×10	R	Longitude of the ascending node constants of the planets
chares	4×10	R	Longitude of periapsis constants of the planets
CSAX	2×10	R	Semirmajor axis constants of the planets
DJ1900	1	R	Julian Date of January 0.5, 1900
ETM	15	k	Lunar ephemeris constants
Planet	11	Ii	Hollerith label for the planets
PMASS	11	R	Plametary gravitational constants
PRADIS	11	R	Planetary radii
SMASS	1	R	Solar gravitational constant
SPHERE	11	R	Planetary Sols
SRADIS	1	R	Radius of the sun
Sun	1	H	Hollerith label for the sun
IASTM	1	I	Flag designating method of computing targeting sensitivity matrix
IJH	2×30	I	hrray of flags identifying active controls
LISTAR	6	I	Array of flags identifying active targets
THETA	6×20	R	Sensitivity of final state to changes in thrust controls
PHI	6×6	R	Sensitivity of final state to changes in initial state (STM)

Name	Dimension	Type	Definition
vas	1	R	Speed at closest approach.
CA	1	R	Radius of closest approach
TCA	1	R	Time of closest approach
BDT	1	R	B $\cdot \underline{T}$
BDR	1	R	B - ${ }^{\text {R }}$
TSI	1	R	Time of sphere of influence crossing
VHP	1	R	Hyperbolic excess velocity
SMA	1	R	Semi-major axis
ECC	1	R	Eccentricity
XINC	1	R	Inclination
¢	1	R	Longitude of the ascending node
S¢CEGA	1	R	Argument of periapsis
XMEAR	1	R	Mean anomaly
TA	1	R	True anomaly
FI	1	R	Hyperbolic anomaly
B	1	R	B-vector magnitude
BV	3	R	B-vector
TATM	1	R	Theta aim (angle between the B-vector \& Taxis)
SV	3	R	S-vector (unit vector in direction of VHP vector)

Name	Dimension	Type	Definition
EP币CH	1	R	Julian Date , of launch
TCP	1	R	Total CP time required to integrate a trajuctory
TDUR	1	R	Trajectory termination time from launch in seconds
TEND	1	R	Trajectory termination time from launch in days
TEVNT	1	R	Trajectory event time in seconds
TRCA	1	R	Time of closest approach
TREF	1	R	Trajectory start time from launch, in seconds
TS $\square_{\text {I }}$	1	R	Time at the sphere of influence of the target body
TSTART	1	R	Trajectory start time
TS \sim ¢P	1	R	Actual trajectory termination time
i) Common/TRAJI/trajectory propagation parameters			
Name	Dimension	Type	Definition
ACC	1	R	Integration step-size scale factor
ALPHA	1	R	Inverse semi-major axis of the reference conic
APERT	3×12	R	Gravitational acceleration vectors due to the perturbing bodies
APRIM	3	R	Gravitational acceleration vector due to the primary body
ATDT	3	R	Total differential acceleration vector
BøDY	3	H	Hollerith label of the planets included in the integration
DRMAX	3	R	Maximum deviation from the reference conic
ENGINE	20	R	Array that defines the thrust and power subsystems

Name	Dimension	Type	Definition
FRCA	1	R.	Fraction of the semi-major axis of the target planet to begin closest approach tests
GMII	3	R	Matrix of partial derivatives for transition matrix integration
GM12	3	R	Matrix of partial derivatives for transition matrix integration
GM21	3	R	Matrix of partial derivatives for transition matrix integration
GM22	3	R	Matrix of partial derivatives for transition matrix integration
GT	3×3	R	Matrix of partial derivatives for transition matrix integration
GTAU1	3×3	R.	Diagonal matrix of inverse correlation times (first process)
- GTAU2	3×3	R	Diagonal matrix of inverse correlation times (second process)
Gl1	3×3	R	Matrix of partial derivatives for transition matrix integration
G12	3×3	R	Matrix of partial derivatives for transition matrix integration
G22	3×3	R	Matrix of partial derivatives for transition matrix integration
QN¢ISE	6×6	R	Matrix of process noise
RCA	1	R	Local variable used in TRAJ
RPACC	3	R	Acceleration vector due to radiation pressure
RSTøP	1	R.	Desired stopping radius
SCMASS	1	R	Initial spacecraft mass
Sgmvar	1	R	Initial spacectaft mass variation
STATEO	8	R	First three elements are the initial position vector

Name
Dimension
TGPI 1 .
THRACC 3 R

THRUST 10×20

TNØISE
6

UENC
UENCM
UP

UREL

URELM
12
3
UTRUE

UTRUEM

VENC
VENCM
VP

VREL
3×12
Type

Second three elements are the initial velocity vector

Seventh element is the position magnitude
Eighth element is the velocity magnitude
CP time at the beginning of the integration
Acceleration vector due to thrust:
Array used to define the operation of the thrust subsystem

First three elements contain thrust noise for the first process

Second three elements contain thrust noise for the second process

Reference conic position vector
Reference conic position magnitude
Position vectors of all the bodies included in the integration

Position vectors of the spacecraft relative to all the bodies considered in the integration

Magnitudes of UREL
S/C position vector relative to the primary body

S/C position magnitude relative to the primary body

Reference conic velocity vector
Reference conic velocity magnitude
Velocity vectors of all the bodies considered in the integration

R Velocity vectors of the spacecraft relative to all the bodies considered in the integration

Name	Dimenston	Type	Definition
VRELM	12	R	Magnitudes of VREL
VTRUE	3	R	S/C velocity vector relative to the primary body
VTERUEM	1	R	S/C velocity magnitude relative to the primary body
WPØWER	1	R	Power available
XPRINT	1	R	Print interval
ZK	3	R	Direction cosines of the reference star
j) Common/TRAJ2/Trajectory Flags			
Name	Dimension	Type	Definition
IAUGDC	10	I	Array of flags used to augment the state for transition matrix or covariance integration
ICAIT	1	I	Flag used to initialize TRAJ or to initialize TRAJ and to start integration or to continue integration from the previous time
IENRGY	1	I	Flag that determines the kind of power subsystem
IEVENT	1	S	Local variable used in TRAJ
TEVNTI	1	S	Local variable used in TRAJ
IEVNT2	1	5	Local variable used in TRAJ
IEVNT3	1	S	Local variable used in TRAJ
IEP	1	I	Flag used to locate information about the ephemeris body ($1=$ Sun, $2=$ Earth $_{2} . .$.)
TMDDE	1.	I	Submode designation in TめPSEP
INIT	1	I	MAPSEP initialization flag
INTEG	1	I	Flag used to determine the type of equations to be integrated

Name	Dimension	Type	Definition
INTEG2	1.	S	Local variable used by TRAJ
INTEG 3	1	S	Local variable used by TRAJ
IPFLAG	1	I	Flag used to designate a control phase change
IPHASE	1.	S	Local variable used in TRAJ
IPHASO	1	S	Local variable used in TRAJ
IPHAS 1	1	S	Local variable used in TRAJ
IPHAS2	1	S	Local variable used in TRAJ
IPLACE	1	S	Local variable used in TRAJ
IPRI	1	I	Flag used to locate information about the primary body
TPRINT	1	*	Flag used to manipulate the trajectory print options'
IPRT	1	s	Local variable used in tRAJ
IPRT1	1	S	Local variable used in TRAJ
IRECT	1	I	Flag used to control rectification
ISTEP	1	I	Number of integration steps taken
ISTMF	1	I	Flag used to control STM file use
IST@P	1	I	Flag used to set the trajectory termination logic
ITEST	1	S	Local variable used in TRAJ
ITP	1	I	Flag used to locate information about the target body
ITRAJ	1	I	Local variable used in TRAJ
JPFIAG	1	I	Flag used to designate a primary body change
JPHAS1	1	S	Local variable used in TRAJ
JPHAS2	1	5	Local variable used in TRAJ

Name	Dimension	Type	Definition
JPHAS3	1	S	Local variable used in traj
JTEST	1	S	Local variable used in TRAJ
KST¢P	1	s	Local variable used in TRAJ
KIRAJ	1	I	Flag used to designate whether to test for control phase changes
KUTWFF	1	I	Flag used to designate the actual trajectory stopping criteria
LPRINT	1	5	Local variable used in TRAJ
-LGCAL	1	S	Local variable used in TRAJ
LøCDM	1	I	Location of the output mass variation in blank conmon
L¢CDT	1	I	Location of the temporary derivatives in blank common
LøCDY	1	I	Location of the nominal derivatives in blank common
LбCET	1	I	Location of the integration event time in blank common
LdCFI	I	I	Location of the F matrix in blank common
IDCFD	1	I	Location of the covariance to be integrated in blank common
IbCH	1	I	Location of the integration step-size in blank common
$\pm \phi \mathrm{CM}$	1	I	Location of the output mass in blank common
L $\emptyset C P R$	1	I	Location of the integration print time in blank common
IめCPI	I	I	Location of the actual print time in blank comion
IDOCR	1	I	Location of the stored position magnitudes in blank common
IDOS	1	I	First location in blank common that can be used by TRAJ

Name	Dimension	Type	Definition
LDCT	1	I	Location of the stored trajectory times in blank common
IdCTC	1	I	Location of the output transition matrix or covariance in blank common
LøCTE	1	I	Not used
IØCYC	1	I	Location of the nominal integrated solution in blank common
LøCYP	1	I	Location of the intermediate integrated solution in blank common
L \quad CYT	1	I	Location of the temporary integrated solution in blank common
𤣩6C\%	1	I	Location of the trajectory time in blank common
MEQ	1	I	Total number of equations to be integrated
MEQS	1	I	Dimensions of the augmented transition matrix or covariance
NEQ8	1	I	MEQ minus 8
NEVENT	1	I	Flag used to set event detection logic
M $\mathrm{D}_{\text {DE }}$	1	I	Flag used to set the MAPSEP mode of operation (TøPSEP, GøDSEP, SIMSEP)
MPIAN	1	I	Number of bodies included in the integration
MST0P	1	s	Local variable used in TRAJ
NB	11	I	Planet codes of the bodies to be included in the integration
NBøD	1	I	Number of bodies in NB
NEP	1	I	Planet code of the ephemeris body
NLP	1	I	Planet code of the launch body
HøISED	1	I	Flag used to turn off the noise for the simulation mode

Name	Dimension	Type	Definition
NPHASE	1	I	Flag to test for primary body changes
NPRI	1	I	Planet code of the primary body
NPRINT	1	S	Local Variable used in TRAJ
NREGT	1	I	Number of rectifications executed
NSTGP	1	S	Local Variable used in TRAJ
NTP	1	I	Planet code of the target body
NTPHAS	1	I	Number of the current control phase
ELWMIN*	1	R	Minimum elevation angle for tracking
TOBS*	1	I	Location in STALCC of astronomical observatory
KARDS*	1	I	Number of formatted print schedule cards following the \$TRAJ namelist
NSTA*	1	I	Number of S/C tracking stations
Staldc	3 x 9	R	Station location coordinates
STARDC	3x9	R	Star direction cosines
* Variables exclusive to the REFSEP mode			
W\%RR	200	R	Array used as local variables to conserve core locations

Name	Dimension	Type	Definition
ICYCLE	1	I	Mode cycle flag. $=0$, Do not store namelist varia- bles on disc. $=1$, Store namelist variables on disc.
Name	Dimension	Type	Definition
LøCEI	1	I	Blank common location of the target errors associated with the first step of the control grid.
L¢CE2	1	I	Blank common location of the target errors associated with the second step of the control grid.
LøCEM	1	I	Blank common location of the target error indices associated with the first step of the control grid.
LDCEM2	1	I	Blank common location of the target error indices associated with the second step of the control grid.
LfgCen	1	1	Blank common lonation of the nominal trajectory target errors in the grid mode.
IめCF1	1	I	Blank common location of the performance indices associated with the first step of the control grid.
LdCF2	1	I	Blank common location of the performance indices associated with the second step of the control grid.

Nume	Dimenbion	Type	Definition
CNTRGL	20	R	Initial values of all possible controls other than thrust controls.
ETL¢UT	6	R	Target tolerances in print-out units.
GøUT	20	R	Performance gradient in print-out units.
HøUT	10×22	R	Perturbation array in print-out units.
KNTRøL	20	H	Hollarith names of controls in CNIRQL.
SøUT	120	R	Sensitivity matrix in print-out units.
TARめUT	6		Desired target values in printout units.
Name	Dimension	Type	Definition
LABELT	6		Hollerith names of chosen targets.
LabEL	25	H	Hollerith names of all possible targets.
Name	Dimension	Type	Definition
BT¢L	1	R	Tolerance on control bounds.
CHI	1	R	In plane ΔV direction angle at injection.
CNVRTT	6	R	Conversion constants from input units to internal units for selected targets.

Name	Dimensions	Type	Definition
ST6L	1	R	Test variable for determining linearly dependent columns of the weighted sensitivity matrix.
target	6	R	Vector of desired target values.
TARNめM	6	R	Target values evaluated for the reference trajectory.
TARPAR	6	R	Target values of the most recently generated trajectory.
TARTØL	25	R	Vector of all possible target tolerances.
TARTR	6×6	R	Target values of the reference and all trial trajectories evaluated during a single iteration.
TLDW	1	R	Limit of target error index below which optimization only is performed.
TUP	1	R	Limit of target error index above which simultaneous targeting and optimization is discontinued and targeting only is initiated.
U	20	R	Selection of controls for the specified mode run.
UWATE	20	R	User input weights on controls.
VPARK	1	R	Circular parking orbit velocicy magnitude.
WE	6	R	Vector of target weights.
XMM	1	R	Mean motion of s/c in parking orbit.
PRD	1	R	Radial distance at injection.
PINC	1	R	Geocentric ecliptic inclination at injection
PTO	1	R	Time of injection

Name	Dimensions	Type	Definition
INACTV	20	I	Vector denoting which controls are active, on bounds, or within bound tolerance regions.
INSG	1	I	Flag set when S and G are input through namelist.
ITERAT	1	I	Iteration counter (in grid mode ITERAT indicates the index of the control being changed for a grid trajectory).
IWATE	1	I	Flag designating the desired control weighting scheme.
JMAX	1	I	Number of mission thrust phases.
JWATE	1	I	Flag designating target weighting.
RMAX	1	I	Number of thrust controls (THRUST ($1, J$)) chosen to be elements in U.
K $¢ \mathrm{NVRJ}$	1	I	Convergence flag.
IdCCCDC	1	I	Blank common 1 scation for storage of the inner products of the weighted se'sitivity matrix columns.
LfCcm	1	$\underline{1}$	Blank comnon location for storage of the magnitude of the weighted sensitivity column vectors.
LøCDU	1	I	Blank common location of the total control correction vector (not scaled by GAMA).
LbCDU1	1	I	Blank common location of the perfomance control correction vector (not scaled by GAMA).
LøCDU2	1	I	Blank common location of the constraint control correction vector (not scaled by GAMA).
LøCRFM	1	I	Blank common location of the s/c masses evaluated at event times for the reference and all trial trajectories in a single iteration.

Name	Dimensions	Type	Definition
LøCSDU	1	I	Blank common storage location for the original control correction vectors when a number of controls must be dropped during an iteration.
LbesI*	1	I	Blank common location of the pseudo inverse of the weighted sensitivity matrix.
LøCSWG	1	I	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
L¢CswS	1	I	Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.
LDCTS	1	I	Blank common location of event times for the reference and all trial trajectories in a single iteration.
LøCUL	1	I	Blank common location of minimum and maximum control bounds.
LOCWG*	1	I	Blank common location of the weighted performance gradient.
LøCWS*	1	I	Blank common location of the weighted sensitivity matrix.
I ϕ ciw	1	I	Blank common location of the control weights.
L $¢$ CXR	1	I	Blank common lacation of the 6component state vectors associated with the event times of the reference and all the trial trajectories of a single iteration.
MIN	1	I	Index on the scale factor in the GAMA vector which provides the best control correction.

[^0]

2.6.3 GQDSEP Labeled Commons

GøDSEP labeled commons were created following two specific guidelines as much as possible -- organization first by variable function, and second by variable type. Organization by function will hopefully simplify understanding of the program and minimize the number of common blocks required for any given subroutine. Organization by type is to facilitate conversion to machines which require double precision for many real variables, or which merely allocate different numbers of bytes of core for real, integer or logical variables.

Any variable for which further descriptions may be found under input description is denoted "(See Input)" and refers to Reference 1, Volume II (User's Manue1) Section 2.3.

Name	Dimension	Type	Definition
C¢NRD	1	\pm	```Used for input only =F, set a priori control equal to a priori knowledge =T, assume a priori control is read in namelist $G\emptysetDSEP```
IAde	50	I	Parameter augmentation control (see Input)
IGFøRM	1	I	$=0$, input control uncertainties packed - 1 , input control uncertainties unpacked (see Input)
IPFDRM	1	I	$=0$, input knowledge uncertainties packed $=1$, input knowledge uncertainties unpacked (see Input)
MAXAUG	1	I	Maximum length allowed for augmented state vector (inciuding S/C state) allowable maximum governed only by available core and dimensioned lengths of LIS' (see Common/DIMENS/) and AUGLAB (see Common/LABEL/) arrays

| Name | Dimension |
| :--- | :--- | :--- |
| MAXDTM | |

Name	Dimension	Type	Definition
LףCAUG	5x5	I	Array of locations of first word of covariance partitions within complete augmented covariance matrix. For example, since covariance blocks are ordered, S/C state, solve-for parameters, dynamic consider, measurement consider, ignore parameters, - -LpCAUG (1,3) locates the first word of the sub-block of correlations between the S / C state and the dynamic consider parameters.
LøCBLK	5×5	I	Used for locating first word of covariance partitions when sub-blocks are stored separately but contiguously in core (for further explanation see AUGCNV Sec 3.3.1 and PPAK Sec 3.3.31)
IDCIAB	5	I	Locates within LIST and AUGIAB arrays the begimning of the parameter (IIST) or label (AUGLAB) lists for the five augmented state vector partitions (1) $=1$ (2) $=$ beginning of solve-for parameters (3) $=$ beginning of dynamic consider parameters (4) $=$ beginning of measurement consider parameters $(5)=$ beginning of ignore parameters
navg	1	I	Dimension of augmented state vector
NAUGSQ	1	I	Total number of elements in augmented covariance matrix (=NAUG**2)
NBLK	1	I	Total number of elements required to store individual, packed covariance pertitions (for further explanation, see AUGCNV, Sec 3.3.1, and PPAK, Sec 3.3.31)
NDIM	5	I	Dimensions of individual state vector partitions (1) $=$ S/C state (2) $=$ solve-for parameters (3) = dynamic consider parameters (4) = measurement consider parameters (5) = ignore parameters
NPHSTM	1	I	Number of dynamic parameters (including $5 / C$ state) used included in state transition matrices on Sinfile.

Name Dimension Type D__ Definition
d) Common/GUIDE/Guidance Related Variables Not Specifically Used for Scheduling or Propagation

BURNP		R	Guidance interval parameters (1) - vehicle mass at guidance start (2) - thrust acceleration magnitude at guidance start (3) - vehicle mass at guidance end (4) - thrust acceleration magnitude at guidance end
Cø¢NT	5	R	Control weighting factors, following correspondences assumed

(1) - acceleration magnitude
(2) - cone angle
(3) - clock angle
(4) - cutoff time
(5) - startup time

delay	1	R	Guidance delay time for current maneuver
S	6×5	R	Guidance sensitivity matrix of S / C state at cutoff time with respect to controls
SMAT	15	R	Sensicivity matrix of target parameters w.r.t. control parameters
TARWT	3	R	Target parameter weights
TBURN	1	R	Length of burn interval for current guidance maneuver

Stop time for integrator if either guidance or prediction requires integration of transition matrices to some time past TFINAL. For both guidance and prediction TDUR (Common/TIME/) is defined according to the maximum of TGSTØP and TFINAL

TWFF	1	R	Cutoff time for current guidance maneuver
T 10 N	1	R	Execution time for current guidance maneuver
UMAX	5	R	Maximum (10) control corrections allowed
VARDV	4	R	Atray of variances of delta-V execution error parameters (1) - magnitude proportionality ($100 \%^{2}$) (2) - magnitude resolution ($\mathrm{km}^{2} / \mathrm{s}^{2}$) (3) - in-ecitptic pointing (rad ${ }^{2}$) (4) - out-of-ecliptie pointing (rad^{2})
VARMAT	18	R	Variation matrix, sensitivity of target conditions with respect to S / C state at cutoff time
IPdL	1	I	Guidance policy flag for current guidance event (see IGPDL, Input)
IREAD	1	I	Read policy for namelist \$GEVENT for current guidance event (see IGREAD, Input)
NCON	1	I	Number of controls to be used for low thrust guidance

e) Common/KEPC \ddagger /Transformations Required When Ephemeris Body State is in Keplerian Elements

Name	Dimension	Type	Definition
DXDKAF	36	R	Transformation from Keplerian to cartesian elements for ephemeris body evaluated at cutoff time of guidance event
DXEKBR	36	R	Transformation from Keplerian to cartesian ele'lents for ephemeris body evaluated at guidance maneuver execution time
DXDKST	36	R	Transĩonation from Keplerian to cartesian elements for ephemeris body evaluated at time TSTM, the current trajectory time as defined by the STM file
LISTPH	6	I	List of ephemeris parameter numbers for whichever set (Keplerian or cartesian) is augmented to the S/C state

f) Common/LABEL/Labeling Arrays
AUGLAB 30

EVLAB 2×5 E
Array of event labels
(1,1),(2,1) - propagation (1,2),(2,2) - eigenvector (1,3), $(2,3)$ - thrust (1,4), $(2,4)$ - guidance $(1,5),(2,5)-p r e d i c t i o n$

JøBLAB	10	H	Run identifying label input through namelist $\$ G \emptyset D S E P$ and printed at the fop of the first page of each measurement and event print
mestab	2×10	H	Array of measurement labels used for printing in NEASPR (see IEASPR, sec. 3.3.22 for further details)
PGLAB	5×5	H	Array of labels for control covariance subblocks, used primerily for punching. Upper triangle elements are identical to those names used for control uncertainty input (CXSG, CXLG etc). Lower triangle blocks correspond to transposes of upper triangle blocks -- their labels are so denoted by an added doller sign (CXSG\$,CXUG\$, etc).

Name	Dimension	Type	Definition
PLAB	5×5	H	Array of labels for knowledge covariance sub-blocks. Upper triangle elements are identical to those names used for knowledge uncertainty input (CXS, CXU, etc). Lower triangle blocks correspond to transposes of upper triangle blocks -- their labels are so denoted by an added dollar sign (XSS, CXUS, etc).
VECLAB	2x5	H	Array of word labels for augmented state vector partitions $(1,1),(2,1)$ - state $(1,2),(2,2)$ - solve-for $(1,3),(2,3)$ - dynamic $(1,4),(2,4)$ - measurement $(1,5),(2,5)$ - ignore
g) Common/LøCATE/Parameters Used To Locate Matrices In Blank Common			
p	1	I	Location of current knowledge covariance in blank common
PG	1	I	Location of current control covariance in blank common, if guidance events are included
FWIS	1	I	Location of weighted least squares reference covariance in blank comon if using sequential weighted least squares OD algorithm
PHI	1	I	Location of complete augmented transition matrix in blank common if not using covariance integration option
PTEMP	1	I	Location in blank c mmon of temporary working area the size of the augmented covariance (and therefore transition matrix, also) By convention the output of CøVP is always located by PTEMP
PLゆCAL	1	I	Inocation in blank common of local working storage area the size of the augmented covariance matrik. This area is intended to be used locally within a subroutine and not to be saved for use in another subroutine.

Mame	Dimension	Type	Definitien
H	1	I	Location of observation matrix in blank common
GAIN	1	I	Location of gain matrix in blank common
PG1	1	I	Locations of four augmented covariance
PG2	1	I	size blocks in blank conmon used for

guidance computations

Name

PRINI

PRNC \varnothing V

YRNSTM

PR $\emptyset \mathrm{PG}$

PUNCHE

SCHFTL

SUMARY

VRNIER

Type

I

L

I

I

L

I

I

L

Flag controlling measurement print $=$. TRUE.; causes full print before and after current measurement $=$.FALSE., suppresses measurement print except for that on Surrary file if summary print requested (see SUMARY, common/LDGIC/)

Array of flags controlling print options on covariance sub-blocks (see Input)

Array of flags controlling print options on transition matrix partitions (see Input)

Flag controlling propagation of control covariance
=.TRUE., propagate control simultaneously with knowledge covariance =.FALSE., do not nropagate control covariance

Array of flags controlling punching of complete augmented state unceriainties for different event types (see Input).

Flag controliing termination or continuation of run after mesh failure on STM file if MESH = .TRUE., SCHFTL has no effect. if RESH = .FALSE., then SCHFTL = .TRUE., will terminate error analysis processing, while SCHFTL = .FALSE., will result in diagnostic print and the currently scheduled measurement or event will not be processed

Flag controlling SUMARY file print $=$.TRUE., prints sumary infonmation for all measurements on SUMMARY file (TAPE 8) $=$.FALSE $_{n}$, no summary print

Flag indicating if current guidence event is a vernier (=.TRUE.) or a primary (=.FAISE.)

i) Common/MEASI/Measurement Related Integer Variables

Parameter number of first ephemeris element as used for input (See IAUG, Input).

Name	Dimension	Type	Definition
IAUGST	1	I	Parameter number for first station location parameter
IBAZEL	1	I	Parameter number for first azimuth-elevation angle bias parameter
IBDIAM	1	I	Parameter number for apparent planet diameter measurement bias
IBRAD	1	I	Parameter number for right ascension/declination measurement biases
IBSTAR	1	I	Parameter number of first star-planet angle measurement bias
IBEWAY	1	I	Parameter number of first 2-way DSN measurement bias term
IB3WAY	1	I	Parameter number of first 3-way DSN measurement bisa term
IDATYP	1	I	```Leading digit of decoded measurement type =1, ground-based range-race =2, ground-base range m3, azimuth-elevation angles =4, on-board optics - star-planet angle =5, on-board optics - apparent planet diameter```
IDMAX	1	I	Maximum number allowed to be asslgned to a dynemic parameter. All parameter numbers less than or equal to IDMAX are assumed to correspond to dynamic parameters. Those greater than IDMAX are assumed to be measuremint parameters.
TEPHEM	1	I	If any ephemeris elements included in augmented state vector, denotes form $=0$, time-evolving cartesian $=1$, stationary cartesian =2, stationary Keplerian
IGAIN	1	I	Flag indicating gain computation algorithm to be used (see Input)
ISTA1	1	I	Parameters used in decoding measurement codes.
ISTA2	1	I	For further explanation see ØBSERV, sec. 3.3.26.
ISTA3	1	I	
MAX STA	1	I	Maximum number of stations for which station location errors and range and range-rate biases can be augmented to the state (maximum number accommodated by TAUG array). See $\emptyset B S E R V$, sec. 3.3.26 for further explanation.

Nsine	Dimension	Type	Definition
NEPMEL	1	I	Number of ephemeris elements augmented to state for current error analysis rur
NR	1	I	Dimension of observation vector for measurement currently being processed
NSOLVE	1	I	Total number of variables and parameters being estimated by OD algorithin (number of S/C state variables plus number of solve for parameters)
NST]	I	Tofal number of ground stations defined in STAL 6 C array for possible use in ground-based observations (maximum 9). For further explanation see NST and STALgC, in Input.
j) Common/MEASR/Measurement Related Real Variables			
AZMUTII	1	R	Azimuth angle in degrees from station ISTA1 (\emptyset BSERV, sec 3.3 .26) computed on 1 y for azimuthelevation angle measurements
AZMEH2	1	R	Azimuth angle in degrees from station ISTA2 ($\emptyset B S E R V$, sec 3.3 .26) computed only for aziauthelevation angle measurements and if ISTA2 >0.
BDYDEC	1	R	Declination angle of the target body (in degrees) as seen from the designated observation
BDYRTA	1	R	Right ascension angle of the target body (in degrees) as seen from the designated observatory
ELEV	1	R	Elevation angle in degrees from station ISTAl (\emptyset BSERV, sec 3.3 .26) computed for all groundbased measurements
ETEV2	1	R	Elevation angle in degrees from station IsTA2 (6 BSERV, sec 3.3 .26) computed for all groundbased measurements when ISTA2 >0
R	16	R	Dual purpose measurement noise matrix. Before the knowledge covariance is updated at a measurement, R is the covariance of the measurement white noise. After the lnowledge covariance is updated, R is the measurement residual matrix. For further explanation see Vol. I, Analytical Manual, sec 6.4.
RANGE	1	R	Range in km from station ISTA1 (0 ESERV, sec 3.3.26) computed for all ground-based measurements

Name	Dimension	Type	Definition
RANGE2	1	R	Range in km from station ISTA2 (fBSERT, sec 3.3.26) computed for all ground-based maesurements if ISTA2 >0
RRATE	1	R	Range-rate in km/s from station ISTA1 ($\emptyset B S E R V$, sec 3.3.26) computed for doppler (range-rate) measurements oniy
RRATE2	1	R	Rangerrate in km / s from atation ISTA2 ($\emptyset \mathrm{BSERV}$, sec 3.-.26) computed for doppler (range-rate) measurements only, and only if ISTA2>0
SCDEC	1	R	S/C geocentric equatorial declimation in degrees, computed for all ground-based measurements
SCGLON	1	R	S/C geocentric equatorial longitude in degrees, computed for all ground-based measurements
STALOC	3×9	R	Array of stetion locations in cylindrical equatozial coordinates $\operatorname{STALDC}(1, I)=$ spin radius (kn) STALDC $(2,1)=$ longitude (degrees externally, radians internally) STALbC ($3, I$) $=$ height (km) (See Input)
STARDC	3 x 9	R	Array of ecliptic star direction cosines (or, equivalently, unit vectors in star directions) See Input
STPANG	3	R	Array of starplanet angle measurements in degrees, corsputed only for star-planet angle measurements. (1)-angle between planet/target body and star ISTAI ($\emptyset \mathrm{BSERV}$, sec 3.3.26) (2),(3) - same as (1) above only for stara ISTA2 and ISTA 3 respectively
VARMES	10	R	Array of measurement white noise variance. Default values and input are by standard deviations in array SIGMES (see Input) internal values require units conversion as well as squaring. (1), 2-way doppler ($\mathrm{km}^{2} / \mathrm{s}^{2}$) (2), 2-way range (kn ${ }^{2}$) (3), 3-way equivalent frequency drift ($\mathrm{km}^{2} / \mathrm{s}^{2}$) (4), 3-way range (4, ${ }^{2}$) (5), azimuth angle (rad^{2})

Name
Dimension Type
(6), elevation angle (rad^{2})
(7), on-board optics-star-planet angle (rad^{2})
(8), on-board optics-apparent planet diameter (rad^{2})
(9), on-board optics-center finding uncertainty ${ }_{2}$ in conjunction with star-planet angle (rad ${ }^{2}$)
(10), not used
k) Common/PRGPI/Propagation Related Integer Variables

IPR ϕ P	I	I	Flag controling print options with propagation event $=0$, no print =1, print standard deviations and correlation coefficients for S / C state vector only $=2$, full eigenvector print
IAFTER	1	I	not used
LBURN	1	I	not used
LDELAY	1	I	not used

EPTAU 3×2

EPVAR 3×2 R

GMASS
1
R

Array of correlation times for thruster process noise terms $\operatorname{EPTAU}(I, J)$ represents correlation time for process whose variance is $\operatorname{EPVAR}(I, J)$ (See Below)

Array of variances for thruster noise processes. All elements are used for covariance integration, while only elements $\operatorname{EPVAR}(1,1)$ are used in the effective process noise model.

Primary processes
(1,1), magnitude variance
(2,1), cone angle pointing variance $(3,1)$, clock angle pointing variance

Secondary processes
$(1,2)$, magnitude variance
$(2,2)$, cone angle pointing variance
$(3,2)$, clock angle pointing variance
not used

Name	Dimension	Type	Definition
GTBURN	3×3	R	GT matrix (See DYN \emptyset, Section 3.3.10) evaluated at the beginning of a guidance burn interval.
gtdlay	3×3	F	GT matrix (See DYND, Section 3.3.10) evaluated at cutoff time of guidance interval.
gTSAVE	3×3	R	GT matrix (See $\square Y N \varnothing$, Section 3.3.10) saved at beginning of each propagation interval during normal knowledge propagation.
Q	6×6	R	Effective process noise matrix computed in DYNø (Section 3.3.10).
SAVACC	3	R	Thrust acceleration magnitude for bias, and first and second noise processes.
TG	1	R	Input epoch for control uncertainties if different from epoch for knowledge uncertainti.es.
TФLBAK	1	R	Backward tolerance on reading transition matrices from STM file.
TøLFøR	1	R	Forward tolerance on reading transition matrices from STM file.
XG	6	R	not used.
m) Common/SCHEDI/Scheduling Related Integer Variables			
IGPdL	20	I	Array of guidance policy control flags $=0$, no maneuver, print control uncertainties $=1$, target to cartesian state, XYZ, at time specified by TIMFTA $=2$, two variable $B-p l a n e ~ t a r g e t i n g ~(B \cdot T, ~ B . R) ~$ $=3$, three variable $B-p l a n e$ targeting ($B \cdot T$, $\mathrm{B} \cdot \mathrm{R}^{\left(\mathrm{T}_{\mathrm{SOI}}\right)}$ =4, closest approach targeting (radius of closest approach, inclination, time of closest approach). $=5$, XYZ targeting, yariable time of arrival.
IGREAD	20	I	Array of guidance event read control flags. (See Input)
ITPGL	20	I	Not used.

Mame	Dimension	Type	Definition
MCDDE	50	I	Array of measurement (and propagation event) codes used in scheduling (See SCHED, Section 3.3.36).
MCbuNT	1	I	Measurement counter, total cumulative number of measurements processed.
MESEVN	1	I	Gurrent measurement or event code.
MNEXT	1	I	Code for measurement (or propagation event) to be scheduled after the current event.
APCNTR	11	I	Array of counters for classes of data types used for measurement print control (See Input).
MPFREQ	11	I	Array of print frequencies for measurement print control (See Input).
NGNTE	1	I	Counter indicating number of current (or most recently executed) eigenvector event.
NCNTG	1	I	Counter indicating number of current (or most recently executed) guidance event.
NCNTP	1	I	Counter indicating number of current (or most recently executed) prediction event.
NGNTT	1	I	Gounter indicating number of current (or most recently executed) thrust event.
NEIGEN	1	I	Total number of eigenvector events to be processed.
NGUID	1	I	Total number of guidance events to be processed.
NPRED	1	I	Total number of prediction events to be processed.
NSCHED	1	I	For input, number of scheduling cards to be read. During execution, number of elements of SCHEDM (Cnmmon/SCHEDR/) to be tested for scheduling.
NTHRST.	1	I	Total number of thrust events to be processed.

Name Dimension

Type
Definition

n) Common/SCHEDR/Scheduling Related real Variables

DELITM	1	R	Propagation interval length, time between previously and currently scheduled event. DELTIM computed between STM file time when reading $5 T M$ file, and between actual scheduled times for PDOT and STM file generation
SCHEDM	3×50	R	Array of measurement schedule times.
			$\begin{aligned} \operatorname{SCHEDM}(1, I)= & \text { Next time to be scheduled } \\ & \text { for measurement type MC } \overline{\mathrm{DE}}(\mathrm{I}) \\ \operatorname{SCHEDM}(2, I)= & \text { Stop time for } \operatorname{MC\emptyset DE}(I) \end{aligned}$
			$\begin{aligned} \operatorname{SCHEDM}(3, I)= & \text { Time increment for scheduling } \\ & \operatorname{MC\emptyset DE}(I) . \end{aligned}$
TGURR	1	R	Current trajectory time.
TCUTøF	20	R	Array of guidance event cutoff times.
TDELAY	20	R	Array of guidance event delay times.
teigen	20	R	Array of eigenvector event times.
trinal	1	R	Final trajectory time for current run.
TGUID	20	R	Array of guidance event times.
TIMFTA	1	R	Target condition evaluation time for fixed time of arrival targeting.
TMNEXT	1	R	Time of next measurement (or propagation event) to be scheduled (See SCHED, Section 3.3.36).
TPAST	1	R	Time of most recently scheduled measurement or event. Set to previous scheduled time when generating STM file or executing PDØT. Set to previous STM file time when reading from STM file.
TPRED	10	R	Array of prediction event times.
TPRED2	10	R	Array of times predicted to for prediction events.

Name, Jimension	Type		
TSTM	1	R	Current time from STM file when reading STM file.
TTHRST	20	R	Array of thrust event times.

2.6.4 SIMSEP Conmon Blocks

The SMMSEP overlay of MAPSEP has seven common blocks: DYNøS, ISIMI, ISIM2, SIM1, SIM2, SIMLAB and STøREC. DYNDS contains the random number seed and thrust noise terms; it is essental to all SIMSEP routines that call the random number generator, RNJM. SMMI and ISIMI are common blocks containing information essential to the operation of SIMSEP and execution of the Monte Carlo loop. SIM contains real data and ISTMI, integer daid. SIM2 and ISTM2 have a correspondence similar to SIMI and ISIM1 and contain accumulated statistical data. SIMLAB contains Hollerith labels used throughout the program. Finally, STøREC is a storage common block with three sets of data, each pertaining to the actual, estimated, and reference world integrating conditions.

a) Common/DYNOS/Process Noise Variables

Name	Dimension	Type	Definition
IRAN	1	I	Random number seed.
TVERR	6x3	R	Time varying thrust errors.
b) Common/ISIMI/SIMSEP Integer Variables			
IEPH	5	I	Ephemeris planet code.
IGL	5	I	Guidance Flag.
INREF	1	I	State vector read-in flag.
I叮	1	I	Printout frequency flag.
IPUNCH	1	I	Punch output flag.
ITMX	5	I	Maximum number of iterations allowed in nonlinear guidance.

Name	Dimenaion	Type	Definition
A \quad K	1	R	Backup convergence tolerance for the weak convergence test.
CONWT	6×5	R	Contral weights.
CPMAX	1	R	Computer processing time limit.
DVMD $\emptyset \mathrm{T}$	1	R	Mass flow rate for chemical propulsion system.
DVMEN	1	R	Maximum delta-velocity magnitude step.
EPMERR	$6 \times 7 \times 2$	R	Ephemeris error covariances (in eigenvector/ eigenvalue format) for the ephemeris bodies.
EXVERR	4	R	Midcourse velocity correction execution errors.
GMERR	3	R	Gravitational constants errors.
MEND	1	R	S/C reference mass at TEND.
PG	6×7	R	Spacecraft control error matrix (eigenvector/ efgenvalue format).
RMCE	5	R	S/C reference mass at a guidance event.
RMTAR	5	R	S/C reference mass at a target point.
RXGE	6x5	R	Reference state vector at a guidance event.
RXTAR	6×5	R	Reference state vector at a target point.
SCERR	10	R	Spacecraft errors.
SMAT	36×5	R	Sensitivity or guidance matrix.
SPF IMP	1	R	Specific impulse for chemical propulsion system
TGERR	6×20	R	Thrust bias errors.
TEPH	2	R	Epoch of evaluation of the ephemeris errors.
TGE	5	R	Guidance event epoch
TdL	5	R	Target condition tolerances.

Name	Dimension	Type	Definition
ttar	5	R	Target epoch.
UATAR	6×5	R	Conversion factor for converting target variables from internal to external printout units.
XEND	6	R	Reference state vector at TEND.
XEPH	6×2	R	Ephemeris planet state vector.
Xtarg	6×5	R	Reference trajectory target variables at TTAR.
- -	- - - - -	- - -	- - - - - - - - - - - - - -
f) Common/SIM2 Monte Carlo Real Variables			
ADVT	2	R	Total delta-velocity magnitude statistics,
AMASS	2	R	Accumulated final spacecraft mass statistics.
ATHCDV	420	R	Accumulated total thrust control statistics.
CNC§V	42×5	R	Accumulated active thrust control error statistics.
DVcov	$3 \times 4 \times 5$	R	Accumulated delta-velocity vector ertor matrix.
dvmags	2x5	R	Accumulated delta-velocity magnitude statistics.
ENDCøV	6×7	R	Spacecraft control error covariance at the final trajectory time TEND.
$\operatorname{ccc} \phi \mathrm{V}$	$6 \times 7 \times 6$	R	Accumulated spacecraft control error statistics evaluated at guidance events.
GMCDV	2×5	R	Accumulated mass error statistics evaluated at guidance events.
TCCdV	$6 \times 7 \times 5$	R	Accumulated spacecraft control error statistics evaluated at the target points.
TERCDV	42x5	R	Accumulated target error statistics.
TMC 0 V	2x5	R	Accumulated mass error statistics evaluated at target points.

g) Common/STøREC/Stored Variables

Name	Dimension	Type	Definition
SCRA1	1	R	Stored radiation pressure coefficient.
SECCI	4×10	R	Stored planetary eccentricities.
SEMN1	15	R	Stored lunar orbital elements.
SEXV1	1	R	Stored exhaust velocity.
SINC1	4×10	R.	Stored planetary inclinations.
SMEAN 1	4×10	R	Stored planetary mean anomalies.
SNTPHI	1	R	Stored thrust phase number.
S 6 MEGG 1	4×10	R	Stored planetary nodes.
S6MGII	4×10	R	Stored planetary longitude of APSES.
SPM1	11	R	Stored planetary masses.
SPOI	1	R	Stored electric power constant.
SSAX1	2×10	R	Stored planetary semi-major axes.
SSCMI	1	R	Stored S/C mass.
SSMI	1	R	Stored solar mass.
STEFF 1	1	R	Stored thruster efficiency.
STHRTI	6x20	R	Stored thrust control profile.
SXEPH1	6×2	R	Stored ephemeris body cartesian states

Note that there are, in fact, three sets of data in SThREC corresponding to post-scripts, 1, 2, and 3. For example, SCRAl contains the radiation pressure coefficient used while integrating an actual trajectory. SCRA2 also contains a radiation pressure coefficient but is used while integrating an estimated trajectory. Likewise, SCRA3 and all post-script-3 constants are used for generating the reference trajectory.

3.1 Subroutine: MAPSEP

Purpose: MAPSEP is the executive routine that selects the mode of operation (primary overlay): TqPSEP, GqDSEP, STMSEP. or REFSEP. In addition, MAPSEP calls a fifth primary, overlay DATAM, to initialize many trajectory parameters, and to print the initial trajectory information.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition

MODE	I	C	Flag determines the program's operational mode. $= \pm 1$, Targeting and Optimization (TGPSEP). $= \pm 2$, Error analysis (GđDSEP). $=\ddagger 3$, Simulation (SIMSEP). $=\mp 4$, Reference trajectory propagation (REFSEP). Positive values will cause recycling back to the MAPSEP main, while negative numbers will cause recycling back to the mode main.
ICYCLE	0	c	Flag used for writing the mode's namelist onto disc when recycling back to the mode's main. $=0$, Do not store the namelist variables on disc. $=1$, Store the namelist variables on disc.
INIT	0	C	Flag used to read namelist \$TRAJ from disc during recycling.

Local Variables:

Variable
ISEND

Definition

Index used to select the program's mode of operation. ISEND is the absolute value of MøDE .

Subroutines Called: DATAM, TGPSEP, G\&DSEP, SIMSEP, REFSEP
Common Blocks: (BLANK), CGNST, CYCLE, EDIT, EPHEM, TIME, TRAJI, TRAJ2, TRKDAT, W申RK

Logic F1ow:

3.1.1 Subroutine: BLKDAT
Purnose: To initialize defauit values of programconstants.
Method: DATA statements.
Remarks:
The following four pages contain a listing of
BLKDAT with respect to the default constants
in MAPSEP. The variables are defined in
appropriate common blocks (Section 2.6).
Common CळNST: AU, PI, RAD, TM, FøP, BIG, SMALL
Common EPHEM: DJ1900, SUN: PLANET, SMASS, PMASS,
CSAX, CECC, CINC, C
SPHERE, SRADIS, PRADIS
Common TRAJI: UP, VP

DATA AU／1．44597HYSEd／
DATA HOOY／12＊6H／
DATA UJIYU0／2415020．U／
DATA PIのKAD／3．141כч26ら35891932344．57．29577ヶロ1308232／
DATA TM／OQ400．0／

DATA SUN，FLANET／GHSUN ，DHMENCKY，GHVENUS OHELRTH，GHMAKS ， \＄GHJUPITR，GHSATUKN，GHURANUS，GHNEPINF，GHHLUTU，GHENCKE GHMOUN

DATA SMASS，PMASS／

SEMIMAJOK AxIS UF UMAIT（KM）
data csax／

M	ל． 7 ¢09134ษ4．3ट4Ч10E＋0\％，	U．
\checkmark	1．082038833003187E＋08．	U．
E		0.
4		0.
J	7．（632ん3664441）／58E＋i）	0.
S		v 。
4		－0．5cti $70004144000 t+04$ ，
－		1．810382d3780く377ヒ＋0ら，
P		U．${ }^{\text {u }}$
x	0.0 ，	U．

eccentricity uf rlanet oreit
data（CECC（I），I＝1，टU）／

m	C．0．0142100000000E－01．	2．040000000000000t－05＊
M	－3．000000000000000E－08．	U．
V	6．dく0090000000000t－03，	－4．174000000u00000t－u5，
v	9．100000000000000E－08，	0.
E	1．6751040U6000000E－02．	－4．150000000000000c－05，
E	－1．260000000000000E－07．	U．
A	Y．3312900U0000000E－02，	Y．टu0400000000000t－05，
A	－7．700000000000000E－0\％，	0.
J	$4.8337 \times 0000000000 \mathrm{E}-02$ 。	1．630200000000000上－04，
J	0.	u＊

\＄／	
data	（CECC（I）， $1=21940) /$
S	ל．bescubu0u000u000e－02；
5	0.1
U	4．704630000000000t－02，
U	0.0
N	A．5ご84ヶ0000000000t－03，
N	0.1
p	己．488033033620924E－01．
${ }^{3}$	0.0
X	U．；
X	0. －
± 1	－

Inclifyation of planei orbit
DATA（CINC（I），I＝1， $2(0) /$

M		3．241760849752789ヒーUう，
N	－3，19977Uぐつ3¢くす40E－07，	0.0
v	5．923002075072064E－02．	1．15bblu339297630t－059，
v		U．
E	0.	0.
E	0.1	0.0
A		－1．17s（1）7245096180t－05＊
A	2．2014つ4112237303E－07．	U．＊
J	2．2841才26ソられ1135えと－32，	－Y．046く736ご2190714E－05：
\downarrow	0 。	U．
\＄1		
data	（CINC（I）， $1=21,4 \mathrm{~J})$／	
5	4．350378004700200E－02．	－ $3.757018897752580 \mathrm{t}-45$ \％
5	0.0	U．
U	1．348054大98110507E－02，	9．046273622190725r－06，
U	0 －	0.0
N	3．105377UJ1610904E－02，	－1．らyヶbobl47661470t－04，
N	0.0	U．
P	2．9467069708ら4644E－01，	0 ．
F	0.0	0.
x	0.3	0.
x	0：，	U．
\＄／		

LOMGITUDE UF ASCENDING NDDE OF rlanet OREI
DATA（COMEG（I），I＝1，こひ）／

b／	
DATA	（COMEG（ 1$), I=() \cdot+0) /$
5	
3	U．
4	1．242640770442747E＋00．
U	0.
N	2． $200773383300414 E+000$
N	u ．
${ }^{2}$	1．4143s／bつU102258E＋ 0 O．
${ }^{3}$	i）．
x	0.
x	0.
\＄／	

LUNGITUDE UF PENIGEF UF FLANET DHRIT DATA（COMEGT（1） $1=1+20) /$

M	
M	5．14387315557c180E－069
V	C．2717ヶ7450ヵら5004E＋00．
V	
E	1．750030s $1327+065 F+00$ ．
E	
A	
A	
J	
J	0.0

DATA（COMEGT（I）：I＝C1，40）／

S	
3	0 －＊
U	2．9502420ひo38̈く752E＋00，
U	0．＊
N	7．635293817454256E－01．
N	U．
P	3．90991．3uc791448t＋00\％
p	0.
x	0.
x	0.1
4	

mear aindmaly uf planel githit
vATA（CMEAN（I）：I＝1，CO）／
M
M
M
V
V
E
E
A
A
J
J

$$
\begin{aligned}
& 1 . / 851119 \sim 5351731 E+00, \\
& 4.7266462=5971626 E-09, \\
& 3.710626171888563 E+00, \\
& 1.682497370426535 E-06, \\
& 6.656543784118674 E+00, \\
& -1.454768762235648 E-07, \\
& 5.576540523254305 E+00 ; \\
& 2.305444735227422 E-07, \\
& 3.930058175721440 E+00, \\
& \text { U. }
\end{aligned}
$$

$1 . b C 34778690101495-02$,
0.
$8.9120874924960465-03$,
0.
$1.9230328586002175-02$,
0.
0.
0.
0.
0.

C．114ヶ40258429940t－02： 0. C．4514860lくら805う7ヒー02； U．
:

$$
\text { J. U0U } 06416 / 9 / 356 t-02
$$

$$
5.817104173314452 \mathrm{c}-00
$$

3.ट12729305U18470t-U2,

$$
-6.00409 \text { म8C8771005t-u8, }
$$

$$
2.01230<323243340 \mathrm{c}-02
$$

$$
u_{0}
$$

3．41986116C136240t－02，	
2．834608630711ㄷ33t－02，	
0	．
	．532704515870120E－02，
U	．
	．
	．
	1.
	．

68

DATA EMN／

0	4.523611515	；
0	0.0000 .36667	．
N	5．b3blblb4	，
＊	－0．0001ヶUcus	，
L	4.719905573	，
L	－0．000017714	，
I	0.08480410 K	，
E	$0.05490048 y$	，
A	3． $543904402 t 5$	

$\$ 1$

data spheref

M	5．189870UP2041E＋05
V	
E	
A	$1.563493<50450 E+$ Ú6
J	19664 7 78431145E＋U7
S	
U	1．010084000\％10E＋0H
N	
p	4．8314フナ31475brid17
x	4.0
\cdots	8．5552611342． 3 F －06

$\$ 1$

DATA biRAUISangavib／

5	
N	L．43つUUE＋03
v	$0.05000 E+0.3$
E	6．37016E＋73
A	3．39340E +93
J	7．13720E＋54
5	$6.04010 \mathrm{E}+04$
\checkmark	2．30500E＋04
N	2．50020E＋04
p	7．01600ビ＋ 03
K	4.0
M	1－73809E＋03

-0.00192422
0.000000034
0.011944367
-0.000000207
0.029571481
0.000000033

3.1.2 Subroutine: DATAM

Purpose:

Method:

Remarks:

To read input data and initialize trajectory and spacecraft parameters for all MAPSEP modes. After DATAM executes the default value initialization, the namelist STRAJ is read. The dimensions and definitions for variables contained in this namelist are discussed in detail in Section 2.1 of the User's Manual. The input data are processed and stored in labeled common for subsequent use in any of the three possible modes. User options specified by input determine the degree of data preparation and the logic operations within the main cycle of the program. Some variables appearing in DATAM are initialized from the namelist with units specified in the User's Manual. Before these variables are stored in comon, they are converted, if necessary, to internal units which are: kg, kw, km, sec, $\mathrm{km} / \mathrm{sec}$, and radians

Input/Output:

Variable	Input/ Output	Namelist/ Common	Definition
ACC (STEP)	I	N/C	Scaling factor of the inte- gration step size.
BIG	0	C	Large constant; $1 * 10^{20}$.
B $\emptyset D Y$	0	C	Hollerith names of bodies considered in integration.

Variable \quad I	Input/ Output	Namelist/ Common	Definition
IC $¢ \emptyset \mathrm{RD}$	I/O	N/C	Flag indicating telative to which body the input state corresponds.
IENRGY	I/O	N/C	Flag specifying type of power subsystem.
INIT	0	C	Cycle flag.
INTEG (IGPT (1))	0	C	Fiag specifying equations to be integrated in the trajectory package.
IPRINT	I/O	N / C	Print option flags.
ISTMF	I/0	N/C	STM file flag and data cycle $£$ lag.
ISTDP	I/0	N/C	Flag specifying stopping conditions.
JPFIAG	0	C	Primary body change output flag.
KTRAJ (I\#PT(2))	0	C	Control phase change output flag.
LbCS	0	C	First location in blank common available for use in the trajectory package.
MEVENT (IGPT (3))) 0	C	Event detection logic Elag.
MøDE	I/0	N/C	Mode specification flag.
MPLAN	0	C	Number of bodies included in the integration.
NB	I/0	N/C	Flag specifying bodies to be included in the integration.
NB 0 D -	0	C	Number of bodies specified in NB (MPLAN-1).
NEP	I/O	N/C	Ephemeris planet designation.

Varabale	Input/ Output	Namelist/ Common	Definition
XBGDY	I/g	N/C	Hollerith name of input body.
XPRINT	I/6	N/C	Trajectory print frequency (days).
2K	1/6	N/C	Direction cosines of the reference star.
DUMPY	I	N	Not used.
ELVMIN	I/ $/ \varnothing$	N/C	Minimum elevation angle.
GHZERd	\emptyset	C	Greenwich hour angle at launch epoch.
I $\not \subset \mathrm{BS}$	1/6	N/C	Index designating location of astronomical observatory in STALOC.
KARDS	$\pm / 6$	N/C	Number of formatted print schedule cards to be read during a REFSEP rum.
PRRML	I	N	Logical flag specifying that the \$TRAJ namelist be printed (TRUE) or not be printed (FALSE).
STALCOC	т/¢	N/C	Tracking station coordinates.

Lacal Variables:

Definition

Variable
AO, A1, A2, A3

DJCENT
D10K
IøPT

JMAX
STATER
STATEV

Constants used in the obliquity computations.

Days in a Julian Century.
Constant 10^{4}.
Option flags used to set parameters in TRAJ.

Number of thrust control phases.
Magnitude of initial position vector.
Magnitude of initial velocity vector.

Subroutines Called: BLKDAT, ZERgM, MMAB, VECMAG, TIME
Calling Subroutine: MAPSEP
Common Blocks:
C6NST, EDIT, EPHEM, TTME, TRAJ1, TRAJ2, WめRK, TRKDAT

3.1. 3 Subroutine: TIMF (DAY, IYR, Nø, IDAY, THR, MIN, SEC; TCøDE)

TIUE converts a Juitan Date to the corresponding calendar date or a calendar date to the corresponding Julian Date.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
DAY	I/0	A	Julian Date.
IYR	I/O	A	Calendar year.
M ϕ	1/0	A	Month.
IDAT	I/O	A	Day.
IHR	I/O	A	Hour.
MIN	I/0	A	Minute.
SEG	I/0	A	Second.
ICøDE	I	$\begin{array}{ll}\text { A } \\ \\ \\ & \\ & \end{array}$	Flag that determines whether to convert from a Julian Date to calendar day or vice versa. $=0$, Convert to a Julian Date $\neq 0$, Convert from a Julian Date

Subroutines Called: None
Caling Subroutine: DATAM
Gommon Blocks: None
3.2 Subroutine: - ToPSEP
Purpose: To execute the proper submode operation.
Remarks: TØPSEP is the primary overlay which controls thetargeting and optimization mode.
Input/Output:

	Input/	Argument/
Variable	Output	Common

IMGDE I C Submode designation.
MODE I G Mode designation.
-I, Cycle back within mode
1, Cycle back to MAPSEP main

Local Variables:

Variable_____ Definition
W $\emptyset R K$ Working storage.
Subroutines Called: DATAT, FEGS, GRID, PGM 1
Calljng Subroutines: MAPSEP
Common Blocks: (BLANK), ALTFIL, CøNST, EDIT, EPHEM, GRID, TIME, TøP1, T $\emptyset P 2, ~ T R A J 1, ~ T R A J 2, ~ W \emptyset R K ~$

Logic Flow:
TOPSEP-2

3.2.1 Subroutine: BUCKET ($\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{XX}, \mathrm{YY}, \mathrm{NP}$)

Purpose:

To sort a set of independent elements in ascending order and to find a right bounded minimum Erom the associated set of dependent elements. This routine is used in preparation for the polynomial curve fitting routine, MINMUM, to aid in calculating trial control profiles. BUCKET sorts pairs of elements (X_{i}, Y_{i}) in ascending order of the elements X_{i} to form the pairs of elements $\left(X X X_{i}, Y Y_{i}\right)$ and locates the element $Y_{N P}$ such that

$$
\mathrm{YY}_{\mathrm{NP}}<\mathrm{YY}_{\mathrm{NP}+1}
$$

If this condition cannot be satisfied the pointer, $\mathbb{N} P$, is set to zero to indicate that no right bounded minimum exists.

Input/Output:

Input/ Argument/
Variable OutDut Common .Definition

\mathbb{N}	A	Number of elements to be sorted.	
NP	\boldsymbol{S}	A	Pointer to a minimum dependent element.
X	I	A	Vector of independent elements to be sorted.
$X X X$	A	Vector of ordered independ- ent elements.	

Variable	Input/ Output	Agrument/ Common

| \mathbf{Y} | A | Vector of dependent elements
 associated with X. |
| :--- | :--- | :--- | :--- |
| $Y Y$ | G. | Vector of dependent elements |
| associated with XX. | | |

Local Variables:

Variable	Definition
IEND	Temination flag.
SAVE	Intermediate variable.

Subroutines Called: Kone6
Galifing Subroutines: GEMITM
Common Blocks: None

3.2.2 Subroutine: DATAT
Method:
Remarks:
Purpose:

To read input data and initialize the trajectory
targeting and optimization mode.
targeting and optimization mode.
After DATAT executes the default value initial-
After DATAT executes the default value initial-ization, the namelist \$TDPSEP is read. Thedimensions and definitions for variables con-tained in this namelist are discussed in detailin the TøPSEP section of the User's Manual. Theanput data ase processed and stored in labeledcommon for subsequent use in any of the threepossible submodes. User options speci玉ied byinput determine the degree of data preparationand the logic operations within the main cycleof the program.Some variables appearing in DATAT are initializedfrom the namelist with units specified in theUser's Manual. Before they are transmitted to aother routines, they are converted, if necessary,to internal operational units which are: kg, kw,km_{2} sec, km/sec, and radians. ization, the namelist $\$$ TDPSEP is read. The dimensions and definitions for variables contained in this namelist are discussed in detail in the TøPSEP section of the User's Manual. The Enput data are processed and stored in labeled common for subsequent use in any of the three possible submodes. User options specisied by input determine the degree of data preparation and the logic operations within the main cycle of the program. Some variables appearing in DATAT are initialized from the namelist with units specified in the User's Manual. Before they are transmitted to a other routines, they are converted, if necessary, to internal operational units which are: kg, kw, $k_{1 \times 2}$ sec, km/sec, and radians.
Input/Output:
BIG I C Large constant, 1.E20 Br ${ }^{\prime}$ L I N / C Tolerance on control
bounds.

Variable	Input/ Output	Namelist/ Common	Definition
CHI	0	0	In plane ΔV direction angle at injection.
CNTRDTL	0	0	Initial values of all possible controls other than thrust controls.
gnvett	0	C	Conversion constants from input units to internal units for selected targets.
CNVRTU	0	c	Conversion constants from input units to incernal units for selected controls.
DETVO	0	c	Injection \| $4 \mathrm{~V} \mid$ \|
DFMAX	I/0	N/C	Maximum increase allowed in the cost index (F) per iteration.
DP2	I/O	N/C	Estinated region of linearity in the control space.
E	0	C	Target errors of the current trajectory.
ENGINE (1)	I	N / C	Power from solar panels at IA.U.
ENGINE (10)	I	N/C	S/C exhaust velocity.
EPS $\mathrm{L}_{\text {N }}$	I	N / C	Scalar multiple for control perturbations.
ETLDUT	0	0	Target tolerances in printout units.
ETరL	0	G	Target tolerances.
G	I/0	N/C	Performance gradient.
gøUT	0	C	Performance gradient in print-out units.
GTRIAL	I/O	N/C	One-dimensional search constants.

Variable	Input/ Outast	Namelist/ Common	Definition
H	I/0.	N / C	Control perturbation array.
HMULT	I/O	N/G	Vector of scalar multiples of the H array to determine the second step of all controls in the control grid.
H¢UT	0	c	Control perturbation array in print-out units.
IGYGLE	I/0	c	Mode cycle Elag.
TMODE	I/O	N/C	TOPSEP submode designation.
INACTV	0	C	Vector denoting which controls are active, or bounds, or within bound tolerance regions.
IMJLOC	0	c	Index of the control preceding the injection controls in U.
INSG	I/O	N/C	Flag set when S and G are input through namelist.
ITERAT	0	c	Iteration counter.
TWATE	I/O	N/C	Flag designatirg the iesired control weighting schemes.
MMAX	0	c	Number of mission thrust phases.
JWATE	I/O	N/C	Flag designating target weighting.
RMAAX	0	c	Number of thrust controls (THRUST (I, J)) chosen to be elements in U .
Kgnvid	0	c	Gowvergence flag.
LABEL	0	c	Hollerith names of all possible targets.

Yariable	Input/ Output	Namelist/ Common	Definition
LABELT	0	C	Hollerith names of chosen targets.
дøCcDC	0	c	Blank common storage location for the inner products of the weighted sensitivity matrix columns.
I $\phi \mathrm{CCM}$	0	c	Blank common location for storage of the magnitude of the weighted sensitivity column vectors.
LøCDU	0	c	Blank common location of the total control correction vector (not scaled b GAMA).
EDCDU1	0	c	Blank common location of the performance control correction vector (not scaled by GAMA).
LøCDU2	0	C	Blank common location of the constraint control correction vector (not scaled by GAMA).
Lof ${ }_{\text {d }}$	0	c	Blank common location of the target errors associated with the first step of the control grid.
IDCE2	0	c	Elank common location of the target errors associated with the second step of the control grid.
LQGEMI	0	C	Blank common location of the target error indices associated with the first step of the control grid.
LねCEM2	0	c	Blank conmon location of the target ertor indices associated with the second step of the control grid.

Variable	Input/ Output	NameIist/ Common	Definition
LøCEN	0	C	Blank: cor non location of the nominal trajectory target errors in the grid mode.
L $¢$ Cri	0	c	Blank common location of the performance indices associated with the first step of the control grid.
Lbcr2	0	c	Blank common location of the performance indices associated with the second step of the control grid.
LDCRFA	0	c	Blank common location of the S/C masses evaluated at event times for the reference and all trial trajectories in a single iteration.
IdCSDU	0	c	Blank common storage location for the original control correction vectors when a number of controls must be dropped during an iteration.
LøCST*	0	c	Blank common localion of the pseudo inverse of the weighted sensitivity matrix.
IDCSWG	0	c	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
L¢Csus	0	c	Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.

Variable	Input/ Output	Namelist/ Common	Definition
L¢CTS	0	c	Blank common location of event times for the reference and all trial trajectories in a single iteration.
LøCuL	0	G	Blank common location of minimum and maximum control bounds.
LбCNG*	0	c	Blank common location of the weighted performance gradient.
L¢CNS*	0	C	Blank common location of the weighted sensitivity matrix.
Lbcku	0	C	Blank common location of the control weights.
IDCXR	0	-G	Blank common location of the 6 -component state vectors associated with the event times of the reference and all the trial trajectories of a single iteration.
MPRINT	I/O	N/C	Flag designating TOPSEP print options.
NLP	I	c	Integer designation for launch planet.
NMAX	I/0	N/C	Maximum number of iterations.
NT	0	c	Number of targets.
NTNP	0	G	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.
during the iteration.			

Variable	Input/ Output	Mamelist/ Common	Definition
	0	C	Vector of target error indices for the reference andall trial trajectories evaluated during a single
iteration.			

Variable	Input/ Output	Namelist/ Common	Definition
U	0	c	Selection of controls for the specified mode run.
ULTMIT	I	N	Control bounds.
UWATE	I/6	N/C	User input weights on controls.
VPARK	6	C	Parking orbit velocity at injection.
FE	6	C	Vector of target weights.
	6	C	Mean motion of s/c in parking orbit.
AZAIAX	$\overline{1} / 6$	N/C	Maximum launch azimuth constraint.
AZMTN	I/ 6	N/C	Minimum launch azimuth constraint.
IASTM	I/ $/ \varnothing$	N/C	Flag specifying the method of computing the targeting sensitivity matrix.
PRMML	I	N	Logical flag specifying that the namelist $\$[R A J$ be printed (TRUE) or not be printed (FALSE).
RP 1	I/ $/ \square$	N/C	Inner parking orbit radius.
TGFUEL	I/ $/ 6$	N/C	Fuel capacity of tug.
TUGISP	I/ 6	N C	Specific impulse of tug.
TUGWT	I/6	N / C	Dry weight of tug.
TUG	\emptyset	C	Logical flag designating injec:tion computations.

Local Variables:

Variable

Definition
KǿUNT
Control counter.

TTME
Mission time corresponding to the implementation of controls chosen from the elements of the THRUST array.

Subroutines Called: ZEROM, CfPYY, UKV, UNITV, SCALE, SUB, VEMAAG, UDØTV, PRINTD, INJECT
\section*{Calling Subroutinas:

T 1 PSSEP}
\section*{Cormon Blocks:}
(BLANK), CGNST, CYCLE, EDIT, EPHEM, GRID, PRINT, PRINIH, TTME, TЮP1, TøP2, TRAJ1, TRAJ2, WØRK, IASTM, TUG

Determine U, PRTURB, And CNVRTU If ENGINE (1), ENGINE (10) Or SCMASS Are Used As Controls

Determine Which Controls
Are Initially Active, On Bounds, Or Within The
Tolerance Regions Near The Bounds

3.2.3 Subroutine: DELU (WS, WG, DPSI, DP2, NI, NU, NTYPE, SINY, PG2, DU1, DU2, DU).

To compute the control correction based upon the method of projected gradients.

The projected gradient algorithm used in TOPSEP
is described as follows. Let:

$$
\begin{aligned}
& \mathrm{U}=\text { Set of control parameters; } \\
& \mathrm{E}=\text { Set of target errors; } \\
& \mathrm{F}=\text { Performance index; } \\
& \mathrm{G}=\text { Performance gradient }\left(\frac{\partial \mathrm{F}}{\partial \mathrm{U}}\right) ; \\
& \mathrm{T}=\text { Set of targets; } \\
& \mathrm{S}=\text { Sensitivity matrix }\left(\frac{\partial \mathrm{T}}{\partial \mathrm{U}}\right) ;
\end{aligned}
$$

We seek a control correction $\Delta \underline{\mathbb{U}}$ to increase the performance (decrease the cost) and derrease the target error. Then

$$
\Delta \underline{U}=\alpha \Delta \underline{U}_{1}+\beta \Delta \underline{U}_{2}
$$

where

$$
\begin{aligned}
& \Delta U_{2}=-S^{T}\left(S S^{T}\right)^{-1} E \\
& \Delta U_{1}=\frac{-\sqrt{\Delta U_{2}^{T}} \frac{\Delta U_{2}(I-P) G}{U(I-P) G}}{}
\end{aligned}
$$

and

$$
p=s^{T}\left(s^{T}\right)^{-1} s
$$

$$
\begin{aligned}
& \alpha= \begin{cases}0, & \text { for targeting only } \\
1, & \text { for optimization }\end{cases} \\
& P= \begin{cases}0, & \text { for optimization only } \\
1, & \text { for targeting }\end{cases}
\end{aligned}
$$

Remarks:
DELU is called only after transforming the control space to a weighted space. Thus, WS and WG are a weighted target sensitivity matrix and a weighted performance gradient respectively. The control corrections, therefore, are also weighted.

The performance correction is modified to account for an estimated region of linearity (DP2). This control correction may then be represented as follows:

$$
\begin{aligned}
& \Delta U_{I}=\operatorname{REGI} \phi N \cdot(\mathrm{I}-\mathrm{P}) \mathrm{G} \\
& \text { REGI } \mathrm{N}=-\sqrt{\frac{E^{T}\left(S S^{T}\right)^{-1} E^{*}\left(I+D P 2^{2}\right)}{\mathrm{E}^{\mathrm{T}} \mathrm{G}-(\mathrm{SG})^{\mathrm{T}}(\mathrm{SS})^{\mathrm{T}}(\mathrm{SG})}}
\end{aligned}
$$

Input/Output:

Yariable	Input/ Output	Argunent/ Common	.
DPSI	I	A	Target error to be removed during current iteration.
DP2	I/O	A	Estimated region of linear- ity in the control space.

Variable	Input/ Output	Argument/ Common	Definition
DU	0	A	Total control correction vector (rot scaled).
Dul	0	A	Performance cont:rol vector (not scaled).
DU2	0	A	Constraint control correction (not scaled).
NT	I	A	Number of controls.
NTYPE	I	A	Flag designating the type of control correction to be made during the current iteration.
Nu	I	A	Number of controls.
PG2	0	A	Magnitude of the projected gradient squared.
SINV	0	A	Pseudo-inverse of the target sensitivity matrix if NU NT; actual inverse of target sensitivity matrix if $\mathrm{NJ}=$ NT.
WG	I	A	Performance gradient.
WS	I	A	Target sensitivity matrix.
ALPHA Variables			-

Variable Definition

C 2 . $\mathrm{G}^{\mathrm{T} * G}$

C3

P (=W 6 RK (43))
REGIDN

SG ($=W \emptyset R K$ (37))
SST ($=W \emptyset R K(1))$

Subroutines Called: CøPY, INWSQM, MMAB, MMABT, MMATB, Galling Subroutines: SIZE

Common Blocks: EDIT, WøRK

3.2.3A Subroutine: DIRECT (DU1, DU2, DU, SINV, ULIMIT, WG, WS, WU, NUD, NTD)

Purpose: \quad To compute the control correction, Aus.
Method: The method of projected gradients is used to compute $\Delta \underline{L}$. Preliminary computations include:

- Determining linear dependency among colums of the sensitivity matrix, S, thus averting numerical problems when computing the pseudoinverse of S.
- Determining which controls lie on their respective bounds, if any, and which control corrections violate the control constraints.
o Determining the maximum allowable scale factor for the current iteration.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	Large constant, 1.E20.
CTHETA	0	C	Cosine of optimization angle.
DPMAX	I	C	Maximum increase alloved in the cost index (F) per iteration.
DP2	0	C	Target error to be removed during current iteration.
	I/U	C	Estimated region of linearity in the control space.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
DU	0	A	Unscaled total control correction.
DU1	0	A	Unscaled performance control correction.
DU2	0	A	Unscaled constraint control correction.
E	0	C	Target errors of the current trajectory.
EMAG	0	c	Target error index.
G	0	C	Performance gradient.
gama	0	c	Scale factor providing the best control change.
GAMMA	0	c	Vector of trial trajectory control change scale factors.
GIRIAT	I/O	C	One-dimensional search constants.
INACTV	I/0	c	Vector denoting which controls are active (1), on bounds (0), or within bound tol.
RGMAX	0	C	Index identifying the control which will reach bound if $\Delta \underline{L}$ is scaled by GMAX.
ITERAT	I	C	Iteration counter.
LøCCDC	I	c	Blank common location of the inner products of the columns of the sensitivity macrix.
LøCCM	I	C	Blank common location of the magnitude of the sensitivity column vectors.
I¢CSDU	I	C	Blank common storage location for the original control cor rection vectors when a number of controls must be dropped during an iteration.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
Lficswis	I	C	Blank common storage location for the original weighted performance gradient when a number of controls must be dropped during an iteration.
L\#CSWS	I	C	Blank common storage location for the original weighted sensitivity matrix when a number of controls must be dropped during an iteration.
grand	I	c	Array of topsep print flags.
NT	I	c	Number of targets.
NTD	I	A	Integer used to variably dimension SINV and WS.
NTYPE	I	c	Flag designating the type of control correction to be made during an iteration.
nu	I	C	Number of controls.
NJD	I	A	Integer used to variably dimension DU, DU1, DU2, SINV, ULIMIT, WG, WS and WU.
¢SCALE	I	C	Scale on the cost index when simultaneously targeting and optimizing.
PGT	I	c	Percentage of the target error to be removed during an iteration.
PI	0	C	Vector of met cost values for the reference and all trial trajectories evaluated during a single iteration.

Varsible	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
P1P2	0	C	Vector of combined target error indices and net cost values for the reference and all trial trajectories evaluated during a single iteration.
P2	0	C	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
5	I	c	Target sensitivity matrix.
SINV	0	A	Test variable for determining linearly dependent columns of the weighted sensitivity matrix.
U	I	c	Selection of controls.
ULIMIT	I	A	Bounds on controls.
WE	I	C	Vector of target weights.
WG	0	A	Weighted performance gradient.
WS	0	A	Weighted sensitivity matrix.
WU	0	A	Control weights.
DPIDS	0	c	The first derivative of the net cost furtction (P1) evaluated at $\bar{b}=0$.
DP12DS	0	c	The first derivative of the combined net cost function and target error function (PIP2) evaluated at $\mathbf{6}=0$.
DP2DS	0	c	The first derivative of the target error function (P2) evaluated at $=0$.

3.2.3E Subroutine: DTDUO

Purpose:
To compute the appropriate colums of the targeting sensitivity matrix which relate changes in target values to changes in the initial state.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
ETA	I	A	Sensitivity of targets to changes in final state
IJH	I	C	Array indicating active controls
M	I	A	Number of targets
N	I	A	Number of controls
PHI	I	C	State transition matrix
SPRIME	C	A	Partition of sensitivity matrix

Loca1 Variables

Variab	Definition

DXFDXO Sensitivity of final state to changes in selected elements of initial state

Subroutines Called: C6PY, MMAB
Caling Subroutines: STMTAR
Common Blocks: IASTM, TøP2, WøRK
Logic Flow:
Sèe listing

Purpose:

Method:

To calculate the performance index, the target errors, the targeting sensitivity matrix, and the performance gradient. FEGS providea the interface between the abstract control space targeting, and optimization search, and the actual low thrust trajectory generation. Trajectory parameters such as

1) Initial conditions
o ecIfptic state relative to primary body;

- injection from parking orbit;
o spacecraft mass;

2) Spacecraft engine characteristics;
3) Thrust controls;
are reset as specifted by non-zero values of the H array (control perturbations). Subsequently, the trajectory propagator is called and trajectory information is collected.

Subroutine FEGS performs two major functions for TOPSEP depending upon the input value of IT. If IT equals 1 , the target sensitivity matrix (S) and the performance gradient (G) are computed by finite differencing. A trajectory is generated for each

Remarks:

perturbed control resulting in the computation of a column of the S matrix and an element of the G vector. The perturbations to the controls are input in PERT, a variable in the argument list. If IT is -1 , a trial trajectory is generated. In this case all the speclfied trajectory parameters are reset before the trajectory propagator is called. After the trajectory is generated, the performance index (F) and the target errors (E) are evaluated. If IT is 0 , a grid trajectory is generated. Basically the same logic flow is followed as for the trial trajectory generation. The primary differences are that only one element of PERT is mon-zero and that no trajectory event times are stored in blank common.

When the STM method of targeting is flagged (IASTM = 1) subroutine SIMIAR constructs F, E, and S. Subroutine FEGS only generates the trial trajectories and the final reference trajectory.

Input/Output:

Input/ Argument/
Variable Output Common D__ Definition

CHI	I/O	C	In plane ΔV direction angle at infection.
DELVO	I/O	C	Injection ΔV.
E	0	C	Target errors of the current trajectory.
ENGINE (1)	I/O	C	Power from solar array at 1 au.

Variable	Input/ Output	Argument/ Common	Definition
ENGINE (10)	I/O	c	Exhausit velocity.
F	I	G	Performance index.
FTR(1)	I	C	Performance index of the reference trajectory for the current iteration.
G	0	C	Performance gradient.
II	I	A	1, generate perturbed trajectories and compute S and G
. \cdot		. ${ }^{-}$	0 , generate a grid trajectory and compute F and E -1, generate a trial trajectory and computs F and E .
ITERAT	I	c	Iteration counter (IT = 1 or -I); Control identifier for grid submode (IT = D) .
KMAX	I	c	Number of thrust controls (THRUST (I, J)) chosen to be elements of I .
I¢CM	I	c	Blank common location of the current s/c mass.
LøGTS	I	c	Blank common location of event times for the reference and all trial trajectories in a single iteration.
NLP	I	c	Iatinch planet identifier (normally Earth).
NT	I	c	Number of targets.
NTR	\pm	0	Trial trajectory counter.

Variable	Input/ Output	Argument/ Common	Definition
NTJ	I	C	Number of controls.
PERT	I	A	Vector of control perturbations.
PSI	I/O	G	Out of plane \quad LV direction angle at injection.
S	0	c	Target sensitivity matrix.
SCMASS	I/0	c	S/C mass corresponding to the trajectory start time (TSTART).
STATEO	I/O	C	s/C state corresponding to the trajectory start time (ISTART).
STATR	I/O	c	Array of initial states for the reference and all trial trajectories evaluated during the current iteration.
TARGET	I	c	Vector of desired target values.
TARNOM	0	C	Parget values evaluated for the reference trajectory.
TARPAR	0	c	Target values of the most recently generated trajectory.
TARTR	I/0	c	Target values of the reference and all trial trajectories evaluated during a single iteration.
TM	I	G	Conversion constant: Number of seconds in a day.
TSTART	I/O	C	Trajectory start time.

Yariable	Input/ Output	Argument/ Common	Definition
U	I	c	Selection of controls for the specified mode run.
VPARK	I/ 1	c	Parking orbit velocity at injection.
XRM	I/ $/ \varnothing$	c	Mean motion of s/c in parking orbit.
PRO	I/6	c	Radial distance at injection.
PINC	I/ \varnothing	c	Ecliptic incIination at injection.
PTO	I / \varnothing	c	Injection time relative to TINCH.
Local Variables:			
Variable			Definition
A		Semi-ma	axis of parking orbit.
GNTRQL		The no pertur	value of the control plus its on.
ITRIAL		Trial	counter.
RALI		Statem return	number to which the logic flow ter S and G are computed.
KøUNT		Contro	dex.
dNEGA		Longit parkin	of the ascending node of the bit.
S¢MEGA		Argume	f periapsis of the parking orbit.
XECC		Eccent	ty of the parking orbit.
XMEAN		Mean a	ly of the s/c in parking orbit.
Subroutines Called:		CARTES, CøNIC, C $\emptyset P Y$, PRINTI, VECMAG, MAT $\emptyset U T$, MODINJ	

Galling Subrouiznes: GRID, PGM, TбPSEP

Common Blocks:

(BLANK), C $\emptyset N S T, E D I T, ~ E P H E M, T I N E, T \emptyset P 1$, TØR2; TRAJI, TRAJ2, WØRK

3.2.5 Subroutine: FGAMA (IS)

Purpose:

Method:

Remarks:
To evaluate the net cost inder and target error index of a trial trajectory. Subroutine FGAMA scales the control correction $\Delta \underline{w}$ by GAMMA (NTR), which is computed in GENMIN, and calls FEGS to generate a trial trajectory. Preceding the call to FEGS for the second trial trajectory generation, a computation is made to estimate the scale factor which will reduce the value of the final spacecraft mass to some specified limit (FTR(1) - DF). This scale factor becomes the maxinum allowable scale for future trial steps, unless the scale is further restricted by explicit control bounds. However, no additional constraint is placed on the scale factor if the final spacecraft mass is increased by taking larger trial steps in the Δu direction. The scale factor is not restricted due to the perfomance constraint prior to the second trial step for lack of infomation to make an accurate estimate.

The cost index F is actually the negative of the final spacecraft mass. If the cost index is decreasing (becoming more negative) in the A쓰 direction the estirnation loop is bypassed.

If the loop must be entered because the cost Is increasing, a modification must be made to the cost index values (FTR) so that the soutines MINMUM and THPM may be used. To find the minimum value of the final spacecraft mass the negative of the cost index is minimized in the $\Delta \underline{u}$ direction.

Input/Output:

Variable	Input $/$ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
IS	I	A	Trial trajectoxy number.
I¢CDU	I	c	Blank common location of the control correction vector $\Delta \underline{u}$.
LøCSDU	I	c	Blank common location of the trial step (CAMMA (ITR)音 $\Delta \mathrm{U})$; used as such only when generating trial trajectories.
L¢CSI	I	C	Blank conmon location of the pseudo inverse of the weighted sensitivity matrix.
NT	I	C	Number of targets.
NTR	0	c	Trial trajectory counter (NTR $=1$ for the iteration reference trajectory).
. NU	I	c	Number of controls.
OSCALE	I	C	Scale on the net cost index P1 when simultaneously targeting and optimizing.
PI	0	c	Vector of net cost values for the reference and all trial trajectories evaluated during a single iteration.
P1P2	0	c	Vector of combined target error indices and net cost values.
P2	0	c	Vector of target error indices for the reference and all trial trajectories evaluated during a single iteration.
TARPAR	0	c	Target values of the most recently generated trajectory.

Variable	Input/ Output	Argument/ Common	Definition
WE	I	C	C

Loca1 Variebles:

Definition		
DF		Maximum decrease allowed in the final s/c mass.
DP1DS		First derivative of Pl evaluated at GAMMA (1) $=0$.
EPRIME	$(=W \emptyset R K(1))$	Vector of target errors divided by tolerances.
FMAX		Estimated maximum cost evaluated in the $\Delta \underline{u}$ direction.
FTEST	$(\# N \emptyset R \mathrm{R}$ (55))	Vector of cost indices corresponding to the scale factors GTR(I), $I=1,3$ where $\operatorname{GTR}(1)<\operatorname{GTR}(2)<\operatorname{GTR}(3)$.
GḌ	$(=W \emptyset \operatorname{RK}(13))$	Linearized approximation to change In cost function required to perform a minimum - norm correction back to the targeted manifold.
GTR(1)	$(=W \emptyset \mathrm{RK}(50))$	gampa (1).
$\operatorname{GTR}(2)$	$(=W \emptyset R K(51))$	$\operatorname{MIN}\{\operatorname{CAMMA}(2), \operatorname{GTR}(4)\}$
GTR(3)	$(=W \emptyset R K(52))$	$\operatorname{MAX}\{\mathrm{GAMOA}(2), \operatorname{GTR}(4)\}$
$\operatorname{GTR}(4)$	$(=\mathrm{W} \emptyset \mathrm{RK}(53))$	Scale factor corresponding to FMaX.
GTS		Intermediate storage in GDU computation.
IERR	.	Flag set to 1 to direct HIMMUM and THPM to compute GTR(4) given F(GTR(4)) using the prescribed polynominal expansion.

Subroutines Called: C C CPY , FEGS, MAT申UT, MIMMUM, MMAB , MMATB, MMATBA, NEGMAT, SCALE, THPM, ZERǴM

Calling Subroutines: GENMIN
Common Blocks: (BLANK), EDIT, T \quad PP1, T PP 2 , W $\emptyset R K$

4

Abstract

3.2.6 Subroutine: GENMIN (X, Y, DYDX1, GTRIAL, YES, MIN)

\section*{Purpose:}

Remarks:

To choose the best control change scale factor based on a one-dimensional search in the new control vector direction.

The best scale factor will be defined as that which provides for the mindmum value of the net cost-function as described in subroutine SIZE. The one dimensional search will consist of a series of second and third order polynomial curve fitting techniques.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument (A)/ } \\ \text { Common (C) } \end{gathered}$	DeEinition
DYDXI	I	A	Value of the first derivative of the net cost function evaluated at $X(1)=0$
GTRIAL (1)	I	A	If $X(I+1)<\operatorname{GTRTAL}(1) * X(I)$, then $X(I+1)$ is set equal to GTRIAL(1) *X(I)
GTRIAL (2)	I	A	Maximum allowable scale factor value
GTRIAL (3)	I	A	The percentage of $X(I+1)$ to $X(I)$ above which the search will be terminated.
GTRIAL (4)	I	A	The percentage of YES (I) to $Y(I+2)$ below which the search is terminated
GTRIAL (5)	I	A	Flag designating the extent of curve fitting in the new contriol direction (i.e., $\operatorname{GTRIAL}(5)=4$ signifies all four techniques may be used)
MIN	\emptyset	A	Pointer designating the minimizing scale factor
X(1)	I	A	$X(1)=0$, value of scale factor assoclated with current net cost function va

Input/Output: - Continued

Variable	Input/ output	Argument (A)/ Common(C)	Defindtion
$X(2)$	I	A	Value of scale factor for first trial net cost-function evaluation
X(3)	ϕ	A	Scale factor returned from "two point, one slope" curve fitting routine
$\mathrm{X}(4)$	$\vec{\phi}$	A	Scale factor returned from "three point, one slope" curve fitting routine
$\mathrm{X}(5)$	ϕ	A	Scale factor returned from "three point" curve fitting routine
$\mathrm{X}(6)$	\emptyset	A	Scale factor returned from "four point" curve fitting routine
Y(I)	I	A	Value of current net cost-function
$Y(2) \rightarrow Y(6)$	ϕ	A	Trial net cost-function values associated with $X(2)+X(6)$
YES	\emptyset	A	Vector of estimates of net cost-function values returned from the curve iftting routines

Local VartabIes:

Variable	Definition
MAX	The number of trial net cost-function values which must be tested for the locel minime
MINSV	The number of a trial net cost-function value which is a local minimum but not neeassarily the global minimum

Subroutines Called: BUCKET, FGAMA, MIMMUF
Calling Subroutines: SIZE
Common BIocks: Fone

Logic Flow:

3.2.7A Subroutine: GRID

Purpose:	To generate a family of trajectories in order
	to obtain performance and error index infor-
	mation.
Method:	Consider an NJ-dimensional control space and a
	nominal control vector u. A grid of trajectory
	target error indices and performance indices is
	generated based upon two steps from the nominal
	control vector in each control direction. The
	first step in the $i^{\text {th }}$ control direction is
	specified by the $i^{\text {ch }}$ element of PRTURB. The
	second step for the same control is specified
	by HMULT_{i} * PRTURB_{i}.
Remarks:	The user can take advantage of the cycling
	capability of the TOPSEP mode to specify more
	than two steps in each of the control directions
	by stacking cases.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CNVRTT	I	C	Conversion constants from internal target units to output target units.
$\operatorname{ETR}(1,1)$	0	C	Target errors of current trajectory.
I	C	Target eiror index of nominal trajectory.	

Variable	Inpu:1 Output	Argument/ Common	Definition
工¢CE2	I	c	Location in blank common of the target errors associated with the second control steps.
L $\dagger \mathrm{GFI} 1$	I	c	Location in blank conmon of the performance indices associated with the first control steps.
LøCF2	I	c	Iocation in blank common of the performance indices asseciated with the seconc control steps,
NT	I	c	Number of targets.
NTR	I	c	Flag used to set the branch of logic followed in FEGS (always set to I).
Nu	I	'c	\cdots Number of controls.
PRTURB	I	c	Perturbations to the controls for the first step in each control direction.
ST¢RE	I	c	Blank comon variable for storage.
WE	I	c	$\begin{aligned} & \text { Vector used to compute } \\ & \text { target error index, containing } \\ & \frac{1}{\operatorname{TART} \emptyset T(I)} 2 \end{aligned}$
WøRK	I	c	Working storage.

Local Variables:

Variable
PERT (= UWATTE)

Definition

Vector used to transfer the control steps to FEGS where F and E are computed.

Variable	Definition
WETGL $(=S)$	Array whose off-diagonal elements are zero and whose diagonal elements are \quad

Subroutines Called: CǿPY, FEGS, MMATBA, PRINT2, ZER的
Galling Subroutines: TDPSEP
Common Blocks:
(BLANK) , EDIT, GRID, PRINTH, T σ PI, T ϕ P2, W WRK
Logic Flow:

3.2.7B Subroutine: INJEGT
Entry Points: MODINJ TUGINJ
Purpose: To generate tug injection data
Method: The analytic discussion of the injection processmay be found in Reference 1, Section 9.5, page124.
Remarks: Subroutine INJECT consists of three related com-putational blocks. Each block corresponds to anentry point.- INJECT, computation of outer parking orbitand injection parameters: PRO, PINC, PTO,DELVO, GHI, and PSI.- MøDINJ, computation of the initial state basedupon perturbed injection parameters.
o TUGINJ, computation of inner parking orbit andfuel requirements for the parking orbit transfer.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
AZMAX	I	c	Maximum launch azimuth constraint.
AZMIN	I	c	Sinimum launch azimuth constraint.
CHI	I/O	c	In-plane ΔV direction angle at injection.
DELVO	I/0	C	$\Delta \mathrm{V}$ at injection.
ECEQ	I	c	Transformation matrix from Earth equatorial to ecliptic.
H	I	c	Array of control perturbations.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Cormon } \\ & \hline \end{aligned}$	Definition
TNJTOC	\pm	C	Location of injection parameters in control vector.
NLP	I	c	Launch planet designation.
PINC	I/O	c	Ecliptic inclination of outer parking orbit.
PMASS	I	C	Vector of planetary masses.
PRO	I/O	C	Geocentric radial distance to S/C at injection.
PSI	I/O	C	Out-of-plane ΔV direction angle at injection.
PTO	I/0	C	Injection time relative to launch epoch.
RAD	I	c	Angle conversion constant (radians to degrees).
RPI	I	C	Inner parking orbit radius.
ScMAss	I	c	Initial S/C mass.
Stateo	I/O	c	Initial S/C state.
TGFUEL	I	C	Fuel capacity of tug vehicle.
TUG	I	c	Logical flag specifying injection computations if TRJE.
TUGISP	I	c	Specific impulse of tug vehicle.
'TUGWI'	I	C	Dry weight of tug vehicle.
U	I	C	Control vector.
VPARK	I/O	c	Parking orbit velocity at injection.
XMM	I/O	c	S/C mean motion in outer parking orbit.

Variable	Definition
ANGLE ($=$ WøRK(30))	Plane change required during parking orbit transfer.
DELVA ($=$ W $¢$ RK (32))	First impulsive ΔV.
DELVB ($=$ W $¢ \mathrm{RK}$ (33))	Second impulsive $\Delta \mathrm{V}$.
DELV1 ($=$ HORK (41))	Single maneuver injection ΔV.
EG ($=$ W¢RK(40))	Eccentricity of hyperbolic escape orbit for single maneuver trajectory.
EQTMAX ($=$ WORK (28))	Maximum equatorial inclination constraint.
EQIMIN ($=$ WORK (29))	Minimum equatorial inclination constraint.
EQII (= WøRK (31))	Equatorial inclination of inner parking orbit.
EQI2 ($=$ W $\mathrm{W}_{\text {RK }}(27)$)	Equatorial inclination of outer parking orbit.
GRAV	Gravitational constant.
PHITAT	Latitude of launch site.
STATEQ ($=$ WORK(21))	Initial state in equatorial coordinates.
VINF ($=$ HORK (39))	Hyperbolic excess velocity
WFEELA ($=$ WORK (35))	Fuel required for first tug maneuver.
WFUELB ($=$ WORK (36))	Fuel required for second tug maneuver.
WFUELT ($=$ W¢RK(38))	Total fuel requirement.
WFUELO (= WORK(37))	Fuel required for third tug maneuver (injection).
WFUEL. 1 ($=$ FORK (42))	Fuel required for single tug maneuver (injection) from innex parking orbit.
WTøT (= WORK(34))	Total tug weight plus payload prior to any manetuvers.
XECC	Eccentricity of outer parking oxbit.

Subroutines Calied: ADD, MMATB, SCAIE, UDOIV, UNITV, UXV, VECMAG Galling Subroutines: PGM, FEGS, TREK, STMEAR
Gommon Blocks: GЄNST, EPHEM, TOP1, TดP2, TRAJ1, TRAJ2, TUG, W ${ }^{2} \mathrm{RK}$
Logic Flow: See listing

Entry Points:
THPM
THP\$SM
FEMIN
Purpose:
To estimate a local minimum of the cost
function $Y(X)$ and the minimizing independent variable X^{*} by fitting selected sample points with a quadratic or cubic polynomial.

Input/Output:
Variable
DYDXI
I / O
I

Argument(A)/ Common (c)

A
A.
A.

A

A

A

Definition Value of the first derdvative of Y with respect to X evaluated a: $X(1)=0$. Flag whose non-zero value indicates that two of the given X values are identical.

Vector of independent variable sample values Minimizing independent variable ${ }^{*} *$

Vector of cost function sample values

Local minimum of the cost function, $y\left(X^{*}\right)$

Variable

A
Subroutines Called: None
Galling Subroutines: GENMIN, FGAMA
Common Blocks: None
Method:

Definition

Cubic polynomial coefficients

The function $Y(X)$ is approximated by either a second or third order polynomial in order to compute analytically the minimizing parameter X^{*}. The polynomial approximation is of the form
$Y(X) \cong P(\dot{X})=\sum_{i=0}^{n} \quad a_{i} X^{i}$
where $n=2$ or $n=3$. The following four cases describe the method of approximation and the resulting minimization process

Case 1: Y is fitted with a quadratic polynomial based on 1) $Y(0)$
2) $\left.\frac{d Y}{d X}\right|_{X=0}$
3) $Y\left(X_{0}\right)$ where $X_{0}>0$ is an initial estimate of $X *$ The quadratic polynomial coefficients are calculated from the formulae

$$
a_{0}=Y(0)
$$

$$
a_{1}=\left.\frac{d Y}{d X}\right|_{X=0}
$$

$$
a_{2}=\frac{Y\left(X_{0}\right)-a_{0}}{X_{0}{ }^{2}}+\frac{a_{1}}{X_{0}}
$$

The independent variable value minimizing the : quadratic is

$$
x^{*}=\frac{-a_{1}}{2 a_{2}}
$$

Case 2
Y is fitted with a cubic polynomial based on:

1) $Y(0)$
2) $\left.\frac{d y}{d x}\right|_{X=0}$
3) $Y\left(X_{0}\right)$ where $X_{0}>0$ is a sample value
4) $Y\left(X_{1}\right)$ where $X_{1}>0$ is a sample value

The cubic polynomial coefficients are calculated from the following formula=

$$
\lambda=\max \left\{x_{0}, x_{1}\right\}
$$

$$
\alpha=\min \left\{x_{0}, x_{1}\right\} / \lambda
$$

$$
a_{0}=Y(0)
$$

$$
a_{1}=\left.\frac{d Y}{d X}\right|_{X=0}
$$

$$
a_{2}=\left[\frac{Y(\lambda a)-\alpha^{3} Y(\lambda)}{1-\alpha}-\lambda \alpha(1+\alpha) a_{1}\right.
$$

$$
\left.-\left(1+a+a^{2}\right) a_{0}\right]\left(\lambda^{2} c^{2}\right)^{-1}
$$

$$
a_{3}=\left[\lambda \alpha a_{1}+a_{0}(1+\alpha)+\frac{\dot{\alpha}^{2} Y(\lambda)-Y(\alpha \lambda)}{1-\alpha}\right]\left(\lambda^{3} \alpha^{2}\right)^{-1}
$$

The independent variable value, X^{*} minimizing P is

$$
X^{*}=\left[-a_{2}+\sqrt{a_{2}^{2}-3 a_{3} a_{1}}\right]\left(3_{a_{3}}\right)^{-1}
$$

A quadratic polynomial is fitted to $Y\left(X_{0}\right), Y\left(X_{1}\right)$, $Y\left(X_{2}\right)$ where X_{0}, X_{1}, X_{2} are greater than or equal to zero and represent sample values of X (not necessarily the same values as in prior cases).

It is assumed that:

1) $X_{0} X_{j}<x_{2}$
2) $Y\left(X_{0}\right)>Y\left(X_{1}\right)<Y\left(X_{2}\right)$

The formulae for the quadratic coefficients are as follows:
$b_{i j}=x_{i} X_{j}$
$c_{i j}=x_{i}+x_{j}$
$d_{i j}=x_{i}-x_{j}$
$a_{0}=\frac{b_{12}}{d_{01} d_{02}} Y\left(X_{0}\right)+\frac{b_{02}}{d_{10} d_{12}} Y\left(X_{1}\right)+\frac{b_{01}}{d_{20} d_{21}}+Y\left(X_{2}\right)$
$a_{1}=-\frac{C_{12}}{d_{01}{ }^{d_{02}}} \quad Y\left(X_{0}\right)-\frac{C_{02}}{d_{10} d_{12}} Y\left(X_{1}\right)-\frac{C_{01}}{d_{20}{ }^{d_{21}}} Y\left(X_{2}\right)$
$a_{2}=\frac{Y\left(X_{0}\right)}{d_{01}{ }^{d_{02}}}+\frac{Y\left(X_{1}\right)}{d_{10} d_{12}}+\frac{Y\left(X_{2}\right)}{d_{20}{ }^{d_{21}}}$
The independent variable value is the same as in Case 1.
$X^{*}=\frac{-a_{1}}{2 a_{2}}$

A cubic polynomial is fitted to $Y\left(X_{0}\right), Y\left(X_{I}\right)$, $Y\left(X_{2}\right), Y\left(X_{3}\right)$. The formulae for the polynomial coefficients are as follows

$$
\dot{Y}_{i}=Y\left(X_{i}\right)
$$

$$
B_{i j}=x_{i} x_{j}
$$

$$
d_{i j}=x_{i}-x_{j}
$$

$$
A_{3}=-\frac{Y_{0}}{d_{10} d_{20} d_{30}}+\frac{Y_{1}}{d_{10} d_{21} d_{31}}-\frac{Y_{2}}{d_{20} d_{21} d_{32}}+\frac{X_{3}}{d_{30} d_{31} d_{32}}
$$

$$
A_{2}=\frac{\left(X_{1}+X_{2}+X_{3}\right)}{d_{10} d_{20} d_{30}}-Y_{a}-\frac{\left(X_{0}+X_{2}+X_{3}\right)}{d_{10} d_{21} d_{31}}-Y_{1}+\frac{\left(X_{0}+X_{1}+X_{3}\right)}{d_{20} d_{21} d_{32}} \cdot Y_{2}-
$$

$$
\begin{aligned}
& \frac{\left(X_{0}+X_{1}+X_{2}\right)}{d_{30} d_{31} d_{32}} Y_{3} \\
A_{1} & =-\frac{\left(B_{31}+B_{31}+B_{32}\right)}{d_{10} d_{20} d_{30}} \cdot Y_{0}+\frac{\left(B_{20}+B_{30}+B_{32}\right)}{d_{10} d_{21} d_{31}} Y_{1}-\frac{\left(B_{10}+B_{30}+B_{31}\right)}{d_{20} d_{21} d_{32}}+
\end{aligned}
$$

$$
\frac{\left(\mathrm{B}_{10}+\mathrm{B}_{20}+\mathrm{B}_{21}\right)}{\mathrm{d}_{30 . \mathrm{d}}^{\mathrm{d}} \mathrm{~d}_{32}} \mathrm{Y}_{3}
$$

$$
A_{0}=X_{0}-\left(A_{1} X_{0}+A_{2} X_{0}^{2} \div A_{3} X_{0}^{3}\right)
$$

The independent variable value minimizing P is the same as that in Case 2:

$$
X^{*}=\left[-A_{2}+\sqrt{A_{2}^{2}-3 A_{3} A_{1}}\right]\left(3 A_{3}\right)^{-1}
$$

Solve Case 4 Coefficient Equations - "Four Point" Curve Fit

This process continues until convergence has been achieved or the maximum number of iterations has been reached.

Remarks:
A check is made on the remaining central processor, (CP), time after every iteration. If the estimated processor time for the next iteration is larger than the remaining CP time, the iteration process is teminated.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	DeEinition
CHI	0	c	In plane ΔV direction angle at injection.
delvo	0	c	Injection $\Delta \mathrm{V}$.
E	I	c	Target errors evaluated for the current trajectory.
ErAG	I	c	Target error index.
EPS $¢ \mathrm{~N}$	I	c	Scalar multiple for control perturbations.
ETR ($\mathrm{I}, 1$)	0	c	I = 1, NT; Target errors of the reference trajectory for the current iteration.
F	I	c	Performance index of the current trajectory.
FTR(1)	0	c	Performance index of the reference trajectory for the current iteration.
GAMA	I	c	Scale factor providing the best control change.

Variable	Input/ Output	Argument/ Common	Definition
H	I/0	c.	Control perturbation array.
INJLDC	I	c	Index on the control preceding the injection controls in the vector \underline{U}.
INSG	I/0	C	Flag set when S and G are not calculated for current. iteration.
ITERAT	0	c	Iteration counter.
KMAX	I	c	Number of thrust controls (THRUST (I, J)) chosen to be mode controls (U).
K̇めNVRJ	I	c	Convergence flag.
LøCDU	I	c	Blank common location of the total control correctifon vector (not scaled by GAMA).
I¢CDUI	I	C	Blank common location of the performance control correction vector (not scaled by GAMA).
L6CDU2	I	C	Blank common location of the constraint control correction vector (not scaled by GAMA).
IDCRFM	I	c	Blank common location of the S / C masses evalueted at event times for the reference and all trial trajectories in a single iteration.
むøCsI*	I	c	Blank common location of the pseudo inverse of the weighted sensitivity matrix.

Variable	Input/ Output	Argument/ Conmion	Definition
L dCTS	I	C	Blank'common location of event times for the reference and all trial trajectories in a single iteration.
L¢¢UL	I	C	Blank common location of minimum and maximum control bounds (ULIMIT).
LGCNG*	I	c	Blank common location of the weighted performance gradient.
LøCWS*	I	c	Blank common location of the weighted sensitivity matrix.
LøCWU	I	C	Blank common location of the control weights.
I¢CXR	I	c	Blank common location of the 6 -component state vectors associated with the event times of the reference and all the trail trajectories evaluated during a single iteration.
MIN	I	C	Index of the scale factor in the GAMA vector which provides the best control correction.
NLP	I	c	Integer designation of the launch planet.
NT	I	c	Number of targets.
NTINP	I	c	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.

Vaxiable	Input/ Output	$\begin{aligned} & \text { Argument/ / } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
NTR	I	C	Trial Trajectory counter.
Nu	I	c	Number cf controls.
PMASS	I	C	Vector of planetary gravitational constants.
PRTURB	I	C	Vector of control perturbations.
PSI	ϕ	c	Out of plane ΔV direction angle at injection.
Stateo	I/ 1	C	S/C state at trajectory start time for the reference trajectory of a given iteration.
STATR	I/ 0	C	Array of initial S/C states for the reference and all trial trajectories of a given iteration.
TARNDM	I/ 6	C	Target values evaluated for the reference trajectory.
TARTR	I	C	Target values evaluated for the reference trajectory and all trial trajectories in a given iteration.
U	I/9	C	Selection of controls for the specified mode run,
VPARK	\dagger	c	Parking orbit velocity at injection.
WE	I	c	Vector of target weights.
WMM	\emptyset	c	Mean motion of s/C in parking orbit.
IASTM	I	C	Flag specffying method of computing the targeting sensitivity matrix.
IMGDE	\emptyset	c	TOPSEP submode flag.

Eogic Flow:

Logic Flow:

3.2.10 Subrouti:ci: PRINIO (KFLAG)

Entry Points: PRINT1, PRINT2, PRINT3
Purpose: \quad To provide print surmaries for the various
TOPSEP submodes.
Remarks:
An iteration summary, a perturbed trajectory summary, a grid summary, or termination summary is printed depending upon the entry point called.
Input/Output:

Variable	Input/ Output	Argument/ Conmon	Definition
cnvete	I	C	Target parameter conversion constants.
cNVRTU	i	c	Control parameter conversion constants.
DPSI	I	C	Target error to be removed during current iteration.
DP2	I	c	Region of linearity in control space.
E	I	C	Target errors.
EMAG	I	c	Target error index.
ETరI	I	C	Target tolerances.
ETR	I	C	Array of target errors for iteration trial steps.
F	I	C	Performance index.
FTR	I	C	Vector of performance indices for iteration trial steps.
G	I	C	Performance gradient.
GAMA	I	C	Optimum control change scale factor.

Variable	Input/ Output	Argument/ Common	Definition
Iterat	I	c	Iteration number.
RFIAG	I	A	Print specification flag.
KghVRJ	I	G	Convergence flag.
K $¢$ UNT	I	C	Index on control under consideration.
LABELT	I	0	Hollerith target labels.
Lbicdu	I	c	Blank common location of total control correction vector.
LøCDU1	I	c	Blank common location of performance control correction vector.
udjCDU2	I	c	Blank common location of the targeting control correction vector.
L6CEM1	I	c	Blank common location of the target error indices associated with the first step of the control grid.
L¢CEM2	I	c	Blank common location of the target error indices associated with the second step of the control grid.
IGCEN	I	C	Blank common location of the target errors associated with the first step of the control grid.
L¢CE2	I	c	Blank common location of the target errors associated with the second step of the control grid.
玉øCFI	I	6	Blank comon location of the performance indices associated with the first step of the control grid.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
LøCF2	I	C	Blank common location of the performance indices associated with the second step of the control grid.
NT	I	c	Number of targets.
Nu	I	c	Number of controls.
PG2	I	c	The square of the projected gradient magnitude.
PRTURB	I	c	Control perturbation.
S	I	c	The sensitivity matrix.
targer	I	C	Desired target values.
TARPAR	I	c	Target values of perturbed trajectories.
TARTR	I	C	Target values of the trial trajectories.
U	I	c	Control vector.
LABEL	I	c	Hollerith labels for all possible targets.
XINC	I	c	Ecliptic inclination.
ChEGA	I	c	Longitude of ascending mode.
S¢¢MEGA	I	c	Argument of periapsis.
XMEAN	\underline{I}	c	Mean anomaly.
TA	1	c	True anomaly.

Local Variables:
Variable
$\operatorname{CDU}(=\operatorname{WORK}(121)) \quad$ The scaled control change (converted
to output units).

DU16U1 ($=$ W $\$ R K(1)$ Converted performance control change. DU2的T ($=$ W $\mathrm{WRK}(21)$) Gonverted constraint control change.

Variable	Definition
$\operatorname{ENTMM}(=\mathrm{W} ¢ \mathrm{RK}(73)$)	Converted target errors of the nominal trajectory.
ETLCUT ($=$ W¢RK(85))	Converted target tolerances.
E1中UT ($=$ W¢RK(61))	Converted target errors of the first step grid trajectories.
E2¢UT ($=$ WORK(67) $)$	Converted target errors of the second step grid trajectories.
TAR价 ($=$ WORK (79) $)$	Converted target values.
UffLD $(=$ WORK (101))	Converted control vector of previous iteration.
Uø̆UT ($=$ WøRK(41))	Converted control vector.
WøRK	Working storage.
ISTOPN	Hollerith labels of requested stopping conditions.
KøFF	Hollerith labels of actual stopping conditions.

Subroutines Called: SCALE, STEP
Caliing Subroutines: FEGS, GRID, PGM, TREK, STMTAR
Common Blocks:
(BLANK), GRID, PRINTH, T¢P1, T\%P2, WळRK, TARGET

3.2.11 Subroutine: PRINTD
Purpose: To print submode input summaries.Remarks:PRINTD is in the DATAT overlay and does notremain in core during TOPSEP's submode opera-tion.
Input/Output:

Tariable	Input/ Output	Argument/ Common	Definition
CNTRDL	I	c	Initial values of all possible controls.
cnvrtu	I	c	Conversion constants from input units to internal units for selected controls.
DETAX	I	c	Maximum increase allowed in the cost index (F).
DP2	I	c	Estimated region of Iinearity in the control space.
EPS $\mathrm{DN}^{\text {N }}$	I	c	Scalar multiple for control perturbations.
gøัut	I	c	Performance gradient in print-out units.
GTRIAL	I	c	One-dimensional search constants.
H ${ }^{\text {UTT }}$	I	c	Control perturbations in printout units.
IM $¢ \mathrm{DE}$	I	c	TOPSEP submode designation.
INACLV	王	C	Vector denoting which controls are active, on bounds, or within bound tolerance regions.
INSG	I	C	Flag set to 1 when S and G are input through namelist (nominally 0).

Variable	Input/ Output	$\begin{aligned} & \text { Argument / } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
IINATE	I	c	Flag designating the desired control weighting scheme.
JMAX	I	c	Number of mission thrust phases.
mmax	I	0	Number of thrust contiols (THRUST (I, J) chosen to be elements in U .
KNTROL	I	C	Hollerith names for the elements in CONTROL.
Lø゙CUL	I	0	Blank common location or. minimum and maximum control bounds.
NTita	I	c	Maximum number of iterations.
NT	I	0	*umber of targets.
NU	I	c	Number of controls.
PGT	I	0	Percentage of target error to be removed during an iteration.
Sgut	I	c	Target sensitivity matrix in printout units.
STGL	I	c	Test variable for determinfing linearly depender.t columns of the weighted sensitivity matri**
TLdut	I	C	Limit of target error incex below which optimization only is performed.
TUP	I	0	Limit of target error index above which simultaneous targeting and optimization is discontinued and target.ing only is initiated.

Variable	Input/ Output	Argumen:/ Common	Definition
WWATE	I/O	C	User input control weights.
WØRK	I	C	Working storage.

Local Variables:

Variable_Definition

KøUNT
UL ($=W \emptyset R(1))$

Control counter.
The minimum and maximum values of the control bounds in printout units.

Subroutines Called: None
Galling Subroutines: DATAT
Common Blocks: (BLANK), CゆNST, EDIT, EPHEM, GRID, PRINF, PRINTH, TINE, T' $\emptyset \mathrm{P} 1, \mathrm{~T} \emptyset \mathrm{P} 2$, TRAJ1, TRAJ2, W $\emptyset \mathrm{RK}$

3.2.12 Subroutine: SIZE

Purpose: To size the control correction.
Method:
The basic procedure for sizing the control correction is as follows:

1. Compute the target error to be removed during the current iteration. Often it is not wise to remove all the target error in one step due to the nonlinear relationship of the targets to the controls.
2. Compute the control correction $\Delta \underline{U}$ based upon the method of projected gradients.
3. Perform a one-dimensional search in the $\Delta \underline{U}$ direction to determine a scaled control correction which will minimize either the t.rget error, the cost index, or both.

Supplementary computations include:

- Determining linear dependency among columns of the sensitivity matrix, B , thus averting numerical problens when computing the pseudoinverse of S.
- Determining which controls lie on their respective bounds and which control corrections violate the control constraints.
o Determining the maximum allowable scale factor for the current iteration

Remarks:

Steps 1 aid 2 of the control sizing procedure are completed in the secendary overlay DELTU which is called from SIZE. In addition, DELTU performs most of the supplementary calculations. The third step is completed within subroutine GENMIN. Subroutine SIZE monttors the overall procedure. Elaboration of the third step in terms of the coded logic follows.

Subroutine size calls subroutine GENMIN to compute the value of the scaling tactor Y (GAMA) which minimizes a function $P(\gamma)$ in the combined constraint direction, $\Delta \underline{u}_{2}$, and the optimization direction, $\Delta \mathbf{u}_{i}$, or each direction individually depending upon the value of NTYPE. The function $P(\gamma)$ is the sum of two functions, $\mathrm{Pl}(\gamma)$ and $\mathrm{P} 2(\gamma) . \mathrm{Pl}(\gamma)$ is the net cost index and $P 2(\gamma)$ is the target error index.

$$
P(\gamma)=a \cdot \lambda \cdot P 1(\gamma)+\beta \cdot P 2(\gamma)
$$

where

$$
\begin{aligned}
& a= \begin{cases}1, & \text { for optimization only or simultaneous } \\
\text { targeting and optimization: } \\
0, & \text { for targeting only }\end{cases} \\
& \beta^{\gamma}= \begin{cases}1, & \text { for targeting only or simultaneous } \\
\text { targeting and optimization, } \\
0, & \text { for optimization only }\end{cases} \\
& \lambda=\text { Weighting of the net cost index (} \phi \text { SCALE) }
\end{aligned}
$$

GEMMIN evaluates $P(\gamma)$ §or different values of γ so that a polynomial approximation of the function can be watic. Gince the porlynomal in fommated the minimizing γ may be computed analytically. To reduce the number of point evaluations of $P(\gamma)$, SIZE provides GENMIN with the first derivative of the function at $\gamma=0$. The first derivative (DP12DS) is of the form
$\mathrm{P}^{\prime}(0)=\left.\frac{d \mathrm{P}(\gamma)}{\mathrm{d} y}\right|_{y=0}=a \cdot \lambda \cdot \mathrm{P} 1^{\prime}(0)+\beta \cdot \mathrm{P} 2^{\rho}(0)$

For the special case when only the target error is to be minimized, the first derivative (DP2DS) is

$$
P^{\prime}(0)=P 2^{\prime}(0)
$$

Likewise, for the case when only the net cost is to be minimized, the first derivative (DP1DS) is

$$
P^{\prime}(0)=\lambda \cdot P 1(0)
$$

The function $\mathrm{P} 2(\gamma)$ to be minimized along the constraint direction, Δu_{2}, is the sum of the squares of the target errors (E) divided by the target tolerances (ETCL).

$$
P 2(\gamma)=\underline{E}^{T}\left(\underline{u}+\gamma \Delta \underline{u}_{2}\right) W \underline{E}\left(\underline{u}+\gamma \Delta \underline{u}_{2}\right)
$$

where

$$
\mathrm{W}=\left[\begin{array}{ccccc}
\frac{1}{\operatorname{ETGL}(1)} & & & 0 & \\
& \frac{1}{\operatorname{ETDL}(2)} & 2 & & \\
& & \ddots & \\
0 & & \frac{1}{\operatorname{ETOL}(\mathrm{NT})} &
\end{array}\right]
$$

The first derivative evaluated at $\gamma=0$ is simply

$$
P 2^{\prime}(0)=2 \underline{E}^{T}(\underline{u}) S \Delta \underline{u}_{2}
$$

where S is the target sensitivity matrix $\left(\frac{\delta E}{\delta \underline{E}}\right)$.
The function $P l(\gamma)$ to be minimized along the optimization direction $\Delta \underline{u}_{1}$ is defined

$$
\begin{aligned}
& P 1(\gamma)=F\left(\underline{u}+\gamma \Delta \underline{u}_{1}\right)-F(\underline{u})+ \\
& G^{T}(\underline{u})\left[-S\left(\mathrm{SS}^{T}\right)^{-1} E\left(\underline{u}+\gamma \Delta \underline{u}_{1}\right)\right]
\end{aligned}
$$

B
where A represents the change in performance produced by a step of length y along $A u_{1}$ and B represents the linearized approximation to change
in performance required to eliminate the target error produced by a step of length γ along $\Delta \underline{u}_{1} . \quad \mathrm{F}$ is the cost index (negative of the S / C mass $)$ and G is the cost gradient $\left(\frac{\partial F}{\partial \underline{u}}\right)$. The first derivative evaluated at $\gamma=0$ is then

$$
P I^{\prime}(0)=G^{T}(\underline{u}) \quad \Delta \underline{u}_{i}
$$

The functions $P^{\prime}(0), P 1^{\prime \prime}(0)$, and $P 2^{\prime \prime}(0)$ are inicialized in the secondary overlay DELTU. The point evaluations of the functions $P(\gamma), P I(\gamma)$, and P2(γ) are computed in GENMIN and stored in the vectors P1P2, P1, and P2 respectively. The various values of the scale factor, γ, are stored in the vector GAMMA while the minimizing scale factor is stored in the variable GAMA.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	C	Large constant, 1.E20
DP1DS	I	C	Pi' 0)
DP12DS	I	C	$\mathrm{P}^{\prime}(0)$
DP2D. ${ }^{\text {S }}$	I	c	P2' (0)
DP2	I/O	C	Scale on optimization correction.
gama	0	C	Scale factor providing the best control change.
GAMMA	0	c	Vector of control change scale factors for the trial trajectories.
GMAX	0	C	Largest allowed scale factor,
GTRIAL	I/0	c	One-dimensional search constants.
INACTV	1/0	c	Vector denoting which controls are active (1), on bounds (0), or within bound tolerances.
INSG	I/O	C	Flag set when S and G are input through namelist.
ITERAT	I	c	Iteration counter.
KGMAX	I	c	Index on control which will reach a bound if GNAX scales Au.
LøCUL	I	c	Blank common location for the control bounds,
VIN	0	C	Index of minimizing scale factor in GAMMA.
NTYPE	0	c	Flag specifying the type of control correction.

Variable	Input/ Output	Argument/ Common	Definition
NU	I	C	Number of controls.
P1	0	C	Vector of net cost values corresponding to the scale factors in GAMMA.
P1P2	0	c	Vector of combilred net cost and target error index values corresponding to the scale factors in GAMMA.
P2	0	c	Vector oi target error index values corresponding to the scale factors in Gamma.
U	I	C	Control vector.
ULIMIT	I	c	Control bounds.
Local Variables:			
Variable	Definition		
P1EST	Vector containing the estimates of PI(γ) for the trial trajectories.		
P12EST	Vector containing the estimates of $P(\boldsymbol{\gamma})$ for the trial trajectories.		
P2EST	Vector containing the estimates of P2(گ) for the trial trajectories.		
UNEW	Updated control vector used to compute INACTV.		
Subroutines Called:	COPY, DELTU, GENMIN, STEP		
Calling Subroutines:	: PGM		
Common Blocks:			

Logic Flow:

Determine Which Controls Are Now On Bounds Or In The Tolerance Region
(1)

Pages 159 through 165 have been fieleted.
3.2.13 Subroutine: STEP (UGLD, SCALE, DELU, NU, UNEW)
Purpose: To update the control vector.
Method: The new control vector is updated by the follow-
ing algorithm:
UNEV (I) $=$ UğLD (I) + SCALE $*$ DELU (I)

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
DELU	I	A	Control correction vector.
NU	I	A	Number of controls.
SCALE	I	A	Scale on control correction.
UNEW	0	-	A
UøLD	I	Updated control vector.	

Local Variables: None
Subroutines Called: None
Calling Subroutines: GRID, PGM
Common Blocks:
None

```
3.2.14A Subroutine: STEST (WS, NT, NU, STGL, CDOTC, CMAG, LDEP, NDEP)
```


Purpose:

To compute the inner products between columns of the weighted sensitivity matrix in order to determine linearly dependent control sensitiveities.

Method: The normalized inner products between columns of the weighted sensitivity matrix art computed and stored in the CDØTC array. These values are then tested to determine whether they fall within some tolerance (STOL) of unity. The control sensitivity vectors, whose inner products do fall within this tolerance region, are considered to be linearly dependent and at least one of the associated controls will be dropped from the control vector during the concurrent iteration. For example, if \underline{S}_{i} and \underline{S}_{j} represent two columns of the weighted sensitivity matrix and

$$
1-\left|\frac{\underline{S}_{i} \cdot \underline{S}_{j}}{\left|\underline{S}_{i}\right| \pm\left|\underset{j}{S_{j}}\right| \mid}\right|<\operatorname{sT} \emptyset_{L}
$$

then S_{i} and S_{j} are considered linearly dependent. Whether the ${\underset{\sim}{i}}$ and ${\underset{u}{j}}$ component is dropped from the control vector depends upon the other column vector inner products. If ${\underset{\sim}{f}}$ and ${\underset{W}{k}}$ are also
linearly dependent then control u_{j} will be dropped since this measure will allow mese controls to remain active. The fact that a tolerance region 1s used to test linear dependency does permit S_{i} and S_{k} to remain innearly independent although both vectors are linearly dependent with \underline{S}_{j}. If \underline{S}_{i} and \underline{S}_{j} are the only linearly dependent vectors the control with the lower index is arbitrarily dropped.

Remarks:
STEST is called only once per iteration and only when considering controls in the weighted space.

Input/Output:

\begin{tabular}{|c|c|c|c|}
\hline Variable \& \begin{tabular}{l}
Input/ \\
Output
\end{tabular} \& Argument/ Common \& Definition \\
\hline CDøTC \& 0 \& A \& Array of normalized inner products; CDDTC (I, J) is the inner product between the \(I\) and \(J\) columns of WS. \\
\hline CMAG \& 0 \& A \& Magnitude of the sensitivity column vectors. \\
\hline LDEP \& 0 \& A \& Vector of flags nominally zero but set to 1 to denote which controls should be dropped. \\
\hline NDEP \& 0 \& A \& Number of dropped controls. \\
\hline NT \& I \& A \& Number of targets. \\
\hline NU \& I \& A \& Number of controls. \\
\hline STøL \& I \& A

C \& Minimum difference allowed between normalized inner products of the control sensitivity vectors and unity before the vectors are considered linearly dependent.

\hline
\end{tabular}

Variable	Input/ Output	Argument/ Common
WS	I	A Weighted sensitivity matrix.
Local Variables:		
Variable		Definition
MATRIX		Integer array the same dimensions as CDOTC whose components are nominally zero but set to 1 when (1-CDøTC STDL)
MRC		NU X 2 array; the first column represents the sum of the elemencs actoss the rows of MATRIX; the second column represents the sum of elements down the columns of MATRIX.
MRCSUM		NU X 1 vector whose elements represent the sum actoss the rows of MRC.
ITEST		Index of the largest element of MRCSUM.

Subroutines Called: 2ERGM
Galling Subroutines: SI2E
Common Blocks: None

3.2.14B	Subroutine:	STMTAR (IT)
Purpose:		To compute the targeting sensitivity matri\% from
		the :xgmented state transition matri\%.
Method:		The method of computing the sensitivity matrix, S ,
		from the partitions of the augmented STMs, \varnothing and
		θ, is described in Reference 1, Section 9.7,
		page 140.
Remarks:		During each iteration the reference trajectory (i.e.
		the trajectory defined by the \$TRAJ variables in
		the zeroth iterate and the "best" trial trajectory
		in each subsequent iteration) must be integrated
		to compute ϕ, θ, and S. If a po:tion of this refer-
		ence trajectory remains constant throughout the
		iterative process, it is integrated during the
		zeroth iterate only.

Input/Output:

Variable ${ }^{\text {In }}$	Input/ Output	Argument/ Commen	Definition
CA	0	c	Closest approach computed in BPLANE
E	0	C	Target error vector
$\operatorname{ETA}(=\operatorname{STATR}(1,2))$	2)) 0	C	Sensitivity of targets to changes in final state
F	0	C	Cost index (negative of payload)
IJH	I	c	Array of flags indicating active controls
IPRINT	0	C	Trajectory print flag

Variable	Input/ Output	Argument/ Common	Definition
IT	I	A	Flag indicating integtation of the fixed trajnctory axd (o.l) or Intcgrat fon al sIMn (1)
KMAY	I	C	Number of active thrust controls
LISTAR	I	C	Array of flags indicating selected targets
LfCM	I	C	Blank common location of final S/C mass
LOCRFM	I	C	Blank commor location of the S/C masses evaluated at event times
LOCTS	I	C	Blank common location of event times
Locxr	I	C	Blank conmon location of the S/C states evaluated at event times
MPRINT	I	C	TOPSEP print flags
NPRI	I	C	Primary body designation
NI	I	C	Nurber of rargets
NTMP	0	C	Vector of primary body designations associated with trajectory event times
NTP	I	C	The target body code
NIPH	I	C	Vector of control phase numbers associated with event times
NIPHAS	I	C	Thrust phase counter
NU	I	C	Number of controls
PHI	0	C	State transition matrix (6x6)
ECA.	0	C	Target planet encounter radius computed in TRAJ
5	0	C	Targeting sensitivity matrix
SCMASS	I	C	S/C mass at trajectory start time

Variable	Imput/ Output	Argument/ Common	Definition
STATEO	I	C	S/C state at trajectory start time
STATR	I	C	Array of initial states corresponding to the reference and each trial trajectory
TAREET	0	C	Desired taiget values
TARNめM	0	C	Target values evaluated for the reference trajectory
tca	0	c	Time of closest approach computed in BPLANE
TEND	I	c	Trajectory end time
THETA	0	C	Sensitivity of final state to changes in thrust controls
TM	I	C	Time conversion constant (days to seconds)
TRCA	0	c	Time at closest approach computed in TRAJ
TSI	0	c	Time at SOI computed in BPLANE
TS¢¢T	0	c	Time at SOT computed in TRA.
TSTART	I	C	Trajectury start time
tug	1/0	C	Logical flag indicating injection computations if TRUE

Local Variables:

Variable
NPRIO

REFMO

REFXO
REFXO

Primary body designation at time TSTART for the reference trajectory

S/C intial mass at time TSTARI for the reference trajectory

S/C iaitial state at time TSTART for the reference trajectory
Subroutines Galied: CfPY, DTDUO, ECONP, MATOUT, MMAR, MUNPAK, PRINT3,SUB, TCOMD, THCOMP, TREK, TUGTNT, VEGMAG
Galling Subroutine: PGM
Common Blocks: (B1ante), CONST, TASTM, TARGET, TTME TOPI, TOPZ, TRAJ1, TRAJ2, TUG

3.2.15 Subroutine: TEST

Purpose:

Method:

Kemarks:

To test for convergence and to determine whather the next control change will be a targeting and/or optimization correction. The determination of the type of control correction is based upon the size of the error index (EMAG). The value of EMAG is compared to user Input limits which direct the calculation of the next control change to be either a constraint correction, a performance correction, or simultaneous constraint and performance corrections. The iteration process is considered converged and the run is terminated when the performance index is maximized.

A summary of the control correction decision process is given in the following table.

TF	THEN
EMAG $>$ TUP	TARGETING
TLDW<EMAG<TUP	TARGETING AND OPTMMIZATION
EMAG<TLめW	OPTMMIZATION

Search Direction Options

The input limits TUP, TLOW, and $\emptyset P$ PEND allow the user flexibility in determining the type of targeting and optimization strategy. For example, the user may concentrate un targeting exclusively by setting $T U P=T L \not D W=1$, and $\emptyset P T E N D=0$. When the trajectory is targeted the run will teminate without optimizing.

The angle (θ) between \underline{G} and $\Delta \underline{u}_{1}$ is used to test convergence in subroutine TEST. Optimization is considered complete when

$$
\cos \theta=\frac{\underline{G} \cdot \Delta \underline{\underline{u}}_{1}}{|\underline{\underline{G} \mid}| \Delta \underline{\underline{u}}_{1} \mid}
$$

approaches 0 (when θ approaches 90 deq) and when, EMAG < TLdW. The user may override this convergence requirement by specifying UPTEND. When $\emptyset P T E N D<\theta<90$ and EMAG $<$ TLDW the run is terminated. Figure 3-1 illustraces the convergence process.

Figure 3-1 Geometric Interpretation of Convergence

Input/Output:

	Input Variable Output	Argument/ Common

NTYPE	0	C	Flag designating type of next control correction. $=-1$, optimization only $=0$, targeting and optim mization
			$=1$, targeting only
¢PTEND	I	C	User specified convergence tolerance on optimization process (e.g., CTHETA \leq \emptyset PTEND indicates convergence).
TL彦	I	c	Upper limit of EMAG for which optimization only is performed.
TUP	I	c	Lower Iimit of EMAG for which targeting only is performed.

Local Variables: None
Subroutines Called: None
Calling Subroutines: PGM
Common Blocks: EDIT, ThP1, TゆP2
Logic FIow: None
Flag designating type ofnext control correction.
= -1, optimization only$=0$, targeting and opti-mization$=1$, targeting onlyUser specified convergencetolerance on optimizationprocess (e.g., CIHETA \leqØPTEND indicates convergence).which optimization only isperformed.

Lower Iimit of EMAG for which targeting only is performed.
3.2.16 Subroụtine: TREK (IT, KOUNT)

Purpose:

Method:

To organize calls to the trajectory propagator and to evaluate target conditions. The trajectory propagator, TRAJ, performs two basic functions for TOPSEP: 1) trajectory integration from some specified starting time (TREF) to the stopping condition denoted by IST $\varnothing \mathrm{P}$, and 2) trajectory integration from the starting time to an event time (TEVNT). In the latter case TRAJ may be recalled and trajectory integration continued from the current event time to the next event time without requiring initialization of the trajectory routines and parameters. These capabilities are utilized in TOPSEP's submodes in different ways. For the simple trajectory propagation submode, TRAJ is required to integrate from the start time to the termination time. However, the targeting and grid submodes require that TRAJ return to TREK at certain phase times so that the s / c mass and state may be stored in blank common. This requirement is necessary only for the reference apd trial trajectory when elements of THRUST(I, J) are used as controls. When TREK is called to set up grid
trajectories and perturbed trajectories the appropriate mass and state are selected from blank common. TRAJ then integrates the trajectory from the beginning of the associated thrust phase to the terminal time thus avoiding the duplication of known trajectory segments. When elements of THRUST (I, J) are not used as controls, however, TRAJ integrates from the start time (TSTART) to the terminal time. TRAJ returns the s / c terminal state, and mass and the final time upon completion of the trajectory integration. To compute additional termination data or to compute target parameters such as BDT and BDR or orbital elements, subroutine BPLANE must be called. Subroutine TC $\overline{\mathrm{MP}} \mathrm{I}$ is then called to select and to store the appropriate target parameters in the vector TARPAR.

The flag returned from TRAJ which directs :urther computation of termination data is KUTGFF. The following table provides a sumary of the kuTGFF options.

KUT ${ }^{\text {PFF }}$	Actual Stopping Condition	ISTQP	Requested Stopping Condition	Computed G \emptyset T \emptyset Statement Number
1	Final Time	1	Final Time	400
2	Final Time	2	Encounter	100
3	Final Time	3	S $¢$ I	100
4	Final Time	4	Stopping Radius	100
5	Encounter	2	Encounter	200
6	Encounter	3	S \ddagger I	200
7	S \dagger	3	S $¢ \mathrm{I}$	300
8	Stopping Radius	4	Stopping Radius	400
9	Event Time	NA	Event Time	700

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
BIG	I	c	Constant equal to l.E20
CA	I	c	Closest approach.
ECC	I	c	Eccentricity of orbit relative to the target planet at the actual stopping condition.
ICALL	0	c	Trajectory initialization flag.
TMpDE	I	c	TOPSEP submode designation.
INIEG	0	c	Flag indicating which equations are to be integrated in TRAJ.
IPRINT	0	C	Trajectory print flag.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
IT	I	A	Flag indicating type of initialization preceding the call to TRAJ.
ITP	0	C	Index of the target planet in the NB array (bodies included in the trajectory integration).
KMAX	I	c	Number of thrust controls (THRUST (I, J)) chosen to be elements of $\underline{\text { u }}$.
KరUNT	I	A	Index on control.
KUT¢FF	0	c	Termination flag.
Ldom	0	c	Blank common location of final s/C mass.
LGCRFM	I	c	Blank common location of the S / C masses evaluated at event times for the reference and all trial trajectories in a single iteration.
L¢CTS	I	C	Blank common location of event times for the reference and all trial trajectories in a single iteration.
LdCXR	I	c	Blank common location of the 6-common state vestors associated with the event times of the reference and all the trial trajectories of a single iteration.
MEVENT	0	c	Flag designating trajectory propagation to event times.
MPRINT	I	c	Submode print option flags.
NPRI	0	C	Primary body designation.
NTNP	0	c	Vector of primary bodies associated with the event times of the reference and all trial trajectories in a single iteration.

Variable	Input/ Output	$\begin{gathered} \text { Argument / } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NTP	I	C	The target body code (NB (Tr)).
NTPH	I	C	Vector of control phase numbers essociated with the event times of the reference and all trial trajectories in a single iteration.
NTPHAS	0	C	Thrust phase counter.
NTR	I	C	Trial trajectory counter.
NU	I	C	Number of controls.
RCA	0	C	Target planet encounter radius.
SCMASS	I/O	C	S/C mass at the trajectory start time.
SMA	0	C	Semi-major axis of the approach orbit relative to the target planet.
STATEO	I/0	C	S/C state at trajectory start time.
STCRE	I/O	c	Blank common variables.
TARPAR	0	C	Target values of the most recently generated trajectory.
TCA	0	C	Osculating time of closest approach.
TEVNT	0	C	Event time to te monitored by TRAJ.
TM.	I	C	Number of seconds in a day.
TRCA	0	C	Time of closest approach determined by TRAJ if KUT6FF equals 5 or 6, otherwise set to TCA.
TREF	0	C	Reference time used by TRAJ to begin trajectory propagation.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Uefinition
TS ϕ I	0	c	Time at sphere of influence determined by TRAJ if KUTCFF equals 7, otherwise set to TSI.
TSTART	I	c	The reference trajectory start time.
TST 6 P	0	C	The actual trajectory termination time.
UREL	0	c	Array containing the position components of the s / C relative to the bodies flagged in the NB array.
URELM	0	c	Vector containing the magnitude of the position componerts af the S/C relative to the bodies flagged in the NB array.
UTRUE	0	c	S/C position components relative to the primary body.
VCA	0	c	Osculating velocity at closest approach.
VRETM	0	c	Vector containing the magnitudes of the velocity components of the S / C relative to the bodies flagged in the NB array.
VTRUE	0	c	s/c velocity components relative to the primary body.
BDR	0	C	Osculating B-plane element orthogonal to the ecliptic plane.
BDR	0	C	Osculating B-plane element in the ecliptic plane.
IASTM	I	0	Flag designating the method of computing the target sensitivity matrix.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
LISTAR	I	C	Array of indices identifying selected target variables.
NT	I	c	Number of target variables.
TSI	0	c	Time of sphere of influence crossing based upon osculating B-plane conditions.
TUG	0	c	Logical flag determining whether injection conditions should be calculated.
VHP	0	C	Hyperbolic excess velocity.
VREL	I	C	Array containing the velocity components of the S/C relative to the bodies flagged in the NB array.

Local Variables

Variable
JUMP

MISS

NRRIO

NTPHO

REFMO

REFXO

Index on the thrust controls (THRUST (I, J)) chosen to be elements of \underline{u}.

Flag set to 1 if osculating elements are calculated outside the target planet's sphewe of influence.

Primary body at time TSTART for the reference trajectory.

Thrust control phase number at time TSTART for the reference trajectory.

S/C initial mass at time TSTART for the reference trajectory.

S/C initial state at time TSTART for the reference trajectory.

Subroutines Called: BRLANE, C¢PY, VECMAG, TUGINJ, PRINT3, TCOMP1 Galling Subroutines: FEGS, STMTAR

Page 182 has been deleted.

183
 Logic FIow:

3.2.17 Subroutine: WEIGHT (DU1, DU2, DU, SINT, WG, WS, WU, NUD, NID)

Entry Points:

Purpose:

Method: UNIVATE

To perform the appropriate control and target space transformations by weighting and unweighting the controls, gradients, sensitivities, and targets.

Several different weighting algorithms have been devised to transform the control and target spaces in order to facilitate targeting and optimization. The weights are applied to "condition" the effects of selected controls when targeting and optimizing. The weighting algorithms are as follows:

1. User input weighting

WU $(J)=\frac{1}{\text { UWATE (J) }}$.
2. Unitized control weighting

$$
\text { WJ }(J)=\frac{1}{\mid \bar{U}(J) \div \operatorname{UWATE}(J)}
$$

3. Sensitivity weighting

$$
\operatorname{WU}(J)=\operatorname{MAX}\left\{\left|\frac{S(I, J)}{\operatorname{UWATE}(J)}\right|, i=1, N T\right\}
$$

4. Combined sensitivity, target error, and control weighting

$$
\text { WU }(J)=\sum_{I=1}^{N T}\left|\frac{S(I, J) * \operatorname{ETR}(I, 1)}{U(J) * \operatorname{UWATE}(J)}\right|
$$

5. Target gradient weighting

$$
\begin{aligned}
& \text { G2 }(J)=2 \sum_{I=1}^{N T} S(I, J) * \operatorname{ETR}(I, I) \\
& W U(I)=\frac{\mid G 2(J) 1}{\sqrt{G Q^{T} G 2}}
\end{aligned}
$$

G. Averaged gradient and control weighting

$$
\text { WU }(J)=\frac{\left(10 * U(I) * U W A T E(J)+\frac{1}{G 2(J)}\right.}{\left(\mathrm{UWATE}(J) * U(J)^{2}+\frac{1}{G 2(J)^{2}}\right)}
$$

This routine is used to weight controls and targets before the control correction is calculated and to unweight the same variables and certain additional parameters before the trial trajectories are made.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
DPSI	I	0	Target error to be removed during current iteration.
DU	I/O	A	Total control correction.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
DLI	I/0	A.	Performance correction.
DU2	I/O	4	Constraint correction.
ETOL	I	c	Target tolerances.
ETR	I	c	Array of trial trajectory errors.
G	I	c	Performance gradient.
IWATE	I	c	Flag specifying type of weighting.
	.		```1, User input weighting 2, Unitized control. weighting```
.	-		3, Sensitivity weighting 4, Combined sensitivity, target error, and control weighting 5, Target gradient weight* ing
			6, Averaged gradient and control weighting
IWATE	I	c	Flag specifying target weighting.
NT	I	G	Number of targets.
NTD	I	A	Integer variable used to dimension arrays in the argument list (number of targets).
NU	I	c	Number of controls.
NUD	I	A	Integer variable used to dimension arrays in the argument list.

Variable	Input/ Outpac	Argument/ Cormon	Definition
S	I	c	The sensitivity of targets to changes in controls.
SINV	I/O	A	Pseudo inverse of the sensitivity matrix.
U	I/O	G	The control vector.
UWATE	I	G	User input weights on controls (used in each weighting algorithm).
WG	\emptyset	A	Weighted performance gradient.
WøRK	I	c	Temporary working storage.
WS	0	A	Weighted sensitivity matrix.
W	I	A	Control weighting vector.
Local Variables:			
Variable		Definition	
G2		Target gradient.	
G2mag		Magnitude of the target gradient.	
STØRE		. Temporary storage location.	
Subroutines Called: A		AMAXI, MAATB	
Calling Subroutines: S		SIZE	*
Common Blocks: ED		EDIT, TøP1, T¢P2, W¢RK	
Kogic Flow:			

3.3 Program: GøDSEP
Purpose:
Input/Output:
LacaI Variables: None
Subroutines Called: BLKDTG, CØPY, CØVP, DUMP, MASSIG, MATØUT,SCHED, SETEVA, SETGUI, STMGEN
Calling Subroutines: MAPSEP
Gomnon Blocks:

LøCATE, LøGIC, SCHEDI, SCHEDR, TRAJ1, TRAJ2

Logic Flow:

3.3.0 Subroutine: ASTøBS (HECP, HECE, TCURR, HMAT)
Purpose:To compute the obserwation partials for astro.nomical observations of the target body.
Method: See Volume I, Analytic Manual, Section 6.3.
Input/Output:

Variable	Input/ Output	$\begin{aligned} & \text { Argument / } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
HECP	I	A	Heliocentric ecliptic coordinates of the ephemeris body.
HECE	I	A	Heliocentric ecliptic coordinates of the earth.
TCURR	I	A	Current Erajectory time.
HMAT	0	A	Observation matrix.
GHEER $\overline{0}$	I	c	Greetwich hour angle evaluated at launch (TMNCH).
gmegag	I	C	Rotational rate of the earth.
STAL¢C	I	C	Tracking Station/ Observatory locations.
ECEQ	I	C	Ecliptic to equational transformation matrix.

Local Variables:

Variables

Definition

GRILQN

GEQSTA

GECSTA

RHOEC

Greenwich hour angle at TGURR.

Geocentric equatorial coordinates of the observatory.

Geocentric ecliptic coordinates of the observatory.

Topocentric ecliptic position of the ephemeris body.

Local Variables:

Variables

RHOEQ

AEQ

DEQ

HH

Definition

Topocentric equatorial position of the ephemeris body.

Geocentric equatorial right ascension of the ephemeris body.

Geocentric equatorial declination of the ephemeris body.

Temporary storage for the observation matrix.

Galling Subroutines: \emptyset BSERV
Gommon Blocks: CøNST, DIMENS, KEPC由N, $\mathrm{HEASI}, \mathrm{NEASR}, \mathrm{TRKDAT}$, HøRK
Logic E1ow: None
3.3.1 Subroutine: Purpose:

Remarks:

AUGCNV (C $\emptyset V I N, ~ C \emptyset V \emptyset U T, ~ I \emptyset P T) ~$
To convert internal storage format of the augmented state covariance information from "block" (see Remarks) to augmented (see Remarks) form. The augmented covariance form is assumed as follows, where the individual matrix partitions or subblocks are defined in Input (Vol. II, User's Manual, Sec. 2.3):

P	cxs	CXU	cxy	CXW
Cxs ${ }^{\text {T }}$	PS	CSU	CSV	CSW
$\mathrm{CXU}^{\text {T }}$	csu^{T}	PU	CUV	CUW
cxv ${ }^{\text {T }}$	$\operatorname{csv}^{\top}$	$\mathrm{Cuv}^{\text {T }}$	PV	CVW
$\mathrm{CXH}^{\text { }}$	$\operatorname{csw}^{\mathrm{T}}$	$\mathrm{CuF}^{\text {T }}$	$\mathrm{CuF}^{\text {T }}$	PW

The "block" form assumes that all active partitions are stored contiguously in packed form in the following order: P, CXS, CXU, CXV, CXW, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CVW, PW.

C \varnothing VIN and C C V \emptyset UT may share the same location. Therefore, in order to prevent writing over elements which have not been properly relocated in going from block to augmented form, P (f relocated first, then CVW and so on up the abovementioned ordering of the block form. For the same reason, in going from augmented to block

form the forward ordering (P, CXS, etc.) sequence is followed in relocating.

Input/Output:

Variable Definition

$\left.\begin{array}{c} \text { ISUB } \\ \\ \text { JSUB } \end{array}\right\}$	Subscripts used for locating elements at LøCAUG and LDCBLK
NCWL	Number of colums in current covariance sub-block
NR $\dagger \mathrm{W}$	Number of rows in current covariance sub-block

Subroutines Called: MPAK, MUNPAK, SYMJP
Galling Subroutines: PPAK
Common Blocks: WøRK, DIMENS
Logic Flow: None
3.3.2 Subroutine: BLKDTG
Purpose:
To initialize label arrays in common /LABEL/by DATA statements.
Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Defintion
AUGLAB	0	c	Augmented state vector
			element labels
EVIAB	0	c	Event labels
MESLAB	0	c	Measurement labels
PGIAB	0	C	Control covariance parti-
			tion labels
FLAB	0	c	Knowledge covariance par-
			tirion Iabels
VECLAB	0	c	Augmented state vector
			partition labels

Local Variables: None
Subroutines Called: None
Calling Subroutines: GøDSEP
Common Blocks: LABEL
Logic Flow: None
3.3.3 Subroutine: в $\emptyset \mathrm{MB}$
Purpose:
To force abnormal termination with traceback.
Method:
BøAB computes and attempts to use the squareroot of -1.0 .
Remarks:
On CDC 6000 series computers any attempt to usethe square root of a negative number when op-erating with real variables causes programtermination and provides a traceback to themain program of subrentines called and thelocation called from each. $\mathrm{B} \emptyset \mathrm{MB}$ is calledfrom several places in GGDSEP and its associatedsecondary overlays to indicate an unresolvableconflict of control variables.
Input/Output: None
Local Variables: None
Subroutines Called: None
Calling Subroutines: STMRDR, GAINF, DEFALT, DIMENS, NMIIST, ØUTPTG
Common Blocks: None
Logic FIow: None
3.3.4 Subroutine: C \emptyset RREL (PVAR, I历PTN, PUNCH, CØVLAB)

Purpose: To compute, print, and optionally, punch standard deviations and correlations coefficients from an input covariance matrix.

Remarks:
Since VARSD (Covariance to standard deviations and correlation coefficients) operates strictly on the upper triangle of a covariance matrix, only the diagonal of PVAR need be saved outside PVAR. The remaining lower triangle terns are then copied into the upper triangle.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PVAR	I	A	Input covariance matrix.
IøPTN	I	A	Option flag.
			$=1, \underset{\text { forn }}{\text { PVAR in covariance }}$
.			$=-1$, PVAR already in standard deviations and correlation coefficients
PUNTCE	I	A	Logical flag indicating if standard deviations and correlation coefricicients are to be punched.
CgVLAB	I	A	Array of labels to be used for punching, if PUNCH $=$.TRUE.
AUGIAB	I	C	Augmented state vector labels.

Variable	Input/ Output	Argument/ Common	Definition
I¢CAUG	I	C	Array locating partitions of augmented covariance matrix.
LfCLAB	I	c	Array locating state vector partition labels in AUGLAB.
NAUG	I.	C	Length of augmented state vector.
NDTM	I	C	Array of dimensions of augmented state vector partitions.
PRNCఫV	I	c	Logical array denoting which partitions of standard deviations and correlation coefficients are to be printed.
Local Variables:			
Variable			Defintition
PDS		10 RSS	sition uncertainty.
VEL		10 RSS	locity uncertainty.
Subroutines Call	MPAK, VECMAG, VARSD, PRSDEV, PUNSD, PRC $\neq R R$, PUNGGR, SYML ϕ, MUNPAK.		
Caliing Subrouti	: SETEVN, GUIDE, MEASPR		
Common Blocks:	WめRK, DIMENS, LABEL, LOGIC		

3.3.5 Subroutine: \quad C $\emptyset V P(T, T F, S T M R D, P I N)$
Purpose: To propagate a covariance between two timepoints.
Method: Three options are available:Remarks:1) propagation by transition matrices read fromSTM file;
2) propagation by transition matrices computedas needed and not saved; or3) propagation by integration of covariancevariational equations.Independent of propagation method, the outputof C C VP is always stored in blank common locatedby the integer variable PTEMP. This is trueeven for zero length propagation intervals, inwhich case the input covariance is merely copiedto that location.
Additionally, when the option to read the $S T \mathrm{~m}$£ile is exercised, CØVV automatically propagatesthe control corariance if control propagation isindicated (logical variable PRDPG).
When C $\varnothing \mathrm{VP}$ is called with both STMRD and PD $\overline{\mathrm{T}} \mathrm{T}$
false (nominally for prediction events only)
tests are made to subdivide the complete propaga-
tion interval into as many subintervals as necessary

> to guarantee that no transition matrix propagation crosses a thrust phase change, sirice that would violate effective process noise model assumptions.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
T	I	A	Beginning time of propa-
			gation interval
TE	I	A	End time of propagation
			interval
STMRD	I	A	Logical variable indicat-
			ing source cri transition
			matrices if transition
			matrices are to be used
			=T, read transition
			matrices from STM file
.			$=F$, generate transition
			matrices by calling
	-		TRAJ overlay
PIN	I	A	Input augmented covariance
DELTTM	I/O	0	Propagation interval length
DXDKST	0	c	Replerian to cartesian
			transformaticn for ephemeris
			body

Variable	Input/ Output	Argument/ Common	Definition
DYN $¢$ IS	I	c	Dynamic noise flag
ET	I/O	c	Transformation matrix
			from thrust cone-clock
			system to heliocentric
			ecliptic coordinates
			evaluated at end of prop-
			agation interval
GTSAVE	0	C	Same transformation matrix
			as GT, but evalrated at
			beginning of propagation
			interval
IA ${ }^{\text {a }}$ SDC	I	c	Dynamic augmentation vector
ICALL	0	c	Initialization parameter
			for TRAY (sec. 3.5)
IEP	I	c	Locator in UP, VP of
			elements corresponding to
			ephemeris planet
IEPHEM	I	c	Flag indicating form of
			ephemeris elements, if any
INTEG	0	c	Control parameter for TRAJ
			(sec. 3.j)
ISTøP	0	c	Control parameter for TRAJ
			(sec. 3.5)
LIST	I	c	Array of state vector augmen-
			tation parameter numbers

Variable	Input/ Output	Argument/ Common	Definition
LISIDY	I	c	Atray of dynamic parameter
			numbers included in transition matrices
LbGF\%	I	c	Location in blank common
			of covariance matrix to be
			integrated when PDgT option
			is selected
I¢CTC	I	c	Location in blank common
			of either transition matrix
			or covariance matrix returned by TRAJ (sec. \therefore) after
			integration
LPD¢T	I	c	Ordered list of parameters
			expected by TRAJ (sec. 3.E)
			when covariance integration
			option is selected. LPDCT
			is equivalenced to IGP配
			array in common /SCHEDI/
			since no guidance events are
			permitted when integrating
			covariance variational equa-
			tions
MEVENT	0	- C	Control flag for trAJ (sec 3.5)

Variable	Input/ Output	Argument/ Common	Definition
NAJG	I	C	Length of total augmented
		-	state vector
NEPHET	I	C	Number of ephemeris elements
			augmented to state vector
WIPHAS	I	c	Number of current thrust
			phase
EDGT	I	C	Logical Elag
			$=T$, integrate covariance
			variational equations
	.		FF, propagate covariances
			by transition matirices
PG	I	C	Location in blank common
			of control covariance
PHI	I	c	Location in blank common
		-	of transition matrix
PI®かCAL	I	6	Location fin blank common
			of working storage block
			as large as the augmented
-			covariance matrix
PRøPG	I	C	Logical flag, operative
			only íf PDOT = FALSE and
	- *	-	SIMRD $=$ TRUE
			$=\mathrm{T}$, propagate control co-
			variance simultaneously
		.	wi.th knowledge

Variable	Input/ Output	Argument/ Common	Definition
.			$=$ F, do not propagate con- trol covariance
Q	0	c	Effective process noise
			matrix
SMASS	I	C	Mass of Sun.
STATEO	0	C	Initial heliocentric
			ecliptic S/C state for
			TRAJ $(\sec 3.5)$ when ICALI $=$
	. -		1
TCURR	I	c	Current trajectory time
TEVNT	0	c	Event time for propagation
			(either of covariance or
			transition matrix) to by
		.	TRAJ ($\sec 3.5$)
TG	I	c	Epoch of input control co-
			variance referenced to TLNCH
TM	I	c	Conversion factor, seconds/
			day
TREF	0	C	Reference time for TRAJ
			$(\sec 3.5)$
TTHRST	1	c	Array of thrust event times
UP	I	0	Array of n-body heliocentric
			position vectors

Variable	Input/ Output	Argument/ Common	Definition
UTRUE	I	C	S/C heliocentric position
			vector
VP	I	C	Array of n-body heliocentric
			velocity vectors
VTRUE	I	C	S/C heliocentric velocity
			vector

Local Variables:
Variable Definition

FRSTM

ILIST
$\left.\begin{array}{l}T 1 \\ T 2\end{array}\right\}$

Logical flag used when PDดT = TRUE
to control one-time only initialization of parameters for TRAJ (sec 3.5)
=T, first pass through CDVP
$=F$, not first pass through C $\varnothing \mathrm{VF}$

List of augmented dynamic parameters
Start and stop times respectively
for propagation subintervals as
governed by thrust events (see
Remarks)
 MINPAK, ZROE, STMPF, STMRDR, STMUSE, ZERØM WøRK, (ELANK), CøNST, DIMENS, KEPCØN, LØCATE, LøGIC, MEASI, PRØPI, PRØPR, SCHEDI, SCHEDR, EPHEM, TIME, TRAJ1, TRAJ2

Logic FIov:

3.3.6 Subroutine: CYEQEC (STACYL, GRION, ECEQ, $\emptyset M E G A, G E Q S T A$, GECSTA)
Purpose:
To compute instantaneous geocentric equatorial and geocentric ecliptic cartesian coordinates of a point (station location) given in geocentric equatorial cylindrical coordinates.
Method:

Given cylindrical coordinates $r_{s} \lambda, z$ (spin radius, longitude, z - height) instantaneous Greenwich hour angle (G), and sidereal rotation rate, w, equatorial coordinates are

$$
\begin{aligned}
x_{e q} & =r_{s} \cos (\lambda+G) \\
y_{e q} & =r_{s} \sin (\lambda+G) \\
{ }^{2}{ }_{e q} & =z \\
\dot{x}_{e q} & =-\omega r_{s} \sin (\lambda+G)=-\omega y_{e q} \\
\dot{Y}_{e q} & =\omega r_{s} \cos (\lambda+G)=\omega x_{e q} \\
\dot{z}_{e q} & =0
\end{aligned}
$$

Ecliptic position and velocity are computed by the application of the equatorial to ecliptic transformation $\partial \mathrm{x}_{\mathrm{ec} / \partial \mathrm{x}_{\mathrm{eq}}}$

$$
\left[\begin{array}{c}
x_{\mathrm{ec}} \\
y_{\mathrm{ec}} \\
z_{\mathrm{ec}}
\end{array}\right]=\partial \mathrm{x}_{\mathrm{ec}} / \partial x_{\mathrm{eq}} \cdot\left[\begin{array}{c}
x_{\mathrm{eq}} \\
y_{\mathrm{eq}} \\
z_{\mathrm{eq}}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\dot{x}_{e c} \\
\dot{y}_{e c} \\
\dot{x}_{e c}
\end{array}\right]=\partial x_{\mathrm{ec}} / \partial x_{\mathrm{eq}}\left[\begin{array}{c}
\dot{x}_{\mathrm{eq}} \\
\dot{\mathrm{y}}_{\mathrm{eq}} \\
\dot{z}_{\mathrm{eq}}
\end{array}\right]
$$

Input/Output:

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
STAGYL	I	A	Station cylindrical co-
			ordinate ($\mathrm{r}_{s}, \lambda, z$)
GRLIGN	I	A	Instantaneous Greenwich
			hour angle
ECEQ	I	A	Equatorial to ecliptic
			transformation ($\partial x_{\mathrm{ec}} / \partial \mathrm{x}_{\mathrm{eq}}$)
¢REGA	I	A	Earth's sidereal rotation
		.	rate
geqSTA	0	A	Station geocentric equa-
			torial position and velocity
GECSTA	0	A	Station geocentric ecliptic
			position and velocity

Subroutines Called: None
Galling Subroutines: \emptyset BSERV
Cominon Blocks: Fione
Logic FIow: None
3.3.7 Program: DATAG
Purpose: Executive control of GбDSEP data overlay.
Remarls:
DATAG performs no computations. It merely
calls three separate subroutines to break the
data overlay coding into more easily managed
blocks.
Input/Output:All initialization parameters for GgDSEP.
Local Variables: None
Subroutines Called: DEFALT, INPUTG; ØUTPTG
Calling Subroutines: GØDSEP
Common Blocks: None
Logic Flow: None
3.3.8 Subroutine: DEFALTTo establish default values for all erroranalysis inputs.Only those variables not having default valuesdefined in GøDSEP input (Vol. II, User's Manual,Section 2.3) will be included in the followingInput/Output list.
Input/Output:

Variables	Input/ Output	Argument Common	Definition
EPbCH	I	C	JuIian date of launch epoch
GHZERø	0	c	Greenwich hour angle evaluated at time EPDCH
raugde	I	C	Array of flags controlling dynamic parameter augmentation for transition matrices
IAJUPPH	0	C	Location of ephemeris element flags in IAUG array
IAUGST	0	c	Location of station location parameter flags in IAUG array
IBAZEL	0	c	Location of azimuth and elevation angle measurement bias flags in IAUG array

Variables	Input/ Output	Argument Common	Definition
IBDIAM	0	C	Location of apparent planet
			diameter measurement bias
			flag in IAUC array
TBSTAR	0	c	Location of star-planet
	-		angle measurement bias
	-		flags in IAUG array
IB2WAY	0	c	Location of 2 -way range
			and range-rate measurement
			bias flags in IAUG array
IB3WAY	0	c	Location of 3-way range
			and range-rate measurement
			bias flags in IAUG array
Immax	0	c	Maximum allowable parameter
			number for any dynamic param-
			eter in TAUG array
IEP	0	c	Parameter used to locate
			ephemeris body position
			and velocity in UP, VP,
			UREL, VREL arrays (common
			/TRAJ2/)
ITP	Q	c	Same as IEP, only for tar-
			get body

Variables	Input/ Output	Argument Common	Definition
LIST	0	C	Array listing parameter
			numbers of augmented state vector. For first six
			'locations (for basic S/C
			state) LIST(I) = - I
EIStDY	0	c	List of parameter numbers
			of all dynamic parameters
			augmented to S/C state for
			transition matrices. De-
			fining values determined
			by IAUGDC array.
IqCS	0	c	Parameters locating first
			word of blank common avail-
			able to TRAJ (sec. 3.5)
			default value,
			$=1$
MEYAUG	0	c	Maximum allowable length
			of augmented state vector.
	.		Determined by dimensions
-			of LIST and AUGLAB arrays.
			Default value, $=30$.

Variables	Input/ Output	$\begin{gathered} \text { Argument } \\ \text { Common } \\ \hline \end{gathered}$	Definition
MAXDIM	0	c	Array of meximum allowahto
			dimensions on individual
			state vector partitions.
			Values set are governed
			by dimensions of input co-
			variance matrices in sub-
			routine NM^{*} IST $(\mathrm{sec} 3.3 .25)$.
			Default values are:
			(1) $=6, \mathrm{~S} / \mathrm{C}$ state vector
			(2) $=11$, solve-for parameters
			$(3)=13$, dynamic consider
			parameters
			(4) $=15$, measurement con-
			sifier parameters
			(5) $=10$, ignore parameters
MAXSTA	0	C	Largest station number
			allowed for augmenting
			2 -way or 3-way range or
			fange-rate bias to the S/C
			state vector
NPHSTM	0	C	Length of augmented state
			vector of dynamic parameters
			used in transiticn matrices

Variables	Inpuit/ Output	Argument Common	Definition
GREGAG	0	C	Earth sidereal rotation rate default value $=6.300388099 \mathrm{rad} / \mathrm{day}$
RAD	I	c	Conversion factor, degrees/ radian.
TEND	I	c	Trajectory end time in days referenced to EDØCH as defined in $\$$ TRAJ nameIist (Vol. II, Usex's Manua1, sec. 2.1)
THRUST	I	c	Array defining thrust control policies, phase end times and specific parameter values (see common TIRAJ1/)
TM	I	c	Conversion constant, seconds/ day
TSTART	I	c	Trajectory start time in days referenced to EPøCH, as defined in $\$ \mathbb{\$}$ TRAJ namelist (Vol. II, User's Manual, Sec. 2.1)

Variables	Input/ Output	Argument Common	Definition
XLAB	0	C	Six-character Hollerith
			labels coriesponding to

Loca1 Variables:

Variable	Definition
MAXPAR	Maximum number of parameters available
	for augmentation. Governed by dimen-
	sions of IAUG and XLAB arrays. Current
	default value $=50$.
	Fraction of a day the initial Julian
	date, EPøCH, is away from midnight
	Greenwich Mean Time. Used in computing
	GHZER.

Subroutine Called: BøMB, LøCATE
Calling Subroutines: DATAG
Common Blocks: WøRK, (LILANK), CøNST, DATAGI, DATAGR, DIMGNS, GUTDE, KEPC $\emptyset, ~ L A B E L, ~ L \varnothing C A T E, ~ L \emptyset G I C, ~ M E A S I, ~$ MEASR, PRGPI, PRØPR, SCHEDI, SCHEDR, TDE, TRKDAT, TRAJ1, TRAJ2
:
Logic FIow:
None
3.3.9 Subroutine: DIMENS

Purpose: \quad To define dimensions and locations of all matrices located in blank common.

Remarks:
Blank common locations set aside by the variables PHI, PLøCAL and PTEMP are normally allocated the same number of words of storage as for a covariance matrix. There are, however, two exceptions to this standard. If the dimensions of transition matrices to be read from the STM file are greater than those of the augmented covariance matrix, or if both the transition matrices from the STM file and the augmented covariance are smaller than 9×9 and guidance events are to be executed. The second case requires a minimum 9×9 area since thrust bias sensitivities are required for low thrust guidance maneuver evaluations.

Since only one secondary overlay may reside in core at any one time, all blank common locations associated only with secondary overlays begin at the same address. Therefore, LøCS (trajectory), H (measurement) and PGI (guidance) are set to the same location.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
AUGLAB	0	C	Hollerith labels for all parameters augmented to state vector.
C $\emptyset \mathrm{NRD}$	I	c	Logical flag indicating if control uncertainties read in.
H	0	c	Location in blank common of observation matrix.
IAUG	I	c	Array of parameter augmentation flags.
IAUGDC	0	c	Dynamic parameter augmentation $\ddagger 1$ ags.
IAUGPH	I	c	Location in IAUG array of ephemeris element flags.
IDMAX	I	c	Maximum parameter number allowed for a dynamic parameter in IAUG array.
IGAIN	I	C	Integer flag for OD algorithm.
IGFøRM	I	C	Integer flag indicating input form of control uncertainty matrices.
IPF@RM	I	c	Integer flag indicating input form of knowledge uncertainty matrices.
LIST	0	c	Array containing parameter numbers for all parameters in augmented state vector.
LISTDY	0	c	Dynamic parameter augmentation numbers.
LøCAJG	0	c	Array locating sub-blocks within augmented covariance. (See AUGCNV, Section 3.3.1).
LøCBLK	0	C	Array locating covariance sub-blocks within block form (See AUGCNV, Section $3,1)$

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
IфCLAB	0	c	Array locating state vector partitions within LIST and AUGLAB arrays.
L. $¢ \mathrm{CLF}$ ¢	0	C	Location in blank common where TRAJ (Section 3.5) picks up covariance matrix to be integrated.
LøCS	0	c	Location in blank common of areas available to TRAJ (Section 3.5).
MAXAUG	I	c	Maximum allowable length of augmented state vector.
MAXDIM	I	c	Array of maximum allowable dimensions of individual state vector partitions.
NAUG	0	c	Length of augmented state vector.
NAUGSQ	0	c	NAUG*NAUG.
NBLK	0	c	Number of words occupied by augmented covariance stored in block form (See AUGCN, Section 3.3.1).
NDIM	0	c	Array of current dimensions of individual augmented state vector partitions.
NEPHEL	0	c	Number of ephemeris elements in augmented state vector.
NGUID	I	C	Number of guidance events to be executed.
NPHSTM	0	c	Number of dynamic parameters included in transition matrices on STM file.
.NSDLVE	0	c	Total number of parameters to be solved-for by filter (including S/C state).

Variable	Input/ Output	Argument/ Common	Definition
P	0	c	Location in blank common of knowledge covariance.
PD¢T	I	c	Logical flag for covariance propagation.
			$=T$, integrate covariance $=$ F, use state transition matrices.
PG	0	c	Location in blank common of control covariance.
PGI	0	c	Location in blank conmon of NAUG X NAUG storage
PG2	0		blocks used for guidance.
PG3	0	C	
pg4	0	c	
PHI	0	c	Location in blank common of transition matrix.
PLOCAL	0	C	Working locations in blank common for intermediate
PTEMP	0	c	operations on covariances and transition matrices.
PGLS	0	c	Iocation in blank common of weighted least squares reference covariance.
XIAB	I	C	Array of Hollerith labels for all parameters available for augmentation.
Local Variables:	None	-	
Subroutines Called	: $\mathrm{B} \emptyset \mathrm{MB}$		
Calling Subroutines: INPUTE			
Common Blacks:	WøRK, (BLANK), DATAGI, DATAGR, DIMENS, LABEL, LбCATE, LøGIC, NEASI, SCHEDI, TRAJ2		

Compute NEPHEL, Zero NDIM Array. Redefine IAUG Array To Distinguish Between Measurement And Dynamic Consider Parameters

$$
200
$$

Compute Blank Common Locators If No Guidance, Leave No Storage Behind PG. If No WLS Filtering, Leave No Storage Behing PVLS

非800

3.3.10 Subratine: DYNØ (T, DT, PHIMAT)

Purpose: To compute effective process noise.

Method:
 See Volume I, Analytical Manual, Section 6.2.

Remarks:
For PDOT, DYNØ is used to modify the thrust bias and noise partitions of the augmented covariance when the number of thrusters has changed (at thrust switching events).

To change the process noise model, subroutines DYNø, ØUTPTG, and LØADFM (in TRAJ) may be
affected for PDOT, and subroutines DYN \emptyset and STMUSE may be affected for STM usage (effective process notse).

Input/Output:

Variable	Input/ Output	Argument/ Common	Definftion
T	I	A	Trajectory time at beginning of propagation interval (STM only)
DT	I	A	Interval length (days).
PHIMAT	I	A	Augmented transition matrix over propagation interval.
EPTAU	I	C	Array of process noise correlation times.
EPVAR	I	c	Array of process noise variances.
GT	I	C	Transformation matrix from magnitude, cona, clock to ecliptic cartesian coordinate system evaluated at end of prope agation interval.
gTSAVE	\therefore	c	Same as GT matrix, only evaluated at beginning of propagation interval

Variable	Input/ Output	Argument/ Common	Defintion
NAUG	I	C	Length of augmented state vector.
NTPHAS	I	c	Number of current thrust phase.
P	I	c	Location in blank common of knowledge covarience.
PTEMP	I	c	Location in blank common of temporary covariance.
Q	0	C	Effective process noise matrix (6x6).
THRUS'T	I	C	Array of thrust phase definition parameters.
TM	I	C	Conversion constan', seconds/day.

Local Variables:

Variable Definition

NCPHAS Number of next thrust phase
ØMECøV Effective velocity covariance in magnitude, cone, clock coordinates.

PHISUB

TSHRSTR

VEFE1

VEFF2
6x3 sub-block of PHIMAT representing sensitivity of position and velocity at end of interval to velocity at beginging of interval.

Ratio of operating thruster at phase change.

Effective ecliptic cartesian velocity covariance at begir.ning of interval.

Effective ecliptic cartesian velocity covariance at end of interval.

Subroutines Salled: AMABT, LøCLST, MMABAT, MPAK, MUNPAK, SCALE, SDVAR, SYMUP, VARSD, ZERØM

Calling Subrowtines: CøVP, GUYDE, SETEVN
Common Blocks: WøRK, (BIANK), CøNST, DIMENS, LøCATE, LøGIC, PRØPR, TRAJ1, TRAJ2

3.3.11 Subroutine: EIGPRN (A, N, PVS'JB, PZER \emptyset, VZER \varnothing)

Purpose:

Remarks:
Two options on computing eigenvalues and vectors are provided. The first operates on the complete input matrix. The second operates on the $3 x 3$ position and velocity sub-blocks oniy, which are assumed to be the first and second 3×3 diagonal sub-blocks, respectively.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
A	I	A	Input matrix.
N	I	A	Dimension of input matrix (assumed to be square).
PVSUB	I	A	Logical flag controlling computation option. $=T$, operate on position and velocity subblocks. $=F$, operate on complete matrix.
PZER \varnothing	I	A	Off-diagonal annihilation value for complete me: six if $\mathrm{PVSUB}=$.FALSE. or for position sub-block only if PVSUB $=$.TRUE.
VZER \varnothing	I	A	Off-diagonal annihilation value for velocicy subblock if PVSUB = .TRUE. Hot used if PVSUB $=$.FALSE

Local Variabies:

Variable Definition

ICYCLE	Cycle control flag when PVSUB $=$.TRUE. indicating whether processing position or velocity sub-block.
\emptyset DRER \emptyset	Off-diagonal annihilation value given to EIGENV.
VALPV	Array of eigenvalues returned by EIGENV.
VECPV	Array of eigenvectors recurned by EIGENV.

Subroutines Called: EIGENV, MATøUT, SQRT, MPAK
Calling Subroutines: SETEVN, RELCOV
Common Blocks: None

Logic Flow:

3.3.12 Subroutine: ESCHED (KIND, NCNT, NSTOP, TIME)

Purpose:

Method:

Remarks:

To modify event counters to guarantee that of all events requested in namelist \$GgDSEP, only those occurring between the initial and final times of the present error analysis are scheduled.

If five events of a single type are scheduled according to namelist \$GODSEP, three of which occur before trajectory time TCURR, the remaining two events are not shifted into the first two locations for that event. Rather, the event counter is set to 3 , informing the scheduler that the fourth event of that type will be the first schedriled. ?

If any guidance events are scheduled, but the last is not scheduled within .5 day of error analysis final time, this subroutine automatically schedules an additional guidance event of policy zero. This merely forces a print of all control uncertainties at the final time.

Also, to minimize complexity of SCHED (Section
3.3.36), guidance event times are adjusted by the delay time in this subroutine.

Input/Output:

Variable	Input/ Output	NameIist/ Common	Definition
KIND	I	A	Event code.
			$\begin{aligned} & =2 \text {, eigenvector } \\ & =3 \text {, thrust } \\ & =4 \text {, guidance } \\ & =5, \text { prediction } \end{aligned}$
NGNT	0	A	Event counter, set equal to number of events scheduled by namelist \$G \quad DSEP which must be skipped during execution.
NST¢P	I/0	A	Total. number of events of type KIND, incIuding those skipped according to NCNT.
TIME	I	A	Array of schedulea event times.
EVIAB	I	C	Axray of Hollerith event labels.
1GP\$6L	I	c	Array of guidance policy flags.
IGREAD	I	c	Array of guidance namelist read control flags.
TCURR	I	c	Gurrent (and initial) trajectory time.
TCuTg\%	I	0	Array of guidance event cutoff times.
TDEIAY	I	c	Array of guidance event delay times.
TEINAL	I	0	Trajectory final time.
TPRED2	1	c	Array of times predicted to

Loca1 Variables:

Variable	Definition
NOMBER	Actual number of events of code
	KIND to be executed.

Subroutines Called: None
Calling Subroutine: фUTPTG
Common Blocks: LABEL, SCHEDI, SCHEDR
Logic Flow: None
3.3.13A Subroutine: ESLE (P, N)

Purpose:	To load equivalent station location errors
	into augmented covariance matrix.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
P	I/0	A	Augmented covariance matrix siill in standard deviations and correlation coefficients.
N	I	A	Dimension of augmented covariance matrix.
C \emptyset RL N_{N}	I	c	Station-to-Station longitude correlation coefficient.
IAUG	I	c	Parameter augmentation list.
IAUGST	I	c	Location of station location parameter flags in IAUG array.
LIST	I	c	List of paramezers contained in augmented state vector.
NST	I	c	Number of tracking stations.
SIGLON	I	C	Standara deviation in station longitude.
SIGRS	I	C	Standard deviation in station spin radius.
SIGZ	I	C	Standard deviation in station 2 -height.
Staidc	I	C	Array ef station cylindrical coordinates.

Local Variables:

Variable	Definition
EQSLE	Local array equivalenced to station location standard deviation terms.
	EQSLE (1) = SIGRS
	(2) $=$ SIGLøN
	(3) $=$ SIGZ
	(4) $=$ C \quad RL 6 N
IL $\emptyset \mathrm{C}$	Counter for number of stations whose
	location uncertainties are included in the augmented state.
L $\%$ CATE	Array used to locate off diagonal
	positions where longitude correla-
	tions must be loaded if more than
	one station's location errors are augmented.

Subroutines Called: None
Calling Subroutines: INPUTG
Common Blocks: WøRK, DATAGI, DATAGR, DIMENS, MEASI, MEASR
Logic Flow: None

244-A

Variable	Input/ Output	Argument/ Common	Definition
TARWT	I	A	Target parameter weights.
TBURN	I	A	Duration cf guidance burn.
TECOV	I	A	Target eiror covariance before guidance.
UMAX	I	A	Vector of maximum control corrections allowed.
VMAT	I	A	Variation matrix of target WRT state (at guidance epoch).
VTA	I	A	Logical fiag for variable time of arrival guidance.

Local Variables:

Variable

CGAM

CSWATE
DCØN

GAMT

LCøN

LISTC

LISTU

NCL
NUN

STEMP
TRC $\varnothing V$

Guidance matrix for constrained control parameters.

Weighting factor for time parameters.

Scaling factor.
Guidance matrix transpose used as working array.

Local vector of control labels (LABCめN).

Vector of control parameter numbers (new ordering).

Vector of control parameters numbers (old ordering).

Number of constrained controls.
Number of unconstrained controls.
Local sensitivity matrix (SMAT).
Target error covariance resulting from residual (non-removeable) control error.
Variable_ Definition

U
UMAXI
UWATE
Control parameter correction matrix.
Local vector of control bounds (UMAX).
Local vector of control weights (CgNWT).

Subroutines Called: ADD, AMAB, AMABT, C $\neq \mathrm{PY}, \mathrm{C} \not \mathrm{PYY}, \mathrm{GENINJ}, \mathrm{IC} \not \mathrm{PY}$, IDENT, LøADRC, MATøUT, MMABT, MMATBA, NEGMAT, PRSDEV, SCALE, VARSD, ZERดM

Galling Subroutine: GUIDE
Common Blocks: (BLANK), CONST, LABEL, LøCATE, TRAJI, WøRK

Logic Flow:

3.3.14 Subroutine:	FILIR ($\mathrm{P}, \mathrm{PCDN}, \mathrm{H}, \mathrm{R}, \mathrm{N}, \mathrm{NS}, \mathrm{NR}, \mathrm{GAIN}, \mathrm{RESID}$, PP)
Entry Point:	FILTE2
Purpose:	To compute the orbit deterimination filter gain
	for a measurement and update the knowledge covariance using that gain.
Method:	A general purpose filtering routine (See
	Analytic Manual, Sections 6.4 and 6.5) which
	nominally computes the Kalman-Schmidt (KS)
	gain and updates the knowledge covariance.
	Alternately, yia the entry point, FILTR2, the
	covariance can be updated with an input gain.
Remarks:	Several places in FILTR computations require
	the use of sub-blocks of an input or inter-
	mediate matrix. Wherever possible, advantage
	is taken of internal storage formats so that
	the full matrix may be accessed using only the
	correct subwisack dimensions, eliminating
	requirement for pulling out the sub-block and
	storing it in an intermediate array.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
H	I	A	Knovledge covariance before measurement:
H	I	A	Observation matrix.

1	Variable	Input/ Output		FILTR -2
			$\begin{aligned} & \text { Argument/ } \\ & \text { Common. } \end{aligned}$	Definition
	GAIN	0	A	Gain matrix.
	Pp	0	A	Knowiedge covarlance after measurement.
	N	I	- A	Dimensifion of augmented covariance.
	NR	\pm	A	Dimension of current measurement.
	NS	I	A	Total number of variables and parameters being estimated by filter.
	PCON	I	A	Location in blank common of working storage as large as augmented covariance matrix.
	R	I	A	Measurement white noise matrix.
(RESTD	0	A	Measurement residual matrix.

Local Variables:

Calling Subroutines: MEAS
Common Blocks: $\quad W \phi R K$

Logic Flow:

Pages 247 and 248 are deleted.

3.3.15 Subroutine: GAINF (K , RDNRIT)

Purpose: \quad To read gain matrix from or write gain matrix

to GAIN file (TAPE 4).

Input/Output:

Variable	Input/ Output	Namelist/ Conmon	Definition
K	I 10	A	Gain matrix (real).
RDWRIT	I	A	Read/write control $\ddagger 1 \mathrm{l}$ g
			$\begin{aligned} = & 4 \text { HREAD, read gain matrix } \\ = & 5 H W R I T E, \text { write gain } \\ & \text { matrix. } \end{aligned}$
CHEKPR (4)	I	c	Logical check print flag, operative for both read and write modes.
¢		-	$\begin{aligned} & =T, \text { print gain matrix to } \\ & =F, \text { do not print gain } \\ & \text { matrix. } \end{aligned}$
MESEVA	I	$\begin{array}{r}\text { c } \\ \hline\end{array}$	Measurement code corre. spondiag to gain matrix.
NR	I	c	Number of columns in gain matrix.
NSøEVE	I	c	Number of rows in gain matrix.

Local Variables:

Variable
MEV

Measurement code read from GAIN file. MEV is compared to MESEVN, the code provided from SCHED (Section 3.3.36) to guarantee proper meshing of gain with its original data type.

Calling Subroutine: MEAS

Common Blocks:
Logic Elow:

LøGLC, MEASI, SCHEDI
None
3.3.16 Subroutine: GAINUS (K)
Parnose: Ton be riplaced by miar if any gnim matrixalgorithm is desired wher than Kalman-Schnidt,sequential weighted least squares, or readfrom GAIN file.Users-supplied gain is expected to be an infre-quently exercised option. The user who wishesto incorporate his own algorithm should bevery familiar with filtering theory. Thoughthere are no "wrong" algoxithms, any algorithmnot carefully thought out -- and many that are --will generally be meaningless and harmful. Theonly absolute rule is that the gain matrix hasdimensions NSøLVE by NR (common/MEASI/).
Calling Subroutine: MEAS
1.3 .17

Purpose:

Method:
Subroutine: GUIDE.

To perform all computations and printout for the execution of a gridance maneuver.

Both Iow thrust and impulsive ΔV guidance are available. See Vol. I, Analytical Manual, Sec. 6.6 for details.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
$A \cup G I A B$	I	C	Hollerith label array for all augmented parameters.
GHEKPR(5)	I	c	Check print flag $=T$, low thrust guidance - print, knowledge and control uncertainties at end or burn interval and transition matrix over burn interval. ΔV guidance - prints eigenvalues and eigenvectors of ΔV covariance. $=\mathrm{F}$, no optional print
CWNWT	I/0	c	Array of control weights.
DELAY	I	C	Guidance delay time for current maneuver.
IXXDKBR	I	c	Keplerian to cartesian coordinate transformation for ephemeris body at beginning of burn interval.
THETITS	I	C	Dynamic noise flag
EपV	I	c	Velocily covariance offdiagonal annihilation value for , eigenvalue/vector computation.
EI	1/0	c	Transformation matrix for dynamic notise computation.
GTBIURN	I	G	GT matrix evaluated at beginning of burn interval,

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
GIDLAY	I	c	GT matrix evaluated at beginning of guidance delay period.
gTSAVE	I/O	0	Transformation matrix for dynamic noise computation.
IEP	T	c	See UREL, VREL below.
IPgL	I	c	Guidance policy for current maneuver.
IREAD	I	C	Namelist SGEVENT read control flag for current aneuver.
ITP	I	0	See UREL, VREL below.
LDCTC	I	c	Lacation in blank common of transition matrix from cutoff time to target condition time.
NAUG	I	c	Length of augmented state vector.
NCNTG	I	c	Number of current guidance maneuver.
$\mathrm{NC} ¢ \mathrm{~N}$	I	c	Number of low thrust controls.
NEPHEL	I	c	Number of ephemeris elements in augmented state.
NPHSTM	I	C	Dimension of state transition matrix from TRAJ (Sec. 3.5) with dynamic parameters only.
NTP	I	C	Code number for target body.
P	I	0	Location in blank common of knowledge covariance at beginning of guidance delay period.
PG	I	c	Location in blank commos of eontrol covariance at beginning of guidance delay time.
PG1	I		Locations in blank conmon for intermediate covariances
PG2	I		required for guidance computations.
PG3	I	c	
PG4	I	c	

Variable	Input/ Output	Argument/ Common	Definition
PHI	I	c	Location in blank common of transition matrix over delay period.
PI	I	C	Mathematical constant, π
PLAB	I	C	Array of knowledge covarisnce labels.
PLøCAL	I	c	Location in blank conmon of covariance-sized working storage.
PTEMP	I	c	Same as PLøCAL.
RAD	I	c	Conversion constant, degrees/ radian.
S	I	C	Sensitivity matrix, cutoff state w.r.t. controls.
SMAT	I/O	C	Sensitivity matrix, targets WRT controls.
TBURN	I	c	Burn interval duration for curr int maneuver.
TIMFTA	I	c	Target condition eveluation time for fixed time of arrival guidance.
TM	I	C	Conversion constant, seconds/day.
T \quad FF	I	c	Cutoff time for current maneuver.
T 9 N	I	C	Startup time for current maneuver.
TSTM	I	C	Most racent STM file time point.
TST¢P	I	- C	Trajectory stop time from integrator fur B-plane or closest approach targeting,
UREL (1, IEP $)$	I	c	S/C position relative to ephemeris body at target condition time.
VARDV.	I	c	Array of expcution error vafiances.
VARMAT	I/O	C	Variation matris, sensitivity of target conditions to cuioff state.
VREL (1, IEP $)$	I	c	S/C velpcity relative to ephemeris body at target condition time.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
VRNIER	I	c	```Logical fiag = I, current maneuver is vernier. = F, current maneuver not vernier.```

Local Variables:

Variable	Definition
LABC 6 N	Array of control Hollerith labels.
CSWATE	Dimensional weighting for start-up and cutoff time controls.
DELTAV	Expected velocity update for 0 (V) guidance.
DVCøV	Impulsive ΔV covariance
DVM	Mean ΔV magnitude.
ETA	Variation matrix, target conditions wrt state at target condition time.
GAMMA	Guidance matrix
LABS	Labelling array
ITARG	Input parameter to EMCDMP (Sec. 3.6.5)
JST¢P	Input parameter to ECøMP (Sec. 3.6.5)
LPGQFF	Location in blank comnon of control covariance at cutoif time.
TPG¢¢	Location in blank common of control covariance at startup time.
LP¢FF	Location in blank common of knowledge covariance at cutoff time.
LPON	Location in blank common of knowledge covariance at startup time.
NTARG	Number of cargets.
PHIBRN	6×6 state transition matrix over burn interval.
PHITAR	6×6 state transition matrix from cutoff to target condition tire.

Variable	Definition
SIGDV	Standard deviation in ΔV.
LABTAR	Array of target labels.
TARTIM	Target condition evaluation time.
TEMP	Hollerith prefix.
LTARG	Current target label.
TRS	Trace of AV covarzance.
VMAT	Variation matrix, target parameters WRT state at guidance epoch.
VTA	Logical flag for variable time of arrival low thrust XYZ guidance (if TRUE).
Subroutines Called:	ADD, CøPY, CØRREL, DYNø, ECळMP, EIGENV, FBURA, GENINV, ICØPY, MATØUT, MMAB, MMABAT, MPAK, MUNPAK, NEGMAT, PRØP, PRSDEV, PUNC \varnothing, RELC $\emptyset V$, SCALE, SUB, VARSD, VERR.
Common Blocks:	WøRK, (BLANK), C $\emptyset N S T$, DIMENS, GUIDE, KEPC $\emptyset N$ LABEL, LøCATE, L $\emptyset G I C, ~ M E A S I, ~ P R \emptyset P R, ~ S C H E D I$, SCHEDR, TIME, TRAJI, TRAJ2.

Logic Flow:

$$
\text { (1) } c-4
$$

Purpose:	To control all inputs to GøDSEP
Remarks:	Common/L申CAL/ appears in this subroutine only and
	is an ordering artifice to equivalence its elements
	to the array L $\phi C A T E$.

Imput/Output:

Variable	It.put/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$
CøNRD	\emptyset	c
IEPHEM	\emptyset	c
IEFøRM	\emptyset	c
IPF¢RM	\emptyset	c
ISTMF	I	c
MAXDIM	I	c
NAUG	\varnothing	c
P	ϕ	G
PG	\emptyset	c
XIAB	I	G

Local Variables:

Variable
CXS, CXU, CXIN, PS, CSU, CSV, CSW, PU, CUV, CUW, PV, CWN, PNT

Logical Flag $=T$, control uncertainties read in =F, control uncertainties not read in

Flag indicating coordinate system of ephemeris elements.

Flag indicating form of input contral uncertainties.

Flag indicating form of input knowledge uncertainties.

STM file usage flag
Array of meximum dimensions allowed on input covariance sub-blocks.

Length of augmented state vector.
Location in blank common of knowledge covariance.

Iocation in blank conmon of control covariance

Array of Hollerith labels for all possible augmentation parameters.

Definition
Locations in blank conmon of input covariance matrix subblocks of the same name.
Variable Definition
NTGTTotal number of words allorated foreach of knowledge and controi uncer-tainties to be read in namelist\$GØDSEP.
Subroutines Called: MILIST, DIMENS, PPAK, ESIE, SMMP
Calling Subroutines: DATAG
Common Blocks: WØRK(BLANK), DATAGR, DATAGI, DIMENS, IøCATE,MEASI, TRAJ2, LøCAI
Logic F1ow: None
3.3.19 Subroutine: LOADRC ($A, M A_{3} N A$, LISTA, C, M, N LISTC, LTRAN)

Entry Points:
Purpose:

Method:

工 $\emptyset \mathrm{DC} \Phi \mathrm{L}, ~ L \emptyset \mathrm{DR} \emptyset \mathrm{N}$

To load selected rows or columns from one matrix to another.

- A list of codes (IISTA for matrix A and LISTC for matrix C) is associated with either column entries, row entries or both. The two matrix codes are compared and rows or columns having common codes are loaded from A to C.

L6DCGL uses LISTC to define the columns of C. Letting the index J run from i to N, for each value of J, IISTA is searched for an element JJ such that $\operatorname{LISTC}(J)=\operatorname{LISTA}(J J)$. If no equality is found, no operation is performed on column J of matrix C. If an equality is found, the elements of row $J J$ in matrix. A are copied into row J of C.

LøDR $\emptyset \mathrm{N}$ functions the same way for the rows of C as L $\emptyset \mathrm{DC}$ 配 does for columns. LISTC and IISTA are then assumed to define the rows of C and A, respectively.

LøADRC loads rows and colums simultaneously for square matrices where a single list can
denote ordering for both rows and columns, such as covariance and transition matrices. For the simultaneous loading, an intermediate transformation array LTRAN is used. LTRAN(I) is zero if the $I^{\text {th }}$ parameter of LISTC does not appear in LISTA, or is equal to II if LISTA(II) $=$ IISTC(I). Individual elements are transferred from A to C by

$$
C(I, J)=A(\operatorname{LTRAN}(I)), \quad \operatorname{LTRAN}(J))
$$

Remarks:
if $\operatorname{LTRAN}(\mathrm{I})>0$ and $\operatorname{LTRAN}(\mathrm{J})>0$, otherwise element $C(I, J)$ is not changed from input value. The argument LTRAN is working storage and is used only when L $\emptyset A D R C$ is called. It must have a length at least as great as LISTC. The inputs $N A$ and N are ignored for L $\mathrm{N} \phi \mathrm{ADRC}, \mathrm{A}$ is assumed to be MAxMA and C to be NxM .

Input/Output:

Variable	Input/ Outout	Argument/ Common	
A	I	A	Input matrix.
MA	I	A	Number of rows in A.
NA	I	A	Number of columns in A. IISTA
I	A	Vector Iist of code numbers for rows/columns of A.	
C	0	A	Output matrix.

Variable	Input/ Output	Argument/ Common	Definition
M	I	A	Number of rows in C .
N	I	A	Number of columns in C.
LISTC	I	A	Vector list of code numbers for rows/columns of C.
LTREN	0	A	Transformation list from A to C in LbADRC designed as working storage with no specific output function. Must have length greater than or equal to that of LTSTC.

Local Variables:

Variable Dełinition
MIN

L $\emptyset \mathrm{DCOL}$ - minimum of (M, MA) LøDROW - minimum of (N, NA)

When copying rows or columns MIN is the row or column length. It guarantees that the length of rows or columns in neither A nor C is exceeded.

Subroutines Cailed: None
GaIIting Subroutines: STMRDR, GUIDE, C $\ddagger V P$, PRED, STMUSE, RELCØV
Common Blocks: None
Eagic Flow:
None

3.3.2rA Function: LøCLST (IPARA:A)

Purpose: \quad To locate the position of a parameter in the
augmented state vector.

Input/Output:

Variable	Input/ Output	Argument Common	Definition
IPARAM	I	A	Code number of parameter to be located.
LIST	I	C	Dimension of augmented state vector.
L $\phi C L S T$	0	C	Vector of code numbers in augmented state.
		F:	Parameter location, if in augmented state.

Local Variables: None
Subroutines Called: None
GaIling Subroutines: ØBSERV
Common Blocks: DIMENS
Logic Flow:

3.3.20B Subroutine: MASSIG (IFLAG, P, PG, DT)

Purpose: \quad To compute the estimated and cmulative spacecraft mass variances.

Method:
See Analytic Manual, Section 6.2 (Covariance Propagation).

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
DT	I	A	Propagation interval.
ENGINE (10)	I	c	Exhoust velocity.
EPTAU	I	C	Thrust noise correlation times.
EPVAR	I	c	Thrust noise variances.
IAUGDC	I	c	Vector of flags for dynamic parameters.
IFIAG	I	A	Flag for computational control. $=0$, do not average acceleration. $=1$, initialize SAVACC, $=2$, update mass variance, $=3$, update and print mass variance.
NaUg	I	C	Dimension of augmented state.
NTPHAS	I	C	Current thrust phase number.
P	I	A	Knowlege covariance.
PG	I	A	Gontrol covariance,
SAVACC	I/0	C	Previous thrust açeleration.
SCMASS	I	c	Current S/C mass,
SCMVAR	x/0	c	Current mass variance,
THRACC	I	C	Thrust acceleration yector,
THRUST	I	c	S/C thrust array,

Local Variables:

Variable

FL ϕW S/C mass flow rate.
INITA

TAMAG

Definition

Initialization flag

 $=0$, do not average acceleration. $=1$, use average acceleration.Thrust acceleration magnitude.

Subroutines Called: C $\phi P Y$, L\$CLST, VECMAG
Calling Subroutines: GqDSEP, SETEVN

Logic Flow: None.

3.3.21 Program: MEAS

Purpose: Executive control for measurement processing.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
GAIN	\emptyset	c	Location in blank common of gain metrix.
H	\emptyset	C	Location in blank common of observation matrix.
IDATYP	ϕ	c	See ¢BSERV, 3.3.26.
IgAIN	I	C	$\begin{aligned} & \text { Grin matrix flag. } \\ & =1, \text { Kalman-Schmidt (KS) } \\ & =2 \text {, sequential weighted } \\ & =3 \text { least squares (WLS). } \\ & =4 \text {, read from GAIN file } \end{aligned}$
ISTA3	0	c	See OBSERV, 3.3.26.
NAJG	I	c	Length of augmented state vectcr.
NR	\emptyset	C	Length of measurement vector.
P	I	C	Location in blank common of knowledge covariance after measurement.
PRINT	\emptyset	C	Logic z̈lag $=T$, full print for current measurement $=F$, do not give full print for current measurement.
PTEMP	I	C	Location in blank common of knowledge covariance before measurement.
PWLS	I	$¢$	Location in blank common of WLS reference covariance.
SUMMARY	I	c	```Logical flag =T, summary prinf for all measurements. =F, no sumpmafy print.```

Local Variables: None
Subroutines Called: FILTR, GAINF, GAINUS MEASPR, MNDISE, ØBSERV, PCNTRL
Galling Subroutines: GøDSEP
Common Blocks: WøRK, (BLANK), DIMENS, LABEL, LøCATE, LøGIC, MEASR, MEASI

Logic Flow:

3.3.22 Subroutine: MEASPR (TYPE)

Purpose: To control all measurement print
Input/Output:

Vartable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TYPE	I	A	```Print type =6HBEFORE, before measurement print. =5HAFTER, after measurement print```
AUGLAB	I	C	Array of augmented parmmeter Hollerith labels.
AZMTH2	I	c	S/C azimuth angle from station ISTA2.
AZMUTH	I	c	S/C azimuth angle from station ISTA1.
CHEKPR (3)	I	c	Print covariance before and after measuremert (if TRUE).
DELTIM	I	C	If >0, print transition matrices.
DXDRST	I	C	Keplerian to cartesian transformation for ephemeris elements.
ELEV	I	C	s/C elevation angle from station ISTA1
ELEV2	I	c	s/C elevation angle from station ISTA2
GAIN	I	C	Jocation in blank common of gain matrix.
H	I	c	Location in blank common of observation matrix.
IDATYP	I	c	General data type flag (See ØBSERV, (Section 3.3.26).
ISTA1	I	C	
ISTA2	I	c	See ¢BSERV, Section 3.3.26.
ISTAS	I	C	
Løçab	I	C	Array locating state vector partitions in AUGLAB.

Variable	Input/ Output	Argument/ Conmon	Definition
7MSEEVN	I	C	Measurement code for current data type.
MESLAB	I	- 6	Array of measurement Hollerith labels.
NAUG	I	C	Irength of augmented state vector.
NDIM	I	0	Array of lengths of individual state vector partitions.
NEPHEL	I	c	Number of ephemeris elements augmented to state.
NR	I	C	Length of current measurement vector.
NSOLTE	I	C	Total number of variables and parameters being estimated by EiIter.
P	I	C	Location in blank common of knowledge covariance after measurement.
PHI	I	G	Location in blank common of transition matrix.
PIAB	I	0	Array of knowledge covariance sub-block Hollerith labels.
PIDCAL	I	C	Location in blank common of covariance-sized working storage.
PRINT	I	C	Print control flag $=\mathrm{T}$, full print $=F$, not full print
PTEMP	I	C	Location in blank common of knowledge covariance befoye measurement.
R	I •	C	Before measurement, measurement white noise matrix; after measurement, measurem ment residual metrix.
SCDEC	I	C	s/c geocentric equatorial declination.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
SCGLGM	I	c	S/G geocentric longitude
Scmass	I	c	S/C mass
SUMARY	I	c	Print control flag $=\mathrm{I}$, summary print $=$ F, no summary print
TICURR	I	G	Gurrent trajectory time
TPAST	I	c	Previous trajectory time
VECLAB	I	c	Array of state vector partition Hollerith labels.

Eocal Variables:

Variable

Definition
$A Z$
BIANK
DEG
班
ESTA
EITIPR

HgLNGM
L $\downarrow \mathrm{N}$
"Azimuth" Hollerith label
Hollerith "blank"
"Declination" Hollerith labei
"Elevation" Hollerith label
"From Station" Hollerith label
Flag on SUMARY print file
If full print is made for current data type
FUIPR $=5$ HPRINT ; otherwise FULPR $=$ Hollerith blank.

Array of Hollerith numbers
"Longitude" Hollerith label

Sulzoutines Cailed: IPAR, SQRT, JøBTIE, PRIMTT, STMPR, CøRREL, RELCøV, CØPY, CØPYT, MATØUT, PRPARI
GetTing Subroutines:NEAS
Conmon Blocks:

3.3.23 Subroutine: MNDISE
Purpose: To define the measurement white noise matrix.
Method:Required elements from the measurement variancearray, VARMES, are loaded into the measurementnoise matrix, R .
Input/Output:

Variable	Input/ Output	Argument/ Conmon	Definition
IDATYP	I	C	Basic data type
			$\begin{aligned} & =1, \text { doppler } \\ & =2, \text { range } \\ & =3, \text { azimuth-elevation } \\ & =4, \text { star-planet angie } \\ & =5, \text { apparent planet } \\ & =6, \quad \text { diameter. } \\ & \quad \begin{array}{l} \text { declination. } \end{array} \\ & = \end{aligned}$
ISTA3	I	C	Data sub-type for range and doppler.
		,	$\begin{aligned} =0, & 2 \text {-way } \\ = & 1,3 \text {-way } \\ =2, & \text { simultanepus } 2 \text {-way } / \\ = & 3 \text {-way } \\ & \text { differenced } 2 \text {-way/ } \\ & 3 \text {-way } \end{aligned}$
NR	I	c	Ditmension of measurement noise matrix.
R	0	C	Measurement noise matrix.
VARMES	I	c	Array of measurement white noise variances.

Local Variables: None
Subroutines Callea; None
Galling Subroutines: MEAS

Remarks: Subroutine: MSCHED

To set up measurement and propagation event information for use by the scheduling routine SCHED (Section 3.3.36).

If the current error analysis reads gain matrices from the gain file (generalized covariance run) all scheduling and measurement print control information will also be read from the gain file and any scheduling cards in input will be ignored. MSCHED automatically writes this information on the gain file if gain file creation has been specified in namelist \$GすDSEP.

Each card read is assumed to contain four variables - START, ST $\emptyset \mathrm{P}, \mathrm{DELT}, \mathrm{MESC} \emptyset \mathrm{D}$ (for input format see CøDSEP input, Section 2.3). If the interval (START, STØP) is not completely contained in the interval (TCURR, TFINAL), the values of START andor STØP will be adjusted so that only those events within the (TCURR, MINAL) interval will be scheduled. Measurement events are denoted by MESCøD equal to the number of the data type, and propagation events by MESCøD equal to zero. An additional
option is also available to schedule measurements in any sub-interval of (TCURR, TFINAL). When any input card contains a value for DELT less than or equal to zero, all succeeding event cards are scheduled in the (START, STØP) interval defined by. that card until a new card with DELT less than or equal to zero is encountered.

Input/Output:

Variable	Input/ Output	Argument/ Conmon	Definition
IGAIN	I	c	Integer flag controlling filtering algorithm
			$\begin{aligned} \text { IGAIN }= & 4 \text { means read gain } \\ & \text { from gain file. } \end{aligned}$
GAINCR	I	c	Logical flag controlling gain file creation.
.			$\begin{aligned} = & \text {.TRUE., create gain file. } \\ = & . \text { FALSE., do not create } \\ & \text { gain file } \end{aligned}$
MPFREQ	I/0	c	Array of measurement print control flags.
MCøDE	0	c	Array of measurement and propagation event codes.
NSGHED	I/O	c	Input as number of scheduling cards to be read. Output as number of entries in SGHEDM MCøDE arrays to be operated on for schedsling current run.
SGHEDM	0	c	Array defining scheduling of events found in MCఫDE, Each MC 0 DE (I) will be scheduled starting at SCHEDM ($1, ~ I$), stopping at SCHEDM ($2, I$), in increments of SCHEDM (3, I).

Variable	Input/ Output	Argument/ Common	Definition
TCURR	I	C	Trajectury start time, Iower bound for measurement
TFINAL	I	C	Trajectory stop time, upper bound for measurement sched
uling.			

Local Variabies:

Variable
BEGMES

DELT

ENDUES

IBIAS

MESCøD
START

STØP

Beginning of allowable event schedulins. interval, initially set to TCURN.

Scheduled time interval between measurements.

End of allowable event scheduling inter: val, initially set to TFINAL.

Running counter of number of schedule cards read but not loaded into SCHEDM and MCØDE arrays.

Measurement code read from input card.
Beginning of scheduling interval for measurement type MESCDD.

End of scheduling interval for measurement type MESC $\varnothing \mathrm{D}$.

Subroutines Called: None
Galling Subroutines: ØUTPTG
Commor Blocks: CøNST, SCHEDI, SCHEDR, MEASI, LøGIC, WøRK

3.3 .25
MEISTI
Purpose:Read \$GøDSEP namelistAll knowledge and control covariance matrix partitionsare provided as arguments to NMLIST in order tominimize the number of modifications necessary inthe event maximum dimensions of any sub-block arechanged. Dimensions of these arrays in MMIST mustcorrespond to those specified for MAXDTM array insubroutine DEFALT (Sec. 3.3.8)If GAIN file is being created, MMIST writes allvariables in namelist $\$$ GGDSEP to CATN file (TAPE 4)in binary format. Similarly, if GAg file is beingread, NMLIST reads default values for namelist\$GØDSEP in binary format from GAIN file (TAPE 4)and then reads nomal namelist $\$ G \emptyset D S E P$ from inputto mođify defaulted values as desired.
Input/Output:
Local Variables:
See GøDSEP Imput, Volume II, User's Manual Sec. 2.3None
Subroutines Called: JøBTLF, B \emptyset MB
Calling Subroutines: INPUTG
Common Blocks: DATAGI, DATAGR, DIMENS, GUIDE, LABEL, LøGIC, NEASI,MEASR, PR $\emptyset P I, ~ P R \emptyset P R$, SCHEDI, SCHEDR, TRAJ2
Logic Flow:
None
3.3.26 Subroutine: ØBSERV (BMAT)
Purpose: To compute observation matrix :

Method:
See Volume I, Analytical Manua1, Sec. G. 3
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition ___
HMAT	$\boxed{¢}$	A	Observation matrix
AETTH2	\emptyset	c	Azimuth angle from station ISTA2
AZMUTH	\emptyset	c	Azimuth angle from station ISTA1
DXDKST	I	c	Keplerian to cartesian transformation for ephemeris elements.
ECEQ	I	c	Rotation matrix from equatorial to ecliptic coordinatés.
ELEV	ϕ	0	Elevation angle from station ISTAI
ELEV2	\emptyset	c	Elevation angle from station ISTA2
GHZER ${ }^{\text {d }}$	I	0	Greenwich hour angle at launch
IATIGST	I	c	Location in JAUG array of station location flags.
TBAZEL	I	c	Location in IAUG array of azimuth-elevation angle measurement bias tlags.
IBDIAM	I	c	Location in IAUG array of apparent planet dianeter measurement bias flag.
TBSTAR	I	c	Location int IAUG anray of starplanet angle measurement bias flags.
TH2WAY	I	C	Location in IAUG axray of 2-way range and range-rate measurement bias flags.
TB3WAY	I	c	Location in IAUG array of 3-way range and range-rate measurement bias flags.

Variable	Input/ Output	Argument/ Common	Definition
IRATYP	ϕ	C	General data type decoded from MESEVN.
		-	$=1$, range-rate measurement $=2$, range measurement =3, azimuth-elevation anble measurement =4, on-board optics, star- planet angle $=5$, on-board optics, apparent planet diameter
IEPHEN	I	c	Ephemeris body coordinate system flag $=0$, non-stationary cartesian $=1$, stationary cartesian =2, stationary Keplerian
ISTAI	\emptyset	c	For $\operatorname{IDATYP}=1,2,3$ ISTAI $=$ station number of first station, For IDATYP $=4$ Number of first star. For IDATYP=5 ignored.
ISTA2	ϕ	C	For $\operatorname{IDATYP}=1,2,3$ ISTA2 $=$ station number of second station (if data type requires) For IDATYP=4 number of second star. For IDATYP=5 ignored.
ISTA 3	ϕ	6	Ignored if IDATYP $=3,4,5$ If IDATYP=1,2: $=0,2$ way data from station ISTA1 $=1$. 3-way data from stations ISTAl and ISTA? =2, sirultaneous 2-way/3-way data from station ISTA1 and ISTA2 $=3$, differenced 2 -way $/ 3$-way date Erom stations ISTA1 and ISTA2.
IIST	I	c	List of augmented parameter numbers.
LISTPH	I	c	Iist of ephemeris element parameter numbers.
	I	c	Naximum station number for which station location errors and 2 -way or 3 -way biases are allowed.
MESEVM	I	c	Measurement code of current data type.

Variable	Input/ Output	Argument/ Common	Definition
MAUG	I	C	Length of augmented state vector.
\% 18	I	c	Array of bodies used in trajectory j.ntegration.
NB6D	I	0	Number of bodies used in trajectory integration.
NEP	I	c	Number of ephemeris body.
NEPHET	\pm	C	Number of ephemeris elements augmented to state.
NR	\dagger	C	Length of current measurement vector.
gregac	I	c	Earth sidereal rotation rate.
PRADIS	7	c	Array of plametary radii
RAD	I	C	Conversion constant: degrees/ radian
RANGE	\emptyset	c	Range frem station ISTA1 to S / G or range from S / C to ephemeris body.
RANGE2	\emptyset	C	Range from station ISTA2 to S/C
scoec	\emptyset	G	S/C geocentric equatorial declination.
SEGLgN	\emptyset	c	S/G geocentric longitude.
STALDC	I	C	Array of station location cylindrical coordinates.
STARDC	I	G	Array of star direction cosines.
Stpane	\emptyset	C	Array of star planet angles.
TCURR	I	C	Current trajectory time.
TM	I.	G	Conversion constant, seconds/day.
UP	I	C	Position array of bodies used in trajectory integration.

Variable	Input/ Output	$\begin{gathered} \text { Axgument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
UREI	I	C	Relative position array of s/C to bodies for trajectory integration.
VP	I	c	Velocity array of bodies used in trajectory integration.
VREL	I.	c	Relative velocity array of s/c to bodies for trajectory integration.
Local Variables:		variables cal Manual	d equations, see Volume $\frac{1}{2}$, ection 6.
Yariable			Definition
CACB		\cos (with) $x \cos$ (elevacion)
CALPHA		\cos (a	(uth)
GBETTA		cos (e	ation)
CGAMMA		\cos (s	-planet angle)
DABDX		$\partial\left(u r s,^{2}\right.$	
DABDXS		$\partial<0$	/c) s
DELR		Vector statio	sition difference between ISTA1 and ISTA2.
DELRHG		\triangle Q	
DIEF23		Logica =T, di $=F$, no	lag renced 2 -way $/ 3$-way data differenced 2-way/3-way data
DøPIER		Logica $=\mathrm{T}_{\text {, }}$ ra $=\mathrm{F}$, no	Iag -rate measurement rangerrate measurement
gecsta		Geocen	c ecIfptic coordinates of ISTA1
GECST2		Geocen	c ecliptic coordinates of ISTA2
GECV		s/0 ge	ntric ecliptic coordinates
GEQSTA		Geocen	c equatorial coordinates of IST

Variable	Definition
RHØHAT	Unit vector in RH¢ direction from ISTAI
RHøHT2	Unit vector in Rif \emptyset direction from ISTA2
SALPHA	Sta a
Sbeta	$\sin \beta$
SGAMMA	stm Y
SGNCOS	Signum ($\cos d)$
SIML23	Logical flag =T, simultaneous 2 -way $/ 3$-way data $=$ F, not simultaneous 2 -way/3-way data
SInde	Sin (apparent planet diameter angle)
tatb	$\tan \alpha \tan \beta$
THRWAY	Logical flag =T, 3-way data only =F, not 3-way data only
TWめ゙GAY	Logical flag =T, 2-way data only $=F$, not 2 -way data only
WHAT	W
XSHAT	\hat{X}_{s}
Outines Called:	ZERøM, CYEQEC, VECMAG, UNITV, UDØIV, ASTN, IДCLST, PARSTA, MMAB, NEGMAT, MMATB, ATAN2, C $\neq P Y, A D D$, MUNPAK, SUB, UXV, SQRT, MMABT, ACøS, LøDCøL
ing Subroutines:	MEAS
non BIocks:	WgRK, (BLANK), CØNST, DTHENS, EPHEM, KEPCDN, ZEEASI, NEASR, SGHEDI, SCHEDR, TRAJI, TRAJ2

3.3.27 Subroutine: ØUTPTG

Purpose:
Print out for user information of options selected and initial values. Conversion of
input to internal units as necessary.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
BIG	I	c	Large constant, 1.E20.
C¢NRD	I	c	Logical flag.
	.	'	```= T, control uncertainties read in. = F, control uncertainties not read in.```
CøRLøN	I	C	Station longitude correlation coefficient.
DOPGNT	I	c	Average number of range-rate measurements taken per day during tracking arc.
DYNGTS	I	0	Logical flag.
			$=T_{3}$ compute effective process noise. $=F$, do not compute effective process noise.
ERSIG	I	0	Array of process noise standard deviations.
EPTAU	I	c	Array of process noise correlation times.
EPVAR	I	G	Array of process noise variances.
gAincr	I	c	Logical flag.
			$=\mathrm{T}$, create GATM file. $=F$, do not create GATN file.

Variable	Input/ Output	Argument/ Common	Definition
GEnCOV	I	c	Logical flag.
	-		$=T$, generalized covariance analysis on current run. $=F$, ho generalized covari. ance analysis on current run.
CTAU1	\emptyset	C	Array of negative inverse primary process noise correlation times for TRAJ (Section $\because: 3$) Operative only if PDøT = .TRUE.
GTAU2	ϕ	c	Array of negative inverse secondary process noise correlation times for TRA.J (Section . 5) Operative only if PDøT = .TRUE.
IAUGST	I	C	Losation in IAUG array of station location parameters.
IGAIN	I	c	Gain matrix algorithm flag.
ISTMF	I	c	STM file usage flag.
LIST	I	G	Array of augmented parameter numbers.
LPDOT	ϕ	c	Array of dynamic parameters to TRAJ (Section , 5) Operative only if PD ϕ T $=$.TRUE.
MCØUNT	ϕ	c	Measurement counter.
MPFREQ	I/0	c	Heasurement print frequency control array.
NAUG	I	c	Length of augmented state vector.
NGGITE	ϕ	c	Eigenvector event counter.

Variable	Input/ Output	$\begin{gathered} \text { Argument } / \\ \text { Common } \\ \hline \end{gathered}$	Definition
NENTG	\emptyset	c	Guidance event counter.
NCNTP	\emptyset	C	Prediction event counter.
HGWTT	\emptyset	c	Thrust event counter.
NEIGEN	I/ $/{ }^{\text {d }}$	c	Total number of eigenvector events to be scheduled.
NGUID	I/ $/$ ¢	c	Total number of guidance events to be scheduled.
NPRED	I/ 6	c	Total number of prediction events to be scheduled.
NTHRST	I/ $¢$	C	Total number of thrust events to te scheduled.
NST	I	c	Number of tracking stations defined.
P	I	c	Location in blank common of knowledge covariance.
PDOT	I	c	Logical flag.
\bigcirc		.	$=T$, covariance propagation by integration of variational equations. $=F$, covariance propagation by state transition matrices.
PG	I	C	Zocation in blank common of control covariance.
PGLAB	I	c	Array of control covariance sub-block Hollerith labels.
PIAB	I	c	Array of knowledge covariance sub-block to Hollerith labels.
PRNACゆV	I	c	Logical arzay controling covariance sub-blocks printed.
PRDPG	\emptyset	c	Logical flag.

Variable	Inpu! / Output	Argument/ Common	Definition
.			$=T$, propagate control covariance simultaneously with knowledge. $=\mathrm{F}$, do not propagate control covariance simultaneously with knowledge.
QNDISE	\emptyset	c	Array of process noise variances provided to TRAJ (Section 55i when PDgT $=$. TRUE.
RAD	I	0	Gonversion constant, degrees/radian.
SCHFTL	I	c	Logical flag.
			$\begin{aligned} & =T, \text { mesh failure on reading } \\ & \text { STM file is fatal. } \\ & =F, \text { mesh failure on reading } \\ & \text { STM file is not fatal. } \end{aligned}$
GIGLOM	I	c	Standard deviation in station longitude.
StigMes	I	c	Array of measurement white noise standard deviations.
SIGRS	I	c	Standard deviation in station spin raditus.
SIGZ	I	C	Standard deviation in station z-height.
STALøC	I	c	Array of tracking station cylindrical coordinates.
TCURR	I	C	Gurrent (and initiai) trajectory time.
TDUR	I	C	Trajectory final time (seconds) for TRAJ (Section 3.5)
TEIGEN	I	c	Array of eigenvector event times.

Variable	Input/ Output	Argument/ Commoil	Definition
TFINAL	I	c	Error analysis final time.
TG	I	C	Epoch for input control uncertainties if C C \quad NRD $=$.TRUE.
TGUID	I	C	Array of guidance event times.
TM	I	c	Conversion constant, seconds/day.
T T LBAK	I	C	Backward tolerance on STM file mesh.
T $¢ T \Pi \square \mathrm{R}$	I	C	Forward tolerance on STM file mesh.
TPRED	I	c	Array of prediction event times.
TTHRST	I	c	Array of thrust event times.
VARMES	ϕ	C	Array of measurement white noise variances.

Local Variables: No*..
Subroutines Called: MSGHED, ESGEED, SCHED, BGMB, ATAN, ZERGM, CpRREI, SDVAR, CØPY

Calling Subroutines: DATAG
Common BIocks: WøRK, (BLANK), C LøCATE, L $\ddagger G I C, ~ M E A S I, ~ M E A S R, ~ P R \phi P I, ~ P R \phi P R, S C H E D I$, SGHEDR, TTME, TRAJI, TRAJ2

If PDOT, scale appropriste covariance terms by number of thrusters
\#850

3.3 .28 Subroutine: PARKEP ($\mathrm{K}, \mathrm{V}, \mathrm{GMJ}, \mathrm{DXDK}$)
Purpose: To compute Keplerian to cartesian transformation.
Method: Gentral differencing.
Input/Output:Input/ Argument/

Variable Output | Argument |
| :---: |
| Common |

X	I	A	Cartesian position of body.
V	I	A	Cartesian velocity of body.
GMU	I	A	Gravitational constant of central body.
DXDK	\emptyset	A	Output Keplerian to Cartesian transformation.

Local Variables:
Variable Definition

XIEP
XMINUS

XPLUS

XPERT

Body Keplerian elements.
Body cartesian state using negative perturbation.

Body cartesian state using positive perturbation.

Array of cartesian perturbation levels.
Subroutines Called: C \emptyset NIC, CARTES
Galling Subroutines: SETGUI, STMRDR, C $\emptyset V \mathrm{VP}$
Common Blocks: WøRK
Logic FIow: None .
3.3.29 Subroutine: PARSTA (GEQSIA, RSPIN, ECEQ ${ }_{3}$ PECCYL)

Puspose: To compute the partial derivative of station instantaneous geocentric ecliptic cartesian state wrt station equatorial cylindrical coordinates.

Method: See Volume 1, Analytical Manual, Section 6.
Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Comruon } \\ \hline \end{gathered}$	Defini
GEQSTA	I	A	Instantaneous geocentric equatorial cartesian state of station,
RSPIN	I	A	Station spin radius.
ECEQ	I	A	Rotation matrix from equatorial to ecliptic cartesian system.
PEGCYL	\emptyset	A	Partial derivative of instantaneous ecliptic state of state wrt cylindrical coordinates.

Local Variables:

Yariable
CøSEPS, SINEPS

C $\emptyset \mathrm{SPHI}, \mathrm{SINPHI}$

CPøMEG, SPøNEG
COS and SIN of Earth obliquity to ecliptic.

COS and SIN of instantaneous station equatorial Iongitude.

COS and SIN of Earth inertial rotation rate.

Subroutines Called: None
Qalling Subroutines: gBSERY
Gommon Blocks: None

Logic Tlow:
None
3.3.30 Iogical Function: PCNTRL (ITYPE, ISUB)
Purpose: To control measurement print.
Method:
Each general data type (e.g., 2-way range,simultaneous 2-way/3-way doppler, azimuth-elevation angles) is assigned a print fre-quency (MPFREQ) and a counter (MPCNTR).A test is made on the counter for theinput data type defined by ITYPE, ISUB.If the MPCNTR, modulo its MPFREQ, is zero,the measurement is printed.Two additional features are provided. Thefirst processed measurement of any datatype whose corresponding IPFREQ elementis non-zero is printed. Also, the finalmeasurement, independent of the data type,is printed.
Input/Output:

Variable	Enput/ Output		Argument/ Common	Definition
ITYPE	I	I	A	Basic Aata type, corresponds to IDATYP in common block MEASI.
.				$\begin{aligned} & =1, \text { doppler } \\ & =2, \text { range } \\ & =3, \text { azinuth-elevation } \\ & =4, \text { angle } \\ & =5 \text { star-planet angle } \\ & =\text { eter. } \end{aligned}$
ISUB	I	A		Sub-data type for doppler and range, ignored if ITYPE >2 。

Variable	Input/ Output	-Argument/ Common	Definition
	,		$\begin{array}{ll} =0, & 2 \text {-way } \\ =1, & 3 \text {-way } \\ =2, & \text { simultaneous } 2 \text {-way } / \\ & 3 \text {-way } \\ =3, & \text { differenced } 2 \text {-way } / \\ & 3 \text {-way } \end{array}$
PCNIRL	0	F*	Logical print control variable.
.			```=.TRUE., if measurement to be printed = .FALSE., if measurement not to be printed.```
MPCNTR	I/0	C	Array of data type counters.
MPFREQ	I	c	Array of data type print frequencies.
TFINAL	I	c	Trajectory final time.
mmext	I	C	Time of next scheduled measurement.

Local Variables:

Variable Definition

IC CDE
Integer subscript locating data type in MPFREQ and MPCNTR.

Subroutines Called: None
Galling Subroutines: MEAS
Gommon Blocks:
SCHEDR, SCHEDI
*Function Value Output.

3.3.31 Subroutine: PPAK (PBLøCK, TFбRM, PAUG)
Purpose:
To load input covariances from either packed
or unpacked input form to block form (See
AUGCNV, Section 3.3.1).

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
PBL¢CK	I	A	Array containing all input covariance information.
IF $\mathrm{ORM}^{\text {m }}$	I	A	Flag indicating input form of individual sub-blocks within PBLDCK.
.			$\begin{aligned} & =1, \text { sub-blocks are packed. } \\ & =-1, \text { sub-blocks are not } \\ & \text { packed. } \end{aligned}$
PAUG	\emptyset	A	Output covariance in "block" form.
L \varnothing CBLK	I	c	Array locating covariance sub-blocks in "block" form (PAUG).
MAXDIM	I	c	Array of dimensions of covariance sub-blocks in PBLDCK. MAXDIM remains at input values if input sub-blocks are not packed and MAXDIM is adjusted to NDIM if subblocks are packed.
EDIM	I	c	Array of assumed sub-block dimensions on output.

Local Variables:

Variable
IBLDCK

Definition

Running counter locating current covariance sub-block within PBLgCK.
Variable Definition
MAXSAV Array saving input values of MAXDIM.
Subroutines Called: MPAK, SYMLD, AUGCNV
Calling Subroutine: INPUTG
Gommon Blocks: WøRK, DATAGI, DIMENS
Logic Flow: None
3.3.32 Subroutine: PR $\overline{\mathrm{P}}$ (PIN, PHIMAT, NP, WLSREF, P $\mathrm{PUT}^{\text {(}}$)

Purpose: \quad To propagate an augmented covariance matrix between time points.

Method: State transition matrix with effective process
noise model.
Remarks: PIN and PøUT may not share the same location.
This routine also propagates the reference
covariance for sequential weighted least
squares (WLS) filtering.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PIN	I	A	Input covariance to be propagated.
PHIMAT	I	A	Transition matrix over time interval.
NP	I	A	Demension of input transition matrices.
WLSREF	I	A	Logical flag controlling propagation of WLS reference covariance.
	.		$=$.TRUE. and IGAIN $=2$, WLS reference propagated, otherwise not.
P¢UT	0	A	Output covariance.
DYNØIS	I	c	Logical flag controlling addition of effective process noise.
-			$\begin{aligned} & =. \text { TRUE., add } Q \\ & =\text { FALSE., do not add } Q \end{aligned}$

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
IGAIN	I	c	Integer flag controlling filtering algorithm
			$=2$, use WLS $\neq 2$, do not use WLS.
NSWLVE	I	c	Total number of variables solved-for ($=6+$ number of solve-for parameters).
PWLS	I	G	Location in blank common of WLS reference covariance.
Q	I	c	Effective dynamic noise matrix.

Loca1 Variables: None
Subroutines Called: 2ERGM, MUAPAK, MPAK, SYMTRZ, AMABAT
Galling Subroutines: CøVP, PRED, GUIDE
Common Blocks:
(BLANK), DIXENS, LØCATE, LDGIC, MEASI, PR ${ }^{(1) R R}$

Purpose:

Remarks:

PRCøRR, PUNCøR
To print or punch the transpose of any subblock or partition of a matrix with column Labels for printing and a single matrix name for punching.

This routine was designed primarily for printing partitions of covariance and transition matrices and punching covariance partitions. However, it has general applications to any matrix. PRPAR'I and PRCØRR are functionally. equivalent - the difference in output being E format by PRPART for general matrices and F format by PRCgRR for easy reading of correlation coefficients. PUNC $\not \subset \mathrm{R}$ punches, and is valid for general matrices. The calling sequence requires that the argument A be the first word of the partition of interest. For example, given a 9×9 state transition matrix, PHI, which is theoretically partitioned as

$$
\mathrm{PHI}=\left[\begin{array}{ll}
\Phi_{6 \times 6} & e_{6 \times 3} \\
0_{3 \times 6} & I_{3 \times 3}
\end{array}\right]
$$

to print the transpose of the $\Phi_{6 \times 6}$ partition we would use

CALL PRPART (PHI, 9, 6, 6, LABEL1) where LABELI is a 6-vector of Hollerith labels for the columns of ${ }_{6 \times 6}{ }^{\circ}$ Similarly to print the transpose of $8_{6 \times 3}$, we would use

CALL PRPART (PHI (I, 7), 9, 6, 3, IABEL2)
where PHI (1,7) represents the first element of the $\theta_{6 \times 3}$ partition, and IABEL2 as a 3-vector of Holleritin labels for the columns of $\theta_{6 \times 3 \text {. If }}$

PHI is not explicitly dimensioned 9×9 in the calling routine, this last call could also have been
.CALL PRPART (PHI (NPHI * (7-1) +1),
NPHI, 6, 3, IABEL2)
where the PHI subscript ($\mathrm{NPHI} *(7-i)+1$) comes from the general formula for locating element
(I, J) in a matrix dimensioned (M, N):

$$
L \emptyset C=M \div(J-1)+I .
$$

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
A	I	A	First word of matrix subblock to be printed or punched.
MAXR¢¢	I	A	Number of rows in complete matrix from which partition is being taken.
NR/VN	I	A	Number of rows in partition to be printed/purched, must be less than or equal to MAXR $\varnothing \mathrm{N}$.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NODL	I	A	Number of columns in partition to be printed/punched.
IABEI	I	A	For PRPART and PRC $\emptyset R \mathrm{R}$ an NC σ L-vector of Hollerith labels for printing.
			For PUNC \oint, a one-word Hollerith label for the matrix to be punched.

Local Variables: None
Subroutines Called: None
Calling Subroutines: CøRREL, STMPR, MEASPR, GUIDE
Common BIocks: None
Logic Flow: None
3.3.34 Subroutine: PRSDEV (SDC $\emptyset R$, MAXR $\varnothing \mathrm{N}, \mathrm{NR} \phi \mathrm{H}$, LABEL) Entry Points: PUNSD Purpose: To print (PRSDEV) or punch (PUNSD) a matrix of standard deviations and correlation coefficients. The input matrix (SDC $6 R$) may represent a complete covariance or any diagonal sub-block thereof. It is assumed to have standard deviations on the diagonal and correlation coefficients in the upper triangle. The lower triangle is ignored. For further remarks on locating the partition to be printed/punched, see Section 3.3.33, Subroutine PRPART under Remarks.

Input/Dutput:

Variable	Input/ Output	Argument/ Common		
SDCDR	I	A		First word of partition to
:---				
be printed/punched.				

Subroutines Called: None
Calling Subroutines: CøRREI, GUIDE, RELC $\emptyset V$
Common Blocks:
None
Logic Flow:
None

3.3.35. Subroutine: RELCDV (PIN, DXDK, EIGEN, PREL)

Purpose:
To compute S / C state uncertainties relative to ephemeris body.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PIN	I	A	Augmented covariance matrix.
DXDK	I	A	Keplerian to cartesian transformation for ephemeris body.
EIGEN	I	A	Logical flag.
			$=T$, compute eigenvectors and eigenvalues of relative covariance. $=F$, compute standard deviations and correlation coefficients only.
PREL	ϕ	A	Relative covariance natrix.
$A J G T A B$	I	c	Array of augmented parameter Hollerith labels.
FøP	I	c	Final off-diagonal annihilation value for position eigenvalue computation.
$F \emptyset \mathrm{~V}$	I	c	Final off diagonal annihilation value for velocity eigenvalue computation.
TEPHEM	I	c	Ephemeris body coordinate system flag.
LIST	I	c	List of augmented parameter numbers.
LISTPH	I	C	List of ephemeris element parameter numbers.
NAUG	I	c	Length of augmented state vector.

Local Variables:

Variable
CøRR

PEPH

Definition
Gross covariance of S/C state with ephemeris body cartesian state.

Covariance of ephemeris body cartesian state.

Subroutines Called: ZERøM, LøADRC, LøDCøL, MMABT, CøPY, MMAB, SYMTRZ, WARSD, PRSDEV, MPAK, ADD, SUB, SUBT, EIGPRN

Galling Subroutines: PeASPR, GUIDE, SETEVN
Gommon Blocks: WøRK, (BLANK), CøNST, DIMENS, KEPGøN, LABEL, LøCATE, MEASI

Logic Flow:

3.3.36 Subroutine: SCHED (TLAST, TEVENT, DELT, JEVENT)

Purpose:

Remarks:

To schedule for GøDSEP the next measurement or event to be processed.

During normal operation, SCHED returns a precomputed measurement or event and then computes and stores locally the next measurement or event to be processed. Therefore, two successive calls are required to initialize both the measurement and event scheduling sequences.

The purpose in pre-computing times and event codes is to minimize search time. When a measurement is scheduled, only measurements need be scanned for the next scheduling, not events. The reverse, of course, is true when an event is scheduled.

Input/Output:

Yariable	Input/ Output	Argument/ Common		
TIAST	I.	A		Time of previous measure-
:---				
TEVENT				

Variable	Input/ Output	Argument/ Common	Defininition
MCøDE	I	c	Array of measurement codes to be scheduled.
MCøUnT	I/O	c	Measurement counter.
NCNTE	I/O	c	Eigenvector event counter.
NCMIG	I/O	c	Guidance event counter.
NCNIP	I/0	C	Prediction event counter.
HCNIT	I/0	c	'Thrust event counter.
NEIGEN	I	c	Total number of eigenvector events.
NGUID	I	C	Total number of guidance events.
NPRED	I	c	Total number of prediction events.
NSCHED	I	c	Kumber of schedule times in SCHEDM to be scanned for next measurement or propagation event.
STHRST	\pm	c	Total number of thrust events.
SCHEDM	I	c	Array of measurement schedule times
			$\operatorname{SCHEDM}(1, I)=$ Next time to be scheduled for measurement type MCgDE(I).
			$\operatorname{sCHEDM}(2, I)=$ Stop time for MCØDE (I).
			$\operatorname{SCHEDM}(3, I)=$ Time increment for scheduling MC§DE(I).
TETGEN	I	0	Array of eigenvector event times.

Input/ Argument/Output Common
Definition

TFINAL	I	C	Fincl time.
TGUTD	I	C	Array of guidance event times.
TPRED	I	C	Array of prediction event Eines.
	I	C	Array of thrust event times.

Local Variables:
Variable Definition

JENEXT

MNEXT
tenext
thisext

Integer code of next event to be scheduled.

Integer code of next measurement to be scheduled.

Tinde of next event to be scheduled.
Time of next measurement to be scheduled.
Subroutines Called: None
Galing Subroutines: øUTPTG, STMGEN, GøDSEP
Common Blocks:
CØHST, SCHEDI, SCHEDR

3.3.37 Subroutine: SETEVN

Purpose: Event print control and propagation control
for prediction events.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
MESEVN	I	C	Event code.
			$\begin{aligned} & =1, \text { propagation. } \\ & =2, \text { eigenvector. } \\ & =3, \text { thrust switching. } \\ & =4, \text { guidance. } \\ & =5 \text {, prediction. } \end{aligned}$
AUGLAB	I	c	Array of augmented parameter Follerith labels.
DXDKST	. I	c	Keplerian to cartesian transformation for ephemeris body.
EVIAB	I	C	Hollerith event label array.
FøP	I	C	Final off-diagonal annihilation value for position eigenyalue computation.
IPRøP	I	C	Print control flag for propagation events. $=0$, no print $=1$, print standard deviations and correlation coefficients for S/C state only $=2$, full eigenvector event print.
NAUG	I	c	Length of augmented state vector.
NCNTP	I	c	Number of current prediction event.
NEPHEL	I	c	Number of ephemeris elements in acgmented state vector.

Uariable	Input/ Output	Argument/ . Common	Definition
P	I	c	Location in blank common of curcent knowledge covariance.
PLAB	\pm	c	Array of Hollerith labels for knowledge covariance sub-blocks.
PLCOAL	I	C	Location in blank common of working storage provided to subrsutine RELCDY.
PTEMP	I	c	Location in blank common of predicted knowledge covariance.
SGMASS	I	C	Current s/C mass.
TCURR	I	c	Current trajectory time.
TDUR	\emptyset	c	Maximum integration time (seconds) for TRAJ.
TFINAL	I	c	Error analysis final time.
TGST¢P	I	C	Maximum integration time (days) if prediction event requires integration past TFINAL.
TM	4	c	Conversion constant, seconds/ day.

Local Variables:

Variable
IP

Location in blank conmon of covariance to be operated on by RELCØV and CoRREL.

Subroutines Called: JøBTLE, NRG. VARSD, PRSDEV, FRGRTT, FIGPRN, RELC $\emptyset V$, CØRREL, CఏVP; MASSIG, DYN \emptyset

Common Blocks: . W \quad RK, (BLANK), CøNST, DIMENS, GUIDE, KEPCøN, LABEL, LøCATE, LGGIC, MEASI, PRøPI, SCHEDI, SCHEDR, TIME, TRAJI

3.3.38 Subroutine: SETGUT

Purpose:

Set up control for guidance event. Ferforms
all computations which must be done in primary overlay which consists primarily of interfacing with TRAJ.

Input/Output:

Variable	Input/ Output	Argument/ Cormon	Definition
Bre	I	C	Enormous constant, I.E20
butre	0	c	Mass and thrust at guidence start and stop
CHERPR (8)	I	c	Logical flag.
			$=T$, generate transition matrices for guidance by reading STM file. $=F$, integrate transition matrices for guidance in traj.
detay	\emptyset	c	Guidance delay time fer current event.
DSDKAF	\emptyset	c	DXDKST evaluated at ena of burn interval.
DXDKBR	\emptyset	c	DXDKST evaluated at beginning of burn interval.
DXDKST	I	c	Keplerian to caritesian ephemeris transformation from STMRDR, corresponds to beginning of guidance delay interval.
GT	I/ 4	c	Transfurmation matrix for subroutine DYN at end of propagation interval.
gTBURN	ϕ	c	GT matrix evaluated at beginning of burn interval.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
gridiay	ϕ	C	GT matr-lx evaluated at beginning of delay interval.
GIVAF	\emptyset	0	GT matrix evaluated at end of burn interval.
GTSAVE	\emptyset	C	GI matrix evaluated at beginning of curvent propagation interval for subroutine DYNす.
IAUGDC	I/0	c	Dynamic parameter augmentation flags.
ICALL	\emptyset	c	Setup parameter for TRAJ (Section 3.5)
IEP	I	c	Set UP, VP below.
TEPHEM	I	C	Ephemeris element coordinate system flag.
IGPQL	I	c	Array of guidance policy flags.
IGREAD	I	c	Array of namelist \$GEVENT read control flags.
INTEG	\varnothing	C	Setup parameter for TRAJ (8ection 3.5)
IPGGL	\emptyset	C	Guidance policy flag for current event.
IPRINT	\emptyset	C	Setup parameter for TRAJ (Section 3.5)
IREAD	\emptyset	c	\$GEVENT read policy for curcent event.
IST¢P	¢	c	Stopping condition parameter for TRAJ (Section 3.5)
KUIVFF	\emptyset	c	Flag indicating actual integrator stopping conditions.
LISTDY	I	c -	List of dynamic parameters contained in transition matrix generated either from STH file or TRAJ.

Variable	Input/ Output	Argument/ Common	Definition
Lppotc	I	C	Location in blank common of transition matrix returned by ITRAJ.
REVEN'S	\emptyset	c	Setup flag for TRAJ (Section 3.5)
NAJG	I	c	Lengeh of augmented state vector.
NGTTG	I	C	Number of current guidance event.
NPHSTM	I	c	Dimension of transition matrix returned by subroutine STMRDR or by TRAJ.
NPRI	I	c	Body number of primary integration body.
NTPHAS	I	c	Number of current thrust phase.
PG1	1	C	Locations in blank common of working storage for
PG2	I	c	guidance related covariance computations.
PHI	I	c	Location in blank common of transition matrix.
PLOCAL	I	c	Location in blank common of covariance working storage.
PTEMP	I	c	Location in blank common of covariance working s;orage.
S	\emptyset	c	Guidance sensitivity matrix, cutoff state wrt controls.
scmass	I	c	S/C mass.
SWASS	I	C	Mass of sun.
STATE0	\emptyset	C -	Initial integration state for TRAJ.
TBURN	\emptyset	C	Length of burn interval for current event.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TCUTGF	I	G	Array of guidance event cutoff times.
TDETAY	ϕ	c	Guidance delay time for current event.
TDUR	\emptyset	c	Maximum integration time (seconds) for TRAJ.
TEVNT	\square	c	Event time for TRAJ.
TFINAL	I	c	Error analysis final time.
TGST¢P	I	c	Maximum integration time if guidance event needs transition matrices evaluated past final time.
TGUID	I	c	Array of guidance event scheduled times.
THRACC	I	c	Thrust acceleration vector.
TMETA	I	c	Target condition evaluation time for fixed time of arrival guidance.
TM	I	c	Conversion constant, seconds/ day.
T\#FF	¢	C	Cutoff time for current svent.
T $\dagger \mathrm{N}$	ϕ	C	Maneuver execution time for current event.
TREF	\emptyset	0	TRAJ reference time for integration initialization.
TSTM	I	0	STM file time.
UP (1, IEP)	I	c	Position of ephemeris body.
VP (1, IEP)	I	C	Velocity of ephemeris body.
UTRUE	I	C	S/C heliocentric eciiptic position vector used to define STATEO for TRAJ initialization.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
VTRUE	I	c	S/C heliocentric ecliptic velocity vector used to define STATEO for TRAJ initialization.
VRNIER	\emptyset	c	```Logical flag. = T, current maneuver is vernier = F, current maneuver is primary.```

Local Variables:

Variable
THOLD1, IHOLD2, THOLD3 IHOLD4, IHOLD5, IHOLD6

TSTMSV

Locations for saving parameter values which will be changed by calls to either STMRDR or TRAJ.

Saves STM file time (TSTM) when generating state transition matrices by calling STMRDR.

Subroutines Called: C $\neq \mathrm{PY}, \mathrm{ZER}$ GM, STMRDR, MPAK, STMUSE, STMPR, PARKEP, BøMB, JøBTLE

Calling Subroutine: GƠDSEP
Soutuon Blocks:
WØRK, (BLANK), C CONST, DIRENS, EPHEM, GUIDE, KEPC LФCATE, LøGIC, MEASI, PRØPI, PRØPR, SCHEDI, SCHEDR, TINE, TRAJ1, TRAJ2

Logic Elow:

3.3.39 Subroutine: STMGEN

Purpose: Generate STM file. :

Remarks: For effective process noise computation rubroutine DYN6 requires the evaluation at beginning and end of a propagation interval of the rotation matrix from body-centered magnitude, cone, clock system to heliocentric ecliptic cartesian coordinates. This transformation must be saved on the STM file. At thrust phase change two such transformations are required, one for each phase evaluated at the same time point. Calls to the trajectory overlay are generated to guarantee that this transformation is always evaluated for the interval just ending, and an extra call to subroutine EP is required to evaluate the transformation at the beginning of the new thrust phase. This pertains to statements between statement numbers 300 and 400.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
CHEKPR(1)	I	c	Check print inag.
			$=\mathrm{T}$, write to output all trajectory information written on STM file. $=F$, no write to output.
DELTIM	I	c	Time difference between previously and currently scheduled events.

	Input/	Argument/	Cariable
Output	Common	Definition	

VTRUE, UTRUEM VTRUEM, WPGIER б	C	Trajectory information written to STM file. See
VTRUEM, WPøWER ${ }^{6}$	C	written to STM file. See
GT, GTSAVE,		common block descriptions
C $¢ \mathrm{MMON}$ (LøCTC)		for individual variable
		descriptions.

Local Variables: None
Subroutines Called: CøPY, SCHED, EP
Calling Subroutine: GøDSEP
Common Blocks: WøRK, (BLANK), CøNST, DIMENS, LøGIC, PRøPR, SCHEDI, SCHEDR, TIME, TRAJI, TRAJ2

Logic Flow: None
3.3.40 Subroutine: STMPR (T, TF, PHIMAT)

Purpose:
To print state transition matrix partitions
and effective process noise covariance if
computed.
Input/Output:
Input/ Argument/
Variable Output Common Definition

T	I	A
TF	I	A
PHIMAT	I	A
AUGLAB	I	c
DYNOIS	I	c
İCADG	I	3
LbCLAB	I	0
NAUG	I	C
KDIM	I	C
PRNSTM	I	c

Trajectory time at beginning of propagation interval.

Trajectory time at end of propagation interval.

Augmented transition matrix over'propagation interval.

Array of augmented parameter Hollerith labels.

Dynamic noise flag.
Array locating sub-blocks within augmented transition matrix.

Array locating state vector partions within AUGLAB array.

Length of augmented state vector.

Array of lengths of individual state vector partitions.

Gutput control flag determin* ing sets of transition matrix sub-blocks to be printed.
$=\mathrm{T}$, print sensitivities of relevant state vector partition to entire augmented state.
$=F$, no sensitivities printed for relevant state vector partition.

	Input/	Argament/
Variable \quad Output	Common	Definition

(I) - S/C state
(2) - Solve-for parameters
(3) - Dynamic consider paramoters
(4) - Measurement consider parameters
(5) - Ignore parameters.

Q	I	C	Effective process noise covariance.
VECLAB	I	C	Array of state vector par- tition Hollerith labels.

Local Variables: None
Subroutines Called: PRPART, MATøUT
Calling Subroutines: MEASPR, STMRDR, GUIDE, SETGUI
Common Blocks: WØRK, DIMENS, LABEL, LøGIC, PRøPR
Logic FIW: None

3.3 .41	STMRDR ($\mathrm{T}, \mathrm{TF}, \mathrm{I}$ (PPT)
Purpose:	To read transition matrices and trajectory
	information from STM file (TAPE 3).
Remarks:	During STM file creation the user should have
	scheduled as fine a time grid of trajectory
	points as will ever be necessary for the par-
	ticular mission. Therefore, situations will
	occur during STM file reading where many time
	points are encountered on the file between
	time points requested by the scheduler for
	the current error analysis. In this situation
	transition matrices over the short time inter-
	vals are chained to produce the required transi-
	tion matrix over the complete time interval.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
T	I	A	Trajectory time at beginning of propagation interval.
TF	I	A	Scheduled trajectory time at end of propagation interval.
I¢PT	I	A	Option Elag.
-			$=0$, normal read. $=+1$, count number of records read for future backspace capability. $=-1$, same as +1 but compute guidance sensitivity matrix in addition.
CHERPR(1)	I	c	Chack print flag.

Variable	Input/ Output	Argument/ Common	Definition
			$=T$, print ali trajectory information read from STM file and all intermediate products in transition metrix chaining. $=F$, no print.
DEITIM	I/O	C	Input as scheduled interval length. If STM file is already positioned within forward tolerance DELTIM is set to 0 .
DXDEST	ϕ	C	Keplerian to cartesian transformation for ephemeris body evaluated at time TSTM.
IEP	I	ε	See UP, VP below.
- TEPHEM	I	C	Ephemeris coordinate system flag.
LISTDY	I	C	List of dynamic parameters included in transition matrix read from STM file.
MESH	6	G	Logical flag.
			$=$ T, successful mesh of scheduled trajectory times with STM file times. $=F$, unsuccessful mesh.
NAUG	I	0	Length of augmented state vector.
NPHSTM	I	C	Dimension of transition matrix read from STM file.
PHI	I	c	Iocation in biank common of output transition matrix.
PLOCAI	I	C	Location in blank common of transition matrix working storage for chaining.

Local Variables:

Variable	Definition
IHOLD	Intermediate holding variable used when exchanging values of IPHI2 and IPBI3.
$\left.\begin{array}{l} \text { IPHI2 } \\ \text { IPHI3 } \end{array}\right\}$	Initially set to PLfCAL and PTEMP respectively. Values are switched to avoid copying of intermediate transition matrices used in chainiag.
NBACK	Number of records read when $I \emptyset P T=0$ to be used for backspacing.
NUPPER	Upper word limit zor. reading STM record.
TSTMO	Last Value of TSTM when IøPT $=0$.
Subroutines Called:	VECMAG, PARKEP, BØMB, MMAB, MATØUTT, MPAK, STMUSE, STMPR
Calling Subroutines:	COVP, SETGUU
Common Blocks:	WøRK, (BLANK), CøNST, DINENS, EPHEM, GUIDE, KEPC $\emptyset \mathrm{N}, ~ L \emptyset C A T E, ~ L \phi G I C, ~ M E A S I, ~ P R \phi P R, ~ S C H E D I, ~$ SCHEDP, TIME, TRAJ1, TRAJ2

3.3 .42	Subroutine:	STMUSE (THRNUM, DXDK, STMIN, NIN, LISTIN, STM $\sigma \mathrm{UT}, \mathrm{N} \phi \mathrm{UT}$)
Puzpose:		To convert state transition matrix as read from
		STM file to state transition matrix as needed
	'	by augmented covariance matrix.
Remarks:		There are four possible operations required to
		convert STM file transition matrices to the
		augmented transition matrix required for
		covariance propagation:
		(1) ordering of rows and columns with insertions for measurement parameters and deletions
		for unused dynamic parameters as necessary
		(2) scaling of thrust parameter sensitivities
		to account for number of thruster operating
	-	over current phase;
		(3) the setting to identity of ephemeris element to ephemeris element sensitivity sub-blck
		. if stationary cartesian or Keplerian elements
		are augmented; and
-		(4) the coordinate transformation of S/C state
		sensitivities to ephemeris elements if those
		elements are Keplerian.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
THRNLM	I	4	Sumber of thrusters operating over transition matrix interval.

Variable	Input/ Output	Argument/ Compon
DXDK	I	A

Local Variables: None
Subroutines Called: IDEMT, LQADRC; SQRT, LøCLST, SCALE, LODC $\overline{\text { LI, M MAB }}$
Galling Subroutines: STMRDR, SETGUI
Gommon Blocks: WøRK, DIMENS, KEPCE゙:; REASI

Logic Flow:

3.3 .43 Subroutine: VERR (VARDV, DV, CDVERR)	
Purpose:	To compute the ΔV execution error covariance.
Method:	Variances in ΔV proportionality, resolution
	and two pointing angles are applied to the input
	ΔV to form the execution error covariance (See
	Section 6.3 of the Analytic Manual).

Input/Output:

CøVERR O
A
Execution error covariance

Subroutines Called: None
Calling Subroutines: GUIDE
Common Blocks: None
Logic Flow: None

Remarks:

Subrout ne: SIMSEP
To control the overall logic flow of the trajec. tory simulation mode.

SIMSEP is the main subroutine in the trajectory simulation mode. Its primary function is to control the execution of algorithms and logic according to the operation and option flags specified during input. This is done in two basic cycles within the program. The first, or outer cycle, is the so-called Monte farlo mission cycle where a complete actual trajectory is propagated from beginning to end. Included within the mission cycle is the guidance event loop where trajectory estimation and guidance are performed to keep the "actual" trajectory on course. After many sample missions have been flown, certain statistical parameters are computed to aid in the deduction of expected trajectory characteristics and system performance. One of the key operations performed in STMSEP and its subordinate routines is the propagation of trajectories from one time point to another. This operation may simultaneousiy include the generation of state transition matrices. Since ali communications with the integrator are by
block variables, the explicit in ine initialization of integrator control variables prior to calling the trajectory routine is evident throughout SIMSEP. A list of variables which must be defined to properly initialize the trajectory is given below. This list should clarify how SIMSEP's interface with TRAJ is performed.
Variable Definition

EРØ゙CH

TREF

TDUR

STATEO
SCMASS
NTPHAS
NPRI
ICAII,

INTEG

Initial trajectory epoch, a Julian date.

Trajectory starting time (in seconds) measured from EPøCH.

Trajectory termination time (in seconds) measured from EPøCH.

State vector specified at TREF.
S/C mass specified at TREF.
Thrust phars number of TREF.
Prinary body number at TREF.
Trajectory initialization flag.
ICALI $=1$, the trajectory is initialized and propagated.
ICAIT $=2$, the trajectory is initialized only.
ICAiJ $=3$, the trajectory is propagated from a previous integration step.

Flag indicating which equations are to be integrated in TRAJ.

INTEG $=1$, equations of motion and variational equations are to be integrated.

Variable	Definicion
IST6P	INTEG $=2$, only the equations of motion are integrated.
	Trajectory stopping condition flag.
	IST $\varnothing \mathrm{P}=1$, the trajectory integration is ended at TDVR.
	ISTAP $=2$, the trajectory integration is ended when closest approach is detected at the targer body.
	IST $\varnothing \mathrm{P}=3$, the trafectory is stopped when the sphere of influence is encountered.

Input/hutput:

Yariable	Input/ Output	Argument/ Common	Definition
NREF	I	C	State vector read-in £lag.
UREL	I	C	Relative s/c position vectors. $\operatorname{UREL}(1,1)$ for $i=1,2,3$ is the teliocentric position vector of the s/c. UREL (i, ITP) for $i=1$, 2,3 is the position vector relative to the target planet.
VREE	I	C	VREL ($\mathbf{i}, 1$) for $\mathrm{i}=1,2,3$ is the heliocentric velocity vecter of the s/c. VREL (i, ITP) for $i=1$, 2,3 is the velocity vector relative to the target planet.
BLenk (LDCM)	I	C	Current s/c mass at any given instant along the trajectory integration.
TST 6 P	I	c	Trajectory stop time relative to EPøCH.

Vardable	Input/ Output		$\begin{array}{r} \text { STMSEP-4 } \\ \text { Definition } \\ \hline \end{array}$
EP¢CA	I	C	Initial epoch of the mism sion. A Julizn data correm sponding to the launch of the miscion.
TGE	I	C	Epoch of a guidance event.
IRAN	I	C	Random number seed.
NWISED	I	c	Thrust process noise flag. If N@ISED 1 , time-varytig dynamic nolse is activated in the trajectory integrator. If NoISED $m 0$, theze is no dynmaic noise.
PG	I	c	Initial s/c control cove sriance in eigenvector/ exgenvalue form.
KIERR	I	C	Flag to indicate whether or not a trajectory is to be propagated arter a given guidance correction to the designated target to evaluate target errors. If KIERR $=2$: target errors are computed. If KTERR $=$ 0_{s} no target errors.
NSAMP	I	c	Previous number of Monte Carlo cycles that have been processed for a given guidance event.
MC	I	c	Previous number of Monte Carlo cycles that have been processed for the total gission.
RXGE	I	c	Reference trajectory state vectors 能 guidance events.
RMGE	I	C	Reference s/c mass at guidm ance events.
RYTMar	\pm	C	Referance tzajeotory state at the target time.
ImPar	\underline{I}	c	Reference s / g mass at the target time.

Varfoble	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Comanan } \end{gathered}$	Definition
Thrust	I	C	Thrust control array.
MTPE	I	C	Thrust control phase number at guidance events.
STHRT3	I	c	Stored thrust control array for the reference trajectory thrust profile.
NGUTD	\pm	C	Number of guidance events for this mission.
NGYCLE	I	C	Number of Monte Carlo cycles for this SIMSEP run.

Local Variaoles:

Vaxiable	Definition
IC	Wonte Carlo cycle counter for complete missions.
IMAN	Guidance event counter for completed guidance events within a mission.
XRETO	Initial reference rajectory state vector.
XA	Actual trajectory state vector.
XE	Estimated irajectory state vector.
XT	Actual trajectory final target variables.
IPRNT	Print output flug.
ICINVEG	Guidance convergence flag.

Variable Definition

DELTAU

IGUID

Suhroutines Called:	CXPY, CSAMP, DATAS, EPHSMP E ERRSIP, EXGUID, LGUID, NLGUID, NøISE, $\emptyset D, ~ ¢ P S T A T, ~ T R A J$, REFRTJ, SET, SPRNTI, STAT, TC $\overline{\text { MP }}$, VECMAG, ZERDM
Calling Subroutines:	MAPSEP
Common Blocks:	STMI, ISIM1, SIM2, ISIM2, SIMLAB, STDREC, TIME, TRAJ1, TRAJ2, WORK, (BLANK)

3.4.1 Subroutine: CSAMP (EVEC, NN, REFVEC, SMPVEC, IRAN)

Purpose:

Method:

Remarks:
This routine is used in SIMSEP for constructing random actual state vectors relative to the reference state at the initial time from the input control error covariance. It is also used to compute an augmented estimated state vectors from the input knowledge covariances at guidance events. The maximum dimension a covariance matrix may have is 20×20.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
EVEC	I	A	Variably dimensioned
			(Nity ($\mathrm{N}+1 \mathrm{l}$) array of eigen
			vectors and eigenvalues.
			The (NN X NN) square matrix

QariableInput/ Output	Argument/ Common	Definition

is the so-called modal matrix which has eigenvectors as columns. The (Nw +1) column vector is the (NN X 1) vector of eigenvalues.
Dimensimality of the EVEC matrix.
Reference state vector to the sampled error vector is added.
Sampled state vector which is different from REFVEC by the sampied arror vector.
IRAN I A Random number generator usid.

Local Variables:

Variables

D

Sampled error vector to be added to REFVEC. Equivalences to elements in the $W \not \mathrm{~V}_{\mathrm{R}}$ common.
Subroutines Called: RNUM, MMAB, ADD
Calling Subroutines: SIMSEP, $\varnothing \mathrm{D}$, EPHSMP
Common Blocks: WøRK

Logic Flow:

3.4.2 Subroutine: DATAS
Purpose: To make calls to SDAT1 and SDAF2 in order to read the SIMSEP input.
Methoc: DATAS is a macro-logic routine which serves exclusively to call SDATl and SDAT2 in suc- cession.
Input/Output: None
Local Variables: None
Subroutines Called: SDAT1, SDAT2
Galling Subroutines: SIMSEP
Common Blocks: None
Legic_Elow: None

Pages 364 through 374 have been deleted.

Input/Output:

:	Input/	Argument/
Variable	Output	Common

SMASS	I/O	C	Solar gravitational constant.
PMASS	I/O	C	Planetary gravitational constant.
PLANET	I	C	Hollerith array of planetary names.
CSAX	I/O	C	Analytic ephemeris semi- major axes.
CECC	I/O	C	Analytic ephemeris eccen- tricities.
CINC	I/O	C	Analytic ephemeris inclina- tions.

Variable	. Input/ Output	Argument/ Common	Definition
C¢r玉G	I/O	C	Analytic ephemeris arguments of the ascerding mode.
COMEGT	I/O	c	Analytic ephemeris arguments of the apsis.
CMEAN	I/0	c	Analytic ephemeris mean anomalies and mean motions.
GMERR	I	c	One sigma uncertainties in the gravitational constants.
XEPH	I/O	C	Ephemeris planet state vector at epoch.
NEP2	I	c	Flag array specifying the ephemeris planets.
EPHERR	I	c	Eigenvector/eigenvalue representation of the ephemeris error covariance.
TEPH	I	C	Epoch at which the ephemeris errors are evaluated.

Local Variables:

Wariable	Definition
GMUS	Temporary storage for the solar gravi- tational constant.
GMU	Sum of sampled solar and planetary masses.
EL	Temporary storage for the sampled Cartesian ephemeris planet state.
	Temporary storage for the sampled orbital elements.

Subroutines Called: RNOM, GSAMP, CøNIC, C \quad PPY, ZER $6 M$
Galling Subroutines: SIMSEP
Common Blocks: CØNST, DYNØS, EPHEM, SIMI, ISMM1, WGRK

3.4.5 Subroutine; ERRSMP

Purpose: To make random samples from input SEPS paraneter errors, thrust biases and thrust process noise in order to formulate actual values for these parameters used during the propagation of an actual trajectory.

Methods:
A standard Monte Carlo sampling procedure is used to compute random errors which are added to the reference values to form "actual" parameter vaIues.

Input/Output:

Variable | Input/ | Argument/ | |
| :---: | :---: | :---: |
| Output | Common | Definition |

SCMASS	I/O	C	Initial S/C mass.
$\begin{array}{r} \text { ENGINE (10) } \\ (=E X H V E L) \end{array}$	I/O	C	Thrust exhaust velocity.
$\begin{aligned} & \text { ENGINE (1) } \\ & (=\mathrm{P} \phi \text { WERO) } \end{aligned}$	I/O	C	Electric power at 1. A.U.
$\begin{array}{r} \text { ENGINE (11) } \\ (\because T H R E F F) \end{array}$	1/0	C	Thruster efficiency.
$\begin{gathered} \text { ENGINE (15) } \\ (=C R A) \end{gathered}$	I/0	C	Radiation pressure coefficient.
THRTUST	I/O	C	Thrust control array
TNQTSE	0	C	Thrust control noise.
GTAU1	0	C	Thrust control noise time correlation coefficients for the first process.

Varsiale	Iaput/ Output	Argument/ Conimon	Defintifon
grave	0	c	Whrust control noise time correlation coefficients for the second process.
SCERR	\pm	0	SEPS parameter errors.
TCERR	I	c	Thrust control biases.
TVERR	I	c	Time varying thrust control errors.
JWAX	I	c	Total number of active thrust phases.
JMIN	I	C	Thrust phase number for the first active phase
Subroutin	Called:		
Calling Subroutines: SIMSEP			
Cormon Blocks:		CONST, DYNDS, STHI, ISIMI, TIME, TRAJI, TRAJ2, W $\%$ RK	

Input/Output:

Variables	Input/ Output	Argument/ Common	
XA	I/O	A	Actual s/c state vector.
DELTAU	I	A	Commanded thrust control correction or delta- velocity change.
IMAN	I	A	Number of the current guidance event.
IPRNI	I	A	Print output Elag.
EXVERR	I	C	Impulsive maneuver execu- tion errors.
	I/O	C	Thrust control array.

Variable	Input/ Output	Argument/ Common	TJefinition
NIC	I	0	Number of active thrust controls.
IGL	I	C	Guidance law specifica- tion flag.

Local Variables:

Variable Definision

EDVM	Magnitude of the commanded deltavelocity correction.
ADWS	Magnitude of the actual deltan velocity correction.
UEDV	Unitized estimated delta-velocity vector.
AE	Angle measured ir the ecliptic plane from the positive X -axis to the projection of the commanded delta-velocity correction.
BE	Angle measured out of the ecliptic plane to the commanded delta-velocity correction.
ΔA	Angle measured in the ecliptic plane from the positive X-axis to the projection of the actual delta-velocity correction.
BA	Angle measured out of the ecliptic plane to the actual delta-velocity correction.

Subroutines Galled: VECMAG, UNITV, RNUM, ZERGM, ADD, SET, MATGUT, CØPY Galling Subroutines: SIMSEP
Common Blocks: CONST, DYN \quad S, IASIM, SIMI, ISIMI, STMLAB, STORREC, TRAJI

Logic Flow:

Form Actual Delta-Velocity: DELTAU (4)=ADVA*COS (AA) $+\operatorname{COS}$ (BA $\operatorname{DELTAU}(5)=A D V N F S I N(A A)+\operatorname{COS}(B A)$ DELTAU (6) $=\operatorname{ADVA} \div \operatorname{SIN}(B A)$

3.4.6B Subroutine:	GUIDMX (RHI, THETA, ETA, GAMMA, NC, NI, IGUID, TMAN, C \varnothing NWT)
Purpose:	To calculate the guidance matrix used by the
	linear guidance algorithm.
Method:	The guidance matrix, Γ, is computed from tra-
	jectory sensitivities evaluated about the
	reference trajectory according to the guidance
	policy specified during input. The computational
	steps in formulating Γ are discussed in the
	Analytic Manual, Section 7.3.1. Once the guid-
	ance matrix has been determined, it is stored
	and used on successive Monte Sarlo cycles, thus
	eliminating the need to re-evaluate trajectory
	sensitivities.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
PHI	I	A	State to state transition matrix, 画.
THETA	I	A	Control variable to state component transition matrix, θ_{u}.
ETA	I	A	State to target variable transformation matrix, ${ }^{M}$.
GAMMA	0	A	Guidance matrix, T
ne	I	A	Number of ccatrol vafiables.
IVI	I	A	Number of teḍrget variables,
IGUID	I	A	Guidance maneuver type flag.

Yariable	Input/ Output	Argument/ Common	Definition
IMAN	I	A	Guidance event number.
CøNWT	I	A	Weighting factors for the control variables.

Local Variables:

Variable

Definition

TMXI
TMX2
TMX3
7
Temporary matrices storing intermediate calculations.

Subroutines Called: GENINV, MMAB, MPAK, SCALE
Calling Subroutine: REFTRJ
Compon Blocks: None

Logic Flow:

3.4.7 Subrcucine: LGUID (XE, TMAN, IPRNT, DELTAU)

Eurpose:
To compute low thrust or impulsive guidance corrections using a linear, non-iterative guidance law.

Method:
Using the linear guidance matrix, Γ, formulated in GUIDMX, LGUID computes a set of law thrust or impulsive corrections according to the matrix equation

$$
\Delta \underline{u}=\Gamma \& \underline{x}_{\mathrm{E}}
$$

where δX_{E} is the state vector difference betwern the estimated and reference trajectory state at the guidance point.

Input/Output:

Variable	Input/ Output	Argument/ Common	
XE	I	A	Estimated S/C state vector.
IMAN	I	A	Number of the current guid- ance event.
IPRNT	I	A	Print output flag.
DELTAU	0	A	Output vector of low thrust or impulsive velocity cor- rections.
SMAT	I	C	Saved guidance matrix pre- viously computed.
RXGE	I	I	C

Lecal Variables:
Variable Definition
DKE
Deviation of the estimatedstate vector relative tothe reference trajectory atthe guidance point.
GAMMA
Guidance matrix, ${ }^{7}$.
EDU
Temporary storage for thecomputed control correction.
Subroutines Called: $C \not G P Y, ~ M M A B, ~ S U B$
Calling Subroutines: STMSEP
Common Blocks: IASTM, SIMI, ISIM1, STMLAB, ST 6 REC, TIME, W $\emptyset R K$
Logic Flow: None

INPUT/OUTPUT: INPUT/ ARGUMENT/
VARTABLE OUTPUT COMMON

XE	I	A	Estimated S/C state vector.
IMAN	I	A	Number of the current guidance event.
IPRNT	I	A	Print output flag.
delitau	0	A	Computed low thrust or impulsive control corrections.
ICNVEG	0	A	Convergence flag. $=0$, No convergence after ITMX iterations or after the quadratic error function, Q, has increased on three successive iterations. $=1$, Weak convergence after ITMX iterations and Q being less than AOR. $=2$, Strong convergence ($Q \leq 1$).
TgL	I	c	Array of target error toletances used in computing the quadratic error function.

VARIABLE	INPUT/ outpur	$\begin{gathered} \text { ARGUMENT } \\ \text { COMMON } \\ \hline \end{gathered}$	DEFINITION
IGL	I	c	Flag designating the type of guidance correction to be computed. If IGL $=+2$, the guidance is low thrust. If IGL $=-2$, the guidance is impulsive.
ITMX	I	C	Maximum number of guidance iterations allowed. (Input as MMAX).
$A D K$	I	G	Weak convergence tolerance.
IEPH	I	c	Code for the ephemeris body.
NTPL	I	c	Code for the target body.
ITTAR	I	C	Number of target variables.
NTC	I	c	Number of control variables.
TGE	I	c	Time of the guidance event.
TITAR	I	c	Designated target time.
LSTAR	I	c	List of target variable codes.
Xtarg	I	c	Reference trajectory target conditions at the designated target time.
SMAT	I	c	Stored sensitivity matrix.
CGNWT	I	c	Control variable weights.
THRUST	I	C	Array of thrust controls.
STHRT2	I	C	Stored array of estimated thrust controls.
RXTAR	I	C	Reference trajectory state at the designated target time.
UNTAR	I	C	Gonversion factor which convert target variables from internal to external units.
DVMXN	I	C	Maximum delta-velocity magnitude change.

VARIABLE	INPUT/ OUTPUT	$\begin{gathered} \text { ARGUMENT } \\ \text { COMMON } \end{gathered}$	DEFINETION
IJH	I	C	Array of indices which identify the position in the THRUST array of the active controls.
PHI	0	c	State to state transition matrix between TGE and TITARG.
THETA	0	c	Controls to state transition matrix between TGE and TTARG.
LOCAL VARTABLES:			
VARIABLE		DETINITION	
WW		Weighting matrix used in formulating the quadratic error function. WW is diagonal with the reciprocal target tolerances squared for the non-zero entries.	
XXE		Estimated trajectory state vector at TSTØP.	
ITER		Current iteration counter.	
Q2		Value of the quadratic error function evaluated on two previous iterations.	
Q1		Value of the quadratic error function evaluated on one previous iteration.	
Qo		Current value of the quadratic error function.	
ETA		Transionnation matrix mapping differential state variables into differential iarget variables.	
EDV		Delta-velocity guidance correction at the current iteration.	
EDJ		Delta-thrust-control guidance correction at the current iteration.	
TAREX		Target variables eva-uated on the estimated trajectory at TSTOP.	
TARERR		Target error at TSTDP.	
GAMMA		Guidance matrix which maps target errors into control variables.	
Subroutin	ed: ZB	2ERØM, MATØUT, CØPY, SET, MMAB, GENINV, VECMAG, SCALE, ADD, THCOMP, TCØIP, SUB, LNATBA, ECめMP,	

Galling Subroutines: SIMSEP

Gommon Blocks:
GGNST, TRAJ1, TRAJ2, SIM1, ISIM1, TIME, (BLANK)

Pages 396 through 402 have been deleted
3.4.9A Subroutine: $\oint D$ ($\mathrm{KA}, \mathrm{XE}, \mathrm{IMAN}, \mathrm{IPRNT}$)

Purpose:

Method:

To estimate the s/c state vector and parameters which have been augmented to the state at a guidance event.

Since an explicit orbit determination process and measurement models are not included in STMSEP, $\varnothing \mathrm{D}$, in effect, performs the state estimation function. A knowledge sovariance, which has been transformed into an eigenvector/ eigenvalue representation, is randomly sampled to form an error, $\mathbb{*} X_{E}$, in the estimated state vector relative to the actual, i.e., $\delta \mathrm{X}_{\mathrm{E}}=$ $X_{E}-X_{A}$. If parameters such as ephemeris errors, thrust biases, etc., have been augmented to the six-component Cartesian state, estimated errors for these parameters are simultaneously computed by sampling an augmented knowledge covariance. The formulated error vector is added to the corresponding actual values to define an estimated state and estimates of the augmentation parameters to be used in calculating guidance corrections.

Input/Output:

	Input/	Argument/
Variable	Output	Common

XA I A Actual s/c state vector (position and velocity).

Variable \quad I	Input/ Gutput	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
XE	0	A	Estimated s/c state vector (position and velocity).
TMAN	I	A	Number of the current guidance event.
IPRNI	I	A	Print cutput flag.
BLANK	I	C	Array of eigenvector and eigenvalues corresponding to the augmented knowledge covariance.
Encilie (1) $(=\text { PChERO })$	0	C	Estimated eiectric power at 1 A.U.
SP03	I	c	Saved reference value of the electric power at 1 A.U.
ENGINE (10) (= EXHVEL)	$)^{0}$	c	Estimated thrust exhaust velocity.
SEXV3	I	c	Saved reference value of the thrust exhaust velocity.
ENGINE (11) $(=\text { THREFF })$	$)^{0}$	C	Estimated thruster efficiency.
Steff3	I	c	Saved reference value of the thruster efficiency.
ERGINE (15) $(=C R A)$	0	c	Estimated radiation pressure coefficient.
SGRA3	I	c	Saved reference value of the radiation pressure.
SCMASS	0	C	Estimated SEPS mass,
RMGE	I	C	Reference SEPS mass.
THRUST	0	c	Estimated thrust control array.
STHRT3	I	c	Saved reference thrust control array.

Variable	Input/ Output	Argument/ Common	Definition
KDIM	I	c	Dimension of the augmented knowledge covariance.
TEPH	I	C	Ephemeris planet number for the current knowledge covariance.
NEP2	I	C	Active actual ephemeris planet number.
SMASS	I/O	C	Estimated solar gravitational constant.
PMASS	1/0	C	Estimated planetary gravitational constant.
XEPH	I/O	C	Estimated ephemeris planet Cartesian state vector.
GMERR	I	C	Solar and planetary gravitational constant uncertainties.
csax	0	c	Estimated semi-major axis for the ephemeris planet.
CECC	0	C	Estimated eccentricity for the ephemeris planet.
CINC	0	C	Estimated inclination for the ephemeris planet.
CQMEC	0	c	Estimated longitude of the ascending node for the ephemeris planet.
CDIUEGT	0	c	Estimated longitude of periapsis for the ephemeris planet.
CMEAN	0	C	Estimated mean anomaly for the ephemeris planet.

Local Variables:

Variable. Definition

AXA

EL

INDEXI

Augmented actual state vector. The dimension and packing are determined by KTY.

Augmented estimated state vector. Like AXA, the dimension and packing are determined by kTY.

Estimated osculating ephemeris planet orbital elements.

Index identifying the position in the EVEC matrix of the first element corresponding to the current augmented knowledge covariance.

Subroutines Called: ZER ϕ M, CSAMP, CøPY, CøNIC

Galling Subroutines: SIMSEP

 (BLANK)

3.4.9B Subroutine: ØPSTAT
Purpose: To output statistics evaluated during theMonte Carlo mission simulations.After completion of Monte Carlo cycles inSIMSEP, $\oint P S T A T$ transforms variances andcovariances which characterize the statisticsof the "real world" trajectories into standarddeviations and correlation coefficients. Thestandard deviations, correlations, and meansare printed as a part of the standard SIMSEPoutput whenever the number of Monte Carlocycles is greater than one. Arrays of thesenumbers are also punched (if requested by theuser) in a format ready to initialize a sub-sequent SIMSEP run.
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
NGUID	I	c	Number of guidance events occurring on the mission.
NSAMP (i)	I	c	Number of Monte Carlo cycles executed in accumulating statistics for $i^{\text {th }}$ guidance events.
$\operatorname{cccov}(i)$	I	C	Control error covariance and vecter mean evaluated at the $i^{\text {th }}$ guidance event.
GMGøV (i)	I	C	S/C mass variance and mean evaluated at the $i^{\text {th }}$ guidance event.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
DVCфV (i)	I	C	De1.ta-velocity covariance and vector mean evaluated for impulsive maneuvers at the $i^{\text {th }}$ guidance event.
DVMAGS (i)	I	c	Delta-velocity magnituce variance and mean for impulsiva maneuvers at the $i^{\text {th }}$ guidance event.
CNC VV ($^{\text {(}}$)	I	c	Thrust control correction covariance and means evaluated for low thrust maneuvers at the $i^{\text {th }}$ guidance event.
NTC (i)	\pm	c	Number of low thrust controls active for the $i^{\text {th }}$ guidance event.
TCCøV (i)	I	c	Control error covariance and vector mean evaluated at the target time on the $i^{\text {th }}$ guidance event.
TMC $\emptyset \mathrm{V}$ (i)	I	C	S/C mass variance and mean evaluated at the target time on the i th guidance event.
TERCめV(i)	I	C	Target error covariance and means evaluated at tte target time on the $i^{\text {th }}$ guidance event.
NIAR(i)	I	C	Number of target variable for the $i^{\text {th }}$ guidance event.
MC (i)	I	c	Number of Monte Carlo cycles executed in accumulating statistics.
ENDCOVV	I	c	Control error covariance and vector mean evaluated at the trajectory end time (TEND).
AMASS	I	c	s/C mass variance and mean evaluated at the trajectory end (TEND).

Varlable	Input/ Output	Argument/ Common

ATHC	I	C	Covariance of active thrust controls used throughout the
mission for all low thrust			
maneuvers executed.			

Local Variables: None
Subroutines Called: MATøUT, SYMUP, VARSD
Calling Subroutines: STMSEP
Common Block: SIM1, ISIM1, SIM2, ISIM2
Logic Flow: None

3.4.90 Subroutine:

Purpoge:

Method:

REFTRJ
(1) To compute reference trafectory conditions, e.g., state, mass, sensitivities, etc., at the guidance points; (2) to evaluate reference trajectory target conditions at designated target times; and (3) to compute the guidance matrix to be used at linear guidance events.

REFTRJ performs the trajectory calculations necessary whenever INREF is read as zero during the SSIMSEP namelist input. These calculations are done by repetitively calling eyther the TRAJ overlay or the THC $\mathrm{TMP}_{\mathrm{F}}$ subroutine. In addition, REFTRJ prints and punches the reference trajectory data so that they may be used to initialize subsequent STMSEP runs (with INREF = 1).

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
TGE	I	C	Epoch of a guidance event.
TTAR	I	C	Designated target epoch.
NGUID	I	c	Number of guidance events.
NTAR	I	C	Number of target variables.
NTC	I	C	Number of controls.
NTPL	I	6	Target planet code.
IGL	I	c	Guidance lav flag.
LSTAR	I	c	List of target variable codes.

Varlable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \end{gathered}$	Definition
RXGE	0	c	Reference trajectory state at the guidance event.
RMGE	0	0	Reference S / C mass at the gu£dance event.
RXTAR	0	C	Reference trajectory state at the target time.
RMTAR	0	c	Reference S / C mass at the target time.
gTARG	0	c	Reference target conditions at the target time.
gEND	0	c	Reference trajectory state at the final trajectory time (TEND).
MEND	0	c	Reference S / C mass at the final trajectory time.
SMAT	0	c	Sensitivity or guidance matrix for guidance maneuvers.
PHI	0	c	State to state transition matrix.
THETA	0	c	Thrust controls to state transition matrix.

Local Variables:

Variable
ETA

GAMMA
TMKI

State to target variable transformation matrix.

Linear guidance matrix.
Temporary storage of intermediary calculations.

Subroutines Called: CфPY, ECøHP, GUIDMX, MMAB, MPAK, TRAJ, TCøMP, THCめMP

3.4.9D Subroutine: SDAT1

Purpose: To read input data from the SSTMSEP namelist and

 to initialize the trajectory simulation mode.Method: Once the default values have been initialized, the SSIMSEP namelist is read from input. Names, dimensions, and definitions for variables contained in \$SIMSEP are discussed in the User's Manual (Section 2.4, page 37). The input data are processed and stored in common blocks so that they may be used by Monte Carlo cycle logic in SIMSEF. Variables contained in this nameist control the degree of data preparation and computational operations performed within the main cycle of the program.

Remark: Many of the variables appearing in SDATI are initialized from namelist with units specified in the User's Manual. Before they are transmitted to other routines and used by the program, they are converted to internal units which are kg , $k w, \mathrm{~km}, \mathrm{sec}, \mathrm{km} / \mathrm{sec}$, and radians.

Input/Output:

Variable	Input/ Output	Namelist/ Common	Definition
A \quad R K	I/0	N/C	Backup convergence tolerance for weak convergence test.
CPMA	I/0	N/C	Computer processing time IImit for the current SIMSEP run.
DVMN	I/0	N/C	Maximum delta-velocity magnitude step.
TNREF	I 10	N/C	State vector and trajectory parameter read-in flag.
IфUT	I/0	W/C	Print output flag.
IPUNCH	I/0	N/C	Punch output flag.
IRAN	I/0	N/C	Random number seed.
NGYCLE	I/0	N/C	Number of Monte Carlo cycles to be run.

Input/Output:

Variable	Input/ Output	Name1ist/ Common	Definition
NGUID	I/0	N/C	Number of guidance events to be executed on each Monte Carlo mission simulation.
EPHERR	1/0	N/C	Ephemeris error matrices for the ephemeris bodies.
GMERR	I/0	N/C	Gravitational constant errors.
NEP2	I/0	N/C	Active ephemeris planet numbers;
XEPH	0	C	Cartestan state of the ephemeris body at TEPH.
PG	I/0	N/C	S/C control error matrix.
TEPH	I/0	N/C	Epoch of evaluation of the ephemeris errors.
Exverr	I/0	N/C	Midcourse velocity correction execution errors.
SGERR	I/0	N/C	SEP and S/C errors.
TCERR	I/0	N/C	Thrust bias errors.
IVERR	I/0	N/C	Thrust process noise.
ADVT	I/0	N/C	Total delta-velocity magnitude statistics.
ENDGOV	I/0	N/C	Accumulated S/C control error statisties at TERD.
AMASS	1/0	N/C	Accumulated S/C mass statistics at TEND. ;
ATHCDV	I/0	N/C	Accumulated total thrust control statistics.
XEND	I/0	N / S	Reference trajectory state vector at IEND.

Input/Output:

Yardable	Input/ Output	Namelist/ Common	Definition
VEND	I/0	N/C	Reference S / C mass at TEND.
SPFTMP	I/0	N/C	Chemical propulsion system specific impulse.
DVMPTT	I/0	N/C	Chemical propulsion system mass flow rate.
MC	I/0	N/C	Number of previous Monte Carlo cycles.
KATHC	I/0	N/C	Dimension of the ATHCOV matrix.
JMAX	0	c	Number of the last active thrust control phase between trajectory times TSTART and TEND.
JMEN	0	C	Number of the first active thrust control phase after TSTART.
Variables:	None		
tines Call	C¢FPY, EIGENV, EPHEM, MAT¢UT, SDVAR, ZEROM.		
Sg Subroutin	datas		
Blocks:	CøNST, ISTM2,	LE, DYNøS, LAB, TIME,	, EPHEM, SIM1, ISIM1, SIM2, 11, TRAJ2.

Logic. Flow:

407-L

Logic F1ow:

Purpose: To read input data from the \$GUID namelist and to define the guidance philosophy, guidance control variables, targets, etc., at each guicance event.

Method: Since the number of guidance events considerad for a given SMASEP run has been specified by the NGUID variable which was read in SDATl, the SDAT2 subroutine reads the \$GUID namelist NGUID-times. Names, dimensjons, default values, and definitions for the variables contained in \$GUID are discussed in the User's Manual (Section 2.4, page 37). The input data from \$GUID are stored in common blocks for subsequent usage during the execution of guidance maneuvers. The user speciffes through input the type of guidance, duration of the guidance event, target variables and controis.

Remarks: Variables appearing in SDAT2 are initialized from namelist in external "user" units. As was done in SDAT1, these variables are converted to internal units before being transmitted to the rest of the program.

Input/Output:

Variable	Input/ Output	Namelist/ Common	Definition
TGUID	I	N	Guidance event epoch
TGE	0	$\mathrm{C} \quad \mathrm{J}$	
XGREF	I	N 7	Reference trajectory state vector at the guidance
RXGE	0	c	point.
MGREF	I	N	S/C mass at the guidance point.
EMGEE	0	c	
S	I	N	Sensitivity or gujdance matrix.
SMAT	0	c	
H	I	N	Array of on/off flags used to identify active thrust controls at a guidance event.
Tju	0	C	Matrix of active control variable indices.

Input/Outpuc:

Variable	Input/ Output	Namelist/ Common	Deftnition
UWATE	I	N	Control variable weights.
conwt	0	c	
TGUID	I	N	Guidance law flag.
IGL	0	c	
NMAX	I	N	Maximum number of iterations
ITMX	0	C	in the nonlinear guidance algorithm.
NEP	I	N	Ephemeris planet number.
IEFH	0	c	
NIP	I	N	Target plañet number.
NTPL	0	c	
NTAR	0	c	Number of target variables.
NTC	0	C	Number of control variables.
TTARG	I	\$	Target epoch.
TTAR	0	C	
TARGET	I	N	Target variables evaluated on the reference trajectory.
XTARE	0	c	
XTREF	I	N	Reference trajectory state
${ }^{\prime} \mathrm{RXTAR}$	0	C	
MTREF	I	N	S/C mass at the target
RMTAR	0	C	
TART¢ ${ }^{\text {L }}$	I	N	Target variable tolerances.
T \dagger L	0	C	
ITARGT	I.	N	Target variable selection fiags.
LStar	0	c	

Input/Output:

Variable	Input/ Output	Namelist/ Common	Definition
P	I	N	Augmented tnowledge error covariance at a guidance event.
PS	I	N	
CXS	I	N	
BLANK	0	c	Eigenvectors and eigenvalues.
KDIMEN	I	N	Dimension of the augmented knowledge covariance.
KDIM	0	C	
KTER	I	N	Option thag for computing target errors.
KTERR	0	c	
cotve	I	N	AcsumuIated control error statistics at the guidance point.
gcodv	0	c	
gMsch	I	N	Accumulated S/C mass statietics at the guidance point.
GMCDV	0	C	
CNTCOV	I	N	Accumulated active thrust control error statistics.
cactiv	0	C	
Dymcov	I	N	Accumulated delta-velocity vector statistics at the guidance event.
DUCOV	0	C	
DUMAG	I	N	Accumulated delta-velocity magnitude statistics at the guidance event.
DWMAGS	0	c	
ccobvt	I	N	Accumulated control error statistics at the target point.
tcosp	0	c	
mscolv	I	N	Accumulated S/C mass statistics at the target point.
TMCOV	0	0	
TARCDV	I	N	Accumulated target error statistics.
TERCOV	0	C	

Imput/Output:

Variable	Input/ Output	Namelist/ Common	Definition
MSAMP	I	N	Number of previous Monte Carlo samples on the
NSAMP	0	C	accumuiated statistics.
MTPH	0	c	Thrust phase number at a guidame event.
ICYCTE	0	C	Recycle flag.
UNTAR	0	c	Vector of target variable conversion factors.

Loca1 Variables:

Variable	Definition
PP	Temporary storage for the augnented knowledge covar- iance matrix.
INDEX1	Guidance event counter.
	Index marking the position in blank common after which eigen-
vectors corresponding to a par-	
INDEX2	ticular augmented knowledge co- variance are stored.
	Index like INDEX1 except it marks where eigenvalues are stored.

Subroutines Called: CdPY, EIGENV, ICgPY, MAT础, MPAK, MUNPAK, SDVAR, SYMLOX, SYMUP, ZERDTM.

Gallinge Subroutines: DATAS
Common Blocks: CYCLE, EDIT, EPHEM, IASTM, SIM1, ISIM1, SIM2, ISIM2, STMIAB, TTME, TRAJ1, TRAJ2, (BLANK).

Logic Flow:

3.4.10A Subroutine: SET (ISTøRE)

Purpose:	To set and store physical parameters (ephemeris,
	gravitational, etc.) and SEPS parameters (thrust
	controls, mass, exhaust velocity, etc.) needed
	by the trajectory integration routine for generat-
	ing the actual, estimated, and reference trajec-
	tories:
Method:	SET simply performs multiple copy operations in
	transferring the working values used by the
	trajectory integrator into designated storage
	arrays, S1, S2 and S3. By calling SET with
	ISTORE equal to $+1,+2$ or +3 , the corresponding
-	S1, S2 or S3 array is equated to whatever is in
	the regular working arrays. If ISTضRE equals th,
	all three S-arrays are set. When SET is called
	with IST¢RE equal to $-1,-2$, or -3 , then the
	working arrays are re-set to whatever is stored
	in S1, S2 or S3, respectively.
Remarks:	This routine is essential to SIMSEP in that it
	allows the program to use the same trajectory
	integrator to evaluate each of the different
	types of trajectories needed for a mission simu-
	lation.

Input/Output:

Variables	Input/ Outout	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ISIDRE	I	A	Flag controlifing the SET logic flow.
ENGINE (1) (=PøNERO)	I/O	c	Electric power at 1 A, U.
ENGINE (10) ($=$ EXHVEL	$I / 0$	c	Thrust exhaust velocity.
Engine (11) (=THREFF	I/O	c	Thruster efficiency.
$\begin{gathered} \text { ENGINE (15) } \\ (=\mathrm{CRA}) \end{gathered}$	I / O	C	Radiation pressure coefficient.
SCMASS	I/0	c	SEPS mass.
SMASS	I/O	c	Solar gravitational constant.
PMASS	1/0	c	Planetary gravitational constants.
NTPHAS	I/O	C	Current thrust eontrol phase number.
XEPH	I/O	c	Ephemeris planet state vector. .
THRUST	I/0	c	Thrust control array.
CSAX	I/O	c	Semi-major axis ephemeris constants.
Exin	I/O	c	Lunar ephemeris constants.
cecc	I/O	c	Eccentricity ephemeris constants.
CINC	I/0	c	IncIination ephemeris constants.
C6゙MEG	I/0	c	Longitude of the ascending node ephemeris constants.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \end{aligned}$	Definition
CØMEGT	I/O	c	- Argument of the apsis ephemeris constants.
CMEAN	I/0	c	Mean anomaly ephemeris constants.
SSMI	I/0	C	Stored solar gravitational constant.
SSCMI	I/O	0	Stored SEPS mass.
SEXV1	I/O	c	Stored thrust exhaust velocity.
STEFFI	I/0	c	Stored thruster efficiency.
SCRA1	I/O	c	Stored radiation pressure.
SPO1	I/O	C	Stored electric power to I. A.U.
SPM	I/O	0	Stored planetary gravitational constants.
SXEPH1	I/0	c	Stored ephemeris planet state vectors.
SSAXI	I/0	c	Stored semi-major axes.
SEMNI	I/O	c	Stored lunar ephemeris constants.
SECCI	I/O.	c	Stored eccentricities.
SINC1	I/0	c	Stored inclinations.
StMEgI	I/0	c	Stored longitudes of the ascending node.
S¢MGT1	I/O	c	Stored arguments of the apsis.
SMEANI	I/O	6	Stored mean anomalies.
STHRTI	I/0	c	Stored thrust controls.

(Comment: Ini addition to these storage arrays and variables, thereare also corresponding $\mathrm{S}-2$ and $\mathrm{S}-3$ arrays.)
Local Variables: None
Subroutines Called: CøPY
Galling Subroutines: SIMSEP, NLGUID
Common Blocks: EPHEM, SIM1, ISTM1, STØREC, TRAJ1, TRAJ2

Logic Flow:

3.4.10B Subroutine:	SPRNT1 (XA, XE, XREFO, IC, IMAN)
Entry Points:	SPRNT2, SPRNT3, SPRNT4
Purpose:	To print actual, estimated, and reference
	trajectory data computed during Monte Carlo mission simulations.
Method:	SPRNTI, or one of its various entry points,
	is called from SIMSEP whenever printout of
	trajectory information is desired. A call
	to SPRNTI results in the "Output Data for
	the Actual Trajectory Initialization". (See
	the sample case in the User's Manual, Pages
	119 through 132.) SPRNT2 generates the
	"Output Data for Guidance Event" which
	includes printout for actual, estimated, and reference trajectory data. SPRNT3
	generates the "Output Data at the Designated
	Target Time" when KTER $=1$ and the carrected
	trajectory is propagated after a guidance
	event. At the end of each Monte Carlo mission
	simulation, SPRNT4 is called to dispiay the
	"Monte Carlo Mission Summary".

Input/Output:

Variable	Input/ Output	Argument/ Common	Definitios XA
I	A	Current actual S/C state.	
XE	I	A	Current astimated S/C state.

Variable	Input/ Output	Argument/ Common	Definition
SCRA1	I	C	Actual, estimated, and
SCRA2	I	C	reference radiation pressure
SCRA3	I	C	co-efficient.
STHRII	I	c	Actual, estimated, and
STHRT2	I	C	reference thrust controls.
STHRT3	1	C	
SSM1	I	c	Actual, estimated and
SSM2	I	C	reference solar gravitational
SSM3	I	C	constant.
SXEPM1	I	C	Actual, estimated and refer-
SXEPM2	I	C	ence Cartesian state for
SXEPN3	I	C	the ephemeris body at TEPH.
SPM1	I	C	Actual, estimated, and refer-
SPM2	I	c	ence gravitational constant
SPM3	I	C	for the ephemeris body.

Local Variables:

Variable
DXE

DXA

ELA
ELE ELR

EMASS

Vector deviation of the estimated state from the reference and/or the actual.

Vector deviation cf the actual state from the reference.

Keplerian elements corres ponding to the actual, estimated, and reference Cartesian states of ephemeris body.

Actual S / C inass evaluated at TEND.
Subroutines Called: CøNIC, SUB
Ga1ling Subroutines: SIMSEP
Common Blocks: CøNST, DYNøS, EPHEM, STMI, ISTM1, SIMLAB, STøREC,TIME, TRAJ1, TRAJ2, (BLANK)
Logic Flow: None.
3.4.11 Subroutine: STAT (XA, XR, $N, N 1, A C \phi V, M, P C \not V)$

Purpose:

Method:

To compute a covariance matrix and mean, recursively, from a sequence of error vectors. For the $M^{\text {th }}$ Monte Carlo cycle, an error vector, X_{M}, is computed as the difference between an actual and a reference vector. This error vector updates the previous mean based on (M-1) samples according to the equation

$$
\bar{X}_{M}=\left(X_{M}+(M-1) \bar{x}_{M-1}\right) / M
$$

for $M=1,2,3, \ldots$ The covariance matrix is also updated by the relation,

$$
\begin{aligned}
C_{M}= & {\left[\frac{M-2}{M-1}\right] c_{M-1}+\left[\bar{X}_{M-1} \bar{X}_{M-1}^{T}\right] } \\
& +\frac{1}{M-1} \quad X_{M} X_{M}^{T}-\frac{M}{M-1} \bar{X}_{M} \bar{X}_{M}^{T}
\end{aligned}
$$

for $M=2,3,4, \ldots \ldots$, where C_{M-1} is the previous covariance matrix and C_{M} the new covariance.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
XA	I	A	Actual sampled vector.
XR	I	A	Reference vector.
N^{-}	I	A	Dimension of XA and XR.
NI	I	A	N1 $=N+1$.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
ACDV	I	A	A-prior covariance matrix and mean, based on $\mathrm{M}-1$ samples. This is a ($\times \times N 1$) array with the variances and covariances being stored in the first N columns and the means being stored in the NIcolumns.
M	I	A	Number of Monte Carlo samples used to formulate the updated covariance matri\%.
Pc¢V	I	A	Updated output covariance matrix and vector of means. The storage is in the same format as AC ϕV. AC ϕ and pCOV may, in fact, share the same core locations.

- Local Variables:

- Variable

X
XX
XXT

Definition

Error vector, $X=X A-X R$. Temporary storage for the new means.

Temporary storage for the outer product of two vectors.

Subroutines Called: SUB
Galling Subroutines: Smiser
Common Blocks: WøRK

3.4.12 Subroutine: THC $\emptyset \mathrm{MP}$ (XE, XXE, TSAVE, IMAN, THETA)

Purpose:

To compute the matrix of partial deviatives of state coordinates at the target with respect to thrust controls; namely,

$$
\text { (H) }=\left[\frac{\partial(X, Y, Z, \dot{X}, \dot{Y}, \dot{Z})}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}\right] \quad(6 \mu n) \text {, }
$$

where n is the number of control variables. Stall perturbations are forced to each control variable of concern and an integrated trajectory is propagated to the target time. The final state vector of each variant trajectory is differenced with the standard, or nominal, state to form numerical partials.

Remarks:
This subrutine is used by both the linear and noniinear guidance subroutines in SIMSEP. Conversion of THCDMP to use augmented state transition matrices integrated during the trajectory propagation would principally affect this routine and would considerably reduce the computational expense of numerically differencing.

- Input/Output:

Variable	Input/ Output	Argument/ Common		
XE	I	A		Initial state vector which
:---				
is to be perturbed in				

Variable	Input.' Output	Argument/ C mmon	Definition
XXE	I	A	Final state vector on the standard as nominal trajectory.
TSAVE	I	A	Trajectory propagation interval between the guidance event and the taxget time.
IMAN	I	A	Number of the current guidance event.
THETA	0	A	(G) - matrix of partial. derivatives.
THRUST	I/0	c	Thrust control array.
IHMAT	I	c	Array of indices that specify the thrust controls which are to be perturbed.
L Man	I	0	Array of thrust control perturbations.
UREL	I	0	Target body relative position vector at the trarget time.
VREL	I	C	Target body relative velocity vector at the target time.
NTC ${ }^{\text {N }}$	I	c	Number of perturbing controls.

Local Variables: None
Subroutines Called: TRAJ, CøPY
Galling Subroutines: LGUID, NEGUID
Common Blocks: CǿNST, TRAJ1, TRAJ2, TIME, SIML

Logic Flow:

3.5
Subroutine: TRAJPurpose: To control the overall trajectory initializationand propagation.
Remarks:
Since TRAJ is used by the three modes, it mustbe capable of reproducing the same trajectoryFor each mode, independent of the augmented stateform, event times or print times. Special prob-lems arise when the equations to be propagatedinclude the transition matrix or covariancebetween events. For example, at the beginningof an event either the transition matrix must bereset to an identity or an updated covariancemust be given to TRAJ. To solve these problems,logic was incorporated into TRAJ to make use ofevent logic in the subroutine PATH with an entrypoint FLIGHT.
Beginning at the trajectory epoch t_{0}, the tran-sition matrix or covariance is initialized andis propagated to the first event (E_{1}). MAPSEPIogic returns to the calling routine which per-forms its operations. Upon reentering TRAJ, thetransition matrix or covariance is again reini-tialized and

propagated from E_{1} to E_{2}. In order to propagate the transition matrix or covariance from E_{2} to E_{3} and preserve the trajectory grid, the special logic in TRAJ calls FLIGHT to propagate the appropriate matrix from E_{2} to t_{1}. Then the spacecraft state is propagated from t_{0} to t_{1}. Now having the state and transition matrix or covariance at E_{1}, the appropriate matrix is propagated to E_{3}. This process is continued until
all events have been satisfied.

Input/Output:

Variable	Input/ Output	Argument/ Commion	Definition
ICALL	I	c	$=1$, initialize the trajectory and propagate to an event or stopping condition. $=2$, initialize the trajicttory only. = 3, propagate from a previously defined point in the trajectory.
INTEG	I	c	$=1$, propagate the state and transition matrix. $=2$, propagate the state. $=3$, propagate the state and state covariance matrix.

Variable	Input/ Output	Argument/ Common	Definition
DSC	I	c	The blank common array. The following ilage vill be used to locate specific information.
I¢CET	I	c	Previous event.
Løcx	I	c	Trajectory time.
Lfoch	I	c	Integration stepsize.
Lbtctc	I	c	State transition matrix or Govariance.
บфСFø	I	c	Deviations (from conic) of state (reference).
IDCDY	I	c	Deviations (from conic) of state derivatives (reference).
む¢¢¢	I	c	Deviations of state (event).
LfCDT	I	c	Deviations of state derivatives (event).
UEQS	I	C	Dimensions of the covariance or transition matrix.
TEVNI	I	c	Next event time.
IAUGDC	I	c	Flags used to augment the covariance or transition matrix.

Local Variables:

Variable
TEVNIS
IAUGDS

Subroutines Called:

Definition

Stored value of TEVNT.
Stored value of IAUGDC.

PATH, FLIGHT, IDENT, C $¢ P Y, \mathrm{I}_{\boldsymbol{\varphi}_{\mathrm{A}_{\mathrm{D}_{\mathrm{FH}}}}}$

Ga1ling Subroutines: TøPSEP, GøDSEP, SIMSEP
Common Blocks:
TRAJ2, WØRK, (BLANK), CØNST, EDIT, EPHEM, TIME, TRAJ1

\square
1

3.5.1 Subroutine: DNØISE (T)

Entry Poinf: NOISE
Purpose:
To compute thrust acceleration perturbations due to time-varying process noise.

A vector of thrust control perturbations, $\delta \underline{\underline{u}}$, is computed during the trajectory integration at the beginning, middle, and end of each integration step. The time correlated thrust noise is assumed to be a Gauss-Markov sequence according to the equation

$$
\begin{aligned}
& \delta \underline{u}_{i+1}=A \delta{\underset{\underline{u}}{i}}+\underline{\omega}_{i+1}, \\
& \text { where } A=\left[\begin{array}{cccc}
e^{-\Delta t / T_{1}} & & & 0 \\
& & & \\
& & & \Delta t / T_{2}
\end{array}\right] \\
& \text { and } \Delta t=t_{i+1}-t_{i} \text {. The factors } T_{1}, T_{2}, \ldots, \\
& T_{N} \text { are the correlation times associated with } \\
& \text { each stochastic process, } \delta_{u_{j}} \text {. The vector } \delta \underline{\underline{u}}_{i} \\
& \text { is assumed to remain constant over the interval } \\
& \Delta t \text { with its effect on } \delta_{u_{i}+1} \text { being diminished }
\end{aligned}
$$

by the exponential decay terms in $A, \frac{0_{i+1}}{}$ is a vector of independent random variables which have Gaussian distributions. The standard deviation, $\sigma_{\omega_{j}}$, is given by

$$
\sigma_{\omega_{j}} \doteq\left(1-e^{-2 \Delta t / T_{j}}\right)^{\frac{1}{2}} \sigma_{\mathrm{u}_{2}}
$$

in order to satisfy the requirement that the process be stationary.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common: } \\ \hline \end{gathered}$	Definition
T	I	A	Current trajectory time.
GTAU1	1	C	Negative reciprocal of the correlation times for the first process.
GTAU2	I	c	Hegative reciprocal of the correlation times for the second process.
TVERR	I	c	One-sigma values for the time-varying thrust control errors.
IRAN	I	C	Random number seed. i.
TNØISE	I 10	C	Vector of thrust control perturbations.

Local Variables:
Variable
Definition
T1 : Trajectory time at the previous point of thrust noise evaluation.

Yariable__	Definition
H	Time increment since the previous thrust noise evaluation.

Subroutines Called: RNMM
Calling Subroutines: EP, SIMSEP
Common Blocks:
TRAJI, DYNøS, TRAJZ

3.5.2 Subroutine: DPHI (T, DS, DSTM, M, N, LøC)

Purpose: To compute the time derivative of the State Transition Mitrix ()

Method:
$\dot{j}=\mathrm{F} \dot{\mathrm{F}}$

Input/Output:

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
IAUCDC	I	C	Flag indicating the augmencation of the STM and covariance Matrix.
T	I	A	Trajectory time
DS	I	A	Independent variables
DSTM	0	A	Differential equations
M	I	A.	Number of rows in DS and DSTM
N	I	A	Number of columns in DS and DSTM
L04	I	A	Routing flag
INTEG	I	C	Set $=1$ Propagate the State and Transition Matrix Set $=2$ Propagate the State Set $=3$ Propagate the State and State Covariance
IRECT	I	C	Index used to check whether the current call to DPHI is for rectification purposes only (i.e. IRECT =1)

Local Variables:

IAUGS Index used to check ohether the F matrix needs to be augmented.

Calling Subroutines: NUMIN

Subroutines Called: M MTI申N, LøADFM, GRAVAR
Common Blocks:
TRAJ2

Logic Flow:

3.5.3 Subroutine: EP (T, CMASS)

Purpose:

Method:

To compute the effective low thrust acceleration vector and matrix of partial deviatives for transition matrix or covariance propagation in a control phase.

The magnitude of the low thrust acceleration is

$$
a=\frac{0.002 \mathrm{\eta} \mathrm{P}_{\mathrm{T}}}{\mathrm{mc}}
$$

where

$$
\begin{aligned}
& P=\text { power available to the thrusters } \\
& \eta=\text { thruster efficiency } \\
& m=\text { spacecraft mass } \\
& c=\text { exhaust velocity } \\
& T_{\mathrm{L}}=\text { throttling level. }
\end{aligned}
$$

The acceleration vector can be expressed in one of two spacecraft centered coordinate systems. One system is the cone and clock system and the other is the In plane and Out of plane or orbit plane system, (Section 4.1, Reference 1). Letting

$$
\begin{aligned}
\mathrm{C}_{\mathrm{H}} & =\text { Cone Angle } \\
\mathrm{C}_{\mathrm{L}} & =\text { Glock Angle } \\
\delta & =\text { In plane angle } \\
\boldsymbol{\gamma} & =\text { Out of plane angle. }
\end{aligned}
$$

- The acceleration vectors for each system are

$$
\begin{aligned}
& a_{X}^{\prime}=a \cos \left(C_{L}+\dot{C}_{L} t\right) \sin \left(C_{N}+\dot{C}_{N} t\right) \\
& a_{Y}^{\prime}=a \sin \left(C_{L}+\dot{C}_{L} t\right) \sin \left(C_{N}+\dot{C}_{N} t\right) \\
& a_{z}^{\prime}=a \cos \left(C_{N}+\dot{C}_{N} t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{\dot{x}}^{\prime}=a \cos (\dot{\gamma}+\dot{\gamma} t) \cos (\delta+\dot{\delta} t) \\
& a_{y}^{\prime}=a \cos (\gamma+\dot{\zeta} t) \sin (\delta+\dot{\delta} t) \\
& a_{z}^{\prime}=a \sin (\gamma+\dot{\gamma} t)
\end{aligned}
$$

where t is the trajectory time from the begin ning of the control phase. The acceleration is then transformed from the spacecraft system to the inertial system by the matrix A (See Section 4.1. of the Analytic Manual),

$$
a=A \underline{a}^{r}
$$

EP also computes the matrix of partial derivatives

$$
g=\frac{\partial \underline{a}}{\partial \underline{u}}
$$

where \underline{u} is the vector of thrust controls in the current segment, NTPHASE. The controls are throttling level and the two pointing angles
(cone/clock or in/out of plane) which correspond to THRUST (3, NTPHAS), THRUST (4, NTPHAS) and THRUST (5, NTPHAS), respectively.

For the cone/clock system,
$\cdot g^{\prime}=\left[\begin{array}{lll}a_{x}^{\prime} & a \cos \left(C_{L}+\dot{C}_{L} t\right) \cos \left(C_{N}+\dot{c}_{N} t\right) & -a_{y}^{\prime} \\ a_{y}^{\prime} & a \sin \left(C_{L}+\dot{c}_{L} t\right) \cos \left(C_{N}+\dot{C}_{N} t\right) & a_{x}^{\prime} \\ a_{z}^{\prime} & -a \sin \left(C_{L}+\dot{C}_{L} t\right) & 0\end{array}\right]$
and for the orbit plane system

$$
g^{\prime}=\left[\begin{array}{ccc}
a_{x}^{\prime} & -a_{y}^{\prime} & -a \sin (\gamma+\dot{\gamma} t) \cos (\dot{\delta}+\dot{\delta} t) \\
a_{y}^{\prime} & a_{x}^{\prime} & -a \sin (\gamma+\dot{\zeta} t) \sin (\delta+\dot{\delta} I) \\
a_{z}^{\prime} & 0 & a \cos (\gamma+\dot{\gamma} t)
\end{array}\right]
$$

g^{\prime} is then transformed to the inertial reference system by

$$
g=A g^{\prime}
$$

When SIMSEP calls TRAJ, time-varying noise is added to the thrust controls and the noised controls are used to compute \underline{a} and g.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
T	I	0	Trajectory time in seconds.
Cricas	I	c	Current spacecraft mass.
EXHVEL	I	C	Exhaust velocity (c), (Equivalenced to ENGINE (10). Thruster efficiency (7), (Equivalenced to ENGINE (11),
NTPHAS	I	C	Current thrust phase number.
WPGIVER	0	0	Power available (P).
UREL	I	c	Heliocentric position vector.
UREEM	$\underline{I}=$	c	Position: magnitude array,
NøISED	I	c	Flag that causes EP to add noise to the controls.
thrust	I	c	Matrix that contains a set of controls for each segment. (THRUST (i, NTPHAS)) where i is the desired information for the NTPHAS phase.
		.	$\begin{aligned} & i=1, \text { thrust policy } \\ & i=2, \text { phase end time in } \\ & \text { seconds } \end{aligned}$
			$\begin{gathered} i=3, \text { thrust scale factor } \\ i=4, C_{N} \text { or } \delta ; \text { dependent } \\ \text { upon } i=1 \end{gathered}$
			$i=5, \delta_{L}$ or γ; dependent upon $i=1$
-	-		$\begin{gathered} i=6, \dot{C}_{N} \text { or } \dot{\delta} ; \text { dependent } \\ \text { upon } i=1 \end{gathered}$

Variable	Input/ Output	Argument/ Common	Definition
			$\dot{i}=7, \dot{\mathrm{C}}_{\mathrm{L}}$ or $\dot{\mathrm{K}}$; dependent upon $i=1$
GT	0	c	$g=\frac{\partial \underline{a}}{\partial \underline{u}}$
THRACC	0	0	a
UTRUE			Positirn vector relative to the primary body.
VTRUE			Velocity vector relative to the primary body.

Local Variables:

Subroutines Called: PøFER, DN(GISE, UNITV, UXV, MRAB, ZERDM Calling Subroutines: MdTION

Common Blocks: CØNST, EPHEM, TRAJ1, TRAT2, WGRK

3.5.4 Subroutine: EPHEM (N Φ, DJ, R, V)

Purpose:

Method:

To compute the heliocentric position and velocity vectors of a given planet or body. The orbital elements ($a, e, i, \Omega, \tilde{W}, M$) of the desired body are computed from time varying expressions, for example, the semi-major axis

$$
a(t)=a_{0}+a_{1} t_{J}+a_{2} t_{J}^{2}+a_{3} t_{J}^{3}
$$

where a_{0} is the value at the ephem ris epoch 1900, January $0.5, t_{J}$ is the time from the epoch, and a_{1}, a_{2}, a_{3} are constant coefficients. t_{j} is measured in days for all elements except mean anomaly of the planets where t_{j} is measured in units of 10^{-4} days. After the osculating orbital elements are computed, they are transformed into cartesian position and velocity vectors.

A unique case occurs when EPHEM is used to compute the position and velocity vectors of the earth's moon. The position ($\underline{I}_{\mathrm{E}}$) and velocity (\underline{V}_{E}) vectors of the earth are computed and added to the position (I_{M}) and velocity $\left(\mathrm{V}_{\mathrm{M}}\right)$ vectors of the moon relative

```
to earth. The heliocentric position (r) and
velocity (V) are
```

$\underline{E}=E_{E}+I_{M}$

$$
\underline{v}=\underline{v}_{\mathrm{E}}+\underline{v}_{\mathrm{M}}
$$

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
$\mathrm{N} \phi$	I	A	Number of the planet for which \underline{I} and v are desired.
DJ	I	A	Trajectory time in Julian Days from launch.
R	$\not ¢$	A	$\underline{\underline{r}}$
V	\emptyset	A	¥.
SMASS	I	c	Gravitational constant of the sun.
PMȦSS	I.	c	Array of gravitational constants for the planets and the moon.
csax	I	c	Semi-major axis constants (a)
CESS	I	c	Eccentricity constants (e).
CINC	I	c	IncIination constants (i).
cdieg	I	c	Longitude of the Ascending Node constants (Ω).
COMEGT	I	C	Longitude of Periapsis constants (\%).
CMEAN	I	c	Mean Anomaly constants (M).

Variable	Input/ Output	Argument/ Common	Definition
EMN	I	c	Array of constants for the moon.
			1-4 Longitude of the Ascend ing Node constants.
		-	5-8 Longitude of Periapsis constants.
			9-12 Mean Anomaly constants.
			13 Inciination constants.
			14 Eccentricity constants.
			15 Semi-major axis constants.
PI	I	c	3.14159.....(T)
DJI900	I	c	2415020.

Local Variables:
Variable
XPLAN
NP

PI2

A
E
XI
ØIEGA
Sølega
XMEAN
Array used to store $\underline{E}_{\mathrm{E}}$ and $\underline{\mathrm{v}}_{\mathrm{E}}$ 。

- Planet code, initially set equal to Nø.
$\frac{\pi}{2}$.
a.
e.
i.
Ω
$\Omega-\omega=\omega$
M.

Varisble	Definition
GMU	SMASS + PMASS (NP), for the planets. PMASS (3) + PMASS (11), for the moon.
PØLY3	Statement function that performs $\alpha_{i}(t)=a_{i}+t_{J}\left(b_{i}+t_{J}\right.$
	$\left(c_{i}+d_{i} t_{J}\right)$)
P¢LY1	Statement function that performs $o_{i}^{\prime}(t)=a_{i}+b_{i} t_{J}$
D	Days from 1900.
DD	D/10000.
T	D/36525.

Subroutines Called: CAR'LiJ
Calling Subroutines: EgLAR
Common Blocks:
CØNST, EPHEM

444

Logic Flow:

$c-6$
3.5.5 Subroutine: FIND
Entry Points: FINDI, FIND3
Purpose:(1) To compute the location in Blank Common arraysthat will be used by TRAJ and the number of equa-tions to be integrated, (2) to copy integratedparameters into mode accessible locations, and (3)to initialize the F matrix.
Method: None
Remarks: All I $\emptyset \mathrm{CXX}$ variables indicate locations withinBlank Common
Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
LøGS	I	c	Location in Blank Common where TRAJ can start array allocation.
INTEG	I	c	Set $=1$ Propagate State δ Transition Matrix Set $=2$ Fropagate State only Set $=3$ Propagate State and Covariance
IAUGDG	I.	c	Flag array determining the components of the Transition Matrix or Covariance to be propagated.
MEQ	\emptyset	c	Total number of equations to be integrated.
MEQ8	\emptyset	c	MEQ-8
MEQS	\emptyset	C	$\sqrt{\text { MEQ8 }}$
L¢OT	\emptyset	c	Integration stepsize
Locx	\emptyset	c	Trajectory time in seconds
LøCPT	\emptyset	C	Trajectory print time
LØCET	\emptyset	c	Trajectory event time
LQCPR	\emptyset	C	Trajectory time for print
LGCT	\emptyset	c	Trajectory time stored for interpolation

Input/Output:
(Continued)

Vaxiab1e	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
LPCR	\emptyset	c	Position magnitude stored for interpolation
LDCYC	ϕ	c	Dependent variables
LGCDY	\emptyset	c	Differential equations
L6CYT	\emptyset	c	Dependent variables for print and events
L \quad CDT	\emptyset	C	Differential equations for print and events
LбCYP	\emptyset	C	Temporary locations for integration
LGCTE	\emptyset	c	Future modifications
LめGFI	\emptyset	C	F matrix, $\dot{\phi}=\mathrm{F}$ ¢
Lbcm	6	c	Mass
LDCDM	\emptyset	C	Mass variation
LDCTC	\emptyset	c	Transition or Covariancę matrix

Local Variables:

Variables
Definition
ISTATE Array containing size of augmented dynamic parameters
Subroutines Called: CofY, IDENT, MUNPAK, ZERDM
Calling Subroutines: PATH
Common Blocks: (BLANK), DIMENS, TRAJ1, TRAJ2, WøRK

Logic Flow:

3.5.6-A Subroutine: GRAVAR

Purpose: GRAVAR computes the variational matrices, with the exception of the gravity gradient matrix (G11), needed to formulate the matrix differential equations which integrate into the augmented state transition matrix.

Method: The variational matrices are formulated as follows (Reference 1, p 122):

$G 22=p=\frac{\partial \ddot{\underline{r}}_{e}}{\partial \underline{r}_{e}}=-\frac{\mu_{e}}{r_{e}^{5}}\left[3 \underline{r}_{e} \underline{r}_{e}^{T}-\underline{r}_{e}^{2} I\right]$
$G M 11=m=\frac{\partial r_{5}}{\partial \mu_{s}}=-\frac{\underline{r}}{r^{3}}$
GM12 $=\mathrm{d}=\frac{\partial \ddot{\partial}_{\mathrm{e}}}{\partial \mu_{\mathrm{e}}}=-\frac{\underline{\rho} \mathrm{e}}{\rho_{\mathrm{e}}{ }^{3}}$
$G M 21=s=\frac{\partial \dot{\underline{\dot{r}}} \dot{e}}{\partial \mu_{s}}=-\frac{\dot{\underline{t}} \dot{e}}{r_{e}^{3}}$

where:
\underline{I} is the s/c heliocentric position vector
\underline{I}_{e} is the heliocentric ephemeris planet position vector
μ_{e} is the gravitational constant of the ephemeris planet
μ_{s} is the gravitational constant of the sun
$\underline{\rho}_{\mathrm{e}}$ is the position vector of the s/c WRT the ephemeris planet

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
UP	I	c	Heliocentric position vectors of all bodies in the integration
IAUGDC	I	C	Array of flags used to augment the state for SIM or covariance integration
PMASS	I	c	Planetary gravitational constants
SMASS	I	c.	Solar gravitational constant
UREL	I	C	Position vector of s/e relative to all bodies considered in the integration
UREIM	I	c	Magnitudes of UREL
G12	\emptyset	C	k
G22	\emptyset	c	p
GM11	\emptyset	C	m
GM12	\emptyset	c	d
GM21	\emptyset	c	s
GM22	0	c	q
IEP	I	c	Ephemeris body identification
Local Variables:			
Variable		Definition	
UPM ($=$ WORK (10))		Magnitude of position vector of the ephemeris planet.	
SMUK (= WORK (4))		Gravitational constant of ephemeris planet	
Subroutines Called:		veguag	
Calling Subroutines:		DPHI, PDOT	
Common Blacks:		EPHEM, TRAJ1, TRAJ 2 , WORK	

Logic Flow:

3.5.6-B Subroutine: GRAVFg (UA)

Purpose:

Method:

The subroutine GRAVFG hes two principal purposes. The first is the calculation of differential accelerations acting on the s / c due to gravitational bodies being considered in the analysis. The second purpose is the computation of the gravity gradient matrix, G!l, which is used in the algorithm determining the step size for the trajectory integrator (PATH). Gll is used also with the other variational matrices, G12, G22, GM12, GM12, GM21, and GM22 (all computed in GRAVAR) to formulate the matrix differential equations which integrate into the augmented state transition matrix. In addition, GRAVF performs many auxilliary calculations which determine the relative geometrics among all planetary bodies and the s/c. These geometricl quantities are stored in common blocks accessible to other routines where they may be used without further computational expense.

TRAJ uses Encke's formulation of the equations of motion for propegating trajectories, (Section 4.1, Reference 1). The differential acceleration computed by GRAVF is

$$
\begin{aligned}
\delta \underline{\underline{r}}= & -\frac{\mu}{r_{c}^{3}}[f(\alpha) \cdot \underline{\underline{x}}+\delta \underline{\underline{r}}]-\sum_{i=1}^{N} \frac{\mu}{\rho_{i}^{3}} . \\
& {\left[\underline{\underline{r}}+f\left(\alpha_{i}\right)^{\cdot} \underline{r}_{i}\right] }
\end{aligned}
$$

where

$$
\begin{aligned}
& \underline{I}=\underline{r}_{c}+\delta \underline{x} \\
& \dot{\underline{x}}=\dot{\underline{r}}_{c}+\delta \dot{\underline{r}} \\
& f(\alpha)=\frac{\alpha\left(3+3 \alpha+\alpha^{2}\right)}{1+(1+\alpha)^{3 / 2}} \\
& \alpha=\frac{(\delta \underline{\underline{r}}-2 \underline{r}) \cdot \delta_{\underline{\underline{t}}}}{r^{2}} \\
& \underline{P}_{i}=\underline{r}+\underline{r}_{p}-\underline{r}_{i} \\
& f\left(\alpha_{i}\right)=\alpha_{i}\left[\frac{3+3 \alpha_{i}+\alpha_{i}^{2}}{1+(1+)^{3 / 2}}\right] \\
& \alpha_{i}=\frac{r}{\rho_{i}}\left[\frac{r}{\rho_{i}}-\frac{2 r \cdot \rho_{i}}{r \rho_{i}}\right]
\end{aligned}
$$

r_{c} - reference conic position vector of the
P_{i} - position vector of the spacecraft relative
I - heliocentric position vector of the spacer craft.
x_{i} - heliocentric position vector of the $i \underline{\text { th }}$
N - number of bodies included in the integration other than the sun.
r_{p} - heliocentric position vector of the primary
μ - gravitational constant.

GRAVF also computes the gravity gradient matrix, G11, which is used for state transition matrix propagation and as a determinant in the integrator step size logic. (Reference 1, p 122) $G 11=f=\left(\sum_{i=1}^{N} f_{i}\right)+f_{p}$
$=\left(\sum_{i=1}^{N} \frac{\partial \underline{\rho}_{i}}{\partial \underline{\rho}_{i}}\right)+\frac{\partial \ddot{\underline{\rho}}_{p}}{\partial \underline{\rho}_{p}}$
$=\left(\sum_{i=1}^{N} \frac{\mu_{i}}{\rho_{i}^{5}}\left[\begin{array}{ccc}3 \rho_{i} \rho_{i}{ }^{T} & -\rho_{i}{ }^{2} & I\end{array}\right]\right)$
$+\frac{\mu_{\mathrm{p}}}{\rho_{\mathrm{p}}^{3}}\left[{ }_{-\mathrm{p}}^{3 \rho_{\mathrm{p}}} \rho_{-\mathrm{p}}^{\mathrm{T}}-\operatorname{\rho }^{2} \mathrm{I}\right]$
The subscript i refers to the $i^{\text {th }}$ perturbing body and the subscript p refers to the primary body. $\underline{\rho}$ indicates body relative position vectors while $g R$ is the gravitational constant.

Input/Output:

Gariable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \end{aligned}$	Definition
UA	I	A	The first three elements contain $\delta \underline{\underline{r}}$.
			The second three elements contain $\& \dot{\text { ㅌ }}$.
UENC	I	c	\underline{I}_{c}
UENCM	I	C	r_{c}
VENC	I	c	$\dot{\underline{E}}_{\mathrm{c}}$
UTRUE	0	C	$\underline{\underline{r}}$
UTRUEM	0	c	r
VTRUE	0	C	$\underline{\underline{\underline{x}}}$
vtruem	0	C	$\dot{\mathbf{r}}$
APERT	0	C	Array that contains the perturbing acceleration vector for each body included in the integration. APERT (I, IF RI) $I=1.3$ contains the vector sum of these perturbations.
SMASS	I	C	Solar gravitational constant.
PMASS	I	C	Array or planetary gravitational constants.
UREL	0	C	Array containing each $\underline{-i}_{\boldsymbol{i}}$.
URELM	0	C	Array containing each P_{i}.
VREL	0	C	Array containing each \underline{P}^{1}.
VRELM	0	C	Array containing each P_{i}.
UP	I	C	Array containing each r_{1}.
VP	I	c	Array containing each $\dot{\underline{x}}_{i}$.

		456-A	
			GRAVFG-5
Variable	Input/ Output	$\begin{gathered} \text { Argument// } \\ \text { Common } \end{gathered}$	Definition
NB	I	c	Array contairing planet codes of each body in the integration.
APRTM	0	C	$\stackrel{\square}{\underline{r}}$
ATqT	0	C	$\delta \underline{\underline{r}}$
G11	0	C	f
MPLAN	I	c	$\mathrm{N}+1$
IPRI	I	c	Flag used to locate information conceming the primary body in the UP, UREL, UREIM, VP, VREL, and VRELM arrays.
Local Var	les:		
Variab			Definition
	W¢RK(I)	$I=1,3)$	$-\frac{\mu}{r_{c}{ }^{3}}[f(\alpha) \underline{r}+\delta \underline{x}]$
	$\begin{gathered} \text { UJ, IPRI } \\ J=1,3 \end{gathered}$		$-\sum_{i-1}^{N} \frac{\mu_{i}}{\rho_{i}^{3}}\left[\underline{r}+\mathrm{f}\left(\mathrm{C}_{i}\right) \underline{r}_{i}\right]$
$F($			Statement function equivalent to $\mathrm{f}(\alpha)$ and $\mathrm{f}\left(a_{\mathrm{i}}\right)$.
	WORK(21)		α
Subroutines C	d:	Ang	
Calling Subrou	es:	16N	.
Common Blocks	,	M, TRAJI,	TRAJ 2, Wø̈RK

3.5.7 Subroutine: LøADFM (DS, DP, INDEX)

Purpose:

Method:

Remarks:

To compute the F matrix and the matrix of derivatives $\dot{\Phi}=F \bar{C}$ or $\dot{P}=F P+P F^{T}+Q$ for transition matrix or covariance, respectively. (Sections 4.5 and 4.6, Reference 1). The non-zero components of F are stored in appropriate sub-matrices, according to the degree the state is augmented.

Case 1: State transition matrix.
Given the augnented'state vector

where
r - spacecreft position vector.
를 - spacecraft velocity vectors
iu - constant spacecraft controls.
Ie - position vector of the spacecraft ralative to the ephemeris body.
\dot{I}_{e} - velocity vector of the spacecraft relative to the ephemeris body,

The linearized equations of motion for the augmented state are

$$
\delta \underline{x}=F \delta \underline{x}
$$

where

$$
F=\frac{\partial \dot{x}}{\partial \underline{x}}
$$

$F=\left[\begin{array}{lllllll}0 & I & 0 & 0 & 0 & 0 & 0 \\ \mathcal{I} & 0 & g & k & 0 & d & m \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & p & 0 & q & s \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
where I is a 3×3 identity matrix and

$$
\begin{aligned}
& f=\frac{\partial \ddot{\underline{E}}}{\partial \underline{\underline{x}}} \\
& m=\frac{\partial \bar{x}}{\partial \mu_{s}} \\
& g=\frac{\partial \underline{\underline{\underline{r}}}}{\partial \underline{\underline{u}}} \\
& p=\frac{\partial \ddot{\underline{E}}_{e}}{\partial \underline{E}_{e}} \\
& k=\frac{\partial \underline{\underline{I}}}{\partial \underline{I}_{e}} \\
& q=\frac{\partial \ddot{\underline{\Sigma}}_{e}}{\partial \mu_{e}} \\
& \mathrm{~d}=\frac{\partial \ddot{\underline{\Sigma}}}{\partial \mu_{\mathrm{e}}} \\
& s=\frac{\partial \ddot{\underline{r}}_{e}}{\partial \mu_{s}}
\end{aligned}
$$

Gase 2: Covariance matrix.
Given the augnented state vector

$$
\underline{x}=\left[\begin{array}{l}
\underline{m} \\
\underline{I} \\
\underline{\underline{x}} \\
\underline{\omega} \\
\underline{r}_{1} \\
\underline{r}_{2} \\
\underline{r}_{3}
\end{array}\right]
$$

where
$\underline{\omega}$ - time varying thrust parameters.
I_{i} - tracking station position vectors.
and
$\mathbf{F}=\left[\begin{array}{lllllll}0 & I & 0 & 0 & 0 & 0 & 0 \\ \mathbf{f} & 0 & g & \mathfrak{n} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{h} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
where I is a $3 x 3$ identity matrix,

$$
f=\frac{\partial \underline{\underline{E}}}{\partial \underline{x}}
$$

$$
\begin{aligned}
& \mathrm{g}=\frac{\partial \ddot{\underline{I}}}{\partial \underline{u}} \\
& \mathrm{n}=[\mathrm{g}: \mathrm{g}]
\end{aligned}
$$

and h is the matrix of process noise correlation times

$$
h=\left[\begin{array}{cccc}
\frac{-1}{\tau_{1}} & 0 & \cdots & 0 \\
0 & \frac{-1}{\tau_{2}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots- & \frac{-1}{\tau_{6}}
\end{array}\right]
$$

The matrix Q is the process noise,
$Q=\left[\begin{array}{lllllll}0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & & 0 & 0 & 0 \\ 0 & 0 & 0 & & 0 \\ 0 & 0 & 0 & -2 \cdot h \cdot E\left[\delta i \delta \underline{a}^{\boldsymbol{T}}\right] & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
The dimensions of $\underline{\Phi}, \dot{\dot{\Phi}}, P, \dot{P}, F$ and Q are determined by the highest degree of augmentation of the state vector. The flag array that controls the augmenttation is the IAUGDC array.

Variable	Input/ Output	Argument/ Common	Definition
INDEX	J	A	$\begin{aligned} & =1, \text { Load the } F \text { matrix } \\ & =2, \text { Load the } F \text { matrix } \\ & =3, \text { and compute } \phi . \\ & =4, \text { Use current } F, \text { compute } \dot{P} \text {. } \\ & =4, \end{aligned}$
DS	I	A	```=P for Govariance propagation. = $ for Transition Matrix propagation```
DP	0	A	$=\dot{p}$ for Covariance propagation, $\mathbf{~} \mathbf{~}$ for transition matrix
F(Lfocms)	I	c	Location in Blank Common to use for F matrix storage.
IAUEPS	I	c	Array of flags where each element determines what is to be loaded in the F matrix.
G11	I	C	f
GT	I	c	g
G12	I	c	k
G22	I	c	p
GMI2	I:	C	d
GM22	I	6	9
GII 1	I	c	m
GM21	I	c	5
graul	I	c	: Upper Ieft 3×3 of. h .
GTAU2	I	c	Lower right 3×3 of h
QNOISE	I	c	Q = process noise
MEQS	I	6	Dimensions of 勇, . 䖭, P, \dot{P}, and F .

Subroutines Called: MAAB, MNNPAK, SCALE, SYMTRZ, ZER σM
Calling subroutines: DPHI, PDØT, TRAJ
Common Blocks: (BLANK), TRAJ1, TRAJ2, WøRK
Logic Flon:

3.5.8 Function Routine: LøCATE (INDEX)

Purpose:

Method:
Input/Output:

To locate the target body, ephemeris body, launch body or primary body in the NB array. None

Variable	Input/ Output	Argument/ Common	Definition
INDEX	I	A	$\begin{aligned} \text { SET } & =1 \text { Locate target body } \\ & =2 \text { Locate ephemeris body } \\ & =3 \text { Locate launch body } \\ & =4 \text { Locate primary body } \end{aligned}$
NTP	I	c	Number of the target body
NEP	I	C	Number of the ephemeris body
NLP	I	C	Number of the launch body
NPRI	I	c	Number of the primary body

Local Variables: None

Subroutines Called: None
Galling Subroutines: PATH, GRAVE \varnothing
Gommon Blocks:
TRAJ2
Logic Flow:

3.5.9 Subroutine:	M $¢ \mathrm{TI} \phi \mathrm{N}$ ($\mathrm{T}, \mathrm{DS}, \mathrm{DSD}, \mathrm{M}, \mathrm{N}, \mathrm{L} \phi \mathrm{C}$)		
Purpose:	To compute the S / C accelerations and to rectify the reference conic.		
Method:	Encke's formulation of the equations of motion.		
Input/Output:			
Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \end{aligned}$	Definition
T	I	A	Trajectory time
DS	I	A	Dependent variable
DSD	g	A	Differential equations
M	I	A	Number of rows in DS and DSD
N	I	A	Number of columns in DS and DSD
L ϕ C	I	A	Routing flag
EP\%CH	I	c	Julian Date of Launch
TM	I	c	Gonversion from seconds to days
EXHVEL	I	c	Exhaust velocity
ATø	I	C	Differential acceleration plus perturbing gravitational accelerations
THRACC	I	c	Thrust accelerations
RPȦCC	I	G	Radiation Pressure acceleration

Local Variables: None

Galling Subroutines: NUMIN, DPHI, PD 6 T
Gommon Blocks: C C

Logic Flow:

3.5.10 Subroutine:	NEWTØN (XVALUE, YVALUE, $\mathrm{X}, \mathrm{Y}, \mathrm{INDEX}$)		
Purpose:	To fit a third Order Polynomial through 4 data points for either interpolation or finding the minimum of the polynomial.		
Method:	Newton's third Order Divided Difference Interpolation Polynomial. (See Appendix 3, Reference 1)		
Input/Output:			
Variable	Input/ Output	Argument/ Common	Definition
XVALUE	I	A	Table of independent values
yVALUE	I	A	Table of dependent values
X	I/O	A	For interpolation, the value of X for which Y is desired. (Input) For a minimum, the value of X at the minimum. (Output)
Y	I/O	A	For interpolation, the interpolated value of Y. (Output) For a minimum, the value of Y at the minimum. (Output)
INDEX	I	A	$\begin{aligned} & \text { Set }=1 \text {, Find the minimum } \\ & \text { Set }=2 \text {, Interpolate } \end{aligned}$

Local Variables:

Variable
DDX
A, B, C, D
Subroutines Called:
None
Calling Subroutines: PATH
Common Blocks:
None


```
3.5.11 Subroutine: NUMIN (M, N, X, H, YC, YP, F, DERIV)
Entey Points: SETUP, RUNG2, RUNC4
Purpose: To integrate an MxN matrix of first order
    differential equations.
Method: 4th Order Runge-Kutta formula (RJNG4) and 2nd Order (RONG2)
Input/Output:
```

Variable	I/0	Argument/ Common	Definition
M	I	A	Number of rows
N	I	A	Number of columns
X	I/ $¢$	A	Independent variable
H	I	A	Integration step-size
YC	I/6	A	Matrix of dependent variables
YP	\emptyset	A	Temporary storage matrix
F	\emptyset	A	4 - Temporary storage vatrices
DERIV	I	A	Name of the subroutine contaịning the differential equations.

 diferential equations.

Local Variables:

Variable Definition
ALPHA Array of 4 integration constants
$\left(0, \frac{1}{2}, \frac{1}{2}, 1\right)$ or $(0,1,0,0)$
BETA Array of 4 integration constants
$\left(0, \frac{1}{2}, \frac{1}{2}, 1\right)$ or $(0,1,0,0)$
CHI
Array of 4 integration constants
$(1 / 6,2 / 6,2 / 6,1 / 6)$ or $\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$
LめC
Output flag to DERIV
Subroutines Celled: DERIV (defined by argument, e.g., DPHI, MøTIWN, PDØT)
Calling Subroutine: PATH
Common Blocks: None

Entry Point:

Purpose:

Remarks:
FLIGHT
PATH initializes all trajectory routines, while FLIGHT controls trajectory propagation. Based upon input flags, PATH determines how FIIGHT will function as well as all the other trajectory routines. FLIGHT tests for and ewecutes trajectory rectification, primary body changes, thrust control changes, trajectory termination conditions, trajectory print and trajectory events.

The most significant feature of PATH is the use of blank common as a working area for the Fourth Order Runge-Kutta numerical integration routine (Appendix 2, Reference 1), applied to a matrix of first order differential equations.

$$
Y_{k+1}=Y_{k}+\frac{h_{k}}{6}\left(F_{1}+2 \cdot F_{2}+2 \cdot F_{3}+F_{4}\right)
$$

where

$$
\begin{aligned}
F_{1} & =F^{\prime}\left(x_{k}, Y_{k}\right) \\
\cdots & \\
F_{2} & =F^{\prime}\left(x_{k}+\frac{h_{k}}{2}, Y_{k}+\frac{H_{k}}{2} \cdot F_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{3}=F^{\prime}\left(x_{k}+\frac{h_{k}}{2}, Y_{k}+\frac{h_{k}}{2} \cdot F_{2}\right) \\
& F_{4}=F^{\prime}\left(x_{k}+h_{k}, Y_{k}+h_{k} \cdot F_{3}\right)
\end{aligned}
$$

The values of Y and F are stored in a blank common array (DSC) and their order depends upon whether some or no events are processed within the normal integration step (h_{k}).

Case 1: If no events occur between X_{k} and $X_{k+1}=X_{k}+h_{k}$, then a nomal integzation step will be taken. The values of Y_{k} and F_{1} (X_{k}, Y_{k}) are used for the Runge-Kutta integration and at the completion of the step the DSC array appears as

$$
D S C=Y_{k+1}, F_{1}\left(X_{k}+h_{k}, Y_{k+1}\right),
$$

$$
F_{2}, F_{3}, F_{4}, \longrightarrow, Y_{k+1}
$$

where the first two entries (Y and F_{1}) are at the updated X_{k+1} point, the next three entries contain values of F in the h_{k} interval, there are two unused storage arrays, and the last entry is a running value of Y (which becomes Y_{k+I} at the end of the step). The next
integration step ($\mathrm{h}_{\mathrm{k}+1}$) can now be taken and starts with Y_{k+1}, F_{1}.

Gase 2: If an event or print has been specified by either the calling mode or TRAJ itself, and it occurs between X_{k} and X_{k+1}, then a short integration step (${ }^{\prime} \mathrm{h}$) is taken to the event. The resultant blank common storage at the event $\left(X_{k}+H_{h}\right)$ is then

$$
\text { DSC }=Y_{k}, F_{1}, * Y_{k+1}, * F_{1}\left(x_{k}+* h_{k}, * Y_{k+1}\right),
$$

$$
\star_{2},{ }^{* F_{3}},{ }^{*} \mathrm{~F}_{4}, * \mathrm{Y}_{\mathrm{k}+\mathrm{I}}
$$

where asterisks (*) refer to values for the event integration step. The first two entries are stored values of Y and F at X_{k}, to preserve values such that a nomal intrgration step can be taken after the event has been processeri. The next six entries are used for the event integration step. If no more events occur before $X_{k} \div h_{k}$, then normal integration resumes with the stored values Y_{k} and F_{1}, and the results are shown in Case 1. If more events occur before $X_{k}+h_{k}$, then the process of Case 2 is repeated using ${ }_{*} Y_{k+I}$ and ${ }^{2} F_{I}$ until all events have been processed. Since TRAJ can integrate the
transition matrix or covariance in addition to the state deviation from the reference conic, an additional array is needed. This array is used to store the partial deviatives contained in the F matrix (Appendix 4, Reference 1). The Iocations for the F matrix begin after the last word of Y_{k} (or $\therefore Y_{k}$). The amount of blank common used by TRAJ varies with the number of equations to be integrated. For the state only case,

$$
Y=\left[\begin{array}{r}
\delta \underline{E} \\
\delta \underline{y} \\
m \\
\delta m
\end{array}\right]
$$

where $\delta_{\underline{E}}$ and $\delta_{\underline{v}}$ are deviations from the conic state, m is the spacecraft mass and δm is the mass variation. When the transition matrix. (\$) or the covariance (P) are to be integrated

$$
\Psi=\left[\begin{array}{l}
\delta_{\underline{I}} \\
\delta_{\Psi} \\
m \\
\delta_{\mathrm{m}} \\
\Phi
\end{array}\right]
$$

or

$$
\mathrm{Y}=\left[\begin{array}{c}
\delta \underline{Y} \\
\delta \underline{\mathrm{I}} \\
\mathrm{~m} \\
\delta \mathrm{~m} \\
\mathrm{p}
\end{array}\right]
$$

For state only integration, Y is an 8×1 matrix. When the transition matrix or covariance is to be integrated, the dimension of X varies with $\bar{\Phi}$ and P. The dimensions of $\bar{\Phi}$ and P are those for the highest degree of augmentation. The subroutine FIND determines the number of equations to be integrated, the dimensions of Φ or P and the number of locations in blank common needed for numerical integration.

Other information stored in blank common are:
\dot{X}_{k} - Current trajectory integration time (t) ;
h - Integration stepsize;
t_{p} - Integration event time;
t_{e} - Next mode event time;
$t_{P R}$ - Next mode print time;
t_{i} - Four stored times used for interpolation;
r_{i} - Four stored position magnitudes corresponding to the $t_{i}{ }^{\prime} s$, also used for interpolation;

Input/Output:

Variable	Input/ Output	Argument/ Common

INTEG I G Flag that determines the equations to be integrated.

	Input/	Argument/
Variable	Output	Common

Definition

Variable	Input/ Output	Argument/ Common
NPHASE	I	C

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \end{aligned}$	Definition
JTEUE	I/0	C	Position vector relative to the primary body.
VTRUE	I/O	c	Velocity vector relative to the primary body.
ACC	I	C	Trajectory Accuracy level.
FRCA	I	c	Percentage of the semimajor axis of target body to begin closest approach detection.
SCMVAR	I	c	Initial mass variation.
SCMASS	I	c	Initial s/C mass.
THRUST $(2, \text { NTPHAS })$	$)^{I}$	c	End of the current control phase.
VTRUEM	I	c	Magnitude of VIRUE.
UTRUEM	I	c	Magnitude of UTRUE.
grrint	I	c	Time increment of Print (seconds).
911	I	c	The gravity gradient.
TVUR	I	c	Trajectory stopping time in seconds.
TEvist	I	0	Event, time in seconds,
TCP	0	c	Total integration time.
TREF	I	C	Initial Trajectory Starting time in seconds.
TSTøP	0	c	Time that a stopping criteria has been reached in days.
NRECT	I	c	Wumber of Rectifications.
ALPHA	I	c	Inverse of semi-major Axis.
BIG	I	G	10^{20}

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
GTAUI	I	0	Thrust noise correlation times.
GTAU2	I	c	Thrust noise correlation times.
NTP	I	c	Number of the target body.
ITP	I	0	Location of target body in the NB array.
QNDISE	\pm	c	Process noise matrix.
RST\%P	I	C	The stopping radius relative to the target body.
SPHERE	I	C	Array containing all the sphere's of influence.
TSøI	0	c	Time at the sphere of influence of the target body.
TM	I	c	86400 seconds.
TRCA	\emptyset	C	Time at the closest approach to the target body.
UREL	I	c	Relative position vectors of the spacecraft.
VREL	I	C	Relative velocity vectors of the spacecraft.
DSC	I/0	G	The blank common array where the following flags (LøGH to LøCX) are used to locate data.
工фен	I	c	Integration step-size (h).
I¢GM	I	C	Spacecraft mass (*m).
L¢GFI	I	6	Fmatrix (F).
LøCPR	I	c	Trajectory integration print time ($t_{P R}$).

Variable	Input/ Output	Argument/ Common	Definition
L¢CPT	I	C	Trajectory print time (t_{p}).
L¢CDM	I	c	Mass variation ($\delta \mathrm{m}$) .
LøCDT	I	C	Differential equations for events and print $\left({ }^{\left(F_{i}\right.}\right)$.
工¢CDY	I	c	Differential equations for the reference (F_{i}).
LøCET	I	c	Event integration time (t_{e}).
工 $\downarrow \mathrm{CF}$ ¢	I	c	Location of the input covariance.
İCR	I	c	Location of the stored position magnitudes (r_{i}).
LфCT	I	c	Location of the stored position trajectory times (t_{i}).
LфCTC	I	c	Location of the output transition matrix or covariance ($\%$ P or * $\%$.
LOCYC	I	c	Integrated equations for the reference ($\mathrm{Y}_{\mathrm{k}+1}$).
L¢CYP	I	C	Integrated equations working array (Y_{k}).
L¢CET	I	c	Integrated equations for events and print ($\% \mathrm{Y}_{\mathrm{k}+1}$).
106Cx	I	c	Trajectory time (X_{k}).
NEQ	I	0	Total number of equations to be integrated.
MEQ8	I	G	MEQ-8.
MEQS	I	G	$\sqrt{\text { LEQ8 }}$

Requested	ISTGP	Actual	KUTT 6 FE
Final Time	1	Final Time	1
Closest Approach	2	Final Time	2
Sphere of Influence	3	Final Time	3
Stopping Radius	4	Final Time	4
Closest Approach	2	Closest Approach	5
Sphere of Influence	3	Glosest Approach	6
Sphere of Influence	3	Sphere of Influence	7
Stopping Radius	- 4.	Stopping Radius	8
Event Time	NA	Event Time	9

Local Variables:

Variable
HEVNT
HPRNTI
IRSTP
.Event integration step-size.
Print integration step-size.
Indicates termination for determining KUTVFF.

The following variables are used in assigned O TD statements and are in the TRAJI common block，When these statements are used in FLIGHT， there are implicit tests made．The majority of the tests are made in PATH．ITRAJ，IPHASO，IPHASI，IPHAS2，JPHAS1，JPHAS2，JPHAS3，JTEST，
 IEHASE，IPRT，IEVENT．

Subroutines Galled：CøFY，DPHI，FIND，FTND1，FIND3，IDENT，LøCATE， MOTIDN，NEWTゆN，PDゆT，PRINTT，RUNG2，RUNG4， SETUP，UD $\emptyset T V$, VECMAG，ZERめM

Galling Subroutines：TRAJ

Common Blocks：（BIANK），CONST，EPHEM，TTMF，TRAJ1，TRAJ？，
WGRK
Logic Fiow：
The functional flow of PATH and FLIGFI is given on the next two pages，followed by a more detailed logic flow．

Summary Logic F1ow:


```
3.5.13 Subroutine: PDOT (T, DS, DP, M,N, L|C)
Purpose: To compute the time derivative of the state
    covariance (P)
    P}=FP+P\mp@subsup{F}{}{T}+
Method: \(\dot{P}=F P+P F^{T}+Q\)
```


Input/Output:

Vartable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
T	I	A	Trajectory time
DS	I	A	Independent variables
DP	\emptyset	A	Differential equations
M	I	A	Number of rows in DS and DP
N	I	A	Number of columns in DS and DP
L 40	I	A	Routing flag
INTEG	I	C	Set $=1$ Propagate the state and Transition Matrix Set $=2$ Propagate the state Set $=3$ Propagate the state and state covariance
IAUGDC	I	c	Flag indicating the augmentation of the STM and covariance matrix
IRECT	I	c	Index used to check whether the current call to PD / T is for rectification purposes only (i.e. $\operatorname{IRECT}=1$)

Local Variables

Variable
IAJGS

Definition
Index used to check whether the F matrix needs to be augmented

Galling Subroutines:
NIMIN
Subroutines Called:

Common Blocks:
TRAJ2

Logic Flow:

3.5.14 Function: FeWER (R, TT)

Purpose:

Method:

PØWER computes the power available to the thrusters of the low thrust spacecraft for solar electric and nuclear propulsion. The power is computed from the following expression.

- $A_{i}-\underset{\text { array characteristics }}{ } \quad$ (Expiring solar
x - Heliocentric position magnitude of the S/C
$P_{\text {I }} \quad$ - Power decay constant
t - Time from epoch
- $t_{\text {DI }}$-.Time delay
${ }^{P_{H K}}$-Housekeeping power

$$
\begin{aligned}
& \mathrm{P}_{\text {max }} \text { - Maximum allowable solar electric } \\
& \text { pover } \\
& \mathrm{I}_{\text {min }}-\begin{array}{l}
\text { Heliocentric distance for which } F \\
\text { is less than } \mathrm{P}_{\text {max }}
\end{array}
\end{aligned}
$$

Input/Output:

Variable	Tnput Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
R	I	A	Heiiocentric distance in A.U. (r)
TT	I	A	Trajectory time in seconds (t)
PdVERO	I	0	$\begin{aligned} & \text { Po Equivalenced to } \\ & \text { ENGINE (I)) } \end{aligned}$
PHK	I	c	$P_{\text {HK }} \begin{gathered}\text { (Equivalenced to } \\ \text { ENGINE(2)) }\end{gathered}$
PMAX	I	c	$\mathrm{P}_{\max } \underset{\text { ENGINE (3) }}{\text { Equived to }}$
$\dot{\text { A }}$	I	c	$A_{\bar{I}}$ (Equivalenced to ENGINE (4))
A2	I	c	A_{2}. (Equivalenced to ENGINE (5))
A3	I	c	$\mathrm{A}_{3} \underset{\text { ENGINE (6) }}{\text { (Equivalenced to }}$
A4	I	c	$\mathrm{A}_{4} \underset{\text { EqGINE (7) })}{\text { (Equivalenced to }}$
A5	I	c	$A_{5} \underset{\substack{\text { EqGivalenced } \\ \text { ENE (8) }}}{\text { (8) }}$
RMIN	I	c	$r_{\text {min }} \begin{aligned} & \text { Equivalenced to } \\ & \text { ENGNE }(9)) \end{aligned}$
PL \quad SS	I	c	$\mathrm{P}_{\mathrm{I}} \quad \begin{aligned} & \text { Equivalenced to } \\ & \text { ENGINE (12)) }\end{aligned}$
TDE	I	c	$t_{\text {DL }}$ (Equivalenced to ENGINE (13j)

Logic Flow:

3.5.15 Subroutine: PRINIT (IT, MASS)

Purpose: To print trajectory and spacecraft related information.

Input/Output:

Varlable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
NTPHAS	I	C	Number of the current thrust phase.
NPRI	I	c	Namber of the current primary body.
NEP	I	C	Number of the epnemeris body.
NTP	I	c	Number of the target body.
PLANET	I	c	Array containing the names of the planets.
MASS	I	A	Current spacecraft mass.
WPDWER	I	c	Current power available to the spacecraft for thrust.
TT	I	A	Trajectory time in days.
TDUR	I	c	Trajectory termination time in seconds。
EPøCH	I	c	Trajectory initial time (Julian days).
TM	1	c	86400. seconds.
APRTM	I	0	Acceleration vector due to the gravity of the primary body.
THRACC	I	G	Acceleration vector due to thrust.
RPACS	\cdots	$\overline{\mathrm{c}}$	Acceletation vector due to radiation pressure.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common: } \\ \hline \end{gathered}$	Definition
IPFLAG	I	c	Flag that indicates control phase change.
JPFLAG	I	C	Array containing only the names of the planets included in the integration.
APERT	I	c	Matrix containing the acceleration vectors due to the gravity of the non-primary bodies.
UREL	I	C	Matrix of spacecraft position vectors relative to the bodies considered in the integration.
URELM	I	c	Array containing magnitudes of the position vectors.
VREL	I	c	Matrix of spacecraft velocity vectors relative to the bodies considered in the integration.
VRELM	I	c	Array containing magnitudes of the velocity vectors.
MPIAN	\dot{I}	c	Total number of bodies included in the integration.
THRUST	I	0	Array containing the thrust control. To locate information for the current control phase NIPHAS is used as fallows: THRUST ($\hat{1}$, NTPHAS) where i is the desired infor mation.

Local Variables:

Variable
WøRK
PHASE

Definition
Temporary storage array.
Array that contains headings for control and primary body changes.

Subroutines Called: None

Galline Subroutines: PATH, MEASPR
Common Blocks: C 6 NST, EPHEM, TTME, TRAJ1, TRAJ2

Logic Flow:

3.5.16 Subroutine: RPRESS (CMASS)

Purpose: RPRESS computes the effective acceleration acting on a spacecraft due to radiation pressure.

The effective acceleration is computed from the following expression.

$$
\mathrm{a}_{\mathrm{R}}=\frac{\left(1.024 \times 10^{8}\right) \mathrm{C}_{\mathrm{r}} \mathrm{~A}}{\mathrm{mr} \mathrm{r}^{2}} \cdot \frac{\underline{r}}{\underline{I}}
$$

I - heliocentric position vector of the spacecraft.
m - spacecraft mass.
$C_{r} A$ - coefficient of reflectivity multiplied by the effective area of the solar array.

In the event that $r \leq r_{m i n}$, where $r_{m i n}$ is the distance at which the solar electric power is a maximum, the effective cross sectional area of the solar array is changed by tilting (or folding) them. Therefore, the effective accelaeration is reduced,

$$
a_{R}=a_{R} \cdot \cos \alpha
$$

where α is the off-sun tilt angle.
Input/Output:

Vaxiable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
CRA	I	c	C_{r} A (Equivalenced to ENGINE (15)).
CTILT	I	c	$\cos \alpha$ (Equivalenced to ENGINE (16)).
RMIN	I	C	$r_{\text {min }}$ (Equivalenced to ENGINE(9)).
URELM (1)	I	c	Heliocentric position of the spacecraft.
$\operatorname{UREL}(1,1)$) I	c	Heliocentric position vector of the spacecraft.
RPACG	\emptyset	c	$\stackrel{a}{4}^{\text {r }}$
Local Variables:			
Variable			Definition
RPA		$1 a_{5} 1$	
Subroutines Cailed:	: None		
Galling Subroutine:	- M		
Common Blocks:	CøNST, TRAJI		

3.5.17 Subroutine:	S¢LAR (JDATE)		
Purpose:	To compute the position and velocity of the planets.		
Method:	None		
Input/Output:			
Variables	Input Output	Argument/ Common	Definition
NB	I	C	Array of bodies for which the position and velocity are to be computed.
JDAtE	I	A	Julian Date at which the position and velocity are to be computed
UP	g	c	Array of position vectors
VP	\emptyset	c	Array of velocity vectors

Local Variables: None
Subroutines Called: EPHEM
Calling Subroutine: M
Common B1ocks: TRAJI, TRAJ2
Logic Flow:

3.6 Utility Routines

A number of subroutines and function routines are used in each mode that are (1) standard to many scientific computer programs, or (2) common to more than one MAPSEP mode. These utility routines are described in this Section. The first group (3.6.1) contain relatively minor and straightforward routines that perform matrix manipulation and vector operations. The second group (3.6.2 through 3.6.11) describe more complex utility routines, all of which apply standard mathematical techniques to compute specific parameters required by MÁPSEP.

3.6.1 Minor Subroutines

The following utility routines are straightforward in usage and internal computation. Their description consists of name (and any entry points), input and output arguments, and function. No common blocks are contained in these routines and all are subroutines except UD $\emptyset \mathrm{TV}$ and VECMAG which are function routines.

Subroutine (Entry Points)	Arguments	Function
ADD	$\begin{aligned} & A, B, C, \\ & M, N \end{aligned}$	$A D D$ performs the matrix operation $\left.[C]_{\mathrm{MXN}}=[A]_{\mathrm{MXN}^{+}}{ }^{[B}\right]_{\mathrm{MXN}}$ matrices.
CGFY (ICØPY)	A, B, M, N	C0PY copies a real matrix A into matrix B, where A and B are MxN . IC \varnothing PY assumes A and B are integer matrices.
CSEFT	$\mathrm{CT}_{2} \mathrm{C}, \mathrm{M}, \mathrm{N}$	Copies the transpose of the matrix CT into matrix C, where CT is NxM and G is MxN .
EIGENV	$\begin{aligned} & A, N, F \emptyset D, \\ & W 2, V \end{aligned}$	EIGENV computes the eigenvalues and eigenvectors of a $N \mathrm{XN}$ matrix A , using Jocobi's method of successive rotations. $F D D$ is the tolerance for the off diagonal elements of A. The eigenvalues and eigenvectors are returned in the vector arrays W 2 and V, respectively.
IDENT	C, N	Greates an $\mathrm{N} \times \mathrm{N}$ identity matrix C .
InvsqM	$\begin{aligned} & A, N, X B, \\ & \text { RTEST, IX, } \\ & \text { IY } \end{aligned}$	INVSQM inverts an NXN matrix A by the Gauss-Jordan elimination method. The results are returned in A. INVSQM requires four Nxl vectors, $X B$, RTEST, $I X$ and $I Y$, for temporary storage (to keep core requirements to a minimum).
JøBTEE	None	JøBTLE is used by GoDSEP to eject a page and to print out the job title, a row of asterisks and the trajectory time.
MATøUT	A, NR ${ }^{\circ} \mathrm{N}$, NGøLL LABEL	with a 6 character Hollerith label, LABEL.
MHAB (AMAB)	$\begin{aligned} & A, B, C, M, \\ & L, N \end{aligned}$	MAAB performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{MXL}^{*}}{ }^{[B]_{\mathrm{LxN}}}$.
		AMAB performs the matriv operation $[\mathrm{C}]_{\mathrm{KKN}}=[\mathrm{C}]_{\mathrm{MXN}}+[\mathrm{A}]_{\mathrm{MKLI}} *[B]_{\mathrm{LXN}}$

Subroutine (Entry Points)
MMABAT
(AMABAT)

MMABT (AMABT)

MMATBA (AMATHA)

MMATBT (ANATBT)

Argumenta
A, B, C, $\mathrm{M}, \mathrm{I}, \mathrm{N}$
$\mathrm{A}, \mathrm{B}, \mathrm{C}_{2}$ $\mathrm{M}, \mathrm{I}, \mathrm{N}$
A, B, C, $\mathrm{M}, \mathrm{L}, \mathrm{N}$

Function

MMABAT performs the matrix operation $[C]_{\text {MxM }}=[A]_{\text {MixL }} *$ $[B]_{\mathrm{IxL}^{2}} *[A]_{\mathrm{MXL}}^{\mathrm{T}}$ (Note: N is not used). AMABAT performs the matrix operation $[\mathrm{C}]_{\mathrm{MXM}}=[\mathrm{C}]_{\mathrm{MXM}}{ }^{+}$ $[A]_{\mathrm{NKL}} \div[B]_{\mathrm{LKL}} *[A]_{\mathrm{M} \times \mathrm{L}}^{\mathrm{T}}$.

MMABT performs the matrix operation $[C]_{\mathrm{MxN}}=[\mathrm{A}]_{\mathrm{MxI}} \%$ $[B] \frac{\mathrm{T}}{\mathrm{N} \times \mathrm{L}}$ 。
AMABT performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{C}]_{\mathrm{MxN}}{ }^{+}$ $[A]_{N \times L} *[B]_{N \times I}^{T}$.

HAATB performs the matrix operation $[C]_{\mathbb{M X N}}=[A]_{\mathrm{L} \times M}^{T} *$ $[B]_{\text {ExN }}$.
AMATB performs the matrix operation $[\mathrm{Cl}]_{\mathrm{MXN}}=[\mathrm{C}]_{\mathrm{M} \times \mathrm{N}}+$ $[A]_{\mathrm{I} \times M}^{\mathrm{T}} *[B]_{\mathrm{I} \times \mathrm{N}^{\circ}}$.

MASTBA performs the matrix operation $[\mathrm{C}]_{\text {MXM }}=[\mathrm{A}]_{\mathrm{LXM}}^{\mathrm{T}} *$ $[B]_{\mathrm{LxL}} *[A]_{\mathrm{LxM}}$ Note: N is not used.
AMATBA performs the matrix operation $[C]_{\text {MXM }}=[C]_{\text {MXM }}+$ $[A]_{\mathrm{LXM}}^{\mathrm{T}} *[B]_{\mathrm{LxL}} *[A]_{\mathrm{LXM}}{ }^{*}$
A, B, C, $\mathrm{M}_{3} \mathrm{~L}, \mathrm{~N}$

MMATBT performs the matrix operation $[C]_{\mathrm{MXN}}=[A]_{\mathrm{L} X M}^{T}$. $[B]_{\mathrm{NxL}}^{\mathrm{T}}$.
AKSTBT. performs the matrix operation $[\mathrm{C}]_{\mathrm{MxN}}=[\mathrm{C}]_{\mathrm{MrNN}}+$ $[A]_{\mathrm{L} \times \mathrm{M}}^{T} *[B]_{\mathrm{N} \times \mathrm{L}}^{T}$.

Subroutine (Entry Points)	Arguments	Function
NEGMAT	A, C, M, N	NEGMAT negates a matrix such that $[C]_{\text {VKNN }}=-[A]_{\mathrm{MKNN}}$.
SCALE	$\begin{aligned} & \text { FACT } \phi R, A, \\ & M, N, B \end{aligned}$	SCALE multiplies a matrix A by a scalar FACTOR and returns the result in a matrix $B,[B]_{\text {MxN }}=$ FACTDR * [A] $]_{\text {MeN }}$.
SDVAR (VARSD)	C $\not \mathbf{V}$ IN, cøVøUT, N	SDVAR takes an NxN matrix C $\emptyset \mathrm{VIN}$ of standard deviations and sorrelation coefficients, and operates on the lower triangle of C 6 V IN to create a full covaripnce matrix c \varnothing f σ Uut. VARSD takes an NxN covariance matrix C $\emptyset \mathrm{V}$ IN and operates $3 n$ the upper triangle to create a matrix CøVøUT, where only the upper triangle contains the coprelationgcoefficients, the diagnal the standard deviation and the lower triangle remains unchanged.
SUB	$\begin{aligned} & A, B, C, \\ & M, N \end{aligned}$	SUB subtracts matrix B from matrix A and returns the results as matrix C. The dimensions of A, B, and C are $\mathrm{M} \times \mathrm{N}$.
SUBI	$\begin{aligned} & A, B, C, \\ & M, N \end{aligned}$	SUBT subtracts matrix B^{T} frcm matrix A and returns the results as matrix C. The dimensions of A and C are KxN, B is NXM .

Subroutine (Entry Points)
SYMTRZ
(SYMLD, SYMUP)

UD¢TV	U, V
UNITV	U, UV
UXV	U, V, W
vecriag	U
ZERGM	$\begin{aligned} & \text { A, } \mathrm{MR} \varnothing \mathrm{~W}, \\ & \text { MC }, \mathrm{L} \end{aligned}$

Arguments
PSYM, N
-
, V, W MC $\emptyset \mathrm{L}$

Function

SMMTRZ takes an NyN matrix PSMM and makes it symmetric by averaging each corresponding off-diagonal pair. SWML ${ }^{\prime}$ takes an NXN matrix PSYM and makes the upper triangle equal to the lower triangle. SYMUP takes an NxN matrix and makes the lower triangle equal to the upper triangle.

UDøTV performs the vector operation $\underline{U} \cdot \underline{V}$, for three dimensional vectors.

UNITV take a three dimensional vector U and makes it a unit vector W.

UXV performs the vector operation $\mathrm{UxV}=\mathrm{W}$, for three dimensional vectors.

VECHAG computes the magnitude of a three dimensional vector.
 null matrix A.

3.6.2 Subroutine: BPLANE ($\mathrm{R}, \mathrm{V}, \mathrm{TO}$, NTT)

Purpose:
To compute osculating B-plane parameters
(Section 4.2 of Reference 1) relative to a specified body from a cartesian state vector. Also, BPLANE computes a number of other osculating parameters, e.g., radius of closest approach ($r_{c a}$).

Method:
Given the spacecraft planeocentric ecliptic position and velocity vectors, \underline{x} and \underline{v} respectively, at time t relative to a target body, compute the B-plane parameters, \underline{B} - $\underline{T}, \underline{B} \cdot \underline{R}$, and the associated conic elements. In order that all B-plane parameters are computed, the carget relative osculating conic should be a hyperbola with its radius of closest ($r_{c a}$) approach inside the sphere of influence (SOI) of the target body. Assuming that closest approach is within the sphere of influence ($r_{\text {SOI }}$). Then using the orbital elements ($a, e, i, \Omega, \omega, M$, calculater from the conic formulas of Section 3.6.4

$$
\begin{aligned}
& r_{C A}=a(1-e) \\
& V_{C A}=\sqrt{\mu\left(\frac{2}{r_{C A}}-\frac{1}{a}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{hp}}=\sqrt{\frac{\mu}{|a|}} \\
& \mathrm{p}=a\left(1-e^{2}\right) .
\end{aligned}
$$

where V_{hp} is the hyperbolic excess velocity. The R, S, T coordinate system for the B-plane parameters is defined as

$$
\begin{aligned}
& \hat{S}=\frac{Y}{V} \\
& \hat{T}=\hat{S} \times \hat{k} \\
& \hat{R}=\hat{S} \times \hat{T}
\end{aligned}
$$

where \hat{k} is a unit vector in the direction of the Z axis in planetocentric ecliptic coordinates. The magnitude of the B vector is

$$
|\underline{B}|=\sqrt{p|a|}
$$

and the unit vector in the direction of $\underset{\underline{B}}{\text { B }}$ is

$$
\hat{\mathrm{B}}=\hat{\mathrm{S}} \mathrm{x}\left(\frac{\mathrm{I} \times \underline{\mathrm{v}}}{|\underline{I} \mathrm{Y}|}\right)
$$

therefore the B-plane parameters are

$$
\begin{aligned}
\underline{B} \cdot \hat{T} & =(|\underline{B}| \hat{B}) \cdot \hat{T} \\
\cdot \underline{B} \cdot \hat{R} & =(|\underline{B}| \hat{B}) \cdot \hat{R}
\end{aligned}
$$

Two other important parameters to know are the time of closest approach and the time at the sphere of influence: The time at closest approach (t_{CA}) is

$$
t_{C A}=t-\frac{M}{n}
$$

where M is the value of the mean anomaly at t and n is the mean motion. The time at the sphere of influence $\left(t_{S O I}\right)$ is computed from the following equations

$$
\begin{aligned}
& \cosh F= \frac{1}{e}\left(1-\frac{r}{a}\right) \\
& \sinh F= \operatorname{sign}(E \cdot \underline{v}) \sqrt{\left(\cosh F_{1}\right)^{2}-1} \\
& \operatorname{coshF}_{S O I}= \frac{1}{e}\left(I-\frac{I_{S O I}}{a}\right) \\
& \sinh _{S O I}=\operatorname{sign}(\underline{I} \cdot \underline{v}) \sqrt{\left(\cosh F_{S O I}\right)^{2}-1} \\
& t_{S O I}=t+\frac{1}{n}\left[\left(\operatorname{sinhF}_{S O I}-\operatorname{sinhF}\right) e\right. \\
&\left.+\left(F-F_{S O I}\right)\right]
\end{aligned}
$$

For the case where closest approach is outside of the sphere of influence, the sphere of
influence is assumed to be closest approach. All calculations are the same except

$$
t_{\mathrm{SOI}}=\mathrm{t}_{\mathrm{CA}}
$$

When closest approach is outside the sphere of influence, the B-plane parameters are undefined; but closest approach parameters can be defined from the following equations.

$$
\begin{aligned}
& \operatorname{cosE}=\left(1-\frac{x}{a}\right) \\
& e \cdot \sin E=\frac{\underline{x} \cdot \underline{v}}{\sqrt{\mu a}} \\
& \operatorname{tanE}=\frac{\sin E}{\cos E} \\
& M
\end{aligned}
$$

Ingut/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
R	I	A	Position vector relative to the target body.
v	I	A	Velocity vector relative to the target body.
T0	\pm	A	Time associated with \mathbb{R} and V.
BDT	0	c	

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
BDR	0	c	B - R.
TS ϕ I	0	c	Time at the sphere of influence, ${ }^{\text {t }}$ SOI .
NTP	I	A	Number of the target body. This flag is used to locate the SOI size and mass of the target body in the SPHERE and PMASS arrays.
VHP	0	C	Hyperbolic excess velocity, V_{hp}.
PI	I	c	3.14159....
PMASS	I	C	Array containing the masses of the planets.
SPHERE	I	C	Array containing the sphere sizes of the planets.
VCA	0	c	Velocity at closest approach.
RCA	0	c	Radius of closest approach.
TCA	0	C	Time of closest approach.
A	0	c	Semi-major axis of the oscu. lating conic.
E	0	C	Eccentricity of the osculating conic.
XINC	0	c	Inclination of the osculating conic.
fNEGA	0	c	Longitude of the ascending node.
S¢MEGA	0	C	Argument- of periapsis.
THEAN	0	c	Mean anomaly.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
TA	0	C	True anomaly.
BIG	I	C	10^{30}.

Local Variables:

Variable	Definition
gMu	Mass of the target body.
RS	sOI size of the target body.
XN	Inverse of the mean motion, n
SV	\hat{S}
BV	B
B	[B]
TMAG	$\mid \leq 1$
RVP, RVY, RVZ	Components of $\hat{\mathrm{R}}$
THETA	Angle between 트 and the \hat{T} axis.
c $¢$ SHFI	$\cosh \mathrm{F}$
Otis ${ }^{\text {ch }}$	$\cosh \mathrm{F}_{\text {SOI }}$
SINFI	$\sinh \mathrm{F}$
SINF2	$\sinh \mathrm{F}_{\text {SOI }}$
F1	F
F2	$\mathrm{F}_{\mathrm{SOI}}$
DT	Time from the sphere to $\underline{\text { ch }}$.
CE	$\cos \mathrm{E}$
SE	$\sin E$
ECG	E
XM	Mean anomaly, M

Subroutines Called:	"C $\emptyset N I C$
Calling Subroutines:	TC $\emptyset \mathrm{NP}$, TREK
Common Blocks:	C $\emptyset N I C S, ~ C \emptyset N S T, ~ E P H E M, ~ T A R G ~$

3.6.3 Subroutine: CARTES ($A, E, X I, \not \subset, W, X M, G M U, R, V)$

Local Variables:

Variable
ITI
NITT
FP

Purpose:

Method:
-
Input/Output:

Variable	I/O	Argument/ Common	Definition
A	I	A	Semi-major Axis (a)
E	I	A	Eccentricity (e)
XI	I	A	Inclination (i)
ϕ	I	A	Longitude of the Ascending
			Node (Ω)
W	\pm	A	Argument of Periapsis (${ }_{\text {(}}$)
GMO	I	A	Gravitational Constant (μ)
k	0	A	Position Vector (r)
v	0	A	Velocity Vector (v)
PI	I	c	3.14159............
XM	I	A	Mean Anomaly (M)

To compute the cartesian state vector corresponding to a set of orbital elements at a given. time. Time is implicit in the Mean Anomaly XM . Conic Formulae for Elliptic and Hyperbolic Motion.

Definition
Iteration counter for Kepler's Equation Kaximum iterations for Kepler's Equation Derivative of Kepler's Equation ($\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)$).
Variable

Definition

ECC
FN

SQE

TA

RM
SINHE
CøSHE
SINHEC
cøSHEC
P

TH

cósti
SINTH
c $\varnothing \mathbf{S} \phi$
SIN $\$$
CpSW
C \wp SI
SINI
VA
VB
VC

Eccentric Anomaly (X_{n})
Kepler ${ }^{\prime}$ s Equation ($f\left(X_{n}{ }^{\prime}\right)$

True Anomaly
Magnitude of the Position Vector
XM / E
$\sqrt{1+\operatorname{SINHE}^{2}}$
Hyperbolic Sine of ECC

- Hyperbolic Cosine of ECC

Semi-latus Rectum
Argment of Latitude
Cosine of TH
Sine of TH
Cosine of ϕ
Sine of ϕ
Cosine of W
Cosine of XI
Sine of XI
$\sqrt{\mathrm{GMO} / \mathrm{P}}$
SINTH +E * SINW
CфSTH \div E * CdSW

Remarks:

Given: The orbital elements a, e, i, Ω, ω and the gravitational constait μ.

Find: The position E and the velocity \underline{v}.
First we must find the eccentric anomaly E for the elliptical case and H for the hyperbolic in terms of M, the mean anomaly. For the elliptical case

$$
M=E-e \cdot \sin E
$$

and for the hyperbolic case

$$
M=e \cdot \sinh H-H
$$

Since both equations are transcendental we must solve them interatively. The method used to solve these equations is Newton's Method of the form

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{E^{1}\left(x_{n}\right)}
$$

Therefore, for the elliptical case the expression is.

$$
E_{n+1^{-}}=E_{n}-\frac{E_{n}-e \cdot \sin E_{n}-M}{1-e \cdot \cos E_{n}}
$$

and for the hyperbolic case the expression is

$$
H_{n+1}=H_{n}-\frac{e \cdot \sinh H_{n}-H_{n}-M}{e \cdot \cosh H_{n}-1}
$$

Depending on the kind of orbit defined by the orbital elements, the appropriate equation is iterated upon until

$$
|f(x)| \leq 10^{-10}
$$

or

$$
\left|\frac{F(x)}{E^{\prime}(x)}\right| \leq 10^{-10}
$$

for a finite number of iterations.
Now that we have E or H ve can find I and \underline{v} from the following equations:

Elliptical
$\tan \left(\frac{f}{2}\right)=\left(\frac{1+e}{1-e}\right) \cdot \tan \left(\frac{E}{2}\right)$
$I=a(1-e \cdot \cos E)$
$p=a\left(1-e^{2}\right)$
$\underline{I}=r\left[\begin{array}{l}\cos \Omega \cdot \cos \theta-\sin \Omega \cdot \sin \theta \cdot \cos i \\ \sin \Omega \cdot \cos \theta+\cos \Omega \cdot \sin \theta \cdot \cos i \\ \sin \theta \cdot \sin i\end{array}\right]$
$Y=-\sqrt{\frac{\mu}{p}}\left[\begin{array}{l}\cos \Omega(\sin \theta+e \cdot \sin \omega)+\sin \Omega \cdot \cos i(\cos \theta+e \cdot \cos \omega) \\ \sin \Omega(\sin \theta+e \cdot \sin \omega)-\cos \Omega \cdot \cos i(\cos \theta+e \cdot \cos \omega) \\ -(\cos \theta+e \cdot \cos \omega) \cdot \sin i\end{array}\right]$

Subroutines Called: None

Calling Program: EPHEM

Common Block: Cø゙NST

Logic Flow:

 MIEAN, THETA)

Purpose:

Method:
\because
Remarks:
Given:

Find: The orbital elements $a, e, i, \Omega \omega$ and M and also θ
$\underline{h}=\underline{x} \times \underline{V}$
$\underline{W}=\underline{h} / \mathrm{h}$
$r_{v}=r^{\prime} \cdot \underline{v}$
$\underline{e}=\frac{1}{\mu} \quad(\underline{v} \times \underline{h})-\underline{r} / \tau$
$\mathrm{p}=\mathrm{h} / \mathrm{h}$
$\alpha=\left(\frac{2}{v}-\frac{v^{2}}{\mu}\right)$
$\underline{\underline{n}=} \mathrm{e} / \mathrm{e}$
$\underline{q}=\underline{w} \underline{p}$
$\sin \theta=\frac{h \cdot r_{v}}{r}$
$\cos \theta=\frac{\mathrm{h}^{2}-\boldsymbol{\mu}}{\mathrm{r}}$.

Now

$$
\begin{align*}
& a=\frac{1}{\alpha} \\
& e=|\underline{e}| \\
& i=\cos ^{-1}\left(w_{z}\right) \\
& \Omega=\tan ^{-1}\left(w_{x} /-w_{y}\right) \\
& \omega=\tan ^{-1}\left(\rho_{z} / q_{z}\right) \\
& \theta=\tan ^{-1}(\sin \theta / \cos \theta) \\
& \cos E=I-r \cdot \alpha \\
& \sin E=\frac{r_{v} \cdot \alpha}{\mu} \tag{1}
\end{align*}
$$

for the elliptical case for the hyperbolic case
$E=\tan ^{-1}(\sin E / \cos E) \quad$ sinhH $-\sin E / e$
$M=E-e \cdot \sin E \quad \cosh H=\cos E / e$

$$
\begin{aligned}
& H=\ln (\sinh H-\cosh H) \\
& M=e \cdot \sinh H-H
\end{aligned}
$$

Input/Output:

Variable	I/O	Argument/ Common	Definition
R	I	A	Position Vector (r)
V	I	A	Velocity Vector (v)
TO	I	A	Time Corresponding to 5 crid V
GMU	I	A	Gravitational Constant (μ)
A	0	A	Semi-Major Axis (a)
E	0	A.	Eccentricity (e)
XINC	0	A	Inclination of the orbit
			plane (i)

Variable .	Definition
SE	Cosine of ECC
ZCC	Hyperbolic Anomaly
CHF	Hyperbolic Sine of FCC
SHF	Hyperbolic Cosine of FCC

Subroutines Called: UXV, VECMAG, UNITV, UD§TV
Calling Subroutines: BPLANE, PRgP, EPHERR, ØD, PGM, DATAT, FEGS Common Blocks: CøNICS, CøNST

Logic Flow:


```
3.6.5 Subroutine: ECDMP (XX, VV, TSTGP, NTARG, NTP, LTSTAR, ETA)
```


Purpose:

To compute the transformation matrix which transforms state vector deviations into targat variable deviations at the target time; namely

$$
\eta=\left[\frac{\partial\left(T_{1}, T_{2}, \ldots, T_{m}\right)}{\partial(X, Y, Z, \dot{X}, \dot{Y}, \dot{Z})}\right]_{(m \times 6)}
$$

where m is the number of target variables. Small changes to the trajectory state vector at the target, time permit this transformation matrix to be computed by numerical differencing. Central difference partial derivatives are used. Currently, the state vector deviations used to generate the numerical partials are 10 km for position and $10 \mathrm{~m} / \mathrm{sec}$ for velocity. For some applications, in particular for missions to the inner planets (Mercury and Venus), these values may have to be reduced.

Input/Output:

Váriable	Input/ Output	Argument/ Common	Eefinition
XX	I	A	State vector position components.
VV	I	A	State vector velocity components.

3.6.6 Subroutine:	ENCON (T)		
Entry Points:	REFINE, 6SCUL		
Purpose:	To prop*gate the reference conic from rectification to time t.		
Method:	Conic equations for elliptical and hyperbolic orbits. See MAPSEP Analytic Manual (Reference 1), Appendix 1 (Section 9.1).		
Remarks:	Common block ENC $\varnothing \mathrm{N}$ contains local variables (denoted by asterisk) to save these values when GODSEP (using the PDOT option) temporarily replaces the TRAJ overlay with the MEAS overlay. Thus, CøM\&SN/ENCgN/ is required only for a very specific application.		
Input/Outper:			
Variable	Input/ Output	Argument/ Common	Definition
T	I	4	Trajectory time in seconds
тSTøр	I	c	The sign cf TSTOP determines whether the propagation is: backwards (-) or forwards (+)
NPRI	I	c	A flag that is used to locate the mass of the primary body in the PMASS array.
PMASS	I	c	Array containing the masses of all the bodies.
ALPHA	\emptyset	c	Inverse semi-major axis ($\frac{1}{a}$).
UTRUE	I	C	Position vector at rectification (r_{0}).
VTRUE	I	C	Velocity vector at rectification (${ }_{0}$).
UENC	\emptyset	C	Osculating conic position vector at time t.
UENCM	\emptyset	C	Magnitude of UENC.
VENC	\emptyset	C	Osculating conic velocity vector at time t.
Yencr	\emptyset	C	Magnitude of VENC.

Variable

* TZER \mathfrak{f}

GMU

* UZER ${ }^{0}$
* VZERø

CZER \varnothing

UALPHA

* UBETA

BETA

* AI
* A2
* A3
Cl.

C2

* DELE
* X

HV

ARG1

Definition

Time of rectification (t_{0}).
Mass of the reference body.
Position vector at $t_{0},\left(r_{0}\right)$.
Velocity vector at $t_{0},\left(\dot{\underline{r}}_{0}\right)$.
$1+e \cos E_{0}$ for the elliptical case.
$1+e$ cosh H_{o} for the hyperbolic case.
$1-e \cos E_{0}$ for the elliptical case.
e cosh H_{0} - 1 for the hyperbolic case.
Absolute value of UALPHA.
Absolute value of ALPHA.
Mean angular motion (n).
e $\sin E_{0}$ for the elliptical case.
e $\sin H_{0}$ for the hyperbolic case.
e $\cos E_{0}$ for the elliptical case.
e cosh H_{o} for the hyperbolic case.
e $\exp \left[\mathrm{H}_{\mathrm{o}}\right]$ for the hyperbolic case.
e $\exp \left[-H_{0}\right]$ for the hyperbolic case.
E $-\mathrm{E}_{\mathrm{o}}$ for the elliptical case.
$\exp \left[\mathrm{H}-\mathrm{H}_{0}\right]-1$ for the hyperbolic
case.
The angular momentum vector ($\bar{x}_{0} \times \bar{v}_{0}$).
$1-\frac{a}{r_{0}}\left[1-\cos \left(E-E_{0}\right)\right]$ for the elliptical case.

	$1-\frac{a}{r_{0}}\left[\cosh \left(H-H_{0}\right)-1\right]$ for the hyperbolic case.
ARG2	$\frac{1}{n}\left[\sin \left(E-E_{0}\right)-e\left(\sin E-\sin E_{0}\right)\right]$ for the elliptical case.
	$\frac{1}{n}\left[e\left(\sinh H-\sinh H_{0}\right)-\sinh \left(h-H_{o}\right)\right]$ for the hyperbolic case.
ARG3	$-\frac{\sqrt{\mu \cdot a}}{\Gamma r_{o}} \sin \left(E-E_{o}\right)$ for the ell:ptical case.
	$-\frac{\sqrt{\mu a}}{r_{0}} \sinh \left(H-H_{0}\right)$ for the hyperbolic case.
ARG4	$1-\frac{a}{r}\left[1-\cos \left(E-E_{o}\right)\right]$ for the elliptical case.
	$1-\frac{a}{r}\left[\cosh \left(H-H_{o}\right)-1\right]$ for the hyperbolic case.

Subroutines Called: VECMAG, UXV, UDØTV
Galling Subroutines: M $\$ \mathrm{TI} \phi \mathrm{N}$
Commen Blocks: ENCøN, EPHEM, TIME, TRAJI, TRAJ2

3.6.7 Subroutine: GENINV (A, M, H, B)

Purpose:

Remarks:

To compute an inverse B for any $m \times n$ matrix A.
There are three cases for which GENINV will
compute an inverse.
Case 1: \quad 加 $<\mathrm{n}$

$$
B=A^{T}\left[A A^{T}\right]^{-1}
$$

Gase 2: $\quad \mathrm{m}=\mathrm{m}$.

$$
B=A^{-1}
$$

Case ${ }^{3}$: m \quad n
$B=\left[A^{T} A\right]^{-1} A^{T}$

The matrices A and B can share the same location only if $m=n$.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
A	I	A	The matrix to be inverted.
H	I	A	Number of rows in A (Columns in B).
N			Number of columns in A (Rows in B).
B	I	A	Inverse of A.

Local Variables:

MIN

L $\varnothing \mathrm{C}$
. .Number of needed locations for temporary calculations.

Kumber of needed locations for the inverse.

Subroutines Called: C $C \neq Y, M B A B T, M H A T B$, INVSQM
Calling Subroutines: GUIDE, LGUID, NLGUID
Common Blocks:
WøRK

Logic Flow:

4.6.8 Subrcutine: MPAK ($A, M, N, A S U B, M S U B, N S U B)$

Purpose:
MPAK is used to (1) copy subblocks of matrix A into a matrix ASUB, (2) copy the diagonal elements of matrix A into ASUB which can be a vector (or row matrix) or (3) "pack" the matrix A. M and N are the dimensions of A, and MSUB and NSUB are the dimensions of ASUB.

Method: An mxn matrix is stored internally in the computer by columns. Take the 3×3 matrix

$$
E=\left[\begin{array}{ccc}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

In the computer, E is stored as

$$
\begin{aligned}
& \text { Column } 1 \\
& e_{11} \\
& e_{21} \\
& e_{31} \\
& \text { Golimn } 2 \quad e_{12} \\
& { }^{e_{22}} \\
& e_{23}
\end{aligned}
$$

RiPAK uses this information to perform one of the three following eases, (1) to copy sub blocks of E, (2) to sopy the diagonal elements of E, and (3) to pack E.

Gase 1: Given a 3 x 3 matrix

$$
E=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

copy the sub block

$$
F=\left[\begin{array}{ll}
e_{21} & e_{22} \\
e_{3 I} & e_{32}
\end{array}\right]
$$

into the 2×2 matrix F. In order to accomplish this, MPAK must know the first element of the sub block to be copied. For this problem, it is $e_{2 I}$. The FORTRAN call to MPAK must transmit this information. Such a call would be

$$
\text { CALL MPAK }(E(2,1), 3,3, E, 2,2)
$$

Case 2: Given a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

copy the diagonal terms $a_{1 I}$ and a_{22}. into the $2 \times I$ row vector B. The call to MPAK is

The dimension of A is given as 3×2. Internally in the computer, A is thought of as being stored

Column $1 \quad a_{i 1}$
a_{21}
a_{12}
Colunn $2 \quad a_{22}$

This particular call makes MPAK copy the elements ${ }_{11}$ and a_{22} into B.

Case 3: Given the 3×3 matrix

$$
A=\left[\begin{array}{ccc}
a & c & 0 \\
b & d & 0 \\
0 & 0 & 0
\end{array}\right]
$$

pack it so that

$$
A=\left[\begin{array}{lll}
a & d & 0 \\
b & 0 & 0 \\
c & 0 & 0
\end{array}\right]
$$

Pack as used here, means to order the nonzero elements of A into consecutive locations internally. If

$$
A=\left[\begin{array}{llll}
a & c & e & 0 \\
b & d & f & 0 \\
0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]-\cdots
$$

than packing A would restit in

$$
A=\left[\begin{array}{llll}
a & e & o & o \\
b & f & 0 & 0 \\
c & 0 & 0 & o \\
d & 0 & 0 & 0
\end{array}\right]
$$

The appropriate call to MPAK would be

CALL MPAK (A, 3, 3, A, 2, 2)
for the first example ($3 \times 3 \mathrm{~A}$), and for the second example:

CALL MPAK (A, 4, 4, A, 3, 3)

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
A	I	A	The matrix to be operated on
M:	I	A	The number of rows of A
N	I	$\dot{\text { A }}$	The number of columns of A
ASUB	0	A	The resultant matrix
MSUB	I	A	The number of rows of ASUB
NSUB	I	A	The number of columns of ASUB
a1 Variabl		None	
routines C		None	
Ting Subroutines:		SIZE, SDAT, (GODSEP, et al)	
mon Blocks:		None	

3.6.9 Subroutine: MUNPAK (ASUB, MSUB, NSUB, A, M, N)

Purpose:

Method:

MUNPAK is used to copy a matrix ASUB into a large matrix A, to copy a row matrix ASUB onto the diagonal of A or to "unpack" the matrix ASUB.

MUNPAK, like MPAK takes advantage of the way a matrix is stored internally in a computer. MUNPAK performs the reverse function of MPAK: (1) copy a matrix into a larger matrix, (2) copy a row matrix onto the diagonal of a matrix or (3) unpack the matrix.

Case 1: Gopy a $2 x 2$ matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

into a 3×3 matrix B so that

$$
-{ }^{-} B=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & a_{11} & a_{12} \\
0 & a_{21} & a_{22}
\end{array}\right]
$$

This is accomplished by specifying where the first element of A is to be located in B : The. . FORTRAN call to MUNPAK is

GALL MUNPAK (A, 2, 2, B (2, 2), 3, 3)
Case 2: Copy the Ix2 row matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right]
$$

into the 2×2 matrix B. In the call to MUNPAK, the dimensions of B are given as a 3×2. The net result is

$$
B=\left[\begin{array}{ll}
a_{11} & 0 \\
0 & a_{12}
\end{array}\right]
$$

The call to MUNPAK is
CALL MUNPAK (A, $1,2, B, 3,2)$.
Gase 3: Given the 3×3 matrix

$$
A=\left[\begin{array}{lll}
a & d & 0 \\
b & 0 & 0 \\
c & 0 & 0
\end{array}\right]
$$

"unpack" $i t$ so that

$$
A=\left[\begin{array}{lll}
a & c & 0 \\
b & d & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The "eall to MUMPAK to accomplish this operatio" is

GAIL MUNPAK (A, 2; 2, A, 3, 3).
Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
ASUB	I	A	The matrix to be operated on.
MSUB	I	A	The number of rows of ASIB.
N3UB	I	A	The number of columns of ASUB.
A	0	A	The resultant matrix.
K	I	A	The number of rows of A.
N	I	A	The number of columns of A.
Local Variables:	None		
Subroutines Called:	: None		.
Galining Subroutines	: SIZE,	DAT, (Gø゙DSE	et al)
Gommon Blocks:	None		

3.6.10 Function: RNUM (SIGMA, IRAN)

Purpose:
To sample a uniform distribution and generate random samples on a Gaussian distribution.

Method:
Two random samples from a uniform distribution are made to form a random sample on a zeromean, Gaussian distribution which has a unit standard deviation. The random variable on the Gaussian distribution is scaled according to the input standard deviation, SIGMA. For IRAN equal to zero, a one-sigma, forced Monte Carlo sample is computed and returned.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
SIGMA	I	A	Standard deviation of the random variable being sampled.
RNUM	I	A	Flag to indicate whether or not a forced Monte Carlo sample is to be returned.
	0	A	Resultant random variable.

Local Variables:

Variable Definition

D1.

D2

First random sample from a uniform distribution.

Second random sample from a uniform distribution.

Galling Subroutines: CSAMP, EXGUID, EPHSMP, ERRSMP, DNÓISE

Gommon Blocks:
CGNST

Logic Flow:

3.6.11 Subroutine: TCøMP (XX, VV, TSTØP, NTP, NTARG, LESTAR, XTARG, IPASS)

Entry:
Method:

TCøMP1
The BPLANE utility routine is called to compute osculating values of target variables corresponding to a given state vector. Individual target values are loaded into a target vector according to the target codes in the LISTAR array.

Input/Output:

Variable	Input/ Output	Argument Common	Defirition
XX	I	A	State vector position components
vV	I	A	State vector velocity components
TSTøP	I	A	Epech corresponding to the state vector; generally the target time.
NTP	I	A	Number of the target planet.
NTARG	I	A	Number of target variables:
LISTAR	I	A	List of target variable codes.
Xtarg	0	A	Target vector.
IPASS	I	A	Flag to control logic transfer.
VHP	I	C	Hyperbolic excess velocity.
RCA	I	C	Radius of closest approach.
BDT	I	C	T-coordinate in the B-plane.
BDR	I	c	R-coordinate in the B-plane.
TS的	I	c	Conically interpolated time of arrival at the sphere of influence.

Variable	Input/ Output	Argument Common	Definition
TCA	I	c	Conically interpolated time of arrival at the radius of closest approach.
A	I	c	Semi-major axis evaluated on an osculating conic.
E	I	C	Eccentricity evaluated on an osculating conic.
XINS	I	c	Inclination evaluated on an osculating conic.
ØMEGA	I	C	Argument of the ascending node evaluated on an osculating conic.
S¢LEGA	I	C	Argument of periapsis evaluated on an osculating conic.
XMEAN	I	C	Mean anomaly evaluated on an osculating conic.
TA	I	c	True anomaly evaluated on an osculating conic

Eocal Variables: None
Subroutine Called: BPLANE, VECMAG
Calling Subroutines: ECøMP, NLGUID, REFTRJ, SIMSEF, STMTAR, TRER
Common Blocks: CøNST, TARGET
Logic Flow: See Listing

Page 553 has been deleted.

 IMAN, XดU'T, MøUT, THE'CA, PHI)

Purpose:

Method:

Remarks: This routine is used by TøPSEP and SIMSEP for evaluating $\hat{\omega}_{\mathrm{u}}$ and $\overline{\boldsymbol{\phi}}$. TøPSEP also has an altarnate set of ${ }^{\circ} \operatorname{logic}$ which uses a numericel differencing algorithin. for the same purpose. SIMSEP uses THCめMP exclusively.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
XIN	I	A	Initial stare vector.
MIN	I	A	Initial S / C mass.
NPRIN	I	A	Primary body code to which $X \pm N$ is referenced.
NATC	I	A	Number of active thrust controls.
IJU	I	A	Array of active thrust control codes.
TG¢	I	A	Initial trajectory time.

Variable	Input/ Output	Argument/ Common	Definition
THALT	I	A	Final trajectory time.
TMAN	I	A	Guidance maneuver number.
XøUT	0	A	Output state vector.
MDUT	0	A	Output S/C mass.
THETA	0	A	Output control to state transition matrix, Θ_{u}.
PHI	0	A	Output state to state transition matrix, あ
THRUST	I	C	Array of thrust controls.
BLANK	I	C	Blank common storage of trajectory variables, i.e, the augmented state transition matrix.
TEVNT	I	C	Trajectory event time.
MEVENT	I	C	Trajectoity event test flag.
LøCTC	I	C	Location in blank common of the first element in the augmented state transition matrix.
IAUGDC	I	C	Flag used to augment the transition matrix for integration.
TREF	I	C	Initial trajectory time transmitted to TRAJ in seconds.
TDUR	I	C	Final trajectory time trangmitted to TRAJ in seconds.
INTEG	I	C	Flag to indicate to TRAJ that the augmented state transition matrix is to be integrated.
ICALI	I	C	TRAT initialiagtion flag,

Local Variables:

Variable Definition
NPHI Dimension of the augmented state transition matrix.
JJO JJlJJ 2
pHI21 . $\}$ Temporary storage for the $\overline{\mathbf{D}}$ matrices output PHI32
from traj.
THET21 THET32
$\} \begin{aligned} & \text { Temporary storage for the } \hat{\Theta}{ }_{u} \text { matrices output } \\ & \text { from TRAJ. }\end{aligned}$
Subroutines Called: CøPY, ICøPY, IDENT, IZER $\emptyset M, M M A B, M P A K, ~ T R A J, ~$ZER \varnothing M.
Caliing Subroutines: STMTAR, REFTRJ, NLGUXD.
Common Blocks: CøNST, TIME, TRAJI, TRAJ2, WøRK, (BLANK).

3.7 Subroutine: REFSEP

Purpose:	To monitor the subroutine flow in the REFSEP mode
	of MAPSEP.
Remarks:	A complete view of the REFSEP hierarchy is revealed
	in Section 2.3, page $12-\mathrm{B}$ of this manual.
Subroutines Called:	DATREF, TRAK
Calling Subroutines: MAPSEP	
Logic Flow:	See macrologic listing

3.7.1 Subroutine: DATREF

Purpose: To initialize REFSEP parameters and the trajectory propagator.
Remarks: Proper initialization of the scheduler requires two consecutive calls to subroutine SCHED. Also, TRAJ is called onty to inialize parameters not to propagate the trajectory.

Input/Output:

Variable	Input/ Output	Argument Common	Definition
GAINCR	0	C	GODSEP variables which are defaulted in DATREF to avoid in-
IGAIN	0	C	correct computations in subroutine SCHED. None of these
NCNTE	0	C	variables is relevant: to execution of REFSEP.
NCNTG	0	C	
NCNTP	0	C	
NCNTT	0	c	
REIGEN	0	C	
NGUID	0	C	
NPRED	0	c	
NTHRST	0	c	
ICALL	0	c	Flag used to initialize TRAJ.
INTEG	0	c	Flag indicating the equations to be integrated in TRAJ.
KARDS	I	c	Number of print schedule cayds.

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Comimon } \\ & \hline \end{aligned}$	Definition
T,APRT,	0	c	Holleritin names of all possible target parameters.
mevent	0	C	Flag used to set event detection logic in TRAJ.
MnExT	0	c	Next scheduled print code.
NSCHED	0	C	Number of print schedule cards.
"GURR	0	C	Current trajectory time.
TEND	I	c	Trajectory end time.
TEINAT.	0	c	Trajectory end time.
TM	I	C	Time conversion constant (days to seconds).
TMNEXT	0	c	Time of next print cade execution.
TREF	0	C	Initial trajectury time.
TSTART	I	c	Initial trajectory time.
Local Variables:	None		
Subroutines Called	: SCHED, TRAJ		
Calling Subroutine	: REFSEP		
Common Blocks:	TRAJI, TRAJ 2 , TRKDAT, WERK		
Iogic Flow:	See listing.		

3.7.2 Subroutine: DETAIL (IT)

Purpose: To print trajectory information at the times designated on the formatted schedule cards.

Remarks: The blocks of trajectory information to be printed are cued by the print code which is stored in the variable IT. A discussion of the print code may be found in the User's Manual, Section 2.5, page 52-B.

Input/Output:

Variable	Input/ Output	Argument/ Common	Definition
APERT	I	c	Gravitational acceleration vectors due to the perturbing bodies.
AT¢T	I	c	Total differential acceleration vector.
B	I	c	Magnitude of the B-vector.
BDR	I	c	B - $\mathrm{R}^{\text {}}$
BDT	I	c	B - I
BØDY	I	c	Hollerith label of the planets included in the integration.
BV	I	c	Unitary B-vector.
CA	I	C	Closest approach radius computed in BPLANE.
ECC	I	c	Eccentricity.
EP¢CH	I	C	Launch epoch
FI	I	c	Hyperbolic anomaly
IPRI	I	C	Flag used to locate information about the primary body.
ISTEP	I	c	Number of integration steps taken.
IT	I	A	Print code.
ITP	\pm	c	Flag used to locate information about the target body.

Variable	Input/ Outpat	Argument/ Common	Definition
LDCH	4	C	Blank comor location of the step size.
Lfocm	I	c	Blank common location of the S/C mass.
L¢CYT	I	C	Blan' common iocation of the temporary integrated solution.
MPLAN	I	c	Number of bodies included in the integration.
NPRI	I	C	Planet code of the primary body.
NRECT	I	c	Number of rectifications executed during the trajectory integration.
NTP	I	c	Target planet code.
NTPHAS	I	c	Number of the current control phase.
QMEGA	I	c	Longitude of the ascending node.
PV	I	C	Unitary peripoint vector.
QV	I	c	Unitary peri-velocity vector,
RAD	I	C	Angular conversion constant (radians to degrees).
SMA	I	c	Semi-major axis.
Sthmega	I	C	Argument of periapsis.
SV	I	c	Unitary hyperbolic excess veloctty vector.
TA	I	c	True anomaly,
TAIM	I	c	Angle between B-vector and T-axis.
TCA	I	c	Time of closest approach computed in BPLANE.
TCURR	I	c	Current event tine,
TEVAT	I	C	Current trajectory time.

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
THRACC	I	c	Acceleration vector due to thrust.
TM	I	C	Time conversion constant (days to seconds).
TSI	I	C	Time of SOI crossing as computed in BPIANE.
VENC	I	c	Reference conic position vector.
UP	I	C	Position vectors of all bodies included in the integration.
UREL	I	c	Position vectors of S/C relative to all bodies considered in the integration.
UTRUE	I	C	S/C position vector relative to primary body.
VCA	I	c	Velocity at closest approach as computed in BPLANE.
VENC	I	C	Reference conic velocity vector.
VHP	I	c	Magnitudue of hyperbolic excess velocity.
VP	I	c	Velocity vectors of all bodies considered in the integration.
VREL	I	c	Velocity vectors of s / C relative to all bodies considered in the integration.
VTRUE	I	c	S/C velocity vector relative to the primary body.
WV	I	C	Unitary momentum vector.
XINS	I	C	Ecliptic inclination.
MMEAN	I	C	Mean anomaly.

Local Variables:

Variable

Definition

AT6TM

BVEC
DJ
IB $\varnothing \mathrm{D}$
KRAK
LB \varnothing D

PFV
PVV
TA

UAM
UPM

UR

UT
;
VAM
VH
VPM

Magnitude of total differential acceleration vector.

B-vector.
Julian date of current trajectory time.
Primary body code for BPLANE calculations.
Intermediate print code.
Location of IBøD in the NB array (i.e. IB $\varnothing \mathrm{D}=\mathrm{NB}$ (LBCD)).

Peri-point vector.
Peri-velocity vector.
Delta-position vector and delta-velocity vector.

Magnitude of delta-position vector.
Heliocentric position magnitudes of bodies considered in the integration.
Unitary position vector of the S/C relative to the primary body.

Lnitary velocity vector of the S/C relative to the primary body.

Magnitude of the delta-velocity vector.
Hyperbolic exaess velocity vector.
Heliocentric velocity magnitude of bodies considered in the integration.

Subroutines CaIled: BPLANE, CøPY, PRINTT, TSCHED, UDŋITV, UNITV, VECMAG Calling Subroutine: REFSEP

Common Blocks:
(BLANK), C \varnothing NICS, C C $N S T$, EDIT, SGHEDR TARGET, TIME, TRAJI, TRAJ2, WळRK

Logic Flow:

3.7.3 Subroutine: PRAK

Purpose: To control the point to point (event time to event time) integration of the trajectory propagator.

The event times which are input into the trajectory propagator are obtained from the scheduling subroutine SCHED. After TRAJ performs the integration to the desired event time, subroutine DETAIL is called to print detailed trajectory information.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
BDR	0	C	$\underline{B} \cdot \underline{R}$
BDT	0	c	B \cdot T T
ca	0	C	Closest approach radius as computed in BPLANE
ECC	0	c	Eccentricity
IST6P	I	C	Desired trajectory termination flag
ITP	I	c	Target body index (i.e. $\mathrm{NTP}=\mathrm{NB}$ (ITP))
KUT¢FF	0	c	Actual trajectory termination flag
LABEL	I	c	Hollerith labels for terminal conditions
L¢ 0 ch	I	c	Blank common location of S/C mass
NPRI	I/ $/ 6$	C	Primary body code
NTP	I	(Target body coce
mega	0	c	Longitude of ascending node
RAD	I	c	Angular conversion constant (radians to degrees)
RCA	0	c	Radius of closest epproach computed in TRAJ
SMA	0	G	Semi-major axis

Variable	Input/ Output	$\begin{aligned} & \text { Argument/ } \\ & \text { Common } \\ & \hline \end{aligned}$	Definition
S¢̆MEGA	0	c	Argument of periapsis
TA	0	C	True Anomaly
TCA	0	c	Time of closest approach computed in BPLANE
TGURR	0	C	Current event time
TEVNT	0	c	Next event time
TM	I	c	Time conversion constant (days to seconds)
TRCA	0	c	Time of closest approach computed in TRAJ
TSI	0	c	Time of $\mathrm{S} \phi \mathrm{I}$ crossing computed in BPLANE
TSOI	0	c	Time of SøI crossing computed in TRAJ
TSTART	I	c	Trajectory start time
TST\%P	0	C	Trajectory stop time
UREL	0	C	Position vectors of S/G relative to all bodies considered in the integration
URELM	0	C	Magnitudes of UREL vectors
VCA	0	c	Velocity at closest approach
VHP	0	c	Hyperbolic excess velocity
VREL	0	C	Velocity vector of s/c relative to all bodies considered in the integration
VRELM	0	c	Magnitudes of VREL vectors
XICA	0	c	Inciination of orbit relative to target body
XINC	0	c	Inclination
XMEAN	0	C	Mean anomaly

Local Variables:

Variable	Definition
DELT	Time between events
IST¢PN	Hollerith labels of requested stopping conditions
JEvNT	Print code
KøFF	Hollerith labels of actual stopping conditions
MISS	Flag indicating whether the target body is the primary body at the trajectory end time

Subroutines Called: BPLANE, DETAIL, SCHED, TRAJ
CaIling Subroutine: REFSEP
Common Blocks: (Blank), C \quad NST, EDIT, EPHEM, PRINTH, SCHEDI, SCHEDR, TARGET, TIME, TRAJ1, TRAJ2, WøRK

Logic Flow:

3.7.4 Subroutine: TSCEED

Purpose:

Method:

To compute and print S/C tracking information
S/C rise and set times are computed for a selection of tracking stations. The primary assumption, which has been made to simplify the computations, is that the S / C moves very slowly across the celestial sphere. Thus, the rise and set times are poor approximations for near-Earth orbital missions.

Input/Output:

Variable	Input/ Output	$\begin{gathered} \text { Argument/ } \\ \text { Common } \\ \hline \end{gathered}$	Definition
EGEQ	I	C	Equatorial to ecliptic transformation matrix
ELVMIN	I	C	Minimum elevation angle
GHZER \emptyset	I	c	Greenwich hour angle at launch
I $\mathrm{BSS}^{\text {S }}$	I	C	Index of astronomical observatory in STALde
ITP	I	c	Index of target planet in NS
MPLAN	I	C	Number of bodies considered in the integration
NB	I	C	Vector identifying bodies considered in the integration
NSTA	I	c	Number of S/C tracking stations
NTP	I	c	Target planet code
qriecag	I	c	Earth rotation rate
PI	I	C	π
RAD	I	c	Angular conversion constant (radians to degrees)
Statdic	I	c	Station location coordinates
TCURR	I	C	Current event time

Variable	Input/ Output	$\begin{aligned} & \text { Argument// } \\ & \text { Common } \end{aligned}$	Definition
TM	I	0	Time conversion constant (days to seconds)
UP	I	c	Heliocentric positions of bodies considered in the integration
UREL	I	C	Position vectors of S/C relative to bodies considered in the integration
URETM	I	C	Magnitudes of UREL vectors
VP	I	c	Heliocentric velocities of bodies considered in the integration
VREL	I	c	Velocity vectors of S / C relative to bodies considered in the integration
VREIM	I	c	Magnitudes of VREL vectors

Local Variables:

Variable
AZMUTH Azimuth of S/C relative to the tracking station

DEC
Declination of s/c
elev
Elevation of S/C
GECSTA
Geocentric ecliptic station coordinates
GEQSTA
Geocentric equatorial station coordinates
GHA
Greenwich hour angle
GHZERळ
LAMDA Right ascension minus Greenwich hour angle

RANGE
S/C range from Earth

- 4.0 REEERERGES

1. "MAPSEP, Volume I - Analytical Manual and Volume II User's Manual," P. Hong, et al, Final Report for NAS8-29666, December, 1973.
2. "Low Thrust Orbit Determination Program - Final Report, NAS1-11686," P. Hong, et a1, NASA CR-1'2256, December, 1972.

[^0]: *May be in compressed form if controls have been drcpped during the iteration.

