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Non-visible satellite estimation algorithm for
improved UAV navigation in mountainous regions

Francesco De Vivo, Manuela Battipede, Piero Gili

Abstract—This paper presents a very simple and computation-
ally efficient algorithm for the calculation of the occlusion points
of a scene, observed from a given point of view. This algorithm
is used to calculate, in any point of a control volume, the
number of visible satellites and the Dilution Of Precision (DOP).
Knowledge of these information is extremely important to reject
measurements of non-visible satellites and for the reconstruction
of a fictitious Digital Elevation Map (DEM), that envelops all
the regions characterized by a number of visible satellites lower
than a given threshold. This DEM evolves in time according to
the platform motion and satellite dynamics. Because of this time
dependency, the Digital Morphing Map (DMM) has been defined.
When the DMM is available, it can be used by the path planning
algorithm to optimise the platform trajectory in order to avoid
regions where the number of visible satellites is dramatically
reduced, the DOP value is very high and the risk to receive
corrupted measurement is large. In this paper also presents the
concept of a Safety Bubble Obstacle Avoidance (SBOA) system.
This technique takes advantage from the numerical properties
of the covariance matrix defined in the Kalman filtering process.
A space and time safety bubble is defined according to the DOP
value and is used to automatically determine a minimum fly
distance from the surrounding obstacles.

Index Terms—Occlusion points, satellite, DOP, DEM, GNSS-
denied region, UAV

I. INTRODUCTION

GLOBAL Navigation Satellite System (GNSS) is one of
the most used technology around the world for naviga-

tion. This technology is integrated in aircraft, ship and subma-
rine guidance systems; it is available in cell phones and cars,
or also used to monitor Earth surface movements. The system
accuracy spans from a range of a few centimetres up to meters.
This variation is related to different sources of error such as
the receiver clock error, Earth’s ionospheric and tropospheric
signal delay [1] or multipath effect in semi-obstructed area.
If the surrounding objects have highly reflective surfaces, the
error magnitude might surge to several hundred meters due to
multiple reflections that the signal experiences before reaching
the receiving antenna. A further source of error is present when
the same signal is received more than once. As the present
work is focused only on the effect of non-visible satellites,
multipath effect is not further investigated in this paper. In

F. De Vivo is with the Department of Mechanical and Aerospace Engineer-
ing, Polytechnic of Turin, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
e-mail: francesco.devivo@polito.it

M. Battipede is with the Department of Mechanical and Aerospace Engi-
neering, Polytechnic of Turin, Corso Duca degli Abruzzi, 24 - 10129 Torino,
Italy e-mail: manuela.battipede@polito.it

P. Gili is with the Department of Mechanical and Aerospace Engineering,
Polytechnic of Turin, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
e-mail: piero.gili@polito.it

order to reduce errors related to non-direct signal reception,
a proposed solution considers the exclusion of satellites that
are not in line of sight (NLOS) with the receiver and the
use of the data related to the excluded satellites for state
estimation purposes. This data is also used for different scopes,
such as creating a time and space dependent safety bubble to
improve obstacles safety clearance. Ignoring NLOS satellites
can lead to the improvement of the positioning accuracy
[2]. However, excluding satellites, the DOP, associated to a
bad geometrical repartition of the remaining satellites, could
increase, providing a less accurate position estimation. In
addition, if less than four satellites are accessible for the
localization the service becomes unavailable. In [3], NLOS
satellites are detected by projecting the satellite position on
a virtual view from the vehicle position. The surrounding
features act as a mask. If satellite projections are occluded by
the mask, they are excluded. In [4], digital elevation maps and
3D data of the environment from cartography are used in order
to identify NLOS signals by ray-tracing technique [5]. In this
case, positioning of the receiver in the 3D model is needed. In
[6], the 3D digital elevation model is not recorded. In this case,
the DEM is built with LIDAR (Light Detection and Ranging)
data. The scanned model is used as a mask to determine NLOS
satellites. For fixed positions, excluding NLOS signals, an
accuracy of less than 1 m is achieved. In [7], two methods to
identify NLOS satellites are compared: the first one is a vision-
based method, where the visible structures in roof-mounted
fisheye images are processed [8], whereas the second one is
based on a Carrier-to-receiver Noise density threshold (CN0)
technique. Better results have been achieved with the second
method, namely by excluding NLOS signals with the CN0
threshold. In [9] a technique for high-accuracy localization
of moving vehicles that utilizes maps of urban environments
is proposed. Papers [10] and [11] introduce a novel solution
for autonomous navigation of a micro helicopter, through a
completely unknown environment, addressed by using a single
camera and inertial onboard sensors. The use of a monocular
simultaneous localization and mapping (SLAM) framework,
to stabilize the vehicle in six degrees of freedom, enables to
overcome the problem of platform drift caused by a GNSS
loss. A similar approach, based on SLAM is presented in [12]
for indoor environments and urban canyon navigation. In [13]
and [14] a Visual-Inertial (V-INSs) system is used to sustain
prolonged real-world GNSS-denied flights, both for indoor and
outdoor GNSS-degraded environments. A different approach,
based on stereo camera and laser rangefinder, is adopted in
[15], to navigate a quadrotor helicopter in an unstructured
and unknown GNSS-denied indoor environment. In [16] a
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novel sensor grid, using ultrasonic transmitters, is presented
for GNSS-denied navigation and 3D positioning applications.
In [17] a novel information fusion algorithm based on a
particle filter (PF) is proposed to achieve lane level tracking
accuracy under a GNSS-denied environment. [18] proposes a
laser-based tracking system of moving objects using multiple
mobile robots as sensor nodes in Global navigation satellite
system (GNSS)-denied environments. In [19], the problem of
cooperative multi-robot planning in unknown environments
is investigated. This is done by actively developing belief
spaces planning approaches that account for the different
sources of uncertainty within planning and environment. In
[20] and [21] a 3D Lidar SLAM system is integrated with
GNSS/INS by adapting the measurement noise covariance
matrix of an Extended Kalman Filter, to improve accuracy
and reliability of the position estimation in urban canyons.
Less literature is dedicated to the optimisation of the platform
trajectory, starting from the knowledge of the regions of
degraded GNSS signal spaces. Gandor in [22] challenged the
problem of GNSS signal masking in complex mountainous
terrain. Zimmermann et alii [23] presented straightforward
approaches, to improve the direct positioning accuracies for
UAV-based mapping and surveying applications, under chal-
lenging GNSS measurement conditions. Starting from a 3D
model of the surrounding buildings and vegetation in the area
of interest, a GNSS geometry map is determined and integrated
in the flight planning process, to reduce GNSS challenging
environments. In [24] the authors created a positioning error
distribution, by simulating the multipath effect in a control
volume. This error distribution, along with a 3D building
model was used for a path planning which avoids buildings
and regions with high multipath effects. In [25] a virtual image
processing algorithm is used to detect and eliminate possible
faulty measurements and NLOS satellites, to improve GNSS
navigation in urban canyons. Groves in [26] introduced the
concept of intelligent urban positioning (IUP), which combines
multi-constellation GNSS, multiple techniques for detecting
non-line-of-sight (NLOS) signal propagation and multiple
techniques using three-dimensional mapping. In [27] and [28]
a number of advances in the shadow-matching algorithm were
presented. Furthermore, a new scoring scheme was developed
to account for signal diffraction and reflection. In [29] and [30]
an efficient smartphone-based shadow-matching positioning
system was designed.

Part of the previous works is focused on improving the
GNSS accuracy to enhance the local platform position esti-
mation. The remaining part is focused on mapping the GNNS
accuracy over a wider area for path planning purposes. The
present paper uses both approaches. In particular this paper
presents an efficient algorithm to determine the occluded
regions for each satellite, starting from the knowledge of a
mountain digital elevation model [31], [32]. Based on this
occlusion map, a time dependent DEM is designed for obstacle
avoidance. Defining for each satellite the invisible regions
in a 3D control volume, the DOP value, restricted to the
visible satellites, can be calculated. This permits to obtain a
3D map of flight and not-flight zones, according to the local
value of the DOP. Once the DOP map is available in the

control volume, the real DEM is updated, by considering a
surface that interpolates the DOP values that exceed a given
threshold. This new time-dependent map is called Digital
Morphing Map (DMM). The DMM can be used to optimise
aircraft or helicopter trajectories when they are involved in
particular risky missions, such as search and rescue opera-
tions in mountainous regions, flight support during wildfires
[33], [34], or UAVs applications in urban environments. A
further advantage is the compatibility of this approach with
all the previously described techniques for positioning error
reduction. The integration of the proposed algorithm with
these techniques has the potential to improve the trajectory
planning and, at the same time, to guarantee a higher position
accuracy. By calculating the DOP map in the control volume,
an obstacle avoidance technique, based on a safety bubble
(SBOA), could be developed. The mathematical background
of this technique is introduced in this paper. The algorithm,
with all the numerical and experimental results, is extensively
presented in the following sections.

II. METHODOLOGY

This section presents the procedure to calculate and update the
satellite positions, starting from the knowledge of the almanac
data. It also introduces a method to select the satellites that
are potentially visible to a user, located in a specific place on
Earth. After this, the algorithm to calculate occlusion points
is explained in details. In conclusion, the methodology to
calculate the DMM is presented.

A. Visible GNSS calculation

In order to calculate and update the satellite position, the
orbital parameters, listed in TABLE I, are required. These
values can be downloaded from the CelesTrack website [35].

TABLE I
SEM ALMANAC [35]

SYMBOL DEFINITION UNIT
NSAT Number of satellites −
WN Week number −
toa Time of applicability sec
PRN Pseudo-random number −
SV N SVN number −
URA URA number −
e Orbital eccentricity −
i0 Inclination offset sc
Ω̇ Rate of right ascension sc/sec√
a Square-root of semimajor axis m

Ω0 Longitude of orbital plane sc
ω Argument of perigee sc
M0 Mean anomaly sc
af0 Zero-order clock correction sec
af1 First-order clock correction sec/sec
L Satellite health −
SC Satellite configuration −

The almanac is used to simulate the entire constellation. In
case of a real application, where the more accurate ephemeris
data, sent by the satellites, are available, their use is mandatory.
For simulation purposes, the use of a set of data with respect
to the other is irrelevant, preserving the solution consistency.
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The complete procedure to estimate the satellite position
in the Earth-Centered Earth-Fixed (ECEF) reference frame,
starting from the knowledge of the almanac data, is extensively
described in [36] and reported for sake of clarity in TABLE II.

TABLE II
GNSS POSITION CALCULATION [36]

a = (
√
a)2 Semi-major axis

n0 =
√

µ
a3

Mean motion

δt = t− toe Time from Ephemeris time (ET)

M = M0 + n0δt Mean anomaly

M = E − e sinE Kepler’s equation

ν = tan−1

(
sinE
√

1−e2
cosE−e

)
True anomaly

Φ = ν + ω Argument of latitude

r = a(1− e cosE) Earth-Sat radius

xo = r cos Φ Orbital plane coord.
yo = r sin Φ

Ω = Ω0 + (Ω̇− Ω̇e)δt− Ω̇etoe Longitude of Ascending NodexEyE
zE

 =

cΩ −ci0sΩ
sΩ ci0cΩ
0 si0

[xo
yo

]
ECEF satellite coordinates

Once the position of every satellite is obtained in the ECEF
reference frame, the satellites that are visible from a point P
on the Earth surface can be calculated.

P

n
S1

S2

θS1 < θlim

θlim

ZE

Y E

XE

Fig. 1. Visible satellites calculation using the visibility cone. Visible satellites
are those with θSi

< θlim

These satellites are those with an elevation angle above the
horizon in the range 5 deg and 25 deg [37]. These values are
determined by the link budget and terrain orography. Once the
elevation angle is known, a visibility cone can be defined. The
cone angular aperture is θlim and is defined with respect to the
vector direction n as shown in Fig. 1. Every satellite inside
this cone is potentially visible from a receiver in P (such as S1

in Fig. 1), whereas those that orbit outside of it are not visible
(such as S2 in Fig. 1). In order to determine if a satellite is
visible or not, the following condition has to be verified

arccos

(
n · rSi

−P

‖rSi
−P‖

)
= θSi

< θlim (1)

where n = P/‖P‖ and the vector rSi
=
[
xESi

yESi
zESi

]
contains the ECEF coordinates of the satellite Si. The point
P is the position on the Earth surface of the GNSS receiver. In
a more general situation, the vector n is the pointing direction
of the GNSS receiver antenna.

B. Occlusion-points determination algorithm

In this section, the algorithm developed for the calculation
of the occluded points is presented. This algorithm has a
computational complexity of O(N).
The first step of the algorithm is to make the process column
independent. This step allows the parallel processing of each
column of the DEM matrix. This is achieved by resampling the
DEM on a non-Cartesian grid, whose cells are the projection of
the image plane on ground. A simplification of this 3D grid is
represented in yellow in Fig. 2. A local reference frame xf−yf
is defined for each slice on ground, relative to the projection
of a single matrix column. The origin of this reference frame
is the nearest grid cell to the projection of the satellite Si
on ground. xf is parallel to the main slice axis, whereas yf is
orthogonal to it. The algorithm processes each column starting
from the lowest absolute values of xf , which means that from
the example presented in Fig. 2, the points are processed from
P1 to P6. For the three points considered in Fig. 2, P6 is
occluded, whereas P1 and P5 are visible. This effect is relative
to a vertical switch in the point position on the image plane
xc − yc. Indeed, xfP6

> xfP5
, whereas xcP6

< xcP5
. The point

coordinates in the camera reference frame (CRF) are obtained
by means of a homogeneous transformation f


xc

yc

zc

1

 = f(P) = Tc
I

[
P
1

]
=

[
Rc
I −dcI

01x3 1

]
xI

yI

zI

1

 , (2)

where Rc
I and dcI are respectively the rotational matrix and the

translational vector (resolved in the camera reference frame)
which take into account the different orientation and origins
of the two reference frames. P is the vector containing the
coordinates of the generic point Pij of the DEM in the IRF.
The IRF is the reference frame used to represent the DEM. It
could be either a Geodetic or a North-East-Down (NED) or
ECEF reference frame. The homogeneous transformation Tc

I

is given by

Tc
I = Tc

gT
g
bT

b
I =[

Rc
g −dcg

01x3 1

] [
Rg
b −dgb

01x3 1

] [
Rb
I −dbI

01x3 1

]
(3)

where Tb
I projects the points from the inertial to satellite

(body) reference frame, Tg
b from body to gimbal and Tc

g from
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yc

xc

xI

yI

zI

i

j P6

P5

P1

1

2

3
4

5
6

Si

IMAGE PLANE

CAMERA FOOTPRINT

1 2 3 4 5 6

xf

yf

Fig. 2. Mesh geometry based on camera footprint and image formation by means of homogeneous transformation f . In the figure there are also the image
place xc − yc, the DEM matrix with the coordinate in the IRF (XI

DEM ) and CRF (XC
DEM )

gimbal to camera. The rotation matrix Rb
I is given by the

sequence of Euler rotation 313

Rb
I =

 cφcψ − sφcθsψ sφcθcψ + cφsψ sφsθ
−cφcθsψ − sφcψ cφcθcψ − sφsψ cφsθ

sθsψ −sθcψ cθ

 , (4)

the matrix Rg
b is

Rg
b =

 cθelcψaz
cθelsψaz

sθel
−sθel cψaz

0
−sθelcψaz

−sθelsψaz
cθel

 (5)

where θel is the gimbal elevation angle, defined in the xb−zb
plane, and ψaz is the gimbal azimuth angle defined in the
xb−yb plane. Considering that the satellites are generally off-
nadir with respect to the UAV platform, their FOV needs to be
centred around P. This is achieved by introducing a gimbal
rotation that aligns the camera principal axis with the vector
between the camera and the point P. This rotation justifies the
use of Tg

b in Eq. 3. The angles ψaz and θel used in Eq. 5 are
calculated by simple geometric relations as follows

ψaz = arctan 2

(
ySi − yP
xSi
− xP

)
θel = arccos

(
zP − zSi

‖rSi −P‖

)
− π

2

(6)

where the arctan 2 indicates the 4-quadrant inverse tangent.
Considering that Eq. 6 is applied only to the satellites in the
visibility cone, the maximum value of ψaz is bounded by the
visibility cone aperture shown in Fig. 1. This is true if the main
lobe of the satellite antenna points toward the Earth centre.
The matrix Rc

g is constant if the relative motion between the
antenna and gimbals is neglected

Rc
g =

0 0 −1
0 1 0
1 0 0

 . (7)

In the case the DEM is defined in a reference frame different
from ECEF, a further transformation is required. The transla-
tional vectors dbI in Eq. 3 for a generic satellite is

dbI = Rb
IrSi

. (8)

The same concept applies to dgb and dcg . The last parameter to
be determined in order to completely characterize the camera
model is the Field Of View (FOV). This value controls the
extension of the DEM surface to be processed. The goal is
to solve the occlusion problem in a control volume Ω. To
keep only Ω in the FOV, some control parameters have to be
chosen. Considering that the algorithm is built on the camera
model, the FOV value is dependent on the focal length, size
and number of pixels. Keeping fixed the size and number of
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pixels, the only free variable to define the FOV is the focal
length. This value is calculated from similarity triangles, by
assuming that the ratio between the focal length and the image
plane size is proportional to the ratio between the distance of
the satellite from the point P and the control volume width
δΩ. By applying this rule, an approximative value of the focal
length fci for i = 1 . . . Ns, is calculated as follows

fci ≈
npδp‖rSi −P‖

δΩ
, (9)

where np is the maximum number of pixels between npx and
npy and δp is the pixel dimension. Once the xc coordinates of
the projected points are available, it is possible to discriminate
between visible and occluded points. Moving along xf , as
already mentioned, the xc values of two consecutive points
are compared; if the value of xc relative to the second grid
point is lower that the value of xc relative to the first one, the
second point is visible and its xc value is stored in a temporary
variable xcmax and used for the next check. In the case the
value of xc relative to the second point is lower than the first
one, the point is occluded and xcmax remains unchanged. From
a mathematical point of view

xcmax = max
(
xcPk+1

, xcmax

)
= max (f (Pk+1) · e1, x

c
max)

(10)

Pocc
k+1 =

{
0 xcmax = xcPk+1

1 otherwise
(11)

where e1 = [1, 0, 0, 0] and Pocc is a boolean vector which
stores the positions of the occluded points. Going back to the
example of Fig. 2, starting from P1, the value of xcmax is
equal to xcP1

, namely xcmax = xcP1
. Moving to the second

point, xcP5
> xcmax (blue point above green point), then P5 is

visible and xcmax = xcP5
. Moving forward, it happens that the

value of xcP6
< xcP5

= xcmax, and, as a consequence, P6 is
occluded.

An alternative approach to calculate the occlusion points
is to use the ray-triangle intersection algorithm [38]. This
algorithm verifies if there is an intersection between a ray
r(t) and a triangle, defined by its three vertices V0, V1 and
V2. The ray r(t) is defined as

r(t) = O + tD (12)

where the vectors O and D are the ray origin and direction.
A generic point PT (u, v) on a triangle can be defined as a
function of its coordinates (u, v) as follows

PT (u, v) = (1− u− v)V0 + uV1 + vV2, (13)

where V0,V1 and V2 are the triangle vertex coordinates.
Equating Eq. 12 and Eq. 13, the following linear system in
the variables t, u, and v is obtained

[
−D V1 −V0 V2 −V0

] tu
v

 = O−V0. (14)

The solution of this system provides the coordinates of the
intersection points. If there is an occluded point along the ray,
more than one intersection is found. In this case, the visible
point is the one relative to the lowest value of the variable t,
whereas all the others are the occluded points. A drawback of
this algorithm is that, given a single ray, the system of Eq. 14
has to be solved for all triangular patches representing the
DEM surface. Considering that this process has to be repeated
for each ray of the image plane and for each visible satellite,
it could be computationally demanding. For this reason the
proposed solution has been preferred. A comparison of the
two algorithms can be found in [31].

C. Morphing surface determination

The Not-Flight Zones (NFZ) are defined as part of a volume
where the DOP of visible satellites is greater than a given
threshold. In order to calculate the NFZ, the first step is to
define the control volume Ω. The volume is centred around
the receiver, and the three dimensions are chosen according
to the receiver dynamics: the slower the motion along a given
direction, the smaller the dimension in that direction. This
choice is driven by the idea that the control volume is the 3D
space, inside of which the trajectory must be locally optimised.
Considering that the occluded regions inside the volume are
function of the satellites motion, it is useless to increase
the computational effort by processing regions that can not
be physically reached by the platform, before a consistent
variations in the not-flight map is experienced. Once the
boundaries of Ω have been defined, the occlusion mask Pocc

can be calculated for each satellite, by using the algorithm
described in the previous section. When the occluded points
on the DEM surface are available, it is easy to extend this
property to the entire volume (hatched area in Fig. 3). The
upper bound of these regions are characterized by the rays
rSP connecting the satellite position to the mountain peak
that fore-runs the first invisible points, as shown in Fig. 3.
In this figure, for each satellite, a different pattern highlights
the corresponding invisible regions. In the white area of the
control volume, all three satellites are in view. The number
of visible satellites is indicated by the circled number in that
region. In the overlapped regions, more than one satellite is
obscured by the DEM. The worst situation is experienced in
the valley between the two mountains, where there are zero
satellites in view. In order to determine the flight zones (FZ)
and not-flight zones, the DOP value associated to the visible
satellites in each of these regions has to be calculated. The
no-flight zones are those having a DOP greater than a given
threshold DOPlim

PNFZ = {P ∈ Ω | DOP (P) ≥ DOPlim } . (15)

The DOP for a given point P =
[
x y z

]
is

DOP =
√
σ2
x + σ2

y + σ2
z (16)

where the σi are the diagonal elements of the matrix Qs
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S 1

S 2

S 3rS P

DEM
Occlus. S 3

Occlus. S 2

Occlus. S 1

0

1
1

1

2

2

3

Control Volume Ω

Fig. 3. Occluded regions for three different satellites. The circled numbers indicate the effective number of visible satellites in that region of the control
volume Ω

Qs =


σ2
x σxy σxz σxt

σxy σ2
y σyz σyt

σxz σyz σ2
z σzt

σxt σyt σzt σ2
t

 .
This matrix is given by the following relation [39]

Qs =
(
ATA

)−1
(17)

where A is

A =



xS1
−x
ρ1

yS1
−y
ρ1

zS1
−z
ρ1

−1
xS2
−x
ρ2

yS2
−y
ρ2

zS2
−z
ρ2

−1
...

xSi
−x
ρi

ySi
−y
ρi

zSi
−z
ρi

−1
...

xSNs
−x

ρNs

ySNs
−y

ρNs

zSNs
−z

ρNs
−1


.

The value of ρi is given by

ρi=1...Ns
=
√

(xSi
− x)2 + (ySi

− y)2 + (zSi
− z)2 (18)

where Ns is the number of visible satellites in the point P of
the control volume. The ECEF coordinate superscript E has
been omitted for simplicity of notation.
In order to speed-up the code execution, if the control volume
dimension is not very large (≈ 1 km), it is possible to assume
that the DOP does not change significantly from point to point,
so that its value can be assumed constant over the region, with
equal number of visible satellites. This approximation requires,
for the example shown in Fig. 3, to calculate 6 values of the

DOP (excluding the region with zero visible satellites) instead
of calculating it for each cell of the volumetric mesh of Ω.
The validity of this assumption is confirmed by the analysis of
the DOP distribution presented in Section IV. The schematic
situation presented in Fig. 3 has only the intention to highlight
some algorithm peculiarities. The number of satellites has been
set equal to 3 to provide the reader with an explicative figure.
Once the 3D DOP map inside the control volume is calculated,
the DMM can be obtained as the isosurface enveloping the
points PDMM , where

PDMM = {P ∈ Ω | DOP (P) = DOPlim } . (19)

This new DEM has been called DMM in Section I, because
the surface shape is a time-dependent function of the satellite
motion. This technique is very useful to solve the problem
related to non direct signal reception. If the platform is flying
in the rightmost region of Fig. 3, the signal of the satellite S1 is
shielded by the mountain. In this situation, if the user antenna
receives a signal from this satellite, certainly it is corrupted by
multiple reflections because the satellite is in NLOS. For this
reason, in order to avoid a measure degradation, the NLOS
information can be used to filter-out the wrong measurements
to mitigate this effect. When the DMM is available, it can be
used by the path planning algorithm to optimise the platform
trajectory, in order to avoid regions where the number of
visible satellites is dramatically reduced, the DOP value is
very high and the risk of receiving corrupted measurement is
large.

III. SAFETY BUBBLE OBSTACLE AVOIDANCE (SBOA)
In this section an interesting application, deriving from the
previous algorithm, is described. This application refers to the
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intrinsic capability of an unmanned platform of avoiding an
obstacle. To understand how the algorithm works, a platform
equipped with a navigation system that integrates measure-
ments from a GNSS and Inertial Measurement Unit (IMU) is
considered. Sensor integration is generally performed using a
Kalman Filter (KF), or more advanced and sophisticated inte-
gration techniques such as the one described in [40], [41]. The
filter output is generally characterised by the estimated state
vector x̂n|n and a covariance matrix Pxx

n|n that quantifies
the error associated to the state vector estimation. The Linear
Kalman Filter algorithm is shown in TABLE III.

TABLE III
LKF ALGORITHM [40]

x̂n|n−1 = Fx̂n−1|n−1 + un

Pxx
n|n−1 = FPxx

n−1|n−1FT + Q

ẑn|n−1 = Hx̂n|n−1

Pzz
n|n−1 = HPxx

n|n−1HT + R

Pxz
n|n−1 = Pxx

n|n−1HT

Kn = Pxz
n|n−1(Pzz

n|n−1)−1

x̂n|n = x̂n|n−1 + Kn(z− ẑn|n−1)

Pxx
n|n = Pxx

n|n−1 −KnPzz
n|n−1Kn

T

The matrix F is the state transition matrix, un is a known
control vector, Q is the noise covariance matrix that takes into
account the error associated to the inaccuracy of the dynamic
model, H is the sensor measurement matrix, R is the sensor
noise covariance matrix, ẑn|n−1 is the predicted measurement
vector, z is the vector containing the sensor measurements and
Kn is the Kalman gain. The updated state covariance matrix

Pxx
n|n = Pxx

n|n−1 −KnPzz
n|n−1Kn

T (20)

is a function of both the Kalman gain Kn, the innovation
matrix Pzz

n|n−1 and the predicted state covariance matrix
Pxx

n|n−1. Substituting in the second term of Eq. 20 the rela-
tive expressions of Kn and Pzz

n|n−1, taken from TABLE III,
the following formulation is obtained

KPzzKT =
[
Pxz(Pzz)−1

]
Pzz

[
Pxz(Pzz)−1

]T
=

PxxHT

HPxxHT + R

(
HPxxHT + R

)( PxxHT

HPxxHT + R

)T
.

(21)

In Eq. 21, the subscript time steps n have been omitted for
clarity. Defining {

C1 = PxxHT

C2 = HPxxHT

and substituting them in Eq. 21 the following equation is
obtained

KPzzKT =
C1

C2 + R
(C2 + R)

(
C1

C2 + R

)T
. (22)

time

space

tk = 1

tk = 2

tk = 3

tk = 4

safety bubble Φ

occluded region

dΦ

rΦ

Fig. 4. Safety bubble inflation when the receiver moves in the occluded region

Substituting Eq. 22 in Eq. 20, the state covariance matrix
Pxx

n|n is written as function of the sensor covariance matrix
R as follows

Pxx
n|n = F (R) = Pxx

n|n−1 −
C1C1

T

(C2 + R)
T
. (23)

As already introduced, the matrix R quantifies the sensor
accuracy. This implies that the higher the sensor measurement
error, the higher the matrix values. For simplicity, a scalar
problem is considered here, so the matrices of Eq. 23 reduce to
scalar values. If two sensors are considered, where the first one
is more accurate than the second one, it results that R1 < R2,
where Ri (with i = {1, 2}) indicates the covariance value
associated to the sensor i. Substituting these two parameters
in Eq. 23 the following inequality is verified

Pxx
1 n|n < Pxx

2 n|n. (24)

As the state covariance matrix Pxx, associated to the sen-
sor #2, is bigger than the one associated to sensor #1, the
state estimation uncertainty associated to sensor #2 is greater
than the uncertainty associated to sensor #1. Considering
the diagonal elements of Pxx, it is possible to draw an
n-dimensional ellipsoid that defines the confidence domain
around the estimated vector x̂. This ellipsoid, or safety bubble,
is indicated as Φ(σ), where σ =

[
σx̂ σŷ σẑ

]
is the vector

of the predicted standard deviations, obtained from the square
root of the diagonal elements of Pxx

n|n. From the inequality
relation of Eq. 24 it is easy to figure out that the safety bubble
associated to R2 is bigger than the one associated to R1.
Starting from these considerations, the safety bubble obstacle
avoidance (SBOA) algorithm can be explained. The exam-
ple shown in Fig. 4 is considered. If the platform flies in
normal conditions, with all the satellites in view, the sensor
accuracy is the highest, and consequently the safety bubble
has the minimum dimensions. For simplicity, we assume that
σx̂ = σŷ = σẑ , for this reason the safety ellipsoid degenerates
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into a sphere with radius rΦ. In order to take into account
also the DEM uncertainty (it can span from few centimetres
to some metres), the safety bubble is increased accordingly. By
including the DEM uncertainty in the safety bubble, the DEM
uncertainty becomes zero. An obstacle avoidance algorithm
has the aim to optimise the platform trajectory, or the evasive
manoeuvre, so that the distance dΦ between the platform and
the obstacle is greater than the safety bubble size

dΦ ≥ rΦ. (25)

This condition is shown for the time step tk = 1 in Fig. 4.
Considering that the safety bubble radius is a confidence
interval associated to a variance σ, its value is calculated
once a probability p(σ) is chosen. For safety reasons, it
is not allowed to violate the inequality of Eq. 25, and the
minimum flying distance is dΦ = rΦ , shown in Fig. 4 for
tk = 2. If the platform moves inside the satellite occluded
region, the conventional navigation system do not change the
size of the safety bubble associates to the estimated state x̂
(tk = 3) because R is kept constant. In the real case, the GNSS
performance is degraded because of the occlusion effect and
the increase of the DOP caused by the reduction of visible
satellites. By including this sensor degradation information
in the measurement covariance matrix R, the safety bubble
increases as shown by the Eq. 24 (violet ball for tk = 3
in Fig. 4). By neglecting this bubble inflation, the navigation
system performs a manoeuvre with the constrain dΦ = rΦ,
where rΦ is the value associated to the nominal situation. By
performing this manoeuvre, the real safety bubble intersects
the obstacle surface. This means that the probability of impact-
ing with the obstacle is higher than the probability assured by
the safety bubble radius. If the SBOA algorithm is applied,
as soon as that the platform flies in the occluded region, the
DOP value in that region increases the covariance matrix R,
increasing immediately the safety bubble dimensions. As a
consequence of this bubble inflation, the minimum allowed
distance dφ becomes bigger than the previous one, pushing
the platform far from the obstacle surface (tk = 4). This
”repulsive effect” increases with increasing values of the local
DOP, forcing the body to fly at a safer distance from the
obstacle.
In Fig. 5, the block scheme that summarizes the procedure
to calculate the SBOA is presented. The input values are the
satellite constellation, DEM and UAV position. The algorithm
to calculate the occlusion points, and consequently the non
visible satellites in each point of the control volume Ω, is
applied. At this point, a list of visible satellites is associated to
each voxel of Ω. By applying Eq. 16 to the visible satellites in
each voxel, the DOP map is obtained. From this map the DMM
can be calculated using Eq. 15. The measurement covariance
matrix R is dynamically update according to the local value
of the DOP as follows

R = DOP


µ1 0 0 . . . 0
0 µ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . µNs

 (26)

GNSS

UAV Non visible
satellites DEM

DOP
Map in Ω

Not Flight
Zone and

DMM

Measurement
covariance
matrix R

Trajectory
optimization

Pxx
n|n UAV

Safety
Bubble Φ(σ)

Fig. 5. Scheme to calculate the Safety Bubble and Digital Morphing Model

where µ is a proportionality coefficient. Using this matrix in
Eq. 23, the state covariance matrix Pxx

n|n can be calculated.
The standard deviations σ =

[
σx̂ σŷ σẑ

]
, required for the

calculation of the safety bubble Φ(σ), is obtained by taking
the square root of the diagonal components of Pxx

n|n. A more
conservative approach, adopted in this paper, is to calculate a
spherical safety bubble, for which the radius is

rΦ = ε
√∑

diag
(
Pxx

n|n
)
. (27)

where ε is an integer multiplicative coefficient, which is used
to regulate the confidence interval.

IV. NUMERICAL RESULTS

This paragraph shows how the algorithm behaves when a
more realistic scenario is presented. The 3D Digital Elevation
Map is part of the Mount Mitchell in Yancey County (North
Carolina), digitalized with a map resolution of ≈30 m. For
real applications the use of a more accurate DEM is required.
This particular scenario has been chosen in order to highlight
the potentiality of the algorithm when a very complex scene
is processed. The mountainous scenario is preferred due to the
variety of missions that can be performed performed, involving
vehicles, pedestrians or different kind of aircraft. In order to
project the DEM in the CRF, the homogeneous transformation
of Eq. 2 has been used. For this simulation, the control volume
dimensions equate exactly the map size, imposing the same
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mesh discretization. The control volume resolution along the
three Cartesian axes in meters is δΩ =

[
48.5 49 12

]
. The

DEM dimensions are respectively 10 km×13 km, whereas the
maximum mountain altitude above the World Geodetic System
WGS84 is ≈2000 m. The number of pixels along xc and yc are
respectively npx = npy = 300, whereas the pixel dimensions
are δpx = δpy = 3.6× 10−6 m.

Fig. 6. 2D section of the control volume showing the number of visible
satellites

Fig. 7. 2D section of the control volume showing the value of the DOP

The value of θlim that defines the visibility cone aperture is
θlim = 85 deg. The results proposed in this paper have been

Fig. 8. DMM over the entire DEM relative to DOPlim = 2.5 for the
situation of Fig. 6 and Fig. 7

Fig. 9. DMM over the entire DEM relative to DOPlim = 2.5 with a worse
satellite geometry

obtained using the software MATLAB on an Intel Core i7-
4710HQ 64 bit, 2.50 GHz with 16 GB RAM.

A. DMM results

In Fig. 6 the DEM with a 2D section of the control volume
is shown. The simulated Global Positioning System (GPS)
almanac data refer to the 02:46 pm (CET) of February the
22th 2017. The theoretical results presented graphically in
Fig. 3 are confirmed by the simulation. The colormap indicates
the number of visible satellites in any point of the control
volume. As expected, the minimum number of visible satellites
is registered in the valley with only 6 visible satellites over
a maximum of 12 in the upper part of the control volume.
In Fig. 7 the control volume colormap indicates the values
of the DOP relative to the visible satellites. As expected, the
highest value of the DOP corresponds to the region where the
number of visible satellites has a minimum (blue region in
Fig. 6). Considering that the number of satellites involved in
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Fig. 10. Digital Elevation Model with 3D UAV trajectory profile in red. The
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visible satellites (blue) along the trajectory. The third plot shows the DOP
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the calculation of the DOP is less influential than the satellite
geometry, the DOP map in the control volume has a different
geometry compared to that of Fig. 7. This means that some of
the invisible satellites have a very low contribution in the DOP
value and the colormap resolution is not sufficient to capture
this variation.

In Fig. 8 the DEM with a superposition of the DMM is shown.
The DMM has been calculated using a value of DOPlim =
2.5. From the definition of PNFZ , all the points below the
DMM have a DOP value higher than the selected threshold.
This means that for path planning purposes this virtual DEM
should be used instead of the real one. A more critical situation
is shown in Fig. 9, where, because of the bad geometry of the
visible satellites, the value of the DOP in the valley increases
everywhere above the threshold, eliminating the entire region
from the flight zone. The satellite geometry relative to this
situation comes from a different simulation time with respect
to the results of Fig. 6, 7 and 8.

B. SBOA results

The algorithm is applied to the simulated trajectory shown in
Fig. 10. The trajectory refers to the 15th of November 2016
at 07:30 pm (CET). Fig. 10 also reports the total number
of satellites in the visibility cone and the effective number
of visible satellites in each point of the trajectory. Due to
the occlusion of some satellites, the value of the DOP is
subject to abrupt variations. This figure validates also the
statement of Section II-C about the constancy of the DOP for
relatively small spatial variations. The simulation time required
to process the entire trajectory is 1.16 sec. Using the machine
specified in Section IV the system runs at about 500 Hz. The
dynamical model assumed in the Kalman filter for the UAV
motion is a constant velocity system. The discrete time state
space equation is described by the following linear relation

xn = F · xn−1 (28)

where the state space vector is

x =
[
x ẋ y ẏ z ż Cb Cd

]T
(29)

where x, y and z the NED coordinates and Cb and Cd are
the clock error and the clock error drift. The state transition
matrix F is defined as follows

F =



F1︷ ︸︸ ︷[
1 ∆t
0 1

]
02×2 02×2 02×2

02×2 F1 02×2 02×2

02×2 02×2 F1 02×2

02×2 02×2 02×2 F1

 , (30)

where ∆t is the integration time step. The system noise
covariance matrix Q is

Q =


qx

Q1︷ ︸︸ ︷[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
02×2 02×2 02×2

02×2 qyQ1 02×2 02×2

02×2 02×2 qzQ1 02×2

02×2 02×2 02×2 qcQ1


(31)

where qx, qy , qz and qc are the noise Power Spectral Densities
(PSD) along each Cartesian direction and for the clock error.
The non-linear measurement model is made by the pseudor-
anges between the visible satellites and the on-board receiver

ẑ = h(xn) =
[
ρ̂1 ρ̂2 . . . ρ̂Ns

]T
. (32)

The pseudorange ρ̂i is defined as follows

ρ̂i=1...Ns = ρi=1...Ns + Cb (33)

where Ns is the number of satellites and ρi is defined in
Eq. 18. The measurement matrix H is the Jacobian of h(xn)
and is defined as follows
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Fig. 11. Error of the estimated position with respect to the real one, for each Cartesian coordinate (∆x, ∆y and ∆z). The coloured area is the 3σ confidence
interval for each coordinate. The black solid line is the confidence interval relative to the norm of the three components σ =

√
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ẑ . The latter

is used to define a spherical Safety Bubble. The upper figure presents the results relative to the weak solution. The lower figure shows the results for the
proposed approach

H =



∂ρ̂1
∂x

∂ρ̂1
∂x ∆t · · · ∂ρ̂1

∂z
∂ρ̂1
∂z ∆t 1 0

∂ρ̂2
∂x

∂ρ̂2
∂x ∆t · · · ∂ρ̂2

∂z
∂ρ̂2
∂z ∆t 1 0

...
...

. . .
...

...
...

...
∂ρ̂Ns

∂x
∂ρ̂Ns

∂x ∆t · · · ∂ρ̂Ns

∂z
∂ρ̂Ns

∂z ∆t 1 0

 (34)

where the derivatives are calculated as

∂ρ̂i
∂ξ

= −ξSi
− ξ
ρi

(35)

with ξ = x, y, z. The signal accuracy can be expressed as a
function of different error sources

σρ = σρ
(
δρ,clock δρ,atm δρ,rec

)
(36)

where δρ,clock, δρ,atm and δρ,rec are respectively the clock,
tropospheric and receiver errors. Clock and receiver errors
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are modelled as a zero mean white noise, whereas δρ,atm is
obtained by means of Niell Mapping Function

δρ,atm = Tdry(zNED)Mdry(E) + TwetMwet(E). (37)

E is the satellite elevation, whereas Tdry and Twet represent
respectively dry and wet delay at altitude zNED. For a
complete formulation of Tdry, Twet, Mdry and Mwet refer to
[42], [43]. The multiple reflected signal has been simulated by
using the approach proposed in [44]. In this case, by knowing
which are the non visible satellite, their position, the receiver
position and the DEM, with the hypothesis of single reflection,
the signal delay has been calculated and used to simulate the
noisy measurements. Considering that the simulation is carried
out in a mountain canyon, a signal reflected by the side of a
mountain has to travel at least half width of the canyon before
reaching the receiver antenna. This justifies the high error in
Fig. 11 and 12 in the presence of non-visible satellites. The
measurement covariance matrix R is defined in Eq. 26 and is
dynamically updated, based on the local value of DOP.
To assess the method performance, in this section the pro-
posed method is compared with a weak solution technique,
which is obtained with the hypothesis that all the received
measurements are taken into account. In this situation, the
measurements relative to the satellites that are in NLOS are
affected by multiple reflections before reaching the receiving
antenna. The proposed method uses the value of the DOP,
obtained only by taking into account the visible satellites,
to scale the value of the components of the matrix R. The
weak solution, on the contrary, uses the value of the DOP
associated to all the satellites in the visibility cone and scales

the components of the matrix R by choosing a higher value
of the multiplicative coefficient µi for the satellites that are
not in line of sight. In Fig. 11 the outcome provided by the
weak solution (upper) and the proposed approach (lower) is
presented. The scatter solution is the error of the estimated
position coordinates with respect to the real platform position.
The coloured regions are the 3σ confidence intervals for each
Cartesian component. The black solid line indicates the 3σ
confidence intervals for the norm of the three single compo-
nents σ =

√
σ2
x̂ + σ2

ŷ + σ2
ẑ . This value is used to calculate

the Safety Bubble Φ. From the results of the weak solution,
it is clear that the system underestimates the uncertainty
associated to the estimated position. The high number of
outliers, in fact, confirms the weakness of this approach that
uses, for the position estimation, measures affected by multiple
reflections. The safety bubble associated to this approach is
called Φw. The method proposed in this paper generates a
more reactive confidence interval capable of accommodating
abrupt variations in the measurement accuracy. In Fig. 12 the
Safety Bubble radius rφ along the trajectory and the total
error ∆ =

√
∆x2 + ∆y2 + ∆z2 for the weak and proposed

solution are presented. The value of ∆ is the distance between
the true and the estimated solution. The upper part of this
figure is relative to the proposed solution, whereas the lower
part is the safety bubble radius associated to the weak solution.
The weak solution provides an estimation of the platform
position that is inside the Safety Bubble with a probability of
34 %, whereas the Safety Bubble generated by the proposed
method contains the position estimation with a probability
of 76.4 %. The exclusion of NLOS satellites and the use
of a dynamic covariance matrix R can guarantee a more
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Fig. 13. Difference between the total error ∆ obtained with the weak solution and the total error provided by the proposed method. For the 63 % of time
this difference is positive

Fig. 14. Comparison of the true, GPS and estimated trajectory. Map image: Google Earth Pro.

accurate solution and provide, as mathematically demonstrated
in Section III, a reactive Safety Bubble capable of indicating
which is the minimum safety distance to maintain from the
DEM. Intuitively, the higher accuracy of the solution can
be seen as a consequence of the exclusion of corrupted
measurements from the filtering process. The inclusion of
these measurements, as in the case of the weak solution,
degrades the position estimation accuracy even if the gain of
the Kalman filter associated to the corrupted measurements
is very low (refer to TABLE III). This concept is confirmed
by the numerical results, where for the 63 % of time the total
error of the proposed method is lower than the one provided
by the weak solution. The difference between the total error

of the weak solution and the one of the proposed method is
shown in Fig. 13.

C. Experimental results

The algorithm has been validated by performing a field
experiment. The experiment was performed during daytime
in the city centre of Turin, Italy. The test consisted in taking
GPS measurements using a GPS receiver in an urban canyon.
During the experiment a small unmanned vehicle was operated
around a building, surrounded, on two sides, by buildings with
an height of 30 m. Fig. 14 shows the real trajectory (blue), the
measured trajectory (red) and the estimated one (green). The
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Fig. 15. DEM with visible (green) and non-visible (red) satellite-platform directions at 20 sec from the beginning of the experiment. The real trajectory is
black

linear Kalman filter is used to estimate the platform position
regardless of the EKF used for the simulation in the previous
section. This condition is driven by the availability of the GPS
positions instead of the pseudoranges. Fig. 15 shows the DEM
with the line connecting the satellites and the platform position
at 20 sec from the beginning of the experiment. The lines
associated to the visible satellites are green, whereas those
associated to the occluded ones are red. Fig. 16 shows the
number of visible satellites, the DOP along the trajectory and
the position errors. The 1σ safety bubble is shown in the third
plot of Fig. 16. The total position error is contained in the
safety bubble for the 63.7 % of the experiment for the 1σ
condition. This percentage rises to the 94.6 % if the 2σ safety
bubble is used.

V. CONCLUSIONS

This paper presents a very simple and efficient algorithm
(O(n)) to determine the invisible regions of a generic 3D
surface, when observed from a given point of view. In this
paper the algorithm is used to calculate the number of visible
satellites in a control volume and the consequent DOP distribu-
tion. This information is used to calculate a dynamic DEM for
path planning purposes and the Safety Bubble that indicates

which is the minimum distance that should be maintained from
the DEM. To assess its performance, the proposed method
has been compared with a weak solution technique. The
experimental results, obtained for a challenging mountainous
scenario, show that the safety bubble dimension ranges from
10 m to 50 m. In this condition the probability that the safety
bubble contains the platform is above 70 %, which is a clear
improvement with respect to the weak solution. The algorithm
is conceived to be easily integrated with already certified and
operating navigation systems, as the terrain awareness and
warning system (TAWS). In addition, any technique developed
to enhance the navigation in GNSS-denied spaces can be easily
integrated with this system. Potential algorithm implications,
like the SBOA system have been tested so as to highlight the
generality of the approach and its suitability for applications
involving the autonomous navigation.
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