243 research outputs found

    Optimised search heuristic combining valid inequalities and tabu search

    Get PDF
    This paper presents an Optimised Search Heuristic that combines a tabu search method with the verification of violated valid inequalities. The solution delivered by the tabu search is partially destroyed by a randomised greedy procedure, and then the valid inequalities are used to guide the reconstruction of a complete solution. An application of the new method to the Job-Shop Scheduling problem is presented.Optimised Search Heuristic, Tabu Search, GRASP, Valid Inequalities, Job Shop Scheduling

    Optimised search heuristics: combining metaheuristics and exact methods to solve scheduling problems

    Get PDF
    Tese dout., Matemática, Investigação Operacional, Universidade do Algarve, 2009Scheduling problems have many real life applications, from automotive industry to air traffic control. These problems are defined by the need of processing a set of jobs on a shared set of resources. For most scheduling problems there is no known deterministic procedure that can solve them in polynomial time. This is the reason why researchers study methods that can provide a good solution in a reasonable amount of time. Much attention was given to the mathematical formulation of scheduling problems and the algebraic characterisation of the space of feasible solutions when exact algorithms were being developed; but exact methods proved inefficient to solve real sized instances. Local search based heuristics were developed that managed to quickly find good solutions, starting from feasible solutions produced by constructive heuristics. Local search algorithms have the disadvantage of stopping at the first local optimum they find when searching the feasible region. Research evolved to the design of metaheuristics, procedures that guide the search beyond the entrapment of local optima. Recently a new class of hybrid procedures, that combine local search based (meta) heuristics and exact algorithms of the operations research field, have been designed to find solutions for combinatorial optimisation problems, scheduling problems included. In this thesis we study the algebraic structure of scheduling problems; we address the existent hybrid procedures that combine exact methods with metaheuristics and produce a mapping of type of combination versus application and finally we develop new innovative metaheuristics and apply them to solve scheduling problems. These new methods developed include some combinatorial optimisation algorithms as components to guide the search in the solution space using the knowledge of the algebraic structure of the problem being solved. Namely we develop two new methods: a simple method that combines a GRASP procedure with a branch-and-bound algorithm; and a more elaborated procedure that combines the verification of the violation of valid inequalities with a tabu search. We focus on the job-shop scheduling problem

    An efficient memetic, permutation-based evolutionary algorithm for real-world train timetabling

    Get PDF
    Train timetabling is a difficult and very tightly constrained combinatorial problem that deals with the construction of train schedules. We focus on the particular problem of local reconstruction of the schedule following a small perturbation, seeking minimisation of the total accumulated delay by adapting times of departure and arrival for each train and allocation of resources (tracks, routing nodes, etc.). We describe a permutation-based evolutionary algorithm that relies on a semi-greedy heuristic to gradually reconstruct the schedule by inserting trains one after the other following the permutation. This algorithm can be hybridised with ILOG commercial MIP programming tool CPLEX in a coarse-grained manner: the evolutionary part is used to quickly obtain a good but suboptimal solution and this intermediate solution is refined using CPLEX. Experimental results are presented on a large real-world case involving more than one million variables and 2 million constraints. Results are surprisingly good as the evolutionary algorithm, alone or hybridised, produces excellent solutions much faster than CPLEX alone

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    Lot sizing and furnace scheduling in small foundries

    Get PDF
    A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved

    Optimised decision-making under grade uncertainty in surface mining

    Get PDF
    Mining schedule optimisation often ignores geological and economic risks in favour of simplistic deterministic methods. In this thesis a scenario optimisation approach is developed which uses MILP optimisation results from multiple conditional simulations of geological data to derive a unique solution. The research also generated an interpretive framework which incorporates the use of the Coefficient of Variation allowing the assessment of various optimisation results in order to find the solution with the most attractive risk-return ratio
    corecore