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Abstract:  A lot-sizing and scheduling problem prevalent in small market-driven foundries is 

studied.  There are two related decision levels: (1) the furnace scheduling of metal alloy production, 

and (2) moulding machine planning which specifies the type and size of production lots. A mixed 

integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in 

reasonable computing time for non-small instances.  As a result, a faster relax-and-fix (RF) 

approach is developed that can also be used on a rolling horizon basis where only immediate-term 

schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants 

of a local search method are also developed and tested using instances based on the literature. 

Finally, foundry-based tests with a real order book resulted in a very substantial reduction of 

delivery delays and finished inventory, better use of capacity, and much faster schedule definition 

compared to the foundry’s own practice.  
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1. Introduction 

Foundries are common in every region of Brazil, producing many types of products, ranging 

from simple items for domestic use to sophisticated parts for the automobile and machine tool 

industries.  According to the Brazilian Foundry Association [1], the sector is growing rapidly, 

having produced over 12,000 tonnes a day (October/2005) and directly employing about 60,000 

people.  

Foundries can be classified as either captive or market-driven.  The former tend to be part of 

large companies, such as car manufacturers, that totally absorb the foundry production, composed 

of large quantities of a small number of parts with relatively stable demand.  On the other hand, 

market-driven foundries are generally small or medium sized companies that nevertheless produce a 

huge range of items with vastly varying demand.   While captive foundries use a small number of 

different metal alloys, market-driven foundries need to work with a wide variety due to the diversity 

of their clients.  This paper focuses on the problem of planning and scheduling production in small 

market-driven foundries. 

Numerous researchers have studied lot sizing and setup scheduling problems, with reviews by 

[2-10]. However, there is little published research on such problems in foundries, and even less 

concerned with market-driven foundries. Santos-Meza et al. [11] studied the problem in small and 

medium-sized foundries, while Araujo and Arenales [12] researched a large captive foundry.  

Sounderpandian et al. [13] and Gravel et al. [14] also studied to large foundries, but dealt 

specifically with the problem of job sequencing on machines. Most papers on this topic are 

concerned with production scheduling in large steel plants.  By their nature, such plants do not have 

moulding sections since they produce steel sheets, of varying sizes and types, in rolling machines 

with cylinders that are configured according to the sheet specifications.  Tang et al. [15] published a 

review of research on production planning and scheduling in steel production, while a variety of 

papers have studied the practical problems found in large steel plants, including [16-23].  

In practice, the problem is tackled sequentially.  The lot sizing of foundry products is carried 

out first, taking into account their demand and due dates. The production of alloys is then scheduled 

as a function of the lot sizes of the end products. However, this approach can result in a poor 

furnace schedule given the lack of two-way linkage between the lot sizing of end products and the 

scheduling of alloys. In this paper, we propose an optimization model where the two problems are 

solved in an integrated manner. The model put forward in this paper is closely related to the General 

Lot Sizing and Scheduling Problem (GLSP) and its extensions [8, 24-28]. The GLSP schedules 

multiple products on a single machine and allows many setups in each single ‘large-bucket’ time 

period. This paper adapts the GLSP to include backlogs and product-group setups, with an 

emphasis on rolling horizon use.  
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The review by Karimi et al. [10] highlights the development of heuristics with reasonable 

speed and solution quality for this kind of model as an important research area. Recent research by 

Gupta and Magnusson [29] into capacitated lot sizing with sequence-dependent setup costs states 

that it is still difficult to obtain near-optimal solutions for industrial-size problems.  Dillenberger et 

al. [30] formulated a lot sequencing and sizing model with representation of sequence-independent 

setup times on multiple machines. The resulting mixed integer programming (MIP) model is 

difficult to solve optimally for large realistic problems, and so the authors resorted to the fix-and-

relax method (Beraldi et al. [31]), more widely known as relax-and-fix (Wolsey [32], Kelly and 

Mann [33]). The current paper uses a similar basic approach. Dillenberger et al. [30] illustrated the 

viability and value of the relax-and-fix method, applying it to sizeable real problems from three 

IBM plants, and obtaining acceptable solutions in reasonable computing time, even on the slower 

machines of the 1990s.  

Section 2 describes the lot sequencing and sizing in the context of found while section 3 

presents the results MIP model. An initial attempt to optimally solve this model using advanced 

optimisation software was not successful.  To try to overcome this, section 4 presents rolling 

horizon solution strategy, but the software still failed to find good solutions within reasonable 

computational time. The relax-and-fix heuristic approach was then applied on a rolling horizon 

basis in section 5, giving good results.  Relax-and-fix involves the solution of a period-by-period 

sequence of partially-relaxed MIPs, each one with just a reduced set of binary variables whose 

number is small enough to obtain good solutions. As the horizon rolls forward in time over the 

periods, each set of binary variables is permanently fixed at their solution values.  

For comparison, three methods involving neighbourhood search on the reduced set of binary 

variables were developed, namely, descent heuristic, diminishing neighbourhood search and 

simulated annealing.  Several authors have already explored a similar approach, among them Kuik 

et al. [34] who used simulated annealing and tabu search on a lot-sizing problem with sequence-

independent setups, Teghem et al. [35] who employed linear programming within a simulated 

annealing for a combinatorial production planning problem, and Fleischman and Meyr [26] who 

applied threshold accepting search on the general lot sizing problem (GLSP) with sequence-

independent setup costs (but not times), denoted GLSPST. Similarly, Meyr [27] developed an 

efficient algorithm for the GLSPST that uses multiple runs on a local search for lot sequencing with 

linear programming (LP) dual reoptimization for rapid lot-sizing.  

Computational tests comparing all the methods are presented and analysed in section 6, 

including in-foundry comparisons with practiced schedules.  

 
2. Problem Definition 

A key process in a foundry is the transformation of ore and scrap metal into alloys with 

specified levels of carbon, silicon, zinc, etc, that determine properties such as brittleness and 
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resistance to corrosion.  The alloy, still in a liquid state, is then poured into moulds, normally made 

of sand and resin where it cools to produce final items.  These two processes of alloy production 

and item moulding must be jointly scheduled.  After the cast items have been cooled, they are 

deburred and made available for delivery. 

In small foundries, only one furnace is usually operating at any point in time, so that just a 

single alloy can be produced in each time period.  This is different from large foundries where 

several furnaces can be in operation simultaneously, enabling the production of several alloys in the 

same period [12].  Furthermore, in small foundries, the preparation of sand moulds is a manual 

process that is carried out as soon as the next day’s production schedule is specified and is not a 

production bottleneck. Rather, the furnace is the production bottleneck.  This contrasts with 

automated foundries, where multiple moulding machines of varying capacity and efficiency have to 

be scheduled. In this case, the bottleneck could be either mould preparation or the furnaces, 

depending on item orders and schedules.  

Figure 1 illustrates the main activities in a small market-driven foundry.  Clients randomly and 

spontaneously submit orders specifying the item type, quantity and alloy. The Production Planning 

department negotiates due dates with the client, often agreeing unachievable dates that result in 

delivery delays and the possible loss of future orders from the client.  Thus the minimisation of 

delays is one of the principal concerns of the foundry company.   

The Production Planning department specifies which items should be produced during the next 

few days, advises the Moulding section which moulds to prepare in advance, and determines the 

specific alloys to be melted. The scheduling is guided by due dates in the following days as well as 

by delayed orders.  Excessive changes of alloys are undesirable, and so setups are considered in the 

model.  

The manufacturing system has the following characteristics and assumptions: 

• An alloy is generally used in several products, but a product is made from just one alloy. 

• The output weight of an alloy is equal to the total gross weight of the products in which the alloy 

is used.  

• A product cannot be manufactured in a given time period unless the alloy which it is made from is 

also processed in that period. Processed alloys cannot be held over to the next period. 

•  In each time period only one alloy can be processed on the furnace. 

• A setup changeover from one alloy to another consumes capacity time in a manner that is 

independent of the sequence in which the alloys are processed.  

• All products have a demand over a planning horizon that would be met if capacity were sufficient. 

However, delays will occur if capacity is tight, and so backlogs must be represented in the model. 

• The objective is to schedule lot sizes and to sequence setups in order to minimize a penalty-

weighted sum of product backlogs, finished inventories and setup changeovers. 
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3. Mathematical Model 

We now propose a mixed integer programme (MIP) to model the problem described above. 

The following notation is used:                                                                                               

    

Indices: k = 1, ..., K  alloys  

i = 1, ..., N  items 

t =1, ..., T  periods (days, for example) 

n = 1,...,η  sub-periods (furnace loadings lasting 2 hours, for example) 

Data:  Cap  Capacity (kg) of a single furnace loading 

 ρi Gross weight (kg) of item i 

 dit Quantity of items i ordered for period t 

 S(k) Set of items i that use alloy k (each item uses one and only one alloy).  

Thus {1, ..., N} =  S(1) ∪ ... ∪ S(K)  and  S(k) ∩ S(j)=∅ for all k≠j 

 −
ith

  
Penalty for delaying a unit of item i in period t 

 +
ith

  
Penalty for holding a unit of item i in period t 

 sk Setup penalty for alloy k 

 stk Setup loss of capacity (kg) due to a setup for alloy k 

 

Variables:  xin Quantity (lot-size) of item i to be produced in sub-period n  

 
itI +  Quantity of item i held at the end of period t 

 itI −  Quantity of item i delayed at the end of period t 

 yk
n  Binary variable, k

ny = 1 indicates that the furnace is set up (configured) for 

producing alloy k in sub-period n , otherwise k
ny = 0 

 zk
n  Binary variable, k

nz = 1 if there is a setup (changeover to) alloy k in sub-

period n, otherwise k
nz = 0.  Thus k

nz = 0 if k
n 1y −  = k

ny  and k
nz = 1 if k

n 1y − < k
ny .   

 

Furthermore, consider the following definitions from the General Lot-Sizing and Scheduling 

Problem (GLSP) model [8, 24-28]: 
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ηt     Number of sub-periods in period t 

Ft=1+ ∑
−

=

1

1

t

t
t?  First sub-period in period t (F1 = 1) 

Lt=Ft + ηt -1  Last sub-period in period t 

η= ∑
=

T

t
t?

1
 The total number of sub-periods over the planning horizon 

 
We can now formulate the following MIP model: 

Minimize   ∑∑
= =

++−− +
N

i

T

t
itititit IhIh

1 1
)( + ∑ ∑

= =

K

k

L

Fn

k
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T
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1 1

)(       (1) 

subject to: 

, 1i tI +
− - , 1i tI −
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=

L

Fn

t

t
inx  - itI +  + itI −  = dit  i = 1, …, N  t = 1, ..., T  (2) 

∑
∈ )(kSi

ini xρ  + k
k nst z  ≤  Cap k

ny    k = 1, ..., K n = F1, ..., LT   (3) 

1
k k k
n n nz y y −≥ −      k = 1, ..., K n = F1, ..., LT   (4) 

1
1

=∑
=

K

k

k
ny         n = F1, ..., LT   (5) 

k
ny ∈ {0,1} with ky0  = 0   k = 1, ..., K n = F1, ..., LT  (6) 

0≤ k
nz ≤  1     k = 1, ..., K n = F1, ..., LT  (7) 

xin ≥ 0 and integer     i = 1, ..., N n = F1, ..., LT  (8) 

+
itI  and −

itI   ≥ 0    i = 1, ..., N t = 0, ..., T  (9) 

The first part of the objective function (1) is a weighted sum of inventory and delay penalties 

for each period. The second part is the setup penalties, i.e., the alloy changeovers in each sub-

period. Thus the objective function seeks a weighted balance between conflicting objectives: stocks, 

delays and setups.  The human schedulers can use their knowledge and experience by varying the 

values for −
ith , +

ith and sk to explore alternative production schedules.  Such exploration does not 

generally give the efficient surface [36], but can provide enough scenarios to guide the decion 

maker. 

Constraints (2) balance inventories, delays, demands and production of items for every item in 

each period.  Constraints (3) not only keep production within the furnace capacity, but also ensure 

that only items of the same alloy are produced in a particular furnace loading.  As k
ny  and k

n 1y − are 
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both binary variables, constraints (4) and the objective (1) force the continuous variables k
nz  to be 

equal 1 if there is a changeover to alloy k or to equal 0 otherwise.  Along with constraints (7), the 
k
nz  variables assume just 0 or 1 values, even if the xin and k

ny  variables are not integer optimal (for 

example, at nodes during a branch-and-bound search). Constraints (5) and (6) ensure that there is 

only a single furnace loading in each sub-period. 

In captive foundries, lot sizes tend to be large since there are just a few types of items 

(generally components of standard products) which have a large stable demand, so that the 

integrality of xin can usually be relaxed. However, in contrast, the integrality condition is necessary 

for small market-driven foundries with their many small orders.  This feature is not taken into 

account in most lot sizing models [8].  

Constraints (9) measure inventory +
itI  and delays −

itI  as non-negative variables, but note that in 

a continuously optimal solution, +
itI  and −

itI  will not both be strictly positive, for a given pair (i,t), 

due to their positive coefficients in the objective function. 

Model (1)-(9) shares some similarities with the GLSP model [8, 24-28]. Sequencing decisions 

are implicitly determined by the furnace setup variables k
ny , but differently from the GLSP: 

• a sub-period covers the set of products of a given alloy rather than a single product; 

• the sub-periods in our model represent the time it takes to process a furnace load, and so 

have predetermined lengths, whereas in the GLSP the duration of a particular small time 

bucket is a decision outcome;  

• the number of sub-periods per period is fixed, being equal to the number of furnace loads 

that can be processed per period, although it could be any predetermined number, as in the 

GLSP. 

Thus the GLSP’s small and large bucket concepts are both present in the model (1)-(9), since 

during each period only one type of alloy (an intermediate item which must be used in the period) 

can be produced together with multiple ordered items. This type of lot sizing and scheduling 

problems is found in many other applications such as the production of soft drinks or tomato sauce 

[37].  

Depending on the number of items and periods, lot-sizing MIP models are often very large in 

practice so that even advanced solvers such as Cplex 7.1 [38] are unable to identify probably-

optimal solutions in acceptable computational time. Trying to solve the model (1)-(9) with realistic 

data using MIP solver Cplex 7.1 on a Pentium III 500 MHz with 512 MB of RAM, the default 

branch-and-cut (B&C) search ran out of memory, achieving only poor solutions. 

However, it is generally not worthwhile to invest a lot of computing time in the search for an 

exact optimal solution, given that input data are often imprecise in small foundries and in 
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manufacturing in general. A more useful outcome is a quickly-obtained solution of good quality. 

Delay penalties are usually subjective estimates and the order book is changeable, being updated 

daily, so that a theoretically optimal solution to model (1)-(9) will almost surely not be the best in 

practice and should be used as a guide rather than a command. As a result, the exact model may be 

relaxed to an easier one that includes integer variables only for the first immediate periods (where 

decisions scarcely change), after which the order book is updated, and the model applied to the next 

immediate periods, and so on. Such a rolling horizon strategy of approaching the problem is widely 

used in practice. The use of a rolling horizon is not only a useful practical approach (since it takes 

account of daily changes to the order book), but it works as a very good heuristic strategy to solve a 

problem even if the order book is not changed, as we will see in the computational experiments 

where fixed parameters are used.  

Several authors have pursued this approach. Clark [39] and Stadtler [40] showed that this 

flexible approach can handle large multi-level MRP-type problems over long planning horizons 

with sequence-independent (Stadtler) and sequence-dependent (Clark) setup times. Suerie and 

Stadtler [41] used the same approach tested on smaller problems with a tight reformulation and 

valid inequalities providing very good fast solutions.  The relax-and-fix method as implemented in 

the current paper fits well into rolling horizon usage, as will be shown below. 
 

4. Rolling Horizon Model 

To illustrate how the Rolling Horizon strategy works, suppose each period t is a workday, as 

in the foundry that motivated this study. Consider a planning horizon of T = 5 workdays of which 

only the first day (t = 1) will be scheduled in detail. This is achieved by dividing the first day into L 

=η 1 =10 sub-periods, as up to L furnace loadings can be processed each day. The remaining days t 

= 2,....,5 have just one sub-period each (η2 = η3 = η4 = η5 = 1). Thus F1 = 1; L1 = 10; F2 = L2 = 11; 

F3 = L3 = 12; F4 = L4 =13; F5  = L5 = 14, i.e., there are η = 14 sub-periods n (as illustrated in Figure 

2). The variables k
ny  for the larger sub-periods n = F2,...,F5 are then redefined as “the number of 

loadings using material k produced in sub-period n”. 

Only the scheduled decisions relative to the η1 = 10 sub-periods of day 1 are actually 

implemented. The decisions for the remaining 4 days are used only to evaluate the impact of future 

available capacity, i.e., to identify a provisional production plan in order to have advance warning 

of possible production backlogs and be able to act accordingly. Under standard rolling horizon 

practice, the model is reapplied one period later covering periods t = 2, …, T+1 with updated 

demand data over the rolled-forward T-period horizon, then over periods t = 3, …, T+2, and so on, 

using fresh demand forecasts [42].  
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To reduce problem complexity and solution time, the integer xin variables are relaxed for 

sub-periods n = F2,...,FT, given that these variables’ decisions are never in fact implemented. The 
k
ny  variables for sub-periods n = F2,...,LT could also have been relaxed, but initial computational 

experiments indicated that they should remain integer in order to improve future capacity 

evaluation.  

These modifications result in the following model for rolling horizon use, denominated RH: 

 

Model RH: 

Minimize   ∑∑
= =

++−− +
N

i

T

t
itititit IhIh

1 1
)(  +  ∑ ∑
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L
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k
nk zs

1

1

1

)(      (10) 

subject to: 

, 1i tI +
− - , 1i tI −

−  + ∑
=

L
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t

t
inx  - itI +  + itI −  = dit  i = 1, …, N  t = 1, ..., T  (11) 

∑
∈ )(kSi

ini xρ  + k
k nst z  ≤  Cap k

ny    k = 1, ..., K n = F1, ..., L1    (12) 

∑
∈ )(kSi

ini xρ   ≤  Cap k
ny     k = 1, ..., K n = F2, ..., LT       (13) 

 

1
k k k
n n nz y y −≥ −      k = 1, ..., K n = F1, ..., L1    (14) 

η t

K

k

k
n

L
y =∑

=1
       t = 1, ..., T n = Ft, ..., Lt                (15) 

k
ny ∈ {0,1} with ky0  = 0   k = 1, ..., K n = F1, ..., L1       (16) 

k
ny  ≥ 0 and integer     k =  1, ..., K n = F2, ..., LT                (17) 

0≤ k
nz ≤  1     k = 1, ..., K n = F1, ..., L1  (18) 

xin ≥ 0 and integer    i =  1, ..., N n = F1, ..., L1           (19) 

xin ≥ 0       i =  1, ..., N n = F2, ..., LT           (20) 

+
itI  and −

itI   ≥ 0    i = 1, ..., N t = 1, ..., T  (21) 

 

Constraints (3) are now replaced by (12) for the first period and (13) for the remaining periods.  

Constraint (5) is replaced by (15) which imposes exactly L/?t setups in sub-period n, i.e., the 

number of loads in period t divided by the number of sub-periods in period t.  For example, period 1 

has 10 sub-periods and can handle 10 loads, so L/?1 = 10/10 = 1 (and n = F1,…,L1, i.e., n = 1,…,10), 

whereas period 2 has one sub-period and can handle 10 loads, so L/?2 = 10/1 = 10 (and n = F2,…,L2, 

i.e., n = 11). 
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Model RH maintains the similarity to the GLSP, adapting its small-bucket/large-bucket 

concepts for rolling horizon use. The large-bucket time period used for scheduling a whole day, for 

example, is split into several small-bucket scheduling time periods (for instance, 10 loadings of 

materials). Days 2 to 5 are, temporarily, indivisible large buckets with production of multiple 

materials. 

 

5 Solution Methods 

Model RH is much smaller than the model (1)-(9), but still not small enough to be solved 

optimally with realistic data using the MIP solver Cplex 7.1 within acceptable computing time. 

However, it is possible to sub-optimally solve the model using the relax-and-fix method.  This 

involves the sequential solution of a series of partially relaxed MIPs, one per period, each one with 

a small enough number of integer variables to be quickly solved.  As the series progresses in time 

from the first period to the last, each set of integer variables are permanently fixed at their solution 

values.  The relax-and-fix procedure solves the model RH in two steps, as follows: 

1. Relax all integer variables, except the first day’s binary variables k
ny (n = F1, ..., L1), representing 

furnace loadings in period 1 and being the most important decisions in the rolling horizon 

method. Solve this relaxed problem.  

2. Fix the first day’s k
ny (n = F1, ..., L1) variables at their binary values from the solution in step 1. 

The k
ny (n = F2, ..., LT) variables and xin (n = F1, ..., L1) variables are specified as integer. Solve 

this partially fixed problem.  

 
The problem in step 1 is solved using one of the four methods (RF, DH, DN and SA) described in 

sections 5.1 to 5.4 below.  The problem in step 2 can be optimally solved in a few seconds with the 

Cplex MIP solver, since a binary variable k
ny  which is fixed to 1 implies, by constraints (12) and 

(15), that xin = 0 for all i∉S(k), i.e., products that do not use material k are not manufactured in sub-

period n, thus eliminating many integer variables and constraints. Consequently, the solution 

methods developed in the rest of this paper focus on step 1. 

 

5.1 Basic Relax-and-Fix Method (RF): 

The basic approach to solving step 1 of the relax-and-fix method simply uses the incumbent 

solution that results from running the Cplex MIP solver for 3, 6 and 12 minutes respectively for 

small, medium and large problems (as defined in Table 1 of section 4.1).  This method is denoted 

RF. 
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5.2 Descent Heuristic (DH) 

The basic RF method is dependent on a MIP solver for both MIP problems in the two steps that 

arise in the relax and fix procedure above. The first problem is to solve (and then fix) just the first 

day’s binary variables.  The second problem, in step 2, is to try to find an optimal solution for 

variables k
ny (n = F2, ..., LT) and xin (n = F1, ..., L1). 

To solve the first MIP, a local search descent heuristic (DH) [43-45] can be used to find good 

values for period 1’s binary k
ny (n = F1, ..., L1)  variables.  Starting, for example, with a random 

solution and fixing these variables, all the other integer variables are relaxed and the resulting linear 

programming model is solved.  In the next local search iteration, the period 1 binary variables are 

modified and the linear program is solved again to obtain a neighbouring solution. Depending on 

certain criteria, the neighbouring solution may become the current solution. The local search then 

proceeds to the next iteration. The best solution encountered as the search progresses is recorded. 

When the stopping criterion of the local search holds, the k
ny ( n = F1, ..., L1)  variables are fixed at 

the best solution found. 

In order to implement the DH method (Algorithm 1), it is necessary to define a series of 

parameters. In this paper the solution representation in the descent heuristic consists of a η1-vector 

of integers, v = (ν1, ..., 1ην ), where vn contains the type of material scheduled for sub-period n in the 

first day, that is, vn = k if and only if k
ny  = 1. For example, when η1=10, the solution vector v = (2, 

2, 20, 1, 4, 4, 8, 2, 10, 3) means that material type 2 is made in the first two sub-periods, material 

type 20 in the third sub-period, and so on.  

Three alternative ways of obtaining a starting solution for the descent heuristic were at first   

considered:  

1. For n = 1,...,η1, choose the value of vn to be k with the probability given by |S(k)| / N where 

|S(k)| is the size (cardinality) of the set S(k).  Thus, the more products that can be made from 

k, the more likely it is that k will be selected;  

2. Run a MIP solver for a few minutes to obtain an initial heuristic solution;  

3. For n = 1,...,η1, choose the value of vn to be k, uniformly sampled from {1, ..., K}.  

However, after initial tests the first way was selected and the other two were discarded.  

The search stops after 1000 iterations, which was found to be sufficient to obtain a good 

solution in acceptable computing time. This number of iterations was fixed as the stopping criterion 

in order to fairly compare the three types of heuristic.  

In order to determine neighbouring solutions it is necessary to specify how the vector v is 

changed, which defines decisions to the first η1 sub-periods. Just one sub-period has its value 
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changed (in the Diminishing Neighbourhood Heuristic more than one can be changed in the 

beginnig, but ends with just one changing). The neighbourhood move implemented slightly biases 

the selection towards more widely-used alloys, and was adopted after initial testing showed its 

positive impact. Two alternative procedures were used to randomly choose n*, the sub-period to 

change the material k: 

1. With 90% probability:  The value of n* is uniformly sampled from the set {1,...,η1}. 

2. With 10% probability:  Let k = vn be the material currently produced in a given sub-period 

n. We want that the more products S(k) made from material k, the less the chance of 

selecting sub-period n.  So, sample the value of k with probability (N-|S(k)|) / (N(K*-1)) 

where K* is the number of different materials to be produced in period 1.  The value of n* is 

then uniformly sampled from those sub-periods in which material k is produced. 

Once n* is chosen, a new key material k is selected in one of two ways: 

1. With 90% probability: k is uniformly randomly sampled from the set {1,...,K}, 

2. With 10% probability: k is sampled from the set {1,...,K} with probability |S(k)| / N, i.e., the 

more products S(k) that can be made from k, the greater the likelihood of selecting k. 

 

Algorithm 1 (Descent Heuristic Procedure) 

1. Select a starting solution: v = (ν1, ..., 1ην ),  which means { k
ny | (n = F1, ..., L1) }. 

2. Relax the integer variables xin (n = F1, ..., L1) and k
ny  (n = F2, ..., LT) as explained before and 

solve the LP problem resulting. 

3. Record as the incumbent solution that one obtained from the linear programme in step (2). 

4. Repeat steps (4.1) to (4.3) for 1,000 iterations: 

4.1. Generate a neighbouring solution of the incumbent: select a sub-period n in period 1 (F1 ≤ n 

≤ L1) and a new alloy k, as described above; let vn = k. 

4.2.  Fix the decisions on the first period; that is, if vn = k then k
ny = 1 and k

jy = 0 for j≠k; solve 

the relaxed linear programme. 

4.3.  If the neighbouring solution provides a better objetive function value in (10) than the 

incumbent solution then it becomes the incumbent. 

5. Fix the values of the k
ny ( n = F1, ..., L1)  variables the incumbent solution.  Restore the xin ( n = 

F1, ..., L1)  and the k
ny ( n = F2, ..., LT) to be integer variables, and solve the resulting small MIP 

to obtain an optimal integer solution.   

 

Researchers have proposed many ways to improve the descent heuristics performance, 

including [43]-[51].  In this paper, we use two strategies: Diminishing Neighbourhood search 
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method and Simulated Annealing, with the same basic parameters as the local search described 

above. 

  

5.3 Diminishing Neighbourhood (DN) Search 

This method adapts the local search described in the previous section, beginning with a large 

neighbourhood to encourage diversity and then gradually diminishing its size so as to increasingly 

intensify the search.  Too small a neighbourhood could cause premature convergence and increase 

the risk of stagnation at a local optimum, while too large a neighbourhood would lead to random 

meandering and an inefficient search.  The search starts with the largest possible neighbourhood, 

i.e., all the first day’s η1 variables k
ny  (i.e., νn) in a solution can be changed in step 4.1 of the 

descent heuristic procedure. After a given number of iterations the neighbourhood size is reduced, 

i.e., only η1-1 randomly uniformly selected variables k
ny  (νn) in a solution can be changed. During 

the search, neighbourhood size is repeatedly diminished. The search ends with a neighbourhood 

where just one position is changed, i.e., as in the descent heuristic in section 5.2. 

For each size Z = 1,…,10 of neighbourhood, 18(11-Z)+1 iterations are carried out at step 4, 

summing to a total of 1000 iterations over the whole search. Thus 19 iterations are carried out when 

Z = 10 at the start of the search, 37 when Z = 9, and so on, increasing to 181 iterations when Z = 1 at 

the end of the search. Clark [52] successfully used a similar method for lot-sizing on a drinks 

canning line.   

 

5.4 Simulated Annealing (SA) 

Simulated Annealing is a variant of the local search descent heuristic that tries to avoid getting 

trapped at a local optimum by permitting worsening moves away with probability: 

     







 ∆
−

=∆ Temp
ofv

eofvp )(      (22) 

where Temp is a gradually-cooling “temperature” and ? ofv the amount by which the new move 

worsens the objective function value. As the search progresses, the best solution encountered is 

recorded.  

Previous computational tests indicated that the following parameters produce, in general, the 

best results. The starting temperature Tempstart is a function of the initial solution ([48]): 
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where µ = 0.6 and θ = 0.9 indicate that a solution which is 60% worse than the current one has 90% 

probability of acceptance at the start of the search. 50 iterations were allowed in order to reach 

equilibrium at a given temperature before cooling but only 10 iterations after a solution was 

accepted, even when worse. Each time the temperature was cooled in this way, it was reduced by 

5%. In addition, each time a worse solution was accepted, the temperature was again cooled 

(slightly) as follows: 

    






 ∆
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where ofv(S) is the objective function value for the previous solution. The worse the accepted 

solution, the greater the reduction in temperature, thus making the acceptance of future worse 

solutions less likely from then on. 

 

6. Computational Experiments  

The computational experiments were divided into two parts.  In order to evaluate the method in 

different situations, the first part used randomly generated data based on modified intervals based 

on [25].  The second part made use of an order book from a real-world foundry, so that the 

method’s outcome could be compared with schedules used in practice. 

Before describing the data generation, consider following parameter definitions: 

 

 αi the number of days by which item i is already delayed at the beginning of the schedule, 

i.e., at t = 0. 

 ρi weight of item i (previously defined in section 3) 

 

A value αi = 0 means that the item i due date is day 1, and αi < 0 means that item i is not 

delayed when the planning begins.  Suppose that an item i is already delayed by αi > 0 at the 

beginning of the planning. Then, at the end of period t, t = 1,…,T  the item’s delay will be αi+t.  Its 

delay penalty −
ith  is calculated as ρi(αi+t) so as to increasingly penalise any further delay in its 

production. However, if item i is not already delayed, i.e., αi ≤ 0, then it can be produced up to 

period 1+|αι| without delaying.  Thus, for t = 1+|αι|, a positive value I it
− > 0 means one day of delay 

and so −
ith  is also calculated as ρi(αi+t) from this period onwards.  

Furthermore, if item i is not delayed at the beginning of the schedule, then the variable I it
+  

can be positive (i.e., item i can be produced before its due date) and its inventory penalty +
ith  is 

defined as proportional to its weight ρi.  In this case, to force I it
−  to be zero (given that there is no 
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delay), the delay penalty −
ith is set to be a very large number G.  Similarly, in the case of a delay, its 

inventory penalty +
ith is also set to G to force I it

+  to be zero. 

In summary: 

if αi ≥ 0  (i.e., item i is already delayed at the start, or the due date is day 1) then 

for t=1,...,T,  let −
ith  = ρi(αi+t) and +

ith  = G; 

else   (i.e., (αi < 0, meaning that item i will be delayed after period 1+|αi|) 

for t=1,...,|αi|,  let −
ith =G and +

ith =ρi ; 

for t= 1+|αi|,...,T,  let −
ith = ρi(αi+t) and +

ith =G.  

If orders for an item have different due dates, then this item will be considered as two 

distinct items in order to have two different delay penalty values.  Although this could considerably 

increase the model size, in practice it will do so only a little at most, since in small market-driven 

foundries only a few items are doubled ordered within the one-week planning horizon.  Note that 

this doubling of items will not create false setups (as it would in classical lot sizing models with 

item setups) since the doubled items belong to the same set S(k), as in constraints (12). 

It might be tempting to explicitly prohibit delays in the model, but as these are frequently 

unavoidable, such a ban would result in infeasible problems and would be unrealistically rigid.  It is 

realistic to include the possibility of delays in the model and let the human scheduler manage them, 

for example, by calibrating a production priority parameter for each individual items (βi) that can be 

included in the computation of −
ith . Moreover, delay variables help the scheduler to evaluate due 

dates.  For instance, if di1 = 30, then a model solution 1iI −  = 10, ,2iI −  = 5, ,3iI −  = 0 flags that the 

demand for item i will be fully met only after 2 days of delay.  In this case, the client could be 

alerted and, if necessary, the scheduler could increase the value of parameter βi for that item or 

renegotiate the item’s due-date. 

 

6.1 Generation of Test Data 

Previous experience [42] indicates that certain parameters may affect solution quality, namely: 

• problem size (N,K)  

• size of setup penalty stk 

• tightness of capacity Cap 

Larger problems, bigger setup penalties, and tighter capacity are each expected a priori to 

adversely affect solution quality and computing time, but may do so in different degrees for each 

solution method.  The uniform sampling intervals used to randomly generate the test data were 

based on those in [25] and are shown in Table 1.  Though not encompassing every possible 
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situation, the values are sufficiently typical to be confident that the test results will point to 

generally applicable conclusions. 

The furnace capacity was generated as follows:  first calculate the resources needed to exactly 

produce the total item demand over the planning horizon (in this case 5 periods, i.e., 50 furnace 

loadings); then add the total setup time needed if the furnaces were setup just once for each alloy; 

finally divide by the number of furnace loads, i.e., 50.  Hence:  
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Thus in Table 1 four different levels of the tightness of Furnace Capacity Cap are shown  (i) 

Very Loose capacity: Cap =  C / 0.6;  (ii) Moderately Loose: Cap =  C / 0.8;  (iii) Moderately Tight: 

Cap =  C / 1.0;  (iv) Very Tight: Cap =  C / 1.2. 

The parameters (N, K), sk and Cap were varied in a 3-factor experimental design.  Each 

factorial combination was generated 10 times, using a different random seed each time, resulting in 

a total of 3×2×4×10 = 240 instances.   

 

6.2 Solution Quality 

In this section, we first analyse the quality of the solutions obtained by the relax-and-fix (RF) 

method described in section 5.1.  We then compare the results from the three neighbourhood search 

approaches and the basic RF method.  Finally we consider computing times.  

 
6.2.1 Evaluation of the RF method 

In order to evaluate the performance of the RF method, we used the solutions and lower bounds 

obtained by the Cplex 7.1 solver applied to model (1)-(9) in a general purpose branch-and-cut 

search.  

Note that a solution to model RH is not a solution to model (1)-(9), as just the first day’s 

loadings are scheduled and actually implemented, whereas the other days are planned only 

approximately. However, the application T times of model RH, starting consecutively at periods 1, 

2, …, 5, with an always-shortening horizon (T = 5,4,3,2,1), will provide a feasible solution to model 

(1)-(9), enabling a comparison of results, similar to the internally rolling schedule in Stadtler [40].  

The final value of the objective function is gradually accumulated over the T applications of model 

RH, each of which contributes its period 1 part: 
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of expression (10), i.e., excluding the part for periods 2 onwards: ∑ ∑
= =
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Table 2 shows the variation of the mean objective value compared to the lower bounds supplied 

by Cplex after running for one hour. The variation is calculated as: 

 

%100
BoundLower Cplex 

BoundLower Cplex  -Solution  Method
       Variation ×=  (27) 

 
where the method is either Cplex or RF. 

As noted in section 3, attempts at solving model (1)-(9) to simultaneously schedule all furnace 

loadings over the whole 5-day horizon resulted in mediocre solutions.  The Cplex incumbent 

solution, after 1 hour, was on average 22.26% worst than the lower bound.  Even if more time was 

allowed (10 hours for some instances) the Cplex solutions were still poor.  On the other hand, 

running the RF method for 3, 6, and 12 minutes for the small, medium and large problems 

respectively resulted in better solutions for all three cases that were on average 8.6% worse than the 

Cplex lower bound.  Irrespective of the method, Table 2 shows that, while this gap tends to grow 

with problem size, there is no clear relationship with tightness of capacity or size of setup penalty. 

   

6.2.2 Evaluation of the DH, DN and SA methods 

After evaluating the quality of the RF method, we now compare the three neighbourhood 

search methods (DH, DN and SA) and the basic RF method using model RH.   

The basic RF method of section 5.1 used the MIP incumbent solution found within the time 

limits.  Table 3 shows the percentage of instances for which this method found the MIP optimal 

solution.  Observe that for small problems (N = 10, K = 2) the method easily found optimal 

solutions to all of the MIPs, but the percentage of optimal solutions found reduced as problem size 

increased.  Again, there is no clear relationship with tightness of capacity or size of setup penalty. 

Table 4 shows the variation of the mean objective value for the DH, DN and SA local search 

heuristics compared to the basic RF method, calculated as: 

 

%100
Solution RF

Solution RF -Solution  Heuristic
       Variation ×=   (28) 

 

Overall the three heuristics performed nearly as well as the basic RF method, the best being 

SA, followed by DN.  The DH heuristic converged rapidly to a local optimum while the DN and SA 

ones took many more iterations to achieve their best solution. 

Note in Table 4 that the performance of the DH, DN and SA heuristic relative to the basic RF 

method improved as problem size increased. For small and medium problems, the DH method had 
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the worst mean performance (4.36% and 3.38%, respectively), followed by DN (1.93% and 2.72%), 

then SA (1.02% and 1.48%).  For large problems, the mean performance of DH improved to 0.90% 

and in fact was better than DN (1.31%), though worse than SA (0.56%). This difference in relative 

performance might be explained by two reasons.   First, for problems of all sizes, both DH and SA 

will initially follow the same search trajectory, but when either reaches a local optimum, DH has no 

way to jump out of it and so its search stagnates there, whereas SA can go to a worse solution to get 

away from the local optimum.  The DN search follows a very different path than DH and SA.  If it 

gets stuck at a local optimum, this tends to be when its neighborhood is near its minimum size 

towards the end of the search.  Secondly, recall from Table 3 that the larger the problem, the fewer 

the MIPs that Cplex 7.1 is able to solve to optimality, thus weakening the basic RF method.  This 

means that the DH, DN and SA methods are being compared against probably-suboptimal solutions 

obtainable within the branch-&-cut search time limits.  

Table 3 also shows that tightness of capacity does not much affect the basic RF method, with 

the possible exception of medium problems.  However, Table 4 indicates that, regardless of 

problem size, there is generally less variation (i.e., better performance) of the DH, DN and SA 

methods relative to RF when capacity is tight and/or when setup penalties are small. 

The computing time spent by the DH, DN and SA methods to solve each MIP was about 1, 3 

and 5 minutes respectively for small, medium and large problems.  These are viable times for 

practical use and faster than the time spent by the basic RF method (3, 6 and 12 minutes 

respectively).  The solution of the final MIP in step 5 (algorithm 1) of the DH, DN and SA methods 

was limited to a maximum of 5 minutes of computing time.  In practice, the MIP was usually solved 

by Cplex in less than 10 seconds, even for large problems, because the binary k
ny (n=F1, ..., L1), 

variables had been previously fixed, leaving only the non-zero integer xin values to be optimised. 
   

 
6.3 Evaluation in a Small Foundry 

The methods were also tested on real world instances at a small foundry that used a 5-day 

planning horizon, with 10 furnace loadings per day, totalling 50 over the whole horizon. The 

furnace had a capacity of 360kg per load, each one taking approximately 2 hours. At the time of 

testing, the prevalent situation at the foundry was that many items were delivered with delays, some 

of them up to 100 days.  

This is clearly a complex scheduling challenge but, like other small companies, the foundry 

has neither the resources nor the sophistication to invest in scheduling research.  There are constant 

delays in deliveries, clients are frequently lost, utilization of equipment and manpower is 

inefficient, leading to queues of moulds waiting for alloys.  At other times, excessive quantities of 

alloys are produced which have to be recycled as scrap materials. 
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The methods were tested with an order book from the foundry.  Just a single order book was 

used due to the difficulties of obtaining stable static data and the difficulties of posterior comparison 

of results with the schedules used in practice.   

The solutions obtained by the DH, DN and SA method were almost identical.  They were 

compared with the foundry’s own manual schedule for an order book of 383 product types requiring 

19 different alloys. Order weights varied a great deal (from 0.5 kg to 200 kg), as did their quantities 

(from 1 to 1,000 items). The initial stocks and backlogs were respectively 0 and 526,818 item-days 

(corresponding to 0 and 426,528 kg-days), where item-days (kg-days) are calculated by multiplying 

the quantity (weight) by the number of days in stock or backlogged. Tables 5 and 6 show the 5-day 

schedules output by the DH method compared to the foundry’s manually produced schedules. The 

“Day 5” line at the end of the DH method’s schedule shows that the final stocks and backlogs were 

respectively 0 and 3476 item-days (0 and 48,195 kg-days).  On the other hand, the foundry’s 

manual schedule resulted in final stocks and backlogs of 3 and 23,237 item-days respectively (210 

and 81,500 kg-days). In other words, the DH schedule reduced item-day delays by 85% and kg-day 

delays by 40%, a very substantial gain in efficiency. 

The DH schedule used less capacity (93.1% usage) than the foundry’s manual schedule 

(98.7%) and produced a wider variety of types (34 alloys in opposition to 28). Note from Tables 5 

and 6 that the 5-day totals of the DH backlogs and stocks are substantially lower, i.e., respectively 

27% and 90% by weight, and 15% and 71% by number of items. This reflects the foundry’s 

concern to maximize utilization of capacity, a policy which tends to prioritize of larger lots, 

resulting in the repeated postponement or early production of orders, thus creating larger backlogs 

and inventories as can be seen in Tables 5 and 6. 

Excluding time for input data, the DH method generated a schedule in ten minutes, 

compared to the two days (16 working hours) of elapsed time that it took to specify the manual 

schedule. 

This improved scheduling permits better negotiation of delivery dates (with simulation, for 

example), reducing promises of impossible deadlines.  It also avoids an additional problem that 

frequently occurs in the foundry (and which the proposed method easily resolves), namely the over-

utilization of the furnaces in an attempt to reduce delays.  Such overloading is physically possible 

but unadvisable as smelting takes longer, the furnace internal coating deteriorates sooner, and more 

energy is consumed, thus increasing production costs. 

A further advantage for the foundry is that, when the order book is updated daily, 

rescheduling of the following days is easily carried out, allowing the inclusion of new orders. 
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7 Conclusions 

In this paper a mixed integer linear programme (MIP) was proposed to model the production 

planning and scheduling in small foundries. The model integrated lot sizing and scheduling on a 

single capacitated machine (furnace) in a production environment where key alloys are first 

produced and subsequently transformed into a number of ordered items made from just one type of 

alloy. The foundry’s main concern was to minimize delays. The inventory of alloys was forbidden, 

and at any time only one type of alloy could be produced.  The setups for changing alloys were 

sequence-independent. There were neither setup times nor costs between the production of final 

products. Lot sizes of final items were assumed to be integers and backorders were allowed. 

It was not possible to optimally solve the overall model within viable computing time, even 

using an advanced heavy-duty MIP solver. In order to efficiently but approximately solve the 

model, a rolling horizon approach and associated relax-and-fix procedure was developed.  Four 

solution methods were proposed using a basic relax-and-fix (RF) approach and three variants of 

neighbourhood search. These four methods were tested with 240 generated instances based on 

Haase and Kimms (2000), and showed that the relax-and-fix approach provides a good compromise 

between speed and quality of solution, that local search is faster with slightly worse solutions, and 

that, for the data used, simulated annealing generally resulted in better solutions than the other two 

local search variants. 

Tests were also carried out with a real-world instance from a foundry. The results showed that 

not only do the methods help small foundries to considerably reduce delays, but also that the 

improved schedules are generated in a very small fraction of the time of those created manually in 

the foundry. Ongoing efforts are continuing with the foundry to obtain better quality data with the 

aim of making a more precise comparison between the schedules currently used in practice and 

those output by the proposed method.  In parallel, other small foundries in the region are being 

sought for further case comparisons.  To facilitate such collaboration, a tool with a visual interface 

is being developed to output schedules and alloy mixes, within a wider objective of providing 

production planning and scheduling software for small and medium-sized foundries. 
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Figure and table captions 
 

 

 

Figure 1. Main activities in the foundry 
 

Figure 2: Periods and sub-periods in a rolling horizon strategy. 
 

Table 1: Parameters used for generation of uniformly-distributed test data. 

 

Table 2: Mean solution variation (%) of the solver Cplex and RF methods compared to the Cplex 
Lower Bounds. 
 

Table 3: Percentage of test problems in which Cplex found an optimal solution for all the RF MIPs 
 

Table 4: Mean solution variation (%) of the DH/DN/SA heuristics compared to the basic RF 
method. 
 
 
Table 5: DH solution compared to the schedule practiced in a foundry (in item-days)  
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Figure 2: Periods and sub-periods in a rolling horizon strategy 

10 

Day 1 Day 2 Day 3 Day 4 

1 2 

      t=1 
n=1,...,10 

Day 5 

t=2  
n=11 

t=3  
n=12 

t=4  
n=13 

t=5  
n=14 



 29 

 
Table 1: Parameters used for generation of uniformly-distributed test data. 

 

Parameters Values 

Number of Items and Alloys: (N, K) pairs Small Problem: (10, 2) 

Medium Problem: (50, 10) 

Large Problem: (100, 20) 

Number of Days: 5 

Demand: dit [10, 60] 

Days of Delay: ai [-10, 10] 

Physical Weight of Item: ρi [1, 30] 

Setup Time of Alloy: stk [5, 10] 

Setup Penalty of Alloy: sk Low:  5 × stk      High:  50 × stk 

Tightness of Furnace Capacity: Cap C / 0.6,   C / 0.8,   C / 1.0,   C / 1.2 
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Table 2: Mean solution variation (%) of the solver Cplex and RF methods compared to the Cplex 

Lower Bounds. 
 

Method: Cplex RF 
Setup Penalty Factor sk 5×stk 50×stk Mean 5×stk 50×stk Mean 

Problem Size Capacity       
 C/0.6 6.94 5.37 6.16 1.96 0.06 1.01 

Small: C/0.8 4.20 4.56 4.38 1.82 1.29 1.55 
(N,K) = (10, 2) C/1.0 5.19 5.39 5.29 2.31 3.18 2.74 

 C/1.2 10.93 8.46 9.70 2.80 3.60 3.20 
 Mean 6.82 5.95 6.38 2.22 2.03 2.13 
 C/0.6 26.83 41.26 34.04 10.35 19.91 15.13 

Medium: C/0.8 19.39 31.52 25.45 6.33 14.85 10.59 
(N,K) = (50, 10) C/1.0 25.65 31.64 28.65 6.62 11.98 9.30 

 C/1.2 26.72 27.88 27.30 5.74 10.15 7.94 
 Mean 24.65 33.07 28.86 7.26 14.22 10.74 
 C/0.6 35.79 44.62 40.21 11.69 27.34 19.51 

Large: C/0.8 31.26 34.76 33.01 9.19 16.32 12.76 
(N,K) = (100, 20) C/1.0 27.79 31.38 29.58 8.01 13.57 10.79 

 C/1.2 21.46 25.31 23.39 6.67 10.62 8.64 
 Mean 29.08 34.02 31.55 8.89 16.96 12.93 

Overall Mean (%) 20.18 24.35 22.26 6.12 11.07 8.60 
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Table 3: Percentage of test problems in which Cplex found an optimal solution for all the RF MIPs 

 
Problem Size Small: (N, K)  = (10, 2) Medium: (N, K)  = (50, 10) Large: (N, K)  = (100, 20) 
Setup Penalty 

sk 
C/0.6 C/0.8 C/1.0 C/1.2 C/0.6 C/0.8 C/1.0 C/1.2 C/0.6 C/0.8 C/1.0 C/1.2 

5 × stk 100 100 100 100 62 66 68 80 44 42 36 56 
50 × stk 100 100 100 100 68 68 86 90 44 42 32 44 
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Table 4: Mean solution variation (%) of the DH/DN/SA heuristics compared to the basic RF 

method. 
 

Method: DH DN SA 
Setup Penalty Factor sk 5×stk 50×stk Mean 5×stk 50×stk Mean 5×stk 50×stk Mean 
Prob. Size Capacity          

 C/0.6 4.67 15.36 10.02 3.50 7.72 5.61 0.86 4.56 2.71 
Small: C/0.8 2.85 5.56 4.21 0.70 2.37 1.53 0.52 1.68 1.10 

(N, K)  =  C/1.0 1.35 1.86 1.61 0.00 0.63 0.32 0.21 0.32 0.26 
(10, 2) C/1.2 1.46 1.74 1.60 0.17 0.36 0.26 0.00 0.00 0.00 

 Mean 2.58 6.13 4.36 1.09 2.77 1.93 0.40 1.74 1.02 
 C/0.6 1.88 9.64 5.76 1.91 7.69 4.80 1.27 2.75 2.01 

Medium: C/0.8 1.25 5.21 3.23 1.11 4.50 2.80 0.62 2.41 1.51 
(N, K)  =  C/1.0 0.97 4.23 2.60 0.74 2.97 1.86 0.58 0.77 0.67 
(50, 10) C/1.2 1.13 2.73 1.93 0.89 1.95 1.42 0.88 2.58 1.73 

 Mean 1.31 2.54 3.38 1.16 4.28 2.72 0.84 2.13 1.48 
 C/0.6 0.18 2.93 1.56 1.68 2.93 2.30 -0.01 1.41 0.70 

Large: C/0.8 0.19 2.05 1.12 0.33 2.27 1.30 0.19 1.08 0.63 
(N, K)  =  C/1.0 -0.15 0.96 0.40 0.05 1.28 0.67 -0.15 0.96 0.40 
(100, 20) C/1.2 0.02 1.01 0.52 0.38 1.60 0.99 0.00 1.01 0.51 

 Mean 0.06 1.74 0.90 0.61 2.02 1.31 0.01 1.11 0.56 
 Overall Mean (%) 1.32 4.44 2.88 0.95 3.02 1.99 0.41 1.63 1.02 
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Table 5: DH solution compared to the schedule practiced in a foundry (in item-days)  

 
 DH Solution Foundry Practice 
 Backlogs Stocks Backlogs Stocks 

Day 1 35,626 0 35,698 46 
Day 2 25,564 0 25,324 23 
Day 3 24,384 0 22,710 1 
Day 4 6708 22 24,964 2 
Day 5 3476 0 23,237 3 

TOTAL 95,758 22 131,933 75 
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Table 6: DH solution compared to the schedule practiced in a foundry (in kg-days)  
 
  

 DH Solution Foundry Practice 
 Backlogs Stocks Backlogs Stocks 

Day 1 177,342 0 176,425 46 
Day 2 115,244 0 120,117 23 
Day 3 86,077 0 100,183 70 
Day 4 67,009 47 101,314 140 
Day 5 48,195 0 81,500 210 

TOTAL 493,867 47 579,540 489 
 

 


