
 1

Lot-Sizing and Furnace Scheduling in Small Foundries

Silvio A. de Araujo
 Instituto de Biociências, Letras e Ciências Exatas

Departamento de Ciências da Computação e Estatística
 Universidade Estadual Paulista, São José do Rio Preto SP, 15054-000, Brazil

Email: saraujo@ibilce.unesp.br

 Marcos N. Arenales
Instituto de Ciências Matemáticas e de Computação
Departamento de Matemática Aplicada e Estatística

Universidade de São Paulo,Caixa Postal 668, São Carlos SP, 13560-970, Brazil.
Email: arenales@icmc.usp.br

Alistair R. Clark *
Faculty of Computing, Engineering and Mathematical Sciences

University of the West of England, Bristol, BS16 1QY, United Kingdom.
Email: Alistair.Clark@uwe.ac.uk

Tel: +44 117 328 3134

* Corresponding author

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UWE Bristol Research Repository

https://core.ac.uk/display/323900084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Abstract: A lot-sizing and scheduling problem prevalent in small market-driven foundries is

studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production,

and (2) moulding machine planning which specifies the type and size of production lots. A mixed

integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in

reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF)

approach is developed that can also be used on a rolling horizon basis where only immediate-term

schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants

of a local search method are also developed and tested using instances based on the literature.

Finally, foundry-based tests with a real order book resulted in a very substantial reduction of

delivery delays and finished inventory, better use of capacity, and much faster schedule definition

compared to the foundry’s own practice.

Key words: lot-sizing and scheduling, meta-heuristics, mixed integer programming.

 3

1. Introduction

Foundries are common in every region of Brazil, producing many types of products, ranging

from simple items for domestic use to sophisticated parts for the automobile and machine tool

industries. According to the Brazilian Foundry Association [1], the sector is growing rapidly,

having produced over 12,000 tonnes a day (October/2005) and directly employing about 60,000

people.

Foundries can be classified as either captive or market-driven. The former tend to be part of

large companies, such as car manufacturers, that totally absorb the foundry production, composed

of large quantities of a small number of parts with relatively stable demand. On the other hand,

market-driven foundries are generally small or medium sized companies that nevertheless produce a

huge range of items with vastly varying demand. While captive foundries use a small number of

different metal alloys, market-driven foundries need to work with a wide variety due to the diversity

of their clients. This paper focuses on the problem of planning and scheduling production in small

market-driven foundries.

Numerous researchers have studied lot sizing and setup scheduling problems, with reviews by

[2-10]. However, there is little published research on such problems in foundries, and even less

concerned with market-driven foundries. Santos-Meza et al. [11] studied the problem in small and

medium-sized foundries, while Araujo and Arenales [12] researched a large captive foundry.

Sounderpandian et al. [13] and Gravel et al. [14] also studied to large foundries, but dealt

specifically with the problem of job sequencing on machines. Most papers on this topic are

concerned with production scheduling in large steel plants. By their nature, such plants do not have

moulding sections since they produce steel sheets, of varying sizes and types, in rolling machines

with cylinders that are configured according to the sheet specifications. Tang et al. [15] published a

review of research on production planning and scheduling in steel production, while a variety of

papers have studied the practical problems found in large steel plants, including [16-23].

In practice, the problem is tackled sequentially. The lot sizing of foundry products is carried

out first, taking into account their demand and due dates. The production of alloys is then scheduled

as a function of the lot sizes of the end products. However, this approach can result in a poor

furnace schedule given the lack of two-way linkage between the lot sizing of end products and the

scheduling of alloys. In this paper, we propose an optimization model where the two problems are

solved in an integrated manner. The model put forward in this paper is closely related to the General

Lot Sizing and Scheduling Problem (GLSP) and its extensions [8, 24-28]. The GLSP schedules

multiple products on a single machine and allows many setups in each single ‘large-bucket’ time

period. This paper adapts the GLSP to include backlogs and product-group setups, with an

emphasis on rolling horizon use.

 4

The review by Karimi et al. [10] highlights the development of heuristics with reasonable

speed and solution quality for this kind of model as an important research area. Recent research by

Gupta and Magnusson [29] into capacitated lot sizing with sequence-dependent setup costs states

that it is still difficult to obtain near-optimal solutions for industrial-size problems. Dillenberger et

al. [30] formulated a lot sequencing and sizing model with representation of sequence-independent

setup times on multiple machines. The resulting mixed integer programming (MIP) model is

difficult to solve optimally for large realistic problems, and so the authors resorted to the fix-and-

relax method (Beraldi et al. [31]), more widely known as relax-and-fix (Wolsey [32], Kelly and

Mann [33]). The current paper uses a similar basic approach. Dillenberger et al. [30] illustrated the

viability and value of the relax-and-fix method, applying it to sizeable real problems from three

IBM plants, and obtaining acceptable solutions in reasonable computing time, even on the slower

machines of the 1990s.

Section 2 describes the lot sequencing and sizing in the context of found while section 3

presents the results MIP model. An initial attempt to optimally solve this model using advanced

optimisation software was not successful. To try to overcome this, section 4 presents rolling

horizon solution strategy, but the software still failed to find good solutions within reasonable

computational time. The relax-and-fix heuristic approach was then applied on a rolling horizon

basis in section 5, giving good results. Relax-and-fix involves the solution of a period-by-period

sequence of partially-relaxed MIPs, each one with just a reduced set of binary variables whose

number is small enough to obtain good solutions. As the horizon rolls forward in time over the

periods, each set of binary variables is permanently fixed at their solution values.

For comparison, three methods involving neighbourhood search on the reduced set of binary

variables were developed, namely, descent heuristic, diminishing neighbourhood search and

simulated annealing. Several authors have already explored a similar approach, among them Kuik

et al. [34] who used simulated annealing and tabu search on a lot-sizing problem with sequence-

independent setups, Teghem et al. [35] who employed linear programming within a simulated

annealing for a combinatorial production planning problem, and Fleischman and Meyr [26] who

applied threshold accepting search on the general lot sizing problem (GLSP) with sequence-

independent setup costs (but not times), denoted GLSPST. Similarly, Meyr [27] developed an

efficient algorithm for the GLSPST that uses multiple runs on a local search for lot sequencing with

linear programming (LP) dual reoptimization for rapid lot-sizing.

Computational tests comparing all the methods are presented and analysed in section 6,

including in-foundry comparisons with practiced schedules.

2. Problem Definition

A key process in a foundry is the transformation of ore and scrap metal into alloys with

specified levels of carbon, silicon, zinc, etc, that determine properties such as brittleness and

 5

resistance to corrosion. The alloy, still in a liquid state, is then poured into moulds, normally made

of sand and resin where it cools to produce final items. These two processes of alloy production

and item moulding must be jointly scheduled. After the cast items have been cooled, they are

deburred and made available for delivery.

In small foundries, only one furnace is usually operating at any point in time, so that just a

single alloy can be produced in each time period. This is different from large foundries where

several furnaces can be in operation simultaneously, enabling the production of several alloys in the

same period [12]. Furthermore, in small foundries, the preparation of sand moulds is a manual

process that is carried out as soon as the next day’s production schedule is specified and is not a

production bottleneck. Rather, the furnace is the production bottleneck. This contrasts with

automated foundries, where multiple moulding machines of varying capacity and efficiency have to

be scheduled. In this case, the bottleneck could be either mould preparation or the furnaces,

depending on item orders and schedules.

Figure 1 illustrates the main activities in a small market-driven foundry. Clients randomly and

spontaneously submit orders specifying the item type, quantity and alloy. The Production Planning

department negotiates due dates with the client, often agreeing unachievable dates that result in

delivery delays and the possible loss of future orders from the client. Thus the minimisation of

delays is one of the principal concerns of the foundry company.

The Production Planning department specifies which items should be produced during the next

few days, advises the Moulding section which moulds to prepare in advance, and determines the

specific alloys to be melted. The scheduling is guided by due dates in the following days as well as

by delayed orders. Excessive changes of alloys are undesirable, and so setups are considered in the

model.

The manufacturing system has the following characteristics and assumptions:

• An alloy is generally used in several products, but a product is made from just one alloy.

• The output weight of an alloy is equal to the total gross weight of the products in which the alloy

is used.

• A product cannot be manufactured in a given time period unless the alloy which it is made from is

also processed in that period. Processed alloys cannot be held over to the next period.

• In each time period only one alloy can be processed on the furnace.

• A setup changeover from one alloy to another consumes capacity time in a manner that is

independent of the sequence in which the alloys are processed.

• All products have a demand over a planning horizon that would be met if capacity were sufficient.

However, delays will occur if capacity is tight, and so backlogs must be represented in the model.

• The objective is to schedule lot sizes and to sequence setups in order to minimize a penalty-

weighted sum of product backlogs, finished inventories and setup changeovers.

 6

3. Mathematical Model

We now propose a mixed integer programme (MIP) to model the problem described above.

The following notation is used:

Indices: k = 1, ..., K alloys

i = 1, ..., N items

t =1, ..., T periods (days, for example)

n = 1,...,η sub-periods (furnace loadings lasting 2 hours, for example)

Data: Cap Capacity (kg) of a single furnace loading

 ρi Gross weight (kg) of item i

 dit Quantity of items i ordered for period t

 S(k) Set of items i that use alloy k (each item uses one and only one alloy).

Thus {1, ..., N} = S(1) ∪ ... ∪ S(K) and S(k) ∩ S(j)=∅ for all k≠j

 −
ith

Penalty for delaying a unit of item i in period t

 +
ith

Penalty for holding a unit of item i in period t

 sk Setup penalty for alloy k

 stk Setup loss of capacity (kg) due to a setup for alloy k

Variables: xin Quantity (lot-size) of item i to be produced in sub-period n

itI + Quantity of item i held at the end of period t

 itI − Quantity of item i delayed at the end of period t

 yk
n Binary variable, k

ny = 1 indicates that the furnace is set up (configured) for

producing alloy k in sub-period n , otherwise k
ny = 0

 zk
n Binary variable, k

nz = 1 if there is a setup (changeover to) alloy k in sub-

period n, otherwise k
nz = 0. Thus k

nz = 0 if k
n 1y − = k

ny and k
nz = 1 if k

n 1y − < k
ny .

Furthermore, consider the following definitions from the General Lot-Sizing and Scheduling

Problem (GLSP) model [8, 24-28]:

 7

ηt Number of sub-periods in period t

Ft=1+ ∑
−

=

1

1

t

t
t? First sub-period in period t (F1 = 1)

Lt=Ft + ηt -1 Last sub-period in period t

η= ∑
=

T

t
t?

1
 The total number of sub-periods over the planning horizon

We can now formulate the following MIP model:

Minimize ∑∑
= =

++−− +
N

i

T

t
itititit IhIh

1 1
)(+ ∑ ∑

= =

K

k

L

Fn

k
nk

T
zs

1 1

)((1)

subject to:

, 1i tI +
− - , 1i tI −

− + ∑
=

L

Fn

t

t
inx - itI + + itI − = dit i = 1, …, N t = 1, ..., T (2)

∑
∈)(kSi

ini xρ + k
k nst z ≤ Cap k

ny k = 1, ..., K n = F1, ..., LT (3)

1
k k k
n n nz y y −≥ − k = 1, ..., K n = F1, ..., LT (4)

1
1

=∑
=

K

k

k
ny n = F1, ..., LT (5)

k
ny ∈ {0,1} with ky0 = 0 k = 1, ..., K n = F1, ..., LT (6)

0≤ k
nz ≤ 1 k = 1, ..., K n = F1, ..., LT (7)

xin ≥ 0 and integer i = 1, ..., N n = F1, ..., LT (8)

+
itI and −

itI ≥ 0 i = 1, ..., N t = 0, ..., T (9)

The first part of the objective function (1) is a weighted sum of inventory and delay penalties

for each period. The second part is the setup penalties, i.e., the alloy changeovers in each sub-

period. Thus the objective function seeks a weighted balance between conflicting objectives: stocks,

delays and setups. The human schedulers can use their knowledge and experience by varying the

values for −
ith , +

ith and sk to explore alternative production schedules. Such exploration does not

generally give the efficient surface [36], but can provide enough scenarios to guide the decion

maker.

Constraints (2) balance inventories, delays, demands and production of items for every item in

each period. Constraints (3) not only keep production within the furnace capacity, but also ensure

that only items of the same alloy are produced in a particular furnace loading. As k
ny and k

n 1y − are

 8

both binary variables, constraints (4) and the objective (1) force the continuous variables k
nz to be

equal 1 if there is a changeover to alloy k or to equal 0 otherwise. Along with constraints (7), the
k
nz variables assume just 0 or 1 values, even if the xin and k

ny variables are not integer optimal (for

example, at nodes during a branch-and-bound search). Constraints (5) and (6) ensure that there is

only a single furnace loading in each sub-period.

In captive foundries, lot sizes tend to be large since there are just a few types of items

(generally components of standard products) which have a large stable demand, so that the

integrality of xin can usually be relaxed. However, in contrast, the integrality condition is necessary

for small market-driven foundries with their many small orders. This feature is not taken into

account in most lot sizing models [8].

Constraints (9) measure inventory +
itI and delays −

itI as non-negative variables, but note that in

a continuously optimal solution, +
itI and −

itI will not both be strictly positive, for a given pair (i,t),

due to their positive coefficients in the objective function.

Model (1)-(9) shares some similarities with the GLSP model [8, 24-28]. Sequencing decisions

are implicitly determined by the furnace setup variables k
ny , but differently from the GLSP:

• a sub-period covers the set of products of a given alloy rather than a single product;

• the sub-periods in our model represent the time it takes to process a furnace load, and so

have predetermined lengths, whereas in the GLSP the duration of a particular small time

bucket is a decision outcome;

• the number of sub-periods per period is fixed, being equal to the number of furnace loads

that can be processed per period, although it could be any predetermined number, as in the

GLSP.

Thus the GLSP’s small and large bucket concepts are both present in the model (1)-(9), since

during each period only one type of alloy (an intermediate item which must be used in the period)

can be produced together with multiple ordered items. This type of lot sizing and scheduling

problems is found in many other applications such as the production of soft drinks or tomato sauce

[37].

Depending on the number of items and periods, lot-sizing MIP models are often very large in

practice so that even advanced solvers such as Cplex 7.1 [38] are unable to identify probably-

optimal solutions in acceptable computational time. Trying to solve the model (1)-(9) with realistic

data using MIP solver Cplex 7.1 on a Pentium III 500 MHz with 512 MB of RAM, the default

branch-and-cut (B&C) search ran out of memory, achieving only poor solutions.

However, it is generally not worthwhile to invest a lot of computing time in the search for an

exact optimal solution, given that input data are often imprecise in small foundries and in

 9

manufacturing in general. A more useful outcome is a quickly-obtained solution of good quality.

Delay penalties are usually subjective estimates and the order book is changeable, being updated

daily, so that a theoretically optimal solution to model (1)-(9) will almost surely not be the best in

practice and should be used as a guide rather than a command. As a result, the exact model may be

relaxed to an easier one that includes integer variables only for the first immediate periods (where

decisions scarcely change), after which the order book is updated, and the model applied to the next

immediate periods, and so on. Such a rolling horizon strategy of approaching the problem is widely

used in practice. The use of a rolling horizon is not only a useful practical approach (since it takes

account of daily changes to the order book), but it works as a very good heuristic strategy to solve a

problem even if the order book is not changed, as we will see in the computational experiments

where fixed parameters are used.

Several authors have pursued this approach. Clark [39] and Stadtler [40] showed that this

flexible approach can handle large multi-level MRP-type problems over long planning horizons

with sequence-independent (Stadtler) and sequence-dependent (Clark) setup times. Suerie and

Stadtler [41] used the same approach tested on smaller problems with a tight reformulation and

valid inequalities providing very good fast solutions. The relax-and-fix method as implemented in

the current paper fits well into rolling horizon usage, as will be shown below.

4. Rolling Horizon Model

To illustrate how the Rolling Horizon strategy works, suppose each period t is a workday, as

in the foundry that motivated this study. Consider a planning horizon of T = 5 workdays of which

only the first day (t = 1) will be scheduled in detail. This is achieved by dividing the first day into L

=η 1 =10 sub-periods, as up to L furnace loadings can be processed each day. The remaining days t

= 2,....,5 have just one sub-period each (η2 = η3 = η4 = η5 = 1). Thus F1 = 1; L1 = 10; F2 = L2 = 11;

F3 = L3 = 12; F4 = L4 =13; F5 = L5 = 14, i.e., there are η = 14 sub-periods n (as illustrated in Figure

2). The variables k
ny for the larger sub-periods n = F2,...,F5 are then redefined as “the number of

loadings using material k produced in sub-period n”.

Only the scheduled decisions relative to the η1 = 10 sub-periods of day 1 are actually

implemented. The decisions for the remaining 4 days are used only to evaluate the impact of future

available capacity, i.e., to identify a provisional production plan in order to have advance warning

of possible production backlogs and be able to act accordingly. Under standard rolling horizon

practice, the model is reapplied one period later covering periods t = 2, …, T+1 with updated

demand data over the rolled-forward T-period horizon, then over periods t = 3, …, T+2, and so on,

using fresh demand forecasts [42].

 10

To reduce problem complexity and solution time, the integer xin variables are relaxed for

sub-periods n = F2,...,FT, given that these variables’ decisions are never in fact implemented. The
k
ny variables for sub-periods n = F2,...,LT could also have been relaxed, but initial computational

experiments indicated that they should remain integer in order to improve future capacity

evaluation.

These modifications result in the following model for rolling horizon use, denominated RH:

Model RH:

Minimize ∑∑
= =

++−− +
N

i

T

t
itititit IhIh

1 1
)(+ ∑ ∑

= =

K

k

L

Fn

k
nk zs

1

1

1

)((10)

subject to:

, 1i tI +
− - , 1i tI −

− + ∑
=

L

Fn

t

t
inx - itI + + itI − = dit i = 1, …, N t = 1, ..., T (11)

∑
∈)(kSi

ini xρ + k
k nst z ≤ Cap k

ny k = 1, ..., K n = F1, ..., L1 (12)

∑
∈)(kSi

ini xρ ≤ Cap k
ny k = 1, ..., K n = F2, ..., LT (13)

1
k k k
n n nz y y −≥ − k = 1, ..., K n = F1, ..., L1 (14)

η t

K

k

k
n

L
y =∑

=1
 t = 1, ..., T n = Ft, ..., Lt (15)

k
ny ∈ {0,1} with ky0 = 0 k = 1, ..., K n = F1, ..., L1 (16)

k
ny ≥ 0 and integer k = 1, ..., K n = F2, ..., LT (17)

0≤ k
nz ≤ 1 k = 1, ..., K n = F1, ..., L1 (18)

xin ≥ 0 and integer i = 1, ..., N n = F1, ..., L1 (19)

xin ≥ 0 i = 1, ..., N n = F2, ..., LT (20)

+
itI and −

itI ≥ 0 i = 1, ..., N t = 1, ..., T (21)

Constraints (3) are now replaced by (12) for the first period and (13) for the remaining periods.

Constraint (5) is replaced by (15) which imposes exactly L/?t setups in sub-period n, i.e., the

number of loads in period t divided by the number of sub-periods in period t. For example, period 1

has 10 sub-periods and can handle 10 loads, so L/?1 = 10/10 = 1 (and n = F1,…,L1, i.e., n = 1,…,10),

whereas period 2 has one sub-period and can handle 10 loads, so L/?2 = 10/1 = 10 (and n = F2,…,L2,

i.e., n = 11).

 11

Model RH maintains the similarity to the GLSP, adapting its small-bucket/large-bucket

concepts for rolling horizon use. The large-bucket time period used for scheduling a whole day, for

example, is split into several small-bucket scheduling time periods (for instance, 10 loadings of

materials). Days 2 to 5 are, temporarily, indivisible large buckets with production of multiple

materials.

5 Solution Methods

Model RH is much smaller than the model (1)-(9), but still not small enough to be solved

optimally with realistic data using the MIP solver Cplex 7.1 within acceptable computing time.

However, it is possible to sub-optimally solve the model using the relax-and-fix method. This

involves the sequential solution of a series of partially relaxed MIPs, one per period, each one with

a small enough number of integer variables to be quickly solved. As the series progresses in time

from the first period to the last, each set of integer variables are permanently fixed at their solution

values. The relax-and-fix procedure solves the model RH in two steps, as follows:

1. Relax all integer variables, except the first day’s binary variables k
ny (n = F1, ..., L1), representing

furnace loadings in period 1 and being the most important decisions in the rolling horizon

method. Solve this relaxed problem.

2. Fix the first day’s k
ny (n = F1, ..., L1) variables at their binary values from the solution in step 1.

The k
ny (n = F2, ..., LT) variables and xin (n = F1, ..., L1) variables are specified as integer. Solve

this partially fixed problem.

The problem in step 1 is solved using one of the four methods (RF, DH, DN and SA) described in

sections 5.1 to 5.4 below. The problem in step 2 can be optimally solved in a few seconds with the

Cplex MIP solver, since a binary variable k
ny which is fixed to 1 implies, by constraints (12) and

(15), that xin = 0 for all i∉S(k), i.e., products that do not use material k are not manufactured in sub-

period n, thus eliminating many integer variables and constraints. Consequently, the solution

methods developed in the rest of this paper focus on step 1.

5.1 Basic Relax-and-Fix Method (RF):

The basic approach to solving step 1 of the relax-and-fix method simply uses the incumbent

solution that results from running the Cplex MIP solver for 3, 6 and 12 minutes respectively for

small, medium and large problems (as defined in Table 1 of section 4.1). This method is denoted

RF.

 12

5.2 Descent Heuristic (DH)

The basic RF method is dependent on a MIP solver for both MIP problems in the two steps that

arise in the relax and fix procedure above. The first problem is to solve (and then fix) just the first

day’s binary variables. The second problem, in step 2, is to try to find an optimal solution for

variables k
ny (n = F2, ..., LT) and xin (n = F1, ..., L1).

To solve the first MIP, a local search descent heuristic (DH) [43-45] can be used to find good

values for period 1’s binary k
ny (n = F1, ..., L1) variables. Starting, for example, with a random

solution and fixing these variables, all the other integer variables are relaxed and the resulting linear

programming model is solved. In the next local search iteration, the period 1 binary variables are

modified and the linear program is solved again to obtain a neighbouring solution. Depending on

certain criteria, the neighbouring solution may become the current solution. The local search then

proceeds to the next iteration. The best solution encountered as the search progresses is recorded.

When the stopping criterion of the local search holds, the k
ny (n = F1, ..., L1) variables are fixed at

the best solution found.

In order to implement the DH method (Algorithm 1), it is necessary to define a series of

parameters. In this paper the solution representation in the descent heuristic consists of a η1-vector

of integers, v = (ν1, ..., 1ην), where vn contains the type of material scheduled for sub-period n in the

first day, that is, vn = k if and only if k
ny = 1. For example, when η1=10, the solution vector v = (2,

2, 20, 1, 4, 4, 8, 2, 10, 3) means that material type 2 is made in the first two sub-periods, material

type 20 in the third sub-period, and so on.

Three alternative ways of obtaining a starting solution for the descent heuristic were at first

considered:

1. For n = 1,...,η1, choose the value of vn to be k with the probability given by |S(k)| / N where

|S(k)| is the size (cardinality) of the set S(k). Thus, the more products that can be made from

k, the more likely it is that k will be selected;

2. Run a MIP solver for a few minutes to obtain an initial heuristic solution;

3. For n = 1,...,η1, choose the value of vn to be k, uniformly sampled from {1, ..., K}.

However, after initial tests the first way was selected and the other two were discarded.

The search stops after 1000 iterations, which was found to be sufficient to obtain a good

solution in acceptable computing time. This number of iterations was fixed as the stopping criterion

in order to fairly compare the three types of heuristic.

In order to determine neighbouring solutions it is necessary to specify how the vector v is

changed, which defines decisions to the first η1 sub-periods. Just one sub-period has its value

 13

changed (in the Diminishing Neighbourhood Heuristic more than one can be changed in the

beginnig, but ends with just one changing). The neighbourhood move implemented slightly biases

the selection towards more widely-used alloys, and was adopted after initial testing showed its

positive impact. Two alternative procedures were used to randomly choose n*, the sub-period to

change the material k:

1. With 90% probability: The value of n* is uniformly sampled from the set {1,...,η1}.

2. With 10% probability: Let k = vn be the material currently produced in a given sub-period

n. We want that the more products S(k) made from material k, the less the chance of

selecting sub-period n. So, sample the value of k with probability (N-|S(k)|) / (N(K*-1))

where K* is the number of different materials to be produced in period 1. The value of n* is

then uniformly sampled from those sub-periods in which material k is produced.

Once n* is chosen, a new key material k is selected in one of two ways:

1. With 90% probability: k is uniformly randomly sampled from the set {1,...,K},

2. With 10% probability: k is sampled from the set {1,...,K} with probability |S(k)| / N, i.e., the

more products S(k) that can be made from k, the greater the likelihood of selecting k.

Algorithm 1 (Descent Heuristic Procedure)

1. Select a starting solution: v = (ν1, ..., 1ην), which means { k
ny | (n = F1, ..., L1) }.

2. Relax the integer variables xin (n = F1, ..., L1) and k
ny (n = F2, ..., LT) as explained before and

solve the LP problem resulting.

3. Record as the incumbent solution that one obtained from the linear programme in step (2).

4. Repeat steps (4.1) to (4.3) for 1,000 iterations:

4.1. Generate a neighbouring solution of the incumbent: select a sub-period n in period 1 (F1 ≤ n

≤ L1) and a new alloy k, as described above; let vn = k.

4.2. Fix the decisions on the first period; that is, if vn = k then k
ny = 1 and k

jy = 0 for j≠k; solve

the relaxed linear programme.

4.3. If the neighbouring solution provides a better objetive function value in (10) than the

incumbent solution then it becomes the incumbent.

5. Fix the values of the k
ny (n = F1, ..., L1) variables the incumbent solution. Restore the xin (n =

F1, ..., L1) and the k
ny (n = F2, ..., LT) to be integer variables, and solve the resulting small MIP

to obtain an optimal integer solution.

Researchers have proposed many ways to improve the descent heuristics performance,

including [43]-[51]. In this paper, we use two strategies: Diminishing Neighbourhood search

 14

method and Simulated Annealing, with the same basic parameters as the local search described

above.

5.3 Diminishing Neighbourhood (DN) Search

This method adapts the local search described in the previous section, beginning with a large

neighbourhood to encourage diversity and then gradually diminishing its size so as to increasingly

intensify the search. Too small a neighbourhood could cause premature convergence and increase

the risk of stagnation at a local optimum, while too large a neighbourhood would lead to random

meandering and an inefficient search. The search starts with the largest possible neighbourhood,

i.e., all the first day’s η1 variables k
ny (i.e., νn) in a solution can be changed in step 4.1 of the

descent heuristic procedure. After a given number of iterations the neighbourhood size is reduced,

i.e., only η1-1 randomly uniformly selected variables k
ny (νn) in a solution can be changed. During

the search, neighbourhood size is repeatedly diminished. The search ends with a neighbourhood

where just one position is changed, i.e., as in the descent heuristic in section 5.2.

For each size Z = 1,…,10 of neighbourhood, 18(11-Z)+1 iterations are carried out at step 4,

summing to a total of 1000 iterations over the whole search. Thus 19 iterations are carried out when

Z = 10 at the start of the search, 37 when Z = 9, and so on, increasing to 181 iterations when Z = 1 at

the end of the search. Clark [52] successfully used a similar method for lot-sizing on a drinks

canning line.

5.4 Simulated Annealing (SA)

Simulated Annealing is a variant of the local search descent heuristic that tries to avoid getting

trapped at a local optimum by permitting worsening moves away with probability:

 ∆
−

=∆ Temp
ofv

eofvp)((22)

where Temp is a gradually-cooling “temperature” and ? ofv the amount by which the new move

worsens the objective function value. As the search progresses, the best solution encountered is

recorded.

Previous computational tests indicated that the following parameters produce, in general, the

best results. The starting temperature Tempstart is a function of the initial solution ([48]):

)log(

Solution Initial theof Value
θ

µ
−

×
=startTemp (23)

 15

where µ = 0.6 and θ = 0.9 indicate that a solution which is 60% worse than the current one has 90%

probability of acceptance at the start of the search. 50 iterations were allowed in order to reach

equilibrium at a given temperature before cooling but only 10 iterations after a solution was

accepted, even when worse. Each time the temperature was cooled in this way, it was reduced by

5%. In addition, each time a worse solution was accepted, the temperature was again cooled

(slightly) as follows:

 ∆
××−=

)(
1.0

Sofv
ofv

TempTempTemp oldoldnew (24)

where ofv(S) is the objective function value for the previous solution. The worse the accepted

solution, the greater the reduction in temperature, thus making the acceptance of future worse

solutions less likely from then on.

6. Computational Experiments

The computational experiments were divided into two parts. In order to evaluate the method in

different situations, the first part used randomly generated data based on modified intervals based

on [25]. The second part made use of an order book from a real-world foundry, so that the

method’s outcome could be compared with schedules used in practice.

Before describing the data generation, consider following parameter definitions:

 αi the number of days by which item i is already delayed at the beginning of the schedule,

i.e., at t = 0.

 ρi weight of item i (previously defined in section 3)

A value αi = 0 means that the item i due date is day 1, and αi < 0 means that item i is not

delayed when the planning begins. Suppose that an item i is already delayed by αi > 0 at the

beginning of the planning. Then, at the end of period t, t = 1,…,T the item’s delay will be αi+t. Its

delay penalty −
ith is calculated as ρi(αi+t) so as to increasingly penalise any further delay in its

production. However, if item i is not already delayed, i.e., αi ≤ 0, then it can be produced up to

period 1+|αι| without delaying. Thus, for t = 1+|αι|, a positive value I it
− > 0 means one day of delay

and so −
ith is also calculated as ρi(αi+t) from this period onwards.

Furthermore, if item i is not delayed at the beginning of the schedule, then the variable I it
+

can be positive (i.e., item i can be produced before its due date) and its inventory penalty +
ith is

defined as proportional to its weight ρi. In this case, to force I it
− to be zero (given that there is no

 16

delay), the delay penalty −
ith is set to be a very large number G. Similarly, in the case of a delay, its

inventory penalty +
ith is also set to G to force I it

+ to be zero.

In summary:

if αi ≥ 0 (i.e., item i is already delayed at the start, or the due date is day 1) then

for t=1,...,T, let −
ith = ρi(αi+t) and +

ith = G;

else (i.e., (αi < 0, meaning that item i will be delayed after period 1+|αi|)

for t=1,...,|αi|, let −
ith =G and +

ith =ρi ;

for t= 1+|αi|,...,T, let −
ith = ρi(αi+t) and +

ith =G.

If orders for an item have different due dates, then this item will be considered as two

distinct items in order to have two different delay penalty values. Although this could considerably

increase the model size, in practice it will do so only a little at most, since in small market-driven

foundries only a few items are doubled ordered within the one-week planning horizon. Note that

this doubling of items will not create false setups (as it would in classical lot sizing models with

item setups) since the doubled items belong to the same set S(k), as in constraints (12).

It might be tempting to explicitly prohibit delays in the model, but as these are frequently

unavoidable, such a ban would result in infeasible problems and would be unrealistically rigid. It is

realistic to include the possibility of delays in the model and let the human scheduler manage them,

for example, by calibrating a production priority parameter for each individual items (βi) that can be

included in the computation of −
ith . Moreover, delay variables help the scheduler to evaluate due

dates. For instance, if di1 = 30, then a model solution 1iI − = 10, ,2iI − = 5, ,3iI − = 0 flags that the

demand for item i will be fully met only after 2 days of delay. In this case, the client could be

alerted and, if necessary, the scheduler could increase the value of parameter βi for that item or

renegotiate the item’s due-date.

6.1 Generation of Test Data

Previous experience [42] indicates that certain parameters may affect solution quality, namely:

• problem size (N,K)

• size of setup penalty stk

• tightness of capacity Cap

Larger problems, bigger setup penalties, and tighter capacity are each expected a priori to

adversely affect solution quality and computing time, but may do so in different degrees for each

solution method. The uniform sampling intervals used to randomly generate the test data were

based on those in [25] and are shown in Table 1. Though not encompassing every possible

 17

situation, the values are sufficiently typical to be confident that the test results will point to

generally applicable conclusions.

The furnace capacity was generated as follows: first calculate the resources needed to exactly

produce the total item demand over the planning horizon (in this case 5 periods, i.e., 50 furnace

loadings); then add the total setup time needed if the furnaces were setup just once for each alloy;

finally divide by the number of furnace loads, i.e., 50. Hence:

50

1 11
∑ ∑∑
= ==

+
=

N

i

K

k
k

T

t
iit std

C
ρ

 (25)

Thus in Table 1 four different levels of the tightness of Furnace Capacity Cap are shown (i)

Very Loose capacity: Cap = C / 0.6; (ii) Moderately Loose: Cap = C / 0.8; (iii) Moderately Tight:

Cap = C / 1.0; (iv) Very Tight: Cap = C / 1.2.

The parameters (N, K), sk and Cap were varied in a 3-factor experimental design. Each

factorial combination was generated 10 times, using a different random seed each time, resulting in

a total of 3×2×4×10 = 240 instances.

6.2 Solution Quality

In this section, we first analyse the quality of the solutions obtained by the relax-and-fix (RF)

method described in section 5.1. We then compare the results from the three neighbourhood search

approaches and the basic RF method. Finally we consider computing times.

6.2.1 Evaluation of the RF method

In order to evaluate the performance of the RF method, we used the solutions and lower bounds

obtained by the Cplex 7.1 solver applied to model (1)-(9) in a general purpose branch-and-cut

search.

Note that a solution to model RH is not a solution to model (1)-(9), as just the first day’s

loadings are scheduled and actually implemented, whereas the other days are planned only

approximately. However, the application T times of model RH, starting consecutively at periods 1,

2, …, 5, with an always-shortening horizon (T = 5,4,3,2,1), will provide a feasible solution to model

(1)-(9), enabling a comparison of results, similar to the internally rolling schedule in Stadtler [40].

The final value of the objective function is gradually accumulated over the T applications of model

RH, each of which contributes its period 1 part:

 ∑
=

++−− +
N

i
iiii IhIh

1
1111)((26)

 18

of expression (10), i.e., excluding the part for periods 2 onwards: ∑ ∑
= =

++−− +
N

i

T

t
itititit IhIh

1 2
)(.

Table 2 shows the variation of the mean objective value compared to the lower bounds supplied

by Cplex after running for one hour. The variation is calculated as:

%100
BoundLower Cplex

BoundLower Cplex -Solution Method
 Variation ×= (27)

where the method is either Cplex or RF.

As noted in section 3, attempts at solving model (1)-(9) to simultaneously schedule all furnace

loadings over the whole 5-day horizon resulted in mediocre solutions. The Cplex incumbent

solution, after 1 hour, was on average 22.26% worst than the lower bound. Even if more time was

allowed (10 hours for some instances) the Cplex solutions were still poor. On the other hand,

running the RF method for 3, 6, and 12 minutes for the small, medium and large problems

respectively resulted in better solutions for all three cases that were on average 8.6% worse than the

Cplex lower bound. Irrespective of the method, Table 2 shows that, while this gap tends to grow

with problem size, there is no clear relationship with tightness of capacity or size of setup penalty.

6.2.2 Evaluation of the DH, DN and SA methods

After evaluating the quality of the RF method, we now compare the three neighbourhood

search methods (DH, DN and SA) and the basic RF method using model RH.

The basic RF method of section 5.1 used the MIP incumbent solution found within the time

limits. Table 3 shows the percentage of instances for which this method found the MIP optimal

solution. Observe that for small problems (N = 10, K = 2) the method easily found optimal

solutions to all of the MIPs, but the percentage of optimal solutions found reduced as problem size

increased. Again, there is no clear relationship with tightness of capacity or size of setup penalty.

Table 4 shows the variation of the mean objective value for the DH, DN and SA local search

heuristics compared to the basic RF method, calculated as:

%100
Solution RF

Solution RF -Solution Heuristic
 Variation ×= (28)

Overall the three heuristics performed nearly as well as the basic RF method, the best being

SA, followed by DN. The DH heuristic converged rapidly to a local optimum while the DN and SA

ones took many more iterations to achieve their best solution.

Note in Table 4 that the performance of the DH, DN and SA heuristic relative to the basic RF

method improved as problem size increased. For small and medium problems, the DH method had

 19

the worst mean performance (4.36% and 3.38%, respectively), followed by DN (1.93% and 2.72%),

then SA (1.02% and 1.48%). For large problems, the mean performance of DH improved to 0.90%

and in fact was better than DN (1.31%), though worse than SA (0.56%). This difference in relative

performance might be explained by two reasons. First, for problems of all sizes, both DH and SA

will initially follow the same search trajectory, but when either reaches a local optimum, DH has no

way to jump out of it and so its search stagnates there, whereas SA can go to a worse solution to get

away from the local optimum. The DN search follows a very different path than DH and SA. If it

gets stuck at a local optimum, this tends to be when its neighborhood is near its minimum size

towards the end of the search. Secondly, recall from Table 3 that the larger the problem, the fewer

the MIPs that Cplex 7.1 is able to solve to optimality, thus weakening the basic RF method. This

means that the DH, DN and SA methods are being compared against probably-suboptimal solutions

obtainable within the branch-&-cut search time limits.

Table 3 also shows that tightness of capacity does not much affect the basic RF method, with

the possible exception of medium problems. However, Table 4 indicates that, regardless of

problem size, there is generally less variation (i.e., better performance) of the DH, DN and SA

methods relative to RF when capacity is tight and/or when setup penalties are small.

The computing time spent by the DH, DN and SA methods to solve each MIP was about 1, 3

and 5 minutes respectively for small, medium and large problems. These are viable times for

practical use and faster than the time spent by the basic RF method (3, 6 and 12 minutes

respectively). The solution of the final MIP in step 5 (algorithm 1) of the DH, DN and SA methods

was limited to a maximum of 5 minutes of computing time. In practice, the MIP was usually solved

by Cplex in less than 10 seconds, even for large problems, because the binary k
ny (n=F1, ..., L1),

variables had been previously fixed, leaving only the non-zero integer xin values to be optimised.

6.3 Evaluation in a Small Foundry

The methods were also tested on real world instances at a small foundry that used a 5-day

planning horizon, with 10 furnace loadings per day, totalling 50 over the whole horizon. The

furnace had a capacity of 360kg per load, each one taking approximately 2 hours. At the time of

testing, the prevalent situation at the foundry was that many items were delivered with delays, some

of them up to 100 days.

This is clearly a complex scheduling challenge but, like other small companies, the foundry

has neither the resources nor the sophistication to invest in scheduling research. There are constant

delays in deliveries, clients are frequently lost, utilization of equipment and manpower is

inefficient, leading to queues of moulds waiting for alloys. At other times, excessive quantities of

alloys are produced which have to be recycled as scrap materials.

 20

The methods were tested with an order book from the foundry. Just a single order book was

used due to the difficulties of obtaining stable static data and the difficulties of posterior comparison

of results with the schedules used in practice.

The solutions obtained by the DH, DN and SA method were almost identical. They were

compared with the foundry’s own manual schedule for an order book of 383 product types requiring

19 different alloys. Order weights varied a great deal (from 0.5 kg to 200 kg), as did their quantities

(from 1 to 1,000 items). The initial stocks and backlogs were respectively 0 and 526,818 item-days

(corresponding to 0 and 426,528 kg-days), where item-days (kg-days) are calculated by multiplying

the quantity (weight) by the number of days in stock or backlogged. Tables 5 and 6 show the 5-day

schedules output by the DH method compared to the foundry’s manually produced schedules. The

“Day 5” line at the end of the DH method’s schedule shows that the final stocks and backlogs were

respectively 0 and 3476 item-days (0 and 48,195 kg-days). On the other hand, the foundry’s

manual schedule resulted in final stocks and backlogs of 3 and 23,237 item-days respectively (210

and 81,500 kg-days). In other words, the DH schedule reduced item-day delays by 85% and kg-day

delays by 40%, a very substantial gain in efficiency.

The DH schedule used less capacity (93.1% usage) than the foundry’s manual schedule

(98.7%) and produced a wider variety of types (34 alloys in opposition to 28). Note from Tables 5

and 6 that the 5-day totals of the DH backlogs and stocks are substantially lower, i.e., respectively

27% and 90% by weight, and 15% and 71% by number of items. This reflects the foundry’s

concern to maximize utilization of capacity, a policy which tends to prioritize of larger lots,

resulting in the repeated postponement or early production of orders, thus creating larger backlogs

and inventories as can be seen in Tables 5 and 6.

Excluding time for input data, the DH method generated a schedule in ten minutes,

compared to the two days (16 working hours) of elapsed time that it took to specify the manual

schedule.

This improved scheduling permits better negotiation of delivery dates (with simulation, for

example), reducing promises of impossible deadlines. It also avoids an additional problem that

frequently occurs in the foundry (and which the proposed method easily resolves), namely the over-

utilization of the furnaces in an attempt to reduce delays. Such overloading is physically possible

but unadvisable as smelting takes longer, the furnace internal coating deteriorates sooner, and more

energy is consumed, thus increasing production costs.

A further advantage for the foundry is that, when the order book is updated daily,

rescheduling of the following days is easily carried out, allowing the inclusion of new orders.

 21

7 Conclusions

In this paper a mixed integer linear programme (MIP) was proposed to model the production

planning and scheduling in small foundries. The model integrated lot sizing and scheduling on a

single capacitated machine (furnace) in a production environment where key alloys are first

produced and subsequently transformed into a number of ordered items made from just one type of

alloy. The foundry’s main concern was to minimize delays. The inventory of alloys was forbidden,

and at any time only one type of alloy could be produced. The setups for changing alloys were

sequence-independent. There were neither setup times nor costs between the production of final

products. Lot sizes of final items were assumed to be integers and backorders were allowed.

It was not possible to optimally solve the overall model within viable computing time, even

using an advanced heavy-duty MIP solver. In order to efficiently but approximately solve the

model, a rolling horizon approach and associated relax-and-fix procedure was developed. Four

solution methods were proposed using a basic relax-and-fix (RF) approach and three variants of

neighbourhood search. These four methods were tested with 240 generated instances based on

Haase and Kimms (2000), and showed that the relax-and-fix approach provides a good compromise

between speed and quality of solution, that local search is faster with slightly worse solutions, and

that, for the data used, simulated annealing generally resulted in better solutions than the other two

local search variants.

Tests were also carried out with a real-world instance from a foundry. The results showed that

not only do the methods help small foundries to considerably reduce delays, but also that the

improved schedules are generated in a very small fraction of the time of those created manually in

the foundry. Ongoing efforts are continuing with the foundry to obtain better quality data with the

aim of making a more precise comparison between the schedules currently used in practice and

those output by the proposed method. In parallel, other small foundries in the region are being

sought for further case comparisons. To facilitate such collaboration, a tool with a visual interface

is being developed to output schedules and alloy mixes, within a wider objective of providing

production planning and scheduling software for small and medium-sized foundries.

* Acknowledgements: The authors would like to thank the referees for their valuable reviews and

helpful suggestions, and the National Research Council (CNPq), Brazil, for financial support.

 22

References

1. ABIFA - Associação Brasileira de Fundição. Relatório anual do setor de fundição.

http://www.abifa.org.br, 2005.

2. Billington PJ, McClain JO, Thomas LJ. Mathematical programming approaches to capacity

mrp systems: Review formulation and problem reduction. Management Science. 1983; 29

(10): 1126-1141.

3. Bahl HC, Ritzman LP, Gupta JND. Determining lot sizes and resource requirements: A

review. Operations Research. 1987; 35: 329-345.

4. Maes J, van Wassenhove LN. Multi-item single-level capacitated dynamic lot-sizing

heuristics: A general review. Journal of Operational Research Society. 1988; 39 (11): 991-

1004.

5. Goyal SK, Gunasekaran A. Multi-stage production-inventory systems. European Journal of

Operational Research. 1990; 46: 1-20.

6. Potts CN, Van Wassenhove LN. Integrating scheduling with batching and lot-sizing: A review

of algorithms and complexity. Journal of Operational Research Society. 1992; 43 (5): 395-

406.

7. Kuik R, Salomom M, Van Wassenhose LN. Batching decisions: Structure and models.

European Journal of Operational Research. 1994; 75: 243-263.

8. Drexl A and Kimms. A Lot sizing and scheduling - survey and extensions. European Journal

of Operational Research. 1997; 99: 221-235.

9. Potts CN, Kovalyov MY. Scheduling with batching: A review. European Journal of

Operational Research. 2000; 120: 228-249.

10. Karimi B, Fatemi Ghomi SMT, Wilson JM. The capacitated lot sizing problem: A review of

models and algorithms. Omega. 2003; 31: 365-378.

11. Santos-Meza E, Santos MO, Arenales MN. Lot-sizing problem in an automated foundry.

European Journal of Operational Research. 2002; 139 (2): 490-500.

12. Araujo SA, Arenales MN. Planejamento e programação da produção numa fundição cativa

automatizada de grande porte. Investigação Operacional. 2004; 24: 197-219.

13. Sounderpandian J, Balashanmugam B. Multiproduct multifacility scheduling using the

transportation model: A case study. Production and Inventory Management Journal. 1991; 32

(4): 69-73.

14. Gravel M, Price WL, Gagné C. Schedulings jobs in an alcan aluminium foundry using a

genetic algorithm International Journal of Production Research. 2000; 38 (13): 3031-3041.

15. Tang L, Liu J, Rong A, Yang Z. A review of planning and scheduling systems and methods

for integrated steel production. European Journal of Operational Research. 2001; 133: 1-20.

 23

16. Petersen CM, Sorensen KL, Vidal RVV. Inter-process syncronization in the steel production.

International Journal of Production Research. 1992; 30 (6): 1415-1425.

17. Hamada K, Baba T, Sato K, Yufu M. Hybridizing a genetic algorithm with rule-based

reasoning for production planning. IEEE Expert. 1995; 10: 60-67.

18. Bowers MR, Kaplan LA, Hooker TL. A two-phase model for planning the production of

aluminum ingots. European Journal of Operational Research. 1995; 81: 105-114.

19. Hendry LC, Fok KK, Shek KW. A cutting stock and scheduling problem in the copper

industry. Journal of Operational Research Society. 1996; 47 (1): 38-47.

20. Lee HS, Murthy SS, Haider SW, Morse DV. Primary production scheduling at steelmaking

industries. IBM Journal of Research and Development. 1996; 40 (2): 231-252.

21. Lopes L, Carter MW, Gendreau M. The hot strip mill production scheduling problem: A tabu

search approach. European Journal of Operational Research. 1998; 106: 317-335.

22. Tang L, Liu J, Rong A, Yang Z. A mathematical programming model for scheduling

steelmaking-continuous casting production. European Journal of Operational Research, 2000;

120: 423-435.

23. Tang L, Liu J, Rong A, Yang Z. A multiple traveling salesman problem model for hot rolling

scheduling in Shanghai Baoshan iron & steel complex. European Journal of Operational

Research. 2000; 124: 267-282.

24. Haase K. Capacitated Lot-Sizing with Sequence Dependent Setup Costs. Operational

Research Spektrum. 1996; 18: 51-59.

25. Haase K. and Kimms A. Lot Sizing and Scheduling with Sequence Dependent Setup Costs

and Times and Efficient Rescheduling Opportunities. International Journal of Production

Economics. 2000; 66: 159-169.

26. Fleischmann B. and Meyr H. The General Lotsizing and Scheduling Problem. Operational

Research Spektrum. 1997; 19: 11-21.

27. Meyr, H. Simultaneous Lotsizing and Scheduling by Combining Local Search with Dual

Reoptimization. European Journal of Operational Research. 2000; 120: 311-326.

28. Meyr, H. Simultaneous Lotsizing and Scheduling on Parallel Machines. European Journal of

Operational Research. 2001; 139 (2): 277-292.

29. Gupta, D. and Magnusson T. The Capacitated Lot-Sizing and Scheduling Problem with

Sequence-Dependent Setup Costs and Setup Times. Computers and Operations Research.

2005; 32: 727-747.

30. Dillenberger C, Escudero LF, Wollensak A and Zhang W. On practical resource allocation for

production planning and scheduling with period overlapping setups. European Journal of

Operational Research. 1994; 75: 275-286.

 24

31. Beraldia, P, Gianpaolo G, Emanuela G, and Antonio G. Scenario-based planning for lot-sizing

and scheduling with uncertain processing times. International Journal of Production

Economics. 2006; in press.

32. Wolsey LA. Integer programming. New York: Wiley, 1988

33. Kelly, JD and Mann JL. Flowsheet Decomposition Heuristic For Scheduling: a Relax-and-Fix

Method. Computers and Chemical Engineering. 2004; 28: 2193-2200.

34. Kuik R, van Wassenhose LN and Maes J. Linear Programming, Simulated Annealing and

Tabu Search Heuristics for Lotsizing in Bottleneck Assembly Systems. IIE Transactions.

1993; 25, 1: 62-72.

35. Teghem, J, Pirlot M, and Antoniadis C. Embedding of Linear Programming in a Simulated

Annealing Algorithm for Solving a Mixed Integer Production Planning Problem. Journal of

Computational and Applied Mathematics. 1995; 64, 91-102.

36. Miettinen KM. Nonlinear multiobjective optimization. Kluwer, 1998.

37. Araujo SA, Arenales MN, Clark AR. Joint rolling-horizon scheduling of materials processing

and lot-sizing with sequence-dependent setups. Congreso Latino-Americano de Investigacion

Operacional (CLAIO). Havana, 2004.

38. ILOG Cplex 7.1 User’s manual. ILOG SA BP 85 9 Rue de Verdun 94253. Gentilly, France.

http://www.ilog.com, 2001.

39. Clark AR. Optimization Approximations for Capacity Constrained Material Requirements

Planning Problems. International Journal of Production Economics. 2003; 84: 115-131.

40. Stadtler, H. Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources:

Internally Rolling Schedules with Lot-Sizing Windows. Operations Research. 2003; 51: 487-

502.

41. Suerie, C and Stadtler H. The Capacitated Lot-Sizing Problem with Linked Lot-Sizes.

Management Science. 2003; 49: 1039-1054.

42. Clark, AR. Rolling Horizon Heuristics for Production and Setup Planning with Backlogs and

Error-Prone Demand Forecasts. Production Planning and Control. 2005; 16: 81-97.

43. Reeves CR. Modern heuristic techniques for combinatorial problems. Blackwell, 1993.

44. Pirlot M. General Local Search Methods. European Journal of Operational Research. 1996;

92: 493-511.

45. Aarts EHL, Lenstra JK (Editors). Local search in combinatorial optimization. Chichester:

Wiley, 1997.

46. Goldberg D E. Genetic algorithms in search optimization and machine learning.

Massachusetts: Addison Wesley, 1989.

47. Laguna M. Tabu search tutorial. II Escuela de Verano Latino-Americana de Investigation

Operativa. Rio de Janeiro, 1995.

 25

48. Diaz A, Glover F, Ghaziri HM, González JL, Laguna M, Moscato P, Tseng FT. Optimización

heurística y redes neuronales. Spain: Editorial Paraninfo, 1996.

49. Gen M, Cheng R. Genetic algorithms & engineering Design. Wiley, 1997.

50. Glover F, Laguna M. Tabu search. Norwell, Massachusetts: Kluwer, 1997.

51. Glover, F. W., and G. A. Kochenberger (eds.). (2003). “Handbook of Metaheuristics”. Boston:

Kluwer.

52. Clark AR. Hybrid heuristics for planning lot sizes and setups. Computers and Industrial

Engineering. 2003; 45 (4): 545-562.

 26

Figure and table captions

Figure 1. Main activities in the foundry

Figure 2: Periods and sub-periods in a rolling horizon strategy.

Table 1: Parameters used for generation of uniformly-distributed test data.

Table 2: Mean solution variation (%) of the solver Cplex and RF methods compared to the Cplex
Lower Bounds.

Table 3: Percentage of test problems in which Cplex found an optimal solution for all the RF MIPs

Table 4: Mean solution variation (%) of the DH/DN/SA heuristics compared to the basic RF
method.

Table 5: DH solution compared to the schedule practiced in a foundry (in item-days)

Table 6: DH solution compared to the schedule practiced in a foundry (in kg-days)

 27

Figure 1. Main activities in the foundry

Start
Orders

Production
Planning
Section

Moulding
Section

Furnace
Section

Pouring
Section

Deburring
Section

End
Final Products

 28

Figure 2: Periods and sub-periods in a rolling horizon strategy

10

Day 1 Day 2 Day 3 Day 4

1 2

 t=1
n=1,...,10

Day 5

t=2
n=11

t=3
n=12

t=4
n=13

t=5
n=14

 29

Table 1: Parameters used for generation of uniformly-distributed test data.

Parameters Values

Number of Items and Alloys: (N, K) pairs Small Problem: (10, 2)

Medium Problem: (50, 10)

Large Problem: (100, 20)

Number of Days: 5

Demand: dit [10, 60]

Days of Delay: ai [-10, 10]

Physical Weight of Item: ρi [1, 30]

Setup Time of Alloy: stk [5, 10]

Setup Penalty of Alloy: sk Low: 5 × stk High: 50 × stk

Tightness of Furnace Capacity: Cap C / 0.6, C / 0.8, C / 1.0, C / 1.2

 30

Table 2: Mean solution variation (%) of the solver Cplex and RF methods compared to the Cplex

Lower Bounds.

Method: Cplex RF
Setup Penalty Factor sk 5×stk 50×stk Mean 5×stk 50×stk Mean

Problem Size Capacity
 C/0.6 6.94 5.37 6.16 1.96 0.06 1.01

Small: C/0.8 4.20 4.56 4.38 1.82 1.29 1.55
(N,K) = (10, 2) C/1.0 5.19 5.39 5.29 2.31 3.18 2.74

 C/1.2 10.93 8.46 9.70 2.80 3.60 3.20
 Mean 6.82 5.95 6.38 2.22 2.03 2.13
 C/0.6 26.83 41.26 34.04 10.35 19.91 15.13

Medium: C/0.8 19.39 31.52 25.45 6.33 14.85 10.59
(N,K) = (50, 10) C/1.0 25.65 31.64 28.65 6.62 11.98 9.30

 C/1.2 26.72 27.88 27.30 5.74 10.15 7.94
 Mean 24.65 33.07 28.86 7.26 14.22 10.74
 C/0.6 35.79 44.62 40.21 11.69 27.34 19.51

Large: C/0.8 31.26 34.76 33.01 9.19 16.32 12.76
(N,K) = (100, 20) C/1.0 27.79 31.38 29.58 8.01 13.57 10.79

 C/1.2 21.46 25.31 23.39 6.67 10.62 8.64
 Mean 29.08 34.02 31.55 8.89 16.96 12.93

Overall Mean (%) 20.18 24.35 22.26 6.12 11.07 8.60

 31

Table 3: Percentage of test problems in which Cplex found an optimal solution for all the RF MIPs

Problem Size Small: (N, K) = (10, 2) Medium: (N, K) = (50, 10) Large: (N, K) = (100, 20)
Setup Penalty

sk
C/0.6 C/0.8 C/1.0 C/1.2 C/0.6 C/0.8 C/1.0 C/1.2 C/0.6 C/0.8 C/1.0 C/1.2

5 × stk 100 100 100 100 62 66 68 80 44 42 36 56
50 × stk 100 100 100 100 68 68 86 90 44 42 32 44

 32

Table 4: Mean solution variation (%) of the DH/DN/SA heuristics compared to the basic RF

method.

Method: DH DN SA
Setup Penalty Factor sk 5×stk 50×stk Mean 5×stk 50×stk Mean 5×stk 50×stk Mean
Prob. Size Capacity

 C/0.6 4.67 15.36 10.02 3.50 7.72 5.61 0.86 4.56 2.71
Small: C/0.8 2.85 5.56 4.21 0.70 2.37 1.53 0.52 1.68 1.10

(N, K) = C/1.0 1.35 1.86 1.61 0.00 0.63 0.32 0.21 0.32 0.26
(10, 2) C/1.2 1.46 1.74 1.60 0.17 0.36 0.26 0.00 0.00 0.00

 Mean 2.58 6.13 4.36 1.09 2.77 1.93 0.40 1.74 1.02
 C/0.6 1.88 9.64 5.76 1.91 7.69 4.80 1.27 2.75 2.01

Medium: C/0.8 1.25 5.21 3.23 1.11 4.50 2.80 0.62 2.41 1.51
(N, K) = C/1.0 0.97 4.23 2.60 0.74 2.97 1.86 0.58 0.77 0.67
(50, 10) C/1.2 1.13 2.73 1.93 0.89 1.95 1.42 0.88 2.58 1.73

 Mean 1.31 2.54 3.38 1.16 4.28 2.72 0.84 2.13 1.48
 C/0.6 0.18 2.93 1.56 1.68 2.93 2.30 -0.01 1.41 0.70

Large: C/0.8 0.19 2.05 1.12 0.33 2.27 1.30 0.19 1.08 0.63
(N, K) = C/1.0 -0.15 0.96 0.40 0.05 1.28 0.67 -0.15 0.96 0.40
(100, 20) C/1.2 0.02 1.01 0.52 0.38 1.60 0.99 0.00 1.01 0.51

 Mean 0.06 1.74 0.90 0.61 2.02 1.31 0.01 1.11 0.56
 Overall Mean (%) 1.32 4.44 2.88 0.95 3.02 1.99 0.41 1.63 1.02

 33

Table 5: DH solution compared to the schedule practiced in a foundry (in item-days)

 DH Solution Foundry Practice
 Backlogs Stocks Backlogs Stocks

Day 1 35,626 0 35,698 46
Day 2 25,564 0 25,324 23
Day 3 24,384 0 22,710 1
Day 4 6708 22 24,964 2
Day 5 3476 0 23,237 3

TOTAL 95,758 22 131,933 75

 34

Table 6: DH solution compared to the schedule practiced in a foundry (in kg-days)

 DH Solution Foundry Practice
 Backlogs Stocks Backlogs Stocks

Day 1 177,342 0 176,425 46
Day 2 115,244 0 120,117 23
Day 3 86,077 0 100,183 70
Day 4 67,009 47 101,314 140
Day 5 48,195 0 81,500 210

TOTAL 493,867 47 579,540 489

