

UNIVERSIDADE DO ALGARVE

Optimised Search Heuristics: Combining

Metaheuristics and Exact Methods to solve

Scheduling Problems

Susana Isabel de Matos Fernandes

Doutoramento em Matemática

Especialidade de Investigação Operacional

2008

UNIVERSIDADE DO ALGARVE

Optimised Search Heuristics: Combining

Metaheuristics and Exact Methods to solve

Scheduling Problems

Susana Isabel de Matos Fernandes

Tese orientada por:

Helena Ramalhinho Lourenço

Doutoramento em Matemática

Especialidade de Investigação Operacional

2008

 I

Resumo

Os problemas de optimização combinatória são objecto de estudo de muitos

investigadores com diferentes formações científicas, como investigação operacional,

inteligência artificial ou ciências da computação. Enquanto que o trabalho sobre

problemas de optimização combinatória de investigadores da área de investigação

operacional tem sido dirigido principalmente para o estudo das propriedades

matemáticas dos problemas e para o desenvolvimento de algoritmos exactos, os

investigadores com formação em ciências da computação e inteligência artifical têm

investido principalmente no desenvolvimento de metaheuristicas para encontrar boas

soluções para os problemas, tendo em mente a sua aplicação a instâncias reais. Os

investigadores das áreas de ciências da computação e inteligência artificial não investem

no desenvolvimento de algoritmos exactos talvez por estes terem a fama de serem

demasiado lentos para terem utilidade na aplicação a problemas reais. Os investigadores

com formação base em investigação operacional não costumam investir no

desenvolvimento de metaheuristicas talvez por considerarem que a eficácia destes

métodos depende essencialmente da afinação dos seus parâmetros por experiência

computacional, carecendo de qualquer fundamentação teórica, e logo desprovidos de

interesse matemático. Poderá ser também verdade que alguns investigadores não

possuirão competências suficientes em técnicas avançadas de programação e que outros

terão falta de conhecimentos de técnicas matemáticas mais elaboradas.

Recentemente, alguns investigadores investiram no desenvolvimento de

procedimentos híbridos para resolver problemas de optimização combinatória que

combinam algoritmos exactos com metaheurísticas, estreitando desta forma o fosso

existente entre investigadores das áreas da matemática e da computação.

Nesta tese, estudamos estes novos métodos que combinam metaheuristicas com

algoritmos exactos para resolver problemas de optimização combinatória, salientando

quais os métodos que são combinados, como e quais se combinam uns com os outros e

a que problemas têm sido aplicados. O capítulo 3 desta tese aborda esta questão, onde se

propõe uma nova designação para estes métodos – Optimised Search Heuristics – e se

apresenta um mapeamento da distribuição do tipo de combinações entre algoritmos

 II

exactos e metaheurísticas pelo tipo de problemas a que são aplicados os novos

procedimentos.

Este mapeamento evidencia que existe muito espaço para nova investigação nesta

área. Neste trabalho estamos particularmente interessados em usar os algoritmos exactos

para conduzir o processo de procura local nas metaheurísticas.

Sobre este tema produzimos e publicámos o artigo Optimised Search Heuristics

(Fernandes and Lourenço 2007b).

Qualquer novo método desenvolvido para resolver problemas de optimização

combinatória terá de ser testado em problemas pertencentes à classe dos NP-hard se

quiser captar a atenção das comunidades científicas a trabalhar na área.

Nesta tese escolhemos estudar os problemas de sequenciamento e mais

especificamente o problema job shop scheduling, famoso pela sua dificuldade tanto em

teoria como na prática. Outra razão para escolher este problema para introduzir o novo

método desenvolvido prende-se com o facto de a sua estrutura algébrica ter sido já alvo

de inúmeros estudos. Provaram-se já muitas propriedades que permitem caracterizar

desigualdades válidas que definem algumas facetas do envolvente convexo do conjunto

de soluções admissíveis para o problema.

O capítulo 4 é dedicado à apresentação dos problemas de sequenciamento, a sua

definição, formulações matemáticas e propriedades da sua estrutura algébrica.

Da indústria automóvel ao controlo de tráfico aéreo encontram-se muitas aplicações

de problemas de sequenciamento. Estes problemas definem-se pela necessidade de

executar um conjunto de tarefas que partilham um conjunto de recursos. Não se conhece

um procedimento determinístico que consiga encontrar a solução óptima em tempo

polinomial para a maioria dos problemas de sequenciamento. Assim, a investigação

nesta área é muitas vezes orientada para o desenvolvimento de métodos que possam

encontrar boas soluções em tempo útil.

A formulação matemática de problemas de sequenciamento e o estudo da sua

estrutura algébrica recebeu muita atenção aquando do desenvolvimento de métodos

exactos para os resolver. Mas os métodos exactos revelaram-se ineficientes para

resolver instâncias reais do problema. Foram então desenvolvidos algoritmos de procura

local que, partindo de soluções admissíveis construídas heuristicamente, conseguiam

encontrar boas soluções rapidamente. Os métodos de procura local têm a desvantagem

 III

de parar no primeiro óptimo local que encontram ao percorrer o espaço de soluções

admissíveis. A investigação evoluiu para o desenvolvimento de metaheuristicas,

procedimentos em que o processo de procura consegue progredir para outras regiões do

espaço de soluções admissíveis após encontrar um óptimo local. Nas metaheurísticas, o

processo de procura é gerido “afinando” um conjunto de parâmetros dos algoritmos.

Falta uma fundamentação teórica na afinação destes parâmetros, que é em regra geral

baseada na experiência computacional para cada problema, e muitas vezes para cada

instância. As metaheurísticas têm sido maioritariamente desenvolvidas por

investigadores das áreas de inteligência artificial e ciências da computação, que

normalmente não incluem técnicas exactas de optimização combinatória nos seus

algoritmos. A estrutura algébrica dos problemas tem estado presente na base do desenho

de estruturas de vizinhança de métodos de procura local, ainda que muitas vezes apenas

de forma implícita. Mas os critérios para gerir várias vizinhanças e a forma de conduzir

o processo de procura têm sido determinados quase exclusivamente por experimentação

computacional ou intuição.

Neste trabalho desenvolvemos dois métodos da categoria Optimised Search

Heuristics. Apresentamos resultados computacionais para um vasto conjunto de

instâncias de referência de problemas de sequenciamento, assim como apresentamos

comparações de desempenho dos métodos desenvolvidos com outros métodos bem

sucedidos.

O primeiro dos dois métodos desenvolvidos é um procedimento simples que

combina o método metaheurístico GRASP com o algoritmo exacto branch-and-bound, a

que chamamos GRASP_B&B e que usamos para resolver o problema job shop

scheduling. O GRASP_B&B é um procedimento muito rápido que constrói soluções

admissíveis com uma qualidade aceitável, ideais para serem usadas como soluções

iniciais de procedimentos mais elaborados. O método é constituído por duas fases que

se repetem a cada iteração. Uma fase de construção onde em cada iteração é

acrescentado um novo elemento à solução em construção, sendo esse elemento

escolhido de uma forma gananciosa aleatoriezada, isto é, a escolha do novo elemento a

incluir na solução é enviesada para elementos que provocam o maior aumento imediato

na qualidade da solução. A qualidade com que cada novo elemento contribui para a

solução a ser construída é avaliada pelo valor óptimo de sub-problemas de uma única

máquina. Os sub-problemas de uma única máquina são resolvidos com o algoritmo

 IV

exacto branch-and-bound. Na outra fase do método, posterior à fase de construção,

executa-se uma procura local para passar da solução construída a um óptimo local, antes

de seguir para a inserção de um novo elemento na solução.

É apresentada uma comparação do desempenho do nosso GRASP_B&B com outros

procedimentos aplicados ao mesmo problema, também usados como geradores de

soluções iniciais admissíveis para métodos mais elaborados. Nomeadamente,

apresentamos comparações com outro método GRASP (Binato, Hery et al. 2002) e com

um método que incorpora o algoritmo branch-and-bound da mesma forma que nós, o

shifting bootleneck procedure (Adams, Balas et al. 1988).

Produzimos e publicámos o artigo “A GRASP and Branch-and-Bound Metaheuristic

for the Job Shop Scheduling” (Fernandes and Lourenço 2007) que apresenta o novo

método GRASP_B&B.

O capítulo 6 desta tese apresenta a estrela principal deste trabalho de investigação, o

procedimento Tabu_VVI. É um método da categoria dos Optimised Search Heuristics

que combina um módulo de verificação de desigualdades válidas violadas com um

procedimento Tabu Search.

O método Tabu_VVI começa por utilizar o algoritmo GRASP_B&B para construir

uma solução admissível inicial. Sobre esta solução é executado um processo Tabu

Search, produzindo um bom óptimo local. Com o objectivo de prosseguir com a procura

no espaço de soluções admissíveis, esse óptimo local é perturbado, sendo parcialmente

destruído para depois se reconstruir uma nova solução completa (admissível). Para

destruir parcialmente o óptimo local utilizamos um procedimento do tipo ganancioso

aleatorizado (greedy randomised) para eliminar algumas das suas componentes, dando

prioridade às componentes cuja eliminação produz um impacto maior no valor da

solução parcial. Seguidamente o procedimento Tabu_VVI procura desigualdades válidas

para o problema que sejam violadas pela solução parcial produzida. Estas desigualdades

vão obrigar a que algumas componentes não sejam consideradas, restringindo desta

forma a reconstrução de uma nova solução completa. Assim o percurso da procura no

espaço de soluções admissíveis é forçado a saltar para uma região diferente, que será

preferencialmente uma região de soluções de melhor qualidade, dado o tipo de

desigualdades verificadas. Concretamente, as desigualdades violadas descartam

componentes que comprovadamente dariam origem a soluções completas com um valor

 V

de função objectivo não melhor do que o da solução encontrada até então com maior

qualidade. Esta mudança na direcção do percurso da procura no espaço de soluções

admissíveis é conduzida pela informação sobre a estrutura algébrica da instância contida

nas desigualdades válidas. É neste sentido que dizemos ser este um método em que a

direcção do processo de procura da metaheurística Tabu Search é conduzida pela

utilização da técnica exacta de verificação de desigualdades válidas violadas para

descartar regiões do espaço de soluções admissíveis.

Apresentamos o novo método Tabu_VVI com uma aplicação ao problema job shop

scheduling e relatamos resultados computacionais para um vasto conjunto de instâncias

de referência do problema, incluindo comparações de desempenho com outros

procedimentos aplicados ao mesmo problema. Nomeadamente, comparamos os

resultados computacionais do Tabu_VVI com outros métodos que combinam

metaheurísticas com técnicas exactas e com os três métodos mais bem sucedidos na

aplicação ao job shop scheduling; o Guided Local Search de Balas e Vazacopoulos

(Balas and Vazacopoulos 1998), o Tabu Search com Shifting Bottleneck de Pezzella e

Mirelli (Pezzella and Merelli 2000) e o Tabu Search com Path Relinking de Nowicki e

Smutnicki (Nowicki and Smutnicki 2005).

O nosso método Tabu_VVI ganha em comparação com os outros métodos que

combinam algoritmos exactos com metaheurísticas, produzindo sempre soluções de

melhor qualidade em menos tempo. Quando comparado com os métodos de Balas e

Vazacopoulos e de Pezzella e Mirelli, o nosso Tabu_VVI revela-se muito competitivo,

atingindo resultados do mesmo nível. Na comparação com o método que apresenta até à

data os melhores resultados para o problema job shop scheduling, o Tabu Search com

Path Relinking de Nowicki e Smutnicki, o nosso método apresenta resultados muito

próximos dos deles quando é executado durante aproximadamente o mesmo tempo

computacional.

O novo método Tabu_VVI é descrito no artigo “Optimised Search Heuristic

Combining Valid Inequalities and Tabu Search” (Fernandes and Lourenço 2008).

Esperamos que os bons resultados atingidos com este novo procedimento sejam

encorajadores e incentivem outros investigadores a ultrapassar o fosso entre as áreas de

métodos exactos de optimização combinatória e metaheurísticas, desenvolvendo novos

 VI

métodos na categoria dos Optimised Search Heurisitics que possam tirar partido das

vantagens das técnicas de uma e outra área de investigação.

No desenvolvimento deste trabalho, nomeadamente na implementação do módulo

de verificação de desigualdades válidas violadas por uma solução parcial do método

Tabu_VVI aplicado ao problema job shop scheduling, deparámo-nos com um obstáculo.

As desigualdades válidas são obtidas dos subproblemas de uma única máquina e

definidas para todo o subconjunto de operações processadas numa máquina. Ora, o

número de subconjuntos de um conjunto com n elementos é n2 , um número dado por

uma função exponencial no tamanho do problema a resolver. O que significa que a

complexidade computacional de verificar todos os subconjuntos de todas as máquinas

seria incomportável para um algoritmo que se quer eficiente. Decidimos então chegar a

uma solução de compromisso não verificando todos os possíveis subconjuntos aquando

da procura de desigualdades válidas violadas. O processo de construção dos

subconjuntos a ser inspeccionados é enviesado para a construção de subconjuntos com

maior possibilidade de potenciar a violação de uma desigualdade válida e funciona

incluindo nos conjuntos, uma a uma, as operações de acordo com os seus parâmetros,

como a data de disponibilidade, o tempo de processamento e o tempo que a operação

permanece no sistema após terminar o seu processamento.

No artigo (Péridy and Rivreau 2005) sobre ajustes locais de limites de janelas de

tempo para o processamento das operações nas máquinas é descrito um novo método de

enumeração eficiente que poderá ser útil para a geração dos subconjuntos subjacentes às

desigualdades válidas. Uma possível linha de trabalho futuro será averiguar a

viabilidade prática de implementação deste novo método e testar se tal poderá melhorar

a eficiência do novo método Tabu_VVI.

Outra forma directa de extender a linha de investigação iniciada nesta tese será a de

aplicar o método Tabu_VVI a outros problemas de scheduling da classe NP-hard, como

por exemplo a versão total weighted tardiness do problema job shop scheduling ou o

problema generalised job shop scheduling. Seria também muito interessante aplicar o

novo método a instâncias reais de problemas de sequenciamento. Posteriormente poder-

-se-á evoluir para a aplicação do método a versões multicritério de problemas de

sequenciamento, ou a outros problemas para os quais sejam conhecidas desigualdades

 VII

válidas, implementáveis de forma eficiente, sendo de particular interesse as que definem

facetas do envolvente convexo do conjunto de soluções admissíveis do problema em

questão.

O objectivo maior desta tese é o de desenvolver a investigação na área da

complementariedade entre algoritmos exactos e metaheurísticas, esperando que a

cooperação bem sucedida entre métodos das diferentes áreas possa fomentar a

colaboração entre investigadores com diferentes formações de base a trabalhar sobre os

mesmos problemas de optimização combinatória.

Assim, e resumindo, as principais contribuições desta tese são:

a) a proposta de uma designação para os métodos que combinam algoritmos exactos

e (meta)heurísticas e um mapeamento da investigação neste domínio.

A designação Optimised Search Heuristics (OSH) é proposta para descrever

metodologias onde a procura local do método heurístico é de alguma forma orientada

por métodos exactos de optimização combinatória. Com estes métodos (OSH) pretende-

se tirar partido das melhores características de ambos os métodos, metaheuristicos e

exactos, fornecendo uma solução integrada que poderá levar a resultados excelentes.

Apresentamos a forma como estes procedimentos têm sido aplicados a problemas de

optimização combinatória; construimos um mapeamento de métodos versus aplicações

e concluímos que há muitas possibilidades de desenvolver investigação em métodos

OSH e também uma grande oportunidade para os aplicar a problemas difíceis.

b) um novo método muito rápido para a construção de soluções admissíveis

combinando branch-and-bound e GRASP.

Desenvolvemos um algoritmo simples para a o problema job shop scheduling que

combina uma metaheurística de procura local, o GRASP, com um método exacto de

programação inteira, o branch-and-bound. Aqui o branch-and-bound é utilizado dentro

do GRASP para resolver sub-problemas de one machine scheduling.

c) um método inovador que combina a metaheurística Tabu Search com a

verificação de desigualdades válidas violadas.

Desenvolvemos uma metaheurística OSH que utiliza a verificação de desigualdades

válidas para conduzir a reconstrução de uma solução óptima local que foi parcialmente

 VIII

destruída. Este novo método é apresentado através de uma aplicação ao problema job

shop scheduling.

A ideia deste novo método é a de imitar os planos de corte da programação inteira,

deixando as desigualdades válidas violadas descartar regiões pouco atraentes do espaço

de soluções e orientar a procura de uma solução óptima local para uma região

admissível com mais qualidade.

Palavras Chave: Metaheuristicas, Algoritmos Exactos, GRASP, Procura Tabu,

Branch-and-Bound, Desigualdades Válidas, Problemas de Sequenciamento

 IX

Abstract

Scheduling problems have many real life applications, from automotive industry to

air traffic control. These problems are defined by the need of processing a set of jobs on

a shared set of resources. For most scheduling problems there is no known deterministic

procedure that can solve them in polynomial time. This is the reason why researchers

study methods that can provide a good solution in a reasonable amount of time.

Much attention was given to the mathematical formulation of scheduling problems

and the algebraic characterisation of the space of feasible solutions when exact

algorithms were being developed; but exact methods proved inefficient to solve real

sized instances. Local search based heuristics were developed that managed to quickly

find good solutions, starting from feasible solutions produced by constructive heuristics.

Local search algorithms have the disadvantage of stopping at the first local optimum

they find when searching the feasible region. Research evolved to the design of

metaheuristics, procedures that guide the search beyond the entrapment of local optima.

Recently a new class of hybrid procedures, that combine local search based (meta)

heuristics and exact algorithms of the operations research field, have been designed to

find solutions for combinatorial optimisation problems, scheduling problems included.

In this thesis we study the algebraic structure of scheduling problems; we address

the existent hybrid procedures that combine exact methods with metaheuristics and

produce a mapping of type of combination versus application and finally we develop

new innovative metaheuristics and apply them to solve scheduling problems. These new

methods developed include some combinatorial optimisation algorithms as components

to guide the search in the solution space using the knowledge of the algebraic structure

of the problem being solved. Namely we develop two new methods: a simple method

that combines a GRASP procedure with a branch-and-bound algorithm; and a more

elaborated procedure that combines the verification of the violation of valid inequalities

with a tabu search. We focus on the job-shop scheduling problem.

Keywords: Metaheuristics, Exact Algorithms, GRASP, Tabu Search, Branch-and-

Bound, Valid Inequalities, Scheduling Problems

 X

Acknowledgements

I would like to thank my advisor, Helena Ramalhinho Lourenço, for accepting me as

her PhD student, for her warm welcome and for all the support she has given me

(scientific, logistic, financial and personal) throughout this period of my life.

I would like to thank the Department of Economics and Business of Universitat Pompeu

Fabra in Barcelona for welcoming me as a visiting student - working closely with my

PhD advisor was a key factor for the development of this thesis.

The research work was mainly developed during these last three years, while working

full time on my thesis, which was made possible by the approval of my leave of absence

from the Departamento de Matemática of the Faculdade de Ciências e Tecnologia,

Universidade do Algarve.

My PhD research work was sponsored by the POCI2010 programme of the portuguese

Fundação para a Ciência e a Tecnologia. Staying in Barcelona would have not been

possible otherwise.

I am most grateful and honoured by the love of my family and friends.

 XI

Table of Contents

Resumo.. I

Abstract... IX

1. Introduction .. 1

1.1 Purpose.. 1

1.2 Main Scope ... 2

1.3 Structure of this Document ... 4

1.4 Main Contributions ... 5

2. Overview of Methods to solve Combinatorial Optimisation Problems............. 7

2.1 Combinatorial Optimisation.. 7

2.2 Overview of Metaheuristics .. 13

2.2.1 Metaheuristics that work with One Solution .. 14

2.2.2 Metaheuristics that work with a Population of Solutions....................... 16

2.3 Overview of Combinatorial Optimisation Methods.. 18

3. Optimised Search Heuristics ... 26

3.1 Classifications of OSH Procedures ... 27

3.1.1 Connecting the Classifications Dumitrescu & Stützle - Puchinger &

Raidl ………………………………………………………………………….29

3.1.2 Classification of Procedures versus Problem Type 30

4. Scheduling Problems .. 36

4.1 Introduction to Scheduling Problems.. 36

4.2 Disjunctive Programming ... 39

4.3 The One Machine Scheduling Problem ..41

4.3.1 Algebraic Structure of the One Machine Problem 42

4.4 The Job Shop Scheduling Problem ... 46

4.4.1 Algebraic Structure of the Job Shop Scheduling Problem 49

4.4.2 Solving The Job Shop Scheduling Problem with OSHs 50

5. An OSH Combining GRASP with Branch-and-Bound 53

5.1 Building Step... 53

5.1.1 One Machine Problem.. 54

5.2 The Local Search Module ... 58

 XII

5.3 GRASP_B&B ... 61

5.4 Computational Experiment ... 62

5.4.1 Comparison to Other Procedures.. 67

5.5 Discussion on GRASP_B&B.. 72

6. An OSH Combining Tabu Search with the Verification of Violated Valid
Inequalities .. 73

6.1 Building a Feasible Solution ... 74

6.2 The Tabu Search Module .. 74

6.3 Large Step ... 77

6.3.1 Partially Destroying a Solution... 78

6.3.2 Finding Violated Valid Inequalities ... 79

6.3.3 Rebuilding a Complete Solution... 86

6.4 Computational Experiment ... 89

6.4.1 Comparison to Other OSH Methods .. 96

6.5 Discussion on Tabu_VVI.. 101

7. Conclusions ... 102

Annex A – Abstracts of Optimised Search Heuristics ... 106

1.1 Sequential execution... 106

2.1.1 Exactly solving relaxed problems..109

2.1.2 Exactly searching large neighbourhoods... 110

2.1.3 Exactly solving subproblems... 112

2.1.4 Exact algorithms as decoders .. 115

2.1.5 Exact algorithms for strategic guidance of metaheuristics.......................... 116

2.2.1 Metaheuristics for obtaining incumbent solutions and bounds 117

2.2.2 Metaheuristics for column and cut generation 118

2.2.3 Metaheuristics for strategic guidance of exact methods....................... 118

2.2.4 Applying the spirit of metaheuristics.. 120

Annex B – Computational Results for GRASP_B&B ... 121

Annex C – Computational Results for Tabu_VVI ... 137

C.1 Computational Results per Variant of Tabu_VVI.................................... 137

C.2 Computational Results of Tabu_VVI per Instance................................... 142

References .. 149

 XIII

List of Tables

Table 2.1 Applications of Combinatorial Optimisation …………………………….8

Table 3.1 Correspondence Between Classifications of OSH Procedures……….....30

Table 3.2 Mapping Problem Type Versus the Type of OSH Procedures………….32

Table 4.1 Common Objective Functions for Scheduling Problems………………..38

Table 4.2 An Instance for the Job Shop Scheduling Problem………………….….47

Table 5.1 Comparison to GRASP for Instances abz………………………...……..67

Table 5.2 Comparison to GRASP for Instances ft……………………………...….67

Table 5.3 Comparison to GRASP for Instances orb……………………………….68

Table 5.4 Comparison to GRASP for Instances la01-20…………………………..68

Table 5.5 Comparison to GRASP for Instances la21-40…………………………..69

Table 5.6 Comparison to Shifting Bottleneck for Instances abz………………..….70

Table 5.7 Comparison to Shifting Bottleneck for Instances ft……………………..70

Table 5.8 Comparison to Shifting Bottleneck for Instances la01-10……………....70

Table 5.9 Comparison to Shifting Bottleneck for Instances la11-20……………....71

Table 5.10 Comparison to Shifting Bottleneck for Instances la21-40……………..71

Table 6.1 Valid inequalities inspected and corresponding arcs for partial solution of

Fig. 6.5………………………………………………………………………………….83

Table 6.2 Notations for the different Variants of Algorithm Tabu_VVI……….….91

Table 6.3 Best results by all variants of Tabu_VVI, in average percentage of the

relative error to the lower bound, and the average time to the best, in seconds……..…92

Table 6.4 Results by variants tabu_mvinf and tabu_mv_bb of Tabu_VVI, and the

algorithm of Caseau and Laburthe, in average percentage of the relative error to the

lower bound, and the average time to the best, in seconds……………………………..97

 XIV

Table 6.5 Results by the best of all variants of Tabu_VVI and the best variant of the

algorithm of Balas and Vazacopoulos; in average percentage of the relative error to the

lower bound, and the average time to the best, in seconds………………………….….98

Table 6.6 Results by the best of all variants of Tabu_VVI and the algorithm of

Pezzella and Merelli; in average percentage of the relative error to the lower bound, and

the average time to the best, in seconds………………………………………………...99

Table 6.7 Results by the best of all variants of Tabu_VVI and the algorithm of

Nowicki and Smutnicki; in average percentage of the relative error to the lower bound,

and the average time to the best, in seconds…………………………………………..100

Table B.1 Results by GRASP_B&B for Instances abz (Adams, Balas et al. 1988)

…………………………………………….………………………………………..…121

Table B.2 Results by GRASP_B&B for Instances ft (Fisher and Thompson 1963)

……………………………………….………………………………………………..121

Table B.3 Results by GRASP_B&B for Instances la01-la10 (Lawrence 1984)

…………………………………….………………………………………………..…122

Table B.4 Results by GRASP_B&B for Instances la11-la20 (Lawrence 1984)

……………………………….……………………………………………………..…123

Table B.5 Results by GRASP_B&B for Instances la21-la30 (Lawrence 1984)

………………………….…………………………………………………………..…124

Table B.6 Results by GRASP_B&B for Instances la31-la40 (Lawrence 1984)

…………………….…………………………………………………………………..125

Table B.7 Results by GRASP_B&B for Instances orb01-orb10 (Applegate and

Cook 1991)……………………………………………………………………………126

Table B.8 Results by GRASP_B&B for Instances swv01-swv10 (Storer, Wu et al.

1992)………………………………………………………………………………..…127

Table B.9 Results by GRASP_B&B for Instances swv11-swv20 (Storer, Wu et al.

1992)…………………………………………………………………………………..128

Table B.10 Results by GRASP_B&B for Instances yn (Yamada and Nakano 1992)

…….…………………………………………………………………………………..129

 XV

Table B.11 Results by GRASP_B&B for Instances ta01-ta10 (Taillard 1993)

…….………………………………………………………………………………..…130

Table B.12 Results by GRASP_B&B for Instances ta11-ta20 (Taillard 1993)

…….………………………………………………………………………………..…131

Table B.13 Results by GRASP_B&B for Instances ta21-ta20 (Taillard 1993)

…….…………………………………………………………………………………..132

Table B.14 Results by GRASP_B&B for Instances ta31-ta40 (Taillard 1993)

…….…………………………………………………………………………………..133

Table B.15 Results by GRASP_B&B for Instances ta41-ta50 (Taillard 1993)

…….…………………………………………………………………………………..134

Table B.16 Results by GRASP_B&B for Instances ta51-ta60 (Taillard 1993)

…….…………………………………………………………………………………..135

Table B.17 Results by GRASP_B&B for Instances ta61-ta70 (Taillard 1993)

…….…………………………………………………………………………………..136

Table C.1 Results by Tabu_VVI: variants tabu_mvfct, tabu_mv_bb and

tabu_mv2_bb, for all groups of instances, in average percentage of the relative error to

the lower bound, and the average time to the best, in seconds.…………………….…137

Table C.2 Results by Tabu_VVI: variants tabu_mvinf_bb, tabu_mvinf and

tabu_mvinf_ls2, for all groups of instances, in average percentage of the relative error to

the lower bound, and the average time to the best, in seconds.……………………….138

Table C.3 Results by Tabu_VVI: variants tabu_mvinf_ls2_bb, tabu_mvhp_bb and

tabu_mvinfhp_bb, for all groups of instances, in average percentage of the relative error

to the lower bound, and the average time to the best, in seconds..……………………139

Table C.4 Results by Tabu_VVI: variants tabu_mvinfhp, tabu_mv-2infhp_bb and

tabu_mv-2infhp, for all groups of instances, in average percentage of the relative error

to the lower bound, and the average time to the best, in seconds...………………...…140

Table C.5 Results by Tabu_VVI: variants tabuls_mvinfhp_bb, tabuls_mvinfhp and

tabuls_mv_infhp_bb, for all groups of instances, in average percentage of the relative

error to the lower bound, and the average time to the best, in seconds...…………..…141

 XVI

Table C.6 Best Results by Tabu_VVI for Instances abz (Adams, Balas et al. 1988)

…….…………………………………………………………………………………..142

Table C.7 Best Results by Tabu_VVI for Instances ft (Fisher and Thompson 1963)

…….…………………………………………………………………………………..142

Table C.8 Best Results by Tabu_VVI for Instances la01-la10 (Lawrence 1984)

…….…………………………………………………………………………………..142

Table C.9 Best Results by Tabu_VVI for Instances la11-la20 (Lawrence 1984)

…….…………………………………………………………………………………..143

Table C.10 Best Results by Tabu_VVI for Instances la21-la30 (Lawrence 1984)

…….…………………………………………………………………………………..143

Table C.11 Best Results by Tabu_VVI for Instances la31-la40 (Lawrence 1984)

…….…………………………………………………………………………………..144

Table C.12 Best Results by Tabu_VVI for Instances orb01-orb10 (Applegate and

Cook 1991)..…………………………………………………………………………..144

Table C.13 Best Results by Tabu_VVI for Instances swv01-swv10 (Storer, Wu et

al. 1992)...……………………………………………………………………………..145

Table C.14 Best Results by Tabu_VVI for Instances swv11-swv20 (Storer, Wu et

al. 1992)...……………………………………………………………………………..145

Table C.15 Best Results by Tabu_VVI for Instances yn (Yamada and Nakano 1992)

…….…………………………………………………………………………………..145

Table C.16 Best Results by Tabu_VVI for Instances ta01-ta10 (Taillard 1993)

…….…………………………………………………………………………………..146

Table C.17 Best Results by Tabu_VVI for Instances ta11-ta20 (Taillard 1993)

…….…………………………………………………………………………………..146

Table C.18 Best Results by Tabu_VVI for Instances ta21-ta30 (Taillard 1993)

…….…………………………………………………………………………………..147

Table C.19 Best Results by Tabu_VVI for Instances ta31-ta40 (Taillard 1993)

…….…………………………………………………………………………………..147

Table C.20 Best Results by Tabu_VVI for Instances ta41-ta50 (Taillard 1993)…….148

 XVII

List of Figures

Fig. 2.1 Complexity Classes: P – P ; NP - N P ; Co-NP - Co-N P ; NPC - N P–

complete; PP – pseudo polynomial; SNP - strongly N P –complete…………………...12

Fig. 4.1 Gant Chart of a Feasible Solution for Instance of Table 4.2…………...….47

Fig. 4.2 Disjunctive Graph of the Instance in Table 4.2………………………...….48

Fig. 4.3 Disjunctive Graph of the Solution in Fig. 4.1………………………….….49

Fig. 5.1 Outline of Procedure SemiGreedy……………………………………..….54

Fig. 5.2 Graph for instance of Table 4.2 without all edges and the respective one

machine problems……………………………………………………………………....57

Fig. 5.3 Graph of a partial solution to instance of Table 4.2, and the respective one

machine problems for machines 2 and 3………………………………………….……57

Fig. 5.4 Graph of a feasible solution with makespan 14 of instance in Table 4.2

………………………………………………………………………………………….59

Fig 5.5 Graph obtained from the graph of Fig. 5.4 by the forward move on

operations (7,10)…………………………………………………………………….….60

Fig. 5.6 Pseudo-code of Module Local Search……………………………………..60

Fig. 5.7 Outline of Procedure GRASP_B&B………………………………………61

Fig. 5.8 Distribution of results of GRASP_B&B for instances abz……………..…64

Fig. 5.9 Distribution of results of GRASP_B&B for instances ft……………….…64

Fig. 5.10 Distribution of results of GRASP_B&B for instances la01-10…….……64

Fig. 5.11 Distribution of results of GRASP_B&B for instances la11-20……….…64

Fig. 5.12 Distribution of results of GRASP_B&B for instances la21-30……….…64

Fig. 5.13 Distribution of results of GRASP_B&B for instances la31-40……….…64

Fig. 5.14 Distribution of results of GRASP_B&B for instances orb………………65

Fig. 5.15 Distribution of results of GRASP_B&B for instances yn………………..65

Fig. 5.16 Distribution of results of GRASP_B&B for instances swv01-10

……………………………………………………………………………………….…65

 XVIII

Fig. 5.17 Distribution of results of GRASP_B&B for instances swv11-20

……………………………………………………………………………….…………65

Fig. 5.18 Distribution of results of GRASP_B&B for instances ta01-10…….……65

Fig. 5.19 Distribution of results of GRASP_B&B for instances ta11-20…….……65

Fig. 5.20 Distribution of results of GRASP_B&B for instances ta21-30…….……66

Fig. 5.21 Distribution of results of GRASP_B&B for instances ta31-40………….66

Fig. 5.22 Distribution of results of GRASP_B&B for instances ta41-50…….……66

Fig. 5.23 Distribution of results of GRASP_B&B for instances ta51-60……….…66

Fig. 5.24 Distribution of results of GRASP_B&B for instances ta61-70…….……66

Fig. 6.1 Outline of Tabu_VVI……………………………………………….……..74

Fig. 6.2 Pseudo-code of module Tabu Search……………………………..……….77

Fig. 6.3 Pseudo-code of module Destroy…………………………………………..79

Fig 6.4 Graph of the partial solution removing the processing sequence of machine 1

from the solution in Fig. 4.3 and the respective one machine problem for machine 1

………………………………………………………………………………………….81

Fig 6.5 Graph of the partial solution removing the processing sequence of machines

1 and 2 from the solution in Fig. 4.3 and the respective one machine problem for

machine 1………………………….……………………………………………………82

Fig 6.6 Graph of the partial solution removing the processing sequence of machines

1, 2 and 3 from the solution in Fig. 4.3 and the respective one machine problem for

machine 1……………………………………………………………………………….84

Fig 6.7 Graph of the partial solution including all new arcs generated by valid
inequalities for machine 1 after having removed the processing sequence of machines 1,
2 and 3 from the solution in Fig. 4.3 and the respective one machine problem for
machine 2……………………………………………………………………………….85

Fig. 6.8 Pseudo-code of module Find Valid Inequalities…………………….…….86

Fig 6.9 Graph of the partial solution obtained at the end of module find violated

valid inequalities when applying Tabu_VVI to the solution of Fig. 4.3………….……87

 XIX

Fig 6.10 Graph of the partial solution with the complete processing sequence for

machine 1 obtained at the first iteration of the module rebuilding a complete solution

when applying Tabu_VVI to the solution of Fig. 4.3………………………………..…88

Fig 6.11 Graph of the partial solution with the complete processing sequence for
machines 1 and 2 obtained at the second iteration of the module rebuilding a complete
solution when applying Tabu_VVI to the solution of Fig. 4.3……………………...….88

Fig 6.12 Optimal solution to instance of Fig. 4.2 achieved by Tabu_VVI………...89

Fig. 6.13 Pseudo-code of module Rebuild…………………………………………89

Fig. 6.14 Distribution of results of all variants of Tabu_VVI for instances abz…...94

Fig. 6.15 Distribution of results of all variants of Tabu_VVI for instances ft……..94

Fig. 6.16 Distribution of results of all variants of Tabu_VVI for instances la01-10

………………………………………………………………………………………….94

Fig. 6.17 Distribution of results of all variants of Tabu_VVI for instances la11-20

………………………………………………………………………………………….94

Fig. 6.18 Distribution of results of all variants of Tabu_VVI for instances la21-30

………………………………………………………………………………………….94

Fig. 6.19 Distribution of results of all variants of Tabu_VVI for instances la31-40

………………………………………………………………………………………….94

Fig. 6.20 Distribution of results of all variants of Tabu_VVI for instances orb…...95

Fig. 6.21 Distribution of results of all variants of Tabu_VVI for instances yn…….95

Fig. 6.22 Distribution of results of all variants of Tabu_VVI for instances swv01-10

………………………………………………………………………………………….95

Fig. 6.23 Distribution of results of all variants of Tabu_VVI for instances swv11-20

………………………………………………………………………………………….95

Fig. 6.24 Distribution of results of all variants of Tabu_VVI for instances ta01-10

………………………………………………………………………………………….95

Fig. 6.25 Distribution of results of all variants of Tabu_VVI for instances ta11-20

………………………………………………………………………………………….95

Fig. 6.26 Distribution of results of all variants of Tabu_VVI for instances ta21-30

………………………………………………………………………………………….96

 XX

Fig. 6.27 Distribution of results of all variants of Tabu_VVI for instances ta31-40

………………………………………………………………………………………….96

Fig. 6.28 Distribution of results of all variants of Tabu_VVI for instances ta41-50

………………………………………………………………………………………….96

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 1

1. Introduction

The present document starts by presenting the motivations underlying the research

work of this PhD thesis, highlighting the purpose of the work in section 1.1 and

presenting in section 1.2 - Main Scope - the field to which this research work

contributes. The structure of the document is described in section 1.3 and this first

introductory chapter ends with a summary of the main contributions of our work in

section 1.4.

1.1 Purpose

Scheduling problems have many real life applications, from automotive industry to

air traffic control. These problems are defined by the need of processing a set of jobs on

a shared set of resources. Building a solution means assigning a time interval to each

job on each resource. The quality of a solution is measured by means of some objective

function, usually related to the time needed or the cost associated to process all the jobs.

When solving the problem the goal is to find the solution with the best value for the

objective function. For most scheduling problems there is no known deterministic

procedure that can solve them in polynomial time. This is the reason why researchers

study methods that can provide a good solution in a reasonable amount of time.

In this thesis we intend to develop new innovative metaheuristics and use them to

solve scheduling problems. These methods will include some combinatorial

optimisation algorithms as components to guide the search in the solution space using

the knowledge of the algebraic structure of the problem being solved. We will focus on

the job-shop scheduling problem.

1. Introduction 2

1.2 Main Scope

When speaking of combinatorial optimisation problems we define a problem as a set

of instances with some common structure (e.g. a graph), including an objective (or cost,

or evaluation) function; each instance having a set of feasible solutions. Dealing with an

optimisation problem means we want to find the best solution of an instance, that is, the

solution of that instance with the best (minimum or maximum) objective function value.

A combinatorial optimisation problem is an optimisation problem where the set of

solutions is discrete, or can be reduced to a discrete one. Examples of combinatorial

optimisation problems are routing, packing, scheduling, matching or network flows

problems, just to name a few areas.

Many combinatorial optimisation problems, scheduling problems included, belong

to the NP-hard class. There is no knowledge of a polynomial deterministic algorithm

that can solve them; but there are polynomial non-deterministic procedures that can

“guess” a solution and verify its optimality (Garey and Johnson 1979), (Papadimitriou

and Steiglitz 1982). This justifies the development of heuristic methods to solve these

problems.

The development of methods to solve scheduling problems was started around the

second half of the 20th century, with the boom of constructive heuristics based on

sequencing rules (Griffer and Thompson 1960), (Roy and Sussman 1964). The process

of building a solution is often performed in two stages, starting with the determination

of the sequence of processing the jobs on each resource, and proceeding with the

assignment of time intervals for each pair (job, resource).

Much attention was given to the mathematical formulation of scheduling problems

and the algebraic characterisation of the space of feasible solutions when exact

algorithms were being developed, like branch-and-bound and branch-and-cut (French

1982), (Balas 1985), (Carlier and Pinson 1989), (Applegate and Cook 1991). But exact

methods proved inefficient to solve real sized instances. Local search based heuristics

were developed that managed to quickly find good solutions, starting from feasible

solutions produced by constructive heuristics. Local search algorithms have the

disadvantage of stopping at the first local optimum they find when searching the

feasible region. Research evolved to the design of metaheuristics, procedures that guide

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 3

the search beyond the entrapment of local optima, like simulated annealing, tabu search,

GRASP, genetic local search or iterated local search (Vaessens, Aarts et al. 1996), (Jain

and Meeran 1999). The quality of the solutions achieved has increased considerably

from the simple sequencing rules to present metaheuristics. The same goes for the

complexity of the algorithms.

In metaheuristics the search process is managed by the fine tuning of a set of

parameters of the algorithms. The setting of these parameters still lacks a theoretical

foundation. What happens is that parameters are set empirically for each type of

problem, and many times for each type of instance. Metaheuristics have been mainly

developed by researchers of the fields of artificial intelligence and computer science,

who generally do not include traditional combinatorial optimisation techniques in their

algorithms.

The algebraic structure of the problems has been, many times only implicitly, in the

foundations of the design of neighbourhood structures of local search procedures, but

the criteria to manage various neighbourhoods and the way of guiding the search have

been widely defined by intuition or experimentation.

In this work we will develop metaheuristics that guide the local search based on the

algebraic structure of the problems being solved. Although there have been some efforts

devoted to the guidance of the search of solutions based on specific measured

characteristics of each instance, like (Schiavinotto and Stutzle 2004), major current

research in the scheduling problems field has been mainly concerned with the definition

of new neighbourhood structures (Jain, Rangaswamy et al. 2000), (Nowicki and

Smutniki 1996) and the achievement of new lower and upper bounds (Goldberg,

Paterson et al. 2001), (Dorndorf, Pesch et al. 2002).

The main goal of this thesis is to contribute to the development of local search based

metaheuristics that can use information about the algebraic structure of the problems

being solved.

Local search methods, the base of most metaheuristics, start with a feasible solution

and move step by step to a better neighbouring solution. A neighbour is a solution that

can be reached by performing one “simple” transformation (called move) on the current

solution. A neighbourhood of a solution is the set of all its neighbours. The search

process can verify all the neighbours before choosing the best one, or it can choose the

1. Introduction 4

first neighbour being visited that is better than the current solution; or it can check the

neighbourhood in some compromised way between these two. The local search process

stops at a solution that is better than all its neighbours, a local optimum solution.

Generally this local optimum solution is not the global optimum, i.e., the best of all

feasible solutions. When it is guaranteed that the local search process stops only at the

global optimum, the neighbourhood is said to be an exact one.

To build a local search based metaheuristic there is the need to define the

neighbourhood structures; the way to inspect them; when and how to perform

intensification or diversification of the search, and the various forms of combining these

different features. We will develop metaheuristics where the information redrawn from

the algebraic structure can be used to make these design decisions, and we apply these

new methods to solve scheduling problems.

To our knowledge this is a very innovative characteristic of this PhD thesis. We do

not know of procedures that integrate metaheuristics and exact methods of

combinatorial optimisation in this way.

1.3 Structure of this Document

Since the main goal of this work is to develop a new kind of metaheuristic and to

apply it to solve combinatorial optimisation problems, we will start in chapter 2 with a

brief presentation of the combinatorial optimisation field, followed by a short

introduction of existent metaheuristics. We intend to combine metaheuristics and

combinatorial optimisation methods, so a brief description of these exact procedures is

also presented in chapter 2. These surveys on metaheuristics and exact combinatorial

optimisation methods are by no means intended to be detailed and exhaustive; instead

they only give a general idea of, and focus on, those methods found in procedures that

combine both types.

Chapter 3 presents a literature review of methods that combine metaheuristics and

exact methods, along with a classification of the different forms of combining them and

the ways they interact. A new name for these new procedures is proposed – Optimised

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 5

Search Heuristics - and a mapping of the types of combinations versus problem

applications is built.

In chapter 4 we present the most important properties known of the algebraic

structure of scheduling problems in general and specifically for the one machine

scheduling problem and the job-shop scheduling problem.

We will proceed presenting the proposed methods. In chapter 5 a method that

incorporates a branch-and-bound in the construction phase of a GRASP is presented.

This method is then used as a “constructor” of solutions for the more elaborate method

presented in the next chapter 6, combining the verification of violated valid inequalities

with a tabu search.

The document ends with a chapter of conclusions and future work, including the

main challenges and difficulties.

1.4 Main Contributions

The chapters 2 and 4 of this text include an overview of the metaheuristics and

combinatorial optimisation methods and the algebraic structure of scheduling problems,

respectively. There are several journal articles with surveys on metaheuristics and many

books dedicated to combinatorial optimisation methods. The structure of scheduling

problems has been addressed by a few authors and we introduce some novelty here in

the way the results are put together and presented. These introductory chapters are

included in this document so it can be a reasonably self-contained text and easier to

read.

The main contributions of this thesis are linked with the idea of guiding the search

process of a metaheuristic using a procedure from the exact algorithms of operations

research. These contributions are described in chapters 3, 5 and 6. They are:

a) a survey study of methods that combine exact and (meta)heuristic methods and a

mapping of the research in this field (chapter 3).

The designation Optimised Search Heuristics (OSH) is proposed to describe

heuristics where the search process is some how oriented by exact methods from the

1. Introduction 6

combinatorial optimisation field. These OSH methods can extract the best features of

the metaheuristics and exact methods and provide an integrated solution method that, as

proved already by several authors, can lead to excellent results for large scale problems

in a short amount of time. We present how these procedures have been applied to

combinatorial optimisation problems; build a mapping of procedures versus applications

and conclude that there are many research opportunities to develop optimised search

heuristics, and also a large opportunity to apply them to difficult and large dimension

problems.

b) a new and very fast method for building feasible solutions combining branch-and-

bound and GRASP (chapter 5).

We develop a simple algorithm for the job shop scheduling problem that combines a

heuristic local search procedure, GRASP, with an exact method of integer

programming, branch-and-bound. The branch-and-bound method is used within the

GRASP to solve subproblems of the one machine scheduling problem.

c) an innovative method that combines tabu search with violated valid inequalities

(chapter 6).

We develop an OSH procedure that uses valid inequalities to reconstruct a local

optimal solution that has been partially destroyed. We first build a feasible solution with

our GRASP procedure and perform a tabu search to get a “good” local optimal. In order

to continue searching the solution space we perturb the current solution partially

destroying it and then rebuilding it. A greedy randomised method is used to delete some

elements from the local optimal solution. We then test the existence of valid inequalities

violated by the partial solution. These allow us to establish a new search path for

rebuilding a complete feasible solution, and hopefully lead us to an attractive

unexplored region of the solution space. We named this procedure Tabu_VVI.

The idea of this new method is to mimic the cuts in integer programming, letting the

violated valid inequalities discard unattractive regions of the solution space and guide

the search from a local optimal solution to a more quality region of the search space.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 7

2. Overview of Methods to solve Combinatorial Optimisation
Problems

This chapter is an introduction to the research area of combinatorial optimisation. In the

first section we introduce the field of combinatorial optimisation problems including

some notes on the theory of NP-completeness. Section 2.2 presents an overview of

metaheuritics applied to combinatorial optimisation problems. Finally, section 2.3

presents an overview of exact methods in combinatorial optimisation.

2.1 Combinatorial Optimisation

Combinatorial optimisation is commonly defined as “the mathematical study of the

arrangement, grouping, ordering, or selection of discrete objects, usually finite in

number” (Lawler 1976). Nemhauser and Wolsey (Nemhauser and Wolsey 1988)

propose the following generic definition of a combinatorial optimisation problem:

Let { }nN ,,1K= be a finite set and let ()nccc ,,1 K= be an n-vector. For NF ⊆ ,

define () ∑ ∈= Fj jcFC . Given a collection of subsets F of N , the combinatorial

optimisation problem is (){ }F∈FFCCOP :min . The characterisation of a specific

combinatorial optimisation problem is determined by the description of the collection F

of subsets on N . (for instance, for shop scheduling problems the subsets are the

permutations of jobs for each machine, satisfying job precedence and machine

availability constraints).

Combinatorial optimisation problems occur in many diverse scientific areas such as:

economics (planning and management), linear and integer programming, graph theory

(covering, partitioning, subgraphs, supergraphs, etc…), network design (routing,

spanning trees, flow problems, etc…), sets and partitions, storage and retrieval

(packing, compressing, etc…), sequencing and scheduling (parallel machine scheduling,

shop scheduling, etc…), algebra and number theory, games and puzzles, logic, automata

and language theory and program optimisation (code optimisation, etc…). An extensive

2. Overview of Methods to solve Combinatorial Optimisation Problems 8

compendium of combinatorial optimisation problems can be found in (Ausiello,

Crescenzi et al. 1999). They arise in many applications like production planning and

distribution, allocation of economic resources, crew scheduling and transports routing

or gene sequencing. The table 2.1 shows some of the areas and applications where

combinatorial optimisation appears.

Table 2.1 Applications of Combinatorial Optimisation

Applications of Combinatorial Optimisation

Area Type of problem Problems

distribution of goods

production scheduling
operational
problems

machine sequencing

capital budgeting

facility location
planning
problems

portfolio selection

telecommunications network design

transportation networks design

VLSI circuit design

management and
efficient use of scarce
resources to increase
productivity

design
problems

design of automated production systems

data analysis
statistics

reliability

physics determination of minimum energy states

cryptography designing unbreakable codes

combinatorics

maximum common subgraph mathematics

propositional logic maximum satisfability

To state the importance of the combinatorial optimisation field let us just remember

that in 1975 L. Kantorovich and T. Koopmans received the Nobel Prize in Economics

(there is no Nobel Prize in mathematics) for their work on the optimal allocation of

resources.

Historically, the field of combinatorial optimisation starts with linear programming.

Combinatorial optimisation problems can be approached as optimisation problems for

polyhedra and mathematically formulated as integer linear programs. Many polynomial-

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 9

time1 solvable combinatorial optimisation problems, like maximum flow or matching,

are in fact special cases of linear programming. So, many general algorithms for

(integer) linear programming can be applied to solve combinatorial optimisation

problems. There is also a large variety of combinatorial optimisation algorithms

designed for a specific problem, taking advantage of some special structure.

A linear program is a problem of minimising (or maximising) a linear function in

the presence of linear inequality and/or equality constraints. Formally

{ }nxbAxcxLP +ℜ∈≤ ,:min where n
+ℜ is the set of non-negative n-dimensional

vectors and ()nxxx ,,1 K= are the variables. An instance of the problem is specified by

the data ()bAc ,, with c being a n-dimensional row vector, b a m-dimensional column

vector and A a nm× matrix. The set { }nxbAxS +ℜ∈≤= , is called the feasible region

and Sx∈ a feasible solution. The function cxz = is the objective function. A dual

program is associated to every linear program (called primal), where each variable of

the dual program is related to each constraint of the primal program and each dual

constraint to each primal variable. If both programs have feasible solutions then their

optimal value is the same and duality relations can be used to compute the optimal

solution. The dual of the program LP is the program { }mycyAybDLP −ℜ∈≤ ,:max .

In a linear program finding the optimal solution, reduces to the selection of a

solution from the finite set of vertices of the convex polytope defined by the linear

constraints. The simplex algorithm of Dantzig (Dantzig 1949), and all its refined

versions including primal and/or dual phases, finds an optimal solution to a linear

program in a finite number of steps. The simplex algorithm moves from vertex to vertex

of the polytope improving the objective function.

An integer linear program is a linear program with all variables being integers

{ }nxbAxcxIP +Ζ∈≤ ,:min . When variables can only assume values 0 or 1 the integer

program is also called a binary one. For some special structured matrices, namely totally

unimodular matrices, all the vertices of the polytope defined by { }nRxbAx +∈≤ , are

integers. So when A is totally unimodular and b is a vector of integers, solving the

{ }nxbAxcxIP +Ζ∈≤ ,:min is the same as solving the { }nxbAxcxLP +ℜ∈≤ ,:min .

1 An algoritm has polynomial running time when its running time is bounded by a polynomial in the size
of the input data.

2. Overview of Methods to solve Combinatorial Optimisation Problems 10

This is the case for some problems like maximum flow or matching which can be

solved in polynomial time. We are especially interested in solving problems where this

property does not hold.

Combinatorial optimisation problems are the subject of study of many practitioners

with different scientific backgrounds like operations research, artificial intelligence and

computation sciences. While ones are mainly devoted to the study of the mathematical

properties of the problems and the development of exact optimisation algorithms; others

developed metaheuristic methods, some are especially focused on solving real live

applications of these problems. The next two sections 2.2 and 2.3 present, respectively,

overviews of metaheuristics and exact methods used to solve combinatorial

optimisation problems. But before closing this section on combinatorial optimisation we

present a short introduction to the Complexity Theory. We have used the concepts of

polynomial time algorithms and NP-hard problems several times now. In the next

subsection the theory of NP-completeness is presented, with a clarification of related

concepts used in this text.

Notes on Complexity Theory The theory on complexity was developed for

decision problems. A problem can be expressed as a relation SIP ×⊆ where I is the

set of problem instances and S is the set of problem solutions. In a decision problem,

the relation P reduces to a function SIf →: , where S is a binary set { }noyesS ,= .

Given an instance of a decision problem, to solve it is to be able to say if an instance is a

yes instance. A decision problem is said to be polynomial solvable (or simply

polynomial) if there is a deterministic algorithm to solve it that runs in a number of

steps that is not bigger than a polynomial on the length of the encoding size of the input,

for all its instances. In other words, if n is the size of the input of the problem and there

is a deterministic algorithm that solves it with complexity ()()npO , being ()np a

polynomial function, then the problem is polynomial. The complexity class P is the

class of polynomial decision problems. There are some decision problems for which

there is no known polynomial deterministic algorithm that can solve them; but there are

polynomial non-deterministic algorithms that do (a non-deterministic algorithm is one

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 11

that can execute commands of the type “guess”). These problems form the class N P.

Clearly N PP ⊆ .

Given a decision problem P we say that the problem of identifying a no instance is

its complementary problem. If there is a non-deterministic algorithm that solves the

complementary problem of a decision problem in N P , it is said that the complementary

problem (identifying a no instance) is in Co- N P .

Given two decision problems 1P and 2P we say that 1P is reducible to 2P if that is

a method (named a reduction) to solve 1P using an algorithm that solves 2P (this

implies that 2P is at least as difficult as 1P). If the reduction is executed in polynomial

time, it is said that 1P is polynomial reducible to 2P . When all problems in class N P are

polynomial reducible to a problem N P∈P , problem P is an N P –complete problem.

A deterministic algorithm is pseudo-polynomial when it runs in a number of steps not

bigger than a polynomial defined not only on the size of the input but also on se size of

the values of the parameters of the instances. There is such an algorithm to solve the

well known N P problem { }1,0 -knapsack, just to name one example.

A decision problem is strongly N P –complete when it is still N P –complete even if

any instance of length n is restricted to contain integers of size at most ()np . There are

no known pseudo-polynomial algorithms to solve strongly N P –complete problems;

their existence would imply N PP = .

The theory on complexity can be extended to optimisation problems where class PO

is the natural extension of class P ; N PO is the extension of N P , the extension of the N P

–complete class of decision problems is the N P –hard class of optimisation problems

and class strongly N P –hard corresponds to class strongly N P –complete.

The definition of an optimisation problem leads to three different problems,

corresponding to three different ways of addressing its solution:

1 Constructive Problem – given an instance of the problem find an optimal solution.

2 Evaluation Problem – given an instance of the problem, compute the optimal value

of the objective function.

2. Overview of Methods to solve Combinatorial Optimisation Problems 12

3 Decision Problem – given an instance of the problem and a positive integer k

decide if the optimal value for the objective function is not bigger than k (when the goal

is to minimise the objective function).

The decision version of an optimisation problem is never harder to solve than its

constructive version. If the decision problem is N P –complete then the constructive

problem is N P –hard.

The questions N PP ≠ ? N P-CoN P ≠ ? remain open in the theory of complexity,

as well as their counterparts for optimisation problems. The Fig. 2.1 shows the believed

relationships among the mentioned complexity classes for decision problems.

Fig. 2.1 Complexity Classes: P – P ; NP - N P ; Co-NP - Co-N P ; NPC - N P –complete; PP – pseudo
polynomial; SNP - strongly N P –complete

The book Computers and Intractability: A Guide to the Theory of NP-completeness

(Garey and Johnson 1979) is a landmark in the literature of the field. There the reader

can find the building of the theory, with the proofs to all the statements presented here

on complexity classes, along with many other related theorems and propositions. It also

proves the N P–hard nature of many optimisation problems. Other references with an

exposition on the theory of complexity of optimisation problems are (Ausiello,

Crescenzi et al. 1999) (which we have followed closely in this section) and

(Papadimitriou and Steiglitz 1982).

Co-NP

NP

 P

PP

SNP

NPC

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 13

2.2 Overview of Metaheuristics

There is no unified definition of what is a metaheuristic among the research

communities that work on them, like operations research, computer science and

artificial intelligence. Metaheuristics were formerly known as modern heuristics. The

new International Journal of Metaheuristics2 defines them as, and we cote, “In general,

we consider a metaheuristic to be any algorithmic framework, nature inspired or

otherwise, that defines a set of heuristic methods that can be directed towards a variety

of different optimisation problems. In other words, metaheuristics represent "higher

level" heuristic-based algorithms that can be applied to various individual problems

with relatively few modifications needing to be made in each case.”

As stated before, we are especially interested in metaheuristics as methods that

allow escaping from, or avoiding, the local optimum entrapment of a search process

when solving a combinatorial optimisation problem. There are many different types of

metaheuristics with different underlying philosophies. It is difficult either to group or

classify them but it seems to be consensual to consider two main groups: those that

avoid getting stuck on a local optimum, working with a population of solutions and

performing a biased sampling of the solutions space; and the ones that escape from local

optima, working with only one current solution at a time. Metaheuristics are often

classified according to the methods adopted in order to escape or avoid local

entrapment. Such methods include the use of pure randomness; the use of

neighbourhood-modification processes; the inclusion of penalties or weights to modify

the objective function; the use of a statistical model for the frequency of the

characteristics of the solutions chosen, etc. Other ways of looking at metaheuristics are

its memory usage - short and/or long-term memory -, or the balance between

intensification and diversification processes, that is, the exhaustive search of a region

around a good solution and the orientation of the search to a more distant and

unexplored region.

2 http://www.inderscience.com/browse/index.php?journalCODE=ijmheur

2. Overview of Methods to solve Combinatorial Optimisation Problems 14

Next, we will briefly describe the most widely used metaheuristics. Metaheuristics

are general methods that can be applied to different kind of problems with very little

problem specific adaptations. They are very popular in finding good solutions to many

optimisation problems from different research fields like artificial intelligence,

computer science or combinatorial optimisation, among others. For more information

on the state of the art of the field of metaheuristics please refer to surveys like “A

survey of AI-based meta-heuristics for dealing with local optima in local search” (Mills,

Tsang et al. 2004) and “Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison” (Blum and Roli 2003), and their references.

2.2.1 Metaheuristics that work with One Solution

In the group of metaheuristics that work with only one current solution at a time

there are those which escape local optima mainly by adding some form of randomness,

like Simulated Annealing, Greedy Randomised Adaptive Search Procedure (GRASP) or

Iterated Local Search; others perform some modification on the neighbourhood

structure, like Variable Neighbourhood Search or Tabu Search; finally there are those

which use penalties or weights to modify the objective function like Guided Local

Search.

Simulated Annealing The simulated annealing procedure is not a constructive

method so it needs an initial solution. It is a local search method that allows moves

resulting in solutions of worse quality than the current one in order to escape local

optima. The probability of accepting such a move, called the temperature, is decreased

during the search. The method tries to mimic the annealing process of metals and glass.

Early references to simulated annealing trace back to (Metropolis, Rosenbluth et al.

1956), (Kirkpatrick, Gelatt et al. 1983), (Cerny 1985). A variation on simulated

annealing is simulated jumping (Amin 1999). See (Van-Laarhoven, Aarts et al. 1992)

for applications to the job shop scheduling.

GRASP The acronym GRASP (Feo and Resende 1995), (Resende and Ribeiro

2003) means “greedy randomised adaptive search procedure”. It is an iterative

constructive process where each iteration consists of two steps: a randomised building

step of a greedy nature and a local search step. At the building phase, a feasible solution

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 15

is constructed by joining one element at a time. Each element is evaluated by a heuristic

function and incorporated (or not) in a restricted candidate list (RCL) according to its

evaluation. The element to join the solution is chosen randomly from the RCL. After a

new element is added, if the solution has already more then one element the algorithm

proceeds with the local search step. The current solution is updated by the local

optimum and this two-step process is repeated until the solution is complete. See

(Binato, Hery et al. 2002) for an application to the job shop scheduling problem.

Iterated Local Search The iterated local search procedure (Stützle 1999),

(Lourenço, Martin et al. 2002) applies local search to an initial solution until a local

optimum x is reached. Then, it randomly perturbs the solution, usually called a kick

move phase, and the local search re-starts. The new solution y is compared to the

previous one (x) and an acceptance criteria decides which solution, x or y , is used to

continue the procedure.

Tabu Search The tabu search method (Glover 1986), (Glover and Laguna 1997)

keeps track of the most recently visited solutions maintaining a tabu list that stores some

features of the solutions or of the moves that lead to them. During the search process,

after a local optimum is reached, moves to solutions present in the tabu list are

forbidden. The best of the solutions not in the tabu list is chosen, even if it is worse than

the current one. Because the tabu list does not store the complete solutions, a tabu move

can be performed if it satisfies some aspiration criteria, usually if it is best than the best

solution found so far. See (Nowicki and Smutnicki 2005) for applications to job shop

scheduling. There are several variations on tabu search like robust tabu search (Taillard

1991; Smyth, Hoos et al. 2003), iterated robust tabu search (Battiti and Tecchiolli 1994;

Smyth, Hoos et al. 2003) or reactive tabu search (Battiti and Tecchiolli 1994).

Variable Neighbourhood Search The variable neighbourhood search procedure

(Hansen and Mladenovic 1997), (Mladenović and Hansen 1997),(Hansen and

Mladenović 2001) uses several different neighbourhood structures. Given a solution the

process looks for neighbours in a neighbourhood A . After a local optimum is achieved,

the process changes to a different neighbourhood B , usually bigger than A . The

method cycles through all the different neighbourhoods used; it stops when there is no

improvement for any of them.

2. Overview of Methods to solve Combinatorial Optimisation Problems 16

Guided Local Search The guided local search procedure (Voudouris 1997),

(Voudouris and Tsang 1999) dynamically changes the objective function of the problem

being solved. After a local optimum is found, the objective function is changed so that

penalties for the features of the local optimal solution are included, and so other

neighbours become more attractive.

2.2.2 Metaheuristics that work with a Population of Solutions

In the group of metaheuristics that work with a population of solutions which avoid

local entrapment by performing combinations and mutations of the solutions, some are

strongly based in randomness, like Genetic Algorithms and Memetic Algorithms; others

are based on the underlying search space like Scatter Search, and Path Relinking; and

others, still, which are based on probability models like Ant Colony Optimisation or

Estimation of Distribution Algorithms.

Genetic Algorithms The procedures designated genetic algorithms (Holland 1975)

are inspired in natural evolution. They consider a set of initial solutions, called the

initial population and perform a number of operations to the individuals of the

population to generate new solutions. These operations include the combination of

elements from different solutions (crossover), and the modification of some elements of

one solution – mutation. The best evaluated individuals are chosen to constitute the next

generation. Frequently, the elements of the solutions are represented by a binary code.

See (Yamada and Nakano 1992) for an application to the job shop problem.

Memetic Algorithms The procedures designated memetic algorithms (Moscato

1989), also known as genetic local search, try to mimic the “cultural evolution” by

incorporating local search into a genetic algorithm framework. An initial population is

generated and local search is applied to each solution. Crossover and mutation operators

are used to generate new individuals and local search is applied again to the resulting

solutions. The best ones, according to quality and diversity, are chosen to constitute the

next generation.

Scatter Search The scatter search method (Cung, Mautor et al. 1997), (Glover

1999), (Glover, Laguna et al. 2000) generates new solutions by linear combination of

two solutions chosen from a reference set. The combination of solutions can produce

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 17

infeasibility so there is usually a procedure to recover feasibility. Local search is

performed to improve the new generated solutions. The reference set is updated with the

best solutions generated while maintaining some level of diversity. See (Yamada and

Nakano 1995) and (Jain and Meeran 1998) for applications to the job shop scheduling

problem.

Path Relinking The path relinking method (Glover 1999) finds new solutions by

generating paths between and beyond solutions of a reference set. It is analogous to

scatter search, but replaces the linear combinations in the Euclidean space by paths in

the neighbourhood space. While traversing paths starting from an initial solution, moves

must progressively introduce attributes of a guiding solution. Path relinking is most

commonly used as a component of other metaheuristics, like tabu search or GRASP.

See a GRASP with path relinking (Aiex, Binato et al. 2003) and a tabu search with path

relinking (Nowicki and Smutnicki 2005) for applications to the job shop scheduling

problem.

Ant Colony Optimisation The ant colony optimisation procedures (ACO) (Dorigo,

Maniezzo et al. 1996) are inspired in the behaviour of real ants when walking between

food sources and their nests. Ants deposit a pheromone in the walking path. Paths with

stronger pheromone concentration are more frequently chosen by the ants. The ACO

mimics the pheromone trails with a probabilistic model. The metaheuristic is a

constructive procedure where solutions are constructed adding components one by one

to a partial solution under consideration. Each artificial ant performs a randomised walk

on a completely connected graph whose vertices are the components of the solutions

and the arcs are the set of connections between them. Each vertex and each connection

have associated probability values that are updated during the process according to the

frequency of usage and the quality of the solutions built. See (Dorigo and Stützle 2002)

for applications of the method.

Estimation of Distribution Algorithms The procedures designated estimation of

distribution algorithms (Mühlenbein and Paaβ 1996) are based on populations of

distribution functions that evolve as the search progresses. They use probabilistic

modelling of the elements of good solutions to estimate a distribution over the search

space. This distribution is used to produce the next generation of solutions. The

distribution function is then updated. See (Pelikan, Goldberg et al. 1999) for a survey on

these methods and (Larrañaga and Lozano 2002) for its applications.

2. Overview of Methods to solve Combinatorial Optimisation Problems 18

2.3 Overview of Combinatorial Optimisation Methods

Combinatorial optimisation problems can be approached as optimisation problems

for polyhedra and mathematically formulated as integer linear programs. So, many

general algorithms for (integer) linear programming can be applied to solve

combinatorial optimisation problems.

General algorithms for integer programming fall into two partially overlapping

categories: the enumerative methods like branch-and-bound or dynamic programming

that perform some kind of intelligent enumeration of all possible solutions; and the

cutting-plane methods that solve some relaxation of the original problem and then add a

linear constraint that throws away the solution of the relaxation but does not exclude

any integer feasible point.

In the preface of the Handbook of Combinatorial Optimization (Du and Pardalos

1998), Ding Zhu Du and Panos M. Pardalos identify 4 major factors that had a great

effect on combinatorial optimisation, after its “birth” with the simplex method: on one

side, the discoveries of the ellipsoid method in 1979 (Khachiyan 1979) and the interior

point method in 1984 (Karmarkar 1984) providing polynomial time algorithms for

linear programming, in the sense that linear programming relaxations are often the basis

for combinatorial optimisation algorithms; on the other side the design of efficient

integer programming software and the availability of parallel computers allowing us to

solve to optimality problems with thousands of integer variables and approximate

solutions to problems with millions of integer variables.

The next sections present short descriptions of some combinatorial optimisation

methods, procedures that are combined with metaheuristics in the new proposed

methods OSH.

Dynamic programming This method was first introduced by Richard Bellman

(Bellman 1957) in the early 50ths for solving multistage decision problems (either

deterministic or stochastic). At each stage a decision is required and each stage has a

number of states associated with it. The decision at one stage transforms one state into a

state of the next stage. Going through the stages (either in a forward or backward way),

a new state in the problem is determined only by the state on the previous (or following)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 19

stage and the decision taken there. Bellman defined the principle of optimality which

states: “An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision” (Bellman 1957).

Any optimisation problem that can be formulated verifying this optimality principle

can be solved by dynamic programming. The algorithm performs an intelligent

enumeration of all feasible solutions and it can solve an optimisation problem with a

fixed number of constraints in pseudo-polynomial time (dependent on the size of the

input and on the biggest absolute value of the data of the instance), through a recursive

optimisation process that decomposes the initial problem into a nested family of

subproblems.

Formally let T denote the set of stages, ts the state and tx the decision variable at

stage t . Given the initial state 0s , the objective function is given by ()∑
=

−=
T

t
ttt xsfz

1
1,

and each state is ()tttt xsgs ,1−= for Tt K1= . So both the contribution to the objective

function of stage t and the state in stage t depend only on 1−ts and tx . This way the

original problem can be addressed by recursively solving a series of T subproblems;

each with only one decision variable and one state constraint, making the optimal

decision for that state in each subproblem.

Considering an optimisation problem, the issue of applying dynamic programming

to solve it lies on the difficulty in identifying stages and states. Different formulations

with different stages and states can be defined for the same problem and the process can

be thought of as a forward or backward recursion. For instance (Nemhauser and Wolsey

1988) presents two dynamic programming algorithms for the integer knapsack problem

()












∈≤= ∑ ∑
∈ ∈

+
Nj Nj

n
jjjj Zxbxaxcbz ,:max , one with complexity ()2nbO and other

with complexity ()nbO .

Besides the operations research field, dynamic programming is also very popular in

the areas of economics (Adda and Cooper 2003) and computer science (Bertsekas

2000), among others. For more details on dynamic programming please refer to

(Denardo 2003).

2. Overview of Methods to solve Combinatorial Optimisation Problems 20

Branch-and-bound The branch-and-bound method has its origins in a work by

Land and Doig (Land and Doig 1960) and further improvements by Dakin (Dakin

1965). The method constructs a tree structure as it searches the solution space using two

main tools: branching and bounding.

Branching is a splitting procedure that, given a set of feasible solutions S builds a

partition of mutually exclusive sets iS (2, ≥= iSS iU). Note that

{ }Sxcx ∈:min = { }{ }U iii SSSxcx =∈ ::minmin . A set of solutions is represented by a

node in the search tree and each subset in the partition is represented by a child node.

Bounding is the procedure of computing upper and lower bounds for the minimum

value of the objective function within each (sub)set of solutions. If the lower bound for

some node of the tree is greater than the global upper bound (usually the value of the

best feasible solution found) then that node can be pruned, that is, the search does not

proceed through that node. If it can be proved that the best descendant of a node aS is

at least as good as the best descendant of a node bS , then aS dominates bS and the

latter can be discarded. Nodes that have not yet been branched and that were not pruned

are called active nodes.

The method stops when the upper bound matches the lower bound or when there are

no more active nodes in the tree (in practice the procedure is often terminated after a

given time; or when the gap between upper and lower bounds falls below a certain

value).

When designing a branch-and-bound algorithm there are many strategic choices to

be made (which quite often depend heavily on the problem at hand). At the beginning of

the method there is the need to choose the way of computing an upper bound, usually

done by heuristically building a feasible solution. There are many different ways for

partitioning the solution space – a branching scheme must be chosen. Lower bounds can

be tight but computationally expensive or not so tight but computed fast. How to use

lower bounds and dominance relations? At each branching step which node should be

branched? Recently experiences have been made using interior point methods to solve

each subproblem (Lee and Mitchell 1997), replacing the widely used simplex method.

The design choices critically dictate the efficiency of the method and there is not one

universal layout that works for all applications. See (Mitchell and Lee 2001) for details

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 21

on partitioning strategies, branching variable selection, node selection, preprocessing

and reformulation, and subproblem solver.

Cutting-plane A cutting plane method was first developed by Gomory; the

fractional cutting-plane algorithm designed to solve integer linear programs with the

simplex method (Gomory 1958). It starts by solving the linear relaxation of the integer

problem using the simplex method. If the optimal solution found for the linear

relaxation is integer, then the problem is solved. If not, the value of this solution is a

lower bound for the optimum (on a minimisation problem). In this case a linear

restriction, called cutting-plane or simply cut, is added to the linear relaxation. It cuts

off the current optimal solution and does not cut any integer solution of the original

problem. These restrictions are also called valid inequalities. The linear relaxation with

the new restriction is again solved using the simplex method and the process is repeated

until we get an integer solution. Gomory (Gomory 1958) described a method for

generating these cuts and proved it stops at an integer solution after a finite number of

iterations. These cuts are known as Chvátal-Gomory cutting-planes, due to the parallel

work by Chvátal (Chvátal 1973).

Geometrically, a linear relaxation { }n
LR RxbAxS +∈≤= , is a convex polytope that

includes all feasible solutions to the integer problem { }nxbAxcxIP +Ζ∈≤ ,:min , and

excludes all other integer solutions. Many different polytopes have this property so an

integer program has many linear relaxations. More generally, if we set apart the

constraints in the program into different groups, a relaxation of a problem happens

whenever a group of constraints is dropped out. A cutting-plane method takes advantage

of this multiplicity of possible relaxations by finding a sequence of relaxations that

more tightly constrain the solution space until eventually a feasible solution for the

original integer problem is obtained. Ideally one would like to use the convex hull of the

feasible solutions { }nxbAxS +Ζ∈≤= , as a relaxation; that is, the smallest convex set

that contains S - ()SConv . Finding the optimal solution on ()SConv would

automatically lead to the optimal solution to the original integer program. However, in

general, this polytope will have exponentially many facets and be difficult to construct.

Typical relaxations form a polytope that strictly contains the convex hull and has

vertices other than the integer solutions that solve the unrelaxed problem.

2. Overview of Methods to solve Combinatorial Optimisation Problems 22

The number of cutting-planes we need to introduce to the feasible set of the linear

relaxation depends on how far the relaxation is from ()SConv in the region of the

optimal solution. So the method can be very time consuming.

Along with the fractional Chavátal-Gomory cuts, there are other types of cuts: when

a formulation has a family of constraints with an exponential number of inequalities, it

is usual to solve the relaxation without this family of constraints and to add them as

cutting planes as needed (Dantzig, Fulkerson et al. 1954); the knapsack cuts use the

notion that a knapsack problem has only one linear inequality constraint, they find

facets for each knapsack problem and add them to the relaxation of the original problem

as cuts (Crowder, Johnson et al. 1983); there are also the lift-and-project or disjunctive

cuts (Balas, Ceria et al. 1996) for 0-1 problems where each variable can be fixed to 0

and to 1 generating a set of disjunctive inequalities; and the Fenchel cuts (Boyd 1994)

that use ideas from lagrangean and convex dualities.

The cutting-plane method of Gomory has the disadvantage of only getting an integer

feasible solution when the optimum is reached. There are some primal cutting plane

algorithms where the current solution is always an integer one; the algorithm of Padberg

and Hong (Padberg and Hong 1980) developed to solve the traveling salesman problem

is an example. Primal cutting plane algorithms start with a solution that is an extreme

point of the convex hull of the feasible integral region and generate cuts that enable

moving from one extreme point to another adjacent extreme point of the convex hull,

improving the value of the objective function. Besides the difficulty of finding the

initial solution, there is the need to find strong cutting planes, that is, valid inequalities

defining the facets of the convex hull of the integer feasible region.

Branch and cut The branch-and-cut is a procedure that combines branch-and-

bound with cutting-planes. A pure branch-and-bound approach can be speeded up

considerably by the use of a cutting plane scheme, because the cutting planes lead to a

considerable reduction in the size of the tree. See for instance (Padberg and Rinaldi

1991).

At a node of the branch-and-bound tree, cutting-planes are added to tighten the

relaxation, before branching. As finding good cuts can be computational expensive, cuts

are usually not included in every node of the tree. When executed, the insertion of new

cuts stops when the solution for the latter relaxation is not significantly better than the

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 23

one of the previous relaxation of that node of the tree. There is a version of the method

where cuts are introduced only in the root node of the branch-and-bound tree, called

cut-and-branch. The cuts introduced in a node of the tree can be global, that is, valid for

the original problem, or local, which means they are valid only for the subproblem of

that branch of the tree.

Column Generation The method column generation was first suggested by Ford

and Fulkerson (Ford and Fulkerson 1958). A column generation algorithm is based on

the idea of solving a problem by considering only a subset of its variables, including

new variables in the formulation, and dropping others, at each step. Such an algorithm

may be of use when a linear problem is too large to handle, having too many variables

(columns) and a relatively small number of constraints. Since the majority of the

variables will have value zero in an optimal solution of a linear program, being non

basic variables, the problem can be solved considering only a subset of them; the ones

that are likely to improve the objective function. But in order for it to be practical there

is the need to efficiently solve the subproblem of identifying which variable should

enter the problem, the so called pricing problem. The original problem is usually

reformulated using different variables, thus evidencing a structure that allows splitting it

into a master problem and separable subproblem(s). The Dantzig Wolfe decomposition

algorithm (Dantzig and Wolfe 1960) is a successful example of these methods.

The procedure starts by solving the master problem with only a subset of the

variables. Given a solution, the dual prices of the constraints are used to define the

objective function of the pricing problem, which is the minimum reduced cost of the left

out variables. The pricing problem is solved and its objective value is the reduced cost

of the variable to enter the problem. If this objective value is not negative then the

solution to the master (minimisation) problem is optimal; if not, the corresponding new

variable is included and the process is repeated.

Integer programming column generation algorithms were presented in (Barnhart,

Johnson et al. 1998) and (Vanderbeck and Wolsey 1996).

For a detailed work on theory and practice of column generation in linear and

integer programming please refer to (Lübbecke and Desrosiers 2005).

Branch-and-Price The idea underlying branch-and-price (Desrosiers, Soumis et al.

1984) is similar to the one of branch-and-cut; except that branch-and-price executes

2. Overview of Methods to solve Combinatorial Optimisation Problems 24

column generation (addition of variables) instead of the row generation (addition of

inequalities) of branch-and-cut. Pricing and cutting are viewed as complementary

procedures for tightening the relaxation of a problem.

At each node of the branch-and-bound tree, column generation is applied until no

new variable enters the problem. If the current solution is not yet feasible for the

original problem then the node is branched. Special rules for branching are required to

develop an effective branch-and-price algorithm. See (Barnhart, Johnson et al. 1998) for

more information on the subject.

Branch-and-Cut-and-Price These procedures are generalisations of the branch-

and-bound method that perform both cutting plane and column generation at the nodes

of the tree. Special care is mandatory when combining both column and row generation

in order that one does not destroy the special structure needed for the other to be

effective. These procedures are by no means easy to design but they do achieve good

results; see (Vanderbeck 1998), (Akker, Hurkens et al. 2000), (Barnhart, Hane et al.

2000) or (Fukasawa, Lysgaard et al. 2004) for successful examples. There are some

available frameworks online for implementing branch-and-cut-and-price algorithms,

like MINTO – Mixed INTeger Optimizer3 and ABACUS – A Branch-And-Cut System4

(Jünger and Thienel 2000).

Lagrangean Relaxation This method is a relaxation technique which works by

moving hard constraints into the objective function (Held and Karp 1970), (Held and

Karp 1971).

When it is possible to set apart the constraints in the program

{ }nxbAxcxIP +Ζ∈≤ ,:min into two groups, say [] []2121 || bbxAA ≤ , such that the IP

relaxation { }nxbxAcx +Ζ∈≤ ,:min 11 is an easy program to solve; if we add the

previously discarded constraints to the objective function we get the lagrangean

relaxation (){ }n
LR xbxAbxAcxIP +Ζ∈≤−+ ,:min 1122λ where 2mR+∈λ is a vector of

non negative weights, called the lagrangean multipliers. If the constraints 22 bxA ≤ are

violated, the quantity 22 bxA − will be positive and the objective function is penalised.

For any fixed values of λ , the optimum of the LRIP is never bigger than the optimal

3 http://coral.ie.lehigh.edu/minto/
4 www.informatik.uni-koeln.de/abacus/

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 25

value of IP , so we can address the original program IP by solving the lagrangean dual

program { }0:max ≥λ
λ LRLR IPIP .

When designing a lagrangean relaxation algorithm there are many decisions to be

made that will affect its efficiency: there are different lagrangean relaxations for the

same problem which can generate lower bounds more or less tight; reformulating the

problem prior to relaxation can be a good choice; the lagrangean subproblem may be

decomposed into smaller problems; etc. A very important aspect is the search for

optimal multipliers, to which the choice of the method to solve the lagrangean dual

program (subgradiente method, dual ascent method, etc) is crucial. Please see (Guignard

2003) for a detailed discussion on lagrangean relaxation methods.

For further reading on combinatorial optimisation methods please refer to

(Papadimitriou and Steiglitz 1982), (Schrijver 1986) or (Nemhauser and Wolsey 1988).

3. Optimised Search Heuristics 26

3. Optimised Search Heuristics

Recently, a new class of hybrid procedures, which combine local search based

(meta) heuristics and exact algorithms of the operations research field, has been

designed to find solutions for combinatorial optimisation problems. This research topic

is becoming very prominent and caught the a attention of several researchers; see the

recent surveys (Blum and Roli 2003), (Cotta 1998), (Cotta, Talbi et al. 2005),

(Dumitrescu and Stützle 2003), (El-Abd and Kamel 2005), (Puchinger and Raidl 2005)

and (Raidl 2006) for overviews of different angles. We designated these methods by

Optimised Search Heuristics (OSH) since the search process is some how oriented by

exact methods from the combinatorial optimisation field. Different combinations of

different procedures are present in the literature, and there are several applications of the

OSH methods to different problems (see the web page

http://www.econ.upf.edu/~ramalhin/OSHwebpage/index.html). The main advantage of

the OSH methods is that they combine different techniques with the objective of solving

difficult and very large scale problems in a short amount of time.

In this third chapter we present how procedures that combine metaheuristics and

exact algorithms, the OSH methods, have been applied to combinatorial optimisation

problems. We compare and examine the correspondences of two existing classifications

of such procedures. We then propose a more general classification by renaming an

existing item and adding a new one. To stress the distribution of these applications over

the different problems of combinatorial optimisation, we group them following a

classification of NP optimisation problems and outline the combined use of heuristic

and exact techniques. This survey on OSH methods contributes to a review of the state-

of-the-art of the application of OSH methods to solve combinatorial optimisation

problems.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 27

3.1 Classifications of OSH Procedures

Two classifications of Optimised Search Heuristics can be found in the literature.

The first one, by Dumitrescu and Stützle (Dumitrescu and Stützle 2003), presents a

classification of solution methods that combines local search with exact algorithms. In

particular, they consider that the main framework is based on local search and the

subproblems are approached by exact methods. These authors consider the following

categories:

DS.1 - exact algorithms to explore large neighbourhoods within local search.

DS.2 - information of high quality solutions found in several runs of local search is

used to define smaller problems solvable by exact algorithms.

DS.3 - exploit lower bounds in constructive heuristics.

DS.4 - local search guided by information from integer programming relaxations.

DS.5 - use exact algorithms for specific procedures within metaheuristics.

The next classification, due to Puchinger and Raidl (Puchinger and Raidl 2005),

considers the combination of exact methods and metaheuristics and includes the

following categories:

PR.1 – collaborative

Algorithms exchange information but are not part of each other.

The authors consider two subcategories: one, sequential the other parallel and

intertwined.

PR.1.1 - sequential execution

One technique does a preprocessing before the other or the second one is a post

processing of the solution(s) generated by the first. Sometimes both techniques have

equal importance and we cannot speak of pre or post processing.

PR.1.2 - parallel or intertwined execution

3. Optimised Search Heuristics 28

In parallel execution several processors perform simultaneous tasks acting as teams

and interchanging information. In intertwined execution a single processor executes

some steps of one procedure, then some steps of another.

PR.2 - integrative combinations

One technique is a subordinate embedded component of the other technique. The

authors consider the following subcategories:

PR.2.1 - incorporating exact algorithms in metaheuristics

PR.2.1.1 - exactly solving relaxed problems

Solutions to relaxations heuristically guide neighbourhood search, recombination,

mutation, repair and/or local improvement.

PR.2.1.2 - exactly searching large neighbourhoods

Exact algorithms are used to search neighbourhoods in local search based

metaheuristics.

PR.2.1.3 - merging solutions

Exact algorithms are used to solve sub problems generating partial solutions.

Merging these partial solutions is iteratively applied within a metaheuristics.

PR.2.1.4 - exact algorithms as decoders

In evolutionary algorithms where solutions are incompletely represented in the

chromosome, exact algorithms are used to find the correspondent best solution.

PR.2.2 - incorporating metaheuristics in exact algorithms

PR.2.2.1 - metaheuristics for obtaining incumbent solutions and bounds

Metaheuristics are used to determine bounds and incumbent solutions.

PR.2.2.2 - metaheuristics for column and cut generation

In branch-and-cut and branch-and-price algorithms, metaheuristics are used to

dynamically separate cutting-planes and pricing columns, respectively.

PR.2.2.3 - metaheuristics for strategic guidance of exact algorithms

Metaheuristics are used to determine the branching strategy in branch-and-bound

techniques.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 29

PR.2.2.4 - applying the spirit of metaheuristics

Branch-and-bound it self is used for doing the local search. No explicit

metaheuristic is used.

3.1.1 Connecting the Classifications Dumitrescu & Stützle - Puchinger & Raidl

Almost all items in the classification of Dumitrescu and Stützle correspond to sub

items of item PR.2.1 (incorporating exact algorithms in metaheuristics). The exceptions

are procedures classified by Dumitrescu and Stützle in item DS.2. (information of high

quality solutions found in several runs of local search is used to define smaller problems

solvable by exact algorithms), that have a sequential nature, running a local search

based heuristic several times before an exact algorithm; and also the work of (Umetani,

Yagiura et al. 2003), allocated to item DS.4, that sequentially executes tabu search after

solving the integer programming relaxation.

Some works included in item DS.1, exactly searching large neighbourhoods, can be

viewed as a merging solutions kind of procedure.

We introduce a new item in the classification of Puchinger and Raidl, 2.1.5 exact

algorithms for strategic guidance of metaheuristics. Here we include all works of item

DS.3.

We believe item PR.2.1.3. merging solutions should be generalised and renamed

exactly solving sub problems.

We can say that the classification of Dumitrescu and Stützle is more specific and the

one of Puchinger and Raidl is more general.

3. Optimised Search Heuristics 30

Table 3.1 Correspondence Between Classifications of OSH Procedures

Correspondence between classifications

Dumitrescu and Stützle

Puchinger and Raidl

DS.1. exact algorithms to explore large
neighbourhoods within local search

PR.2.1.2. exactly searching large neighbourhoods
2.1.3. merging solutions – exactly solving sub
problems

DS.2. information of high quality solutions found
in several runs of local search is used to define
smaller problems solvable by exact algorithms

PR.1.1. sequential execution

DS.3. exploit lower bounds in constructive
heuristics.

new proposed item 2.1.5. exact algorithms for
strategic guidance of metaheuristics

DS.4. local search guided by information from
integer programming relaxations

PR.1.1. sequential execution

DS.5. use exact algorithms for specific procedures
within metaheuristics

PR.2.1.3. merging solutions – exactly solving sub
problems

3.1.2 Classification of Procedures versus Problem Type

Using the classification of NP optimisation problems proposed by Crescenci and

Kann in http://www.nada.kth.se/~viggo/problemlist/, we show the distribution of the

OSH heuristics application to the different combinatorial optimisation problems. In

Table 3.2 we present a mapping of the problem type versus the type of combination

used. Each entry of the table consists of the reference to the paper(s) and the initials of

the exact and metaheuristic methods combined. Please consult the legend of the table

for description of methods initials.

We can see that a lot of the research of procedures that combine metaheuristics with

exact algorithms has been dedicated to the job shop scheduling problem and to routing

problems. Packing problems and the multiple constraint knapsack problem have also

received some considerable attention, as well as the more general class of mixed integer

programming problems. We believe this can be viewed as a measurement of both the

difficulty and the practical relevance of these problems. Practitioners are still not

satisfied with the results achieved by traditional applications from stand-alone fields of

knowledge.

When looking at the type of combination implemented, we see that the most popular

are sequential execution, exactly searching large neighbourhoods (where dynamic

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems 31

programming is the most used exact algorithm) and exactly solving subproblems.

Genetic algorithms have been the metaheuristics procedures more frequently used in

combination with exact algorithms, maybe because of its low performance on their own.

The most common exact algorithms in these OSH procedures are, aside from dynamic

programming, linear relaxations and branch-and-bound.

We believe that using exact algorithms for strategic guidance of metaheuristics is a

very promising line of research. This way we can profit from the fast search of the space

of solutions of the metaheuristics without getting lost in a “wandering” path, due to the

guidance given by the exact algorithms. We find that another very interesting idea is the

one of “applying the spirit of metaheuristics” when designing exact algorithms.

This analysis of hybrid procedures to solve combinatorial optimisation problems is

presented in the paper Hybrids combining Local Search Heuristics with Exact

Algorithms (Fernandes and Lourenço 2007b). Its main conclusion is that there are many

research opportunities to develop Optimised Search Heuristics and a large opportunity

to apply them to difficult problems. The OSH methods can extract the best features of

the Metaheuristics and Exact Methods and provide an integrated solution method

which, as proved already by several authors, can lead to excellent results.

In Annex A the reader can find a short abstract for each of the OSH procedures

referenced, ordered by type of combination.

32

Table 3.2 Mapping Problem Type Versus the Type of OSH Procedures

 1.1

Sequential
execution

1.2
Parallel or
intertwined
execution

2.1.1
Exactly
solving
relaxed
problems

2.1.2
Exactly
searching large
neighbourhoods

2.1.3
Exactly
solving sub
problems

2.1.4
Exact
algorithms
as decoders

2.1.5
Exact
algorithms for
strategic
guidance of
metaheuristics

2.2.1
Metaheuristics
for obtaining
incumbent
solutions and
bounds

2.2.2
Metaheuristics
for column
and cut
generation

2.2.3
Metaheuristics
for strategic
guidance of
exact
algorithms

2.2.4
Applying the
spirit of
metaheuristics

Mixed
Integer

(Pedroso
2004) LS, LR

 (Pedroso
2004) TS, BB

 (French,
Robinson et al.
2001) BB, GA
(Kostikas and
Fragakis 2004)
BB, GP

(Danna,
Rothberg et al.
2005) BC, LS
(Fischetti and
Lodi 2003)
BB, LS

Graph
Colouring

 (Marino,
Prugel-
Bennett et al.
1999) GA, LP

 (Filho and
Lorena 2000)
CG, GA

Frequency
Assignment

 (Maniezzo and
Carbonaro
2000) LR, D,
BB, ACO

Partitioning (Ahuja, Orlin et
al. 2000) LS, DP
(Ahuja, Ergun et
al. 2002) LS, DP

(Yagiura and
Ibaraki 1996)
GA, DP

Maximum
Independent
Set

 (Aggarwal,
Orlin et al.
1997) GA, IP

Maximum
Clique

 (Balas and
Niehaus 1998)
GA, IP

Network
Design

 (Büdenbender,
Grünert et al.
2000) LS, IP

 (Danna,
Rothberg et al.
2005) BC, LS

p-Median (Rosing and
ReVelle
1997)
(Rosing and
ReVelle
1998)
(Rosing
2000) LS, BB

 (Della-Croce,
Ghirardi et al.
2004) BS

 33

 1.1
Sequential
execution

1.2
Parallel or
intertwined
execution

2.1.1
Exactly
solving
relaxed
problems

2.1.2
Exactly
searching large
neighbourhoods

2.1.3
Exactly
solving sub
problems

2.1.4
Exact
algorithms
as decoders

2.1.5
Exact
algorithms for
strategic
guidance of
metaheuristics

2.2.1
Metaheuristics
for obtaining
incumbent
solutions and
bounds

2.2.2
Metaheuristics
for column
and cut
generation

2.2.3
Metaheuristics
for strategic
guidance of
exact
algorithms

2.2.4
Applying the
spirit of
metaheuristics

Quadratic
Assignment

 (Mautor and
Michelon
1997)
(Mautor and
Michelon
2001)
(Mautor 2002)
LS, IP

 (Maniezzo
1999) LR, D,
BB, ACO

Steiner Tree (Klau, Ljubíc
et al. 2004)
MA, CP

 (Klau, Ljubíc et
al. 2004) MA,
CP

Traveling
Salesman

(Applegate,
Bixby et al.
1999) ILK,
BC
(Cook and
Seymour
2003) ILK,
DP

 (Cowling and
Keuthen 2005)
ILS, DP
(Burke, Cowling
et al. 2001) LS,
VNS, DP
(Pesant and
Gendreau 1996)
(Pesant and
Gendreau 1999)
LS, CP
(Congram 2000)
ILS, DP
(Voudouris and
Tsang 1999)
GLS, DP

(Yagiura and
Ibaraki 1996)
GA, DP

Vehicle
Routing

(Ibaraki,
Kubo et al.
2001) ILS,
DP

 (Thompson and
Orlin 1989)
(Thompson and
Psaraftis 1993)
DP, VNS

(Shaw 1998)
BB, TS

 (Danna,
Rothberg et al.
2005) BC, LS

Packing (Puchinger,
Raidl et al.
2004) GA,
BB
(Imahori,
Yagiura et al.
2003) ILS,
DP

(Dowsland,
Herbert et al.
2004) GA, BB

(Alvim,
Ribeiro et al.
2003) D, TS

(Puchinger and
Raidl 2004)
(Puchinger and
Raidl 2004)
BP, GA

34

 1.1
Sequential
execution

1.2
Parallel or
intertwined
execution

2.1.1
Exactly
solving
relaxed
problems

2.1.2
Exactly
searching large
neighbourhoods

2.1.3
Exactly
solving sub
problems

2.1.4
Exact
algorithms
as decoders

2.1.5
Exact
algorithms for
strategic
guidance of
metaheuristics

2.2.1
Metaheuristics
for obtaining
incumbent
solutions and
bounds

2.2.2
Metaheuristics
for column
and cut
generation

2.2.3
Metaheuristics
for strategic
guidance of
exact
algorithms

2.2.4
Applying the
spirit of
metaheuristics

Cutting
Stock

(Umetani,
Yagiura et al.
2003) ILS,
LR
(Bennell and
Dowsland
2001) TS, LP

Lot-sizing (Staggemeier,
Clark et al.
2002) GA,
LP

 (Ozdamar and
Barbarosoglu
2000) LgR, SA

Flow-Shop
Scheduling

(Nagar,
Heragu et al.
1995)BB, GA

 (Della-Croce,
Ghirardi et al.
2004)] BS

Job-Shop
Scheduling

 (Tamura,
Hirahara et
al. 1994) IP,
GA, LgR

 (Caseau and
Laburthe
1995) LS,
CrP
(Applegate
and Cook
1991) BB, LS
(Adams, Balas
et al. 1988)
LS; BB
(Balas and
Vazacopoulos
1998) GLS,
BB

 (Lourenço
1995) ILS, BB
(Lourenço and
Zwijnenburg
1996) ILS, TS,
BB

(Schaal, Fadil
et al. 1999)
IPM, C, GA,
SA

 (Danna,
Rothberg et al.
2005) BC, LS

One
Machine
Scheduling

 (Congram, Potts
et al. 2002) ILS,
DP
(Lourenço,
Martin et al.
2002) ILS, DP

(Yagiura and
Ibaraki 1996)
GA, DP

Parallel
Machine
Scheduling

(Clements,
Crawford et
al. 1997) LS,
DW, LR, BB

 (Ghirardi and
Potts 2005) BS

 35

 1.1
Sequential
execution

1.2
Parallel or
intertwined
execution

2.1.1
Exactly
solving
relaxed
problems

2.1.2
Exactly
searching large
neighbourhoods

2.1.3
Exactly
solving sub
problems

2.1.4
Exact
algorithms
as decoders

2.1.5
Exact
algorithms for
strategic
guidance of
metaheuristics

2.2.1
Metaheuristics
for obtaining
incumbent
solutions and
bounds

2.2.2
Metaheuristics
for column
and cut
generation

2.2.3
Metaheuristics
for strategic
guidance of
exact
algorithms

2.2.4
Applying the
spirit of
metaheuristics

Knapsack (Vasquez and
Hao 2001)
TS, LR
(Plateau,
Tachat et al.
2002) IPM,
PR, SS

 (Chu and
Beasley
1998) GA,
LR, SR
(Raidl 1998)
GA, LR, D

Generalised
Assignment

(Feltl and
Raidl 2004)
GA, LP

 (Pigatti,
Aragão et al.
2005) BCP,
LS

Markov
Decision
Processes

(Lin, Bean et
al. 2004) GA,
IP

Generalised
Schwefel
Function

 (Cotta and
Troya 2003)
GA, BB

Optimisation
of
continuous
problems

 (Hedar and
Fukushima
2004) TS, NM

Heuristics ACO – ant colony optimisation, GA – genetic algorithm, GLS – guided local search, GP – genetic programming, ILK – iterated Lin-Kernighan, ILS – iterated local search, LS – local search, MA –
memetic algorithm, PR – path relinking, SA – simulated annealing, SS – scatter search, TS – tabu search, VNS – variable neighbourhood search
Exact methods BB – branch-and-bound, BC – branch-and-cut, BCP – branch-and-cut-and-price, BP – branch-and-price, BS – beam search, C – cuts, CG – column generation, CP – cutting and pricing, CrP –
constraint programming, D – duality, DP – dynamic programming, DW – Dantzig Wolf, IP – integer programming, IPM – interior point method, LP – linear programming, LgR – lagrangean relaxation, LR – linear
relaxation, NM – Nelder-Mead method, SR – surrogate relaxation

4. Scheduling

36

4. Scheduling Problems

In this chapter, we introduce scheduling problems and study their algebraic

structure. We start by presenting in section 4.1 the features which constitute a

scheduling problem and the characteristics that define different types of these

problems. A scheduling problem is usually mathematically formulated as a

disjunctive program, so section 4.2 presents a short introduction to disjunctive

programming. When studying the algebraic structure of scheduling problems we

focus mainly on two types of problems: the one machine scheduling problem,

presented in section 4.3, and the job shop scheduling problem in section 4.4. In this

section dedicated to the job shop scheduling problem, we include a subsection in the

end where we present a literature review of optimised search heuristics that have been

applied to it.

4.1 Introduction to Scheduling Problems

A scheduling problem considers a set of jobs to be processed on a set of machines.

A job consists of one or more operations (or activities); each operation is assigned to a

machine and it uses a constant processing time (here we deal only with deterministic

problems). It is assumed that two consecutive operations of the same job are assigned

to different machines and that all the machines are always available to the system. To

solve the problem we need to find a sequence, and the correspondent time intervals,

for processing the operations in each machine. A solution to the problem is called a

schedule. A feasible schedule is one respecting that each machine can only process

one operation at a time; different machines can not process the same job

simultaneously and also some additional constraints related to the specific problem

type. The problem type is characterised by the machine environment, the job

characteristics and the objective function to be optimised.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

37

The machine environment can have only one stage, where one job corresponds to

only one operation, or it may be multi-stage, and in this case one job corresponds to

several operations.

There may be more than one machine in a single stage environment, but then they

will all work in parallel having the same function. Parallel machines can be of three

different types: identical, uniform or unrelated. In the first case, the processing times

of the jobs are independent of the machine; uniform parallel machines are identical

except that they have different speeds; for unrelated parallel machines, the processing

times of the jobs are dependent on the machine assignment.

Multi-stage machine environments are also designated as shop environments and

can be of three different types: flow shop, open shop or job shop. In a flow shop

scheme the processing alignment of the operations of a job, passing from one machine

to the next, is the same for all the jobs. In an open shop system the ordering through

what the jobs move from one machine to another is to be decided when solving the

problem and may differ from job to job. In a job shop environment the order of

processing the operations within the jobs and its correspondent machines are fixed

apriority and are independent from job to job.

Speaking of the job characteristics, if there is only one machine or if they are

identical parallel machines, the processing time of a job j is given by jp ; otherwise,

ijp is the processing time of job j on machine i (or also ijp is the processing time

of operation ijo). The processing times are non-negative integer parameters of the

problem. The jobs may all be available at the beginning of the process or they may

have release dates (jr for job j), specifying when a job becomes available to the

system. Jobs may also have due dates (jd for job j), indicating a limited date for

their conclusion. There may be dependence relations between jobs and it may be

allowed to interrupt the processing of an operation; resuming it at a latter moment.

In off-line scheduling systems, the classical models, all the information of an

instance is known apriority. In on-line systems the information on the number of jobs,

their release and/or due dates are made available during the course of the scheduling.

4. Scheduling

38

According to the optimality criteria, several measures related to the processing

times jp , the due dates jd , or the weights jw associated with the jobs j , may be

used as the function to be optimised. Given a schedule the following measures may be

computed: jC - the completion time of job j ; jjj rCF −= - the flow time of job j ;

jjj dCL −= - the lateness of job j ; { }0,max jjj CdE −= - the earliness of job j ;

{ }0,max jjj dCT −= - the tardiness of job j ;


 >

=
otherwise

dCif
U jj

j 0

1
 - the unity

penalty of job j . Based on these measures many objective functions may be

formulated. The table 4.1 shows some common ones.

Table 4.1 Common Objective Functions for Scheduling Problems

Objective Function

Description

j
js

CC maxmin max = minimisation of the maximum completion time or
makespan

j
js

LL maxmin max = minimisation of the maximum lateness

j
js

EE maxmin max = minimisation of the maximum earliness

∑ j jj
s

Cw)(min minimisation of the total (weighted) completion time

∑ j jj
s

Fw)(min minimisation of the total (weighted) flow time

∑ j jj
s

Ew)(min minimisation of the total (weighted) earliness

∑ j jj
s

Tw)(min minimisation of the total (weighted) tardiness

∑ j jj
s

Uw)(min minimisation of the (weighted) number of late jobs

Graham, Lawer, Lenstra & Rinnooy Kan (Graham, Lawler et al. 1979) presented a

three-field description γβα || for scheduling problems where α represents the

machine environment, β the job characteristics and γ the optimality criteria. The

field α indicates if the system is a one-machine, a parallel machine or a shop

environment, and the number of stages and machines. The β field indicates if it is an

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

39

on-line or off-line system, the existence of release and/or due dates, if pre-emption is

or not allowed, if there are dependence relations between jobs and if processing times

are unitary or arbitrary. For example max|| Lpmntdr jj is the representation of a

one-machine problem with release dates and due dates where pre-emption is allowed

and the objective is to minimise the maximum lateness; max|1|3 CpO ij = is an open

shop problem with three machines, all processing times are unitary and the objective

is to minimise the makespan; () ∑ jCPPF ||3,42 is a two-stage flow shop to

minimise the total completion time, where the two stages have four and three identical

parallel machines, respectively.

Many fundamental results on scheduling were stated in (Lenstra, Kan et al. 1977).

For further details on scheduling problems and theory please refer to the surveys

(Lawler, Lenstra et al. 1993) and (Chen, Potts et al. 1998).

In the following sections of this chapter we will address the study of the algebraic

structure of scheduling problems.

4.2 Disjunctive Programming

The creation of a feasible schedule for a scheduling problem involves frequently

the decision to allocate job i to be processed before job j , or vice versa, in a

machine. Therefore, when formulating a scheduling problem and considering

different jobs that must be processed by a common machine, we are frequently faced

with constraints of the form jjiiij pttptt ≥−∨≥− for every jobs i and j that

share a machine, where ip represents the processing time of job i and it is the

variable representing the starting instance of the processing of job i . This is a

disjunctive constraint. A program containing disjunctive constraints is a disjunctive

program and there is a whole area of mathematical programming addressing these

programs, the disjunctive programming area.

4. Scheduling

40

When characterising the algebraic structure of an optimisation problem P , with a

non-convex set of feasible solutions S , which is the case in scheduling problems, we

are especially interested in the description of the convex hull of the feasible solutions

()SConv , because optimal solutions are found in the vertices and extreme rays of the

convex hull. A convex hull is characterised by its defining facets. (An equality

ox ππ = is a facet of a set T of dimension d when it is verified by exactly d affinely

independent points x of T . An inequality ox ππ ≥ valid for all Tx∈ is said to be a

facet defining inequality if ox ππ = is a facet of T .)

The description of the convex hull of disjunctive programs has been addressed by

some authors, including Egon Balas. His article Disjunctive programming: Properties

of the convex hull of feasible points (Balas 1998) congregates major results on the

subject. There we can find the characterisation of the family of all the valid

inequalities for a given disjunctive program and he gives necessary and sufficient

conditions for an inequality to define a facet of the convex hull of the feasible points.

The facets of the convex hull are computed solving a large linear program, with size

proportional to the number of disjunctions of the original problem. As the number of

disjunctions is often enormous solving this linear program may be impracticable; but,

for some special disjunctive programs, it is possible to generate the convex hull by a

sequence of “partial” convex hulls of relaxed problems, adding one disjunctive

constraint at the time. Even so, the number of the facets of the partial convex hulls

may be very large. A practical approach would be to generate only a few facets, if one

can have information about which ones are likely to be binding in the region between

the relaxed and the integer optimum.

Since scheduling problems are formulated as disjunctive programs, these results

may be used to develop valid inequalities and cutting-plane methods to solve them.

For instance, we can find valid inequalities to one-machine scheduling problems and

query under which conditions these inequalities produce cuts to shop environment

problems.

We are especially interested in the study of the algebraic structure of the job shop

scheduling problem. As stated before, the knowledge of the properties of the one

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

41

machine scheduling problem can be very useful to the study of the job shop

scheduling problem.

If in a job shop system we relax the constraints which state that a set of operations

must be processed by the same machine and that the machine can only process one

operation at the time (the capacity constraints), for all the machines except one, we

get a one machine scheduling problem. In this sense we say that a job shop problem

with m machines has m one machine scheduling subproblems.

In the next section 4.2 we present the study of the one machine scheduling

problem. Then in section 4.3 the job shop scheduling problem is studied and we show

how the properties derived for the one machine problem are relevant to the job shop.

4.3 The One Machine Scheduling Problem

In the one machine scheduling problem n jobs have to be sequenced on one

machine. Each job j is available to the system at instant jr (release date), its

processing takes jp units of time on the machine, and it stays in the system jq units

of time (queue) after being processed by the machine. The goal is to minimise the

maximum completion time of all jobs; the makespan. The one machine problem,

represented in the three-field notation as max|| Cr j is a strong NP–hard problem

(Garey and Johnson 1979).

The problem is naturally formulated as a disjunctive program like presented

below, where jt is the variable representing the starting instant of processing job j .

)(OMSP
)(maxmin jj

j
qt +

..ts jj rt ≥ { }nNj ,,1K=∈ (4.1)

jjiiij pttptt ≥−∨≥− jiNji ≠∈ ,, (4.2)

The one machine problem is usually represented by a disjunctive graph

{ }()10,,1,0 +∪+∪= none AAEnNG . The set of nodes of graph oneG corresponds to

4. Scheduling

42

the set of jobs N and two other fictitious nodes, the origin 0 representing the

beginning of the system, and the sink 1+n , representing the end of the system. The

set of edges in oneG is (){ }jiNjijiE ≠∈∀= ,,, connecting all pairs of nodes

representing jobs; and there are two sets of arcs (){ }NjjAo ∈∀= ,0 , the arcs

connecting the origin node to the nodes of all the jobs and (){ }NjnjAn ∈∀+=+ 1,1 ,

the arcs from each one of the nodes of the jobs to the sink node. An edge () Eji ∈,

will have weight ip or jp , depending on job i being processed before or after job j .

Arcs in 0A have weight jr since the machine can not start to process job j before

jr . Arcs in 1+nA have weight jj qp + , since a job j has to spend an amount of time

jq in the system after being processed by the machine for jp units of time. Finding a

solution to the one machine scheduling problem means choosing an orientation for

every edge in E , constructing an acyclic directed graph. The subgraph ()ENC ,= of

oneG is a fully connected graph, named a clique, which means that for every possible

pair of nodes in N , there is an edge in E connecting them.

As we will see in the following sections, many authors have worked on this

problem; as the knowledge of their properties is crucial for addressing more

complicated shop environment systems.

4.3.1 Algebraic Structure of the One Machine Problem

Based on the theory on disjunctive programming, Balas (Balas 1985) derives

results on the characterisation of the facets of convex hull of the feasible solutions to

the one machine scheduling problem. The facets are defined by valid inequalities in

the variables Njt j ∈, , involving the parameters representing the release dates of the

jobs jr , the processing times jp and the queue of the jobs jq . Balas presents facet

defining inequalities with one, two and three nonzero coefficients on the variables jt .

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

43

Inequalities with one nonzero coefficient These inequalities with one nonzero

coefficient are the ones related to the release date of the jobs: Njrt jj ∈∀≥ . These

are obvious inequalities present in the formulation.

Inequalities with two nonzero coefficients The facet defining inequalities having

exactly two coefficients different from zero are of the form

() () ijjijijijjijii prprpptrrptrrp ++≥−++−+ (4.3)

for every pair of distinct jobs i and j of N such that jjiiij prrprr +<∧+< .

This condition implies that the coefficients of the variables it and jt are non

negative. To verify that these inequalities are valid please not that: if i is scheduled

before j then the smallest possible values for it and jt will be ir and ii pr +

respectively; if j is scheduled before i then the smallest possible values for jt and it

will be jr and jj pr + . Inequalities (4.3) are derived from the solution of the system

solved to find the vertices of the polyhedron correspondent to the subproblem

considering only jobs i and j .

Inequalities with three nonzero coefficients To present the facet defining

inequalities with three nonzero coefficients we need first to introduce the following

matrix V with three columns, each corresponding to a job (i , j and k), and each

row corresponding to a permutation of the three jobs. V will have six rows. Let us

assume the rows are ordered this way: row 1 corresponds to permutation ()kji ,, , row

2 to ()ikj ,, ; row 3 to ()jik ,, ; row 4 to ()jki ,, ; row 5 to ()kij ,, and row 6 to ()ijk ,, .

Each element rcv of matrix V will be the earliest possible date to start processing job

c in the permutation correspondent to row r .



























+++
+++

+++
+++

+++
+++

=

kkkjkk

ijjjjj

iikiii

kikkkk

jjjkjj

jiiiii

rprppr

pprrpr

prpprr

rpprpr

prrppr

pprprr

V

4. Scheduling

44

Let { }cbaV ,, denote a 33× matrix corresponding to rows cba ,, of V and let

{ }
j

cba
V

,,
be the matrix obtained from { }cbaV ,, by substituting 1 for every entry of

column j .

The facet defining inequalities with three nonzero coefficients are of the form

1≥++ kkjjii ttt ααα with { }()
{ }()cba

l
cba

l V

V

,,

,,

det

det
=α for kjil ,,= (4.4)

for some triplets of rows ()cba ,, . These inequalities are the generalisation of the

ones with two nonzero coefficients. They are the solution to the system that defines

the vertices of the polyhedron correspondent to the subproblem considering only jobs

i , j and k . The expression defining the α is just the Cramer Rule to solve systems

of linear equations.

Balas proves that there are at most four distinct inequalities (4.4) that define facets

of the convex hull of the feasible solutions to the one machine problem.

For further details on the inequalities of Balas please refer to his paper (Balas

1985).

Another author that has studied the algebraic structure of the one machine

scheduling problem and proved several properties is Jacques Carlier. In his work

(Carlier 1982) he developed a branch-and-bound algorithm to solve the one machine

problem, building an initial feasible solution with the priory rule algorithm of Schrage

(Schrage 1970) and performing branching based on a proposition presented next. The

algorithm of Schrage schedules available jobs giving priority to the one job j with

bigger queue jq . It builds the list schedule associated with the most work remaining

priority dispatching rule of Jackson (Jackson 1955). Carlier proves that

() j
JjJj

jj
Jj

qprJh
∈∈∈

++= ∑ minmin is a lower bound on the optimal makespan for every

subset of jobs NJ ⊆ . He also shows that given a Jackson’s scheduled with makespan

mk one of two situations occurs. Or the schedule is optimal and there is a set of jobs

J such that () mkJh = . Either the schedule is not optimal and then there are a critical

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

45

set of jobs J and a critical job c such that () cpmkJh −> . This means that in this

case the distance to the optimum from the Jackson’s schedule is less than cp and

implies that in an optimal schedule, either job c is processed before all the jobs in set

J or job c is processed after all the jobs in set J . This property is used to define the

branching scheme of the branch-and-bound algorithm.

Carlier also proves some other propositions that given an upper bound ()UB on

the makespan enable the determination of the position of a job in the processing

sequence of an optimal schedule.

Given two jobs i and j if

UBqppr jjii >+++ (4.5)

then job j is schedule before job i on every optimal schedule.

Given, a subset of jobs NJ ⊆ and a job Jk ∈ ; if

{ } { }
UBqpr j

kJjJj
jj

kJj
>++

∈∈∈
∑

\\
minmin (4.6)

then on an optimal schedule k is sequenced either before or after all other jobs in set

J ; if

{ }
UBqpr j

kJjJj
jk >++

∈∈
∑

\
min (4.7)

then on an optimal schedule k will not be the first job of set J to be processed; if

{ }
UBqpr k

Jj
jj

kJj
>++ ∑

∈∈ \
min (4.8)

then on an optimal schedule k will not be the last job of set J to be processed; if

both conditions (4.6) and (4.7) are verified, then on an optimal schedule k will be the

last job of set J in the schedule and k is called the output of J ; if both conditions

(4.6) and (4.8) are verified, then on an optimal schedule k will be the first job of set

J in the schedule and k is called the input of J .

4. Scheduling

46

4.4 The Job Shop Scheduling Problem

The job shop scheduling problem has been known to the operations research

community since the early 50’s (Jain and Meeran 1999). It is considered a particularly

hard combinatorial optimisation problem of the NP-hard class (Garey and Johnson

1979) and it has numerous practical applications; which makes it an excellent test

problem for the quality of new scheduling algorithms. These are main reasons for the

vast bibliography on both exact and heuristic procedures applied to this scheduling

problem. The paper Deterministic job-shop scheduling: past, present and future (Jain

and Meeran 1999) includes an exhaustive survey not only of the evolution of the

definition of the problem, but also of all the techniques applied to it: enumerative

methods like branch-and-bound; constructive methods like priority dispatching rules;

iterative methods like ant optimisation; local search methods and metaheuristics like

GRASP, simulated annealing, genetic algorithms, large step optimisation or tabu

search.

In the job shop scheduling problem each job is defined by an ordered set of

operations and each operation is assigned to a machine with a predefined constant

uninterrupted processing time. The order of the operations within the jobs and its

correspondent machines are fixed apriority and independent from job to job. To solve

the problem we need to find a sequence of operations in each machine respecting

precedence constraints of operations of a job; it is assumed that two consecutive

operations of the same job are assigned to different machines, each machine can only

process one operation at a time and that different machines can not process the same

job simultaneously. We will adopt the maximum of the completion time of all jobs –

the makespan – as the objective function. Using the three fields notation of (Graham,

Lawler et al. 1979) the job shop scheduling problem is represented by max||CJm .

The Table 4.2 presents an instance of the job shop scheduling problem with 4 jobs

and 3 machines. Jobs 1 and 4 must be processed first by machine 1, then by machine

2 and finally by machine 3. The processing sequence for jobs 2 and 3 is first machine

1, then machine 3 and machine 2 at the end. The operations are numbered from 1 to

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

47

12, from job 1 to job 4. The processing times of each operation on the correspondent

machine are given in the row named proc. times.

Table 4.2 An Instance for the Job Shop Scheduling Problem

 Job 1 Job 2 Job 3 Job 4

operations 1→2→3 4→5→6 7→8→9 10→11→12

machines 1→2→3 1→3→2 1→3→2 1→2→3

proc. times 1 1 2 4 2 2 1 1 2 4 2 2

The Fig. 4.2 shows the Gant Chart of a feasible solution of this instance, with

makespan 13.

Fig. 4.1 Gant Chart of a Feasible Solution for Instance of Table 4.2

Formally let { }1,,0 += oO K be the set of operations with 0 and 1+o dummy

operations representing the start and end of all jobs, respectively. Let M be the set of

machines, A the set of pairs of consecutive operations of each job and kE the set of

all possible pairs of operations processed by machine k , with Mk ∈ . We define

0>ip as the constant processing time of operation i and it is the variable

representing the starting instant of operation i . The following mathematical

formulation for the job shop scheduling problem is widely used by researchers:

)(JSSP

1min +ot

..ts
iij ptt ≥− Aji ∈),((4.9)

 0≥it Oi ∈ (4.10)

jjiiij pttptt ≥−∨≥− MkEji k ∈∈ ,),((4.11)

O9

O8

O2

O1 O7

O3 O12 O5

O11 O6

O4 O10 M1

M2

M3

0 4 5 6 7 8 9 10 12 13

4. Scheduling

48

The constraints in (4.9) state the precedence relations of operations within jobs

and also that no two operations of the same job can be processed simultaneously

(because 0>ip). Expressions (4.11) are named “capacity constraints” and assure

there are no overlaps of operations at the machines.

A feasible solution for the problem is a schedule of operations respecting all these

constraints.

The job shop scheduling problem is usually represented by a disjunctive graph

),,(EAOG = (Roy and Sussman 1964). Where O is the node set, corresponding to

the set of operations. A is the set of arcs between consecutive operations of the same

job, and E is the set of edges between operations processed by the same machine.

Each node i has weight ip , with 010 == +opp . There is a subset of nodes kO and a

subset of edges kE for each machine that together form the disjunctive clique

),(kkk EOC = of graph G . For every node j of { }1,0/ +oO there are unique nodes i

and l such that arcs),(ji and),(lj are elements of A . Node i is called the job

predecessor of node j -)(jjp and l is the job successor of j -)(jjs . Fig. 4.2 shows

the disjunctive graph of the instance in Table 4.2.

Fig. 4.2 Disjunctive Graph of the Instance in Table 4.2

Finding a solution to the job shop scheduling problem means replacing every edge

of the respective graph with a directed arc, constructing an acyclic directed graph

),(SAODS ∪= . Graph),(AOD = is obtained from G removing all edges and

U
k

kSS = corresponds to an acyclic union of sequences of operations for each

4 2 1

13 0

1 1 2 1 3 2

4 6 5

7 9 8

10 12 11

4 2 2

1 1 1

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

49

machine k (this implies that a solution can be built sequencing one machine at a

time).

The optimal solution is the one represented by the graph SD having the critical

path from 0 to 1+o with the smallest length.

For any given solution, the operation processed immediately before operation i in

the same machine is called the machine predecessor of i -)(imp ; analogously)(ims

is the operation that immediately succeeds i at the same machine. Figure 4.3 shows

the directed graph representing the solution for the instance of Table 4.2, shown

earlier on a Gant chart in Fig. 4.1. The critical path is evidenced with thicker arrows.

Fig. 4.3 Disjunctive Graph of the Solution in Fig. 4.1

4.4.1 Algebraic Structure of the Job Shop Scheduling Problem

The work On the Facial Structure of Scheduling Polyhedra (Balas 1985) shows

that, under some conditions, the facet defining inequalities derived for the one

machine problem also define the facets of the convex hull of the feasible solutions to

the job shop scheduling problem. For example, the inequality Oirt ii ∈∀≥ defines

a facet for the job shop problem whenever i is the first operation of the job. In the job

shop problem the parameters ir and iq (present in the formulation of the one machine

scheduling problem) are computed for each one machine subproblem, as lengths of

paths in the disjunctive graph passing only through nodes of operations that belong to

the same job. The ir is the length of the path from node 0 to the node of operation i ;

the iq is the length of the path from the node of operation i to the end node, without

13 0

1 3 2

4 6 5

7 9 8

10 12 11

4. Scheduling

50

the processing time of operation i . In the job shop scheduling the notation ir is

changed to ie - representing the earliest possible time for starting processing

operation i . Analogously, iq is replaced by if .

Let i be an operation processed on machine k ; ()ijpl an operation of the same

job as operation i , processed before i on machine l ; ()()iijpL lA , the length of the

path between ()ijpl and i , through the arcs in A (i.e., the path on the job between the

two operations) and let ()hiL
kE , be the length of the path between two operations i

and h (processed by the same machine k) through the edges in kE .

A clique),(kkk EOC = of graph),,(EAOG = is called a dominant clique if the

condition () ()() ()() ()() ()hiLiijpLhhjpLhjpijpL
kl ElAlAllE ,,,, +<+ is verified for

every two operations i and h (processed by machine k) that have job predecessors

()ijpl and ()hjpl processed by a same machine l (i.e. the jobs to which operations i

and h belong are both processed by a common machine l before being processed by

the common machine k).

Balas proves that the facet defining inequalities for the one machine problem also

define facets for the job shop problem, whenever the clique of the machine is a

dominant clique.

Similarly, all the inequalities derived by Carlier for the one machine problem are

valid inequalities to the job shop scheduling problem (Carlier and Pinson 1989),

(Carlier and Pinson 1994).

Before ending this section on the job shop scheduling problem and before

following to the next chapters where we introduce the proposed new optimised search

heuristics (illustrating them with and application to the job shop problem); we present

here a literature review of optimised search heuristics applied to the job shop problem.

4.4.2 Solving The Job Shop Scheduling Problem with OSHs

In the literature we can find a few works applying Optimised Search Heuristics

(OSH) to the job-shop scheduling problem (Fernandes and Lourenço 2007b).

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

51

Chen, Talukdar and Sadeh (Chen, Talukdar et al. 1993) and Denzinger and

Offermann (Denzinger and Offermann 1999) design parallel algorithms that use

asynchronous agents information to build solutions; some of these agents are genetic

algorithms, others are branch-and-bound algorithms.

Tamura, Hirahara, Hatono and Umano (Tamura, Hirahara et al. 1994) design a

genetic algorithm where the fitness of each individual, whose chromosomes represent

each variable of the integer programming formulation, is the bound obtained solving

lagrangean relaxations.

The works of Adams, Balas and Zawack (Adams, Balas et al. 1988), Applegate

and Cook (Applegate and Cook 1991), Caseau and Laburthe (Caseau and Laburthe

1995), Balas and Vazacopoulos (Balas and Vazacopoulos 1998) and Pezzella and

Merelli (Pezzella and Merelli 2000) all use an exact algorithm to solve a sub problem

within a local search heuristic for the job-shop scheduling. Caseau and Laburthe

(Caseau and Laburthe 1995) build a local search where the neighbourhood structure is

defined by a subproblem that is exactly solved using constraint programming.

Applegate and Cook (Applegate and Cook 1991) develop the shuffle heuristic. At

each step of the local search the processing orders of the jobs on a small number of

machines is fixed, and a branch-and-bound algorithm completes the schedule. The

shifting bottleneck heuristic, due to Adams, Balas and Zawack (Adams, Balas et al.

1988), is an iterated local search with a construction heuristic that uses a branch-and-

bound to solve the subproblems of one machine with release and due dates. Balas and

Vazacopoulos (Balas and Vazacopoulos 1998) work with the shifting bottleneck

heuristic and design a guided local search, over a tree search structure, that

reconstructs partially destroyed solutions. The procedure of Pezzella and Merelli

(Pezzella and Merelli 2000) is a tabu search that uses a branch-and-bound to solve

one-machine subproblems; both at the construction of the initial solution and at a re-

optimisation phase of the algorithm.

Lourenço (Lourenço 1995) and Lourenço and Zwijnenburg (Lourenço and

Zwijnenburg 1996) use branch-and-bound algorithms to strategically guide an iterated

local search and a tabu search algorithm. The diversification of the search is achieved

by applying a branch-and-bound method to solve a one-machine scheduling

subproblem obtained from the incumbent solution.

4. Scheduling

52

In the work of Schaal, Fadil, Silti and Tolla (Schaal, Fadil et al. 1999) an interior

point method generates initial solutions of the linear relaxation. A genetic algorithm

finds integer solutions. A cut is generated based on the integer solutions found and the

interior point method is applied again to diversify the search. This procedure is

defined for the generalised job-shop problem.

The interesting work of Danna, Rothberg and Le Pape (Danna, Rothberg et al.

2005) “applies the spirit of metaheuristics” in an exact algorithm. Within each node of

a branch-and-cut tree, the solution of the linear relaxation is used to define the

neighbourhood of the current best feasible solution. The local search consists in

solving the restricted MIP problem defined by the neighbourhood.

We are especially interested in combinations of exact and heuristic methods where

the exact procedures can be used to strategically guide the heuristic ones.

New Optimised Search Heuristics Proposed We propose two new optimised

search heuristics and present both with an application to the job-shop scheduling

problem. The first one GRASP_B&B combines a Branch-and-Bound algorithm with a

GRASP procedure. The second Tabu_VVI uses the verification of Violated Valid

Inequalities as a diversification strategy for a Tabu Search method. The new method

GRASP_B&B is used within Tabu_VVI to build feasible solutions.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

53

5. An OSH Combining GRASP with Branch-and-Bound

This chapter presents an algorithm for the job shop scheduling problem - the

GRASP_B&B algorithm - that combines a heuristic local search procedure, GRASP,

with an exact method of integer programming, branch-and-bound.

As stated earlier in section 2.2.1 GRASP (Feo and Resende 1995) is an iterative

process where each iteration consists of two steps: a randomised building step of a

greedy nature and a local search step. The proposed procedure GRASP_B&B starts

with an empty solution and builds a complete solution sequencing one machine at a

time. The branch-and-bound algorithm is used in the building step of a GRASP

procedure to solve the one machine scheduling subproblems.

On the following sections each phase of GRASP_B&B, the building step and the

local search phase, is described in detail. In section 5.4 the proposed method is

compared with similar approaches and, as we will see, it leads to better results in

terms of solution quality and computing times.

5.1 Building Step

At the building phase of a GRASP algorithm a feasible solution is constructed by

joining one element at a time. Each element is evaluated by a heuristic function and

incorporated (or not) in a restricted candidate list ()RCL according to its evaluation.

Then the element to join the solution is chosen randomly from the RCL. We define

the sequence of operations at each machine as the elements to join the solution, and

the makespan of the one machine problem (() MkOipt kii ∈∈+ ,,max) as the greedy

function to evaluate them. In order to build the restricted candidate list we find the

optimal solution for the one machine problems of all machines not yet scheduled

(MK ⊆ is the set of unscheduled machines), and identify the best ()f and worst ()f

5. An OSH Combining GRASP with Branch-and-Bound

54

makespans. A machine k is included in the RCL if ()fffxf k −−≥ α)(, where

)(kxf is the makespan of machine k and α is a uniform random number in ()1,0 .

We explain how the one machine problems are defined and solved in the next

section 5.1.1.

After solving the subproblems of all unscheduled machines and building the

restricted candidate list, a semigreedy procedure chooses one machine to enter the

solution in a semi-greedy randomised way.

Algorithm SemiGreedy()K

(1))1,0(: Random=α

(2) { }Kkxff k ∈=),(max:

(3) { }Kkxff k ∈=),(min:

(4) { }=RCL

(5) foreach Kk ∈

(6) if ()fffxf k −−≥ α)(

(7) { }kRCLRCL ∪=:

(8) return ()RCLceRandomChoi

Fig. 5.1 Outline of Procedure SemiGreedy

This semi-greedy randomised procedure is biased towards the machine with the

higher makespan, the bottleneck machine, in the sense that machines with low values

of makespan have less probability of being included in the restricted candidate list.

The next chapter presents the definition of the one machine scheduling

subproblems and the algorithm to solve them.

5.1.1 One Machine Problem

Defining the One Machine Subproblems Given a job shop scheduling problem

and its representation on a disjunctive graph),,(EAOG = , the one machine

subproblems for each machine Mk∈ are obtained considering only the nodes of the

operations processed on k and the set of edges between them ()kE . The subproblems

are represented by the clique),(kkk EOC = with the objective function of minimising

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

55

the completion times of all operations and considering three parameters associated

with each operation i in kC . One parameter is the processing time ip . Let MK ⊆

be the set of unscheduled machines. The two other measures associated with each

operation of the one machine subproblems are computed from the graph

),,(KMKM SAOG −− = , obtained from G replacing the edges of scheduled machines

by the arcs corresponding to the sequence of processing their operations and removing

the edges corresponding to all unscheduled machines. The two measures are the

release dates ir computed as the length of the longest path in KMG − from the source

node to the node of operation i and the queue values iq computed as the length of the

longest path in KMG − from the node of operation i to the end node (minus the

processing time of operation i). The release date of an operation i represents the time

that the job to which operation i belongs has been in the system before the processing

of the operation starts. The queue value, also called tail, represents the time that the

job to which operation i belongs stays in the system after the processing of the

operation ends. At the first iteration of the algorithm GRASP_B&B, release dates and

tails are computed considering the graph),(AOD = .

Solving the One Machine Problems To solve to optimality the one machine

scheduling problems we use the branch-and-bound algorithm of Carlier (Carlier 1982)

described earlier on section 4.3.1.

At each node of the branch-and-bound tree the upper bound is computed using the

algorithm of Schrage (Schrage 1970). This algorithm gives priority to higher values of

the tails ()iq when scheduling released jobs. We break ties by preferring larger

processing times.

The computation of the lower bound, computed like in (Carlier 1982) is based on

the critical path with more jobs of the solution found by the algorithm of Schrage

(Schrage 1970) and on a critical job, as shown in chapter 4. The value of the solution

with pre-emption is used to strengthen this lower bound. We introduce a slight

modification, forcing the lower bound of a node never to be smaller than the one of its

father in the tree. (The makespans of the one machine scheduling subproblems are

lower bounds to the makespan of the job shop scheduling problem.)

5. An OSH Combining GRASP with Branch-and-Bound

56

The algorithm of Carlier (Carlier 1982) uses some proven properties of the one

machine scheduling problem, showed earlier in chapter 4, to define the branching

strategy, and also to reduce the number of inspected nodes of the branch-and-bound

tree.

Incorporating the One Machine Solution Incorporating a new machine in the

solution means adding to the set of arcs KMS − of graph),,(KMKM SAOG −− = the

set of arcs corresponding to the optimal sequence for processing operations on

machine k - kS . In terms of the mathematical formulation, this means choosing one

of the inequalities of the disjunctive constraints (4.11) corresponding to the machine

k .

When a new machine is added to a partial solution the makespan of the solution

and the release dates and tails of unscheduled operations are updated. In the proposed

procedure GRASP_B&B these updates are accomplished using an algorithm similar

to the one used by Taillard (Taillard 1994). This algorithm has a module that updates

the release dates by building and maintaining a list of the operations which either do

not have operations that precede them (both in the job and in the machine), or have

the predecessors with the release dates already updated. The module is repeated with a

modification to update the tails of the operations, building a list of operations without

successors or with successors with the tails already updated. Finally for each

operation the updated values of release dates and tails are added to the processing

time and the makespan of the partial solution is computed.

Before proceeding to the section where the local search step of the algorithm

GRASP_B&B is described, let us illustrate the building step with an example.

Illustrating the Building Step To exemplify how the building step of the

procedure GRASP_B&B works let us illustrate one iteration considering the

disjunctive graph of the instance of Table 4.2.

Deleting all the edges connecting operations that share a same machine in the

graph of Fig. 4.2 we get the graph shown in Fig. 5.2. Computing the one machine

problems for each of the machines, we get the problems present bellow the graph.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

57

Fig. 5.2 Graph for instance of Table 4.2 without all edges and the respective one machine subproblems

The branch-and-bound algorithm finds the optimal solution

71104 OOOO →→→ with makespan 12 for machine 1M , the optimal solution

61192 OOOO →→→ with makespan 8 for machine 2M and the optimal solution

12538 OOOO →→→ also with makespan 8 for machine 3M . Let us suppose the

semigreedy procedure chooses machine 1 to be included in the solution. Then the

partial solution would be the one represented in the graph of Fig. 5.3 and the new one

machine subproblems for machines 2 and 3 the ones presented in the tables next to it.

Fig. 5.3 Graph of a partial solution to instance of Table 4.2, and the respective one machine problems
for machines 2 and 3

1 1

4 2

13 0

1 3 2

4 6 5

7 9 8

10 12 11

2

4 2 2

1 1 1

1

2

4 1

13 0

1 3

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

2

M1 O1 O4 O7 O10 M2 O2 O6 O9 O11 M3 O3 O5 O8 O12
ri 0 0 0 0 ri 1 6 2 4 ri 2 4 1 6
pi 1 4 1 4 pi 1 2 1 2 pi 2 2 1 1
qi 3 4 2 3 qi 2 0 0 1 qi 0 2 1 0

M2 O2 O6 O9 O11 M3 O3 O5 O8 O12
ri 9 6 11 8 ri 10 4 10 10
pi 1 2 1 2 pi 2 2 1 1
qi 2 0 0 1 qi 0 2 1 0

5. An OSH Combining GRASP with Branch-and-Bound

58

5.2 The Local Search Module

In the algorithm GRASP_B&B, when the sequence of one machine is added to the

solution in the building step, and if the solution already has more than one machine

scheduled, a local search procedure is executed to get a local optimal (partial)

solution. In this section we describe the local search module of the algorithm.

In order to build a local search algorithm we need to design a neighbourhood

structure (defined by moves between solutions), the way to inspect the neighbourhood

of a given solution, and a procedure to evaluate the quality of each solution. It is said

that a solution B is a neighbour of a solution A if we can achieve B by performing a

neighbourhood defining move in A .

We use a neighbourhood structure very similar to the NB neighbourhood of

Dell’Amico and Trubian (Dell'Amico and Trubian 1993) and the one of Balas and

Vazacopoulos (Balas and Vazacopoulos 1998). To describe the moves that define this

neighbourhood we use the notion of blocks of critical operations. A block of critical

operations is a maximal ordered set of consecutive operations of a critical path (in the

disjunctive graph that represents the solution), sharing the same machine. Let),(jiL

denote the length of the critical path from node i to node j . Borrowing the

nomination of Balas and Vazacopoulos (Balas and Vazacopoulos 1998) we speak of

forward and backward moves over forward and backward critical pairs of operations.

Two operations u and v form a forward critical pair ()vu, if:

a) they both belong to the same block;

b) v is the last operation of the block;

c) operation)(vjs also belongs to the same critical path;

d) the length of the critical path from v to 1+o is not less than the length of the

critical path from)(ujs to 1+o ()1),(()1,(+≥+ oujsLovL).

Two operations u and v form a backward critical pair ()vu, if:

a) they both belong to the same block;

b) u is the first operation of the block;

c) operation)(ujp also belongs to the same critical path;

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

59

d) the length of the critical path from 0 to u , including the processing time of u ,

is not less than the length of the critical path from 0 to)(vjp , including the

processing time of)(vjp ()))(,0(),0()(vjpu pvjpLpuL +≥+ .

Conditions d) are included to guarantee that all moves lead to feasible solutions

(Balas and Vazacopoulos 1998).

A forward move is executed by moving operation u to be processed immediately

after operation v . A backward move is executed by moving operation v to be

processed immediately before operation u .

For illustration purpose let us consider the feasible solution to the instance of

Table 4.2 with makespan 14 represented by the graph in Fig. 5.4

Fig. 5.4 Graph of a feasible solution with makespan 14 of instance in Table 4.2

The pair of operations ()7,10 is a forward critical pair since: a) they both belong to

the critical path 123871104 OOOOOOO →→→→→→ ; b) operation 7 is the last

operation of that block of critical operations; c) operation 8 (the job successor of

operation 7) also belongs to the critical path and d) the length of the critical path from

operation 7 to the end, which is 5, is not less than the length of the critical path from

operation 11 (the job successor of operation 10) to the end, which is 3. The forward

move would be to process operation 10 immediately after operation 7, generating the

solution with makespan 13 represented by the graph of Fig. 5.5.

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

2

1 4

5. An OSH Combining GRASP with Branch-and-Bound

60

Fig 5.5 Graph obtained from the graph of Fig. 5.4 by the forward move on operations (7,10)

When inspecting the neighbourhood (),(kMxN) of a given solution x with kM

machines already scheduled, we stop whenever we find a neighbour with a best

evaluation value than the makespan of x .

To evaluate the quality of a neighbour of a solution x , produced by a move over a

critical pair ()vu, , we need only to compute the length of all the longest paths through

the operations that were between u and v in the critical path of solution x . This

evaluation is computed using the same algorithm as Balas and Vazacopoulos (Balas

and Vazacopoulos 1998), which is a variation of the one of Taillard (Taillard 1994)

for a subset of arcs.

Algorithm LocalSearch ()()0,, Mxfx

(1) ()0),(,: Mxfxneighbours =

(2) while xs≠
(3) sx =:

(4) ()0),(,: Mxfxneighbours =

(5) return (s)

Algorithm Neighbour ()()0,, Mxfx

(1) foreach ()0,MxNs∈

(2) ())(:)(sxmoveevaluationsf →=

(3) if ()()(xfsf <)

(4) return (s)

(5) return (x)

Fig. 5.6 Pseudo-code of Module Local Search

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 2 1

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

61

The Fig. 5.6 presents the pseudo-code of the module Local Search of the method

GRASP_B&B.

The next section presents the whole metaheuristic GRASP_B&B.

5.3 GRASP_B&B

Let runs be the total number of runs, M the set of machines of the instance and

)(xf the makespan of a solution x . The procedure GRASP_B&B can be generally

described by the pseudo-code in the following Fig. 5.7.

Algorithm GRASP_B&B ()runs

(1) { }mM ,,1: L=

(2) for 1=r to runs

(3) { }=:x

(4) MK =:

(5) while { }≠K

(6) foreach Kk ∈

(7))(&_: kBBCARLIERxk =

(8))(:* KSEMIGREEDYk =

(9) *: kxxx ∪=

(10))(:)(xTAILLARDxf =

(11) { }*\: kKK =

(12) if 1−< MK

(13))\,(: KMxHLOCALSEARCx =

(14) if (dinitialisenotx* or *)(fxf <)

(15) xx =:*

(16))(:* xff =

(17) return (*x)

Fig. 5.7 Outline of Procedure GRASP_B&B

The number of iterations of the method corresponds to the number of machines in

the problem, and the GRASP_B&B ends with a complete solution. At each iteration

the method defines and solves the one machine subproblems for all unscheduled

machines using algorithm Carlier_B&B described in section 5.1.1. Procedure

SemiGreedy chooses the one machine solution to add to the partial solution of the job

shop and procedure Taillard, described in section 5.1.1, computes its makespan.

5. An OSH Combining GRASP with Branch-and-Bound

62

Procedure LocalSearch is applied to the current partial solution, if there are more than

one scheduled machines, and this concludes the iteration. The all process is repeated

for several runs, keeping track of the best complete solution found.

This metaheuristic has only one parameter to be defined: the number of runs to

perform (line (2)). The step of line (8) is the only one using randomness. When applied

to an instance with m machines, in each run of the metaheuristic, the branch-and-

bound algorithm is called () 2/1+× mm times (line (7)); the local search is executed

1−m times (lines (12) and (13)); the procedure semigreedy (line (8)) and the algorithm

of Taillard (line (10)) are executed m times.

5.4 Computational Experiment

We have tested the algorithm GRASP_B&B on the benchmark instances abz5-9

(Adams, Balas et al. 1988), ft6, ft10, ft20 (Fisher and Thompson 1963), la01-40

(Lawrence 1984), orb01-10 (Applegate and Cook 1991), swv01-20 (Storer, Wu et al.

1992), ta01-70 (Taillard 1993) and yn1-4 (Yamada and Nakano 1992).

When applying the branch-and-bound algorithm, used in the building step of

GRASP_B&B to solve the one machine scheduling problems, to instances of the job

shop problem with 50 or more jobs, we observed that a lot of time was spent

inspecting nodes of the tree, after having already found the optimal solution. So we

introduced a condition restricting the number of nodes of the tree: the algorithm is

stopped if there have been inspected more then 3n nodes after the last reduction of the

difference between the upper and lower bound of the tree (n is the number of jobs).

In Annex B the reader can find tables where we present computational results

having the following structure: in each line it is presented the name of the instance,

the number of jobs and the number of machines of the instance)(mn× , and the best

lower and upper bound values ()UBLB, of the makespan. If the lower bound is

omitted, the upper bound is optimal. We gathered the values of these bounds from the

papers (Jain and Meeran 1999), (Nowicki and Smutniki 1996), (Nowicki and

Smutnicki 2002) and (Nowicki and Smutnicki 2005).

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

63

The algorithm has been run 100 times for each instance on a Pentium 4 CPU 2.80

GHz and coded in C. The tables also present some statistical values concerning the

makespan of the solutions found in the 100 runs, as well as the total time of all runs

()ttime and the time to the best solution found ()btime , in seconds. The statistics of

the makespan computed over the 100 runs are the minimum ()min , the first quartile

()1Q , the median ()2Q , the third quartile ()3Q and the maximum ()max . We chose

this measures because they allow us to see how disperse are the values obtained by

different runs, which give us an idea of the robustness of the algorithm. Within

brackets, next to each value, is the correspondent percentage of relative error to the

upper bound.

() ()
UB

UBxf
xREUB

−×= %100

Whenever the values are not worse than the best known upper bound, we present

them in bold. Although this is a very simple (and fast) algorithm, it happens in 23 of

the 152 instances used in this study.

The information of these tables can be visualised using boxplots. They show that

the quality achieved is more dependent on the ratio mn / than on the absolute

numbers of jobs and machines. There is no big dispersion of the solution values

achieved by the algorithm in the 100 runs executed, so we say the algorithm is steady.

The number of times the algorithm achieves the best values reported is high enough,

so these values are not considered outliers of the distribution of the results. On the

other end, the worse values occur very seldom and are outliers for the majority of the

instances.

5. An OSH Combining GRASP with Branch-and-Bound

64

Fig. 5.8 Distribution of results of
GRASP_B&B for instances abz

Fig. 5.9 Distribution of results of
GRASP_B&B for instances ft

Fig. 5.10 Distribution of results of
GRASP_B&B for instances la01-10

Fig. 5.11 Distribution of results of
GRASP_B&B for instances la11-20

Fig. 5.12 Distribution of results of
GRASP_B&B for instances la21-30

Fig. 5.13 Distribution of results of
GRASP_B&B for instances la31-40

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

65

Fig. 5.14 Distribution of results of
GRASP_B&B for instances orb

Fig. 5.15 Distribution of results of
GRASP_B&B for instances yn

Fig. 5.16 Distribution of results of
GRASP_B&B for instances swv01-10

Fig. 5.17 Distribution of results of
GRASP_B&B for instances swv11-20

Fig. 5.18 Distribution of results of
GRASP_B&B for instances ta01-10

Fig. 5.19 Distribution of results of
GRASP_B&B for instances ta11-20

5. An OSH Combining GRASP with Branch-and-Bound

66

Fig. 5.20 Distribution of results of
GRASP_B&B for instances ta21-30

Fig. 5.21 Distribution of results of
GRASP_B&B for instances ta31-40

Fig. 5.22 Distribution of results of
GRASP_B&B for instances ta41-50

Fig. 5.23 Distribution of results of
GRASP_B&B for instances ta51-60

Fig. 5.24 Distribution of results of GRASP_B&B for instances ta61-70

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

67

5.4.1 Comparison to Other Procedures

GRASP_B&B is a very simple GRASP algorithm with a construction phase very

similar to the one of the shifting bottleneck. Therefore we show comparative results to

two other procedures; a simple GRASP procedure of Binato, Hery, Loewenstern and

Resende (Binato, Hery et al. 2002), and the shifting bottleneck procedure of Adams,

Balas and Zawack (Adams, Balas et al. 1988).

Comparison to the GRASP of Binato, Hery, Loewenstern and Resende The

building step of the construction phase of the GRASP in (Binato, Hery et al. 2002) is

a single operation of a job. In their computational results, they present the time in

seconds per thousand iterations (an iteration is one building phase followed by a local

search) and the thousands of iterations. For a comparison purpose we multiply these

values to get the total computation time. For GRASP_B&B we present the total time

of all runs ()ttime , in seconds. As the tables show, our algorithm is much faster.

Whenever our GRASP achieves a solution not worse than theirs, we present the

respective value in bold. This happens for 26 of the 58 instances whose results where

compared.

Table 5.1 Comparison to GRASP for Instances abz

name GRASP_B&B ttime (s) GRASP time (s)

abz5 1258 0.7650 1238 6030

abz6 952 0.7660 947 62310

abz7 725 10.9070 667 349740

abz8 734 10.5160 729 365820

abz9 754 10.4690 758 343710

Table 5.2 Comparison to GRASP for Instances ft

name GRASP_B&B ttime (s) GRASP time (s)

ft06 55 0.1400 55 70

ft10 970 1.0000 938 261290

ft20 1283 0.4690 1169 387430

5. An OSH Combining GRASP with Branch-and-Bound

68

Table 5.3 Comparison to GRASP for Instances orb

name GRASP_B&B ttime (s) GRASP time (s)

orb01 1145 0.9850 1070 116290

orb02 918 0.9530 889 152380

orb03 1098 1.0150 1021 124310

orb04 1066 1.1250 1031 124310

orb05 911 0.8750 891 112280

orb06 1050 1.0460 1013 124310

orb07 414 1.0630 397 128320

orb08 945 1.0310 909 124310

orb09 978 0.9060 945 124310

orb10 991 0.8430 953 116290

Table 5.4 Comparison to GRASP for Instances la01-20

name GRASP_B&B ttime (s) GRASP time (s)

la01 666 0.1720 666 140

la02 667 0.1560 655 140

la03 605 0.2190 604 65130

la04 607 0.1710 590 130

la05 593 0.1100 593 130

la06 926 0.1710 926 240

la07 890 0.2030 890 250

la08 863 0.2970 863 240

la09 951 0.2810 951 290

la10 958 0.1410 958 250

la11 1222 0.2660 1222 410

la12 1039 0.2650 1039 390

la13 1150 0.3750 1150 430

la14 1292 0.2180 1292 390

la15 1207 0.9060 1207 410

la16 1012 0.7350 946 155310

la17 787 0.7660 784 60300

la18 854 0.7500 848 58290

la19 861 0.9690 842 31310

la20 920 0.8130 907 160320

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

69

Table 5.5 Comparison to GRASP for Instances la21-40

name GRASP_B&B ttime (s) GRASP time (s)

la21 1092 2.0460 1091 325650

la22 955 1.7970 960 315630

la23 1049 1.8900 1032 65650

la24 971 1.8440 978 64640

la25 1027 1.7960 1028 64640

la26 1265 3.3750 1271 109080

la27 1308 3.5620 1320 110090

la28 1301 3.0000 1293 110090

la29 1248 3.2960 1293 112110

la30 1382 3.3280 1368 106050

la31 1784 7.0160 1784 231290

la32 1850 6.2350 1850 241390

la33 1719 7.9060 1719 241390

la34 1721 8.2810 1753 240380

la35 1888 5.6880 1888 222200

la36 1325 4.2650 1334 115360

la37 1479 4.7970 1457 115360

la38 1274 5.1090 1267 118720

la39 1309 4.4530 1290 115360

la40 1291 5.3910 1259 123200

Comparison to the Shifting Bottleneck of Adams, Balas and Zawack The

comparison between the shifting bottleneck procedure (Adams, Balas et al. 1988) and

the GRASP_B&B is also presented in tables. Comparing the computation times of

both procedures, our GRASP is slightly faster than the shifting bottleneck for smaller

instances. Given the distinct computers used in the experiments we would say that this

is not meaningful, but the difference does get accentuated as the dimensions grow.

Whenever GRASP_B&B achieves a solution better than the shifting bottleneck

procedure, we present its value in bold. This happens in 29 of the 48 instances whose

results where compared, and in 16 of the remaining 19 instances the best value found

was the same.

5. An OSH Combining GRASP with Branch-and-Bound

70

Table 5.6 Comparison to Shifting Bottleneck for Instances abz

name GRASP_B&B ttime (s) Shifting
Bottleneck

time (s)

abz5 1258 0.7650 1306 5.7

abz6 952 0.7660 962 12.67

abz7 725 10.9070 730 118.87

abz8 734 10.5160 774 125.02

abz9 754 10.4690 751 94.32

Table 5.7 Comparison to Shifting Bottleneck for Instances ft

name GRASP_B&B ttime (s) Shifting
Bottleneck

time (s)

ft06 55 0.1400 55 1.5

ft10 970 1.0000 1015 10.1

ft20 1283 0.4690 1290 3.5

Table 5.8 Comparison to Shifting Bottleneck for Instances la01-10

name GRASP_B&B ttime (s) Shifting
Bottleneck

time (s)

la01 666 0.1720 666 1.26

la02 667 0.1560 720 1.69

la03 605 0.2190 623 2.46

la04 607 0.1710 597 2.79

la05 593 0.1100 593 0.52

la06 926 0.1710 926 1.28

la07 890 0.2030 890 1.51

la08 863 0.2970 868 2.41

la09 951 0.2810 951 0.85

la10 958 0.1410 959 0.81

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

71

Table 5.9 Comparison to Shifting Bottleneck for Instances la11-20

name GRASP_B&B ttime (s) Shifting
Bottleneck

time (s)

la11 1222 0.2660 1222 2.03

la12 1039 0.2650 1039 0.87

la13 1150 0.3750 1150 1.23

la14 1292 0.2180 1292 0.94

la15 1207 0.9060 1207 3.09

la16 1012 0.7350 1021 6.48

la17 787 0.7660 796 4.58

la18 854 0.7500 891 10.2

la19 861 0.9690 875 7.4

la20 920 0.8130 924 10.2

Table 5.10 Comparison to Shifting Bottleneck for Instances la21-40

name GRASP_B&B ttime (s) Shifting
Bottleneck

time (s)

la21 1092 2.0460 1172 21.9

la22 955 1.7970 1040 19.2

la23 1049 1.8900 1061 24.6

la24 971 1.8440 1000 25.5

la25 1027 1.7960 1048 27.9

la26 1265 3.3750 1304 48.5

la27 1308 3.5620 1325 45.5

la28 1301 3.0000 1256 28.5

la29 1248 3.2960 1294 48

la30 1382 3.3280 1403 37.8

la31 1784 7.0160 1784 38.3

la32 1850 6.2350 1850 29.1

la33 1719 7.9060 1719 25.6

la34 1721 8.2810 1721 27.6

la35 1888 5.6880 1888 21.3

la36 1325 4.2650 1351 46.9

la37 1479 4.7970 1485 6104

la38 1274 5.1090 1280 57.5

la39 1309 4.4530 1321 71.8

la40 1291 5.3910 1326 76.7

5. An OSH Combining GRASP with Branch-and-Bound

72

5.5 Discussion on GRASP_B&B

This very simple optimised search heuristic, the GRASP_B&B, is intended to be a

starting point for a more elaborated metaheuristic. We have compared it to other base

procedures used within more complex algorithms; namely a GRASP of Binato, Hery,

Loewenstern and Resende (Binato, Hery et al. 2002), which is the base for a GRASP

with path-relinking procedure of Aiex, Binato and Resende (Aiex, Binato et al. 2001),

and the shifting bottleneck procedure of Adams, Balas and Zawack (Adams, Balas et

al. 1988), incorporated in the successful guided local search of Balas and

Vazacopoulos (Balas and Vazacopoulos 1998). The comparison to the GRASP in

(Binato, Hery et al. 2002) shows that our procedure is much faster than theirs. The

quality of their best solution is slightly better than ours in 60% of the instances tested.

When comparing GRASP_B&B with the Shifting Bottleneck (Binato, Hery et al.

2002), ours is still faster, and it achieves better solutions, except for 3 of the

comparable instances.

The description of this new method GRASP_B&B was published in the short

paper A GRASP and Branch-and-Bound Metaheuristic for the Job-Shop Scheduling

(Fernandes and Lourenço 2007), and in an extended version, the paper A Simple

Optimised Search Heuristic for the Job Shop Scheduling Problem (Fernandes and

Lourenço 2008b).

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

73

6. An OSH Combining Tabu Search with the Verification of
Violated Valid Inequalities

In this section we present an OSH procedure that uses valid inequalities to

reconstruct a local optimal solution that has been partially destroyed. We named this

procedure Tabu_VVI because it combines a Tabu Search heuristic with Valid

Inequalities properties. The algorithm Tabu_VVI has two main stages. The first stage

consists of building a feasible solution, and executing the tabu search procedure

starting from it. The second stage consists of a large step followed by the tabu search,

and it is repeated for a predefined number of iterations. The large step partially

destroys the solution delivered by the tabu search (using a greedy randomised method

to choose which elements to “delete”), looks for violated valid inequalities that

enforce some order between unscheduled operations, and then rebuilds a complete

solution respecting those established orders. The information about the algebraic

structure of the problem within the valid inequalities is used to guide the search. The

idea is to perturb the current complete solution achieving diversification and leading

the search method to new unexplored regions of the solution space.

The main loop of the algorithm is stopped either when the lower bound of the

instance is achieved ()LB , or a predefined maximum number of iterations are

executed without improving the upper bound ()UB .

Fig. 6.1 shows a not detailed and simplified pseudo-code of algorithm Tabu_VVI.

The main procedures of this algorithm are the following ones: building a feasible

solution – line (1), the tabu search heuristic – lines (2) and (9), and the large step –

lines (6) to (8). These procedures will be explained in detail in the following sections.

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

74

Algorithm Tabu_VVI
(1) ()runsBBGRASPxi &_=

(2) ()ixTabuSearchx =

(3) ()xmakespanUB =

(4) xxb =

(5) while(()LBUB > and ()iterationstimprovemenwithoutiterations #max# <)

(6) ()xDestroyxd =

(7) ()dd xsnequalitieFindValidIx =

(8) ()dxbuildx Re=

(9) ()xTabuSearchx =

(10) if (() UBxmakespan <)
(11) UBupdate

(12) xxb =

(13) return (bx)

Fig. 6.1 Outline of Tabu_VVI: (ix) - initial feasible solution, (x) - current complete solution,

(dx) - partially destroyed solution, (bx) – best solution

6.1 Building a Feasible Solution

The algorithm Tabu_VVI first builds a feasible solution using the GRASP_B&B

algorithm, described earlier on the previous chapter.

6.2 The Tabu Search Module

A tabu search procedure (Glover 1989), (Glover 1990) is a local search procedure

that inspects the all neighbourhood of a current solution x and executes the move that

produces the best not-tabu neighbour ybest. The move that goes back from ybest to

x becomes tabu, there is, forbidden. The objective value of ybest may be worse than

the one of x . The procedure stops after a predefined number of iterations have been

performed without improving the best solution found.

In order to implement a simple tabu search procedure we need to define the

neighbourhood structure, the characterisation of a tabu move or neighbour, the tabu

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

75

length that defines how long will a move remain tabu, and an aspiration criterion, to

be able to execute moves abusively considered tabu. (this abuse happens because we

do not keep track of the pair of solutions before and after a move, but only of some

features of the move).

The neighbourhood structure of the tabu search implemented is the same used in

the local search of the GRASP_B&B, with forward and backward moves defined on

critical pairs of operations (please refer to section 5.3 for the definition of the moves

and the way to evaluate their value). But this time we keep track of those moves

rejected by conditions d) because they can not guarantee that a cycle is not produced

in the disjunctive graph, there is they can lead to an infeasible solution.

The tabu list stores for each move performed on a solution x , the critical pair of

operations ()vu, involved, the type of move – forward or backward, and the number

of neighbours of solution x .

The number of iterations a move (performed on solution x) stays tabu – the tabu

length – is defined so it depends on the size of the neighbourhood of solution x . If a

solution x has many neighbours, the reverse move of the one executed to leave from

it stays tabu for a longer number of iterations than the reverse move of the one

executed to leave from a solution y with a smaller neighbourhood. This way we state

that the possibility of returning to a previously visited solution is not equal for every

solution but depends on the number of neighbours it has.

The aspiration criterion allows a tabu move to be executed if the value of the

resulting solution is better than the best one found so far.

When inspecting the solution space, tabu search inspects the whole neighbourhood

of the current solution looking for its best not tabu neighbour. If the neighbourhood of

a solution is empty, i.e., if the solution has no valid neighbours, it looks in the

excluded moves; moves that do not verify conditions d), for feasibility and executes

the one that generates the best feasible solution. If none of the excluded moves

produces a feasible solution it then executes the tabu move that would remain tabu for

the shortest number of iterations.

The tabu list actually stores for each move, besides the critical pair of operations

involved and the type of move, a length field with the number of the iteration when

the move was executed plus the number of neighbours of the solution where the move

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

76

was perform on. To verify if a move is tabu is just to compare the number of the

current iteration with the number stored in the length field of the tabu list in the

position corresponding to the move. To update the tabu list is to add a new item in the

list for the last executed move and to delete all items which have a value less than the

number of the current iteration in the field length. The tabu list is implemented in a

heap structure allowing efficient implementations of procedures update_tabu and

verify_tabu.

Every time the tabu search improves the best known solution an intensification

scheme is performed that consists in repeating the tabu search, this time duplicating

the number of allowed iterations without improvement.

Algorithm TabuSearch ()x
(1) xybest =

(2) while ()iterationstabutimprovemenwithoutiterations #max# <
(3) UBUBtabu =_
(4) noney =*
(5) ∞=*mk
(6) for (()xNy∈)

(7) ()**,,_,* ymkUBtabuyghbourInspectNeiy =
(8) if (foundnoty*)

(9) for(()xNRy j∈)

(10) if (feasibley)

(11) ()**,,_,* ymkUBtabuyghbourInspectNeiy =
(12) if (foundnoty*)

(13) ()xmovetabuy _* =

(14) ()*,_ yxmoveexecute
(15) listtabuupdate __
(16) if (UBUBtabu <_)

(17) *yybest =

(18) UBtabuUB _=

(19) return (besty)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

77

Algorithm InspectNeighbour ()**,,_, ymkUBtabuy
(1) ()yestimatemk =
(2) if (UBtabumk _<)
(3) yy =*
(4) mkmk =*
(5) *_ mkUBtabu =
(6) else
(7) ()ytabuverify_
(8) if ((tabunoty) and (*mkmk<))
(9) yy =*
(10) mkmk =*
(11) return (*y)

Fig. 6.2 Pseudo-code of module Tabu Search: (x) - current complete solution, (y) - neighbour

solution, *y - best neighbour solution, besty – best solution found, ()xN – neighbourhood

of solution x , ()xNjR – rejected moves of the neighbourhood of solution x

Fig. 6.2 shows a not detailed pseudo-code of the tabu search module of the

algorithm. Lines (6) and (7) of algorithm TabuSearch implement the neighbourhood

search; lines (9) to (11) refer to the inspection of moves not verifying conditions d)

(which happens whenever there are no moves verifying these conditions); and line

(13) represents the decision to execute a tabu move, whenever the rejected moves do

not produce a feasible solution. Lines (2) to (5) of algorithm InspectNeighbour

implement the aspiration criterion.

6.3 Large Step

The main objective of the large step is to force a large modification in the local

optimal solution achieved by the tabu search module, redirecting the search path to a

different and preferably unexplored region with better quality of the solution’s space.

This large step has three main procedures: partially destroying a solution; finding

violated valid inequalities and rebuilding a complete solution.

In the module that partially destroys the current solution, some of the sequences of

processing operations in the machines are removed from the solution, i.e. in the graph

that represents the solution, the disjunctive arcs between operations that define the

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

78

processing sequence on the machines are eliminated for some of the machines. When

the disjunctive arcs defining the processing sequence of a machine k are eliminated

we say that machine k is deleted from the solution. The process of choosing the

machines to delete is done using a greedy randomised heuristic, proposed in the next

section 6.3.1.

The finding violated valid inequalities module is executed after partially

destroying the solution. It looks for valid inequalities violated by the current partial

solution. These inequalities are used to set the relative position (in the processing

sequence) of some operations on a “deleted” machine. In the disjunctive graph

representing the partial solution, setting the relative position (in the processing

sequence) of two operations means adding to the graph one specific disjunctive arc

between the two operations. The finding violated valid inequalities module, which

will be presented in detail in section 6.3.2, is the one responsible for forcing a change

in the direction of the search path in the solution’s space.

The rebuild the solution module finally reconstructs a complete solution including

for one “deleted” machine at a time the sequences of processing operations. These

sequences are forced to respect the relative positions determined by the violated valid

inequalities. The rebuild the solution module is proposed in section 6.3.3.

6.3.1 Partially Destroying a Solution

The tabu search module of the algorithm provides a local optimal solution (and its

makespan is an upper bound for the optimal value). This solution is then submitted to

a perturbation which eliminates the processing sequence of operations on some

machines. A greedy randomised method is used to choose which machines will have

their processing sequence deleted. This method is biased either towards machines that,

when their processing sequence is deleted, lead to a bigger reduction on the makespan

of the solution – greedy_max; or towards machines that lead to the smallest reduction

on the makespan – greedy_min.

When perturbating a complete solution we keep “deleting” machines (destroying

the sequence for processing their operations) until the makespan of the resulting

partial solution is less than the upper bound.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

79

At the beginning of the Tabu_VVI algorithm the Destroy Module uses the

greedy_max criterion to choose which machines are “deleted”. After a predefined

maximum number of global iterations of Tabu_VVI are executed without improving

the best solution found, the criterion for choosing the machines to “delete” changes to

greedy_min. The method changes again to the criterion greedy_max after the same

amount of iterations, provided that the solution has been improved at least once while

using greedy_min. While the best solution found is updated at least once for each

criterion, we keep running the algorithm, alternating the criterion for “deleting” the

machines from the solution.

Fig. 6.3 shows a not detailed pseudo-code of the destroy module of the algorithm.

Algorithm Destroy ()x
(1) xxd =

(2) while(() 1−> UBxmakespan d)

(3) ()dd xmachinedeletex 1=

(4) if (emptyxd)

(5) return ()x

(6) return ()dx

Fig. 6.3 Pseudo-code of module Destroy: (x) - current complete solution, (dx) - partially

destroyed solution

6.3.2 Finding Violated Valid Inequalities

Having a partial solution and an upper bound ()UB for the optimal value, we then

test the existence of violated valid inequalities. These allow us to establish some

relative positions between operations of each unscheduled machine.

The procedure looks for violated valid inequalities for every machine whose

sequence of operations is not present on the current partial solution. The process

cycles through all the “deleted” machines and is repeated until no more orders

(relative positions) between operations are set.

We use the same inequalities that were used in the branch-and-bound algorithms

of Carlier and Pinson (Carlier and Pinson 1989) and Applegate and Cook (Applegate

and Cook 1991).

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

80

Let α be a machine of the instance whose sequence of processing the operations

was deleted from the solution, and αS any given sub-set of the operations processed

by α . Every operation i has an earliest possible starting time - ie , a processing time -

ip and a minimum completion time after it is processed - if .

If for any given set αS and any given operation αSi ∈ ,

{ }
{ } { } UBfpe j

SjSj
jj

iSj
≥++

∈∈∈
∑

ααα
minmin

\
 then, to be possible to reduce the upper

bound, operation i must be processed on α before any other operation in αS . The

inverse inequality { }
{ }

{ } UBfpe j
iSjSj

jj
Sj

≥++
∈∈∈

∑
\

minmin
ααα

 states that operation i must

be processed on α after any other operation in αS .

Let αC be the set of operations not yet ordered for machine α , αα CE ⊆ the

sub-set of operations that could be scheduled first, and αα CF ⊆ the subset of

operations that could be scheduled last. If there is an operation αEi ∈ such that

{ } UBfpe j
FjCj

ji ≥++
∈∈

∑
αα

min , then i can be removed from αE . If αE contains only

one operation, then it must be processed on α before any other operation in αC . The

reverse inequality, { } UBfpe i
Cj

jj
Ej

≥++ ∑
∈∈ αα

min , states that i cannot be scheduled

after all the other operations in αC , and should be removed from αF .

Not all the sub-sets αS are inspected when looking for violated valid inequalities

that allow us to fix orders between operations of one machine. The number of subsets

of a set with n elements is n2 , an exponential number on the size of the problem,

which poses an implementation problem.

We have decided to compromise and instead of looking for valid inequalities in all

the possible subsets of operations on one machine, we generate only a few of them.

The subsets to be inspected are built adding to each of them the operations one by

one, being the operations ordered by decreasing values of starting and completion

times. This way the process of generating subsets to inspect is biased to subsets with

more possibilities of concealing a violation of a valid inequality.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

81

For illustration purpose let us consider the instance in Table 4.2 and the feasible

solution with makespan 13 represented by the graph shown in Fig. 4.3. The earliest

possible time for starting processing an operation i (ie) is given by the ir parameter

computed for the respective one machine problem. Analogously, if is given by iq .

Let us further assume that the processing sequence of machine 1 is deleted from the

solution, since it is the bottleneck machine, i.e., the one that produces the biggest

change in the value of the makespan of the solution. We then get the partial solution

represented by the graph in Fig. 6.4, and the one machine problem for machine 1

presented in the table next to it.

Fig 6.4 Graph of the partial solution removing the processing sequence of machine 1 from the solution
in Fig. 4.3 and the respective one machine problem for machine 1

Since { }10,7,4,10 ∈∀= iri and 10714 qqqq >>> the algorithm first includes

operation 4O in the set and then includes the other operations by decreasing values of

its queues. The first set to be inspected is { }14,OOS = looking at the inequalities

UBqppr ≥+++ 4141 , that being verified implies arc 14 OO → , and

UBqppr ≥+++ 1144 , that is not verified. Set { }74,OOS = is the next to be

inspected with inequality UBqppr ≥+++ 4747 leading to arc 74 OO → and

inequality UBqppr ≥+++ 7744 not being verified. Finally the set { }104,OOS = is

considered checking the inequalities UBqppr ≥+++ 410410 , that leads to arc

104 OO → , and UBqppr ≥+++ 101044 , that is not true. The next sets to be

considered are sets with three operations including 4O and 1O . { }714 ,, OOOS = is

inspected first, looking at inequality
{ }

UBqpppr i
i

≥++++
∈ 1,4

7147 min , which being

1M 1O 4O 7O 10O

ir 0 0 0 0

ip 1 4 1 4

iq 7 8 5 3

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

82

verified states that operation 7O must be processed after all other operations in S in

order to be able to reduce the makespan and leads to arcs 74 OO → and 71 OO → ;

and inspecting inequality
{ }

UBqpppri
i

≥++++
∈

7714
1,4

min , that is not true. The next

set considered is { }1014 ,, OOOS = and the inequalities inspected are

{ }
UBqpppr i

i
≥++++

∈ 1,4
101410 min , which leads to arcs 104 OO → and 101 OO → ,

and
{ }

UBqpppri
i

≥++++
∈

101014
1,4

min , which is not verified. In the end the set with

all the operations is considered { }10741 ,,, OOOOS = inspecting the inequality

{ }
UBqppppr i

i
≥+++++

∈ 7,1,4
1071410 min , that leads to arcs 104 OO → , 101 OO →

and 107 OO → , and the inequality
{ }

UBqppppri
i

≥+++++
∈

1010714
7,1,4

min that

implies arcs 410 OO → , 110 OO → and 710 OO → . It is impossible to have both arcs

ji → and ij → in a solution, for any given operations i and j , which happens for

pairs of operations ()104,OO , ()101,OO and ()107,OO . This means that we can not

produce a solution with makespan less than 13 (i.e. reduce the upper bound) starting

from this partial solution. The solution must be further destroyed.

The next machine whose sequence of processing operations is deleted from the

solution is machine 2. Fig 6.5 shows the partial solution obtained and the

corresponding one machine problem for machine 1.

Fig 6.5 Graph of the partial solution removing the processing sequence of machines 1 and 2 from the
solution in Fig. 4.3 and the respective one machine problem for machine 1

1M 1O 4O 7O 10O

ir 0 0 0 0

ip 1 4 1 4

iq 4 6 4 3

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

83

Notice that { }10,7,4,10 ∈∀= iri and 10714 qqqq >=> and remember that

13=UB . The table 6.1 presents the sets considered when looking for violated valid

inequalities, the inequalities inspected and the arcs implied by them.

Table 6.1 Valid inequalities inspected and corresponding arcs for partial solution of
Fig. 6.5.

sets valid inequalities arcs

UBqppr ≥+++ 4141 false
{ }14,OOS =

UBqppr ≥+++ 1144 false

UBqppr ≥+++ 4747 false
{ }74,OOS =

UBqppr ≥+++ 7744 false

UBqppr ≥+++ 410410 true
104 OO →

{ }104,OOS =
UBqppr ≥+++ 101044 false

{ }
UBqppppr i

i
≥+++++

∈ 7,1,4
1071410 min

true

104 OO →

101 OO →

107 OO →
{ }10714 ,,, OOOOS =

{ }
UBqppppri

i
≥+++++

∈
1010714

7,1,4
min

true

410 OO →

110 OO →

710 OO →

Again there are incompatible arcs deduced from the violated valid inequalities, so

the solution must be further destroyed. The only machine whose sequence of

processing operations is present in the solution is machine 3. Fig 6.6 shows the partial

solution obtained from deleting the processing sequence of machine 3 (the empty

solution) and the corresponding one machine problem for machine 1.

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

84

Fig 6.6 Graph of the partial solution removing the processing sequence of machines 1, 2 and 3 from the
solution in Fig. 4.3 and the respective one machine problem for machine 1

Notice that { }10,7,4,10 ∈∀= iri and 71104 qqqq >=> . The algorithm does not

look for violated valid inequalities for sets with two operations because operation 4O

is the first to be included and
{ }

UBpqpr i
i

<+++
∈ 10,7,1

444 min . Since 110 qq =

(110 pp >) operations 10O and 1O are included at once in the set. So the only set

considered for inspecting violated valid inequalities is { }71104 ,,, OOOOS = and the

algorithm looks at inequality
{ }

UBqppppr i
i

≥+++++
∈ 1,10,4

711047 min , which

implies arcs 74 OO → , 710 OO → and 71 OO → , and inequality

{ }
UBqppppri

i
≥+++++

∈
771104

1,10,4
min , which is not true.

At this moment the algorithm updates the sets αC , αE and αF for machine 1.

The position in the processing sequence for operation 7O is completely determined, it

is processed after all the others, so it is removed from the set of operations not yet

scheduled, i.e., { }10411 ,, OOOC = . The set of operations that can be scheduled first

1E and the set of operations that can be scheduled last 1F on machine 1 are equal to

1C . The algorithm then inspects all the inequalities of the type

{ } UBqpr j
FjCj

ji ≥++
∈∈

∑
αα

min and { } UBqpr i
Cj

jj
Ej

≥++ ∑
∈∈ αα

min . The only one that

is true is UBqpppri
Ci

≥++++
∈

41041
1

min , meaning that operation 4O can not be the

last one on set 1C to be processed and so 1F is updated to { }1011 ,OOF = .

1M 1O 4O 7O 10O

ir 0 0 0 0

ip 1 4 1 4

iq 3 4 2 3

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

85

Including all new arcs in the current partial solution we get the partial solution

corresponding to the graph presented in Fig 6.7. Next to it is the updated one machine

problem for machine 2.

Fig 6.7 Graph of the partial solution including all new arcs generated by valid inequalities for machine
1 after having removed the processing sequence of machines 1, 2 and 3 from the solution in Fig. 4.3
and the respective one machine problem for machine 2

The algorithm proceeds verifying valid inequalities for sets of operations

processed on machine 2. It adds the new arcs obtain from the violated valid

inequalities, updates the one machine problem for machine 3 and proceeds looking for

valid inequalities in sets of operations processed by machine 3. Again the new arcs are

added to the graph of the partial solution and the process cycles through all the

unscheduled machines until no new arcs are included for none of the machines. Only

then the algorithm moves to the next step; rebuilding a complete feasible solution.

If when looking for violated valid inequalities we find none, then we reintroduce a

deleted processing sequence of a machine into the current partial solution and we look

again for violated valid inequalities. The processing sequence to add to the solution is

chosen randomly from the machines present in the complete solution from which the

partial solution derives. We say that the violated valid inequalities lead to

incompatible sequences of operations, when while adding the disjunctive arcs

(corresponding to the relative positions between operations in the processing

sequence) determined by the valid inequalities to the graph representing the partial

solution we get a cycle (thus an infeasible partial solution). If the violated valid

inequalities lead to incompatible sequences of operations this means we cannot

improve the upper bound ()UB with the set of sequenced machines, and another

machine is deleted from the solution. If this happens repeatedly, the solution becomes

2M 2O 6O 9O 11O

ir 1 6 11 4

ip 1 2 1 2

iq 2 0 0 1

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

86

empty (without any processing sequence on the machines) and still violated valid

inequalities lead to incompatible arcs, then the current complete solution is optimal.

Fig. 6.8 shows a not detailed pseudo-code of the find violated valid inequalities

module of the algorithm.

Algorithm FindValidInequalities ()dx
(1) repeat
(2) 1=sflagfixedorder
(3) while(0>sflagfixedorder)
(4) 0=sflagfixedorder
(5) for (machinedeletedevery)
(6) if (foundesinequalitivalid)
(7) 1=sflagfixedorder
(8) ordersfixedset
(9) if (ordersleincompatib)
(10) 1−=sflagfixedorder
(11) break for
(12) if (foundesinequalitivalidno)

(13) ()dd xmachineaddx 1=

(14) elseif(1−=sflagfixedorder)

(15) if (emptyxd)

(16) return ()x
(17) ()dd xmachinedeletex 1=

(18) else
(19) return ()dx

Fig. 6.8 Pseudo-code of module Find Valid Inequalities: (x) - current complete solution, (dx) -

partially destroyed solution

6.3.3 Rebuilding a Complete Solution

The solution is reconstructed including the sequence of operations of one machine

at a time. The order of adding the sequences in the machines to the solution is the

same of the elimination. The first machine to be re-included in the solution is the one

that was first removed, and so on. The schedule of operations for each machine is

determined using a modified version of the Schrage algorithm (Schrage 1970) that

considers pre-defined orders between operations, i.e., it starts with a partial solution.

Each time the sequence of operations of a machine is re-included in the solution, a

restricted local search is executed, where it is forbidden to change orders fixed by the

valid inequalities. This allows to immediately improve the solution. When a new

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

87

sequence of operations is included, we look for new violated valid inequalities in all

remaining unscheduled machines, trying to fix more orders between operations.

After the solution is complete, again, the local search is executed.

Let us use the instance of table 4.2 to illustrate this module of the algorithm. After

the previous module (find valid inequalities) ends, the partial solution obtained is the

one represented by the graph of Fig. 6.9.

Fig 6.9 Graph of the partial solution obtained at the end of module find violated valid inequalities when
applying Tabu_VVI to the solution of Fig. 4.3

The module rebuilding a complete solution starts by building the optimal solution

for the one machine problem for machine 1, with predefined arcs. It builds the

solution 71041 OOOO →→→ , that is added to the graph of the partial solution for

the job shop. Fig. 6.10 shows the graph of this partial solution, and the updated one

machine problem for machine 2.

1M 1O 4O 7O 10O

ir 0 0 9 0

ip 1 4 1 4

iq 5 5 2 3

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

88

Fig 6.10 Graph of the partial solution with the complete processing sequence for machine 1 obtained at
the first iteration of the module rebuilding a complete solution when applying Tabu_VVI to the
solution of Fig. 4.3

The algorithm runs again the find violated valid inequalities module. It generates

the arcs 116 OO → , 112 OO → and 62 OO → . This completely defines the sequence

of processing operations on machine 2 91162 OOOO →→→ , which is added to the

partial solution. The local search module is run on the new partial solution but, on this

small instance, it produces no changes. Fig. 6.11 shows the graph of the partial

solution, and the updated one machine problem for machine 3.

Fig 6.11 Graph of the partial solution with the complete processing sequence for machines 1 and 2
obtained at the second iteration of the module rebuilding a complete solution when applying Tabu_VVI
to the solution of Fig. 4.3

The algorithm runs again the find violated valid inequalities module. It generates

the new arcs 128 OO → , 123 OO → and 53 OO → . This, once again for this small

instance, completely defines the sequence of processing operations on machine 3.

2M 2O 6O 9O 11O

ir 1 7 11 9

ip 1 2 1 2

iq 4 1 0 1

3M 3O 5O 8O 12O

ir 2 5 10 11

ip 2 2 1 1

iq 2 5 1 0

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

89

12853 OOOO →→→ , which is added to the partial solution leading to a complete

solution for this instance of the job shop scheduling problem. The makespan of the

produced complete solution, represented by the graph in Fig. 6.12, is 12. The

makespan is equal to the lower bound of the problem, so the solution is optimal.

Fig 6.12 Optimal solution to instance of Fig. 4.2 achieved by Tabu_VVI

A not detailed pseudo-code of the rebuild module of the algorithm Tabu_VVI is

presented in Fig. 6.13.

Algorithm Rebuild ()dx
(1) for (mmachinedeletedevery)

(2) ()mxschragemodifiedx dd ,_=

(3) ()dd xhLocalSearcx =

(4) ()dd xsnequalitieFindValidIx =

(5) return ()dx

Fig. 6.13 Pseudo-code of module Rebuild: (dx) - partially destroyed solution

6.4 Computational Experiment

We have tested the performance of the method Tabu_VVI using once again the

132 benchmark instances abz5-9 (Adams, Balas et al. 1988), ft6, ft10, ft20 (Fisher and

Thompson 1963), la01-40 (Lawrence 1984), orb01-10 (Applegate and Cook 1991),

swv01-20 (Storer, Wu et al. 1992), ta01-50 (Taillard 1993) and yn1-4 (Yamada and

Nakano 1992).

13 0

1 3 2

4 6 5

7 9 8

10 12 11

1 1 2

4 2 2

1 1 1

4 1 2

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

90

The size of the instances is measure by the number of operations (equal to the

number of jobs times the number of machines). The instances have different sizes: ft6

is the smaller one with 6×6 operations; la01-05 have 10×5; la06-10 have 15×5; ft20

and la11-15 have 20×5; abz5-6, ft10, la16-20 and orb01-10 have 10×10; la21-25

have 15×10; la26-30 and swv01-05 have 20×10; la31-35 have 30×10; la36-40 and

ta01-10 have 15×15; abz7-9, swv06-10 and ta11-20 have 20×15; ta31-40 and yn1-4

have 20×20; swv11-20 have 50×10; the bigger ones are ta41-50 with 30×20

operations.

An optimal solution has already been found for 83 of these instances; namely

abz5-7, ft6, ft10, ft20, la01-40, orb01-10, swv01-02, swv05, swv13-14, swv16-20,

ta01-10, ta14, ta17, ta31, ta35-36 and ta38-39.

We have tested slightly different versions of the method Tabu_VVI:

1) A larger neighbourhood, not forcing moves to respect conditions d), was

implemented (notation ls2).

2) We have compared the results of performing (notation tabuls) and not

performing (notation tabu) an unrestricted local search after the rebuild phase and

before the tabu search.

3) Within the tabu search module, different values of the tabu length parameter

were tested: equal to the number of neighbours (notation mv); half of it (notation mv-

2), the double of it (notation mv2), etc.

4) Also inside the tabu search module, we have tested not to look for those moves

rejected by conditions d), so when a neighbourhood is empty the eligible tabu move is

always the one executed (notation without inf).

5) We have implemented versions where instead of only keeping the move with

the best evaluation, we store them all (or just some of them) in a heap structure by

increasing values of their evaluations (notation hp). Whenever, after executing the

move, the real value of the solution is different from the evaluation of the move, if the

value of the solution is bigger than the evaluation of the next move in the heap

structure, then this next move is executed. This was also tried for the moves rejected

by conditions d) (notation infhp).

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

91

The number of tabu iterations allowed without improving the best solution was set

to the number of operations of each instance.

6) Within the rebuild module, we have also tested to build the sequence of

processing operations in one machine using a modified branch-and-bound method

(notation bb) instead of just the priority rule of the Schrage algorithm. The orders

between operations that were fixed by the find violated valid inequalities module are

always respected.

The described base version of the algorithm Tabu_VVI is represented by the

notation tabu_mvinf. We have tested a total of 35 different versions of the algorithm.

The different versions have names that respect the following denominations presented

in Table 6.2.

Table 6.2 Notations for the different Variants of Algorithm Tabu_VVI

notation description

bb branch-and-bound at the rebuilding module

ls2 extended local search to include moves rejected by conditions d)

tabu tabu search

tabuls local search after the rebuild and before the tabu search

mv tabu tenure equal to the size of the neighbourhood

mv# tabu tenure equal to # times the size of the neighbourhood

mv-2 tabu tenure equal to half the size of the neighbourhood

mvfct there is a factor that extends or reduces the tabu length according to improving or not
improving cycles

mvinf moves rejected by conditions d), are executed when there are no feasible ones

hp all moves are stored in a heap – use them when the value of the solution is different
from its evaluation and bigger than the evaluation of the next move in the heap

mv_infhp heap only for moves rejected by conditions d)

mvinfhp a heap for each type of moves (rejected and not rejected)

At the first stage of the method Tabu_VVI, the GRASP_B&B algorithm was

executed with parameter runs equal to 10, to generate the initial feasible solution and

tabu search was run for 100 iterations without improvement.

The algorithm has been run on a Pentium 4 CPU 2.80 GHz and coded in C.

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

92

In order to measure the performance of the algorithm we use again the percentage

of relative error (but this time to the lower bound) - LBRE (or to the optimum if the

problem is closed).)(xf stands for the makespan of the best solution found.

() ()
LB

LBxf
xRELB

−×= %100

In section 1 of Annex C the reader can find tables that present the performance of

fifteen variants of the algorithm showing the average values, over each class of

instances, of the LBRE and the time in seconds to the best solution. There are also

shown for each variant the number of instances for which it achieved the best known

solution ()best ; the number of instances for which it achieved the minimum value of

all variants ()min ; the number of instances for which the variant was the only one to

achieve the minimum value ()minonly ; the sum of the error and the sum of time over

all instances. The fifteen variants chosen to present are the ones that are the only one

to find the minimum value for at least one instance. The best performance measures

are in bold. For the 42 instances abz6, ft06, la01, la03-18, la23, la26, la30-35, orb07,

orb10, swv16-20 and ta35, all the variants find the optimal solution. Here we present

Table 6.3 with the best results over all the variants tested.

Table 6.3 Best results by all variants of Tabu_VVI, in average percentage of the
relative error to the lower bound, and the average time to the best, in seconds.

sets of best of all variants of Tabu_VVI

instances)(LBREavg)(timeavg

abz 1.71 81.46

ft 0 0.15

la01-05 0 0.03

la06-10 0 0.02

la11-15 0 0.04

la16-20 0 0.44

la21-25 0.02 7.94

la26-30 0.17 83.39

la31-35 0 0.27

la36-40 0.05 57.08

orb 0 4.30

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

93

swv01-05 2.33 127.91

swv06-10 8.21 281.64

swv11-15 1.41 1854.58

swv16-20 0 1.58

yn 7.00 163.95

ta01-10 0.24 49.52

ta11-20 3.12 177.24

ta21-30 5.96 319.02

ta31-40 1.26 220.62

ta41-50 5.47 1016.21

best 42+22

sum RELB 258.08

sum time 31007

We have verified that when a heap of the moves respecting conditions d) was

kept, it was never used, that is, the evaluation of the move always corresponded to the

makespan of the resulting solution. For moves not respecting conditions d), the heap

was only used when the move produced an infeasible solution (a cycle in the graph is

created). This shows that the evaluation function, which for determining the value of

the solution obtained by a move, re-computes only the values of the paths through

operations between the ones of the critical pair, is very accurate.

In section 2 of Annex C the reader can find tables showing for each instance, its

size in jobs times machines, the best known upper bound ()UBbk_ , the best value

achieved by Tabu_VVI ()VVITabu_ , the average time in seconds to achieve it ()time

and the number of variants of the algorithm that reach this minimum ()variants# .

When the best known upper bound is not the optimum value for the instance it

appears in italic.

We have found a new upper bound, 1765, for instance swv10 in 101 seconds.

The values of best known lower and upper bounds were gathered from the papers

(Jain and Meeran 1999), (Nowicki and Smutniki 1996), (Nowicki and Smutnicki

2002) and (Nowicki and Smutnicki 2005).

The following boxplots show the distribution of the makespans of the solutions

achieved by the 35 variants of algorithm Tabu_VVI. The measure used to present the

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

94

results is the percentage of relative error to the upper bound - UBRE (or to the

optimum if the problem is closed).

Fig. 6.14 Distribution of results of all variants
of Tabu_VVI for instances abz

Fig. 6.15 Distribution of results of all variants
of Tabu_VVI for instances ft

Fig. 6.16 Distribution of results of all variants
of Tabu_VVI for instances la01-10

Fig. 6.17 Distribution of results of all variants
of Tabu_VVI for instances la11-20

Fig. 6.18 Distribution of results of all variants
of Tabu_VVI for instances la21-30

Fig. 6.19 Distribution of results of all variants
of Tabu_VVI for instances la31-40

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

95

Fig. 6.20 Distribution of results of all variants
of Tabu_VVI for instances orb

Fig. 6.21 Distribution of results of all variants
of Tabu_VVI for instances yn

Fig. 6.22 Distribution of results of all variants
of Tabu_VVI for instances swv01-10

Fig. 6.23 Distribution of results of all variants
of Tabu_VVI for instances swv11-20

Fig. 6.24 Distribution of results of all variants
of Tabu_VVI for instances ta01-10

Fig. 6.25 Distribution of results of all variants
of Tabu_VVI for instances ta11-20

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

96

Fig. 6.26 Distribution of results of all variants
of Tabu_VVI for instances ta21-30

Fig. 6.27 Distribution of results of all variants
of Tabu_VVI for instances ta31-40

Fig. 6.28 Distribution of results of all variants of
Tabu_VVI for instances ta41-50

6.4.1 Comparison to Other OSH Methods

To compare the results of Tabu_VVI to other methods we choose the two variants

with the smallest sum over all instances of the percentage of the relative error to the

lower bound, or the best over all variants.

The optimised search methods applied to the job-shop scheduling problem, that we

know of and have mentioned in the literature review, are only applied to the older and

easier instances of the problem, except for the works of Balas and Vazacopoulos (Balas

and Vazacopoulos 1998) and Pezzella and Merelli (Pezzella and Merelli 2000), that will

be treated separately.

The method of Danna, Rothberg and Le Pape (Danna, Rothberg et al. 2005) is

applied to instances of the weighted-tardiness version of the problem, and the work of

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

97

Schaal, Fadil, Silti and Tolla (Schaal, Fadil et al. 1999) is applied to the generalised

scheduling problem.

Our method, Tabu_VVI is always better, in quality of the solutions and in

computational time, than the works (Chen, Talukdar et al. 1993), (Denzinger and

Offermann 1999), (Tamura, Hirahara et al. 1994), (Adams, Balas et al. 1988),

(Applegate and Cook 1991), (Caseau and Laburthe 1995), (Lourenço 1995), and

(Lourenço and Zwijnenburg 1996). In Table 6.4 we show the comparison results to the

work of Caseau and Laburthe (Caseau and Laburthe 1995) (named CL), because it is the

best of these methods and also because it is the one that presents results for more

instances. Their algorithm was run on a SunSparc 10 machine.

Table 6.4 Results by variants tabu_mvinf and tabu_mv_bb of Tabu_VVI, and the
algorithm of Caseau and Laburthe, in average percentage of the relative error to the
lower bound, and the average time to the best, in seconds.

Tabu_VVI
instances

tabu_mvinf tabu_mv_bb

CL

)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 2.11 63.77 1.93 61.02 2.57 112.67

ft 0 11.72 0 0.58 0 112

la01-05 0 0.12 0 0.12 0 3.80

la06-10 0 0.02 0 0.03 0 0.75

la11-15 0 0.04 0 0.05 0 27

la16-20 0 1.79 0 1.67 0 25.08

la21-25 0.11 23.13 0.06 14.80 0.11 551.40

la26-30 0.29 54.12 0.26 40.88 0.47 4322.25

la31-35 0 0.38 0 0.39 0 2108.40

la36-40 0.47 22.68 0.22 33.50 0.37 2476.40

orb 0.23 7 0.09 14.13 1.66 111.11

Comparison to the Guided Local Search The guided local search procedure of

Balas and Vazacopoulos (Balas and Vazacopoulos 1998) designs a search procedure

based on local improvements and accepting nonimproving moves, using structures of

neighbourhood trees. Each neighbourhood tree corresponds to a cycle of the guided

local search procedure. Each node of the tree stores a solution and each edge connects

neighbour solutions. Feasible solutions are built solving to optimality by branch-and-

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

98

bound all one-machine subproblems (like the shifting bottleneck heuristic (Adams,

Balas et al. 1988)). After a few cycles of neighbourhood trees, the procedure randomly

destroys the best solution found; deleting the sequence of operations for some machines,

and then reconstructs the partially destroyed solution repeating the all process.

Here we compare our best results to their best reported version SB-RGSL10, which

stands for shifting bottleneck with randomised guided local search. The 10 means the

number of times the all process is repeated. We call it BZ. Their algorithm was run on a

SunSparc 30 machine. The comparison results between algorithms Tabu_VVI and BZ

are shown in Table 6.5. Although we used different computers, we can still say that our

method is always much faster than BZ. Quality values that win the comparison are

shown in bold.

Table 6.5 Results by the best of all variants of Tabu_VVI and the best variant of the
algorithm of Balas and Vazacopoulos; in average percentage of the relative error to the
lower bound, and the average time to the best, in seconds.

instances Tabu_VVI BZ

)(LBREavg)(timeavg)(LBREavg)(timeavg

la01-05 0 0.03 0 5.9

la16-20 0 0.44 0 47

la21-25 0 7.94 0 139.6

la26-30 0.17 83.4 0.19 121.6

la36-40 0.05 57.1 0.03 278

orb 0 4.30 0.10 80.18

swv01-05 2.33 128 2.02 1290

swv06-10 8.06 282 9.64 2917

swv11-15 1.41 1855 2.12 9173

yn 7 164 5.96 5938

ta01-10 0.24 49.5 0.25 1182

ta11-20 3.12 177 3.34 3383

ta21-30 5.96 319 6.57 4377

ta31-40 1.26 221 1.13 5069

ta41-50 5.47 1016 5.71 10726

Comparison to the Tabu Search with Shifting Bottleneck The procedure of

Pezzella and Merelli (Pezzella and Merelli 2000) combines tabu search with the shifting

bottleneck heuristic. The later is used to build the initial solution, and also at the re-

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

99

optimisation phase of the algorithm. Whenever the tabu search cycle improves the best

known solution, the procedure deletes the sequence of operations of all critical

machines (machines with operations in the critical path). After shifting bottleneck

rebuilds the solution, the tabu search is repeated. The tabu search module uses a

dynamic management of three different neighbourhood structures and a tabu list of

variable size, dependent of how many tabu iterations have been executed. The

algorithm, that we name PM, was run on a Pentium 133MHz. Table 6.6 shows the

comparison results between algorithms Tabu_VVI and PM. Quality values that win the

comparison are shown in bold.

Table 6.6 Results by the best of all variants of Tabu_VVI and the algorithm of Pezzella
and Merelli; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds.

instances Tabu_VVI PM

)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 1.71 81.5 2.23 151

ft 0 0.15 0 65

la01-05 0 0.03 0 9.8

la06-10 0 0.02 0 -

la11-15 0 0.04 0 -

la16-20 0 0.44 0 61.5

la21-25 0 7.94 0.1 115

la26-30 0.17 83.4 0.46 105

la31-35 0 0.27 0 -

la36-40 0.05 57.1 0.58 141

ta01-10 0.24 49.5 0.45 2175

ta11-20 3.12 177 3.47 2526

ta21-30 5.96 319 6.52 34910

ta31-40 1.26 221 1.92 14133

ta41-50 5.47 1016 6.04 11512

Comparison to the Tabu Search with Path-Relinking Along with the guided

local search procedure of Balas and Vazacopoulos, and the tabu search with shifting

bottleneck of Pezzella and Merelli, one other procedure, due to Nowicki and Smutnicki

(Nowicki and Smutnicki 2005), forms the group of three procedures that are the best up

6 An OSH Combining Tabu Search with the Verification of Violated Valid Inequalities

100

to date methods applied to the job-shop scheduling problem. This last one being the

state of the art for the job shop scheduling problem

The procedure of Nowicki and Smutnicki performs path-relinking between elite

solutions found by a tabu search module. The solutions achieved by the path-relinking

are then used as starting points for new cycles of the tabu search; the set of elite

solutions is updated and the all process is repeated. We can say that the path-relinking

works as the diversification strategy of the tabu search.

The algorithm uses a data structure specially designed for the application of this

method to the job-shop scheduling problem. The instances of Taillard (Taillard 1993)

were used to study the distribution of the local optima solutions in the solution space;

and this study supported the design of this method. The algorithm, that we name NS,

was run on a Pentium 900MHz. Unlike all other procedures, the computational times

reported by the authors do not include the time needed to build the initial solutions.

Table 6.7 shows the comparison results between algorithms Tabu_VVI and NS.

Table 6.7 Results by the best of all variants of Tabu_VVI and the algorithm of Nowicki
and Smutnicki; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds.

instances Tabu_VVI NS

)(LBREavg)(timeavg)(LBREavg)(timeavg

swv01-05 2.33 128 1.01 462

swv06-10 8.06 282 7.49 514

swv11-15 1.41 1855 0.51 360

yn 7 164 5.18 510

ta01-10 0.24 50 0.11 26

ta11-20 3.12 177 2.81 108

ta21-30 5.96 319 5.68 328

ta31-40 1.26 221 0.78 341

ta41-50 5.47 1016 4.7 975

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

101

6.5 Discussion on Tabu_VVI

We have developed a powerful, fast and innovative optimised search heuristic to

solve combinatorial optimisation problems. It uses an exact technique from the

operations research field to guide the search process of a metaheuristic. The procedure,

named Tabu_VVI, uses the verification of violated valid inequalities as a diversification

strategy of a tabu search procedure. The idea of this new method is to mimic the cuts in

integer programming, letting the violated valid inequalities discard unattractive regions

of the solution space and guide the search from a local optimal solution to a more

quality region of the search space.

The procedure was illustrated with an application to the job-shop scheduling

problem.

When developing this algorithm we were confronted with a challenge, related to the

implementation of the verification of valid inequalities violated by partial solutions.

The valid inequalities are defined for every subset of operations processed on a

machine. A problem with n jobs will have n2 subsets of operations to each machine.

We have decided not to inspect all the subsets but only the ones with more possibilities

of concealing a violation of a valid inequality. The inspected subsets were built adding

one by one the operations, according to its release dates and completion values.

We presented some computational results for a large set of benchmark instances,

along with comparisons to other similar and successful works. Our new method,

Tabu_VVI, always performs better than other methods that combine exact and heuristic

procedures. It compares most favourably to two other leading methods for solving the

job-shop scheduling problem; the guided local search of Balas and Vazacopoulos and

the tabu search with shifting bottleneck of Pezzella and Merelli. When compared to the

state of the art tabu search of Nowicki and Smutnicki, after running for approximately

the same amount of time, Tabu_VVI achieves solutions with quality very close to theirs.

The description of this new method Tabu_VVI is presented in the paper Optimised

Search Heuristic Combining Valid Inequalities and Tabu Search (Fernandes and

Lourenço 2008).

7. Conclusions

102

7. Conclusions

Combinatorial optimisation problems are the subject of study of many practitioners

with different scientific backgrounds, like operations research, artificial intelligence and

computation sciences. While the work of researchers with an education on operations

research has been mainly devoted to the study of the mathematical properties of the

problems and the development of exact optimisation algorithms, researchers from

artificial intelligence and computer science have developed metaheuristic methods

especially focused on solving real-life applications of these problems. Practitioners of

artificial intelligence and computer sciences do not invest in exact algorithms mainly

because of assumptions like exact methods are too slow to be of any use to solve real

life instances. Practitioners of operations research usually do not work on metaheuristics

because of the assumption that these methods depend heavily on computational

experiments to define their parameters values, lacking of any theoretical fundaments on

their design and there by of no mathematical interest. It may also be true that while

some may lack advanced programming skills others may have insufficient knowledge of

advanced mathematical techniques.

Some practitioners have recently overcome the gap between exact and metaheuristic

methods and developed new procedures that combine the two in order to solve

combinatorial optimisation problems.

We have studied these new methods that combine metaheuristics and exact

algorithms of combinatorial optimisation highlighting which procedures are combined;

the specific way they work together and the problems to which they have been applied.

Chapter 3 of this thesis is concerned with this subject. There we propose a designation

for these methods – we call them Optimised Search Heuristics (OSH), and present a

summary of the different ways of combining exact algorithms and metaheuristics versus

the problems to which the methods are applied.

This mapping shows that there is plenty of room for new developments in this area.

We are particularly interested in using exact techniques to guide the local search

procedure of metaheuristics.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

103

A paper entitled Optimised Search Heuristics which presented this study was

produced and published (Fernandes and Lourenço 2007b).

To be able to capture the interest of the scientific community working on

combinatorial optimisation problems, any new method must be tested on a problem of

the NP-hard complexity class.

We have chosen to address scheduling problems and especially the job shop

scheduling problem, famous for its difficulty both in theory and practice. Another

reason for focusing on this problem to introduce the new method was the fact that its

algebraic structure is well studied. Many properties have been proven that allow the

description of valid inequalities, some of them defining facets of the convex hull of the

set of feasible solutions.

Chapter 4 is dedicated to the presentation of scheduling problems; their definition,

formulation and proven properties of the algebraic structure.

Chapters 5 and 6 present two proposed optimised search heuristic methods and

describe the computational results for a large set of benchmark instances, along with

comparisons to other similar and successful works.

We first developed a method which combines GRASP and branch-and-bound that

we called GRASP_B&B and used it to solve the job shop scheduling problem. The

method is a very fast procedure to find solutions of acceptable quality, ideal to work as

initial solutions to other more elaborated methods. We have compared our

GRASP_B&B to other procedures applied to the same problem, also used as producers

of initial solutions. Namely, we compared it to another GRASP procedure (Binato, Hery

et al. 2002) and to a procedure that uses branch-and-bound in the same way as we did –

the shifting bottleneck procedure (Adams, Balas et al. 1988). GRASP_B&B compared

most favourably to these methods, producing solutions of higher quality in less time.

A paper describing the new method GRASP_B&B entitled A GRASP and Branch-

and-Bound Metaheuristic for the Job Shop Scheduling, was produced and published

(Fernandes and Lourenço 2007).

Chapter 6 of this thesis contains the main contribution of this research work – the

Tabu_VVI procedure. It is an optimised search heuristic that combines the verification

of violated valid inequalities with a tabu search procedure. The method starts with a

feasible solution produced with the method GRASP_B&B to which tabu search is

7. Conclusions

104

applied, producing a “good” local optimum. This local optimal solution is then

perturbed in order to continue search in the solution space. The solution is partially

destroyed using a greedy randomised procedure to delete some of its elements. Then the

method verifies the existence of valid inequalities violated by the partial solution. The

reconstruction of a complete feasible solution is restricted by these violated valid

inequalities, in the sense that they force some elements present on the partial solution

out of the new complete solution. This way, the search path of the method is forced to

jump to a different region of the solutions space. Hopefully to a more attractive region.

This change in the search path direction is guided by the information of the algebraic

structure of the problem present in the valid inequalities. And this is why we state that

the search procedure of the tabu search metaheuristic is guided by the exact technique of

verifying the existence of violated valid inequalities to discard some regions of the

solution space.

The new method Tabu_VVI was applied to the job shop scheduling problem and

compared to other methods that address it. Namely we compared Tabu_VVI to other

methods that combine exact algorithms and metaheuristics and to the three leading

procedures applied to the job shop scheduling problem: the Guided Local Search of

Balas and Vazacopoulos (Balas and Vazacopoulos 1998), the Tabu Search combined

with Shifting Bottleneck of Pezzella and Merelli (Pezzella and Merelli 2000) and the

Tabu Search with Path Relinking of Nowicki and Smutnicki (Nowicki and Smutnicki

2005).

Tabu_VVI wins the comparison to other methods that combine exact algorithms and

metaheuristics, always producing solutions with better quality and in less time. When

compared to the procedure of Balas and Vazacopoulos and to the procedure of Pezzella

and Merelli, our method achieves results very competitive with theirs. In the

comparison to the state of the art procedure to solve job shop scheduling, the method of

Nowicki and Smutnicki, our Tabu_VVI gets very close to their results.

This new method Tabu_VVI is described in our published paper Optimised Search

Heuristic Combining Valid Inequalities and Tabu Search (Fernandes and Lourenço

2008).

We hope that these good results will encourage other researchers to close the gap

between the areas of exact combinatorial optimisation methods and metaheuristics,

taking advantage of the good characteristics of each of them.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

105

When developing this research work we encountered one major challenge, related to

the implementation of the verification of valid inequalities to the job shop scheduling

problem violated by partial solutions.

The valid inequalities are derived from the subproblems of one machine scheduling

and are defined for every subset of operations processed on a machine. As we all know

the number of subsets of a set with say n elements is n2 , an exponential number on the

size of the problem, which poses an implementation problem. Instead of looking for all

valid inequalities in all the possible subsets of operations on one machine, we have

generated only a few of them. The subsets to be inspected were built adding to each of

them the operations, one by one, according to some measures. The process of generating

subsets to inspect is biased to subsets with more possibilities of concealing a violation

of a valid inequality.

(Péridy and Rivreau 2005) proposes a new efficient enumerative method based on

local adjustments that may be useful for inspecting all the subsets when looking for

violated valid inequalities. A possible line of future work would be to discover how

viable it is to implement such a method and to test if it would improve the efficiency of

our Tabu_VVI method.

Different directions for proceeding with the line of research conducted in this thesis

are:

a) Apply the new method Tabu_VVI to other hard scheduling problems, like the

total weighted tardiness job shop problem or the generalised job shop problem. It would

also be very interesting to apply the method to a real world instance.

b) Study the theoretical structure of the Tabu_VVI method, to design a general

method that can be applied to other combinatorial optimisation problems.

c) Study the relationship between the different combinations of metaheuristics and

exact procedures in OSH methods to evaluate the contribution of each one of them in

the success of the OSH approach.

Annex A

106

Annex A – Abstracts of Optimised Search Heuristics

Here we present a short abstract for each of the OSH procedures referenced in

chapter 3, ordered by type of combination.

1.1 Sequential execution

Mixed Integer Problems

Hybrid Enumeration Strategies for Mixed Integer Programming (Pedroso

2004) The procedure solves the linear relaxation of the mixed integer problem and sets

the integer values by random enumeration. It ends with a local search.

p-Median

Heuristic Concentration (Rosing and ReVelle 1997), (Rosing and ReVelle 1998),

(Rosing 2000) This procedure is named heuristic concentration and is applied to the p-

median problem. The first phase consists of doing multi random starts of a local search

procedure and to choose a set of the best solutions found. In the second phase a branch-

and-bound method is used to solve a p-median problem, where the possible facility

locations are restricted to the ones chosen in the best local search solutions.

Steiner Tree

Combining a Memetic Algorithm with Integer Programming to Solve the Prize-

Collecting Steiner Tree Problem (Klau, Ljubíc et al. 2004) This procedure is

developed for the prize-collecting Steiner tree problem. A preprocessing phase reduces

the graph. A memetic algorithm with problem-dependent operators and an exact local

search procedure is applied to the reduced graph. Solving the integer programming

problem of a minimum Steiner arborescence optimises the solutions found by the

memetic algorithm. When solving the integer problem, not all the complicating

constraints are included in the model, only the ones violated by the current solution.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

107

Also not all variables are included, only the ones needed. So the procedure uses cutting

and pricing. This is a very complicated algorithm.

Traveling Salesman

Finding Tours in the TSP (Applegate, Bixby et al. 1999) In a first phase of this

procedure several tours for the traveling salesman problem are generated using an

iterated Lin-Kernighan algorithm. The second phase uses a branch-and-cut algorithm to

solve the problem defined over the subgraph with only the edges used by the tours

found in the first phase.

Tour merging via branch-decomposition (Cook and Seymour 2003) In a first

phase of this procedure several tours for the traveling salesman problem are generated

using an iterated Lin-Kernighan algorithm. The second phase uses a dynamic

programming algorithm to solve the problem defined over the subgraph with only the

edges used by the tours found in the first phase.

Vehicle Routing

Effective Local search Algorithms for the Vehicle Routing Problem with

General Time Window Constraints (Ibaraki, Kubo et al. 2001) The procedure is

applied to the vehicle routing problem. Iterated local search determines the number of

routes and the order in it, dynamic programming optimises the times of the routes.

Cutting Stock

Hybridizing Tabu Search with Optimization Techniques for Irregular Stock

Cutting (Bennell and Dowsland 2001) The procedure is applied to the irregular cutting

stock problem. Tabu search finds local optima of incomplete neighbourhoods. These

solutions are improved by solving a linear program that uses the geometric concept of

no fit polygon.

One Dimensional Cutting Stock Problem to Minimize the Number of Different

Patterns (Umetani, Yagiura et al. 2003) Initial solutions for the iterated local search are

Annex A

108

built by heuristics based on the linear relaxation solution of the one-dimensional cutting

stock problem.

Flow-Shop Scheduling

A meta-heuristic algorithm for a bi-criteria scheduling problem (Nagar, Heragu

et al. 1995) This procedure is applied to the 2-machine flow shop scheduling problem.

In a first phase the algorithm executes an incomplete branch-and-bound, and the partial

solutions are stored along with their respective bounds. The second phase is a genetic

algorithm that uses the information of the bounds to decide upon the mutation operator.

Parallel Machine Scheduling

Heuristic Optimization: A hybrid AI/OR approach (Clements, Crawford et al.

1997) Local search is used to find initial pre-solutions for the multi-job, parallel

machine scheduling problem, with lateness and changeover costs. The priority heuristic

with local search schedules blocks of jobs in each line of production. The integer

programming problem is a set partitioning, where groups of schedules have to be

chosen. Dantzig-Wolf solves the linear relaxation of the IP and then branch-and-bound

finds integer solutions.

Knapsack

A Hybrid Approach for the 0-1 Multidimensional Knap sack problem (Vasquez

and Hao 2001) The procedure is applied to the multidimensional knapsack problem.

Linear relaxation is solved with the extra constraint of the sum of the variables being an

integer k. Upper and lower limits for k are determined. Tabu search is executed for each

one of the linear relaxation solutions sk. The neighbourhood is restricted to a small

radius around sk.

A hybrid search combining interior point method and metaheuristics for 0-1

programming (Plateau, Tachat et al. 2002) This procedure is applied to the

multiconstrained knapsack problem. It starts by executing an interior point method with

early termination. Feasible solutions built by rounding and applying different ascendant

heuristics will be the initial population for a scatter search method, with path-relinking.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

109

Generalised Assignment

An Improved Hybrid Genetic Algorithm for the Generalized Assignment

Problem (Feltl and Raidl 2004) This procedure is defined for the generalised

assignment problem and is based on the algorithm of Chu and Beasley (1996). Initial

solutions for the genetic algorithm are generated by randomly rounding the linear

relaxation solution. The mutation operator consists of a heuristic procedure that

preserves feasibility.

Markov Decision Processes

A Hybrid Genetic/ Optimization Algorithm for Finite -Horizon, Partially

Observed Markov Decision Processes (Lin, Bean et al. 2004) This procedure is

designed for the partially observed markov decision processes problem. The genetic

algorithm generates an initial sub-set of witness points. A mixed integer program is

solved to find the remaining ones.

2.1.1 Exactly solving relaxed problems

Job-Shop Scheduling

An approximate solution method for combinatorial optimisation (Tamura,

Hirahara et al. 1994) This procedure is a genetic algorithm applied to the job-shop

scheduling. The fitness of each individual, whose chromosomes represent each variable

of the integer programming formulation, is the bound obtained solving lagrangean

relaxations.

Knapsack

A Genetic Algorithm for the Multidimensional Knapsack Problem (Chu and

Beasley 1998) This procedure is designed for the multiconstrained knapsack problem.

Some elements of the population of the genetic algorithm are infeasible solutions

generated by crossover and mutation operator. To recover feasibility of these solutions,

the dual variables of the linear relaxation are used as weights in the surrogate relaxation

Annex A

110

of the multidimensional knapsack problem. A greedy heuristic based on the surrogate

relaxation produces feasible solutions.

An improved genetic algorithm for the multiconstrained 0-1 knapsack problem

(Raidl 1998) This procedure is designed for the multiconstrained knapsack problem.

The initial population of the genetic algorithm is generated randomly setting the 0 /1

variables to one, with a probability given by its values on the linear relaxation solution.

The repair operator to regain feasibility after crossover and mutation is also based on the

solution values of the linear relaxation.

2.1.2 Exactly searching large neighbourhoods

Partitioning

Very large-scale neighbourhood search (Ahuja, Orlin et al. 2000), (Ahuja, Ergun

et al. 2002) Very large neighbourhoods are exactly searched by network flow

techniques, dynamic programming or by polynomial time solvable restrictions of the

original problem. An application to the minimum spanning tree problem is described.

Steiner Tree

Combining a Memetic Algorithm with Integer Programming to Solve the Prize-

Collecting Steiner Tree Problem (Klau, Ljubíc et al. 2004) This procedure is

developed for the prize-collecting Steiner tree problem. A preprocessing phase reduces

the graph. A memetic algorithm with problem-dependent operators and an exact local

search procedure is applied to the reduced graph. Solving the integer programming

problem of a minimum Steiner arborescence optimises the solutions found by the

memetic algorithm. When solving the integer problem, not all the complicating

constraints are included in the model, only the violated by the current solution. Also not

all variables are included, only the ones needed. So the procedure uses cutting and

pricing. This is a fairly complicated algorithm.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

111

Traveling Salesman

A constraint programming framework for local search methods (Pesant and

Gendreau 1996), (Pesant and Gendreau 1999) This procedure is developed within a

constraint programming framework and applied to the traveling salesman with time

windows. Each neighbourhood exploration is performed by branch-and-bound, defining

elaborate local search moves.

Guided Local Search for Combinatorial Optimization Problems (Voudouris

1997), (Voudouris and Tsang 1999) Dynasearch5 is used as a local search routine within

a guided local search procedure applied to the traveling salesman problem.

Polynomially Searchable Exponential Neighbourhoods for Sequencing

Problems in Combinatorial Optimisation (Congram 2000) Dynamic programming

finds the best neighbour in a local search neighbourhood of exponential size. A

perturbation is performed on the solution and dynasearch is iterated. The procedure is

applied to the traveling salesman problem.

Effective local and guided variable neighborhood search methods for the

asymmetric traveling salesman problem (Burke, Cowling et al. 2001) This procedure

is designed to the traveling salesman problem. The local search routine is based on

splitting the original problem into small subproblems of connecting fixed subtours,

which are solved to optimality by dynamic programming. The local search is embedded

in a variable neighbourhood procedure.

Embedded local search approaches for routing optimization (Cowling and

Keuthen 2005) The procedure is applied to the asymmetric traveling salesman problem.

Local search uses a neighbourhood of 2 unconnected segments of the tour. Dynamic

programming is used to optimally reconnect cities within the segments. The variable

neighbourhood search version uses several k-opt neighbourhoods.

Vehicle Routing

Cycle transfers (Thompson and Orlin 1989), (Thompson and Psaraftis 1993) This

procedure defines a local search procedure with a neighbourhood structure based on the

cyclic transfer concept. The exponential sized neighbourhood is exactly explored

5 Dynasearch – dynamic programming searchs an exponencial sized neighbourhood in polynomial time

Annex A

112

defining appropriated auxiliary graphs and using dynamic programming. A variable

depth search technique is employed. The procedure is applied to the vehicle routing

problem.

One Machine Scheduling

An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted

Tardiness Scheduling Problem (Congram, Potts et al. 2002) Dynamic programming

finds the best neighbour in a local search neighbourhood of exponential size. A

perturbation is performed on the solution and dynasearch is iterated. The procedure is

applied to the problem of scheduling a single machine with total weighted tardiness.

Iterated local search (Lourenço, Martin et al. 2002) A dynasearch is used as a local

search routine inside an iterated local search procedure, applied to the single machine

weighted tardiness problem.

2.1.3 Exactly solving subproblems

Mixed Integer

Tabu Search for Mixed Integer programming (Pedroso 2004b) The procedure is

applied to mixed integer programming problems. Tabu search sets the values of integer

variables and then a linear program is solved. Tabu search uses branch-and-bound as an

intensification strategy.

Graph Colouring

Improving graph coloring with linear programming an d genetic algorithms

(Marino, Prugel-Bennett et al. 1999) The crossover of the genetic algorithm uses the

optimal solution of the linear assignment formulation for the maximal sub-graph with

zero clashes of the graph colouring problem.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

113

Maximum Independent Set

An optimized crossover for the maximum independent set (Aggarwal, Orlin et

al. 1997) This is a genetic procedure designed to the maximum independent set

problem. In the recombination phase, the union of the features of two parent solutions

defines an integer programming subproblem, which is solved to optimality.

Maximum Clique

Optimized crossover-based genetic algorithms for the maximum cardinality

and maximum weight clique problems (Balas and Niehaus 1998) This is a genetic

procedure designed to the maximum clique problem. In the crossover operator, a

subproblem is defined by the union of the features of two parent solutions, which is then

solved exactly by integer programming.

Network Design

A hybrid tabu search/branch-and-bound algorithm for the direct flight

network design problem (Büdenbender, Grünert et al. 2000) This procedure is built for

the network design problem. Each neighbouring solution of the local search is generated

fixing the value of some variables and leaving the others free. The subproblem defined

on the free subset of variables is solved to optimality by integer programming

techniques.

Quadratic Assignment

Intensification neighbourhoods for local search methods (Mautor and Michelon

1997), (Mautor and Michelon 2001), (Mautor 2002) The MIMAUSA algorithm is

designed to the quadratic assignment problem. The local search neighbourhood is

defined deleting the value of some k variables. The correspondent subproblem of

assigning values to those variables is exactly solved by integer programming.

Annex A

114

Vehicle Routing

Using constraint programming and local search methods to solve vehicle

routing problems (Shaw 1998) This tabu search procedure is designed for a vehicle

routing problem. Branch-and-bound is used to exactly explore a partial neighbourhood

structure, defined by a subproblem.

Job-Shop Scheduling

The Shifting Bottleneck Procedure for Job Shop Scheduling (Adams, Balas et al.

1988) The shifting bottleneck procedure is an iterated local search applied to the job

shop scheduling problem, with a construction heuristic that uses a branch-and-bound to

solve the subproblems of one machine with release and due dates.

A Computational Study of the Job-Shop Scheduling Problem (Applegate and

Cook 1991) The local search type shuffle heuristic was built for the job shop scheduling

problem. At each step the processing orders of the jobs on a small number of machines

is fixed, and a branch-and-bound algorithm completes the schedule.

Disjunctive scheduling with task intervals (Caseau and Laburthe 1995) The local

search procedure is applied to the job shop scheduling problem. The neighbourhood

structure is defined by a subproblem that is exactly solved using constraint

programming.

Guided Local Search with Shifting Bottleneck for Job Shop Scheduling (Balas

and Vazacopoulos 1998) This is a guided local search, over a tree search structure, that

reconstructs partially destroyed solutions for the job shop problem, using a branch-and-

bound algorithm to exactly solve one machine subproblems.

One Machine Scheduling

The use of dynamic programming in genetic algorithms for permutation

problems (Yagiura and Ibaraki 1996) This is a genetic algorithm for permutation

problems. In the crossover operator, common chromosomes of two parent solutions are

kept fixed and the free ones are optimised using dynamic programming.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

115

Generalised Schwefel Function

Embedding Branch and Bound within Evolutionary Algorithms (Cotta and

Troya 2003) Branch-and-bound is used to optimally complete a partial solution built

with the recombination operator of the genetic algorithm. This procedure is applied to

the following problems: generalised schwefel function, rulebase learning in mobile

agents, design of a brachystochrone, k-epistatic minimal permutation.

2.1.4 Exact algorithms as decoders

Packing

Local search algorithms for the rectangle packing problem with general spatial

costs (Imahori, Yagiura et al. 2003) Dynamic programming evaluates codified solutions

found by local search by determining the optimal real solution that corresponds to the

codified one. The codified solution is perturbed and local search is iterated. The

procedure is applied to the rectangle packing problem.

Solving a Real-World Glass Cutting Problem (Puchinger, Raidl et al. 2004) The

individuals of the genetic algorithms are coded solutions of the two-dimensional bin-

packing problem with scheduling. Branch-and-bound is used to decode coded solutions.

This procedure is developed for a real cutting glass problem.

Lot-sizing

A hybrid genetic algorithm to solve a lot-sizing and scheduling problem

(Staggemeier, Clark et al. 2002) The procedure is applied to the lot-sizing problem. The

genetic algorithm schedules products and linear programming optimises sizes of lots for

a given schedule, determining the fitness value of each element of the population. A

heuristic of the asymmetric TSP type is used within the genetic algorithm to re-optimise

all changes produced by crossover or mutation.

Annex A

116

2.1.5 Exact algorithms for strategic guidance of metaheuristics

Frequency Assignment - Quadratic Assignment

An ANTS heuristic for the frequency assignment problem (Maniezzo 1999),

(Maniezzo and Carbonaro 2000) The procedure is an Ant Colony Optimisation

metaheuristic that uses information from the linear relaxation and the values of the dual

variables to determine the pheromones, which guide the construction of solutions. The

procedure has been applied to problems like quadratic assignment (1999) and frequency

assignment (2000).

Packing

Using tree bounds to enhance a genetic algorithm approach to two rectangle

packing problems (Dowsland, Herbert et al. 2004) The representation of the

individuals in the genetic algorithm is related to the search tree, as each position in the

string corresponds to the choice of the branch at that level. Each individual corresponds

to a path from the top of the tree to a terminal node. This way, bounds can be calculated

to partial solutions, guiding crossover and mutation operators. This procedure is applied

to the rectangle packing problem.

Job-Shop Scheduling

Combining large-step optimization with tabu-search: Application to the job-

shop scheduling problem (Lourenço 1995), (Lourenço and Zwijnenburg 1996) The

iterated local search procedure is applied to the job shop scheduling problem. In the

perturbation phase, subproblems of one or two machines are solved by a branch-and-

bound algorithm.

Optimisation of Continuous Problems

Tabu Search directed by direct local methods for nonlinear global optimization

(Hedar and Fukushima 2004) The procedure is developed for the optimisation of

continuous problems. The neighbourhood of the tabu search is generated according to

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

117

extreme directions using the Nelder-Mead method and the pattern search strategy. The

tabu list is managed by anti-cycling rules.

2.2.1 Metaheuristics for obtaining incumbent solutions and bounds

Packing

A hybrid improvement heuristic for the one-dimensional bin packing problem

(Alvim, Ribeiro et al. 2003) The procedure is applied to the one-dimensional bin-

packing problem. The related min-max problem is solved by greedy heuristics to find

the number of bins. Upper and lower bounds are calculated using the algebraic structure

of the problem. Solutions are determined solving the dual bin-packing problem

heuristically. Tabu search transforms remaining infeasible solutions into feasible ones.

Lot-sizing

An integrated lagrangean relaxation - simulated annealing approach to the

multi-level multi-item capacitated lot sizing problem (Ozdamar and Barbarosoglu

2000) Subproblems of the multi-level, multi-item, capacitated lot-sizing problem are

derived by lagrangean relaxation. Solutions of these subproblems update lower bounds

and lagrangean multipliers. A recursive heuristic is applied in order to restore capacity

feasibility of the subproblems solutions and then simulated annealing is applied to find

complete solutions, providing upper bounds. The procedure is repeated with the updated

lagrangean multipliers.

Job-Shop Scheduling

Meta heuristics diversification of generalized job shop scheduling based upon

mathematical programming techniques (Schaal, Fadil et al. 1999) Interior point

method generates initial solutions of the linear relaxation. The genetic algorithm finds

integer solutions. A cut is generated based on the integer solutions found and the

interior point method is applied again to diversify the search. This procedure is defined

for the generalised job shop problem.

Annex A

118

Binary (0-1) Programming

A chunking based selection strategy for integrating meta-heuristics with

branch and bound (Woodruff 1999) This is a branch-and-bound procedure that uses a

chunking-based selection strategy to decide at each node of the tree whether or not a

reactive tabu search is run to improve the incumbent solution.

2.2.2 Metaheuristics for column and cut generation

Graph Colouring

Constructive Genetic Algorithm and Column Generation: an Application to

Graph Coloring (Filho and Lorena 2000) This procedure is applied to the graph

colouring problem. The genetic algorithm is used with a given number of columns to

approximately solve a weighted maximum independent set problem; which generates

the initial pool of columns needed for the column generation process. Each column

forms an independent set. Column generation solves the set covering formulation. The

whole procedure is repeated with the number of columns minus one, until no

improvement is found.

Packing

An Evolutionary Algorithm for Column Generation in Integer Programming:

an Effective Approach for 2D Bin Packing (Puchinger and Raidl 2004b), (Puchinger

and Raidl 2004c) The genetic algorithm is used within the branch-and-price procedure

to solve the column generation. This procedure is applied to the 2D bin-packing

problem.

2.2.3 Metaheuristics for strategic guidance of exact methods

Mixed Integer

Using a Hybrid Genetic-Algorithm/Branch and Bound Approach to Solve

Feasibility and Optimization Integer Programming Problems (French, Robinson et

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

119

al. 2001) This procedure is used to solve feasibility and optimisation integer

programming problems and is inspired on the algorithm of Beasley and Chu (1996).

Bounds of the branch-and-bound tree are found by relaxing integrality. The genetic

algorithm builds integer solutions by relaxing constraint satisfaction and using

information from the tree nodes to generate chromosomes. The solutions found by the

genetic algorithm determine the new nodes of the tree to be examined. The algorithm is

exact and was incorporated in commercial software XPRESS-MP.

Genetic Programming for Guiding Branch and Bound Search (Kostikas and

Fragakis 2004) The genetic programming is used for evolving the best branching

heuristic to each instance. Genetic programming “trains” during a first phase of branch-

and-bound, finds the best branching heuristic and then branch-and-bound starts again

with the learned strategy for branching. This procedure is applied to mixed integer

programming problems.

p-Median -- Flow-Shop Scheduling

Recovering Beam Search: Enhancing the Beam Search Approach for

Combinatorial Optimization Problems (Della-Croce, Ghirardi et al. 2004)

Lagrangean relaxation is used to derive lower and upper bounds to the nodes of the

limited branch-and-bound tree. The number of nodes per level is limited heuristically

using valid and pseudo dominance conditions. The recovery step consists of performing

a local search at the current node and determines the next node to be examined. This

procedure is applied to the two machine flow shop scheduling and the uncapacitated p-

median problems.

Parallel Machine Scheduling

Makespan minimization on unrelated parallel machines: a Recovering Beam

Search approach (Ghirardi and Potts 2005) The Beam Search6 procedure is applied to

the scheduling problem with parallel machines. The neighbourhood of partial solutions

is inspected by local search, recovering pruned solutions of a limited branch-and-bound

tree.

6 Beam search – a branch-and-bound procedure where the number of nodes per level (the beam) is limited
heuristically

Annex A

120

2.2.4 Applying the spirit of metaheuristics

Mixed Integer

Local Branching (Fischetti and Lodi 2003) This procedure, design to mixed integer

problems, called local branching, is a branch-and-bound method with a branching

strategy that determines the number of variables to remain unchanged, instead of

specifying which variables to change. At each node of the branch-and-bound tree the

commercial software Cplex is used to solve the sub MIP integer model.

Exploring relaxation induced neighborhoods to improve MIP solutions (Danna,

Rothberg et al. 2005) Within each node of a branch-and-cut tree, the solution of the

linear relaxation is used to define the neighbourhood of the current best feasible

solution. The local search consists in solving the restricted MIP problem defined by the

neighbourhood. The procedure is applied to mixed integer problems like job shop,

network design and multicommodity routing.

Generalised Assignment

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

(Pigatti, Aragão et al. 2005) This procedure is developed for the general assignment

problem. Upper bounds for the nodes of the search tree are obtained by solving a linear

program that inspects a k-opt neighbourhood in polynomial time. Ellipsoidal cuts that

define the neighbourhood are added to the linear problem. Ellipsoidal cuts are inspired

in the path relinking idea.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

121

Annex B – Computational Results for GRASP_B&B

Table B.1 Results by GRASP_B&B for Instances abz (Adams, Balas et al. 1988)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

abz5 10× 10 1234 1258 1312 1332 1358 1460 0.77 0.10

 (1.94) (6.32) (7.94) (10.05) (18.31)

abz6 10× 10 943 952 978.75 997 1012.5 1078 0.77 0.31

 (0.95) (3.79) (5.73) (7.37) (14.32)

abz7 15× 20 656 725 750.75 763 781 810 10.91 3.49

 (10.52) (14.44) (16.31) (19.05) (23.48)

abz8 15× 20 647 669 734 767 780 797.25 837 10.52 1.89

 (9.72) (14.65) (16.59) (19.17) (25.11)

abz9 15× 20 661 679 754 782.5 792 809 874 10.47 1.36

 (11.05) (15.24) (16.64) (19.15) (28.72)

Table B.2 Results by GRASP_B&B for Instances ft (Fisher and Thompson 1963)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ft06 6× 6 55 55 59 59 61 66 0.14 0.13

 (0.00) (7.27) (7.27) (10.91) (20.00)

ft10 10× 10 930 970 1026.75 1046 1073.25 1144 1.00 0.58

 (4.30) (10.40) (12.47) (15.40) (23.01)

ft20 20× 5 1165 1283 1304 1318 1365 1409 0.47 0.01

 (10.13) (11.93) (13.13) (17.17) (20.94)

Annex B

122

Table B.3 Results by GRASP_B&B for Instances la01-la10 (Lawrence 1984)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la01 10× 5 666 666 666 666 666 694 0.17 0.002

 (0.00) (0.00) (0.00) (0.00) (4.20)

la02 10× 5 655 667 712 722 722 835 0.16 0.04

 (1.83) (8.70) (10.23) (10.23) (27.48)

la03 10× 5 597 605 605 640 701 701 0.22 0.01

 (1.34) (1.34) (7.20) (17.42) (17.42)

la04 10× 5 590 607 610 648 648 672 0.17 0.01

 (2.88) (3.39) (9.83) (9.83) (13.90)

la05 10× 5 593 593 593 593 593 593 0.11 0.001

 (0.00) (0.00) (0.00) (0.00) (0.00)

la06 15× 5 926 926 926 926 926 926 0.17 0.002

 (0.00) (0.00) (0.00) (0.00) (0.00)

la07 15× 5 890 890 890 890 890 936 0.20 0.002

 (0.00) (0.00) (0.00) (0.00) (5.17)

la08 15× 5 863 863 863 880 921 976 0.30 0.01

 (0.00) (0.00) (1.97) (6.72) (13.09)

la09 15× 5 951 951 951 951 951 953 0.28 0.003

 (0.00) (0.00) (0.00) (0.00) (0.21)

la10 15× 5 958 958 958 958 958 958 0.14 0.001

 (0.00) (0.00) (0.00) (0.00) (0.00)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

123

Table B.4 Results by GRASP_B&B for Instances la11-la20 (Lawrence 1984)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la11 20× 5 1222 1222 1222 1222 1222 1284 0.27 0.003

 (0.00) (0.00) (0.00) (0.00) (5.07)

la12 20× 5 1039 1039 1039 1039 1039 1039 0.27 0.003

 (0.00) (0.00) (0.00) (0.00) (0.00)

la13 20× 5 1150 1150 1150 1150 1150 1223 0.38 0.004

 (0.00) (0.00) (0.00) (0.00) (6.35)

la14 20× 5 1292 1292 1292 1292 1292 1292 0.22 0.002

 (0.00) (0.00) (0.00) (0.00) (0.00)

la15 20× 5 1207 1207 1240 1295 1295 1295 0.91 0.05

 (0.00) (2.73) (7.29) (7.29) (7.29)

la16 10× 10 945 1012 1038.5 1049 1060 1099 0.74 0.02

 (7.09) (9.89) (11.01) (12.17) (16.30)

la17 10× 10 784 787 813.75 836.5 864.25 950 0.77 0.08

 (0.38) (3.79) (6.70) (10.24) (21.17)

la18 10× 10 848 854 879.25 895 924 1042 0.75 0.30

 (0.71) (3.69) (5.54) (8.96) (22.88)

la19 10× 10 842 861 893.75 917 940.5 1020 0.97 0.46

 (2.26) (6.15) (8.91) (11.70) (21.14)

la20 10× 10 902 920 960 976 1011.5 1080 0.81 0.08

 (2.00) (6.43) (8.20) (12.14) (19.73)

Annex B

124

Table B.5 Results by GRASP_B&B for Instances la21-la30 (Lawrence 1984)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la21 15× 10 1046 1092 1154 1177.5 1210.25 1286 2.05 0.10

 (4.40) (10.33) (12.57) (15.70) (22.94)

la22 15× 10 927 955 999 1029.5 1063.5 1192 1.80 0.99

 (3.02) (7.77) (11.06) (14.72) (28.59)

la23 15× 10 1032 1049 1089.25 1111 1136 1268 1.89 1.74

 (1.65) (5.55) (7.66) (10.08) (22.87)

la24 15× 10 935 971 1016 1030 1054.25 1104 1.84 0.63

 (3.85) (8.66) (10.16) (12.75) (18.07)

la25 15× 10 977 1027 1082.75 1100 1122.25 1226 1.80 0.54

 (5.12) (10.82) (12.59) (14.87) (25.49)

la26 20× 10 1218 1265 1321.75 1355 1376 1485 3.38 3.04

 (3.86) (8.52) (11.25) (12.97) (21.92)

la27 20× 10 1235 1308 1375 1399 1431.25 1538 3.56 0.18

 (5.91) (11.34) (13.28) (15.89) (24.53)

la28 20× 10 1216 1301 1360.75 1391 1413.25 1533 3.00 0.15

 (6.99) (11.90) (14.39) (16.22) (26.07)

la29 20× 10 1152 1248 1312.75 1339 1379 1466 3.30 0.86

 (8.33) (13.95) (16.23) (19.70) (27.26)

la30 20× 10 1355 1382 1432.75 1452.5 1477 1548 3.33 0.87

 (1.99) (5.74) (7.20) (9.00) (14.24)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

125

Table B.6 Results by GRASP_B&B for Instances la31-la40 (Lawrence 1984)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la31 30× 10 1784 1784 1806.75 1829.5 1866.25 2006 7.02 0.07

 (0.00) (1.28) (2.55) (4.61) (12.44)

la32 30× 10 1850 1850 1868.75 1906 1931 2024 6.24 0.56

 (0.00) (1.01) (3.03) (4.38) (9.41)

la33 30× 10 1719 1719 1729.75 1756.5 1797 1872 7.91 1.27

 (0.00) (0.63) (2.18) (4.54) (8.90)

la34 30× 10 1721 1721 1787 1812 1845.25 2025 8.28 3.81

 (0.00) (3.83) (5.29) (7.22) (17.66)

la35 30× 10 1888 1888 1901 1923 1978.25 2232 5.69 0.28

 (0.00) (0.69) (1.85) (4.78) (18.22)

la36 15× 15 1268 1325 1375.75 1395.5 1423.25 1521 4.27 0.09

 (4.50) (8.50) (10.06) (12.24) (19.95)

la37 15× 15 1397 1479 1538.75 1565.5 1597.25 1642 4.80 4.03

 (5.87) (10.15) (12.06) (14.33) (17.54)

la38 15× 15 1196 1274 1354.75 1381.5 1397.75 1471 5.11 0.72

 (6.52) (13.27) (15.51) (16.87) (22.99)

la39 15× 15 1233 1309 1352.75 1374 1404.25 1468 4.45 2.98

 (6.16) (9.71) (11.44) (13.89) (19.06)

la40 15× 15 1222 1291 1347 1369 1398.5 1451 5.39 3.56

 (5.65) (10.23) (12.03) (14.44) (18.74)

Annex B

126

Table B.7 Results by GRASP_B&B for Instances orb01-orb10 (Applegate and Cook
1991)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

orb01 10× 10 1059 1145 1181.75 1198 1219.25 1335 0.99 0.03

 (8.12) (11.59) (13.13) (15.13) (26.06)

orb02 10× 10 888 918 959.75 983 1013.25 1085 0.95 0.10

 (3.38) (8.08) (10.70) (14.10) (22.18)

orb03 10× 10 1005 1098 1135.5 1155.5 1184.25 1289 1.02 0.34

 (9.25) (12.99) (14.98) (17.84) (28.26)

orb04 10× 10 1005 1066 1120 1144.5 1183 1255 1.13 0.82

 (6.07) (11.44) (13.88) (17.71) (24.88)

orb05 10× 10 887 911 966.75 1001 1014.25 1117 0.88 0.11

 (2.71) (8.99) (12.85) (14.35) (25.93)

orb06 10× 10 1010 1050 1108 1134.5 1172 1282 1.05 0.48

 (3.96) (9.70) (12.33) (16.04) (26.93)

orb07 10× 10 397 414 436.5 448 455 503 1.06 0.28

 (4.28) (9.95) (12.85) (14.61) (26.70)

orb08 10× 10 899 945 975 999 1032.75 1125 1.03 0.31

 (5.12) (8.45) (11.12) (14.88) (25.14)

orb09 10× 10 934 978 1003.75 1021 1053.75 1177 0.91 0.28

 (4.71) (7.47) (9.31) (12.82) (26.02)

orb10 10× 10 944 991 1024.75 1040 1073 1232 0.84 0.23

 (4.98) (8.55) (10.17) (13.67) (30.51)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

127

Table B.8 Results by GRASP_B&B for Instances swv01-swv10 (Storer, Wu et al.
1992)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

swv01 20× 10 1407 1605 1688 1762 1806.75 1900 3.67 3.67

 (14.07) (19.97) (25.23) (28.41) (35.04)

swv02 20× 10 1475 1601 1696 1729 1776.5 1940 3.27 0.29

 (8.54) (14.98) (17.22) (20.44) (31.53)

swv03 20× 10 1369 1398 1582 1666.75 1704.5 1738.5 1964 3.49 1.50

 (13.16) (19.22) (21.92) (24.36) (40.49)

swv04 20× 10 1450 1483 1655 1737.5 1772.5 1816.25 1949 4.00 2.72

 (11.60) (17.16) (19.52) (22.47) (31.42)

swv05 20× 10 1424 1587 1660.75 1690 1718.25 1829 3.67 3.60

 (11.45) (16.63) (18.68) (20.66) (28.44)

swv06 20× 15 1591 1678 1895 1975 2012.5 2064.25 2240 10.78 8.09

 (12.93) (17.70) (19.93) (23.02) (33.49)

swv07 20× 15 1446 1620 1833 1881.75 1921 1953.75 2076 11.55 2.31

 (13.15) (16.16) (18.58) (20.60) (28.15)

swv08 20× 15 1640 1763 2001 2103.25 2150 2190 2318 11.03 9.05

 (13.50) (19.30) (21.95) (24.22) (31.48)

swv09 20× 15 1604 1663 1877 1984.75 2017.5 2088 2197 11.39 10.02

 (12.87) (19.35) (21.32) (25.56) (32.11)

swv10 20× 15 1631 1767 1978 2053.5 2102 2145 2288 10.06 4.43

 (11.94) (16.21) (18.96) (21.39) (29.49)

Annex B

128

Table B.9 Results by GRASP_B&B for Instances swv11-swv20 (Storer, Wu et al.
1992)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

swv11 50× 10 2983 2991 3366 3454.25 3498.5 3574 4047 62.36 8.73

 (12.54) (15.49) (16.97) (19.49) (35.31)

swv12 50× 10 2972 3003 3422 3520.75 3569 3621 4196 141.92 5.68

 (13.95) (17.24) (18.85) (20.58) (39.73)

swv13 50× 10 3104 3527 3601.25 3654 3698.25 4143 54.98 20.34

 (13.63) (16.02) (17.72) (19.14) (33.47)

swv14 50× 10 2968 3295 3362.25 3402.5 3469.5 4052 180.84 159.14

 (11.02) (13.28) (14.64) (16.90) (36.52)

swv15 50× 10 2885 2904 3329 3458.5 3565 3634.25 3994 113.17 73.56

 (14.63) (19.09) (22.76) (25.15) (37.53)

swv16 50× 10 2924 2924 2924 2924 2924 2962 9.67 0.10

 (0.00) (0.00) (0.00) (0.00) (1.30)

swv17 50× 10 2794 2794 2794 2798 2828 2949 16.97 0.68

 (0.00) (0.00) (0.14) (1.22) (5.55)

swv18 50× 10 2852 2852 2852 2852 2879 2985 15.61 0.16

 (0.00) (0.00) (0.00) (0.95) (4.66)

swv19 50× 10 2843 2843 2864 2904 2972.5 3168 30.27 2.12

 (0.00) (0.74) (2.15) (4.56) (11.43)

swv20 50× 10 2823 2823 2823 2846.5 2894.25 3045 17.39 0.87

 (0.00) (0.00) (0.83) (2.52) (7.86)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

129

Table B.10 Results by GRASP_B&B for Instances yn (Yamada and Nakano 1992)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

yn1 20× 20 826 888 955 996.75 1010.5 1031.25 1084 23.45 4.22

 (7.55) (12.25) (13.80) (16.13) (22.07)

yn2 20× 20 861 909 987 1035.75 1047 1060 1133 25.38 12.43

 (8.58) (13.94) (15.18) (16.61) (24.64)

yn3 20× 20 827 893 996 1029.75 1049 1068.5 1111 25.34 11.91

 (11.53) (15.31) (17.47) (19.65) (24.41)

yn4 20× 20 918 968 1060 1117.75 1132 1158 1209 23.89 20.07

 (9.50) (15.47) (16.94) (19.63) (24.90)

Annex B

130

Table B.11 Results by GRASP_B&B for Instances ta01-ta10 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta01 15× 15 1231 1332 1387 1413 1438.25 1556 5.56 0.28

 (8.20) (12.67) (14.78) (16.84) (26.40)

ta02 15× 15 1244 1313 1368.75 1394.5 1426.75 1499 5.52 4.96

 (5.55) (10.03) (12.10) (14.69) (20.50)

ta03 15× 15 1218 1278 1346.75 1370 1403.25 1488 5.41 4.11

 (4.93) (10.57) (12.48) (15.21) (22.17)

ta04 15× 15 1175 1249 1309 1330.5 1360.25 1518 6.16 3.45

 (6.30) (11.40) (13.23) (15.77) (29.19)

ta05 15× 15 1224 1310 1369 1393.5 1432 1579 5.81 0.87

 (7.03) (11.85) (13.85) (16.99) (29.00)

ta06 15× 15 1238 1308 1362.75 1396 1422.5 1535 5.94 0.77

 (5.65) (10.08) (12.76) (14.90) (23.99)

ta07 15× 15 1227 1299 1342 1364 1390.25 1549 5.14 2.31

 (5.87) (9.37) (11.17) (13.30) (26.24)

ta08 15× 15 1217 1306 1371 1389.5 1414.25 1523 5.95 2.80

 (7.31) (12.65) (14.17) (16.21) (25.14)

ta09 15× 15 1274 1395 1438 1465 1491 1614 6.11 1.59

 (9.50) (12.87) (14.99) (17.03) (26.69)

ta10 15× 15 1241 1332 1387 1413 1438.25 1556 5.52 0.28

 (7.33) (11.76) (13.86) (15.89) (25.38)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

131

Table B.12 Results by GRASP_B&B for Instances ta11-ta20 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta11 20× 15 1323 1361 1497 1571 1597.5 1626.25 1727 11.11 8.00

 (9.99) (15.43) (17.38) (19.49) (26.89)

ta12 20× 15 1351 1367 1511 1576.75 1590.5 1623.25 1709 11.77 3.41

 (10.53) (15.34) (16.35) (18.75) (25.02)

ta13 20× 15 1282 1342 1498 1559.5 1581.5 1618.25 1728 10.69 5.02

 (11.62) (16.21) (17.85) (20.58) (28.76)

ta14 20× 15 1345 1439 1496.75 1527.5 1569 1692 11.59 2.32

 (6.99) (11.28) (13.57) (16.65) (25.80)

ta15 20× 15 1304 1340 1511 1576.25 1602 1639 1732 12.44 4.35

 (12.76) (17.63) (19.55) (22.31) (29.25)

ta16 20× 15 1302 1360 1486 1551.75 1571.5 1609.25 1677 11.20 5.94

 (9.26) (14.10) (15.55) (18.33) (23.31)

ta17 20× 15 1462 1600 1661 1693.5 1713 1911 9.39 7.70

 (9.44) (13.61) (15.83) (17.17) (30.71)

ta18 20× 15 1369 1396 1543 1623 1652 1677.25 1782 12.20 7.57

 (10.53) (16.26) (18.34) (20.15) (27.65)

ta19 20× 15 1297 1335 1463 1542 1574 1616 1740 11.53 7.26

 (9.59) (15.51) (17.90) (21.05) (30.34)

ta20 20× 15 1318 1351 1498 1549 1580 1617 1686 11.56 6.24

 (10.88) (14.66) (16.95) (19.69) (24.80)

Annex B

132

Table B.13 Results by GRASP_B&B for Instances ta21-ta20 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta21 20× 20 1539 1644 1810 1894.5 1936 1970.25 2144 20.97 11.11

 (10.10) (15.24) (17.76) (19.84) (30.41)

ta22 20× 20 1511 1600 1792 1832.75 1865 1903 1989 22.48 6.07

 (12.00) (14.55) (16.56) (18.94) (24.31)

ta23 20× 20 1472 1557 1708 1768.75 1801 1839.25 1947 22.08 16.12

 (9.70) (13.60) (15.67) (18.13) (25.05)

ta24 20× 20 1602 1647 1778 1864.75 1894.5 1925.25 2014 19.19 17.08

 (7.95) (13.22) (15.03) (16.89) (22.28)

ta25 20× 20 1504 1595 1746 1830.75 1876 1913.5 1992 20.41 16.12

 (9.47) (14.78) (17.62) (19.97) (24.89)

ta26 20× 20 1539 1645 1768 1863.75 1907 1950.25 2027 17.84 2.68

 (7.48) (13.30) (15.93) (18.56) (23.22)

ta27 20× 20 1616 1680 1839 1923.75 1954 1988.25 2149 19.84 17.86

 (9.46) (14.51) (16.31) (18.35) (27.92)

ta28 20× 20 1591 1614 1755 1837.5 1871 1908.75 2016 22.31 19.19

 (8.74) (13.85) (15.92) (18.26) (24.91)

ta29 20× 20 1514 1625 1717 1835.75 1864 1898.25 2012 20.16 6.25

 (5.66) (12.97) (14.71) (16.82) (23.82)

ta30 20× 20 1473 1584 1737 1800.75 1827.5 1852.5 1960 17.55 6.49

 (9.66) (13.68) (15.37) (16.95) (23.74)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

133

Table B.14 Results by GRASP_B&B for Instances ta31-ta40 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta31 30× 15 1764 1976 2059.75 2099.5 2135 2322 30.61 14.39

 (12.02) (16.77) (19.02) (21.03) (31.63)

ta32 30× 15 1774 1796 2029 2132.5 2165.5 2205 2356 30.61 23.88

 (12.97) (18.74) (20.57) (22.77) (31.18)

ta33 30× 15 1778 1793 2070 2171.25 2204 2265 2336 31.92 18.20

 (15.45) (21.10) (22.92) (26.32) (30.28)

ta34 30× 15 1828 1829 2024 2114.25 2156 2186 2287 33.67 32.33

 (10.66) (15.60) (17.88) (19.52) (25.04)

ta35 30× 15 2007 2093 2174.25 2208 2250.25 2454 35.30 13.41

 (4.29) (8.33) (10.01) (12.12) (22.27)

ta36 30× 15 1819 2040 2124.5 2153.5 2204.25 2307 30.53 3.97

 (12.15) (16.79) (18.39) (21.18) (26.83)

ta37 30× 15 1771 1778 1967 2099.75 2136 2184.5 2408 29.03 15.39

 (10.63) (18.10) (20.13) (22.86) (35.43)

ta38 30× 15 1673 1913 1976.75 2003.5 2046.25 2188 34.00 12.58

 (14.35) (18.16) (19.75) (22.31) (30.78)

ta39 30× 15 1795 1966 2069.25 2107.5 2144 2321 31.38 13.49

 (9.53) (15.28) (17.41) (19.44) (29.30)

ta40 30× 15 1631 1674 1931 2012 2047.5 2077.25 2218 33.99 0.34

 (15.35) (20.19) (22.31) (24.09) (32.50)

Annex B

134

Table B.15 Results by GRASP_B&B for Instances ta41-ta50 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta41 30× 20 1859 2018 2348 2413.75 2458 2494 2638 61.11 0.61

 (16.35) (19.61) (21.80) (23.59) (30.72)

ta42 30× 20 1867 1956 2206 2301.75 2341 2374.25 2513 62.33 49.24

 (12.78) (17.68) (19.68) (21.38) (28.48)

ta43 30× 20 1809 1859 2155 2228.5 2254 2294.5 2395 72.70 50.89

 (15.92) (19.88) (21.25) (23.43) (28.83)

ta44 30× 20 1927 1984 2300 2382.5 2418 2466 2577 64.80 11.66

 (15.93) (20.09) (21.88) (24.29) (29.89)

ta45 30× 20 1997 2000 2295 2358 2380 2410.25 2581 70.83 34.71

 (14.75) (17.90) (19.00) (20.51) (29.05)

ta46 30× 20 1940 2021 2314 2399.5 2438 2481 2660 64.11 25.64

 (14.50) (18.73) (20.63) (22.76) (31.62)

ta47 30× 20 1789 1903 2151 2260.5 2299.5 2345.75 2443 63.99 63.35

 (13.03) (18.79) (20.84) (23.27) (28.38)

ta48 30× 20 1912 1952 2222 2325.5 2360 2407.5 2565 63.22 60.06

 (13.83) (19.13) (20.90) (23.34) (31.40)

ta49 30× 20 1915 1968 2250 2349.5 2390 2425 2560 65.27 11.75

 (14.33) (19.39) (21.44) (23.22) (30.08)

ta50 30× 20 1807 1928 2264 2347.5 2387 2431 2633 63.30 13.29

 (17.43) (21.76) (23.81) (26.09) (36.57)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

135

Table B.16 Results by GRASP_B&B for Instances ta51-ta60 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta51 50× 15 2760 3001 3149 3227 3294 3587 139.88 65.74

 (8.73) (14.09) (16.92) (19.35) (29.96)

ta52 50× 15 2756 2940 3136 3216 3276.5 3590 128.36 119.37

 (6.68) (13.79) (16.69) (18.89) (30.26)

ta53 50× 15 2717 2895 2998 3031.5 3072.5 3219 116.94 87.70

 (6.55) (10.34) (11.58) (13.08) (18.48)

ta54 50× 15 2839 2914 3024.75 3092.5 3133.75 3280 112.55 15.76

 (2.64) (6.54) (8.93) (10.38) (15.53)

ta55 50× 15 2679 2988 3133 3178 3247.5 3440 144.66 56.42

 (11.53) (16.95) (18.63) (21.22) (28.41)

ta56 50× 15 2781 2966 3122.75 3167 3230.25 3437 131.38 3.94

 (6.65) (12.29) (13.88) (16.15) (23.59)

ta57 50× 15 2943 3101 3213.5 3256.5 3320.5 3485 106.42 27.67

 (5.37) (9.19) (10.65) (12.83) (18.42)

ta58 50× 15 2885 3103 3214.5 3273 3326.25 3438 146.91 104.30

 (7.56) (11.42) (13.45) (15.29) (19.17)

ta59 50× 15 2655 2940 3038.25 3090 3139.5 3294 124.30 119.33

 (10.73) (14.44) (16.38) (18.25) (24.07)

ta60 50× 15 2723 2921 3048.5 3104 3160 3339 121.80 86.48

 (7.27) (11.95) (13.99) (16.05) (22.62)

Annex B

136

Table B.17 Results by GRASP_B&B for Instances ta61-ta70 (Taillard 1993)

name n× m LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

ta61 50× 20 2868 3258 3369.5 3424 3484 3649 285.50 216.98

 (13.60) (17.49) (19.39) (21.48) (27.23)

ta62 50× 20 2869 2872 3306 3444 3493.5 3544 3730 311.99 293.27

 (15.11) (19.92) (21.64) (23.40) (29.87)

ta63 50× 20 2755 3130 3218.75 3273 3324.25 3487 315.13 302.52

 (13.61) (16.83) (18.80) (20.66) (26.57)

ta64 50× 20 2702 3008 3180.25 3230 3287.75 3431 289.84 153.62

 (11.32) (17.70) (19.54) (21.68) (26.98)

ta65 50× 20 2725 3104 3242.5 3286 3339 3569 323.23 42.02

 (13.91) (18.99) (20.59) (22.53) (30.97)

ta66 50× 20 2845 3198 3320 3361 3415.5 3585 317.16 63.43

 (12.41) (16.70) (18.14) (20.05) (26.01)

ta67 50× 20 2825 3209 3339 3389.5 3435.25 3578 273.34 46.47

 (13.59) (18.19) (19.98) (21.60) (26.65)

ta68 50× 20 2784 3133 3235.75 3283 3337.5 3542 268.78 223.09

 (12.54) (16.23) (17.92) (19.88) (27.23)

ta69 50× 20 3071 3366 3447.5 3517 3576 3739 259.17 33.69

 (9.61) (12.26) (14.52) (16.44) (21.75)

ta70 50× 20 2995 3449 3528.75 3582 3633.25 3815 279.52 58.70

 (15.16) (17.82) (19.60) (21.31) (27.38)

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

137

Annex C – Computational Results for Tabu_VVI

C.1 Computational Results per Variant of Tabu_VVI

Table C.1 Results by Tabu_VVI: variants tabu_mvfct, tabu_mv_bb and tabu_mv2_bb,

for all groups of instances, in average percentage of the relative error to the lower

bound, and the average time to the best, in seconds.

sets of tabu_mvfct tabu_mv_bb tabu_mv2_bb

instances)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 1.96 101.25 1.93 61.02 2.02 91.79

ft 0 0.96 0 0.58 0.29 8.41

la01-05 0 0.08 0 0.12 0.15 2.71

la06-10 0 0.03 0 0.03 0 1.00

la11-15 0 0.04 0 0.05 0 1.05

la16-20 0 2.67 0 1.67 0 0.18

la21-25 0.18 22.92 0.06 14.80 0.17 0.08

la26-30 0.28 67.26 0.26 40.88 0.61 0.03

la31-35 0 0.39 0 0.39 0 0.04

la36-40 0.39 65.02 0.22 33.50 0.48 0.05

orb 0.24 8.59 0.09 14.13 0.20 19.19

swv01-05 3.14 44.28 2.93 120.43 2.74 136.59

swv06-10 8.94 228.20 9.51 204.27 9.33 184.44

swv11-15 2.00 1045.08 2.03 825.21 1.96 1177.78

swv16-20 0 1.62 0 1.64 0 2.94

yn 7.71 341.02 7.91 73.61 7.42 336.11

ta01-10 0.74 37.78 0.81 67 0.75 124.58

ta11-20 3.66 101.22 3.70 86.60 3.70 307.70

ta21-30 6.57 289.45 6.60 269.97 6.56 479.69

ta31-40 1.69 386.45 1.60 258.49 1.92 463.43

ta41-50 6.12 1565.28 5.88 559.71 6.48 792.06

best

min

only min

sum RELB

sum time

42+13
42+21

7
305.38

33148.74

42+13
42+25

6
303.21
19375.1

42+5
42+15

7
313.97
31840.4

Annex C

138

Table C.2 Results by Tabu_VVI: variants tabu_mvinf_bb, tabu_mvinf and

tabu_mvinf_ls2, for all groups of instances, in average percentage of the relative error to

the lower bound, and the average time to the best, in seconds.

sets of tabu_mvinf_bb tabu_mvinf tabu_mvinf_ls2

instances)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 1.93 98.82 2.11 63.77 2.38 70.58

ft 0.25 10.61 0 11.72 0 3.47

la01-05 0 0.29 0 0.12 0 0.52

la06-10 0 0.02 0 0.02 0 0.02

la11-15 0 0.05 0 0.04 0 0.04

la16-20 0 2.27 0 1.79 0 4.98

la21-25 0.10 27.16 0.11 23.13 0.30 14.59

la26-30 0.32 19.75 0.29 54.12 0.44 18.21

la31-35 0 0.39 0 0.38 0 0.28

la36-40 0.47 36.55 0.47 22.68 0.37 66.54

orb 0.24 11.63 0.23 7.00 0.22 19.09

swv01-05 2.91 86.32 2.89 88.05 3.30 66.16

swv06-10 9.65 160.14 8.89 336.94 9.59 127.20

swv11-15 1.85 1178.17 1.78 1734.51 3.38 1222.52

swv16-20 0 1.60 0 1.58 0 1.67

yn 7.81 160.66 7.49 339.33 8.09 168.35

ta01-10 0.97 70.11 0.63 77.72 0.44 126.27

ta11-20 3.65 132.14 3.47 54.20 3.90 137.72

ta21-30 6.63 281.16 6.51 319.27 6.53 253.49

ta31-40 1.69 288.37 1.79 230.90 2.09 144.51

ta41-50 5.97 542.74 6.04 650.87 6.34 543.96

best 42+5 42+7 42+11

min 42+11 42+20 42+16

only min 3 6 2

sum RELB 309.66 299.34 326.31

sum time 21993.68 26427.78 20900.69

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

139

Table C.3 Results by Tabu_VVI: variants tabu_mvinf_ls2_bb, tabu_mvhp_bb and

tabu_mvinfhp_bb, for all groups of instances, in average percentage of the relative error

to the lower bound, and the average time to the best, in seconds.

sets of tabu_mvinf_ls2_bb tabu_mvhp_bb tabu_mvinfhp_bb

instances)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 2.05 41.15 1.99 31.38 2.02 45.50

ft 0 15.28 0 16.03 0.22 22.96

la01-05 0 0.14 0 0.65 0 0.81

la06-10 0 0.02 0 0.03 0 0.03

la11-15 0 0.05 0 0.05 0 0.05

la16-20 0 1.89 0 1.19 0 1.37

la21-25 0.30 17.90 0.13 28.93 0.17 38.57

la26-30 0.37 39.72 0.44 29.31 0.38 37.18

la31-35 0 0.28 0 0.28 0 0.28

la36-40 0.47 77.70 0.35 117.26 0.44 82.79

orb 0.08 10.09 0.13 9.08 0.12 14.27

swv01-05 3.14 111.25 3.67 58.60 3.63 106.14

swv06-10 9.57 230.26 9.43 272.72 9.61 459.59

swv11-15 3.13 1801.37 3.57 938.57 3.57 1927.01

swv16-20 0 1.69 0 1.65 0 1.67

yn 7.67 175.71 7.70 385.95 7.65 517.77

ta01-10 0.67 58.97 0.86 61.24 0.71 94.45

ta11-20 3.84 113.06 3.80 155.71 3.65 200.22

ta21-30 6.68 311.53 6.58 353.00 6.50 404.12

ta31-40 1.78 438.35 1.94 483.48 1.94 734.99

ta41-50 6.12 678.36 6.22 1040.26 6.34 1657.02

best 42+10 42+11 42+10

min 42+17 42+16 42+15

only min 3 2 1

sum RELB 317.58 324.05 323.01

sum time 28469.35 30022.66 46695.71

Annex C

140

Table C.4 Results by Tabu_VVI: variants tabu_mvinfhp, tabu_mv-2infhp_bb and

tabu_mv-2infhp, for all groups of instances, in average percentage of the relative error

to the lower bound, and the average time to the best, in seconds.

sets of tabu_mvinfhp tabu_mv-2infhp_bb tabu_mv-2infhp

instances)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 2.05 234.93 2.31 126.66 1.99 243.72

ft 0 10.20 0 19.33 0 20.27

la01-05 0.21 0.76 0.31 0.65 0.31 0.37

la06-10 0 0.02 0 0.03 0 0.02

la11-15 0 0.05 0 0.05 0 0.05

la16-20 0 1.94 0 3.70 0 4.07

la21-25 0.15 33.13 0.47 11.24 0.32 24.81

la26-30 0.51 59.45 0.51 25.89 0.57 33.67

la31-35 0 0.28 0 0.28 0 0.28

la36-40 0.32 94.22 0.37 115.45 0.34 86.66

orb 0.11 22.88 0.19 13.37 0.38 12.22

swv01-05 3.78 97.06 3.66 87.37 3.88 154.34

swv06-10 9.44 374.73 9.44 325.15 9.69 359.73

swv11-15 3.58 916.70 3.83 852.87 4.67 695.72

swv16-20 0 1.68 0 1.66 0 1.68

yn 7.55 535.12 7.27 884.28 7.40 331.62

ta01-10 0.72 66.52 0.53 116.72 1.07 89.92

ta11-20 3.93 175.50 3.91 171.58 3.74 199.32

ta21-30 6.67 331.22 6.75 305.97 6.77 220.15

ta31-40 1.76 346.80 2.50 288.25 2.63 504.83

ta41-50 6.21 770.22 6.44 1052.20 6.45 1395.33

best 42+9 42+7 42+5

min 42+16 42+12 42+8

only min 2 1 2

sum RELB 324.56 336.69 348.78

sum time 28377.25 30830.93 33630.7

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

141

Table C.5 Results by Tabu_VVI: variants tabuls_mvinfhp_bb, tabuls_mvinfhp and

tabuls_mv_infhp_bb, for all groups of instances, in average percentage of the relative

error to the lower bound, and the average time to the best, in seconds.

sets of tabuls_mvinfhp_bb tabuls_mvinfhp tabuls_mv_infhp_bb

instances)(LBREavg)(timeavg)(LBREavg)(timeavg)(LBREavg)(timeavg

abz 2.14 213.46 2.05 135.99 1.99 168.58

ft 0.39 6.22 0 11.42 0.39 11.81

la01-05 0 0.26 0 0.27 0 0.24

la06-10 0 0.02 0 0.03 0 0.03

la11-15 0 0.04 0 0.05 0 0.05

la16-20 0 1.46 0 1.32 0.10 2.62

la21-25 0.26 36.28 0.15 54.33 0.19 32.25

la26-30 0.43 75.97 0.51 95.08 0.73 31.35

la31-35 0 0.28 0 0.28 0 0.28

la36-40 0.28 124.86 0.47 80.35 0.49 120.56

orb 0.20 16.09 0.21 8.76 0.30 13.71

swv01-05 3.30 74.40 3.22 242.76 3.01 168.02

swv06-10 9.62 274.74 9.29 433.36 9.26 351.11

swv11-15 3.85 1026.71 3.37 1288.44 3.53 2292.86

swv16-20 0 1.66 0 1.65 0 1.69

yn 7.79 546.28 8.29 177.33 7.73 369.16

ta01-10 0.76 112.56 0.74 109.28 0.73 78.47

ta11-20 3.65 240.18 3.70 192.82 3.84 137.21

ta21-30 6.75 279.74 6.56 482.34 6.49 211.82

ta31-40 1.86 567.03 1.93 672.53 1.98 138.78

ta41-50 6.11 1487.36 6.17 602.63 6.20 1002.99

best 42+6 42+6 42+5

min 42+9 42+10 42+11

only min 1 4 3

sum RELB 325.08 321.47 324.08

sum time 38384.13 33096.74 33190.08

Annex C

142

C.2 Computational Results of Tabu_VVI per Instance

Table C.6 Best Results by Tabu_VVI for Instances abz (Adams, Balas et al. 1988)

instance size bk_UB Tabu_VVI time # variants

abz5 10×10 1234 1234 1.03 19

abz6 10×10 943 943 ≅ 0 35

abz7 20×15 656 663 272.41 1

abz8 20×15 669 672 3.86 2

abz9 20×15 679 685 129.98 3

Table C.7 Best Results by Tabu_VVI for Instances ft (Fisher and Thompson 1963)

instance size bk_UB Tabu_VVI time # variants

ft06 6×6 55 55 ≅ 0 35

ft10 10×10 930 930 0.45 21

ft20 20×5 1165 1165 ≅ 0 32

Table C.8 Best Results by Tabu_VVI for Instances la01-la10 (Lawrence 1984)

instance size bk_UB Tabu_VVI time # variants

la01 10×5 666 666 ≅ 0 35

la02 10×5 655 655 ≅ 0 30

la03 10×5 597 597 0.08 35

la04 10×5 590 590 0.06 35

la05 10×5 593 593 ≅ 0 35

la06 15×5 926 926 0.02 35

la07 15×5 890 890 0.02 35

la08 15×5 863 863 0.03 35

la09 15×5 951 951 0.03 35

la10 15×5 958 958 0.02 35

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

143

Table C.9 Best Results by Tabu_VVI for Instances la11-la20 (Lawrence 1984)

instance size bk_UB Tabu_VVI time # variants

la11 20×5 1222 1222 0.03 35

la12 20×5 1039 1039 0.02 35

la13 20×5 1150 1150 0.03 35

la14 20×5 1292 1292 0.02 35

la15 20×5 1207 1207 0.09 35

la16 10×10 945 945 0.75 35

la17 10×10 784 784 0.44 35

la18 10×10 848 848 ≅ 0 35

la19 10×10 842 842 0.36 30

la20 10×10 902 902 0.66 33

Table C.10 Best Results by Tabu_VVI for Instances la21-la30 (Lawrence 1984)

instance size bk_UB Tabu_VVI time # variants

la21 15×10 1046 1046 26.13 8

la22 15×10 927 927 3.95 23

la23 15×10 1032 1032 ≅ 0 35

la24 15×10 935 935 1.95 1

la25 15×10 977 977 7.69 6

la26 20×10 1218 1218 ≅ 0 35

la27 20×10 1235 1235 249.80 1

la28 20×10 1216 1216 2.53 34

la29 20×10 1153 1163 164.64 1

la30 20×10 1355 1355 ≅ 0 35

Annex C

144

Table C.11 Best Results by Tabu_VVI for Instances la31-la40 (Lawrence 1984)

instance size bk_UB Tabu_VVI time # variants

la31 30×10 1784 1784 ≅ 0 35

la32 30×10 1850 1850 0.78 35

la33 30×10 1719 1719 ≅ 0 35

la34 30×10 1721 1721 ≅ 0 35

la35 30×10 1888 1888 0.55 35

la36 15×15 1268 1268 2.16 15

la37 15×15 1397 1397 68.17 1

la38 15×15 1196 1196 154.42 1

la39 15×15 1233 1233 30.61 12

la40 15×15 1222 1225 30.06 2

Table C.12 Best Results by Tabu_VVI for Instances orb01-orb10 (Applegate and Cook
1991)

instance size bk_UB Tabu_VVI time # variants

orb01 10×10 1059 1059 2.47 32

orb02 10×10 888 888 11.17 4

orb03 10×10 1005 1005 ≅ 0 16

orb04 10×10 1005 1005 8.33 9

orb05 10×10 887 887 12.56 8

orb06 10×10 1010 1010 2.42 15

orb07 10×10 397 397 0.97 35

orb08 10×10 899 899 ≅ 0 14

orb09 10×10 934 934 4.19 28

orb10 10×10 944 944 0.88 35

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

145

Table C.13 Best Results by Tabu_VVI for Instances swv01-swv10 (Storer, Wu et al.
1992)

instance size bk_UB Tabu_VVI time # variants

swv01 20×10 1407 1433 113.89 1

swv02 20×10 1475 1485 143.23 2

swv03 20×10 1398 1430 93.89 1

swv04 20×10 1483 1492 105.50 1

swv05 20×10 1424 1449 183.03 1

swv06 20×15 1678 1700 417.69 1

swv07 20×15 1620 1624 423.06 1

swv08 20×15 1763 1792 83.95 1

swv09 20×15 1663 1675 382.45 1

swv10 20×15 1767 1765 101.06 1

Table C.14 Best Results by Tabu_VVI for Instances swv11-swv20 (Storer, Wu et al.
1992)

instance size bk_UB Tabu_VVI time # variants

swv11 50×10 2991 3011 2138.31 1

swv12 50×10 3003 3041 2309.63 1

swv13 50×10 3104 3129 2023.23 1

swv14 50×10 2968 2979 774.42 1

swv15 50×10 2904 2961 2027.30 1

swv16 50×10 2924 2924 1.09 35

swv17 50×10 2794 2794 1.13 35

swv18 50×10 2852 2852 1.14 35

swv19 50×10 2843 2843 2.70 35

swv20 50×10 2823 2823 1.86 35

Table C.15 Best Results by Tabu_VVI for Instances yn (Yamada and Nakano 1992)

instance size bk_UB Tabu_VVI time # variants

yn1 20×20 888 890 121.45 4

yn2 20×20 909 911 158.27 1

yn3 20×20 893 897 163.81 1

yn4 20×20 968 973 212.25 2

Annex C

146

Table C.16 Best Results by Tabu_VVI for Instances ta01-ta10 (Taillard 1993)

instance size bk_UB Tabu_VVI time # variants

ta01 15×15 1231 1244 119.11 2

ta02 15×15 1244 1244 20.99 19

ta03 15×15 1218 1218 75.49 2

ta04 15×15 1175 1175 34.88 1

ta05 15×15 1224 1228 7.98 3

ta06 15×15 1238 1241 10.05 6

ta07 15×15 1227 1228 10.81 28

ta08 15×15 1217 1217 26.11 9

ta09 15×15 1274 1280 70.69 8

ta10 15×15 1241 1244 119.14 2

Table C.17 Best Results by Tabu_VVI for Instances ta11-ta20 (Taillard 1993)

instance size bk_UB Tabu_VVI time # variants

ta11 20×15 1361 1370 380.42 2

ta12 20×15 1367 1374 24.41 2

ta13 20×15 1342 1359 33.75 3

ta14 20×15 1345 1345 14.81 16

ta15 20×15 1340 1356 101.67 1

ta16 20×15 1360 1365 103.84 1

ta17 20×15 1462 1477 88.91 2

ta18 20×15 1396 1417 28.16 1

ta19 20×15 1335 1343 51.75 3

ta20 20×15 1351 1358 944.70 1

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

147

Table C.18 Best Results by Tabu_VVI for Instances ta21-ta30 (Taillard 1993)

instance size bk_UB Tabu_VVI time # variants

ta21 20×20 1644 1650 332.92 1

ta22 20×20 1600 1609 605.67 2

ta23 20×20 1557 1568 579.52 2

ta24 20×20 1647 1649 253.78 2

ta25 20×20 1595 1599 171.79 1

ta26 20×20 1645 1661 570.95 1

ta27 20×20 1680 1686 51.91 1

ta28 20×20 1614 1619 201.19 3

ta29 20×20 1625 1629 151.88 4

ta30 20×20 1584 1599 270.59 2

Table C.19 Best Results by Tabu_VVI for Instances ta31-ta40 (Taillard 1993)

instance size bk_UB Tabu_VVI time # variants

ta31 30×15 1764 1766 61.22 5

ta32 30×15 1796 1818 393.02 1

ta33 30×15 1793 1812 271.77 2

ta34 30×15 1829 1835 806.25 1

ta35 30×15 2007 2007 ≅ 0 35

ta36 30×15 1819 1825 71.97 3

ta37 30×15 1778 1795 152.06 1

ta38 30×15 1673 1688 107.59 1

ta39 30×15 1795 1806 256.78 1

ta40 30×15 1674 1704 85.56 1

Annex C

148

Table C.20 Best Results by Tabu_VVI for Instances ta41-ta50 (Taillard 1993)

instance size bk_UB Tabu_VVI time # variants

ta41 30×20 2018 2035 3020.31 1

ta42 30×20 1956 1974 146.45 1

ta43 30×20 1859 1890 532.92 2

ta44 30×20 1984 2009 1257.19 1

ta45 30×20 2000 2014 857.19 1

ta46 30×20 2021 2045 316.70 1

ta47 30×20 1903 1933 1361.02 2

ta48 30×20 1952 1984 310.14 1

ta49 30×20 1968 1998 1829.97 1

ta50 30×20 1928 1958 530.20 2

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

149

References

Adams, J., E. Balas, et al. (1988). "The Shifting Bottleneck Procedure for Job Shop
Scheduling." Management Science 34(3): 391-401.

Adda, J. and R. Cooper (2003). Dynamic Economics, MIT Press.
Aggarwal, C. C., J. B. Orlin, et al. (1997). "An optimized crossover for the maximum

independent set." Operations Research 45: 226-234.
Ahuja, R. K., O. Ergun, et al. (2002). "A survey of very large-scale neighborhood

search techniques." Discrete Applied Mathematics 123(1-3): 75-102.
Ahuja, R. K., J. B. Orlin, et al. (2000). "Very large-scale neighbourhood search."

International Transactions in Operational Research: 301-317.
Aiex, R. M., S. Binato, et al. (2003). "Parallel GRASP with Path-relinking for Job Shop

Scheduling." Parallel Computing 29(4): 393-430.
Akker, J. V. d., C. Hurkens, et al. (2000). "Time-indexed formulation for machine

scheduling problems: column generation." INFORMS Journal on Computing 12:
111-124.

Alvim, A. C. F., C. C. Ribeiro, et al. (2003). A hybrid improvement heuristic for the
one-dimensional bin packing problem. Rio de Janeiro, Catholic University
Department of Computer Science.

Amin, S. (1999). "Simulated Jumping." Annals of Operations Research 86: 23-28.
Applegate, D., R. Bixby, et al. (1999). Finding Tours in the TSP. Bonn, Germany,

Forschungsinstitut für Diskrete Mathematik, University of Bonn.
Applegate, D. and W. Cook (1991). "A Computational Study of the Job-Shop

Scheduling Problem." ORSA Journal on Computing 3(2): 149-156.
Ausiello, G., P. Crescenzi, et al. (1999). Complexity and Approximation: Combinatorial

Optimization Problems and Their Approximability Properties. Berlin
Heidelberg, Springer-Verlag.

Balas, E. (1985). "On the Facial Structure of Scheduling Polyhedra." Mathematical
Programming Study 24: 179-218.

Balas, E. (1998). "Disjunctive programming: Properties of the convex hull of feasible
points." Discrete Applied Mathematics 89: 3-44.

Balas, E., S. Ceria, et al. (1996). "Mixed 0-1 programming by lift-and-project in a
branch-and-cut framework." Management Science 42: 1229-1246.

Balas, E. and W. Niehaus (1998). "Optimized crossover-based genetic algorithms for
the maximum cardinality and maximum weight clique problems." Journal of
Heuristics 4(2): 107-122.

Balas, E. and A. Vazacopoulos (1998). "Guided Local Search with Shifting Bottleneck
for Job Shop Scheduling." Management Science 44(2): 262-275.

Barnhart, C., C. Hane, et al. (2000). "Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems." Operations Research 40:
318-326.

Barnhart, C., E. L. Johnson, et al. (1998). "Branch-and-price: Column generation for
solving huge integer programs." Operations Research 46(3): 316-329.

Battiti, R. and G. Tecchiolli (1994). "The reactive tabu search." ORSA Journal on
Computing 6(2): 126-140.

Bellman, R. (1957). Dynamic Programming. Princeton, N. J., Princeton University
Press.

References

150

Bennell, J. A. and K. A. Dowsland (2001). "Hybridizing Tabu Search with Optimization
Techniques for Irregular Stock Cutting." Management Science 47(8): 1160-
1172.

Bertsekas, D. P. (2000). Dynamic Programming and Optimal Control, Athena
Scientific.

Binato, S., W. J. Hery, et al. (2002). A GRASP for Job Shop Scheduling. Essays and
Surveys on Metaheuristics C. Ribeiro and P. Hansen, Kluwer Academic
Publishers: 59-79.

Blum, C. and A. Roli (2003). "Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison." ACM Computing Surveys 35(3): 268-308.

Boyd, E. A. (1994). "Fenchel Cutting Planes for Integer Programs." Operations
Research 42: 53-64.

Büdenbender, K., T. Grünert, et al. (2000). "A hybrid tabu search/branch-and-bound
algorithm for the direct flight network design problem." Transportation Science
34(4): 364-380.

Burke, E. K., P. I. Cowling, et al. (2001). Effective local and guided variable
neighborhood search methods for the asymmetric travelling salesman problem.
Applications of Evolutionary Computing: EvoWorkshops 2001. E. Boers,
Springer. 2037: 203-212.

Carlier, J. (1982). "The one-machine sequencing problem." European Journal of
Operational Research 11: 42-47.

Carlier, J. and E. Pinson (1989). "An Algorithm for Solving the Job-Shop Problem."
Management Science 35(2): 164-176.

Carlier, J. and E. Pinson (1994). "Adjustments of heads and tails for the job-shop
problem." European Journal of Operational Research 78: 146-161.

Caseau, Y. and F. Laburthe (1995). Disjunctive scheduling with task intervals. Paris,
France, Ecole Normale Supérieure Paris.

Cerny, V. (1985). "A Thermodynamical Approach to the Travelling Salesman Problem:
An Efficient Simulation Algorithm." Journal of Optimization Theory and
Applications 45: 41-51.

Chen, B., C. N. Potts, et al. (1998). A Review of Machine Scheduling: Complexity,
Algorithms and Approximability. Handbook of Combinatorial Optimization. D.
Z. Du and P. M. Pardalos, Kluwer Academic Publishers. 3: 21-169.

Chen, S., S. Talukdar, et al. (1993). Job-shop-scheduling by a team of asynchronous
agent. IJCAI-93 Workshop on Knowledge-Based Production, Scheduling and
Control, Chambery, France.

Chu, P. C. and J. E. Beasley (1998). "A Genetic Algorithm for the Multidimensional
Knapsack Problem." Journal of Heuristics 4: 63-86.

Chvátal, V. (1973). "Edmonds polytopes and hierarchy of combinatorial problems."
Discrete Mathematics 4: 305-337.

Clements, D. P., J. M. Crawford, et al. (1997). Heuristic Optimization: A hybrid AI/OR
approach. Workshop on Industrial Constraint-Directed Scheduling.

Congram, R. K. (2000). Polynomially Searchable Exponential Neighbourhoods for
Sequencing Problems in Combinatorial Optimisation. Faculty of Mathematical
Studies. UK, University of Southampton.

Congram, R. K., C. N. Potts, et al. (2002). "An Iterated Dynasearch Algorithm for the
Single-Machine Total Weighted Tardiness Scheduling Problem." INFORMS
Journal on Computing 14(1): 52-67.

Cook, W. and P. Seymour (2003). "Tour merging via branch-decomposition."
INFORMS Journal on Computing 15(3): 233-248.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

151

Cotta, C. (1998). "A study of hybridisation techniques and their application." IEEE
Transactions on Evolutionary Computation 1(1): 223-224.

Cotta, C., E. G. Talbi, et al. (2005). Parallel hybrid metaheuristics. Parallel
Metaheuristics, a New Class of Algorithms. E. Alba, John Wiley: 347-370.

Cotta, C. and J. M. Troya (2003). "Embedding Branch and Bound within Evolutionary
Algorithms." Applied Intelligence 18: 137-153.

Cowling, P. I. and R. Keuthen (2005). "Embedded local search approaches for routing
optimization." Computers and Operations Research 32(3): 465-490.

Crowder, H. P., E. L. Johnson, et al. (1983). "Solving large-scale zero-one linear
programming problems." Operations Research 31: 803-834.

Cung, V.-D., T. Mautor, et al. (1997). A Scatter Search Based Approach for the
Quadratic Assignment Problem IEEE International Conference on Evolutionary
Computation and Evolutionary Programming, Indianapolis, USA.

Dakin, R. J. (1965). "A tree search algorithm for mixed integer programming
problems." The Computer Journal 8: 250-255.

Danna, E., E. Rothberg, et al. (2005). "Exploring relaxation induced neighborhoods to
improve MIP solutions." Mathematical Programming, Ser. A 102: 71-90.

Dantzig, G. B. (1949). "Programming of Interdependent Activities." Econometrics
17(3): 200-211.

Dantzig, G. B., D. R. Fulkerson, et al. (1954). "Solutions of a large-scale travelling
salesman problem." Operations Research 2: 393-410.

Dantzig, G. B. and P. Wolfe (1960). "Decomposition Principal for Linear Programs."
Operations Research 8: 101-111.

Dell'Amico, M. and M. Trubian (1993). "Applying Tabu-Search to the Job-Shop
Scheduling Problem." Annals of Operations Research 41: 231-252.

Della-Croce, F., M. Ghirardi, et al. (2004). "Recovering Beam Search: Enhancing the
Beam Search Approach for Combinatorial Optimization Problems." Journal of
Heuristics 10: 89-104.

Denardo, E. V. (2003). Dynamic Programming: Models and Applications, Dover
Publications.

Denzinger, J. and T. Offermann (1999). On cooperation between evolutionary
algorithms and other search paradigms. 1999 Congress on Evolutionary
Computation (CEC), IEEE Press.

Desrosiers, J., F. Soumis, et al. (1984). "Routing with time windows by column
generation." Networks 14: 545-565.

Dorigo, M., V. Maniezzo, et al. (1996). "The ant system: optimization by a colony of
cooperating agents." IEEE Transactions on Systems, Man, and Cybernetics--Part
B 26(2): 29--41.

Dorigo, M. and T. Stützle (2002). The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances Handbook of Metaheuristics. F. Glover
and G. Kochenberger. Norwell, MA, Kluwer Academic Publishers. 57: 251-286.

Dorndorf, U., E. Pesch, et al. (2002). "Constraint propagation and problem
decomposition: a pre-processing procedure for the job shop problem." Annals of
Operations Research 115: 125-145.

Dowsland, K. A., E. A. Herbert, et al. (2004). "Using tree bounds to enhance a genetic
algorithm approach to two rectangle packing problems." European Journal of
Operational Research.

Du, D. Z. and P. M. Pardalos, Eds. (1998). Handbook of Combinatorial Optimization,
Springer.

References

152

Dumitrescu, I. and T. Stützle (2003). Combinations of local search and exact
algorithms. Applications of Evolutionary Computation. G. R. Raidl, Springer.
2611: 211-223.

El-Abd, M. and M. Kamel (2005). A taxonomy of cooperative search algorithms.
Proceedings of the Hybrid Metaheuristics: Second International Workshop. M.
J. Blesa, C. Blum, A. Roli and M. Sampels, Springer: 32-41.

Feltl, H. and G. R. Raidl (2004). An Improved Hybrid Genetic Algorithm for the
Generalized Assignment Problem. ACM Symposium on Applied Computing.

Feo, T. and M. Resende (1995). "Greedy Randomized Adaptive Search Procedures."
Journal of Global Optimization 6: 109-133.

Fernandes, S. and H. R. Lourenço (2007). A GRASP and Branch-and-Bound
Metaheuristic for the Job-Shop Scheduling. Evolutionary Computation in
Combinatorial Optimization. C. Cotta and J. v. Hemert. Berlin / Heidelberg,
Springer-Verlag. LNCS 4446: 60-71.

Fernandes, S. and H. R. Lourenço (2007b). Optimised Search Heuristics. Meta
heurísticas, Algoritmos Evolutivos y Bioinspirados, Tenerife, España.

Fernandes, S. and H. R. Lourenço (2008). Optimised Search Heuristic Combining Valid
Inequalities and Tabu Search. Hybrid Metaheuristics. Springer. LNCS 5296: 87-
101.

Fernandes, S. and H. R. Lourenço (2008b). A Simple Optimised Search Heuristic for
the Job Shop Scheduling Problem. Recent Advances in Evolutionary
Computation. C. Cotta and J. v. Hemert. Berlin Heidelberg, Springer-Verlag.
SCI 153: 203-218.

Filho, G. R. and L. A. N. Lorena (2000). Constructive Genetic Algorithm and Column
Generation: an Application to Graph Coloring. APORS´2000 - The fifth
conference of the association of Asian-pacific Operations Research Societies.

Fischetti, M. and A. Lodi (2003). "Local Branching." Mathematical Programming
Series B 98: 23-47.

Fisher, H. and G. L. Thompson (1963). Probabilistic learning combinations of local job-
shop scheduling rules. Industrial Scheduling. J. F. Muth and G. L. Thompson.
New Jersey, Prentice Hall, Englewood Cliffs: 225-251.

Ford, L. R. and D. R. Fulkerson (1958). "A suggested computation for maximal
multicommodity network flows." Management Science 5: 97-101.

French, A. P., A. C. Robinson, et al. (2001). "Using a Hybrid Genetic-
Algorithm/Branch and Bound Approach to Solve Feasibility and Optimization
Integer Programming Problems." Journal of Heuristics 7: 551-564.

French, S. (1982). Sequencing and Scheduling: An introduction to the mathematics of
the job shop. New York, Wiley.

Fukasawa, R., J. Lysgaard, et al. (2004). Robust Branch-and-Cut-and-Price for the
Capacitated Vehicle Routing Problem. Integer Programming and Combinatorial
Optimization. J. R. Correa, A. S. Schulz and A. Sebö, Springer Berlin /
Heidelberg. 3064/2004: 1-15.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-completeness. San Francisco, Freeman.

Ghirardi, M. and C. N. Potts (2005). "Makespan minimization on unrelated parallel
machines: a Recovering Beam Search approach." European Journal of
Operational Research, Special issue: Project Management and Scheduling
165(2): 457-467.

Glover, F. (1986). "Future Paths for Integer Programming and Links to Artificial
Intelligence." Computers and Operations Research 13: 533-549.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

153

Glover, F. (1989). "Tabu Search - Part I." ORSA Journal on Computing 1(3): 190-206.
Glover, F. (1990). "Tabu Search - Part II." ORSA Journal on Computing 2(1): 4-32.
Glover, F. (1999). Scatter Search and Path Relinking. New Ideas in Optimization. D.

Corne, M. Dorigo and F. Glover, McGraw-Hill.
Glover, F. and M. Laguna (1997). Tabu Search. London, Kluwer Academic.
Glover, F., M. Laguna, et al. (2000). "Fundamentals of Scatter Search and Path

Relinking." Control and Cybernetics 39(3): 653-684.
Goldberg, L. A., M. Paterson, et al. (2001). "Better Approximation Guarantees for Job-

Shop Scheduling." SIAM Journal of Discrete Mathematics 14(1): 67-92.
Gomory, R. E. (1958). "Outline of an algorithm for integer solutions to linear

programs." Bulletin of the American Mathematical Society 64: 275-278.
Graham, R. L., E. L. Lawler, et al. (1979). "Optimization and approximation in

deterministic sequencing and scheduling: a survey." Annals of Operations
Research 5: 287-326.

Griffer, B. and G. Thompson (1960). "Algorithms for solving production scheduling
problems." Operations Research 8: 487-503.

Guignard, M. (2003). "Lagrangean Relaxation." TOP 11(2): 151-228.
Hansen, P. and N. Mladenovic (1997). "Variable Neighborhood Search for the p-

median." Location Science 5: 207-226.
Hansen, P. and N. Mladenović (2001). "Variable neighborhood search: principles and

applications " European Journal of Operational Research 130(3): 449-467.
Hedar, A.-R. and M. Fukushima (2004). "Tabu Search directed by direct local methods

for nonlinear global optimization." Elsevier Science preprint .
Held, M. and R. M. Karp (1970). "The traveling salesman problem and minimum

spanning trees." Operations Research 18: 1138-1162.
Held, M. and R. M. Karp (1971). "The traveling salesman problem and minimum

spanning trees: part II." Mathematical Programming 1: 6-25.
Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI,

University of Michigan Press.
Ibaraki, T., M. Kubo, et al. (2001). Effective Local search Algorithms for the Vehicle

Routing Problem with General Time Window Constraints. MiC' 2001.
Imahori, S., M. Yagiura, et al. (2003). "Local search algorithms for the rectangle

packing problem with general spatial costs." Mathematical Programming Ser. B
97: 543-569.

Jackson, J. R. (1955). Scheduling a Production Line to Minimize Maximum Tardiness.
Los Angeles, University of California.

Jain, A. S. and S. Meeran (1998). An Improved Search Template for Job-Shop
Scheduling. INFORMS Spring Meeting, Montreal, Quebec, Canada.

Jain, A. S. and S. Meeran (1999). "Deterministic job shop scheduling: Past, present and
future." European Journal of Operational Research 133: 390-434.

Jain, A. S., B. Rangaswamy, et al. (2000). "New and "Stronger" Job-Shop
Neighbourhoods: A Focus on the Method of Nowicki and Smutnicki." Journal of
Heuristics 6: 457-480.

Jünger, M. and S. Thienel (2000). "The ABACUS system for branch-and-cut-and-price
algorithms in integer programming and combinatorial optimization." Software:
Practice and Experience 30(11): 1325-1352.

Karmarkar, N. (1984). "A New Polynomial Time Algorithm for Linear Programming."
Combinatorica 4(4): 373-395.

Khachiyan, L. G. (1979). "A polynomial algorithm in linear programming." Soviet
Mathematics Doklady 20: 191-194.

References

154

Kirkpatrick, S., C. D. Gelatt, et al. (1983). "Optimization by Simulated Annealing."
Science 220(4598): 671-680.

Klau, G. W., I. Ljubíc, et al. (2004). Combining a Memetic Algorithm with Integer
Programming to Solve the Prize-Collecting Steiner Tree Problem. Genetic and
Evolutionary Computation - GECCO 2004. K. Deb, Springer-Verlag. 3102:
1304-1315.

Kostikas, K. and C. Fragakis (2004). Genetic Programming for Guiding Branch and
Bound Search. Genetic Programming - EuroGP 2004. M. K. e. al, Springer.
3003: 113-124.

Land, A. H. and A. G. Doig (1960). "An automatic method of solving discrete
programming problems." Econometrics 28: 497-520.

Larrañaga, P. and J. A. Lozano (2002). Estimation of distribution algorithms. A new
tool for evolutionary computation. Boston, MA, Kluwer Academic.

Lawler, E. (1976). Combinatorial Optimization, Networks and Matroids, Holt, Rinehart
and Winston.

Lawler, E. L., J. K. Lenstra, et al. (1993). Sequencing and scheduling: algorithms and
complexity. Handbooks in Operations Research and Management Science. S.
Graves, A. H. G. R. Kan and P. Zipkin. North Holland, Amsterdam, Logistics of
Production and Inventory. 4: 445-522.

Lawrence, S. (1984). Resource Constrained Project Scheduling: an Experimental
Investigation of Heuristic Scheduling Techniques. Pittsburgh, Pennsylvania,
Graduate School of Industrial Administration, Carnegie-Mellon University.

Lee, E. K. and J. E. Mitchell (1997). Computational Experience of an Interior-Point
SQP Algorithm in a Parallel Branch-and-Bound Framework. Proceedings of
High Performance Optimization Techniques, Springer-Verlag.

Lenstra, J. K., A. H. G. R. Kan, et al. (1977). "Complexity of machine scheduling
problems." Annals of Operations Research 1: 343-362.

Lin, Z.-Z., J. C. Bean, et al. (2004). "A Hybrid Genetic/ Optimization Algorithm for
Finite-Horizon, Partially Observed Markov Decision Processes." INFORMS
Journal on Computing 16(1): 27-38.

Lourenço, H. R. (1995). "Job-shop scheduling: Computational study of local search and
large-step optimization methods." European Journal of Operational Research 83:
347-367.

Lourenço, H. R., O. Martin, et al. (2002). Iterated Local Search. Handbook of
Metaheuristics. F. Glover and G. Kochenberger. Norwell, MA, Kluwer
Academic Publishers. 57: 321-353.

Lourenço, H. R. and M. Zwijnenburg (1996). Combining large-step optimization with
tabu-search: Application to the job-shop scheduling problem. Meta-heuristics:
Theory & Applications. I. H. Osman and J. P. Kelly, Kluwer Academic
Publishers.

Lübbecke, M. E. and J. Desrosiers (2005). "Selected Topics in Column Generation."
Operations Research 53(6): 1007-1023.

Maniezzo, V. (1999). "Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem." INFORMS Journal on Computing 11(4):
358-369.

Maniezzo, V. and A. Carbonaro (2000). "An ANTS heuristic for the frequency
assignment problem." Future Generation Computer Systems 16(8): 927-935.

Marino, A., A. Prugel-Bennett, et al. (1999). Improving graph coloring with linear
programming and genetic algorithms. EUROGEN 99, Jyvaskyia, Finland.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

155

Mautor, T. (2002). Intensification neighbourhoods for local search methods. Essays and
Surveys in Metaheuristics. C. C. Ribeiro and P. Hansen. Norwell, MA, Kluwer
Academic Publishers: 493-508.

Mautor, T. and P. Michelon (1997). MIMAUSA: A new hybrid method combining
exact solution and local search. 2nd International Conference on Metaheuristics,
Sophia-Antipolis, France.

Mautor, T. and P. Michelon (2001). MIMAUSA: an application of referent domain
optimization. Avignon, France, Laboratoire d’Informatique, Université
d’Avignon et des Pays de Vaucluse.

Metropolis, N., A. Rosenbluth, et al. (1956). "Equation of steady-state calculation by
fast computing machines." Journal of Chemical Physics 21: 1087-1092.

Mills, P., E. Tsang, et al. (2004). A survey of AI-based meta-heuristics for dealing with
local optima in local search. Colchester, Department of Computer Science
University of Essex.

Mitchell, J. E. and E. K. Lee (2001). Branch-and-bound methods for integer
programming. Encyclopedia of Optimization. C. A. Floudas and P. M. Pardalos,
Kluwer Academic Publishers. II: 509-519.

Mladenović, N. and P. Hansen (1997). "Variable neighborhood search." Computers and
Operations Research 24(11): 1097-1100.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Pasadena, California, USA,
California Institute of Technology.

Mühlenbein, H. and G. Paaβ (1996). From Recombination of Genes to the Estimation of
Distributions. Parallel Problem Solving from Nature – PPSN IV, Springer,
Berlin.

Nagar, A., S. S. Heragu, et al. (1995). "A meta-heuristic algorithm for a bi-criteria
scheduling problem." Annals of Operations Research 63: 397-414.

Nemhauser, G. L. and L. A. Wolsey (1988). Integer and Combinatorial Optimization,
John Wiley & Sons.

Nowicki, E. and C. Smutnicki (2002). Some new tools to solve the job shop problem.
Wroclaw, Poland, Institute of Engineering Cybernetics, Wroclaw University of
Technology.

Nowicki, E. and C. Smutnicki (2005). "An Advanced Tabu Search Algorithm for the
Job Shop Problem." Journal of Scheduling 8: 145-159.

Nowicki, E. and C. Smutniki (1996). "A Fast Taboo Search Algorithm for the Job Shop
Problem." Management Science 42(6): 797-813.

Ozdamar, L. and G. Barbarosoglu (2000). "An integrated Lagrangean relaxation-
simulated annealing approach to the multi-level multi-item capacitated lot sizing
problem." International Journal of Production Economics 68: 319-331.

Padberg, M. and G. Rinaldi (1991). "A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems." SIAM Review 33(1): 60-
100.

Padberg, M. W. and S. Hong (1980). "On the Symmetric Traveling Salesman Problem:
A Computational Study." Mathematical Programming Study 12: 78-107.

Papadimitriou, C. H. and K. Steiglitz (1982). Combinatorial Optimization - Algorithms
and Complexity. NJ, Prentice Hall, Englewood Cliffs.

Pedroso, J. P. (2004). Hybrid Enumeration Strategies for Mixed Integer Programming.
Pedroso, J. P. (2004b). Tabu Search for Mixed Integer programming.
Pelikan, M., D. E. Goldberg, et al. (1999). A Survey of Optimization by Building and

Using Probabilistic Model. Illinois, IlliGAL, University of Illinois.

References

156

Péridy, L. and D. Rivreau (2005). "Local adjustments: A general algorithm." European
Journal of Operational Research 164: 24-38.

Pesant, G. and M. Gendreau (1996). A view of local search in constraint programming.
Proceedings of Constraint Programming 1996. E. Freuder. Berlin, Germany,
Springer Verlag. 1118: 353-366.

Pesant, G. and M. Gendreau (1999). "A constraint programming framework for local
search methods." Journal of Heuristics 5: 255-279.

Pezzella, F. and E. Merelli (2000). "A tabu search method guided by shifting bottleneck
for the job shop scheduling problem." European Journal of Operational Research
120: 297-310.

Pigatti, A., M. P. d. Aragão, et al. (2005). "Stabilized Branch-and-cut-and-price for the
Generalized Assignment Problem." Electronic Notes in Discrete Mathematics
19.

Plateau, A., D. Tachat, et al. (2002). "A hybrid search combining interior point method
and metaheuristics for 0-1 programming." International Transactions in
Operational Research 9: 731-746.

Puchinger, J. and G. R. Raidl (2004). An Evolutionary Algorithm for Column
Generation in Integer Programming: an Effective Approach for 2D Bin Packing.
Parallel Problem Solving from Nature - PPSN VIII. X. Y. e. al, Springer. 3242:
642-651.

Puchinger, J. and G. R. Raidl (2004b). Models and algorithms for three-stage two
dimensional bin packing. Vienna, Institute of Computer Graphics and
Algorithms, Vienna University of Technology.

Puchinger, J. and G. R. Raidl (2005). "Combining Metaheuristics and Exact Algorithms
in Combinatorial Optimization: A Survey and Classification." Lecture Notes in
Computer Science 3562.

Puchinger, J., G. R. Raidl, et al. (2004c). Solving a Real-World Glass Cutting Problem.
Evolutionary Computation in Combinatorial Optimization - EvoCOP 2004. J. G.
a. G. R. Raidl, Springer. 3004: 162-173.

Raidl, G. R. (1998). An improved genetic algorithm for the multiconstrained 0-1
knapsack problem. 1998 IEEE International Conference on Evolutionary
Computation, IEEE Press.

Raidl, G. R. (2006). A Unified View on Hybrid metaheuristics. Vienna Austria, Institute
of Computer Graphics and Algorithms University of Technology.

Resende, M. and C. Ribeiro (2003). Greedy Randomized Adaptive Search Procedure.
Handbook of Metaheuristics. F. Glover and G. Kochenberger, Kluwer
Academic: 219-249.

Rosing, K. E. (2000). "Heuristic concentration: a study of stage one." ENVIRON
PLANN B 27(1): 137-150.

Rosing, K. E. and C. S. ReVelle (1997). "Heuristic concentration: Two stage solution
construction." European Journal of Operational Research: 955-961.

Rosing, K. E. and C. S. ReVelle (1998). "Heuristic concentration and tabu search: A
head to head comparison." European Journal of Operational Research 117(3):
522-532.

Roy, B. and B. Sussman (1964). Les problèmes d'ordonnancement avec contraintes
disjonctives. Paris, SEMA, Paris.

Schaal, A., A. Fadil, et al. (1999). Meta heuristics diversification of generalized job
shop scheduling based upon mathematical programming techniques. Cp-ai-or'99.

Optimised Search Heuristics: Combining Metaheuristics and Exact Methods to solve Scheduling Problems

157

Schiavinotto, T. and T. Stützle (2004). "The Linear Ordering Problem: Instances,
Search Space Analysis and Algorithms." Journal of Mathematical Modelling and
Algorithms 3: 367-402.

Schrage, L. (1970). "Solving resource-constrained network problems by implicit
enumeration: Non pre-emptive case." Operations Research 18: 263-278.

Schrijver, A. (1986). Theory of Linear and Integer Programming, John Wiley and Sons.
Shaw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. Gentilly, France, ILOG S.A.
Smyth, K., H. H. Hoos, et al. (2003). Iterated Robust Tabu Search for MAX-SAT

Advances in Artificial Intelligence, 16th Conference of the Canadian Society for
Computational Studies of Intelligence. Y. Xiang and B. Chaib-draa, Springer
Verlag, Berlin, Germany: 129-144.

Staggemeier, A. T., A. R. Clark, et al. (2002). A hybrid genetic algorithm to solve a lot-
sizing and scheduling problem. Conference of the International Federation of
Operational Research Societies, Edinburgh, U.K.

Storer, R. H., S. D. Wu, et al. (1992). "New search spaces for sequencing problems with
application to job shop scheduling." Management Science 38(10): 1495-1509.

Stützle, T. (1999). Iterated Local Search for the Quadratic Assignment Problem.
Darmstadt, Intellektik, TU.

Taillard, E. (1991). "Robust Tabu Search for the Quadratic Assignment Problem "
Parallel Computing 17: 443-455.

Taillard, E. D. (1993). "Benchmarks for Basic Scheduling Problems." European Journal
of Operational Research 64(2): 278-285.

Taillard, É. D. (1994). "Parallel Taboo Search Techniques for the Job Shop Scheduling
Problem." ORSA Journal on Computing 6(2): 108-117.

Tamura, H., A. Hirahara, et al. (1994). "An approximate solution method for
combinatorial optimisation." Transactions of the Society of Instrument and
Control Engineers 130: 329-336.

Thompson, P. and J. Orlin (1989). The theory of cycle transfers. Boston, MIT
Operations Research Center.

Thompson, P. and H. Psaraftis (1993). "Cycle transfer algorithm for multivehicle
routing and scheduling problems." Operations Research 41: 935-946.

Umetani, S., M. Yagiura, et al. (2003). "One Dimensional Cutting Stock Problem to
Minimize the Number of Different Patterns." European Journal of Operational
Research 146: 146.

Vaessens, R. J. M., E. H. L. Aarts, et al. (1996). "Job Shop Scheduling by Local
Search." INFORMS Journal of Computing 8: 302-317.

Van-Laarhoven, P. J. M., E. H. L. Aarts, et al. (1992). "Job Shop Scheduling by
Simulated Annealing." Operations Research 40: 113-125.

Vanderbeck, F. (1998). "Lot-sizing with start-up times." Management Science 44: 1409-
1425.

Vanderbeck, F. and L. A. Wolsey (1996). "An exact algorithm for IP column
generation." Operations Research Letters 19: 151-159.

Vasquez, M. and J.-K. Hao (2001). A Hybrid Approach for the 0-1 Multidimensional
Knapsack problem. International Joint Conference on Artificial Intelligence
2001.

Voudouris, C. (1997). Guided Local Search for Combinatorial Optimisation Problems.
Department of Computer Science. Colchester, UK, University of Essex.

Voudouris, C. and E. Tsang (1999). "Guided local search." European Journal of
Operational Research 113(2): 469-499.

References

158

Woodruff, D. L. (1999). A chunking based selection strategy for integrating meta-
heuristics with branch and bound. Metaheuristics: Advances and Trends in Local
Search Paradigms for Optimization. S. V. e. al, Kluwer Academic Publishers:
499-511.

Yagiura, M. and T. Ibaraki (1996). "The use of dynamic programming in genetic
algorithms for permutation problems." European Journal of Operational
Research 92: 387-401.

Yamada, T. and R. Nakano (1992). A genetic algorithm applicable to large-scale job-
shop problems. Parallel Problem Solving from Nature 2. R. Manner and B.
Manderick. Brussels Belgium, Elsevier Science: 281-290.

Yamada, T. and R. Nakano (1995). Job-Shop Scheduling by Simulated Annealing
Combined with Deterministic Local Search Metaheuristics International
Conference, Hilton, Breckenridge, Colorado, USA.

