UNIVERSIDADE DOALGARVE

Optimised Search Heuristics: Combining
Metaheuristics and Exact Methods to solve

Scheduling Problems

Susana Isabel de Matos Fernandes

Doutoramento em Matematica

Especialidade de Investigacao Operacional

2008






UNIVERSIDADE DOALGARVE

Optimised Search Heuristics: Combining
Metaheuristics and Exact Methods to solve

Scheduling Problems

Susana Isabel de Matos Fernandes

Tese orientada por:

Helena Ramalhinho Lourenco

Doutoramento em Matematica

Especialidade de Investigacao Operacional

2008






Resumo

Os problemas de optimizacdo combinatéria sdo abjeet estudo de muitos
investigadores com diferentes formacdes cientificasno investigacdo operacional,
inteligéncia artificial ou ciéncias da computac&nquanto que o trabalho sobre
problemas de optimizacdo combinatdria de investigesd da area de investigacao
operacional tem sido dirigido principalmente para estudo das propriedades
matematicas dos problemas e para o desenvolvimgat@lgoritmos exactos, 0s
investigadores com formagdo em ciéncias da comfaitacinteligéncia artifical tém
investido principalmente no desenvolvimento de edasticas para encontrar boas
solucbes para os problemas, tendo em mente a $igcacdp a instancias reais. Os
investigadores das areas de ciéncias da computagéeligéncia artificial ndo investem
no desenvolvimento de algoritmos exactos talvez gutes terem a fama de serem
demasiado lentos para terem utilidade na aplicag@oblemas reais. Os investigadores
com formacdo base em investigacdo operacional nd@&turnam investir no
desenvolvimento de metaheuristicas talvez por dermsiem que a eficacia destes
métodos depende essencialmente da afinagcdo dospaeumetros por experiéncia
computacional, carecendo de qualquer fundamentagia, e logo desprovidos de
interesse matematico. Podera ser também verdadealgues investigadores néo
possuirdo competéncias suficientes em técnicagadas de programacao e que outros

terao falta de conhecimentos de técnicas matersatiass elaboradas.

Recentemente, alguns investigadores investiram reserdolvimento de
procedimentos hibridos para resolver problemas plenzacdo combinatéria que
combinam algoritmos exactos com metaheuristicasei@mdo desta forma o fosso

existente entre investigadores das areas da mataredla computacao.

Nesta tese, estudamos estes novos métodos quenemmibhetaheuristicas com
algoritmos exactos para resolver problemas de ggagéo combinatoria, salientando
quais os métodos que sao combinados, como e gua@inam uns com 0s outros e
a que problemas tém sido aplicados. O capitulstdese aborda esta questédo, onde se
propde uma nova designacdo para estes méto@mimised Search Heuristicse se

apresenta um mapeamento da distribuicdo do tipoodgbinacdes entre algoritmos



exactos e metaheuristicas pelo tipo de problemapiea sdo aplicados 0s novos
procedimentos.

Este mapeamento evidencia que existe muito espagonmva investigacdo nesta
area. Neste trabalho estamos particularmente gs&des em usar os algoritmos exactos

para conduzir o processo de procura local nas metesticas.

Sobre este tema produzimos e publicamos o afligtmised Search Heuristics
(Fernandes and Lourenco 2007b).

Qualgquer novo método desenvolvido para resolveblenoas de optimizacao
combinatdria terd de ser testado em problemasnperiées a classe dos NP-hard se
quiser captar a atencdo das comunidades cient#fitabalhar na area.

Nesta tese escolhemos estudar o0s problemas de nsegquento e mais
especificamente o problen@b shop schedulingamoso pela sua dificuldade tanto em
teoria como na prética. Outra razao para escoBterpgroblema para introduzir o novo
método desenvolvido prende-se com o facto de asmatura algébrica ter sido j& alvo
de inimeros estudos. Provaram-se ja muitas pr@uésdque permitem caracterizar
desigualdades validas que definem algumas facetasvblvente convexo do conjunto

de solu¢des admissiveis para o problema.

O capitulo 4 é dedicado a apresentacdo dos problemaequenciamento, a sua

definicdo, formulacbes matematicas e propriedadesud estrutura algébrica.

Da industria automovel ao controlo de trafico aé@eocontram-se muitas aplicacdes
de problemas de sequenciamento. Estes problemasrmese pela necessidade de
executar um conjunto de tarefas que partilham umuoto de recursos. Nao se conhece
um procedimento deterministico que consiga encomtraolucdo 6ptima em tempo
polinomial para a maioria dos problemas de seqasrato. Assim, a investigacao
nesta area é muitas vezes orientada para o degemento de métodos que possam

encontrar boas solu¢cées em tempo util.

A formulagcdo matematica de problemas de sequenoiame o estudo da sua
estrutura algébrica recebeu muita atencdo aquaonddedenvolvimento de métodos
exactos para os resolver. Mas os meétodos exactadaram-se ineficientes para
resolver instancias reais do problema. Foram alg&envolvidos algoritmos de procura
local que, partindo de solu¢des admissiveis coiastsuheuristicamente, conseguiam

encontrar boas solu¢des rapidamente. Os métodpsodera local tém a desvantagem



de parar no primeiro 6ptimo local que encontrampearcorrer 0 espago de solucdes
admissiveis. A investigacdo evoluiu para o desemweinto de metaheuristicas,
procedimentos em que o0 processo de procura conpeggiedir para outras regides do
espaco de solucbes admissiveis apos encontrar timodpcal. Nas metaheuristicas, o
processo de procura € gerido “afinando” um conjuddgoparametros dos algoritmos.
Falta uma fundamentacado teorica na afinacdo dpatésnetros, que € em regra geral
baseada na experiéncia computacional para cadéep@be muitas vezes para cada
instancia. As metaheuristicas tém sido maioritagi@® desenvolvidas por
investigadores das é&reas de inteligéncia artifieiatiéncias da computagdo, que
normalmente ndo incluem técnicas exactas de omtgad@ combinatdria nos seus
algoritmos. A estrutura algébrica dos problemasdstado presente na base do desenho
de estruturas de vizinhanca de métodos de proccad kinda que muitas vezes apenas
de forma implicita. Mas os critérios para geriri@awizinhancas e a forma de conduzir
0 processo de procura tém sido determinados quakeswamente por experimentacao

computacional ou intui¢ao.

Neste trabalho desenvolvemos dois métodos da cae@ptimised Search
Heuristics Apresentamos resultados computacionais para usto veonjunto de
instancias de referéncia de problemas de sequeetiamassim como apresentamos
comparacdes de desempenho dos métodos desenvobodosoutros meétodos bem

sucedidos.

O primeiro dos dois métodos desenvolvidos € um guiorento simples que
combina o0 método metaheuristiG®ASPcom o algoritmo exactbranch-and-bounda
que chamamosGRASP_B&Be que usamos para resolver o problejola shop
scheduling O GRASP_B&Bé um procedimento muito rapido que constroi saaco
admissiveis com uma qualidade aceitavel, ideaia parem usadas como solucdes
iniciais de procedimentos mais elaborados. O méédonstituido por duas fases que
se repetem a cada iteragcdo. Uma fase de constroigde em cada iteracdo é
acrescentado um novo elemento a solucdo em co@sirisendo esse elemento
escolhido de uma forma gananciosa aleatoriezatag jsa escolha do novo elemento a
incluir na solucdo é enviesada para elementos gu@@am o maior aumento imediato
na qualidade da solucdo. A qualidade com que cada elemento contribui para a
solucéo a ser construida € avaliada pelo valomaptle sub-problemas de uma Unica

maquina. Os sub-problemas de uma uUnica maquinaesadvidos com o algoritmo
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exactobranch-and-boundNa outra fase do método, posterior a fase detrmé®,
executa-se uma procura local para passar da satogdtruida a um optimo local, antes

de seguir para a inser¢cdo de um novo elementolugaso

E apresentada uma comparacéo do desempenho doGRASP B&Bcom outros
procedimentos aplicados ao mesmo problema, tambs#ados como geradores de
solugdes iniciais admissiveis para métodos maiomaos. Nomeadamente,
apresentamos comparacdes com outro méBRIASP(Binato, Hery et al. 2002) e com
um meétodo que incorpora o algoritrhbcanch-and-boundla mesma forma que nés, o

shifting bootleneck proceduf@ddams, Balas et al. 1988).

Produzimos e publicamos o artigh GRASP and Branch-and-Bound Metaheuristic
for the Job Shop SchedulindFernandes and Lourenco 2007) que apresenta o novo
métodoGRASP_B&B

O capitulo 6 desta tese apresenta a estrela palrd@ste trabalho de investigacao, o
procedimentoTabu_VVI E um método da categoria doptimised Search Heuristics
que combina um moédulo de verificacdo de desiguakladlidas violadas com um

procedimentdabu Search

O métodoTabu_VVIcomeca por utilizar o algoritm@RASP_B&Bpara construir
uma solugcdo admissivel inicial. Sobre esta solug&xecutado um proces3@bu
Search produzindo um bom optimo local. Com o objectieopiosseguir com a procura
no espaco de solucdes admissiveis, esse optimioglgeaturbado, sendo parcialmente
destruido para depois se reconstruir uma nova &olepmpleta (admissivel). Para
destruir parcialmente o éptimo local utilizamos pnecedimento do tipo ganancioso
aleatorizadodreedy randomisgdpara eliminar algumas das suas componentes, dando
prioridade as componentes cuja eliminacdo produzimpacto maior no valor da
solucéo parcial. Seguidamente o procedim@iatou_VVIprocura desigualdades validas
para o problema que sejam violadas pela solu¢c@maparoduzida. Estas desigualdades
vao obrigar a que algumas componentes ndo sejasideoadas, restringindo desta
forma a reconstrucdo de uma nova solucdo compissm o percurso da procura no
espaco de solucdes admissiveis é forcado a saltaruyma regido diferente, que sera
preferencialmente uma regido de solucdes de mealoatidade, dado o tipo de
desigualdades verificadas. Concretamente, as dddagles violadas descartam

componentes que comprovadamente dariam origenuedss completas com um valor
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de funcdo objectivo ndo melhor do que o da solega@mntrada até entdo com maior
qualidade. Esta mudanc¢a na direccao do percurgorataira no espaco de solugdes
admissiveis € conduzida pela informacéo sobreratest algébrica da instancia contida
nas desigualdades validas. E neste sentido qumakizeer este um método em que a
direccdo do processo de procura da metaheuri$ata Searché conduzida pela

utilizagdo da técnica exacta de verificacdo degdesiades vélidas violadas para

descartar regides do espaco de solucdes admissiveis

Apresentamos o novo métodabu_VVicom uma aplicacdo ao problefpod shop
schedulinge relatamos resultados computacionais para urm casfunto de instancias
de referéncia do problema, incluindo comparagdesddsempenho com outros
procedimentos aplicados ao mesmo problema. Nomeadam comparamos 0s
resultados computacionais ddabu_VVI com outros métodos que combinam
metaheuristicas com técnicas exactas e com ogngéslos mais bem sucedidos na
aplicacdo agob shop schedulingo Guided Local Searclde Balas e Vazacopoulos
(Balas and Vazacopoulos 1998)Tabu Searcttom Shifting Bottleneckle Pezzella e
Mirelli (Pezzella and Merelli 2000) e Babu Searclttom Path Relinkingde Nowicki e
Smutnicki (Nowicki and Smutnicki 2005).

O nosso métoddabu_VVIganha em comparacdo com 0s outros métodos que
combinam algoritmos exactos com metaheuristicasjuazindo sempre solucdes de
melhor qualidade em menos tempo. Quando comparahoos métodos de Balas e
Vazacopoulos e de Pezzella e Mirelli, o no$abu_VVlrevela-se muito competitivo,
atingindo resultados do mesmo nivel. Na comparegé&oo método que apresenta até a
data os melhores resultados para o problgimahop schedulingo Tabu Searclcom
Path Relinkingde Nowicki e Smutnicki, 0 nosso método apreseesaltados muito
proximos dos deles quando é executado durante iapadamente o mesmo tempo

computacional.

O novo métodoTabu_VVI é descrito no artigo Optimised Search Heuristic

Combining Valid Inequalities and Tabu SeardFernandes and Lourenco 2008).

Esperamos que os bons resultados atingidos comneste procedimento sejam
encorajadores e incentivem outros investigadordgapassar o fosso entre as areas de
métodos exactos de optimizagdo combinatéria e reetadticas, desenvolvendo novos
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métodos na categoria d@ptimised Search Heurisitiogue possam tirar partido das
vantagens das técnicas de uma e outra area déigagés.

No desenvolvimento deste trabalho, nomeadamenimpl@mentacdo do modulo
de verificacdo de desigualdades validas violadasupta solugédo parcial do método
Tabu_VVlaplicado ao problemjab shop schedulingleparamo-nos com um obstaculo.
As desigualdades validas sdo obtidas dos subprablete uma Gnica maquina e

definidas para todo o subconjunto de opera¢cfesepsadas numa maquina. Ora, 0

nimero de subconjuntos de um conjunto aoralementos €", um nimero dado por

uma funcé&o exponencial no tamanho do problema @ve¥s O que significa que a

complexidade computacional de verificar todos dscsnjuntos de todas as maquinas
seria incomportavel para um algoritmo que se gfieieete. Decidimos entdo chegar a
uma solucdo de compromisso nao verificando todgmssiveis subconjuntos aquando
da procura de desigualdades validas violadas. (repso de construcdo dos
subconjuntos a ser inspeccionados € enviesadoapasastru¢cdo de subconjuntos com
maior possibilidade de potenciar a violacdo de wesigualdade vélida e funciona
incluindo nos conjuntos, uma a uma, as operacOoexal@o com 0S seus parametros,
como a data de disponibilidade, o tempo de prooe=si® e 0 tempo que a operacao

permanece no sistema apos terminar 0 seu procasgame

No artigo (Péridy and Rivreau 2005) sobre ajustesis de limites de janelas de
tempo para o processamento das operacdes nas amqudescrito um novo método de
enumeracao eficiente que podera ser Gtil paraaggerdos subconjuntos subjacentes as
desigualdades validas. Uma possivel linha de thabdlturo serd averiguar a
viabilidade préatica de implementacédo deste novamduee testar se tal poderd melhorar

a eficiéncia do novo métodabu_VVI

Outra forma directa de extender a linha de invagég iniciada nesta tese sera a de
aplicar o métoddabu_VVla outros problemas de scheduling da classe NR-bamtb
por exemplo a versémtal weighted tardinesdo problemgob shop schedulingu o
problemageneralised job shop schedulin§eria também muito interessante aplicar o
novo método a instancias reais de problemas deeseigimento. Posteriormente poder-
-se-a evoluir para a aplicacdo do método a versddsicritério de problemas de
sequenciamento, ou a outros problemas para os sgjaim conhecidas desigualdades
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validas, implementaveis de forma eficiente, serglpatticular interesse as que definem
facetas do envolvente convexo do conjunto de seligi@imissiveis do problema em

guestao.

O objectivo maior desta tese é o de desenvolvenvasiigacdo na area da
complementariedade entre algoritmos exactos e m@tisticas, esperando que a
cooperacdo bem sucedida entre métodos das diferémas possa fomentar a
colaboracéo entre investigadores com diferentesdobes de base a trabalhar sobre os

mesmos problemas de optimizacdo combinatdria.
Assim, e resumindo, as principais contribuicbesadEse sao:

a) a proposta de uma designacéo para os métoda®oenam algoritmos exactos

e (meta)heuristicas e um mapeamento da investigesie dominio.

A designacdoOptimised Search HeuristicfOSH é proposta para descrever
metodologias onde a procura local do método hé&oigt de alguma forma orientada
por métodos exactos de optimizacdo combinatérien €stes métodoOSH pretende-
se tirar partido das melhores caracteristicas deoams métodos, metaheuristicos e

exactos, fornecendo uma solucao integrada que dtelaar a resultados excelentes.

Apresentamos a forma como estes procedimentosid@naslicados a problemas de
optimizacdo combinatoria; construimos um mapeamedatmeétodos versus aplicacdes
e concluimos que ha muitas possibilidades de dekenvinvestigacdo em métodos

OSH e também uma grande oportunidade para os a@lmablemas dificeis.

b) um novo método muito rdpido para a construcdosalecdes admissiveis
combinanddranch-and-boun& GRASP

Desenvolvemos um algoritmo simples para a o probjeim shop schedulingue
combina uma metaheuristica de procura locaGRASR com um método exacto de
programacao inteira, loranch-and-boundAqui o branch-and-boune utilizado dentro
do GRASPpara resolver sub-problemasatee machine scheduling

c) um meétodo inovador que combina a metaheurisiishu Searchcom a

verificacdo de desigualdades validas violadas.

Desenvolvemos uma metaheurist@8H que utiliza a verificagdo de desigualdades
vélidas para conduzir a reconstru¢cdo de uma sologéima local que foi parcialmente
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destruida. Este novo método é apresentado atravémd aplicacdo ao problerjub
shop scheduling

A ideia deste novo método é a de imitar os plamosaite da programacéo inteira,
deixando as desigualdades validas violadas descagiées pouco atraentes do espaco
de solugbes e orientar a procura de uma solucdionapbcal para uma regido
admissivel com mais qualidade.

Palavras Chave: Metaheuristicas, Algoritmos Exactos, GRASP, Pracurabu,

Branch-and-Bound, Desigualdades Validas, Problalag®equenciamento



Abstract

Scheduling problems have many real life applicajdrom automotive industry to
air traffic control. These problems are definedtm need of processing a set of jobs on
a shared set of resources. For most schedulindgonsithere is no known deterministic
procedure that can solve them in polynomial timieisTs the reason why researchers

study methods that can provide a good solutionreaaonable amount of time.

Much attention was given to the mathematical foatiah of scheduling problems
and the algebraic characterisation of the spacdeasible solutions when exact
algorithms were being developed; but exact methmdsed inefficient to solve real
sized instances. Local search based heuristics aeeloped that managed to quickly
find good solutions, starting from feasible solasgroduced by constructive heuristics.
Local search algorithms have the disadvantage opfpgtg at the first local optimum
they find when searching the feasible region. Rebte&volved to the design of
metaheuristics, procedures that guide the seargbndethe entrapment of local optima.
Recently a new class of hybrid procedures, thatbioenlocal search based (meta)
heuristics and exact algorithms of the operati@search field, have been designed to
find solutions for combinatorial optimisation prehis, scheduling problems included.

In this thesis we study the algebraic structuresasfeduling problems; we address
the existent hybrid procedures that combine exagethads with metaheuristics and
produce a mapping of type of combination versudiegpn and finally we develop
new innovative metaheuristics and apply them teesetheduling problems. These new
methods developed include some combinatorial op#tion algorithms as components
to guide the search in the solution space usingmiogvledge of the algebraic structure
of the problem being solved. Namely we develop tew methods: a simple method
that combines a GRASP procedure with a branch-auekd algorithm; and a more
elaborated procedure that combines the verificatfathe violation of valid inequalities

with a tabu search. We focus on the job-shop sdhmegdproblem.

Keywords: Metaheuristics, Exact Algorithms, GRASP, Tabu 8earBranch-and-

Bound, Valid Inequalities, Scheduling Problems
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1. Introduction

The present document starts by presenting the atains underlying the research
work of this PhD thesis, highlighting the purposketiee work in section 1.1 and
presenting in section 1.2 - Main Scope - the figddwhich this research work
contributes. The structure of the document is desdrin section 1.3 and this first
introductory chapter ends with a summary of thenmr@ntributions of our work in

section 1.4.

1.1 Purpose

Scheduling problems have many real life applicaidrom automotive industry to
air traffic control. These problems are definedtm need of processing a set of jobs on
a shared set of resources. Building a solution si@signing a time interval to each
job on each resource. The quality of a solutiomé&asured by means of some objective
function, usually related to the time needed orab&t associated to process all the jobs.
When solving the problem the goal is to find théuson with the best value for the
objective function. For most scheduling problemsréhis no known deterministic
procedure that can solve them in polynomial timeisTs the reason why researchers

study methods that can provide a good solutionreagaonable amount of time.

In this thesis we intend to develop new innovativetaheuristics and use them to
solve scheduling problems. These methods will ikhelusome combinatorial
optimisation algorithms as components to guideseerch in the solution space using
the knowledge of the algebraic structure of thebfmm being solved. We will focus on
the job-shop scheduling problem.
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1.2 Main Scope

When speaking of combinatorial optimisation proldene define a problem as a set
of instances with some common structure (e.g. plgrancluding an objective (or cost,
or evaluation) function; each instance having a$&tasible solutions. Dealing with an
optimisation problem means we want to find the ksesition of an instance, that is, the
solution of that instance with the best (minimumr@aximum) objective function value.
A combinatorial optimisation problem is an optintisa problem where the set of
solutions is discrete, or can be reduced to a elisapne. Examples of combinatorial
optimisation problems are routing, packing, schiedylmatching or network flows

problems, just to name a few areas.

Many combinatorial optimisation problems, schedylproblems included, belong
to the NP-hard class. There is no knowledge of lgnponial deterministic algorithm
that can solve them; but there are polynomial netemninistic procedures that can
“guess” a solution and verify its optimality (Garagd Johnson 1979), (Papadimitriou
and Steiglitz 1982). This justifies the developmehheuristic methods to solve these

problems.

The development of methods to solve schedulinglpnog was started around the
second half of the 20th century, with the boom ohstructive heuristics based on
sequencing rules (Griffer and Thompson 1960), (Rag Sussman 1964). The process
of building a solution is often performed in twagés, starting with the determination
of the sequence of processing the jobs on eachun@soand proceeding with the

assignment of time intervals for each pair (jolsprece).

Much attention was given to the mathematical foatiah of scheduling problems
and the algebraic characterisation of the spacdeasible solutions when exact
algorithms were being developed, like branch-angikdoand branch-and-cut (French
1982), (Balas 1985), (Carlier and Pinson 1989),pl{agate and Cook 1991). But exact
methods proved inefficient to solve real sizeddanses. Local search based heuristics
were developed that managed to quickly find goolditems, starting from feasible
solutions produced by constructive heuristics. Losaarch algorithms have the
disadvantage of stopping at the first local optimtimy find when searching the

feasible region. Research evolved to the designatiheuristics, procedures that guide
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the search beyond the entrapment of local optiik@ simulated annealing, tabu search,
GRASP, genetic local search or iterated local $e@faessens, Aarts et al. 1996), (Jain
and Meeran 1999). The quality of the solutions el has increased considerably
from the simple sequencing rules to present met@ties. The same goes for the

complexity of the algorithms.

In metaheuristics the search process is managethéyine tuning of a set of
parameters of the algorithms. The setting of thEm®meters still lacks a theoretical
foundation. What happens is that parameters arecrsgiirically for each type of
problem, and many times for each type of instahbetaheuristics have been mainly
developed by researchers of the fields of artifioiéelligence and computer science,
who generally do not include traditional combin&boptimisation techniques in their

algorithms.

The algebraic structure of the problems has beanyrtimes only implicitly, in the
foundations of the design of neighbourhood strestwf local search procedures, but
the criteria to manage various neighbourhoods bhadmay of guiding the search have

been widely defined by intuition or experimentation

In this work we will develop metaheuristics thaidgithe local search based on the
algebraic structure of the problems being solvdthcAigh there have been some efforts
devoted to the guidance of the search of solutibased on specific measured
characteristics of each instance, like (Schiavin@thd Stutzle 2004), major current
research in the scheduling problems field has Ine@inly concerned with the definition
of new neighbourhood structures (Jain, Rangaswamwl.e2000), (Nowicki and
Smutniki 1996) and the achievement of new lower apger bounds (Goldberg,
Paterson et al. 2001), (Dorndorf, Pesch et al. 2002

The main goal of this thesis is to contribute t® development of local search based
metaheuristics that can use information about thebaaic structure of the problems
being solved.

Local search methods, the base of most metahestistart with a feasible solution
and move step by step to a better neighbouringiealuA neighbour is a solution that
can be reached by performing one “simple” transtdrom (called move) on the current
solution. A neighbourhood of a solution is the eétall its neighbours. The search

process can verify all the neighbours before chgptie best one, or it can choose the
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first neighbour being visited that is better thhe turrent solution; or it can check the
neighbourhood in some compromised way between tiweselhe local search process
stops at a solution that is better than all itsghleours, a local optimum solution.
Generally this local optimum solution is not thelmdl optimum, i.e., the best of all
feasible solutions. When it is guaranteed thatldlcal search process stops only at the
global optimum, the neighbourhood is said to bexact one.

To build a local search based metaheuristic therdhe need to define the
neighbourhood structures; the way to inspect thevhgn and how to perform
intensification or diversification of the searchdahe various forms of combining these
different features. We will develop metaheuristidsere the information redrawn from
the algebraic structure can be used to make thesigrddecisions, and we apply these

new methods to solve scheduling problems.

To our knowledge this is a very innovative chamaste of this PhD thesis. We do
not know of procedures that integrate metaheusistand exact methods of

combinatorial optimisation in this way.

1.3 Structure of this Document

Since the main goal of this work is to develop & ménd of metaheuristic and to
apply it to solve combinatorial optimisation prable we will start in chapter 2 with a
brief presentation of the combinatorial optimisatidield, followed by a short
introduction of existent metaheuristics. We intetad combine metaheuristics and
combinatorial optimisation methods, so a brief dpson of these exact procedures is
also presented in chapter 2. These surveys on mgiatics and exact combinatorial
optimisation methods are by no means intended tdet@led and exhaustive; instead
they only give a general idea of, and focus ons¢hmethods found in procedures that

combine both types.

Chapter 3 presents a literature review of methbds combine metaheuristics and
exact methods, along with a classification of thgecent forms of combining them and
the ways they interact. A new name for these newqmures is proposed — Optimised
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Search Heuristics - and a mapping of the types avhlgnations versus problem
applications is built.

In chapter 4 we present the most important progerkinown of the algebraic
structure of scheduling problems in general andcifipally for the one machine

scheduling problem and the job-shop schedulinglprob

We will proceed presenting the proposed methodschiapter 5 a method that
incorporates a branch-and-bound in the construgtitaise of a GRASP is presented.
This method is then used as a “constructor” of tsmis for the more elaborate method
presented in the next chapter 6, combining thdigation of violated valid inequalities
with a tabu search.

The document ends with a chapter of conclusionsfandge work, including the

main challenges and difficulties.

1.4 Main Contributions

The chapters 2 and 4 of this text include an oesvvof the metaheuristics and
combinatorial optimisation methods and the algebs&iucture of scheduling problems,
respectively. There are several journal articleh wurveys on metaheuristics and many
books dedicated to combinatorial optimisation médgorhe structure of scheduling
problems has been addressed by a few authors amatreduce some novelty here in
the way the results are put together and presefiteelse introductory chapters are
included in this document so it can be a reasonaélifcontained text and easier to

read.

The main contributions of this thesis are linkedhwthe idea of guiding the search
process of a metaheuristic using a procedure fitamekact algorithms of operations
research. These contributions are described intetsap, 5 and 6. They are:

a) a survey study of methods that combine exact(lsveda)heuristic methods and a

mapping of the research in this field (chapter 3).

The designation Optimised Search Heuristics (OS$i)pioposed to describe

heuristics where the search process is some hamted by exact methods from the
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combinatorial optimisation field. These OSH methagds extract the best features of
the metaheuristics and exact methods and providetegrated solution method that, as
proved already by several authors, can lead tollexteesults for large scale problems
in a short amount of time. We present how thesequores have been applied to
combinatorial optimisation problems; build a magpai procedures versus applications
and conclude that there are many research oppbesinio develop optimised search
heuristics, and also a large opportunity to appbnt to difficult and large dimension

problems.

b) a new and very fast method for building feasgaiitions combining branch-and-
bound and GRASP (chapter 5).

We develop a simple algorithm for the job shop ddiiag problem that combines a
heuristic local search procedure, GRASP, with aracexmethod of integer
programming, branch-and-bound. The branch-and-bauethod is used within the
GRASP to solve subproblems of the one machine sdingdoroblem.

c) an innovative method that combines tabu seaiitth wiolated valid inequalities
(chapter 6).

We develop an OSH procedure that uses valid ingmsato reconstruct a local
optimal solution that has been partially destroye. first build a feasible solution with
our GRASP procedure and perform a tabu searchtta tgood” local optimal. In order
to continue searching the solution space we pertheb current solution partially
destroying it and then rebuilding it. A greedy ramdsed method is used to delete some
elements from the local optimal solution. We thest the existence of valid inequalities
violated by the partial solution. These allow usetstablish a new search path for
rebuilding a complete feasible solution, and holheflead us to an attractive

unexplored region of the solution space. We narhisdorocedure Tabu_VVI.

The idea of this new method is to mimic the cutgteger programming, letting the
violated valid inequalities discard unattractivgioms of the solution space and guide

the search from a local optimal solution to a noprality region of the search space.
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2. Overview of Methods to solve Combinatorial Opsation
Problems

This chapter is an introduction to the research afecombinatorial optimisation. In the
first section we introduce the field of combinaabroptimisation problems including
some notes on the theory of NP-completeness. $elti®d presents an overview of
metaheuritics applied to combinatorial optimisatiproblems. Finally, section 2.3
presents an overview of exact methods in combirztoptimisation.

2.1 Combinatorial Optimisation

Combinatorial optimisation is commonly defined #se“mathematical study of the
arrangement, grouping, ordering, or selection afcrite objects, usually finite in
number” (Lawler 1976). Nemhauser and Wolsey (Nemmbauand Wolsey 1988)
propose the following generic definition of a comdtiorial optimisation problem:

Let N={1...,n} be a finite set and let=(cy,...,c,) be ann-vector. ForF O N,

define C(F)=ZjDF cj . Given a collection of subsets of N, the combinatorial

optimisationproblem isCOP min{ C(F): F Os}. The characterisation of a specific

combinatorial optimisation problem is determinedtihy description of the collection
of subsets onN . (for instance, for shop scheduling problems thbssts are the
permutations of jobs for each machine, satisfyiny jprecedence and machine

availability constraints).

Combinatorial optimisation problems occur in mamnyedse scientific areas such as:
economics (planning and management), linear amj@ntprogramming, graph theory
(covering, partitioning, subgraphs, supergraphs..@f network design (routing,
spanning trees, flow problems, etc...), sets anditjpaus, storage and retrieval
(packing, compressing, etc...), sequencing and sdingdyparallel machine scheduling,
shop scheduling, etc...), algebra and number thgames and puzzles, logic, automata

and language theory and program optimisation (ogdenisation, etc...). An extensive
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compendium of combinatorial optimisation probleman cbe found in (Ausiello,

Crescenzi et al. 1999). They arise in many apptinatlike production planning and
distribution, allocation of economic resourceswcigcheduling and transports routing
or gene sequencing. The table 2.1 shows some oéarémes and applications where

combinatorial optimisation appears.

Table 2.1 Applications of Combinatorial Optimisation

Applications of Combinatorial Optimisation
Area Type of problem Problems
distribution of goods
operational i )
problems production scheduling
machine sequencing
capital budgeting
management anfl  planning - .
efficient use of scarce problems facility location
resources to increase portfolio selection
productivity
telecommunications network design
design transportation networks design
problems VLSI circuit design
design of automated production systems
- data analysis
statistics
reliability
physics determination of minimum energy states
cryptography designing unbreakable codes
combinatorics
mathematics maximum common subgraph
propositional logic maximum satisfability

To state the importance of the combinatorial ogation field let us just remember
that in 1975 L. Kantorovich and T. Koopmans receittee Nobel Prize in Economics
(there is no Nobel Prize in mathematics) for theark on the optimal allocation of

resources.

Historically, the field of combinatorial optimisah starts with linear programming.
Combinatorial optimisation problems can be appredcas optimisation problems for

polyhedra and mathematically formulated as intéigear programs. Many polynomial-
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time' solvable combinatorial optimisation problems, likeximum flow or matching,
are in fact special cases of linear programming. 18any general algorithms for
(integer) linear programming can be applied to sobombinatorial optimisation
problems. There is also a large variety of comioinakt optimisation algorithms

designed for a specific problem, taking advantdgeme special structure.

A linear program is a problem of minimising (or nvaising) a linear function in
the presence of linear inequality and/or equalityonstraints. Formally
LP min{cx:Axs b,xDDE} where O is the set of non-negative n-dimensional
vectors andx = (xl,...,xn) are the variables. An instance of the problenpecgied by

the data(c, A,b) with ¢ being a n-dimensional row vectds, a m-dimensional column

vector andA a mxn matrix. The setS:{ Ax< b, xO Dﬂ} is called the feasible region

and xS a feasible solution. The functiom=cx is the objective function. A dual

program is associated to every linear program datirimal), where each variable of
the dual program is related to each constrainthef grimal program and each dual
constraint to each primal variable. If both progsahave feasible solutions then their
optimal value is the same and duality relations banused to compute the optimal

solution. The dual of the progratxP is the progranmDLP ma>{ yb: yA<c, yO DT} .

In a linear program finding the optimal solutioeduces to the selection of a
solution from the finite set of vertices of the gwer polytope defined by the linear
constraints. The simplex algorithm of Dantzig (Daagt1949), and all its refined
versions including primal and/or dual phases, fiaas optimal solution to a linear
program in a finite number of steps. The simplegoathm moves from vertex to vertex

of the polytope improving the objective function.
An integer linear program is a linear program watlh variables being integers

IP min{ cX: Ax< b, x[O ZE‘,}. When variables can only assume values 0 be Integer
program is also called a binary one. For some apstructured matrices, namely totally
unimodular matrices, all the vertices of the pgbgadefined by{ Ax< b, x[J Rﬂ} are

integers. So wherA is totally unimodular and is a vector of integers, solving the

IP min{ cx: Ax< b, xO Zﬂ} is the same as solving theé® min{ cx: Ax<b, xDDE}.

! An algoritm has polynomial running time when isining time is bounded by a polynomial in the size
of the input data.
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This is the case for some problems like maximumvflar matching which can be
solved in polynomial time. We are especially ins¢ee in solving problems where this
property does not hold.

Combinatorial optimisation problems are the subggcttudy of many practitioners
with different scientific backgrounds like operatsoresearch, artificial intelligence and
computation sciences. While ones are mainly devtdtie study of the mathematical
properties of the problems and the developmenkacteoptimisation algorithms; others
developed metaheuristic methods, some are espedadused on solving real live
applications of these problems. The next two sest®.2 and 2.3 present, respectively,
overviews of metaheuristics and exact methods usedsolve combinatorial
optimisation problems. But before closing this gecbn combinatorial optimisation we
present a short introduction to the Complexity Tige®e have used the concepts of
polynomial time algorithms and NP-hard problemsesal times now. In the next
subsection the theory of NP-completeness is predentith a clarification of related

concepts used in this text.

Notes on Complexity Theory The theory on complexity was developed for
decision problems. A problem can be expressedrakation P | xS wherel is the
set of problem instances ar®l is the set of problem solutions. In a decisionbfem,
the relationP reduces to a functiorf : | — S, where S is a binary seS={yesnad}.
Given an instance of a decision problem, to sdh®to be able to say if an instance is a
yes instance. A decision problem is said to be polylbnsolvable (or simply
polynomial) if there is a deterministic algorithm $olve it that runs in a number of
steps that is not bigger than a polynomial on émgth of the encoding size of the input,
for all its instances. In other words,nfis the size of the input of the problem and there
is a deterministic algorithm that solves it withnqalexity o(p(n)), being p(n) a
polynomial function, then the problem is polynomi@he complexity clas® is the
class of polynomial decision problems. There amaesalecision problems for which
there is no known polynomial deterministic algamtithat can solve them; but there are
polynomial non-deterministic algorithms that don@n-deterministic algorithm is one
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that can execute commands of the type “guess”)sdipgoblems form the clasge.
Clearly? OaP .
Given a decision probler® we say that the problem of identifyingn@ instance is

its complementary problem. If there is a non-deteistic algorithm that solves the

complementary problem of a decision problenmis, it is said that the complementary

problem (identifying anc instance) is in Coa/.

Given two decision problemB, and P, we say thatR is reducible toP, if that is
a method (named a reduction) to sol%e using an algorithm that solveB, (this
implies thatP, is at least as difficult a&,). If the reduction is executed in polynomial
time, it is said tha® is polynomial reducible td& . When all problems in clasg? are

polynomial reducible to a problefAda? , problemP is ana®? —complete problem.

A deterministic algorithm is pseudo-polynomial whiemuns in a number of steps not
bigger than a polynomial defined not only on theessf the input but also on se size of
the values of the parameters of the instances.eTisesuch an algorithm to solve the

well knowna(? problem{OJ} -knapsack, just to name one example.

A decision problem is strongky®? —complete when it is stitN? —complete even if
any instance of length is restricted to contain integers of size at mp@‘() There are
no known pseudo-polynomial algorithms to solve rsgtg A(? —complete problems;

their existence would imply =a(® .

The theory on complexity can be extended to opatioa problems where clago
is the natural extension of clagsA(P0 is the extension ai(?, the extension of th&?
—complete class of decision problems is #¢e —hard class of optimisation problems

and class strongly®? —hard corresponds to class strongly —complete.

The definition of an optimisation problem leads ttree different problems,

corresponding to three different ways of addres&sigolution:
1 Constructive Problem — given an instance of tieblpm find an optimal solution.

2 Evaluation Problem — given an instance of thédl@m, compute the optimal value
of the objective function.
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3 Decision Problem — given an instance of the mnobhnd a positive integek
decide if the optimal value for the objective funatis not bigger thark (when the goal

is to minimise the objective function).

The decision version of an optimisation problerméver harder to solve than its

constructive version. If the decision problema@ —complete then the constructive

problem isa(? —hard.

The question® # AP ? NP # Co - AP ? remain open in the theory of complexity,
as well as their counterparts for optimisation peots. The Fig. 2.1 shows the believed

relationships among the mentioned complexity cla$ésedecision problems.

Fig. 2.1 Complexity Classes: P2 ; NP -A? ; Co-NP -Co-A® ; NPC -A? —complete; PP — pseudo
polynomial; SNP - stronglg(? —complete

The bookComputers and Intractability: A Guide to the TheofyNP-completeness
(Garey and Johnson 1979) is a landmark in theatiiee of the field. There the reader
can find the building of the theory, with the predbd all the statements presented here
on complexity classes, along with many other reldbeorems and propositions. It also
proves then‘P—hard nature of many optimisation problems. Otlederences with an
exposition on the theory of complexity of optimisat problems are (Ausiello,
Crescenzi et al. 1999) (which we have followed elpsin this section) and
(Papadimitriou and Steiglitz 1982).
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2.2 Overview of Metaheuristics

There is no unified definition of what is a metahstic among the research
communities that work on them, like operations aese, computer science and
artificial intelligence. Metaheuristics were formyeknown as modern heuristics. The
new International Journal of Metaheurisficefines them as, and we coté tjeneral,
we consider a metaheuristic to be any algorithmmamiework, nature inspired or
otherwise, that defines a set of heuristic methbescan be directed towards a variety
of different optimisation problems. In other wordsetaheuristics represent "higher
level" heuristic-based algorithms that can be apglito various individual problems

with relatively few modifications needing to be maeach casé

As stated before, we are especially interested @taheuristics as methods that
allow escaping from, or avoiding, the local optim@mtrapment of a search process
when solving a combinatorial optimisation problefhere are many different types of
metaheuristics with different underlying philosogshi It is difficult either to group or
classify them but it seems to be consensual toidgenswo main groups: those that
avoid getting stuck on a local optimum, working twdé population of solutions and
performing a biased sampling of the solutions spacd the ones that escape from local
optima, working with only one current solution attime. Metaheuristics are often
classified according to the methods adopted in rorde escape or avoid local
entrapment. Such methods include the use of pureloraness; the use of
neighbourhood-modification processes; the inclugsibpenalties or weights to modify
the objective function; the use of a statistical delofor the frequency of the
characteristics of the solutions chosen, etc. Otragrs of looking at metaheuristics are
its memory usage - short and/or long-term memoryor-,the balance between
intensification and diversification processes, tisatthe exhaustive search of a region
around a good solution and the orientation of tkarch to a more distant and

unexplored region.

2 http://www.inderscience.com/browse/index.php?jal®®DE=ijmheur
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Next, we will briefly describe the most widely usetktaheuristics. Metaheuristics
are general methods that can be applied to diffdaen of problems with very little
problem specific adaptations. They are very popmdmding good solutions to many
optimisation problems from different research feeldike artificial intelligence,
computer science or combinatorial optimisation, aghothers. For more information
on the state of the art of the field of metaheigssplease refer to surveys like “A
survey of Al-based meta-heuristics for dealing vigttal optima in local search” (Mills,
Tsang et al. 2004) and “Metaheuristics in Combinatdptimization: Overview and

Conceptual Comparison” (Blum and Roli 2003), aralrtheferences.

2.2.1 Metaheuristics that work with One Solution

In the group of metaheuristics that work with oolye current solution at a time
there are those which escape local optima mainlgdming some form of randomness,
like Simulated Annealing, Greedy Randomised Adap®&earch Procedure (GRASP) or
Iterated Local Search; others perform some modifinaon the neighbourhood
structure, like Variable Neighbourhood Search obur&earch; finally there are those
which use penalties or weights to modify the obyectfunction like Guided Local
Search.

Simulated Annealing The simulated annealing procedure is not a cortsteic
method so it needs an initial solution. It is adlosearch method that allows moves
resulting in solutions of worse quality than thareat one in order to escape local
optima. The probability of accepting such a mowadled the temperature, is decreased
during the search. The method tries to mimic theeahing process of metals and glass.
Early references to simulated annealing trace laciMetropolis, Rosenbluth et al.
1956), (Kirkpatrick, Gelatt et al. 1983), (Cerny8B9. A variation on simulated
annealing is simulated jumping (Amin 1999). SeenMaarhoven, Aarts et al. 1992)
for applications to the job shop scheduling.

GRASP The acronym GRASP (Feo and Resende 1995), (ResmmdieRibeiro
2003) means “greedy randomised adaptive searcheguoe”. It is an iterative
constructive process where each iteration coneista/o steps: a randomised building
step of a greedy nature and a local search stefhheAuilding phase, a feasible solution
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is constructed by joining one element at a timehEgement is evaluated by a heuristic
function and incorporated (or not) in a restrictashdidate list (RCL) according to its
evaluation. The element to join the solution issgorandomly from the RCL. After a
new element is added, if the solution has alreadyernthen one element the algorithm
proceeds with the local search step. The currehitisn is updated by the local
optimum and this two-step process is repeated tinél solution is completeSee

(Binato, Hery et al. 2002) for an application te fbb shop scheduling problem.

Iterated Local Search The iterated local search procedure (Stutzle 1999),
(Lourengo, Martin et al. 2002) applies local seat@han initial solution until a local
optimum x is reached. Then, it randomly perturbs the sahyjtissually called a kick

move phase, and the local search re-starts. Thesoéwion y is compared to the
previous one X) and an acceptance criteria decides which soluttoar y, is used to

continue the procedure.

Tabu Search The tabu search method (Glover 1986), (Glover aaguba 1997)
keeps track of the most recently visited solutior@ntaining a tabu list that stores some
features of the solutions or of the moves that keathem. During the search process,
after a local optimum is reached, moves to solstipmesent in the tabu list are
forbidden. The best of the solutions not in theuth$t is chosen, even if it is worse than
the current one. Because the tabu list does na# 8te complete solutions, a tabu move
can be performed if it satisfies some aspiratioteica, usually if it is best than the best
solution found so far. See (Nowicki and SmutnicRD2) for applications to job shop
scheduling. There are several variations on tahtchdike robust tabu search (Taillard
1991; Smyth, Hoos et al. 2003), iterated robust sdarch (Battiti and Tecchiolli 1994;
Smyth, Hoos et al. 2003) or reactive tabu searéttBand Tecchiolli 1994).

Variable Neighbourhood SearchThe variable neighbourhood search procedure
(Hansen and Mladenovic 1997), (Mladerovand Hansen 1997),(Hansen and
Mladenovi 2001) uses several different neighbourhood strastuGiven a solution the
process looks for neighbours in a neighbourh@adAfter a local optimum is achieved,
the process changes to a different neighbourhBqdusually bigger thanA. The
method cycles through all the different neighbood®used; it stops when there is no

improvement for any of them.
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Guided Local Search The guided local search procedure (Voudouris 1997),
(Voudouris and Tsang 1999) dynamically changeotjective function of the problem
being solved. After a local optimum is found, tHgeative function is changed so that
penalties for the features of the local optimalusoh are included, and so other

neighbours become more attractive.

2.2.2 Metaheuristics that work with a Population ofSolutions

In the group of metaheuristics that work with a glagion of solutions which avoid
local entrapment by performing combinations andatioms of the solutions, some are
strongly based in randomness, like Genetic Algargland Memetic Algorithms; others
are based on the underlying search space likeescatarch, and Path Relinking; and
others, still, which are based on probability mediéte Ant Colony Optimisation or

Estimation of Distribution Algorithms.

Genetic Algorithms The proceduredesignated genetic algorithms (Holland 1975)
are inspired in natural evolution. They considesea of initial solutions, called the
initial population and perform a number of openasioto the individuals of the
population to generate new solutions. These omastinclude the combination of
elements from different solutions (crossover), tr@lmodification of some elements of
one solution — mutation. The best evaluated indiaisl are chosen to constitute the next
generation. Frequently, the elements of the soisti&are represented by a binary code.

See (Yamada and Nakano 1992) for an applicatitineggob shop problem.

Memetic Algorithms The procedures designated memetic algorithms (Mosca
1989), also known as genetic local search, try tmimthe “cultural evolution” by
incorporating local search into a genetic algorithamework. An initial population is
generated and local search is applied to eachi@el@rossover and mutation operators
are used to generate new individuals and locakhkeiarapplied again to the resulting
solutions. The best ones, according to quality dmdrsity, are chosen to constitute the

next generation.

Scatter SearchThe scatter search method (Cung, Mautor et al. Y19@3lover
1999), (Glover, Laguna et al. 2000) generates nawutiens by linear combination of
two solutions chosen from a reference set. The awatibn of solutions can produce
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infeasibility so there is usually a procedure t@oner feasibility. Local search is

performed to improve the new generated solutiohs. rEference set is updated with the
best solutions generated while maintaining somelle¥ diversity. See (Yamada and
Nakano 1995) and (Jain and Meeran 1998) for apgpita to the job shop scheduling

problem.

Path Relinking The path relinking method (Glover 1999) finds nestusons by
generating paths between and beyond solutions refesience set. It is analogous to
scatter search, but replaces the linear combirgiiorthe Euclidean space by paths in
the neighbourhood space. While traversing pathirggefrom an initial solution, moves
must progressively introduce attributes of a gugdsolution. Path relinking is most
commonly used as a component of other metahewidike tabu search or GRASP.
See a GRASP with path relinking (Aiex, Binato et28103) and a tabu search with path
relinking (Nowicki and Smutnicki 2005) for appligans to the job shop scheduling

problem.

Ant Colony Optimisation The ant colony optimisation procedures (ACO) (Dorig
Maniezzo et al. 1996) are inspired in the behavadweal ants when walking between
food sources and their nests. Ants deposit a phamerm the walking path. Paths with
stronger pheromone concentration are more frequehitbsen by the ants. The ACO
mimics the pheromone trails with a probabilistic dab The metaheuristic is a
constructive procedure where solutions are cong&duadding components one by one
to a partial solution under consideration. EacHiel ant performs a randomised walk
on a completely connected graph whose verticesherecomponents of the solutions
and the arcs are the set of connections betweem. thach vertex and each connection
have associated probability values that are updadedig the process according to the
frequency of usage and the quality of the solutiom$t. See (Dorigo and Stiitzle 2002)

for applications of the method.

Estimation of Distribution Algorithms The procedures designated estimation of
distribution algorithms (Muhlenbein and Bad996) are based on populations of
distribution functions that evolve as the searcbgpesses. They use probabilistic
modelling of the elements of good solutions toreate a distribution over the search
space. This distribution is used to produce thet rgeneration of solutions. The
distribution function is then updated. See (Peljkaaldberg et al. 1999) for a survey on

these methods and (Larrafiaga and Lozano 2002sfapplications.
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2.3 Overview of Combinatorial Optimisation Methods

Combinatorial optimisation problems can be appredchs optimisation problems
for polyhedra and mathematically formulated asgatelinear programs. So, many
general algorithms for (integer) linear programmicgn be applied to solve

combinatorial optimisation problems.

General algorithms for integer programming fallointvo partially overlapping
categories: the enumerative methods like brancheauoehd or dynamic programming
that perform some kind of intelligent enumeratidnatl possible solutions; and the
cutting-plane methods that solve some relaxatiaeforiginal problem and then add a
linear constraint that throws away the solutiontted relaxation but does not exclude

any integer feasible point.

In the preface of the Handbook of Combinatorial i@mation (Du and Pardalos
1998), Ding Zhu Du and Panos M. Pardalos identifyw&or factors that had a great
effect on combinatorial optimisation, after itsrthi’ with the simplex method: on one
side, the discoveries of the ellipsoid method i@7d9Khachiyan 1979) and the interior
point method in 1984 (Karmarkar 1984) providing ypmmial time algorithms for
linear programming, in the sense that linear pnognang relaxations are often the basis
for combinatorial optimisation algorithms; on théher side the design of efficient
integer programming software and the availabilityparallel computers allowing us to
solve to optimality problems with thousands of gee variables and approximate

solutions to problems with millions of integer \ables.

The next sections present short descriptions ofeseombinatorial optimisation
methods, procedures that are combined with metadtiesr in the new proposed
methods OSH.

Dynamic programming This method was first introduced by Richard Bellman
(Bellman 1957) in the early 50ths for solving matiige decision problems (either
deterministic or stochastic). At each stage a d&tis required and each stage has a
number of states associated with it. The decisi@na stage transforms one state into a
state of the next stage. Going through the stagjse( in a forward or backward way),

a new state in the problem is determined only leystlate on the previous (or following)
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stage and the decision taken there. Bellman definedorinciple of optimality which
states: “An optimal policy has the property thatatdver the initial state and initial
decision are, the remaining decisions must conetiim optimal policy with regard to

the state resulting from the first decision” (Bedim1957).

Any optimisation problem that can be formulatedifyerg this optimality principle
can be solved by dynamic programming. The algoritperforms an intelligent
enumeration of all feasible solutions and it calves@n optimisation problem with a
fixed number of constraints in pseudo-polynomiaidi(dependent on the size of the
input and on the biggest absolute value of the dathe instance), through a recursive
optimisation process that decomposes the initi@mblem into a nested family of

subproblems.

Formally letT denote the set of stages, the state and; the decision variable at

-
staget. Given the initial states;, the objective function is given by= ) f; (st_l,xt)
t=1

and each state is = g; (st_l,xt) for t=1...T . So both the contribution to the objective
function of staget and the state in stagedepend only ors_; and X . This way the

original problem can be addressed by recursivelyirsp a series ofT subproblems;
each with only one decision variable and one statestraint, making the optimal
decision for that state in each subproblem.

Considering an optimisation problem, the issuepdlyng dynamic programming
to solve it lies on the difficulty in identifyingtages and states. Different formulations
with different stages and states can be definethissame problem and the process can
be thought of as a forward or backward recursiam.ifistance (Nemhauser and Wolsey

1988) presents two dynamic programming algorithanghe integer knapsack problem

zb)=max ¥ cjxj: ¥ ajxj<b x0Z}}, one with complexityo(nbz) and other
jON jON

with complexity o (nb).

Besides the operations research field, dynamicrproming is also very popular in
the areas of economics (Adda and Cooper 2003) antpbuater science (Bertsekas
2000), among others. For more details on dynamagnamming please refer to
(Denardo 2003).
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Branch-and-bound The branch-and-bound method has its origins in akvnxy
Land and Doig (Land and Doig 1960) and further ioyements by Dakin (Dakin
1965). The method constructs a tree structure sesaitches the solution space using two

main tools: branching and bounding.

Branching is a splitting procedure that, given aaddeasible solutionsS builds a

partition of mutually exclusive sets§ (S={JS,i=2). Note that
min{cx: xO S} =min{min;{cx: x0S}:S=1JS} . A set of solutions is represented by a

node in the search tree and each subset in théqrars represented by a child node.

Bounding is the procedure of computing upper ameetobounds for the minimum
value of the objective function within each (sulb)skesolutions. If the lower bound for
some node of the tree is greater than the globaémupound (usually the value of the
best feasible solution found) then that node capribeed, that is, the search does not

proceed through that node. If it can be proved thatbest descendant of a nofig is
at least as good as the best descendant of a pdthen S; dominatesS, and the

latter can be discarded. Nodes that have not y&t beanched and that were not pruned

are called active nodes.

The method stops when the upper bound matcheswer bound or when there are
no more active nodes in the tree (in practice ttoegrure is often terminated after a
given time; or when the gap between upper and Idveemds falls below a certain

value).

When designing a branch-and-bound algorithm thezengany strategic choices to
be made (which quite often depend heavily on tieblem at hand). At the beginning of
the method there is the need to choose the waprapating an upper bound, usually
done by heuristically building a feasible solutidrhere are many different ways for
partitioning the solution space — a branching sa&emst be chosen. Lower bounds can
be tight but computationally expensive or not gittibut computed fast. How to use
lower bounds and dominance relations? At each bragcstep which node should be
branched? Recently experiences have been made ingnigr point methods to solve
each subproblem (Lee and Mitchell 1997), repla¢heywidely used simplex method.
The design choices critically dictate the efficigraf the method and there is not one

universal layout that works for all applicationgeSMitchell and Lee 2001) for details



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problems 21

on partitioning strategies, branching variable ci#®, node selection, preprocessing

and reformulation, and subproblem solver.

Cutting-plane A cutting plane method was first developed by Gomadhe
fractional cutting-plane algorithm designed to solmteger linear programs with the
simplex method (Gomory 1958). It starts by solvihg linear relaxation of the integer
problem using the simplex method. If the optimalugon found for the linear
relaxation is integer, then the problem is solMédhot, the value of this solution is a
lower bound for the optimum (on a minimisation dewb). In this case a linear
restriction, called cutting-plane or simply cut,added to the linear relaxation. It cuts
off the current optimal solution and does not cay anteger solution of the original
problem. These restrictions are also called valetjualities. The linear relaxation with
the new restriction is again solved using the semphethod and the process is repeated
until we get an integer solution. Gomory (Gomory58p described a method for
generating these cuts and proved it stops at agentsolution after a finite number of
iterations. These cuts are known as Chvatal-Gomotiyng-planes, due to the parallel
work by Chvatal (Chvatal 1973).

Geometrically, a linear relaxatio§ g :{ Ax< b, xO Rﬂ} is a convex polytope that

includes all feasible solutions to the integer jpeab IP min{ cx: Ax< b, x[O Z[l}, and

excludes all other integer solutions. Many différpolytopes have this property so an
integer program has many linear relaxations. Moeaegally, if we set apart the
constraints in the program into different groupstetaxation of a problem happens
whenever a group of constraints is dropped outut#ing-plane method takes advantage
of this multiplicity of possible relaxations by fimg a sequence of relaxations that
more tightly constrain the solution space until rdually a feasible solution for the

original integer problem is obtained. Ideally onewtd like to use the convex hull of the
feasible soluti0n§:{ Ax< b, x[ Zﬂ} as a relaxation; that is, the smallest convex set

that contains S - Con\S). Finding the optimal solution onCon\S) would

automatically lead to the optimal solution to thegimal integer program. However, in
general, this polytope will have exponentially mdagets and be difficult to construct.
Typical relaxations form a polytope that strictlpntains the convex hull and has

vertices other than the integer solutions thatestie unrelaxed problem.
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The number of cutting-planes we need to introdacthé feasible set of the linear
relaxation depends on how far the relaxation isnfrEonyS) in the region of the

optimal solution. So the method can be very timesoming.

Along with the fractional Chavatal-Gomory cuts, rihare other types of cuts: when
a formulation has a family of constraints with aqp@enential number of inequalities, it
is usual to solve the relaxation without this familf constraints and to add them as
cutting planes as needed (Dantzig, Fulkerson e1384); the knapsack cuts use the
notion that a knapsack problem has only one lineaquality constraint, they find
facets for each knapsack problem and add theneteethxation of the original problem
as cuts (Crowder, Johnson et al. 1983); there lacethe lift-and-project or disjunctive
cuts (Balas, Ceria et al. 1996) for 0-1 problem®mheach variable can be fixed to 0
and to 1 generating a set of disjunctive inequajtand the Fenchel cuts (Boyd 1994)
that use ideas from lagrangean and convex dualities

The cutting-plane method of Gomory has the disatignof only getting an integer
feasible solution when the optimum is reached. @heme some primal cutting plane
algorithms where the current solution is alwaysraeger one; the algorithm of Padberg
and Hong (Padberg and Hong 1980) developed to sév&raveling salesman problem
is an example. Primal cutting plane algorithmststath a solution that is an extreme
point of the convex hull of the feasible integragion and generate cuts that enable
moving from one extreme point to another adjacaireene point of the convex hull,
improving the value of the objective function. Bk the difficulty of finding the
initial solution, there is the need to find stronigting planes, that is, valid inequalities

defining the facets of the convex hull of the irgefgasible region.

Branch and cut The branch-and-cut is a procedure that combineachrand-
bound with cutting-planes. A pure branch-and-bowamgproach can be speeded up
considerably by the use of a cutting plane schémaeause the cutting planes lead to a
considerable reduction in the size of the tree. fBeénstance (Padberg and Rinaldi
1991).

At a node of the branch-and-bound tree, cuttingigdaare added to tighten the
relaxation, before branching. As finding good atas be computational expensive, cuts
are usually not included in every node of the tk&ben executed, the insertion of new

cuts stops when the solution for the latter reliaxats not significantly better than the
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one of the previous relaxation of that node ofttiee. There is a version of the method
where cuts are introduced only in the root nodehef branch-and-bound tree, called
cut-and-branch. The cuts introduced in a node @trtde can be global, that is, valid for
the original problem, or local, which means theg waalid only for the subproblem of

that branch of the tree.

Column Generation The method column generation was first suggesteérdoyl
and Fulkerson (Ford and Fulkerson 1958). A coluranegation algorithm is based on
the idea of solving a problem by considering onlgudset of its variables, including
new variables in the formulation, and dropping athat each step. Such an algorithm
may be of use when a linear problem is too largeaiadle, having too many variables
(columns) and a relatively small number of constsai Since the majority of the
variables will have value zero in an optimal saatiof a linear program, being non
basic variables, the problem can be solved conaglemly a subset of them; the ones
that are likely to improve the objective functidut in order for it to be practical there
is the need to efficiently solve the subproblemidentifying which variable should
enter the problem, the so called pricing problerhe Toriginal problem is usually
reformulated using different variables, thus evidieg a structure that allows splitting it
into a master problem and separable subproblei®) .Dantzig Wolfe decomposition

algorithm (Dantzig and Wolfe 1960) is a successkadmple of these methods.

The procedure starts by solving the master probkdth only a subset of the
variables. Given a solution, the dual prices of toastraints are used to define the
objective function of the pricing problem, whichtiee minimum reduced cost of the left
out variables. The pricing problem is solved amsdoibjective value is the reduced cost
of the variable to enter the problem. If this ol value is not negative then the
solution to the master (minimisation) problem igimg@l; if not, the corresponding new

variable is included and the process is repeated.

Integer programming column generation algorithmsewmaresented in (Barnhart,
Johnson et al. 1998) and (Vanderbeck and Wolse§)199

For a detailed work on theory and practice of calugeneration in linear and

integer programming please refer to (Lubbecke aesr@siers 2005).

Branch-and-Price The idea underlying branch-and-price (Desrosi®oamis et al.

1984) is similar to the one of branch-and-cut; @xadat branch-and-price executes
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column generation (addition of variables) insteddh@ row generation (addition of
inequalities) of branch-and-cut. Pricing and cuftiare viewed as complementary

procedures for tightening the relaxation of a peaotol

At each node of the branch-and-bound tree, coluemegation is applied until no
new variable enters the problem. If the currenutoh is not yet feasible for the
original problem then the node is branched. Speaiak for branching are required to
develop an effective branch-and-price algorithne @arnhart, Johnson et al. 1998) for

more information on the subject.

Branch-and-Cut-and-Price These procedures are generalisations of the branch
and-bound method that perform both cutting plare @iumn generation at the nodes
of the tree. Special care is mandatory when comgibbth column and row generation
in order that one does not destroy the speciaktsires needed for the other to be
effective. These procedures are by no means eadgsign but they do achieve good
results; see (Vanderbeck 1998), (Akker, HurkenaleR000), (Barnhart, Hane et al.
2000) or (Fukasawa, Lysgaard et al. 2004) for ssgfoé examples. There are some
available frameworks online for implementing brasgtd-cut-and-price algorithms,
like MINTO — Mixed INTeger Optimizérand ABACUS — A Branch-And-Cut Systém
(Junger and Thienel 2000).

Lagrangean Relaxation This method is a relaxation technique which wolks
moving hard constraints into the objective functigteld and Karp 1970), (Held and
Karp 1971).

When it is possible to set apart the constraints tine program
IP min{ cx: AX<h, xDZ_T} into two groups, sa[/AL | Az]xs [bl|b2], such that thdP
relaxation min{cx:Alxs bl,xDZfl} is an easy program to solve; if we add the
previously discarded constraints to the objectivaction we get the lagrangean
relaxation IP| g min{ cx+ A(Aox—Dy): Ax< by, xO ZE‘,} where AOR{2is a vector of
non negative weights, called the lagrangean migtgl If the constraint®px<hb, are

violated, the quantityA,x — b, will be positive and the objective function is pksed.

For any fixed values ofl, the optimum of thelP g is never bigger than the optimal

® http://coral.ie.lehigh.edu/minto/
4 www.informatik.uni-koeln.de/abacus/
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value of IP, so we can address the original progriby solving the lagrangean dual

programIP g, ma>{ IPLRr:A 20}.

When designing a lagrangean relaxation algoritherettare many decisions to be
made that will affect its efficiency: there arefdient lagrangean relaxations for the
same problem which can generate lower bounds nmwoless tight; reformulating the
problem prior to relaxation can be a good choibe; lagrangean subproblem may be
decomposed into smaller problems; etc. A very irtgodr aspect is the search for
optimal multipliers, to which the choice of the imed to solve the lagrangean dual
program (subgradiente method, dual ascent methodisecrucial. Please see (Guignard

2003) for a detailed discussion on lagrangean atiax methods.

For further reading on combinatorial optimisationethods please refer to
(Papadimitriou and Steiglitz 1982), (Schrijver 1986 (Nemhauser and Wolsey 1988).
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3. Optimised Search Heuristics

Recently, a new class of hybrid procedures, whiomhine local search based
(meta) heuristics and exact algorithms of the dpmra research field, has been
designed to find solutions for combinatorial opsation problems. This research topic
is becoming very prominent and caught the a atisntf several researchers; see the
recent surveys (Blum and Roli 2003), (Cotta 199&)ptta, Talbi et al. 2005),
(Dumitrescu and Stitzle 2003), (EI-Abd and Kamed®0 (Puchinger and Raidl 2005)
and (Raidl 2006) for overviews of different angl¥ge designated these methods by
Optimised Search Heuristics (OSH) since the seprobess is some how oriented by
exact methods from the combinatorial optimisaticeldf Different combinations of
different procedures are present in the literatanel, there are several applications of the
OSH methods to different problems (see the web page
http://www.econ.upf.edu/~ramalhin/OSHwebpage/indgrl). The main advantage of
the OSH methods is that they combine differentneples with the objective of solving

difficult and very large scale problems in a startount of time.

In this third chapter we present how procedures$ toanbine metaheuristics and
exact algorithms, the OSH methods, have been abpliecombinatorial optimisation
problems. We compare and examine the corresponsl@ideo existing classifications
of such procedures. We then propose a more genkxsdification by renaming an
existing item and adding a new one. To stress igtalgition of these applications over
the different problems of combinatorial optimisatiowve group them following a
classification of NP optimisation problems and m4tlthe combined use of heuristic
and exact techniques. This survey on OSH methonlilbotes to a review of the state-
of-the-art of the application of OSH methods toveokombinatorial optimisation

problems.
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3.1 Classifications of OSH Procedures

Two classifications of Optimised Search Heuristtes be found in the literature.
The first one, by Dumitrescu and Stitzle (Dumittesmd Stitzle 2003), presents a
classification of solution methods that combinesalcsearch with exact algorithms. In
particular, they consider that the main framewakbased on local search and the
subproblems are approached by exact methods. Thgkers consider the following

categories:
DS.1 - exact algorithms to explore large neighboads within local search.

DS.2 - information of high quality solutions foundseveral runs of local search is

used to define smaller problems solvable by exigoridhms.
DS.3 - exploit lower bounds in constructive heucist
DS.4 - local search guided by information from gegeprogramming relaxations.

DS.5 - use exact algorithms for specific procedwigsin metaheuristics.

The next classification, due to Puchinger and Rérilichinger and Raidl 2005),
considers the combination of exact methods and heatéstics and includes the
following categories:

PR.1 — collaborative
Algorithms exchange information but are not paréa€h other.

The authors consider two subcategories: one, séigueghe other parallel and

intertwined.
PR.1.1 - sequential execution

One technique does a preprocessing before the othdére second one is a post
processing of the solution(s) generated by thd. fBe@metimes both techniques have
egual importance and we cannot speak of pre orgrosessing.

PR.1.2 - parallel or intertwined execution
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In parallel execution several processors perfomulaneous tasks acting as teams
and interchanging information. In intertwined ex#@u a single processor executes

some steps of one procedure, then some steps tfesino
PR.2 - integrative combinations

One technique is a subordinate embedded compomehe ather technique. The
authors consider the following subcategories:

PR.2.1 - incorporating exact algorithms in metalstics
PR.2.1.1 - exactly solving relaxed problems

Solutions to relaxations heuristically guide neighihood search, recombination,

mutation, repair and/or local improvement.
PR.2.1.2 - exactly searching large neighbourhoods

Exact algorithms are used to search neighbourhdaddocal search based

metaheuristics.
PR.2.1.3 - merging solutions

Exact algorithms are used to solve sub problemsergéing partial solutions.

Merging these partial solutions is iteratively apglwithin a metaheuristics.
PR.2.1.4 - exact algorithms as decoders

In evolutionary algorithms where solutions are mpdetely represented in the

chromosome, exact algorithms are used to find dineespondent best solution.
PR.2.2 - incorporating metaheuristics in exact algms
PR.2.2.1 - metaheuristics for obtaining incumbehitsons and bounds
Metaheuristics are used to determine bounds anohiibent solutions.
PR.2.2.2 - metaheuristics for column and cut gaimera

In branch-and-cut and branch-and-price algorithmegtaheuristics are used to

dynamically separate cutting-planes and pricingicwis, respectively.
PR.2.2.3 - metaheuristics for strategic guidanocexatct algorithms

Metaheuristics are used to determine the branckirggjegy in branch-and-bound

techniques.
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PR.2.2.4 - applying the spirit of metaheuristics

Branch-and-bound it self is used for doing the llosgarch. No explicit

metaheuristic is used.

3.1.1 Connecting the Classifications Dumitrescu &t8tzle - Puchinger & Raidl

Almost all items in the classification of Dumitresand Stitzle correspond to sub
items of item PR.2.1 (incorporating exact algorighim metaheuristics). The exceptions
are procedures classified by Dumitrescu and Stinzieem DS.2. (information of high
guality solutions found in several runs of locahs is used to define smaller problems
solvable by exact algorithms), that have a segaken@ture, running a local search
based heuristic several times before an exactitiggrand also the work of (Umetani,
Yagiura et al. 2003), allocated to item DS.4, $edquentially executes tabu search after

solving the integer programming relaxation.

Some works included in item DS.1, exactly searclténge neighbourhoods, can be

viewed as a merging solutions kind of procedure.

We introduce a new item in the classification otager and Raidl, 2.1.5 exact
algorithms for strategic guidance of metaheuristidsre we include all works of item
DS.3.

We believe item PR.2.1.3. merging solutions shdwédgeneralised and renamed

exactly solving sub problems.

We can say that the classification of Dumitrescd 8titzle is more specific and the
one of Puchinger and Raidl is more general.
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Table 3.1Correspondence Between Classifications of OSHdRhares

Correspondence between classifications

Dumitrescu and Stitzle Puchinger and Raidl

DS.1. exact algorithms to explore larg®R.2.1.2. exactly searching large neighbourhoogs
neighbourhoods within local search 2.1.3. merging solutions — exactly solving sub
problems

DS.2. information of high quality solutions foundPR.1.1. sequential execution
in several runs of local search is used to define
smaller problems solvable by exact algorithms

DS.3. exploit lower bounds in constructivenew proposed item2.1.5. exact algorithms fg
heuristics. strategic guidance of metaheuristics

=

DS.4. local search guided by information frarPR.1.1. sequential execution
integer programming relaxations

DS.5. use exact algorithms for specific procedur®fR.2.1.3. merging solutions — exactly solving sub
within metaheuristics problems

3.1.2 Classification of Procedures versus Problemype

Using the classification of NP optimisation probkemroposed by Crescenci and
Kann in http://www.nada.kth.se/~viggo/problemlisve show the distribution of the
OSH heuristics application to the different comiamizl optimisation problems. In
Table 3.2 we present a mapping of the problem txgrsus the type of combination
used. Each entry of the table consists of the eefar to the paper(s) and the initials of
the exact and metaheuristic methods combined. ®leassult the legend of the table

for description of methods initials.

We can see that a lot of the research of procedhatombine metaheuristics with
exact algorithms has been dedicated to the job shbeduling problem and to routing
problems. Packing problems and the multiple comgtienapsack problem have also
received some considerable attention, as well@asnibre general class of mixed integer
programming problems. We believe this can be vieagd measurement of both the
difficulty and the practical relevance of these lppems. Practitioners are still not
satisfied with the results achieved by traditioapplications from stand-alone fields of

knowledge.

When looking at the type of combination implemented see that the most popular
are sequential execution, exactly searching largghbourhoods (where dynamic



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problems 31

programming is the most used exact algorithm) ardctty solving subproblems.
Genetic algorithms have been the metaheuristiceepiaes more frequently used in

combination with exact algorithms, maybe becaudesddbw performance on their own.

The most common exact algorithms in these OSH piwres are, aside from dynamic

programming, linear relaxations and branch-and-doun

We believe that using exact algorithms for strategiidance of metaheuristics is a
very promising line of research. This way we caofipfrom the fast search of the space
of solutions of the metaheuristics without gettiogt in a “wandering” path, due to the
guidance given by the exact algorithms. We find #rother very interesting idea is the

one of “applying the spirit of metaheuristics” whaesigning exact algorithms.

This analysis of hybrid procedures to solve comioinal optimisation problems is
presented in the papeédybrids combining Local Search Heuristics with Bxac
Algorithms(Fernandes and Lourencgo 2007b). Its main conalusithat there are many
research opportunities to develop Optimised Seli®lristics and a large opportunity
to apply them to difficult problems. The OSH methazhn extract the best features of
the Metaheuristics and Exact Methods and provideindegrated solution method

which, as proved already by several authors, cah te excellent results.

In Annex A the reader can find a short abstracteach of the OSH procedures

referenced, ordered by type of combination.



Table 3.2Mapping Problem Type Versus the Type of OSH Procesi

11 12 211 212 213 214 215 221 222 223 224
Sequential Parallel or | Exactly Exactly Exactly Exact Exact Metaheuristics | Metaheuristics | Metaheuristics | Applying the
execution intertwined solving searching large | solving sub | algorithms algorithms for | for obtaining | for column | for strategic | spirit of
execution relaxed neighbourhoods | problems as decoders | strategic incumbent and cut | guidance  of | metaheuristics
problems guidance  of | solutions and | generation exact
metaheuristics | bounds algorithms
Mixed (Pedroso (Pedroso (French, (Danna,
Integer 2004)LS, LR 2004)TS, BB Robinson et al| Rothberg et al,
2001)BB, GA | 2005)BC, LS
(Kostikas and| (Fischetti and
Fragakis 2004) Lodi 2003)
BB, GP BB, LS
Graph (Marino, (Filho and
Colouring Prugel- Lorena 2000)
Bennett et al. CG, GA
1999)GA, LP
Frequency (Maniezzo and
Assignment Carbonaro
2000) LR, D,
BB, ACO
Partitioning (Ahuja, Orlin et| (Yagiura and
al. 2000)LS, DP | Ibaraki 1996)
(Ahuja, Ergun et| GA, DP
al. 2002)LS, DP
Maximum (Aggarwal,
Independent Orlin et al
Set 1997)GA, IP
Maximum (Balas and
Clique Niehaus 1998)
GA, IP
Network (Budenbender (Danna,
Design Grlnert et al. Rothberg et al.
2000)LS, IP 2005)BC, LS
p-Median (Rosing and (Della-Croce,
ReVelle Ghirardi et al.
1997) 2004)BS
(Rosing and
ReVelle
1998)
(Rosing

2000)LS, BB




11 12 211 212 213 214 215 221 222 223 224
Sequential Parallel or | Exactly Exactly Exactly Exact Exact Metaheuristics | Metaheuristics | Metaheuristics | Applying the
execution intertwined solving searching large | solving sub | algorithms algorithms for | for obtaining | for column | for strategic | spirit of
execution relaxed neighbourhoods | problems as decoders | strategic incumbent and cut | guidance  of | metaheuristics
problems guidance  of | solutions and | generation exact
metaheuristics | bounds algorithms
Quadratic (Mautor and (Maniezzo
Assignment Michelon 1999) LR, D,
1997) BB, ACO
(Mautor and
Michelon
2001)
(Mautor 2002)
LS, IP
Steiner Tree | (Klau, Ljubic (Klau, Ljubic et
et al. 2004) al. 2004) MA,
MA, CP CP
Traveling (Applegate, (Cowling and| (Yagiura and
Salesman Bixby et al. Keuthen 2005)| Ibaraki 1996)
1999) ILK, ILS, DP GA, DP
BC (Burke, Cowling
(Cook and et al. 2001)LS,
Seymour VNS, DP
2003) ILK, (Pesant and
DP Gendreau 1996)
(Pesant and
Gendreau 1999
LS, CP
(Congram 2000)
ILS, DP
(Voudouris and
Tsang 1999)
GLS, DP
Vehicle (Ibaraki, (Thompson and (Shaw 1998) (Danna,
Routing Kubo et al Orlin 1989) BB, TS Rothberg et al.
2001) ILS, (Thompson and 2005)BC, LS
DP Psaraftis 1993
DP, VNS
Packing (Puchinger, | (Dowsland, (Alvim, (Puchinger and
Raidl et al.| Herbert et al.| Ribeiro et al.| Raidl 2004)
2004) GA, | 2004)GA, BB | 2003)D, TS (Puchinger and
BB Raidl 2004)
(Imahori, BP, GA
Yagiura et al.
2003) ILS,

DP




11 12 211 212 213 214 215 221 222 223 224
Sequential Parallel or | Exactly Exactly Exactly Exact Exact Metaheuristics | Metaheuristics | Metaheuristics | Applying the
execution intertwined solving searching large | solving sub | algorithms algorithms for | for obtaining | for column | for strategic | spirit of
execution relaxed neighbourhoods | problems as decoders | strategic incumbent and cut | guidance  of | metaheuristics
problems guidance  of | solutions and | generation exact
metaheuristics | bounds algorithms
Cutting (Umetani,
Stock Yagiura et al.
2003) ILS,
LR
(Bennell and
Dowsland
2001)TS, LP
Lot-sizing (Staggemeier (Ozdamar and
Clark et al. Barbarosoglu
2002) GA, 2000)LgR, SA
LP
Flow-Shop (Nagar, (Della-Croce,
Scheduling Heragu et al. Ghirardi et al.
1995BB, GA 2004)]BS
Job-Shop (Tamura, (Caseau and (Lourencgo (Schaal, Fadil (Danna,
Scheduling Hirahara et Laburthe 1995)ILS, BB | et al. 1999) Rothberg et al.
al. 1994) IP, 1995) LS, (Lourengo and| IPM, C, GA, 2005)BC, LS
GA, LgR CrP Zwijnenburg SA
(Applegate 1996)ILS, TS,
and Cook BB
1991)BB, LS
(Adams, Balas
et al. 1988)
LS; BB
(Balas and
Vazacopoulos
1998) GLS,
BB
One (Congram, Pottg (Yagiura and
Machine et al. 2002)LS, | Ibaraki 1996)
Scheduling DP GA, DP
(Lourenco,
Martin et al.
2002)ILS, DP
Parallel (Clements, (Ghirardi  and|
Machine Crawford et Potts 2005BS
Scheduling al. 1997)LS,

DW, LR, BB




11 12 211 212 213 214 215 221 222 223 224
Sequential Parallel or | Exactly Exactly Exactly Exact Exact Metaheuristics | Metaheuristics | Metaheuristics | Applying the
execution intertwined solving searching large | solving sub | algorithms algorithms for | for obtaining | for column | for strategic | spirit of
execution relaxed neighbourhoods | problems as decoders | strategic incumbent and cut | guidance  of | metaheuristics
problems guidance  of | solutions and | generation exact
metaheuristics | bounds algorithms
Knapsack (Vasquez and (Chu and
Hao  2001) Beasley
TS, LR 1998) GA,
(Plateau, LR, SR
Tachat et al. (Raidl 1998)
2002) IPM, GA, LR, D
PR, SS
Generalised | (Feltl and (Pigatti,
Assignment | Raidl 2004) Aragdo et al.
GA, LP 2005) BCP,
LS
Markov (Lin, Bean et
Decision al. 2004)GA,
Processes IP
Generalised (Cotta and
Schwefel Troya 2003)
Function GA, BB
Optimisation (Hedar and
of Fukushima
continuous 2004)TS, NM
problems

Heuristics ACO — ant colony optimisation, GA — genetic aldamit, GLS — guided local search, GP — genetic prograg, ILK — iterated Lin-Kernighan, ILS — iteratéatal search, LS — local search, MA —
memetic algorithm, PR — path relinking, SA — sinedbannealing, SS — scatter search, TS — tabuhs@84S — variable neighbourhood search

Exact methodsBB - branch-and-bound, BC — branch-and-cut, BCRandh-and-cut-and-price, BP — branch-and-price—B&am search, C — cuts, CG — column generation; @Rting and pricing, CrP —
constraint programming, D — duality, DP — dynamiogramming, DW — Dantzig Wolf, IP — integer prograig, IPM — interior point method, LP — linear prammming, LgR — lagrangean relaxation, LR — linear
relaxation, NM — Nelder-Mead method, SR — surrogel@xation
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4. Scheduling Problems

In this chapter, we introduce scheduling problems atudy their algebraic
structure. We start by presenting in section 4.4 teatures which constitute a
scheduling problem and the characteristics thaindetlifferent types of these
problems. A scheduling problem is usually mathecadif formulated as a
disjunctive program, so section 4.2 presents atsimroduction to disjunctive
programming. When studying the algebraic structofescheduling problems we
focus mainly on two types of problems: the one nrexzhscheduling problem,
presented in section 4.3, and the job shop scheglplioblem in section 4.4. In this
section dedicated to the job shop scheduling proplge include a subsection in the
end where we present a literature review of opeehisearch heuristics that have been

applied to it.

4.1 Introduction to Scheduling Problems

A scheduling problem considers a set of jobs tproeessed on a set of machines.
A job consists of one or more operations (or atiéig); each operation is assigned to a
machine and it uses a constant processing time (lerdeal only with deterministic
problems). It is assumed that two consecutive djpersof the same job are assigned
to different machines and that all the machinesabsays available to the system. To
solve the problem we need to find a sequence, laddrrespondent time intervals,
for processing the operations in each machine. IAtisa to the problem is called a
schedule. A feasible schedule is one respectingeheh machine can only process
one operation at a time; different machines can poicess the same job
simultaneously and also some additional constragltsted to the specific problem
type. The problem type is characterised by the maclkenvironment, the job

characteristics and the objective function to benoiged.



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problems37

The machine environment can have only one stagerenbne job corresponds to
only one operation, or it may be multi-stage, amdhis case one job corresponds to

several operations.

There may be more than one machine in a single stagironment, but then they
will all work in parallel having the same functioRarallel machines can be of three
different types: identical, uniform or unrelated.the first case, the processing times
of the jobs are independent of the machine; unifparallel machines are identical
except that they have different speeds; for uredigarallel machines, the processing

times of the jobs are dependent on the machingrasgint.

Multi-stage machine environments are also desighaseshop environments and
can be of three different types: flow shop, openpsbr job shop. In a flow shop
scheme the processing alignment of the operatibagab, passing from one machine
to the next, is the same for all the jobs. In arrophop system the ordering through
what the jobs move from one machine to anotheo iset decided when solving the
problem and may differ from job to job. In a joboghenvironment the order of
processing the operations within the jobs and aisespondent machines are fixed

apriority and are independent from job to job.

Speaking of the job characteristics, if there i¢yame machine or if they are

identical parallel machines, the processing time jfb j is given by p; ; otherwise,
pjj is the processing time of jop on machinei (or also p; is the processing time
of operationg; ). The processing times are non-negative integeanpeters of the

problem. The jobs may all be available at the haigip of the process or they may

have release dates;(for job j), specifying when a job becomes available to the
system. Jobs may also have due datgs for job j), indicating a limited date for

their conclusion. There may be dependence relatimt®een jobs and it may be

allowed to interrupt the processing of an operattesuming it at a latter moment.

In off-line scheduling systems, the classical msdell the information of an
instance is known apriority. In on-line systems ithfermation on the number of jobs,

their release and/or due dates are made availablegdhe course of the scheduling.
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According to the optimality criteria, several me@surelated to the processing

times pj, the due dateslj, or the weightsw; associated with the job§, may be
used as the function to be optimised. Given a adedtie following measures may be
computed:C; - the completion time of jofj ; Fj =C; —r; - the flow time of jobj;
Lj =Cj —dj - the lateness of joby ; E; :ma>{dj Y ,O} - the earliness of joly ;

1 if Cj >d;

_ 1 - the unity
0 otherwise

Tj =maX{ C; -d;,0} - the tardiness of jobj; U ={

penalty of job j. Based on these measures many objective functioag be

formulated. The table 4.1 shows some common ones.

Table 4.1Common Objective Functions for Scheduling Problems

Objective Function Description
mMin Cmax = maXCj minimisation of the maximum completion time |or
s j makespan
Min Lmax = m_aij minimisation of the maximum lateness
s j
Min Emax = maXEj minimisation of the maximum earliness
s i
min Zj (Wj)C; minimisation of the total (weighted) completion &m
S
min Zj (Wj)Fj minimisation of the total (weighted) flow time
S
min Zj (wj )EJ- minimisation of the total (weighted) earliness
S
min Zj (Wj )TJ- minimisation of the total (weighted) tardiness
S
min Zj (wj )UJ- minimisation of the (weighted) number of late jobs
S

Graham, Lawer, Lenstra & Rinnooy Kan (Graham, Lawleal. 1979) presented a

three-field descriptiona ||y for scheduling problems where represents the
machine environmentf the job characteristics and the optimality criteria. The

field a indicates if the system is a one-machine, a mraflachine or a shop

environment, and the number of stages and machimesg field indicates if it is an
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on-line or off-line system, the existence of rekeasd/or due dates, if pre-emption is
or not allowed, if there are dependence relati@ta/éen jobs and if processing times

are unitary or arbitrary. For examp|e; dj pmnt| L,y is the representation of a

one-machine problem with release dates and dus ddtere pre-emption is allowed

and the objective is to minimise the maximum lagsn®3| pjj =1|Cyay is an open

shop problem with three machines, all processimggi are unitary and the objective

is to minimise the makesparE2(P4, P3)[|>C; is a two-stage flow shop to

minimise the total completion time, where the twages have four and three identical

parallel machines, respectively.

Many fundamental results on scheduling were staiétenstra, Kan et al. 1977).
For further details on scheduling problems and mhguease refer to the surveys
(Lawler, Lenstra et al. 1993) and (Chen, Pottd.et398).

In the following sections of this chapter we witldaess the study of the algebraic

structure of scheduling problems.

4.2 Disjunctive Programming

The creation of a feasible schedule for a schedydioblem involves frequently
the decision to allocate job to be processed before jop, or vice versa, in a
machine. Therefore, when formulating a schedulingblem and considering
different jobs that must be processed by a commachine, we are frequently faced

with constraints of the forntj —t; = pj Ut; —tj =2 p; for every jobsi and j that

share a machine, wherp; represents the processing time of joband t; is the

variable representing the starting instance of phecessing of jobi. This is a
disjunctive constraint. A program containing digjtive constraints is a disjunctive
program and there is a whole area of mathematicaramming addressing these

programs, the disjunctive programming area.
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When characterising the algebraic structure of @musation problemP , with a
non-convex set of feasible solutioss which is the case in scheduling problems, we
are especially interested in the description ofatevex hull of the feasible solutions
Con\S), because optimal solutions are found in the vestiand extreme rays of the
convex hull. A convex hull is characterised by dsfining facets. (An equality

TX =TT, is a facet of a sef of dimensiond when it is verified by exactlyl affinely
independent pointx of T. An inequality 7x = 7z, valid for all xOT is said to be a

facet defining inequality ifx = 77, is a facet ofT .)

The description of the convex hull of disjunctivegrams has been addressed by
some authors, including Egon Balas. His arti@isjunctive programming: Properties
of the convex hull of feasible poinfBalas 1998) congregates major results on the
subject. There we can find the characterisationtha family of all the valid
inequalities for a given disjunctive program and diees necessary and sufficient
conditions for an inequality to define a facet loé tonvex hull of the feasible points.
The facets of the convex hull are computed soldrigrge linear program, with size
proportional to the number of disjunctions of thregimal problem. As the number of
disjunctions is often enormous solving this linpesgram may be impracticable; but,
for some special disjunctive programs, it is pdsstb generate the convex hull by a
sequence of “partial” convex hulls of relaxed pesbs, adding one disjunctive
constraint at the time. Even so, the number offdoets of the partial convex hulls
may be very large. A practical approach would bgeoerate only a few facets, if one
can have information about which ones are likelpeédbinding in the region between

the relaxed and the integer optimum.

Since scheduling problems are formulated as disjpm@rograms, these results
may be used to develop valid inequalities and rgHilane methods to solve them.
For instance, we can find valid inequalities to-om&chine scheduling problems and
guery under which conditions these inequalitiesdpo@ cuts to shop environment

problems.

We are especially interested in the study of tigeladaic structure of the job shop

scheduling problem. As stated before, the knowledg¢he properties of the one
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machine scheduling problem can be very useful ® $tudy of the job shop

scheduling problem.

If in a job shop system we relax the constraintgctvistate that a set of operations
must be processed by the same machine and thatabline can only process one
operation at the time (the capacity constraints),alll the machines except one, we
get a one machine scheduling problem. In this segseay that a job shop problem

with m machines hasn one machine scheduling subproblems.

In the next section 4.2 we present the study of dhe machine scheduling
problem. Then in section 4.3 the job shop schedymoblem is studied and we show

how the properties derived for the one machine lprotare relevant to the job shop.

4.3 The One Machine Scheduling Problem

In the one machine scheduling problemjobs have to be sequenced on one
machine. Each jobj is available to the system at instant (release date), its
processing takep; units of time on the machine, and it stays ingpgtemq; units

of time (queue) after being processed by the machiime goal is to minimise the
maximum completion time of all jobs; the makesp&he one machine problem,

represented in the three-field notation |as|Cpax is a strong NP—hard problem
(Garey and Johnson 1979).

The problem is naturally formulated as a disjuretprogram like presented

below, wheret; is the variable representing the starting instduprocessing joby .

(OMSP
min m_ax(tj +qj)
j
st. tj=r; jON={1..,n} @1
t-tzp Ot-tzp,  LjONi#] (4.2)

The one machine problem is usually represented byisunctive graph

Gone = (N O {O, n+1}, E,AU Ah+1)- The set of nodes of grafB,,e corresponds to
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the set of jobsN and two other fictitious nodes, the origin 0 rey@mting the
beginning of the system, and the sink , rdpresenting the end of the system. The
set of edges inGyne is E={(i,j)di,jON,i# j} connecting all pairs of nodes
representing jobs; and there are two sets of a¢g${(0, j)Dj O N}, the arcs
connecting the origin node to the nodes of alljties and Ah+1={(j,n+1) Oy N},

the arcs from each one of the nodes of the jolikdcsink node. An edgé, j)D E

will have weightp; or p;, depending on job being processed before or after jpb
Arcs in Ay have weightr; since the machine can not start to processjjabefore

rj. Arcs in A,y have weightp; +qj, since a jobj has to spend an amount of time
g; in the system after being processed by the mad¢bmp; units of time. Finding a

solution to the one machine scheduling problem medosing an orientation for
every edge inE, constructing an acyclic directed graph. The sapiC = (N, E) of
Gone is a fully connected graph, named a clique, winmgans that for every possible

pair of nodes inN , there is an edge ik connecting them.

As we will see in the following sections, many aurth have worked on this
problem; as the knowledge of their properties isical for addressing more

complicated shop environment systems.

4.3.1 Algebraic Structure of the One Machine Proble

Based on the theory on disjunctive programming,aBglBalas 1985) derives
results on the characterisation of the facets alver hull of the feasible solutions to
the one machine scheduling problem. The facetslefieed by valid inequalities in

the variablestj, jLIN, involving the parameters representing the relelases of the
jobs rj, the processing timep; and the queue of the jolzg . Balas presents facet

defining inequalities with one, two and three nanzsoefficients on the variabletsj;.
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Inequalities with one nonzero coefficientThese inequalities with one nonzero

coefficient are the ones related to the release ofathe jobstj =r; LjLN. These
are obvious inequalities present in the formulation

Inequalities with two nonzero coefficientsThe facet defining inequalities having

exactly two coefficients different from zero areté form
W+ =rp )t +(pj +1j =ni )ty = pipj +1ipj +rjp (43)
for every pair of distinct jobs and j of N such thatr; <r + p; Or; <rj +pj.
This condition implies that the coefficients of thariablest; and t; are non

negative. To verify that these inequalities aradvplease not that: if is scheduled

before j then the smallest possible values tprand t; will be r; and r +p
respectively; ifj is scheduled beforke then the smallest possible values fprandt;
will be rj andrj + pj. Inequalities (4.3) are derived from the solutafrthe system

solved to find the vertices of the polyhedron cspandent to the subproblem

considering only jobs and j .

Inequalities with three nonzero coefficientsTo present the facet defining
inequalities with three nonzero coefficients we chéest to introduce the following

matrix V with three columns, each corresponding to a jobj( and k), and each
row corresponding to a permutation of the threesjadb will have six rows. Let us

assume the rows are ordered this way: row 1 capressto permutatiofi, j, k), row
2to (j,k.i); row 3 to(k,i, j); row 4 to(i,k, j); row 5 to(j,i,k) and row 6 tak, j,i).
Each element,. of matrixV will be the earliest possible date to start pretesjob

c in the permutation correspondent to row

o i+P PP
i+ Pj+ Pk rj i+ Pj
V= 'k + Pk k + Pk + B "k
" i+ B+ Pk i+ B
Fj*Pj I li+Pj+h
"k T Pk T Pj Mk + Pk " ]
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Let V3 b} denote a3x 3matrix corresponding to rows,b,c of V and let

V{j X }be the matrix obtained from/{a’b,c} by substituting 1 for every entry of
a,nb,c

column j.

The facet defining inequalities with three nonzeoefficients are of the form

det(v{la,b,c} )

O’iti+0’jtj+0’ktk21With 0’|:m for | =i, j,k (4.4)

for some triplets of rowia, b, c). These inequalities are the generalisation of the
ones with two nonzero coefficients. They are thieitean to the system that defines
the vertices of the polyhedron correspondent tosthigroblem considering only jobs

i, ] andk. The expression defining the is just the Cramer Rule to solve systems

of linear equations.

Balas proves that there are at most four distmegualities (4.4) that define facets

of the convex hull of the feasible solutions to ¢ime machine problem.

For further details on the inequalities of Balasgske refer to his paper (Balas
1985).

Another author that has studied the algebraic &tracof the one machine
scheduling problem and proved several propertie3atqjues Carlier. In his work
(Carlier 1982) he developed a branch-and-boundriétiigo to solve the one machine
problem, building an initial feasible solution withe priory rule algorithm of Schrage
(Schrage 1970) and performing branching based mmoosition presented next. The

algorithm of Schrage schedules available jobs giyriority to the one jobj with

bigger queueq; . It builds the list schedule associated with thestrwork remaining

priority dispatching rule of Jackson (Jackson 195%)arlier proves that

h(J)= minr; + >, pj +ming; is a lower bound on the optimal makespan for every
jod j0d j0d

subset of jobs) [0 N . He also shows that given a Jackson’s schedulddmakespan
mk one of two situations occurs. Or the schedulepismal and there is a set of jobs

J such thath(J) = mk. Either the schedule is not optimal and then taeeea critical



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problems4 5

set of jobsJ and a critical jobc such thath(J)>mk- p;. This means that in this
case the distance to the optimum from the Jackssctiedule is less thap, and

implies that in an optimal schedule, either jolis processed before all the jobs in set
J or job c is processed after all the jobs in JetThis property is used to define the

branching scheme of the branch-and-bound algorithm.

Carlier also proves some other propositions thegrgian upper boun(UB) on

the makespan enable the determination of the pasif a job in the processing

sequence of an optimal schedule.
Given two jobsi and j if
+p+p;+q;>UB (4.5)
then job j is schedule before jobon every optimal schedule.
Given, a subset of jobg [0 N and a jobk[1J ; if

min_ri + > pij+ min _¢; >UB (4.6)
o E T o
then on an optimal schedule is sequenced either before or after all other jobset
J;if
K+ 2 p;j+ min_q; >UB 4.7)
ook

then on an optimal schedukewill not be the first job of sed to be processed; if

min _ri+ > p;i+o>UB (4.8)

o
then on an optimal schedule will not be the last job of sel to be processed; if
both conditions (4.6) and (4.7) are verified, tlienan optimal schedulke will be the
last job of setd in the schedule an#l is called the output o8 ; if both conditions
(4.6) and (4.8) are verified, then on an optimélestule k will be the first job of set

J in the schedule anH is called the input ol .
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4.4 The Job Shop Scheduling Problem

The job shop scheduling problem has been knowrhé¢odperations research
community since the early 50’s (Jain and MeerarBl99is considered a particularly
hard combinatorial optimisation problem of the Ndt¢hclass (Garey and Johnson
1979) and it has numerous practical applicationsiciv makes it an excellent test
problem for the quality of new scheduling algorinthese are main reasons for the
vast bibliography on both exact and heuristic pdoces applied to this scheduling
problem. The papddeterministic job-shop scheduling: past, preserd &rture(Jain
and Meeran 1999) includes an exhaustive surveyonbt of the evolution of the
definition of the problem, but also of all the tadues applied to it: enumerative
methods like branch-and-bound; constructive methidspriority dispatching rules;
iterative methods like ant optimisation; local stamethods and metaheuristics like
GRASP, simulated annealing, genetic algorithmsgdastep optimisation or tabu
search.

In the job shop scheduling problem each job israefiby an ordered set of
operations and each operation is assigned to ainee¥ith a predefined constant
uninterrupted processing time. The order of theratpens within the jobs and its
correspondent machines are fixed apriority andpeddent from job to job. To solve
the problem we need to find a sequence of opematioreach machine respecting
precedence constraints of operations of a jobs iagsumed that two consecutive
operations of the same job are assigned to differerchines, each machine can only
process one operation at a time and that diffematthines can not process the same
job simultaneously. We will adopt the maximum o ttompletion time of all jobs —
the makespan — as the objective function. Usinghhee fields notation of (Graham,

Lawler et al. 1979) the job shop scheduling probiemepresented bym||C,ax-

The Table 4.2 presents an instance of the job sbleduling problem with 4 jobs
and 3 machines. Jobs 1 and 4 must be processebyfirmachine 1, then by machine
2 and finally by machine 3. The processing sequéorcpbs 2 and 3 is first machine
1, then machine 3 and machine 2 at the end. Theatigpes are numbered from 1 to
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12, from job 1 to job 4. The processing times afheaperation on the correspondent

machine are given in the row named proc. times.

Table 4.2An Instance for the Job Shop Scheduling Problem

Job 1 Job 2 Job 3 Job 4
operations 1-.2-3 4.5-,6 7-8-9 10-11- 12
machines 1-.2-53 1.3-2 1.3-2 1-.2-3
proc. times 1 1 2 4 2 2 1 2 4 2 2

The Fig. 4.2 shows the Gant Chart of a feasiblatsnl of this instance, with
makespan 13.

A
Ms Os Os Os Op
M 0, Os Oy Ou
My Oy O, | O O10
0 4 5 6 7 8 9 10 12 13 >

Fig. 4.1Gant Chart of a Feasible Solution for Instanc&aifle 4.2

Formally let O :{O,...,o+]} be the set of operations with 0 and ddmmy
operations representing the start and end of ladl,jeespectively. LeM be the set of
machines,A the set of pairs of consecutive operations of galbtand E, the set of
all possible pairs of operations processed by nmachki, with K(OM . We define
p, >0 as the constant processing time of operatiorand t, is the variable

representing the starting instant of operation The following mathematical

formulation for the job shop scheduling problemwvidely used by researchers:

(Jsshp
mint,,,

st. t, -t 2p (i, )OA (4.9)
t =0 100 (4.10)

t, -t 2p Ot -t, 2 p, (i,))OE,kOM (4.11)
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The constraints in (4.9) state the precedenceioaktf operations within jobs

and also that no two operations of the same joblmamprocessed simultaneously
(becausep, > D Expressions (4.11) are named “capacity conggaiand assure
there are no overlaps of operations at the machines

A feasible solution for the problem is a scheduleperations respecting all these
constraints.

The job shop scheduling problem is usually reprieseiby a disjunctive graph
G =(0,A E)(Roy and Sussman 1964). Whete is the node set, corresponding to

the set of operationsA is the set of arcs between consecutive operatbtise same
job, and E is the set of edges between operations processé¢ldebsame machine.

Each node has weightp,, with p, = p,,;, = 0. There is a subset of nod€s and a
subset of edges, for each machine that together form the disjurctolique
C, =(O,E,) of graphG . For every nodg of O/{O,o+]} there are unique nodes
and | such that arcqi,j )pand (j,l ) are elements ofA. Node i is called the job

predecessor of node - jp(j) andl is the job successor gf - js(j). Fig. 4.2 shows

the disjunctive graph of the instance in Table 4.2.

Fig. 4.2Disjunctive Graph of the Instance in Table 4.2

Finding a solution to the job shop scheduling peablimeans replacing every edge
of the respective graph with a directed arc, caigsitng an acyclic directed graph

D, =(0,A0S). Graph D =(0,A) is obtained fromG removing all edges and

S=JS corresponds to an acyclic union of sequences @fradipns for each
k
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machine k (this implies that a solution can be built sequegone machine at a
time).

The optimal solution is the one represented bygitagh Dy having the critical
path from 0 too+ lwith the smallest length.

For any given solution, the operation processedediately before operationin
the same machine is called the machine predecessor mp(i) ; analogouslymsi( )

is the operation that immediately succeedst the same machine. Figure 4.3 shows
the directed graph representing the solution far ithstance of Table 4.2, shown

earlier on a Gant chart in Fig. 4.1. The criticallpis evidenced with thicker arrows.
%e

?

@/

Fig. 4.3Disjunctive Graph of the Solution in Fig. 4.1

£
7

4.4.1 Algebraic Structure of the Job Shop SchedulgProblem

The workOn the Facial Structure of Scheduling PolyhedBalas 1985) shows
that, under some conditions, the facet definingquadities derived for the one
machine problem also define the facets of the coimdl of the feasible solutions to

the job shop scheduling problem. For example, tlegualityt; >r; Ui O defines
a facet for the job shop problem wheneves the first operation of the job. In the job
shop problem the parametaysand g; (present in the formulation of the one machine

scheduling problem) are computed for each one macsilbproblem, as lengths of
paths in the disjunctive graph passing only throngties of operations that belong to

the same job. The is the length of the path from node 0 to the nadeperationi ;

the g; is the length of the path from the node of operati to the end node, without
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the processing time of operatian In the job shop scheduling the notatignis
changed tog - representing the earliest possible time for tisigr processing

operationi . Analogously,q; is replaced byf; .

Let i be an operation processed on machinejp, (|) an operation of the same
job as operatiori, processed before on machinel; La(jp;(i).i) the length of the
path betweenjp, (|) andi, through the arcs i (i.e., the path on the job between the

two operations) and IeILEk (i,h) be the length of the path between two operations

and h (processed by the same machknethrough the edges igy .

A clique C, =(O,,E, ) of graphG = (O, A E )is called a dominant clique if the
condition L, (jpi (i), jpy (h))+La(ipi (h).h) < La(ip ().i)+ Lg, (i.,h) is verified for
every two operations and h (processed by machinie) that have job predecessors
ip; (i) and jp; (h) processed by a same maching.e. the jobs to which operatiois

and h belong are both processed by a common madhimefore being processed by

the common machink).

Balas proves that the facet defining inequalit@stfie one machine problem also
define facets for the job shop problem, whenever ¢hque of the machine is a

dominant clique.

Similarly, all the inequalities derived by Carlier the one machine problem are
valid inequalities to the job shop scheduling peobl(Carlier and Pinson 1989),
(Carlier and Pinson 1994).

Before ending this section on the job shop schaedulroblem and before
following to the next chapters where we introduce proposed new optimised search
heuristics (illustrating them with and applicatimnthe job shop problem); we present

here a literature review of optimised search h&dasspplied to the job shop problem.

4.4.2 Solving The Job Shop Scheduling Problem witiSHs

In the literature we can find a few works applyi@gtimised Search Heuristics
(OSH) to the job-shop scheduling problem (FernamahesLourenco 2007b).



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problemss 1

Chen, Talukdar and Sadeh (Chen, Talukdar et al3)1@®d Denzinger and
Offermann (Denzinger and Offermann 1999) desigralpr algorithms that use
asynchronous agents information to build soluti@mne of these agents are genetic
algorithms, others are branch-and-bound algorithms.

Tamura, Hirahara, Hatono and Umano (Tamura, Hieleral. 1994) design a
genetic algorithm where the fitness of each indigigd whose chromosomes represent
each variable of the integer programming formulatis the bound obtained solving

lagrangean relaxations.

The works of Adams, Balas and Zawack (Adams, Bataal. 1988), Applegate
and Cook (Applegate and Cook 1991), Caseau andrtteb(Caseau and Laburthe
1995), Balas and Vazacopoulos (Balas and Vazacopal®98) and Pezzella and
Merelli (Pezzella and Merelli 2000) all use an exalgorithm to solve a sub problem
within a local search heuristic for the job-shopestuling. Caseau and Laburthe
(Caseau and Laburthe 1995) build a local searchienthe neighbourhood structure is
defined by a subproblem that is exactly solved gisgonstraint programming.
Applegate and Cook (Applegate and Cook 1991) devébe shuffle heuristic. At
each step of the local search the processing oafdfge jobs on a small number of
machines is fixed, and a branch-and-bound algoritempletes the schedule. The
shifting bottleneck heuristic, due to Adams, Badasl Zawack (Adams, Balas et al.
1988), is an iterated local search with a consiwadbeuristic that uses a branch-and-
bound to solve the subproblems of one machine ngittase and due dates. Balas and
Vazacopoulos (Balas and Vazacopoulos 1998) work whie shifting bottleneck
heuristic and design a guided local search, ovetrea search structure, that
reconstructs partially destroyed solutions. Thecedure of Pezzella and Merelli
(Pezzella and Merelli 2000) is a tabu search tisaswa branch-and-bound to solve
one-machine subproblems; both at the constructidheoinitial solution and at a re-

optimisation phase of the algorithm.

Lourenco (Lourengco 1995) and Lourengo and Zwijnegb{_ourenco and
Zwijnenburg 1996) use branch-and-bound algorithonstriategically guide an iterated
local search and a tabu search algorithm. The sifiation of the search is achieved
by applying a branch-and-bound method to solve @&-roachine scheduling
subproblem obtained from the incumbent solution.
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In the work of Schaal, Fadil, Silti and Tolla (SahaFadil et al. 1999) an interior
point method generates initial solutions of theedinrelaxation. A genetic algorithm
finds integer solutions. A cut is generated bagsethe integer solutions found and the
interior point method is applied again to diverstfye search. This procedure is

defined for the generalised job-shop problem.

The interesting work of Danna, Rothberg and Le P@mmnna, Rothberg et al.
2005) “applies the spirit of metaheuristics” ineact algorithm. Within each node of
a branch-and-cut tree, the solution of the lineslaxation is used to define the
neighbourhood of the current best feasible solutibne local search consists in

solving the restricted MIP problem defined by tkgéghbourhood.

We are especially interested in combinations oteaad heuristic methods where

the exact procedures can be used to strategiaailtie gdhe heuristic ones.

New Optimised Search Heuristics Proposede propose two new optimised
search heuristics and present both with an apmitab the job-shop scheduling
problem. The first one GRASP_B&B combines a Braand-Bound algorithm with a
GRASP procedure. The second Tabu_VVI uses theicatin of Violated Valid
Inequalities as a diversification strategy for ef&earch method. The new method

GRASP_B&B is wused within Tabu _VVI to build feasiblesolutions.
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5. An OSH Combining GRASP with Branch-and-Bound

This chapter presents an algorithm for the job shopeduling problem - the
GRASP_B&B algorithm - that combines a heuristicalosearch procedure, GRASP,

with an exact method of integer programming, braawti-bound.

As stated earlier in section 2.2.1 GRASP (Feo aeseRde 1995) is an iterative
process where each iteration consists of two s@psndomised building step of a
greedy nature and a local search step. The propueegdure GRASP_B&B starts
with an empty solution and builds a complete solutsequencing one machine at a
time. The branch-and-bound algorithm is used in boédding step of a GRASP
procedure to solve the one machine scheduling sbhgms.

On the following sections each phase of GRASP_B#aB, building step and the
local search phase, is described in detail. Ini@@cs.4 the proposed method is
compared with similar approaches and, as we wdl sieleads to better results in

terms of solution quality and computing times.

5.1 Building Step

At the building phase of a GRASP algorithm a feles#mlution is constructed by
joining one element at a time. Each element isuatatl by a heuristic function and
incorporated (or not) in a restricted candidate(IIFKJL) according to its evaluation.
Then the element to join the solution is chosewloany from theRCL. We define
the sequence of operations at each machine asetihergs to join the solution, and
the makespan of the one machine problemax(t; + p;),i JO,, kM ) as the greedy
function to evaluate them. In order to build thstrieted candidate list we find the

optimal solution for the one machine problems obfredchines not yet scheduled

(K O M is the set of unscheduled machines), and ider‘lt'ef)blest(i) and Worst(?)
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makespans. A machinie is included in theRCL if f(x, )= f —a(? —i) where

f(x,) is the makespan of machikeand a is a uniform random number (rti),l).

We explain how the one machine problems are defaratl solved in the next

section 5.1.1.

After solving the subproblems of all unscheduledchmaes and building the
restricted candidate list, a semigreedy procedwmoses one machine to enter the

solution in a semi-greedy randomised way.

Algorithm SemiGreedy(K)
(1) a:=Randon(0})

) f=ma{f(x), kOK}
3) f=min{f (%) kOK}

(4) RCL={ }

(5) foreach kOK

(6) it f(q)2f-alf-1)
(7) RCL:= RCLO{k}

(8) return RandomChaig(RCL)

Fig. 5.1 0utline of Procedure SemiGreedy

This semi-greedy randomised procedure is biasearttsvthe machine with the
higher makespan, the bottleneck machine, in theesdrat machines with low values

of makespan have less probability of being incluitheithe restricted candidate list.

The next chapter presents the definition of the anachine scheduling

subproblems and the algorithm to solve them.

5.1.1 One Machine Problem

Defining the One Machine SubproblemsGiven a job shop scheduling problem

and its representation on a disjunctive gra@w (O,AE , the one machine
subproblems for each machikélM are obtained considering only the nodes of the

operations processed d&nand the set of edges between th(eEp) The subproblems

are represented by the clig@ = (O,,E, wijth the objective function of minimising
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the completion times of all operations and considethree parameters associated

with each operation in C,. One parameter is the processing tipe Let K O M

be the set of unscheduled machines. The two otlearsunes associated with each
operation of the one machine subproblems are cadputom the graph
Gpm -k =(0,A Sy -k ), obtained fromG replacing the edges of scheduled machines
by the arcs corresponding to the sequence of poaetheir operations and removing
the edges corresponding to all unscheduled machifies two measures are the

release dateg computed as the length of the longest pat®jp_x from the source
node to the node of operatiorand the queue valueg computed as the length of the

longest path inGy; -k from the node of operation to the end node (minus the

processing time of operatidr). The release date of an operatiorepresents the time
that the job to which operatianbelongs has been in the system before the procgssi
of the operation starts. The queue value, als@ad#il, represents the time that the
job to which operationi belongs stays in the system after the processinipeo
operation ends. At the first iteration of the algon GRASP_B&B, release dates and
tails are computed considering the grdpl (O,A . )

Solving the One Machine ProblemsTo solve to optimality the one machine
scheduling problems we use the branch-and-bouraditdog of Carlier (Carlier 1982)

described earlier on section 4.3.1.

At each node of the branch-and-bound tree the uppend is computed using the
algorithm of Schrage (Schrage 1970). This algorithwes priority to higher values of
the tails (qi) when scheduling released jobs. We break ties leyeping larger

processing times.

The computation of the lower bound, computed likéGarlier 1982) is based on
the critical path with more jobs of the solutiorufm by the algorithm of Schrage
(Schrage 1970) and on a critical job, as showrhapter 4. The value of the solution
with pre-emption is used to strengthen this loweurd. We introduce a slight
modification, forcing the lower bound of a node @eto be smaller than the one of its
father in the tree. (The makespans of the one macktheduling subproblems are

lower bounds to the makespan of the job shop sdimgdoroblem.)
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The algorithm of Carlier (Carlier 1982) uses somevpn properties of the one
machine scheduling problem, showed earlier in @ragt to define the branching
strategy, and also to reduce the number of insgeabeles of the branch-and-bound
tree.

Incorporating the One Machine Solution Incorporating a new machine in the
solution means adding to the set of aBg_k of graphGy _x =(0,A Sy -k ) the
set of arcs corresponding to the optimal sequencepfocessing operations on

machinek - S;. In terms of the mathematical formulation, thisam& choosing one

of the inequalities of the disjunctive constrai(vsll) corresponding to the machine
K.

When a new machine is added to a partial solutienmhakespan of the solution
and the release dates and tails of unscheduleatopes are updated. In the proposed
procedure GRASP_B&B these updates are accomplisbed) an algorithm similar
to the one used by Taillard (Taillard 1994). THgoathm has a module that updates
the release dates by building and maintainingtaofishe operations which either do
not have operations that precede them (both ifjdhend in the machine), or have
the predecessors with the release dates alreadyagod’he module is repeated with a
modification to update the tails of the operatidns)ding a list of operations without
successors or with successors with the tails ajreggdated. Finally for each
operation the updated values of release datesalsdare added to the processing

time and the makespan of the partial solution mmated.

Before proceeding to the section where the localctestep of the algorithm

GRASP_B&B is described, let us illustrate the bimigdstep with an example.

lllustrating the Building Step To exemplify how the building step of the
procedure GRASP_B&B works let us illustrate oneraten considering the

disjunctive graph of the instance of Table 4.2.

Deleting all the edges connecting operations tharesa same machine in the
graph of Fig. 4.2 we get the graph shown in Fig. £omputing the one machine
problems for each of the machines, we get the problpresent bellow the graph.
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M1| Oy [O4 | O7 | O10 Mz | O2 | Os | Og | O11 M3 | O3 [ Os | Og | O12
I 0 0 0 0 r |1 6 2 4 r |2 4 1 6
o |1 |4 |14 pl1 |2 |12 pl2 |2 |11
G 13 |4 |23 ql2 |0 |01 9]0 |2 |1]0

Fig. 5.2Graph for instance of Table 4.2 without all edged tne respective one machine subproblems

The branch-and-bound algorithm finds the optimal lutsan

O4 - Og - 0, - O; with makespan 12 for machin®lq, the optimal solution
0y - Og - Oy1 - Og with makespan 8 for machinkl, and the optimal solution

O3 - O3 - Oy - Oy, also with makespan 8 for machimés. Let us suppose the

semigreedy procedure chooses machine 1 to be extludthe solution. Then the
partial solution would be the one represented engitaph of Fig. 5.3 and the new one
machine subproblems for machines 2 and 3 the amssmed in the tables next to it.

Os | Og | O11 M3 | O3 | Os | Og | O12
6 11| 8 r 1101| 4 10| 10
2 1] 2 pl2 12 |11
0101 alo |2 10

Fig. 5.3Graph of a partial solution to instance of Tabl2, 4nd the respective one machine problems
for machines 2 and 3



58 5. An OSH Combining GRASP with Branch-and-Bound

5.2 The Local Search Module

In the algorithm GRASP_B&B, when the sequence ofrmaehine is added to the
solution in the building step, and if the solutidready has more than one machine
scheduled, a local search procedure is executedetoagocal optimal (partial)

solution. In this section we describe the local search reaafuthe algorithm.

In order to build a local search algorithm we néedlesign a neighbourhood
structure (defined by moves between solutions)wie to inspect the neighbourhood
of a given solution, and a procedure to evaluatajtfaity of each solution. It is said
that a solutionB is a neighbour of a solutioA if we can achieveB by performing a
neighbourhood defining move iA.

We use a neighbourhood structure very similar t® NB neighbourhood of
DellAmico and Trubian (DelllAmico and Trubian 1993and the one of Balas and
Vazacopoulos (Balas and Vazacopoulos 1998). To ithesttre moves that define this
neighbourhood we use the notion of blocks of altieperations. A block of critical
operations is a maximal ordered set of consecuaipezations of a critical path (in the
disjunctive graph that represents the solution)rispahe same machine. Lét(i, ] )

denote the length of the critical path from nodeto node j. Borrowing the

nomination of Balas and Vazacopoulos (Balas andabv@zoulos 1998) we speak of

forward and backward moves over forward and backwardarpairs of operations.

Two operationsu andv form a forward critical paifu,v) if:

a) they both belong to the same block;

b) v is the last operation of the block;

c) operationjs(v )also belongs to the same critical path;

d) the length of the critical path from to o+ 1 is not less than the length of the

critical path from js(u )to o+ 1 (L(v,0+1) = L(js(u),0+1)).

Two operationsu andv form a backward critical paiu,v) if:
a) they both belong to the same block;
b) u is the first operation of the block;

c) operationjp(u )also belongs to the same critical path;
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d) the length of the critical path from O tg including the processing time df,

is not less than the length of the critical patbnfr 0 to jp(v), including the
processing time ofp(v YL(O,u)+ p, =2 L(O, jp(V)) + Pjp) -

Conditions d) are included to guarantee that alVesdead to feasible solutions

(Balas and Vazacopoulos 1998).

A forward move is executed by moving operatiorio be processed immediately
after operationv. A backward move is executed by moving operatiorto be

processed immediately before operation

For illustration purpose let us consider the feass#plution to the instance of
Table 4.2 with makespan 14 represented by the graph in.Eig. 5

Fig. 5.4Graph of a feasible solution with makespan 14 sfance in Table 4.2

The pair of operation(;lo,?) is a forward critical pair since: a) they both belong to
the critical pathO4 - Ojg - O, - Oy - Og - O3 - Oyp; b) operation 7 is the last
operation of that block of critical operations; @peration 8 (the job successor of
operation 7) also belongs to the critical path dnthe length of the critical path from
operation 7 to the end, which is 5, is not less thanlength of the critical path from
operation 11 (the job successor of operation 1@hé¢oend, which is 3. The forward
move would be to process operation 10 immediati#gr aperation 7, generating the
solution with makespan 13 represented by the graph of Big. 5.
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Fig 5.5Graph obtained from the graph of Fig. 5.4 by thevébd move on operations (7,10)

When inspecting the neighbourhool (X, M, ) of a given solutionx with M,

machines already scheduled, we stop whenever we aimgighbour with a best

evaluation value than the makesparxof

To evaluate the quality of a neighbour of a solutiq produced by a move over a
critical pair (u,v), we need only to compute the length of all the é&stgpaths through

the operations that were betweanand v in the critical path of solutiorx. This
evaluation is computed using the same algorithrBadas and Vazacopoulos (Balas
and Vazacopoulos 1998), which is a variation ofdhe of Taillard (Taillard 1994)

for a subset of arcs.

Algorithm LocalSearch(x, f (x),Mg)
(1)  s:=neighboufx, f (x),Mg)

@  while s# x

(3) X:=s

(4) s:= neighboufx, f (x),Mg)
(5)  return(s)

Algorithm Neighbour (x, f (x),Mg)
(1)  foreach sON(x,Mq)

() f (s) := evaluation(movéx — s))
(3) if (f(s)<f(x)
(4) return (s)

(5)  return(x)

Fig. 5.6 Pseudo-code of Module Local Search
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The Fig. 5.6 presents the pseudo-code of the madhdal Search of the method
GRASP_B&B.

The next section presents the whole metaheuristic GRASB. B&

5.3 GRASP_B&B

Let runs be the total number of run§) the set of machines of the instance and

f (x) the makespan of a solutian. The procedure GRASP_B&B can be generally
described by the pseudo-code in the following Fig. 5.7.

Algorithm GRASP_B&B (runs)

(1) M ::{l...’m}
(2) for r =1to runs

(3) x:={ }

(4) K=M

(5) while K #{ }

(6) foreach kK

) % = CARLIER_B & B(k)
(8) k* .= SEMIGREEDYK)

(9) X=X Xpx

(10) f (X) :=TAILLARD(X)

(11) K :=K\{k*}

(12) if [K|<|M|-1

(13) x:= LOCALSEARE (x,M \ K)
(14) if ( x* notinitialised or f(x)<f*)

(15) X* =X

(16) *:= f(X)

(17) return(x*)

Fig. 5.7 Outline of Procedure GRASP_B&B

The number of iterations of the method correspdadbe number of machines in
the problem, and the GRASP_B&B ends with a comelation. At each iteration
the method defines and solves the one machine @hbilepns for all unscheduled
machines using algorithm Carlier_B&B described iect®n 5.1.1. Procedure
SemiGreedy chooses the one machine solution tacatie partial solution of the job

shop and procedure Taillard, described in sectidnl5 computes its makespan.
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Procedure LocalSearch is applied to the currenigbaolution, if there are more than
one scheduled machines, and this concludes thaider The all process is repeated

for several runs, keeping track of the best corem@etution found.

This metaheuristic has only one parameter to baet#f the number of runs to
perform (line(2)). The step of lings) is the only one using randomness. When applied
to an instance withm machines, in each run of the metaheuristic, tlandr-and-

bound algorithm is callednx(m+1)/2 times (line(7)); the local search is executed

m-1 times (lineg12) and(13)); the procedure semigreedy (li@® and the algorithm

of Taillard (line(10)) are executedn times.

5.4 Computational Experiment

We have tested the algorithm GRASP_B&B on the berachk instances abz5-9
(Adams, Balas et al. 1988), ft6, ft10, ft20 (Fislsrd Thompson 1963), la01-40
(Lawrence 1984), orb01-10 (Applegate and Cook 1994y01-20 (Storer, Wu et al.
1992), ta01-70 (Taillard 1993) and yn1-4 (Yamada akano 1992).

When applying the branch-and-bound algorithm, usedhe building step of
GRASP_B&B to solve the one machine scheduling @mwis, to instances of the job
shop problem with 50 or more jobs, we observed thdbt of time was spent
inspecting nodes of the tree, after having alrefadyd the optimal solution. So we
introduced a condition restricting the number otle® of the tree: the algorithm is
stopped if there have been inspected more tifemodes after the last reduction of the

difference between the upper and lower bound ofrgee(n is the number of jobs).

In Annex B the reader can find tables where we gartesomputational results
having the following structure: in each line itpsesented the name of the instance,

the number of jobs and the number of machines efrtetance(nxm ) and the best
lower and upper bound vaIue(skB,UB) of the makespan. If the lower bound is

omitted, the upper bound is optimal. We gatheredviidues of these bounds from the
papers (Jain and Meeran 1999), (Nowicki and Smut@a®96), (Nowicki and
Smutnicki 2002) and (Nowicki and Smutnicki 2005).
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The algorithm has been run 100 times for eachmest@n a Pentium 4 CPU 2.80
GHz and coded in C. The tables also present soatistgtal values concerning the
makespan of the solutions found in the 100 runsyelsas the total time of all runs

(ttime) and the time to the best solution foufidime), in seconds. The statistics of
the makespan computed over the 100 runs are thienm"rm(min), the first quartile
(@), the median(Q,), the third quartile(Q;) and the maximun{max). We chose

this measures because they allow us to see howrdesare the values obtained by
different runs, which give us an idea of the robast of the algorithm. Within
brackets, next to each value, is the corresponpertentage of relative error to the

upper bound.

RE,, (x) = 1o(p/oxm
Whenever the values are not worse than the bestrknipper bound, we present
them in bold. Although this is a very simple (ardtj algorithm, it happens in 23 of

the 152 instances used in this study.

The information of these tables can be visualissdguboxplots. They show that
the quality achieved is more dependent on the ration than on the absolute
numbers of jobs and machines. There is no big dsgpe of the solution values
achieved by the algorithm in the 100 runs execlgedye say the algorithm is steady.
The number of times the algorithm achieves the balstes reported is high enough,
so these values are not considered outliers ofligtebution of the results. On the
other end, the worse values occur very seldom emauatliers for the majority of the

instances.
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5.4.1 Comparison to Other Procedures

GRASP_B&B is a very simple GRASP algorithm with@nstruction phase very
similar to the one of the shifting bottleneck. Téfere we show comparative results to
two other procedures; a simple GRASP procedureimdtB, Hery, Loewenstern and
Resende (Binato, Hery et al. 2002), and the shiftiattleneck procedure of Adams,

Balas and Zawack (Adams, Balas et al. 1988).

Comparison to the GRASP of Binato, Hery, Loewenster and ResendeThe
building step of the construction phase of the GRAS (Binato, Hery et al. 2002) is
a single operation of a job. In their computatioredults, they present the time in
seconds per thousand iterations (an iteration eéskilding phase followed by a local
search) and the thousands of iterations. For a adsgn purpose we multiply these
values to get the total computation time. For GRAB&B we present the total time

of all runs (ttime), in seconds. As the tables show, our algorithmmigh faster.

Whenever our GRASP achieves a solution not worsa theirs, we present the
respective value in bold. This happens for 26 ef3B instances whose results where

compared.

Table 5.1Comparison to GRASP for Instances abz

name GRASP_B&B ttime (s) GRASP time (s)
abz5 1258 0.7650 1238 6030
abz6 952 0.7660 947 62310
abz7 725 10.9070 667 349740
abz8 734 10.5160 729 365820
abz9 754 10.4690 758 343710
Table 5.2Comparison to GRASP for Instances ft

name GRASP_B&B ttime (s) GRASP time (s)
ft06 55 0.1400 55 70
ft10 970 1.0000 938 261290
ft20 1283 0.4690 1169 387430
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Table 5.3Comparison to GRASP for Instances orb

name GRASP_B&B ttime (s) GRASP time (s)
orb01 1145 0.9850 1070 116290
orb02 918 0.9530 889 152380
orb03 1098 1.0150 1021 124310
orb04 1066 1.1250 1031 124310
orb05 911 0.8750 891 112280
orb06 1050 1.0460 1013 124310
orb07 414 1.0630 397 128320
orb08 945 1.0310 909 124310
orb09 978 0.9060 945 124310
orb10 991 0.8430 953 116290
Table 5.4Comparison to GRASP for Instances [a01-20

name GRASP_B&B ttime (s) GRASP time (s)
la01 666 0.1720 666 140
la02 667 0.1560 655 140
l[a03 605 0.2190 604 65130
la04 607 0.1710 590 130
la05 593 0.1100 593 130
la06 926 0.1710 926 240
la07 890 0.2030 890 250
la08 863 0.2970 863 240
la09 951 0.2810 951 290
lal0 958 0.1410 958 250
lall 1222 0.2660 1222 410
lal2 1039 0.2650 1039 390
lal3 1150 0.3750 1150 430
lal4 1292 0.2180 1292 390
lal5 1207 0.9060 1207 410
la16 1012 0.7350 946 155310
la17 787 0.7660 784 60300
la18 854 0.7500 848 58290
la19 861 0.9690 842 31310
la20 920 0.8130 907 160320
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Table 5.5Comparison to GRASP for Instances la21-40

name GRASP_B&B ttime (s) GRASP time (s)
la21 1092 2.0460 1091 325650
la22 955 1.7970 960 315630
la23 1049 1.8900 1032 65650
la24 971 1.8440 978 64640
la25 1027 1.7960 1028 64640
la26 1265 3.3750 1271 109080
la27 1308 3.5620 1320 110090
la28 1301 3.0000 1293 110090
la29 1248 3.2960 1293 112110
la30 1382 3.3280 1368 106050
la31 1784 7.0160 1784 231290
la32 1850 6.2350 1850 241390
la33 1719 7.9060 1719 241390
la34 1721 8.2810 1753 240380
la35 1888 5.6880 1888 222200
la36 1325 4.2650 1334 115360
la37 1479 4.7970 1457 115360
la38 1274 5.1090 1267 118720
la39 1309 4.4530 1290 115360
la40 1291 5.3910 1259 123200

Comparison to the Shifting Bottleneck of Adams, Bas and Zawack The
comparison between the shifting bottleneck procedadams, Balas et al. 1988hd
the GRASP_B&B is also presented in tables. Compatire computation times of
both procedures, our GRASP is slightly faster ttr@nshifting bottleneck for smaller
instances. Given the distinct computers used ireperiments we would say that this
is not meaningful, but the difference does get ait@ded as the dimensions grow.
Whenever GRASP_B&B achieves a solution better thtan shifting bottleneck
procedure, we present its value in bold. This happe 29 of the 48 instances whose
results where compared, and in 16 of the remaihthghstances the best value found

was the same.
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Table 5.6Comparison to Shifting Bottleneck for Instancez ab

name GRASP_Bé&B ttime (s) Shifting time (s)
Bottleneck
abz5 1258 0.7650 1306 5.7
abz6 952 0.7660 962 12.67
abz7 725 10.9070 730 118.87
abz8 734 10.5160 774 125.02
abz9 754 10.4690 751 94.32
Table 5.7Comparison to Shifting Bottleneck for Instances ft
name GRASP_Bé&B ttime (s) Shifting time (s)
Bottleneck
ft06 55 0.1400 55 1.5
ft10 970 1.0000 1015 10.1
ft20 1283 0.4690 1290 3.5
Table 5.8Comparison to Shifting Bottleneck for Instanceld.0
name GRASP_B&B ttime (s) Shifting time (s)
Bottleneck
la01 666 0.1720 666 1.26
la02 667 0.1560 720 1.69
la03 605 0.2190 623 2.46
la04 607 0.1710 597 2.79
la05 593 0.1100 593 0.52
la06 926 0.1710 926 1.28
la07 890 0.2030 890 1.51
la08 863 0.2970 868 241
la09 951 0.2810 951 0.85
la10 958 0.1410 959 0.81
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Table 5.9Comparison to Shifting Bottleneck for Instancekli20

name GRASP_B&B ttime (s) Shifting time (s)
Bottleneck
la1l 1222 0.2660 1222 2.03
la12 1039 0.2650 1039 0.87
la13 1150 0.3750 1150 1.23
la14 1292 0.2180 1292 0.94
la15 1207 0.9060 1207 3.09
la16 1012 0.7350 1021 6.48
la17 787 0.7660 796 4.58
la18 854 0.7500 891 10.2
la19 861 0.9690 875 7.4
la20 920 0.8130 924 10.2
Table 5.10Comparison to Shifting Bottleneck for Instancexlia0
name GRASP_B&B ttime (s) Shifting time (s)
Bottleneck

la21 1092 2.0460 1172 21.9
la22 955 1.7970 1040 19.2
la23 1049 1.8900 1061 24.6
la24 971 1.8440 1000 25.5
la25 1027 1.7960 1048 27.9
la26 1265 3.3750 1304 48.5
la27 1308 3.5620 1325 455
la28 1301 3.0000 1256 28.5
la29 1248 3.2960 1294 48
la30 1382 3.3280 1403 37.8
la31 1784 7.0160 1784 38.3
la32 1850 6.2350 1850 29.1
la33 1719 7.9060 1719 25.6
la34 1721 8.2810 1721 27.6
la35 1888 5.6880 1888 21.3
la36 1325 4.2650 1351 46.9
la37 1479 4.7970 1485 6104
la38 1274 5.1090 1280 57.5
la39 1309 4.4530 1321 71.8
la40 1291 5.3910 1326 76.7
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5.5 Discussion on GRASP_B&B

This very simple optimised search heuristic, theASR_B&B, is intended to be a
starting point for a more elaborated metaheuristie. have compared it to other base
procedures used within more complex algorithms; elgra GRASP of Binato, Hery,
Loewenstern and Resende (Binato, Hery et al. 20@xh is the base for a GRASP
with path-relinking procedure of Aiex, Binato andd®nde (Aiex, Binato et al. 2001),
and the shifting bottleneck procedure of AdamsaBand Zawack (Adams, Balas et
al. 1988), incorporated in the successful guidedallosearch of Balas and
Vazacopoulos (Balas and Vazacopoulos 1998). Thepadson to the GRASP in
(Binato, Hery et al. 2002) shows that our procedareuch faster than theirs. The
guality of their best solution is slightly bettéan ours in 60% of the instances tested.
When comparing GRASP_B&B with the Shifting Bottleke(Binato, Hery et al.
2002), ours is still faster, and it achieves be#etutions, except for 3 of the

comparable instances.

The description of this new method GRASP_B&B wablighed in the short
paperA GRASP and Branch-and-Bound Metaheuristic for Xble-Shop Scheduling
(Fernandes and Lourenco 2007), and in an extendeslon, the papeA Simple
Optimised Search Heuristic for the Job Shop SchmglUProblem(Fernandes and
Lourenco 2008b).



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problems73

6. An OSH Combining Tabu Search with the Verifioatiof
Violated Valid Inequalities

In this section we present an OSH procedure that walid inequalities to
reconstruct a local optimal solution that has beanially destroyed. We named this
procedure Tabu_VVI because it combines a Tabu Behsuristic with Valid
Inequalities properties. The algorithm Tabu_VVI Ihas main stages. The first stage
consists of building a feasible solution, and exeguthe tabu search procedure
starting from it. The second stage consists ofgelatep followed by the tabu search,
and it is repeated for a predefined number of ti@na. The large step partially
destroys the solution delivered by the tabu seéusimg a greedy randomised method
to choose which elements to “delete”), looks foolaied valid inequalities that
enforce some order between unscheduled operatamusthen rebuilds a complete
solution respecting those established orders. Tfiemation about the algebraic
structure of the problem within the valid inequabtis used to guide the search. The
idea is to perturb the current complete solutionieagng diversification and leading

the search method to new unexplored regions csahéion space.

The main loop of the algorithm is stopped eitherewhhe lower bound of the

instance is achievedLB), or a predefined maximum number of iterations are

executed without improving the upper boufutB).

Fig. 6.1 shows a not detailed and simplified psecoide of algorithm Tabu_VVI.
The main procedures of this algorithm are the foihg ones: building a feasible
solution — line (1), the tabu search heuristicnedi (2) and (9), and the large step —

lines (6) to (8). These procedures will be expldimedetail in the following sections.
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Algorithm Tabu_VVI
(1) % =GRASP_B& B(runs)

(2)  x=TabuSearc(y)

(3)  UB=makespafx)

(4) Xp =X

(5)  while((UB > LB) and (#iterationswithoutimprovemen< max#iterations))
(6) X4 = Destro;(x)

7) X4 = FindVaIidInequaIities(xd)
(8) x = Rebuild(xy)

(9) X = TabuSearc('x)

(10) if (makespafx) <UB)

(11) updateUB

(12) Xp =X

(13) return (%)

Fig. 6.10utline of Tabu_VVI: (x) - initial feasible solution, X) - current complete solution,

(xg) - partially destroyed solution,x;) — best solution

6.1 Building a Feasible Solution

The algorithm Tabu_VVI first builds a feasible st using the GRASP_B&B

algorithm, described earlier on the previous chapte

6.2 The Tabu Search Module

A tabu search procedure (Glover 1989), (Glover 199@ local search procedure
that inspects the all neighbourhood of a currehttsm x and executes the move that
produces the best not-tabu neighbginest The move that goes back frogbest to
x becomes tabu, there is, forbidden. The objectalaesof ybest may be worse than
the one ofx. The procedure stops after a predefined numbéeations have been

performed without improving the best solution found

In order to implement a simple tabu search proaduwe need to define the

neighbourhood structure, the characterisation taba move or neighbour, the tabu
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length that defines how long will a move remainutalnd an aspiration criterion, to
be able to execute moves abusively considered {#tia.abuse happens because we
do not keep track of the pair of solutions befone after a move, but only of some

features of the move).

The neighbourhood structure of the tabu searchamehted is the same used in
the local search of the GRASP_B&B, with forward datkward moves defined on
critical pairs of operations (please refer to seth.3 for the definition of the moves
and the way to evaluate their value). But this tiwme keep track of those moves
rejected by conditions d) because they can notagiee that a cycle is not produced

in the disjunctive graph, there is they can leadrtanfeasible solution.

The tabu list stores for each move performed oalatisn x, the critical pair of
operations(u,v) involved, the type of move — forward or backwaadd the number

of neighbours of solutiorx.

The number of iterations a move (performed on smiuk) stays tabu — the tabu
length — is defined so it depends on the size e@fhisighbourhood of solutior. If a
solution x has many neighbours, the reverse move of the xasuted to leave from
it stays tabu for a longer number of iterationsntibe reverse move of the one

executed to leave from a solutignwith a smaller neighbourhood. This way we state

that the possibility of returning to a previousigited solution is not equal for every

solution but depends on the number of neighbourast

The aspiration criterion allows a tabu move to keceted if the value of the

resulting solution is better than the best one dosm far.

When inspecting the solution space, tabu seargeats the whole neighbourhood
of the current solution looking for its best ndbwaneighbour. If the neighbourhood of
a solution is empty, i.e., if the solution has raid neighbours, it looks in the
excluded moves; moves that do not verify conditidhsfor feasibility and executes
the one that generates the best feasible solutfonone of the excluded moves
produces a feasible solution it then executesahe move that would remain tabu for

the shortest number of iterations.

The tabu list actually stores for each move, besttie critical pair of operations
involved and the type of move, a length field wille number of the iteration when
the move was executed plus the number of neighlmfube solution where the move
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was perform on. To verify if a move is tabu is jastcompare the number of the
current iteration with the number stored in thegténfield of the tabu list in the
position corresponding to the move. To update dbe list is to add a new item in the
list for the last executed move and to deletetaths which have a value less than the
number of the current iteration in the field lengitne tabu list is implemented in a
heap structure allowing efficient implementationfs ppocedures update tabu and

verify_tabu.

Every time the tabu search improves the best knsation an intensification
scheme is performed that consists in repeatingabe search, this time duplicating

the number of allowed iterations without improvemen

Algorithm TabuSearch(x)

(1) Ybest = X
(2)  while (#iterationswithoutimprovemeh< max#tabuiterations)
(3) tabu_UB =UB

(4) y* =none

(5) mk* = oo

(6) for (yON(x))

(7) y* = InspectNajhbour(y,tabu_UB, mk*, y*)
(8) if ( y* not found)

(9) for( yOR;N(x))

(10) if (y feasible)

(11) y = InspectNajhbour(y,tabu_UB,mk, y*)
(12) if ( y* not found)

(13) y* =tabu_movéx)

(14) execute move(x, y*)

(15) update _tabu_ list

(16) if (tabu_UB <UB)

(17) Yoest= Y™

(18) UB =tabu_UB

(19) return ( Ypest)
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Algorithm InspectNeighbour (y,tabu_UB, mKk?*, y*)
(1) mk = estimatéy)
(2) if (mk<tabu_UB)

(3) y =y

(4) mk* = mk

(5) tabu_UB =mk*

(6) else

(7) verify_tabu(y)

(8) if (( y nottabu) and (mk<mk *))
(9) y' =y

(10) mk* = mk

(11) return(y*)

Fig. 6.2Pseudo-code of module Tabu Seaick) - current complete solution,y() - neighbour

solution, y* - best neighbour solutionyIoest — best solution foundN(x)— neighbourhood

of solution x, Rj N(x) — rejected moves of the neighbourhood of solution

Fig. 6.2 shows a not detailed pseudo-code of the tearch module of the
algorithm. Lines (6) and (7) of algorithm TabuSd&anmplement the neighbourhood
search; lines (9) to (11) refer to the inspectibrmoves not verifying conditions d)
(which happens whenever there are no moves vegififfiese conditions); and line
(13) represents the decision to execute a tabu nvdvenever the rejected moves do
not produce a feasible solution. Lines (2) to (5)atgorithm InspectNeighbour

implement the aspiration criterion.

6.3 Large Step

The main objective of the large step is to fordarge modification in the local
optimal solution achieved by the tabu search mqdeldirecting the search path to a
different and preferably unexplored region withteetjuality of the solution’s space.
This large step has three main procedures: partddbtroying a solution; finding

violated valid inequalities and rebuilding a comelsolution.

In the module that partially destroys the currentison, some of the sequences of
processing operations in the machines are remawed the solution, i.e. in the graph

that represents the solution, the disjunctive &etsveen operations that define the
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processing sequence on the machines are elimif@atesdme of the machines. When
the disjunctive arcs defining the processing segei@i a machink are eliminated
we say that machind is deleted from the solution. The process of chngpshe
machines to delete is done using a greedy randdnhiseristic, proposed in the next

section 6.3.1.

The finding violated valid inequalities module ixeeuted after partially
destroying the solution. It looks for valid inegjtiak violated by the current partial
solution. These inequalities are used to set thaive position (in the processing
sequence) of some operations on a “deleted” machHmehe disjunctive graph
representing the partial solution, setting the tieda position (in the processing
sequence) of two operations means adding to thghgoae specific disjunctive arc
between the two operations. The finding violatetidvanequalities module, which
will be presented in detail in section 6.3.2, is tine responsible for forcing a change

in the direction of the search path in the solut@pace.

The rebuild the solution module finally reconsteuatcomplete solution including
for one “deleted” machine at a time the sequendgsracessing operations. These
sequences are forced to respect the relative positietermined by the violated valid

inequalities. The rebuild the solution module isgmrsed in section 6.3.3.

6.3.1 Partially Destroying a Solution

The tabu search module of the algorithm providescal optimal solution (and its
makespan is an upper bound for the optimal valli@s solution is then submitted to
a perturbation which eliminates the processing segel of operations on some
machines. A greedy randomised method is used tosehwhich machines will have
their processing sequence deleted. This methodsed either towards machines that,
when their processing sequence is deleted, leadtgger reduction on the makespan
of the solution — greedy_max; or towards machihes fead to the smallest reduction

on the makespan — greedy_min.

When perturbating a complete solution we keep tdedé machines (destroying
the sequence for processing their operations) dinél makespan of the resulting

partial solution is less than the upper bound.
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At the beginning of the Tabu_VVI algorithm the Dest Module uses the
greedy_max criterion to choose which machines dedeted”. After a predefined
maximum number of global iterations of Tabu_VVI &escuted without improving
the best solution found, the criterion for choosing machines to “delete” changes to
greedy_min. The method changes again to the anitegreedy_max after the same
amount of iterations, provided that the solutios haen improved at least once while
using greedy_min. While the best solution foundupslated at least once for each
criterion, we keep running the algorithm, alterngtthe criterion for “deleting” the

machines from the solution.
Fig. 6.3 shows a not detailed pseudo-code of tse@emodule of the algorithm.

Algorithm Destroy (x)

(1) X4 =X

(2) While(makespa()<d)>UB—1)
(3) x4 = deletdmachingxy)
(4) it (g empty)

(5) return (x)

6) return (xq)

Fig. 6.3 Pseudo-code of module Destrdyx) - current complete solution,xg) - partially
destroyed solution

6.3.2 Finding Violated Valid Inequalities

Having a partial solution and an upper bOL(U@) for the optimal value, we then

test the existence of violated valid inequaliti#bese allow us to establish some

relative positions between operations of each wthaled machine.

The procedure looks for violated valid inequalities every machine whose
sequence of operations is not present on the dupanial solution. The process
cycles through all the “deleted” machines and igeated until no more orders

(relative positions) between operations are set.

We use the same inequalities that were used ifrduech-and-bound algorithms
of Carlier and Pinson (Carlier and Pinson 1989) Apglegate and Cook (Applegate
and Cook 1991).
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Let a be a machine of the instance whose sequence oégsing the operations

was deleted from the solution, a8} any given sub-set of the operations processed
by a . Every operation has an earliest possible starting tim -a processing time -

p; and a minimum completion time after it is procelssd; .

If for any given set S, and any given operationilS,,

min_{eif+ >, pj+min{f;;=UB then, to be possible to reduce the upper
jDSa\{i}{ ! s, jDSa{ it

bound, operation must be processed an before any other operation i,. The

inverse inequalitymin{ej}+ > pj+ min { fj}ZUB states that operatianmust
ios ios,  i0S\i}

a

be processed oa after any other operation i, .

Let C, be the set of operations not yet ordered for nmechi, E, U C, the
sub-set of operations that could be scheduled, fast F, O C, the subset of
operations that could be scheduled last. If ther@rn operation OE, such that

6+ X pj+ jrgli:n{ fj}2UB, theni can be removed fronk, . If E, contains only
jOC, a

one operation, then it must be processedrobefore any other operation @, . The

reverse inequality,min{e;f+ ¥ p;+f, 2UB, states that cannot be scheduled
JUE, jOC,

after all the other operations @, , and should be removed frofy, .

Not all the sub-set§, are inspected when looking for violated valid inalities

that allow us to fix orders between operationsrm# machine. The number of subsets

of a set withn elements is2", an exponential number on the size of the problem,

which poses an implementation problem.

We have decided to compromise and instead of Igokinvalid inequalities in all
the possible subsets of operations on one mach@eenerate only a few of them.
The subsets to be inspected are built adding tb eachem the operations one by
one, being the operations ordered by decreasingesabf starting and completion
times. This way the process of generating subseitsspect is biased to subsets with

more possibilities of concealing a violation ofaligl inequality.
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For illustration purpose let us consider the instgam Table 4.2 and the feasible
solution with makespan 13 represented by the gsdyolwvn in Fig. 4.3. The earliest

possible time for starting processing an operatiq® ) is given by ther; parameter
computed for the respective one machine problenaldgously, f; is given byg; .

Let us further assume that the processing sequaneechine 1 is deleted from the
solution, since it is the bottleneck machine, itee one that produces the biggest
change in the value of the makespan of the solutida then get the partial solution
represented by the graph in Fig. 6.4, and the oaehime problem for machine 1

presented in the table next to it.

NN
@1\%&5
@4@2 My | O | O4 | O7 | O
E/ @) r 0| O0]| 0| 0
- . o | 1| 4] 1] 4
L 4| 7/8]| 5] 3
VPR
10—y 1

Fig 6.4 Graph of the partial solution removing the progggsequence of machine 1 from the solution
in Fig. 4.3 and the respective one machine protitgrmachine 1

Since r, =00i O{ 14710 and q4 > >q7 >y the algorithm first includes
operationOy4 in the set and then includes the other operatiyrdecreasing values of
its queues. The first set to be inspecteoBis{O4,Ol} looking at the inequalities
n+ps+p+aqqa2UB, that being verified implies arc O4 - 0, and
ry+pg+p +q 2UB, that is not verified. SetS={0,,0;} is the next to be
inspected with inequalityr; + p4 + p7 +04 2UB leading to arcO4 - O; and
inequality rq + p4 + p7 +q7 2UB not being verified. Finally the 532{04,010} is
considered checking the inequalitiggg+ ps + pg+0d4 2UB, that leads to arc
Oy - Op, and rg+pg+po+tho=UB, that is not true. The next sets to be
considered are sets with three operations inclu@pgand O;. S={0,,0,,0} is

inspected first, looking at inequalitsy + pg + py + p7 + En{in}qi >UB, which being
ir{ 41
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verified states that operatid®; must be processed after all other operationS im
order to be able to reduce the makespan and leadsc$ O, — O; and O; - Oy;

and inspecting inequalityfr{ﬂr;\l}ri + ps+ pr+ p7+07 2UB, that is not true. The next
14

set considered is S={O4,O_L,Olo} and the inequalities inspected are

Mot PatpPLtpPiot rr{1ir;1|}qi >UB, which leads to arc®, - Oy and O; - Oy,
i 4
and En{irj}ri + pg+ P+ Pro+ o 2UB, which is not verified. In the end the set with
ih4

all the operations is considere6={Ol,O4,O7,Olo} inspecting the inequality

Mot Pa+tpPLtpP7+pPot D{min }Qi >UB, that leads to arc®, - Oy, O; - O
i{417
and O; - Oyg, and the inequality D{min }ri +pg+ Pt pP7t ot do2UB that
in{417

implies arcsOyg — O4, Ojg - O; and Qg - Oy. It is impossible to have both arcs
I - J and j - i in a solution, for any given operationsand j, which happens for

pairs of operation9{04,010), (01,010) and (07,010). This means that we can not
produce a solution with makespan less than 13r@dhtice the upper bound) starting

from this partial solution. The solution must betlfier destroyed.

The next machine whose sequence of processingtaperas deleted from the
solution is machine 2. Fig 6.5 shows the partialuttan obtained and the

corresponding one machine problem for machine 1.

(3,

()

NG

N\
O udO vl O) M| 0 |04 | O | O
@ r | 0] 0| 0] O
D> (> @ IR
iy Qi4643

11

10—, 1

Fig 6.5 Graph of the partial solution removing the progagsequence of machines 1 and 2 from the
solution in Fig. 4.3 and the respective one machnoblem for machine 1
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Notice that r; =0Ui D{ 14,7,10} and g4 >0 =07 > and remember that
UB=13. The table 6.1 presents the sets considered wduking for violated valid

inequalities, the inequalities inspected and tles anplied by them.

Table 6.1Valid inequalities inspected and corresponding doc partial solution of
Fig. 6.5.

sets valid inequalities arcs
rn+pg+p+aq2UB false
s={04.01}
g+ pPg+pL+q2UB false
r7+ps+p7+0qa2UB false
$={04,07}
r4+pg+p7+0;2UB false
r10+ p4+ p10+q4 =>UB true 04 - O]_O
S={04,010}
g+ pa+tprotho2UB false
i Oz - Oy
Mo+ Psa+pPL+pP7+ P+ Min g =2UB
107 P4* PL¥ P77 Pio ians) we | O - Oy
07 - Oy
s={0,,0,,07,00} o2
m|n r'+p+ +p+ + >UB !
a7} 2 PL+ P7+ Pro* o we | om0,
O - O7

Again there are incompatible arcs deduced fronvibkated valid inequalities, so
the solution must be further destroyed. The onlyclmree whose sequence of
processing operations is present in the solutionashine 3. Fig 6.6 shows the partial
solution obtained from deleting the processing saqa of machine 3 (the empty

solution) and the corresponding one machine proliégrmachine 1.
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Fig 6.6 Graph of the partial solution removing the proaggsequence of machines 1, 2 and 3 from the
solution in Fig. 4.3 and the respective one machnoblem for machine 1

Notice thatr; =00 D{ 14,710} and g4 > Q0 =q; >qy. The algorithm does not
look for violated valid inequalities for sets witlvo operations because operatiop

is the first to be included and;+ps+qgs+ min p <UB. Since =
4T P4ty m{lno}l Gio =

(pPLo> p) operationsO;p and O; are included at once in the set. So the only set
considered for inspecting violated valid inequastis S={04,0,0,0;,07} and the

algorithm looks at inequalityr; + pg+po+t P+ p7+ {min ]}qi >UB, which
i 410,

implies arcs O4 - 07, O p-0; and O -0, and inequality

min r, +py+ + p + p7 + g7 =UB, which is not true.
iD{4,10,1}I Pg+Prot Pt Pz +0ay

At this moment the algorithm updates the 8fs, E, and F, for machine 1.

The position in the processing sequence for operdd; is completely determined, it
Is processed after all the others, so it is remdvech the set of operations not yet
scheduled, i.e.Cq :{O_L,O4,O_L0}. The set of operations that can be scheduled first

E; and the set of operations that can be schedus¢d-{aon machine 1 are equal to
C,. The algorithm then inspects all the inequalitiesf the type

i+ > pj + mln{qj}>UB and mln{ } 2. Pj+g=UB. The only one that
jOC j0F, jOE, jOC

a

IS true isminr; + Py + pg + P1o + dq 2UB, meaning that operatio@, can not be the
i0C,

last one on se€; to be processed and $¢ is updated td~; ={0;,0;0} .
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Including all new arcs in the current partial smotwe get the partial solution
corresponding to the graph presented in Fig 6.%t Meit is the updated one machine

problem for machine 2.

O Od©
?4 &>

1
D Ornd © g | 2] O
> W —>@),

Fig 6.7 Graph of the partial solution including all nevesugenerated by valid inequalities for machine
1 after having removed the processing sequenceachimes 1, 2 and 3 from the solution in Fig. 4.3
and the respective one machine problem for machine

2 n| 1] 611

10

The algorithm proceeds verifying valid inequalitiésr sets of operations
processed on machine 2. It adds the new arcs olfitam the violated valid
inequalities, updates the one machine problem fxhime 3 and proceeds looking for
valid inequalities in sets of operations procegsethachine 3. Again the new arcs are
added to the graph of the partial solution and ghecess cycles through all the
unscheduled machines until no new arcs are incléoledone of the machines. Only
then the algorithm moves to the next step; regjdi complete feasible solution.

If when looking for violated valid inequalities viilad none, then we reintroduce a
deleted processing sequence of a machine intoutihent partial solution and we look
again for violated valid inequalities. The procagssequence to add to the solution is
chosen randomly from the machines present in thepteie solution from which the
partial solution derives. We say that the violatedlid inequalities lead to
incompatible sequences of operations, when whildingd the disjunctive arcs
(corresponding to the relative positions betweererafions in the processing
sequence) determined by the valid inequalitiesh®o dgraph representing the partial
solution we get a cycle (thus an infeasible parsi@lution). If the violated valid
inequalities lead to incompatible sequences of aiers this means we cannot

improve the upper bounfUB) with the set of sequenced machines, and another

machine is deleted from the solution. If this happeepeatedly, the solution becomes
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empty (without any processing sequence on the mashiand still violated valid
inequalities lead to incompatible arcs, then theesu complete solution is optimal.
Fig. 6.8 shows a not detailed pseudo-code of thd fiiolated valid inequalities

module of the algorithm.

Algorithm FindValidinequalities (xq)
(1)  repeat

(2) fixedordesflag=1

(3) while( fixedordesflag>0)

(4) fixedordesflag=0

(5) for (everydeletedmachine

(6) if (valid inequalities found)
(7) fixedordesflag=1

(8) set fixed orders

(9) if (incompatitbe orders)
(10) fixedordesflag= -1
(11) break for

(12) if (novalid inequalities found)

(13) xg4 = addlmachinéxy)

(14) elseif( fixedordesflag=-1)

(15) if (xq empty)

(16) return (x)

(17) %y = deletdmachinéxg )

(18) else

(19) return (xq)

Fig. 6.8 Pseudo-code of module Find Valid Inequalities)) - current complete solution,x&) -
partially destroyed solution

6.3.3 Rebuilding a Complete Solution

The solution is reconstructed including the seqaefmperations of one machine
at a time. The order of adding the sequences imtaehines to the solution is the
same of the elimination. The first machine to béncduded in the solution is the one
that was first removed, and so on. The schedulepefations for each machine is
determined using a modified version of the Schralgerithm (Schrage 1970) that
considers pre-defined orders between operations,iti.starts with a partial solution.
Each time the sequence of operations of a mackime-included in the solution, a
restricted local search is executed, where itibiflen to change orders fixed by the

valid inequalities. This allows to immediately ige the solution. When a new
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sequence of operations is included, we look for neated valid inequalities in all
remaining unscheduled machines, trying to fix nanaers between operations.

After the solution is complete, again, the localrsé is executed.

Let us use the instance of table 4.2 to illusttiai® module of the algorithm. After
the previous module (find valid inequalities) entthg partial solution obtained is the

one represented by the graph of Fig. 6.9.

Mi] O | O | O7 | Oio
n 0|0 9] O
o} 1 1

G| 5|5 2] 3

Fig 6.9 Graph of the partial solution obtained at the ehohodule find violated valid inequalities when
applying Tabu_VVI to the solution of Fig. 4.3

The module rebuilding a complete solution startdbiyding the optimal solution

for the one machine problem for machine 1, withdpfmed arcs. It builds the
solution O; - O4 - O - Oy, that is added to the graph of the partial sofufmr
the job shop. Fig. 6.10 shows the graph of thigigdasolution, and the updated one

machine problem for machine 2.
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Mo | Oz | O | Og | O1q
" 7 [ 11 9
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Fig 6.10Graph of the partial solution with the completeqessing sequence for machine 1 obtained at
the first iteration of the module rebuilding a cdetp solution when applying Tabu_VVI to the
solution of Fig. 4.3

The algorithm runs again the find violated vali@égualities module. It generates
the arcsOg —» O11, O, » Op7 and O, - Og. This completely defines the sequence
of processing operations on machin®z - Og — O;; — Og, Which is added to the

partial solution. The local search module is rurtf@new partial solution but, on this
small instance, it produces no changes. Fig. 6Hdws the graph of the partial

solution, and the updated one machine problem tarhime 3.

n | 2| 5| 0] 11

Fig 6.11 Graph of the partial solution with the complet@gqaessing sequence for machines 1 and 2
obtained at the second iteration of the moduleileiipg a complete solution when applying Tabu_VVI
to the solution of Fig. 4.3

The algorithm runs again the find violated vali@égualities module. It generates

the new arcsOg - Oy, O3 - Oy and O3 - Og. This, once again for this small

instance, completely defines the sequence of psowgperations on machine 3.
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O3 - O - Og - Oy, which is added to the partial solution leadingatocomplete

solution for this instance of the job shop schedulproblem. The makespan of the
produced complete solution, represented by thehghiapFig. 6.12, is 12. The
makespan is equal to the lower bound of the propgenthe solution is optimal.

Fig 6.120ptimal solution to instance of Fig. 4.2 achiebgdlabu_VVI

A not detailed pseudo-code of the rebuild modul¢hef algorithm Tabu_VVI is
presented in Fig. 6.13.

Algorithm Rebuild (x4)
(1) for (everydeletedmachinem)

(2) x4 = modified_schragéxy,m)
(3) %y = LocalSeart(x4)
4) xq = FindValidinequalities(xy )

5)  return (xq)

Fig. 6.13Pseudo-code of module Rebui(d(d) - partially destroyed solution

6.4 Computational Experiment

We have tested the performance of the method Ta¥Liuging once again the
132 benchmark instances abz5-9 (Adams, Balas £988), ft6, ft10, ft20 (Fisher and
Thompson 1963), 1a01-40 (Lawrence 1984), orbO1Aplegate and Cook 1991),
swv01-20 (Storer, Wu et al. 1992), ta01-50 (Taill4®93) and ynl1l-4 (Yamada and
Nakano 1992).
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The size of the instances is measure by the numwibeperations (equal to the
number of jobs times the number of machines). Tis&nces have different sizes: ft6
is the smaller one with>% operations; 1a01-05 have 4B; [a06-10 have 1%5; ft20
and lall-15 have 2(b; abz5-6, ft10, lal16-20 and orb01-10 have<10; la21-25
have 1%10; la26-30 and swv01-05 have»200; 1a31-35 have 36010; 1a36-40 and
ta01-10 have 1%15; abz7-9, swv06-10 and tall-20 have 2B; ta31-40 and ynl1-4
have 2(x20; swv11-20 have 5010; the bigger ones are ta41-50 withx20

operations.

An optimal solution has already been found for 83hese instances; namely
abz5-7, ft6, ft10, ft20, 1a01-40, orb01-10, swv@,-@wv05, swv13-14, swv16-20,
ta01-10, tal4, tal7, ta3l, ta35-36 and ta38-39.

We have tested slightly different versions of thetmod Tabu_VVI:

1) A larger neighbourhood, not forcing moves topexs conditions d), was

implemented (notation Is2).

2) We have compared the results of performing (motatabuls) and not
performing (notation tabu) an unrestricted locadreb after the rebuild phase and

before the tabu search.

3) Within the tabu search module, different valoéshe tabu length parameter
were tested: equal to the number of neighboursafioot mv); half of it (notation mv-

2), the double of it (notation mv2), etc.

4) Also inside the tabu search module, we havedesot to look for those moves
rejected by conditions d), so when a neighbourhs@mpty the eligible tabu move is

always the one executed (notation without inf).

5) We have implemented versions where instead yf keeping the move with
the best evaluation, we store them all (or justesahthem) in a heap structure by
increasing values of their evaluations (notation. Mvhenever, after executing the
move, the real value of the solution is differewinf the evaluation of the move, if the
value of the solution is bigger than the evaluatanthe next move in the heap
structure, then this next move is executed. This alao tried for the moves rejected

by conditions d) (notation infhp).
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The number of tabu iterations allowed without impng the best solution was set
to the number of operations of each instance.

6) Within the rebuild module, we have also testedbtild the sequence of
processing operations in one machine using a neadifiranch-and-bound method
(notation bb) instead of just the priority rule thie Schrage algorithm. The orders
between operations that were fixed by the findated valid inequalities module are

always respected.

The described base version of the algorithm Tabu_MVrepresented by the
notation tabu_mvinf. We have tested a total of Btednt versions of the algorithm.
The different versions have names that respedotitaving denominations presented
in Table 6.2.

Table 6.2Notations for the different Variants of Algorithimbu_VVI

notation description
bb branch-and-bound at the rebuilding module
Is2 extended local search to include moves rejdayezbnditions d)
tabu tabu search
tabuls local search after the rebuild and befoegtdbu search
mv tabu tenure equal to the size of the neighbadho
mv# tabu tenure equal to # times the size of thghb@urhood
mv-2 tabu tenure equal to half the size of the medgirhood
mvfct there is a factor that extends or reduceddbe length according to improving or not
improving cycles
mvinf moves rejected by conditions d), are execuihdn there are no feasible ones
hp all moves are stored in a heap — use them whiewalue of the solution is different

from its evaluation and bigger than the evaluatibthe next move in the heap

mv_infhp heap only for moves rejected by conditidhs

mvinfhp a heap for each type of moves (rejectedranidejected)

At the first stage of the method Tabu_VVI, the GFAB&B algorithm was
executed with parameteuns equal to 10, to generate the initial feasible sofuand

tabu search was run for 100 iterations without mrpment.

The algorithm has been run on a Pentium 4 CPU @GH® and coded in C.
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In order to measure the performance of the algoritfe use again the percentage

of relative error (but this time to the lower bodnrdRE g (or to the optimum if the

problem is closed)f (x ¥tands for the makespan of the best solution found

RE () =100%)X%

In section 1 of Annex C the reader can find talihed present the performance of
fifteen variants of the algorithm showing the ageravalues, over each class of
instances, of theRE g and the time in seconds to the best solution. &lage also
shown for each variant the number of instancesviach it achieved the best known

solution (bes); the number of instances for which it achievedriirimum value of
all variants(min); the number of instances for which the variant #asonly one to
achieve the minimum valugnly min); the sum of the error and the sum of time over

all instances. The fifteen variants chosen to prieaee the ones that are the only one
to find the minimum value for at least one instaritee best performance measures
are in bold. For the 42 instances abz6, ft06, [#013-18, la23, la26, 1a30-35, orb07,
orb10, swv16-20 and ta35, all the variants finddp&amal solution. Here we present
Table 6.3 with the best results over all the vasaested.

Table 6.3 Best results by all variants of Tabu_VVI, in awggapercentage of the
relative error to the lower bound, and the avetage to the best, in seconds.

sets of | best of all variants of Tabu_VVI
instances|  avg(RE g) avg(time)
abz 1.71 81.46
ft 0 0.15
la01-05 0 0.03
la06-10 0 0.02
lal1-15 0 0.04
la16-20 0 0.44
la21-25 0.02 7.94
la26-30 0.17 83.39
la31-35 0 0.27
1a36-40 0.05 57.08
orb 0 4.30




Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling Problemsg3

swv01-05 2.33 127.91
swv06-10 8.21 281.64
swv11-15 1.41 1854.58
swv16-20 0 1.58
yn 7.00 163.95
ta01-10 0.24 49.52
tal1-20 3.12 177.24
ta21-30 5.96 319.02
ta31-40 1.26 220.62
ta41-50 5.47 1016.21
# best 42+22
SUMRE 258.08
sum time 31007

We have verified that when a heap of the movesesm conditions d) was
kept, it was never used, that is, the evaluatiothefmove always corresponded to the
makespan of the resulting solution. For moves aspe&cting conditions d), the heap
was only used when the move produced an infeasdilgion (a cycle in the graph is
created). This shows that the evaluation functwinich for determining the value of
the solution obtained by a move, re-computes oméyalues of the paths through

operations between the ones of the critical paivery accurate.

In section 2 of Annex C the reader can find talsleswing for each instance, its
size in jobs times machines, the best known uppent (bk_UB), the best value
achieved by Tabu_VV(Tabu_VVI), the average time in seconds to achie\rite)
and the number of variants of the algorithm thaichethis minimum(#variants).
When the best known upper bound is not the optinuatane for the instance it
appears irtalic.

We have found a new upper bound, 1765, for instansvv10 in 101 seconds.

The values of best known lower and upper bounde wathered from the papers
(Jain and Meeran 1999), (Nowicki and Smutniki 199®Jowicki and Smutnicki
2002) and (Nowicki and Smutnicki 2005).

The following boxplots show the distribution of theakespans of the solutions

achieved by the 35 variants of algorithm Tabu_VMe measure used to present the
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results is the percentage of relative error to upper bound -RE g (or to the

optimum if the problem is closed).

Tabu_VVI: % from best UB Tabu_VVI: % from best UB
i i
=5 B T 2 ’
=30 — o 15
£ 204 : . 2 40+ : .
=3 I =3
2 1.5 4 , | 2
@ 1.0 i e 05
& 08 7 — ok &
E oo — | F— 2 on = i ]
: | [ | | : | | |
abzs abz? abzd ftos ft10 ft20
Instances Instances
Fig. 6.14Distribution of results of all variants Fig. 6.15Distribution of results of all variants
of Tabu_VVI for instances abz of Tabu_VVI for instances ft
Tabu_VVI: % from best UB Tabu_VVI: % from best UB
S s e S 07 °
mw o 0B o
- | ] e a
g 0 & 5
= g = -
@ @ 03 7
% 05 — % 02 —
5 5 01 2
[l _ o —
= T T T T T T T T 11 = T T T T T T T T 11
l201 1a03 la05 107 1209 la11 1213 lal& 1217 119
Instances Instances
Fig. 6.16 Distribution of results of all variants Fig. 6.17 Distribution of results of all variants
of Tabu_VVI for instances 1a01-10 of Tabu_VVI for instances lal11-20
Tabu_VVI: % from best UB Tabu_VVI: % from best UB
5 g 5 20 5
2 . CRER T
2 - & FEE
s ° - 7 0 eln
dJr . k4] L 1 dJr ! 1
o i T - ik ¥ 05 — . ] |
= ! , W D 5 Lo
2 0 E_lE_,_ _ S 00 |mmm——— L
R TR
l221 1823 1a25 1227 1229 l231 1233 1a36 1237 1239
Instances Instances
Fig. 6.18Distribution of results of all variants Fig. 6.19Distribution of results of all variants

of Tabu_VVI for instances la21-30 of Tabu_VVI for instances la31-40



Optimised Search Heuristics: Combining Metaheusstied Exact Methods to solve Scheduling ProblemsQg

Tabu_VVI: % from best UB Tabu_VVI: % from best UB
m m
= T = =
= ! = 25 7 | & -
M 1.5 m ! O !
L = 204 T ! ! |
2 g = £ i : : ' .
o - .
r 05 e g g e 107 : i
# b | 1 ! !
S ool OTE_E__ ST L g & T
T B % | I | |
orb01 orb04  orb0?  orb1D yn1 ynd  yn3 ynd
Instances Instances
Fig. 6.20Distribution of results of all variants Fig. 6.21 Distribution of results of all variants
of Tabu_VVI for instances orb of Tabu_VVI for instances yn
Tabu_VVI: % from best UB Tabu_VVI: % from best UB
m m
o 54 ° @ S o
o Lo T e o Lo
= S HE i T 8 S
2 ool TR 2 +1_B. B
2 E_N*ELQ‘LI. 2 3‘i:ET:
o =] 47 L ! P 294l mmE
T S e G DU ¢ . o1 4g°L
(o) i | (o) et
2 0 2 e 2 0 el
N O Y T T T T T T T T 11
swl  swd  swe7 w10 swvll  swld  swl? w20
Instances Instances
Fig. 6.22Distribution of results of all variants Fig. 6.23Distribution of results of all variants
of Tabu_VVI for instances swv01-10 of Tabu VVI for instances swv11-20
Tabu_VVI: % from best UB Tabu_VVI: % from best UB
i . i
~ S = T7
= ! fon T o i !
5 34 . o7 =S . Lo
f 1 ; f : ! o i I
% 2 - o ! I % 5 IT | : T . Lo
i T [Ty} | 1 !
& 1_1T78T°=l: & 1-.5*”5!‘ l
P | o BH o ! R L 1 ]
(am) Q_J_ e _L (am) 4= g— oL H
2 oA shadig = 2 pH -
T T T T T T T T 171 N N Y
tall ta03 ta05 tal7 tad9 tall tal3d tals tal? tald
Instances Instances
Fig. 6.24Distribution of results of all variants Fig. 6.25Distribution of results of all variants

of Tabu_VVI for instances ta01-10 of Tabu_VVI for instances tal1-20



06 6 An OSH Combining Tabu Search with the VerificataiViolated Valid Inequalities

Tabu_VVI: % from best UB Tabu_VVI: % from best UB

m m
Q 4 — < Q 5 _ < . g
72} - @ @ 72} T
S 3988 17 H S5 41 14T el T
) i e | m - 1 | ° 1 !
% i . T Q Ty g . = 2 QQ ; f i . @ l
m | V5 m 2 & 1 . | . i
¢ |mEEE TR £ 21 TiH et
— e B = e — — S L
g LT EEE = qm ) BN
— | g E Lo fa] 0 - i -
= T T T T T T T T 11 % T T T T T T T T 71

tall taZ23 ta2h ta2d ta29 ta3l ta33 ta3h tad? tad9

Instances Instances

Fig. 6.26 Distribution of results of all variants Fig. 6.27 Distribution of results of all variants
of Tabu_VVI for instances ta21-30 of Tabu_VVI for instances ta31-40

Tabu_VVI: % from best UB

m
= B o 8
[l _ o
= 5 g g g 2 o -
g § o omeel BT A
Z o2l rmllLl
fab] | B T

o 2-.@ E}l |
B Lt e
= 4T

= 1 +

= |

T T 17T 1T 7T 171
tadl tad3 tadh tad? tadd

Instances

Fig. 6.28Distribution of results of all variants of
Tabu_VVI for instances ta41-50

6.4.1 Comparison to Other OSH Methods

To compare the results of Tabu_VVI to other methwdschoose the two variants
with the smallest sum over all instances of thee@atage of the relative error to the

lower bound, or the best over all variants.

The optimised search methods applied to the jolp-slobeduling problem, that we
know of and have mentioned in the literature reyiave only applied to the older and
easier instances of the problem, except for theksvof Balas and Vazacopoulos (Balas
and Vazacopoulos 1998) and Pezzella and Merelizé&ka and Merelli 2000), that will

be treated separately.

The method of Danna, Rothberg and Le Pape (DanothbBrg et al. 2005) is

applied to instances of the weighted-tardinessimersf the problem, and the work of
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Schaal, Fadil, Silti and Tolla (Schaal, Fadil et ¥#99) is applied to the generalised
scheduling problem.

Our method, Tabu_VVI is always better, in quality e solutions and in
computational time, than the works (Chen, Talukdaral. 1993), (Denzinger and
Offermann 1999), (Tamura, Hirahara et al. 1994)daws, Balas et al. 1988),
(Applegate and Cook 1991), (Caseau and Laburthéb)19@ourenco 1995), and
(Lourengo and Zwijnenburg 1996). In Table 6.4 wevslthe comparison results to the
work of Caseau and Laburthe (Caseau and Laburt®®) 18amed CL), because it is the
best of these methods and also because it is thett@t presents results for more

instances. Their algorithm was run on a SunSpamadchine.

Table 6.4 Results by variants tabu_mvinf and tabu_mv_bb abul VVI, and the
algorithm of Caseau and Laburthe, in average ptagenof the relative error to the
lower bound, and the average time to the besgconrads.

Tabu_VVI
instances tabu_mvinf tabu_mv_bb L
avg(RE g) avg(time) | avg(RE ) avg(time) | avg(RE ) avg(time
abz 2.11 63.77 1.93 61.02 2.57 112.67
ft 0 11.72 0 0.58 0 112
la01-05 0 0.12 0 0.12 0 3.80
la06-10 0 0.02 0 0.03 0 0.75
la11-15 0 0.04 0 0.05 0 27
la16-20 0 1.79 0 1.67 0 25.08
la21-25 0.11 23.13 0.06 14.80 0.11 551.40
la26-30 0.29 54.12 0.26 40.88 0.47 4322.25
la31-35 0 0.38 0 0.39 0 2108.40
la36-40 0.47 22.68 0.22 33.50 0.37 2476.40
orb 0.23 7 0.09 14.13 1.66 111.11

Comparison to the Guided Local SearchThe guided local search procedure of
Balas and Vazacopoulos (Balas and Vazacopoulos)1@&8gns a search procedure
based on local improvements and accepting noninimpgomoves, using structures of
neighbourhood trees. Each neighbourhood tree qgmmels to a cycle of the guided
local search procedure. Each node of the treesstosolution and each edge connects

neighbour solutions. Feasible solutions are buwilvieg to optimality by branch-and-
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bound all one-machine subproblems (like the shyftbottleneck heuristic (Adams,
Balas et al. 1988)). After a few cycles of neighthmod trees, the procedure randomly
destroys the best solution found; deleting the sege of operations for some machines,

and then reconstructs the partially destroyed mwiutepeating the all process.

Here we compare our best results to their bestrtegpeersion SB-RGSL10, which
stands for shifting bottleneck with randomised gdidocal search. The 10 means the
number of times the all process is repeated. Watd3Z. Their algorithm was run on a
SunSparc 30 machine. The comparison results betaigenthms Tabu_VVI and BZ
are shown in Table 6.5. Although we used diffe@rputers, we can still say that our
method is always much faster than BZ. Quality valtigat win the comparison are
shown in bold.

Table 6.5Results by the best of all variants of Tabu_VVddhe best variant of the
algorithm of Balas and Vazacopoulos; in averagegrgage of the relative error to the
lower bound, and the average time to the besgcorads.

instances Tabu_VVI BZ
avg(RE g) avg(time) | avg(RE g) avg(time)
la01-05 0 0.03 0 5.9
la16-20 0 0.44 0 47
la21-25 0 7.94 0 139.6
la26-30 0.17 83.4 0.19 121.6
la36-40 0.05 57.1 0.03 278
orb 0 4.30 0.10 80.18
swv01-05 2.33 128 2.02 1290
swv06-10 8.06 282 9.64 29017
swv11-15 141 1855 2.12 9173
yn 7 164 5.96 5938
ta01-10 0.24 49.5 0.25 1182
tall-20 3.12 177 3.34 3383
ta21-30 5.96 319 6.57 4377
ta31-40 1.26 221 1.13 5069
ta41-50 5.47 1016 5.71 10726

Comparison to the Tabu Search with Shifting Bottleeck The procedure of
Pezzella and Merelli (Pezzella and Merelli 2000nbmes tabu search with the shifting
bottleneck heuristic. The later is used to build thitial solution, and also at the re-
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optimisation phase of the algorithm. Whenever #imitsearch cycle improves the best
known solution, the procedure deletes the sequaiceperations of all critical
machines (machines with operations in the critigath). After shifting bottleneck
rebuilds the solution, the tabu search is repeaifdw tabu search module uses a
dynamic management of three different neighbourhsiodctures and a tabu list of
variable size, dependent of how many tabu iteratitlve been executed. The
algorithm, that we name PM, was run on a Pentiu@Mi3z. Table 6.6 shows the
comparison results between algorithms Tabu_VVI RN Quality values that win the

comparison are shown in bold.

Table 6.6Results by the best of all variants of Tabu_VVdl d@ine algorithm of Pezzella
and Merelli; in average percentage of the relaswer to the lower bound, and the
average time to the best, in seconds.

instances Tabu_VVI PM
avg(RE g) avg(time) | avg(RE ) avg(time)
abz 1.71 81.5 2.23 151
ft 0 0.15 0 65
la01-05 0 0.03 0 9.8
la06-10 0 0.02 0 -
lal1-15 0 0.04 0 -
la16-20 0 0.44 0 61.5
la21-25 0 7.94 0.1 115
1a26-30 0.17 83.4 0.46 105
la31-35 0 0.27 0 -
1a36-40 0.05 57.1 0.58 141
ta01-10 0.24 495 0.45 2175
tall-20 3.12 177 3.47 2526
ta21-30 5.96 319 6.52 34910
ta31-40 1.26 221 1.92 14133
ta41-50 5.47 1016 6.04 11512

Comparison to the Tabu Search with Path-RelinkingAlong with the guided
local search procedure of Balas and Vazacopoulus$,tlae tabu search with shifting
bottleneck of Pezzella and Merelli, one other pduce, due to Nowicki and Smutnicki

(Nowicki and Smutnicki 2005), forms the group offeth procedures that are the best up
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to date methods applied to the job-shop schedynofplem. This last one being the
state of the art for the job shop scheduling proble

The procedure of Nowicki and Smutnicki performshpaglinking between elite
solutions found by a tabu search module. The swiatachieved by the path-relinking
are then used as starting points for new cyclesheftabu search; the set of elite
solutions is updated and the all process is regedt#e can say that the path-relinking
works as the diversification strategy of the tabarsh.

The algorithm uses a data structure specially desigor the application of this
method to the job-shop scheduling problem. Theams#s of Taillard (Taillard 1993)
were used to study the distribution of the locdimop solutions in the solution space;
and this study supported the design of this methibe. algorithm, that we name NS,
was run on a Pentium 900MHz. Unlike all other prhoes, the computational times
reported by the authors do not include the timededeo build the initial solutions.

Table 6.7 shows the comparison results betweemitlges Tabu_VVI and NS.

Table 6.7Results by the best of all variants of Tabu_VVd déine algorithm of Nowicki
and Smutnicki; in average percentage of the redagtivor to the lower bound, and the
average time to the best, in seconds.

instances Tabu_VVI NS

avg(RE g) avg(time) | avg(RE g) avg(time)
swv01-05 2.33 128 1.01 462
swv06-10 8.06 282 7.49 514
swv11-15 1.41 1855 0.51 360

yn 7 164 5.18 510

ta01-10 0.24 50 0.11 26
tal1-20 3.12 177 281 108
ta21-30 5.96 319 5.68 328
ta31-40 1.26 221 0.78 341
ta41-50 5.47 1016 4.7 975
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6.5 Discussion on Tabu_VVI

We have developed a powerful, fast and innovatipgnosed search heuristic to
solve combinatorial optimisation problems. It usas exact technique from the
operations research field to guide the search peoka metaheuristic. The procedure,
named Tabu_VVI, uses the verification of violatedid inequalities as a diversification
strategy of a tabu search procedure. The idea®ht#w method is to mimic the cuts in
integer programming, letting the violated validdnalities discard unattractive regions
of the solution space and guide the search froracal loptimal solution to a more
quality region of the search space.

The procedure was illustrated with an applicationthe job-shop scheduling

problem.

When developing this algorithm we were confronteth\a challenge, related to the

implementation of the verification of valid ineqites violated by partial solutions.
The valid inequalities are defined for every subsebperations processed on a

machine. A problem witt jobs will have2" subsets of operations to each machine.
We have decided not to inspect all the subset®ilytthe ones with more possibilities
of concealing a violation of a valid inequality. & mspected subsets were built adding

one by one the operations, according to its reldases and completion values.

We presented some computational results for a laegeof benchmark instances,
along with comparisons to other similar and sudoéssorks. Our new method,
Tabu_VVI, always performs better than other methibds combine exact and heuristic
procedures. It compares most favourably to two roliseding methods for solving the
job-shop scheduling problem; the guided local deafcBalas and Vazacopoulos and
the tabu search with shifting bottleneck of Pezzald Merelli. When compared to the
state of the art tabu search of Nowicki and Smutnafter running for approximately

the same amount of time, Tabu_VVI achieves solstiith quality very close to theirs.

The description of this new method Tabu_VVI is praed in the papeDptimised
Search Heuristic Combining Valid Inequalities an@btli Search(Fernandes and
Lourenco 2008).
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7. Conclusions

Combinatorial optimisation problems are the subggcttudy of many practitioners
with different scientific backgrounds, like opecats research, artificial intelligence and
computation sciences. While the work of researchetis an education on operations
research has been mainly devoted to the studyeohtathematical properties of the
problems and the development of exact optimisaadgorithms, researchers from
artificial intelligence and computer science hawevaloped metaheuristic methods
especially focused on solving real-life applicaicsf these problems. Practitioners of
artificial intelligence and computer sciences da in@est in exact algorithms mainly
because of assumptions like exact methods arel®@ots be of any use to solve real
life instances. Practitioners of operations redeasually do not work on metaheuristics
because of the assumption that these methods deppeanily on computational
experiments to define their parameters valuesjrigotif any theoretical fundaments on
their design and there by of no mathematical isterk may also be true that while
some may lack advanced programming skills othensmaae insufficient knowledge of

advanced mathematical techniques.

Some practitioners have recently overcome the gapden exact and metaheuristic
methods and developed new procedures that comlbi@etwo in order to solve

combinatorial optimisation problems.

We have studied these new methods that combine heaiatics and exact
algorithms of combinatorial optimisation highligigi which procedures are combined,;
the specific way they work together and the prolsiémmwhich they have been applied.
Chapter 3 of this thesis is concerned with thigestib There we propose a designation
for these methods — we call them Optimised Searetrristics (OSH), and present a
summary of the different ways of combining exagbaithms and metaheuristics versus

the problems to which the methods are applied.

This mapping shows that there is plenty of roomrfew developments in this area.
We are particularly interested in using exact tépmes to guide the local search

procedure of metaheuristics.
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A paper entitledOptimised Search Heuristicahich presented this study was

produced and published (Fernandes and Louren¢cad2007

To be able to capture the interest of the scientdommunity working on
combinatorial optimisation problems, any new methagst be tested on a problem of

the NP-hard complexity class.

We have chosen to address scheduling problems specially the job shop
scheduling problem, famous for its difficulty both theory and practice. Another
reason for focusing on this problem to introduce tew method was the fact that its
algebraic structure is well studied. Many properti@ve been proven that allow the
description of valid inequalities, some of theminiefy facets of the convex hull of the
set of feasible solutions.

Chapter 4 is dedicated to the presentation of sdhmgfdproblems; their definition,

formulation and proven properties of the algebsaiacture.

Chapters 5 and 6 present two proposed optimisetisdeeuristic methods and
describe the computational results for a largeosdienchmark instances, along with

comparisons to other similar and successful works.

We first developed a method which combines GRASE tamanch-and-bound that
we called GRASP_B&B and used it to solve the jobpskscheduling problem. The
method is a very fast procedure to find solutiohaazeptable quality, ideal to work as
initial solutions to other more elaborated method¥e have compared our
GRASP_B&B to other procedures applied to the sarnblem, also used as producers
of initial solutions. Namely, we compared it to #mr GRASP procedure (Binato, Hery
et al. 2002) and to a procedure that uses brangtbannd in the same way as we did —
the shifting bottleneck procedure (Adams, Balaalefi988). GRASP_B&B compared

most favourably to these methods, producing saistmf higher quality in less time.

A paper describing the new method GRASP_B&B entifleGRASP and Branch-
and-Bound Metaheuristic for the Job Shop Schedulvas produced and published

(Fernandes and Lourenco 2007).

Chapter 6 of this thesis contains the main contioipuof this research work — the
Tabu_VVI procedure. It is an optimised search haigrithat combines the verification
of violated valid inequalities with a tabu searalogedure. The method starts with a
feasible solution produced with the method GRASPBB® which tabu search is
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applied, producing a “good” local optimum. This dbcoptimal solution is then

perturbed in order to continue search in the smtuipace. The solution is partially
destroyed using a greedy randomised procedurelétedsme of its elements. Then the
method verifies the existence of valid inequaliveslated by the partial solution. The
reconstruction of a complete feasible solution estnicted by these violated valid
inequalities, in the sense that they force sommehts present on the partial solution
out of the new complete solution. This way, thercegath of the method is forced to
jump to a different region of the solutions spadepefully to a more attractive region.

This change in the search path direction is guinkedhe information of the algebraic

structure of the problem present in the valid iredifjes. And this is why we state that
the search procedure of the tabu search metaheusiguided by the exact technique of
verifying the existence of violated valid inequiakt to discard some regions of the

solution space.

The new method Tabu_VVI was applied to the job skopeduling problem and
compared to other methods that address it. Namelyampared Tabu_VVI to other
methods that combine exact algorithms and metastaagiand to the three leading
procedures applied to the job shop scheduling probithe Guided Local Search of
Balas and Vazacopoulos (Balas and Vazacopoulos) 1888 Tabu Search combined
with Shifting Bottleneck of Pezzella and Merellieella and Merelli 2000) and the
Tabu Search with Path Relinking of Nowicki and Smncki (Nowicki and Smutnicki
2005).

Tabu_VVI wins the comparison to other methods tmahbine exact algorithms and
metaheuristics, always producing solutions withtdyequality and in less time. When
compared to the procedure of Balas and Vazacopamdgo the procedure of Pezzella
and Merelli, our method achieves results very cditipe with theirs. In the
comparison to the state of the art procedure teesob shop scheduling, the method of
Nowicki and Smutnicki, our Tabu_VVI gets very cldsetheir results.

This new method Tabu_VVI is described in our puidid papeOptimised Search
Heuristic Combining Valid Inequalities and Tabu f&#a(Fernandes and Lourenco
2008).

We hope that these good results will encourager odsearchers to close the gap
between the areas of exact combinatorial optinueatnethods and metaheuristics,

taking advantage of the good characteristics dfi @¢hem.



Optimised Search Heuristics: Combining Metaheusstiod Exact Methods to solve Scheduling Problems 105

When developing this research work we encountenedneajor challenge, related to
the implementation of the verification of valid qelities to the job shop scheduling

problem violated by partial solutions.

The valid inequalities are derived from the subpgois of one machine scheduling

and are defined for every subset of operationsgased on a machine. As we all know

the number of subsets of a set with saglements i2", an exponential number on the
size of the problem, which poses an implementgtimblem. Instead of looking for all
valid inequalities in all the possible subsets pémtions on one machine, we have
generated only a few of them. The subsets to h@eeted were built adding to each of
them the operations, one by one, according to sogasures. The process of generating
subsets to inspect is biased to subsets with magsilmlities of concealing a violation

of a valid inequality.

(Péridy and Rivreau 2005) proposes a new efficegnimerative method based on
local adjustments that may be useful for inspectafighe subsets when looking for
violated valid inequalities. A possible line of dwé work would be to discover how
viable it is to implement such a method and to ifestwould improve the efficiency of
our Tabu_VVI method.

Different directions for proceeding with the lineresearch conducted in this thesis

are:

a) Apply the new method Tabu_VVI to other hard sthieg problems, like the
total weighted tardiness job shop problem or theegaised job shop problem. It would

also be very interesting to apply the method teah world instance.

b) Study the theoretical structure of the Tabu_\iwéthod, to design a general

method that can be applied to other combinatop#ahusation problems.

c) Study the relationship between the different brations of metaheuristics and
exact procedures in OSH methods to evaluate theilsotion of each one of them in
the success of the OSH approach.
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Annex A — Abstracts of Optimised Search Heuristics

Here we present a short abstract for each of thel P®cedures referenced in

chapter 3, ordered by type of combination.

1.1 Sequential execution

Mixed Integer Problems

Hybrid Enumeration Strategies for Mixed Integer Programming (Pedroso
2004) The procedure solves the linear relaxatiothefmixed integer problem and sets

the integer values by random enumeration. It entsaJdocal search.

p-Median

Heuristic Concentration (Rosing and ReVelle 1997), (Rosing and ReVelle8)99
(Rosing 2000) This procedure is named heuristicentration and is applied to the p-
median problem. The first phase consists of doindfimandom starts of a local search
procedure and to choose a set of the best soluiamsl. In the second phase a branch-
and-bound method is used to solve a p-median prgblehere the possible facility
locations are restricted to the ones chosen ibéisélocal search solutions.

Steiner Tree

Combining a Memetic Algorithm with Integer Programming to Solve the Prize-
Collecting Steiner Tree Problem (Klau, Ljubic et al. 2004) This procedure is
developed for the prize-collecting Steiner treebpem. A preprocessing phase reduces
the graph. A memetic algorithm with problem-depetidgperators and an exact local
search procedure is applied to the reduced graplving the integer programming
problem of a minimum Steiner arborescence optimibes solutions found by the
memetic algorithm. When solving the integer problenot all the complicating

constraints are included in the model, only thesonelated by the current solution.
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Also not all variables are included, only the onesded. So the procedure uses cutting

and pricing. This is a very complicated algorithm.

Traveling Salesman

Finding Tours in the TSP (Applegate, Bixby et al. 1999) In a first phasetlus
procedure several tours for the traveling salesqmaiblem are generated using an
iterated Lin-Kernighan algorithm. The second phases a branch-and-cut algorithm to
solve the problem defined over the subgraph witly dime edges used by the tours

found in the first phase.

Tour merging via branch-decomposition (Cook and Seymour 2003) In a first
phase of this procedure several tours for the liraysalesman problem are generated
using an iterated Lin-Kernighan algorithm. The swtophase uses a dynamic
programming algorithm to solve the problem defime@r the subgraph with only the
edges used by the tours found in the first phase.

Vehicle Routing

Effective Local search Algorithms for the Vehicle Ruting Problem with
General Time Window Constraints (Ibaraki, Kubo et al. 2001) The procedure is
applied to the vehicle routing problem. lteratedalosearch determines the number of

routes and the order in it, dynamic programmingroises the times of the routes.

Cutting Stock

Hybridizing Tabu Search with Optimization Techniques for Irregular Stock
Cutting (Bennell and Dowsland 2001) The procedure is adpio the irregular cutting
stock problem. Tabu search finds local optima @obmplete neighbourhoods. These
solutions are improved by solving a linear progriduat uses the geometric concept of
no fit polygon.

One Dimensional Cutting Stock Problem to Minimize he Number of Different

Patterns (Umetani, Yagiura et al. 2003) Initial solutiorts the iterated local search are
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built by heuristics based on the linear relaxasohution of the one-dimensional cutting

stock problem.

Flow-Shop Scheduling

A meta-heuristic algorithm for a bi-criteria scheduling problem (Nagar, Heragu
et al. 1995) This procedure is applied to the 24mraeflow shop scheduling problem.
In a first phase the algorithm executes an incotagdeanch-and-bound, and the partial
solutions are stored along with their respectivarias. The second phase is a genetic

algorithm that uses the information of the bourtddecide upon the mutation operator.

Parallel Machine Scheduling

Heuristic Optimization: A hybrid AI/OR approach (Clements, Crawford et al.
1997) Local search is used to find initial pre-siolus for the multi-job, parallel
machine scheduling problem, with lateness and adraregy costs. The priority heuristic
with local search schedules blocks of jobs in ekl of production. The integer
programming problem is a set partitioning, whereugs of schedules have to be
chosen. Dantzig-Wolf solves the linear relaxatiébnihe IP and then branch-and-bound

finds integer solutions.

Knapsack

A Hybrid Approach for the 0-1 Multidimensional Knap sack problem(Vasquez
and Hao 2001) The procedure is applied to the dioignsional knapsack problem.
Linear relaxation is solved with the extra constraif the sum of the variables being an
integer k. Upper and lower limits for k are detemed. Tabu search is executed for each
one of the linear relaxation solutions sk. The hbairhood is restricted to a small

radius around sk.

A hybrid search combining interior point method and metaheuristics for 0-1
programming (Plateau, Tachat et al. 2002) This procedure ipliep to the
multiconstrained knapsack problem. It starts bycakag an interior point method with
early termination. Feasible solutions built by rdung and applying different ascendant

heuristics will be the initial population for a $tem search method, with path-relinking.
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Generalised Assignment

An Improved Hybrid Genetic Algorithm for the Generalized Assignment
Problem (Feltl and Raidl 2004) This procedure is definemt the generalised
assignment problem and is based on the algorith@hef and Beasley (1996). Initial
solutions for the genetic algorithm are generatgdrdndomly rounding the linear
relaxation solution. The mutation operator consigisa heuristic procedure that
preserves feasibility.

Markov Decision Processes

A Hybrid Genetic/ Optimization Algorithm for Finite -Horizon, Partially
Observed Markov Decision ProcesseglLin, Bean et al. 2004) This procedure is
designed for the partially observed markov decigioncesses problem. The genetic
algorithm generates an initial sub-set of witnessgs. A mixed integer program is

solved to find the remaining ones.

2.1.1 Exactly solving relaxed problems

Job-Shop Scheduling

An approximate solution method for combinatorial ogimisation (Tamura,
Hirahara et al. 1994) This procedure is a gendtiorahm applied to the job-shop
scheduling. The fitness of each individual, whosemosomes represent each variable
of the integer programming formulation, is the bduobtained solving lagrangean

relaxations.

Knapsack

A Genetic Algorithm for the Multidimensional Knapsack Problem (Chu and
Beasley 1998) This procedure is designed for thiiconstrained knapsack problem.
Some elements of the population of the geneticrdalgon are infeasible solutions
generated by crossover and mutation operator. daves feasibility of these solutions,

the dual variables of the linear relaxation areduse weights in the surrogate relaxation
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of the multidimensional knapsack problem. A gredeyristic based on the surrogate

relaxation produces feasible solutions.

An improved genetic algorithm for the multiconstrained 0-1 knapsack problem
(Raidl 1998) This procedure is designed for thetimahstrained knapsack problem.
The initial population of the genetic algorithmdgsnerated randomly setting the 0 /1
variables to one, with a probability given by iswes on the linear relaxation solution.
The repair operator to regain feasibility afterssover and mutation is also based on the

solution values of the linear relaxation.

2.1.2 Exactly searching large neighbourhoods

Partitioning

Very large-scale neighbourhood searclfAhuja, Orlin et al. 2000), (Ahuja, Ergun
et al. 2002) Very large neighbourhoods are exastyarched by network flow
techniques, dynamic programming or by polynomialetisolvable restrictions of the

original problem. An application to the minimum sping tree problem is described.

Steiner Tree

Combining a Memetic Algorithm with Integer Programming to Solve the Prize-
Collecting Steiner Tree Problem (Klau, Ljubic et al. 2004) This procedure is
developed for the prize-collecting Steiner treebpem. A preprocessing phase reduces
the graph. A memetic algorithm with problem-deperidgperators and an exact local
search procedure is applied to the reduced graplving the integer programming
problem of a minimum Steiner arborescence optimibes solutions found by the
memetic algorithm. When solving the integer problenot all the complicating
constraints are included in the model, only thdated by the current solution. Also not
all variables are included, only the ones neededth® procedure uses cutting and

pricing. This is a fairly complicated algorithm.
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Traveling Salesman

A constraint programming framework for local search methods (Pesant and
Gendreau 1996), (Pesant and Gendreau 1999) Theedue is developed within a
constraint programming framework and applied to titeeeling salesman with time
windows. Each neighbourhood exploration is perfaig branch-and-bound, defining

elaborate local search moves.

Guided Local Search for Combinatorial Optimization Problems (Voudouris
1997), (Voudouris and Tsang 1999) Dynaseaishised as a local search routine within

a guided local search procedure applied to theeliray salesman problem.

Polynomially Searchable Exponential Neighbourhoods for Sequencing
Problems in Combinatorial Optimisation (Congram 2000) Dynamic programming
finds the best neighbour in a local search neighimad of exponential size. A
perturbation is performed on the solution and dgaesh is iterated. The procedure is

applied to the traveling salesman problem.

Effective local and guided variable neighborhood sech methods for the
asymmetric traveling salesman problem(Burke, Cowling et al. 2001) This procedure
is designed to the traveling salesman problem. [dbal search routine is based on
splitting the original problem into small subprable of connecting fixed subtours,
which are solved to optimality by dynamic programgqiThe local search is embedded

in a variable neighbourhood procedure.

Embedded local search approaches for routing optimzation (Cowling and
Keuthen 2005) The procedure is applied to the asstmertraveling salesman problem.
Local search uses a neighbourhood of 2 unconnesgigchents of the tour. Dynamic
programming is used to optimally reconnect citigthiw the segments. The variable

neighbourhood search version uses several k-oghbeurhoods.

Vehicle Routing

Cycle transfers (Thompson and Orlin 1989), (Thompson and Psara@83) This
procedure defines a local search procedure wittighbourhood structure based on the

cyclic transfer concept. The exponential sized meogirhood is exactly explored

® Dynasearch — dynamic programming searchs an erp@isized neighbourhood in polynomial time
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defining appropriated auxiliary graphs and usingnaigic programming. A variable
depth search technique is employed. The proceduepplied to the vehicle routing
problem.

One Machine Scheduling

An lterated Dynasearch Algorithm for the Single-Madine Total Weighted
Tardiness Scheduling Problem(Congram, Potts et al. 2002) Dynamic programming
finds the best neighbour in a local search neighimad of exponential size. A
perturbation is performed on the solution and dgaesh is iterated. The procedure is

applied to the problem of scheduling a single naehvith total weighted tardiness.

Iterated local search(Lourenco, Martin et al. 2002) A dynasearch isduse a local
search routine inside an iterated local searchgoa®, applied to the single machine

weighted tardiness problem.

2.1.3 Exactly solving subproblems

Mixed Integer

Tabu Search for Mixed Integer programming (Pedroso 2004b) The procedure is
applied to mixed integer programming problems. Tabarch sets the values of integer
variables and then a linear program is solved. Tauch uses branch-and-bound as an

intensification strategy.

Graph Colouring

Improving graph coloring with linear programming and genetic algorithms
(Marino, Prugel-Bennett et al. 1999) The crossadMethe genetic algorithm uses the
optimal solution of the linear assignment formwatifor the maximal sub-graph with
zero clashes of the graph colouring problem.
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Maximum Independent Set

An optimized crossover for the maximum independenset (Aggarwal, Orlin et
al. 1997) This is a genetic procedure designedh® rhaximum independent set
problem. In the recombination phase, the uniorheffeatures of two parent solutions

defines an integer programming subproblem, whicgoliged to optimality.

Maximum Clique

Optimized crossover-based genetic algorithms for # maximum cardinality
and maximum weight cligue problems(Balas and Niehaus 1998) This is a genetic
procedure designed to the maximum clique problemthe crossover operator, a
subproblem is defined by the union of the featafesvo parent solutions, which is then

solved exactly by integer programming.

Network Design

A hybrid tabu search/branch-and-bound algorithm for the direct flight
network design problem(Budenbender, Grinert et al. 2000) This procedubaiilt for
the network design problem. Each neighbouring smubf the local search is generated
fixing the value of some variables and leaving dktigers free. The subproblem defined
on the free subset of variables is solved to opiiyndy integer programming

techniques.

Quadratic Assignment

Intensification neighbourhoods for local search métods (Mautor and Michelon
1997), (Mautor and Michelon 2001), (Mautor 2002)eTNMIMAUSA algorithm is
designed to the quadratic assignment problem. ®Blal Isearch neighbourhood is
defined deleting the value of some k variables. Therespondent subproblem of

assigning values to those variables is exactlyexblwy integer programming.



114 Annex A

Vehicle Routing

Using constraint programming and local search methds to solve vehicle
routing problems (Shaw 1998) This tabu search procedure is desifpred vehicle
routing problem. Branch-and-bound is used to eyamtplore a partial neighbourhood

structure, defined by a subproblem.

Job-Shop Scheduling

The Shifting Bottleneck Procedure for Job Shop Scliriling (Adams, Balas et al.
1988) The shifting bottleneck procedure is an testdocal search applied to the job
shop scheduling problem, with a construction héaribat uses a branch-and-bound to
solve the subproblems of one machine with releadedae dates.

A Computational Study of the Job-Shop Scheduling Riblem (Applegate and
Cook 1991) The local search type shuffle heuristas built for the job shop scheduling
problem. At each step the processing orders ojoiie on a small number of machines
is fixed, and a branch-and-bound algorithm compléte schedule.

Disjunctive scheduling with task intervals(Caseau and Laburthe 1995) The local
search procedure is applied to the job shop scimgdproblem. The neighbourhood
structure is defined by a subproblem that is eyaablved using constraint

programming.

Guided Local Search with Shifting Bottleneck for J&o Shop Scheduling(Balas
and Vazacopoulos 1998) This is a guided local $eaneer a tree search structure, that
reconstructs partially destroyed solutions forjtte shop problem, using a branch-and-
bound algorithm to exactly solve one machine sublpros.

One Machine Scheduling

The use of dynamic programming in genetic algorithm for permutation
problems (Yagiura and Ibaraki 1996) This is a genetic aldoni for permutation
problems. In the crossover operator, common chromes of two parent solutions are

kept fixed and the free ones are optimised usinadyc programming.
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Generalised Schwefel Function

Embedding Branch and Bound within Evolutionary Algorithms (Cotta and
Troya 2003) Branch-and-bound is used to optimatignglete a partial solution built
with the recombination operator of the genetic atgm. This procedure is applied to
the following problems: generalised schwefel fumatirulebase learning in mobile

agents, design of a brachystochrone, k-epistaticnnal permutation.

2.1.4 Exact algorithms as decoders

Packing

Local search algorithms for the rectangle packing pblem with general spatial
costs(Imahori, Yagiura et al. 2003) Dynamic programmevgluates codified solutions
found by local search by determining the optimaill olution that corresponds to the
codified one. The codified solution is perturbedd docal search is iterated. The

procedure is applied to the rectangle packing bl

Solving a Real-World Glass Cutting Problem(Puchinger, Raidl et al. 2004) The
individuals of the genetic algorithms are codedusohs of the two-dimensional bin-
packing problem with scheduling. Branch-and-bowndsed to decode coded solutions.

This procedure is developed for a real cuttingglasblem.

Lot-sizing

A hybrid genetic algorithm to solve a lot-sizing ad scheduling problem
(Staggemeier, Clark et al. 2002) The procedur@jdied to the lot-sizing problem. The
genetic algorithm schedules products and lineagnaraming optimises sizes of lots for
a given schedule, determining the fitness valueawth element of the population. A
heuristic of the asymmetric TSP type is used withagenetic algorithm to re-optimise

all changes produced by crossover or mutation.
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2.1.5 Exact algorithms for strategic guidance of ntaheuristics

Frequency Assignment - Quadratic Assignment

An ANTS heuristic for the frequency assignment prokem (Maniezzo 1999),
(Maniezzo and Carbonaro 2000) The procedure is ah @olony Optimisation
metaheuristic that uses information from the linedaxation and the values of the dual
variables to determine the pheromones, which gthdeconstruction of solutions. The
procedure has been applied to problems like quadriasignment (1999) and frequency

assignment (2000).

Packing

Using tree bounds to enhance a genetic algorithm ppach to two rectangle
packing problems (Dowsland, Herbert et al. 2004) The representatainthe
individuals in the genetic algorithm is relatedilhe search tree, as each position in the
string corresponds to the choice of the branchattlevel. Each individual corresponds
to a path from the top of the tree to a terminalendr'his way, bounds can be calculated
to partial solutions, guiding crossover and mutatperators. This procedure is applied

to the rectangle packing problem.

Job-Shop Scheduling

Combining large-step optimization with tabu-search: Application to the job-
shop scheduling problem(Lourenco 1995), (Lourenco and Zwijnenburg 1996k Th
iterated local search procedure is applied to tiieghop scheduling problem. In the
perturbation phase, subproblems of one or two mashare solved by a branch-and-

bound algorithm.

Optimisation of Continuous Problems

Tabu Search directed by direct local methods for nlinear global optimization
(Hedar and Fukushima 2004) The procedure is degdldpr the optimisation of

continuous problems. The neighbourhood of the wdarch is generated according to
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extreme directions using the Nelder-Mead methodthedpattern search strategy. The

tabu list is managed by anti-cycling rules.

2.2.1 Metaheuristics for obtaining incumbent soluttns and bounds

Packing

A hybrid improvement heuristic for the one-dimensimal bin packing problem
(Alvim, Ribeiro et al. 2003) The procedure is apglito the one-dimensional bin-
packing problem. The related min-max problem ivewtlby greedy heuristics to find
the number of bins. Upper and lower bounds areutatked using the algebraic structure
of the problem. Solutions are determined solving ttual bin-packing problem

heuristically. Tabu search transforms remainingasfble solutions into feasible ones.

Lot-sizing

An integrated lagrangean relaxation - simulated anaaling approach to the
multi-level multi-item capacitated lot sizing problem (Ozdamar and Barbarosoglu
2000) Subproblems of the multi-level, multi-itemgpacitated lot-sizing problem are
derived by lagrangean relaxation. Solutions of éh&sbproblems update lower bounds
and lagrangean multipliers. A recursive heurissi@pplied in order to restore capacity
feasibility of the subproblems solutions and thenutated annealing is applied to find
complete solutions, providing upper bounds. Thegdore is repeated with the updated

lagrangean multipliers.

Job-Shop Scheduling

Meta heuristics diversification of generalized jobshop scheduling based upon
mathematical programming techniques (Schaal, Fadil et al. 1999) Interior point
method generates initial solutions of the linedaxation. The genetic algorithm finds
integer solutions. A cut is generated based oninteger solutions found and the
interior point method is applied again to diverdifye search. This procedure is defined

for the generalised job shop problem.
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Binary (0-1) Programming

A chunking based selection strategy for integratingmeta-heuristics with
branch and bound (Woodruff 1999) This is a branch-and-bound procedbat uses a
chunking-based selection strategy to decide at eade of the tree whether or not a

reactive tabu search is run to improve the incurhbelution.

2.2.2 Metaheuristics for column and cut generation

Graph Colouring

Constructive Genetic Algorithm and Column Generation: an Application to
Graph Coloring (Filho and Lorena 2000) This procedure is appliedthe graph
colouring problem. The genetic algorithm is usethva given number of columns to
approximately solve a weighted maximum independentproblem; which generates
the initial pool of columns needed for the columeneration process. Each column
forms an independent set. Column generation saheset covering formulation. The
whole procedure is repeated with the number of makl minus one, until no

improvement is found.

Packing

An Evolutionary Algorithm for Column Generation in Integer Programming:
an Effective Approach for 2D Bin Packing(Puchinger and Raidl 2004b), (Puchinger
and Raidl 2004c) The genetic algorithm is used iwithe branch-and-price procedure
to solve the column generation. This procedure pplied to the 2D bin-packing

problem.

2.2.3 Metaheuristics for strategic guidance of examethods

Mixed Integer

Using a Hybrid Genetic-Algorithm/Branch and Bound Approach to Solve

Feasibility and Optimization Integer Programming Problems (French, Robinson et
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al. 2001) This procedure is used to solve feagjbilnd optimisation integer

programming problems and is inspired on the algoribf Beasley and Chu (1996).
Bounds of the branch-and-bound tree are found kaxirg integrality. The genetic

algorithm builds integer solutions by relaxing cdopamt satisfaction and using

information from the tree nodes to generate chrammas. The solutions found by the
genetic algorithm determine the new nodes of the to be examined. The algorithm is
exact and was incorporated in commercial softwdPREKSS-MP.

Genetic Programming for Guiding Branch and Bound Sarch (Kostikas and
Fragakis 2004) The genetic programming is usedefalving the best branching
heuristic to each instance. Genetic programmingrit” during a first phase of branch-
and-bound, finds the best branching heuristic dmsh toranch-and-bound starts again
with the learned strategy for branching. This pdace is applied to mixed integer

programming problems.

p-Median -- Flow-Shop Scheduling

Recovering Beam Search: Enhancing the Beam Search pproach for
Combinatorial Optimization Problems (Della-Croce, Ghirardi et al. 2004)
Lagrangean relaxation is used to derive lower gopeu bounds to the nodes of the
limited branch-and-bound tree. The number of nqukslevel is limited heuristically
using valid and pseudo dominance conditions. Theuery step consists of performing
a local search at the current node and determhreesiéxt node to be examined. This
procedure is applied to the two machine flow shdpeduling and the uncapacitated p-

median problems.

Parallel Machine Scheduling

Makespan minimization on unrelated parallel machins: a Recovering Beam
Search approach(Ghirardi and Potts 2005) The Beam Se&miocedure is applied to
the scheduling problem with parallel machines. mbeghbourhood of partial solutions
is inspected by local search, recovering prunedtisois of a limited branch-and-bound

tree.

® Beam search — a branch-and-bound procedure whereimber of nodes per level (the beam) is limited
heuristically
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2.2.4 Applying the spirit of metaheuristics

Mixed Integer

Local Branching (Fischetti and Lodi 2003) This procedure, desmmixed integer
problems, called local branching, is a branch-amaikll method with a branching
strategy that determines the number of variablesetoain unchanged, instead of
specifying which variables to change. At each nofiehe branch-and-bound tree the

commercial software Cplex is used to solve theMi® integer model.

Exploring relaxation induced neighborhoods to imprave MIP solutions (Danna,
Rothberg et al. 2005) Within each node of a braamth-cut tree, the solution of the
linear relaxation is used to define the neighboadh@f the current best feasible
solution. The local search consists in solvingrésdricted MIP problem defined by the
neighbourhood. The procedure is applied to mixddger problems like job shop,

network design and multicommodity routing.

Generalised Assignment

Stabilized Branch-and-cut-and-price for the Generaked Assignment Problem
(Pigatti, Aragéo et al. 2005) This procedure isedeped for the general assignment
problem. Upper bounds for the nodes of the seaeghdre obtained by solving a linear
program that inspects a k-opt neighbourhood in rpatyial time. Ellipsoidal cuts that
define the neighbourhood are added to the linealblem. Ellipsoidal cuts are inspired
in the path relinking idea.
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Annex B — Computational Results for GRASP_B&B

Table B.1Results by GRASP_B&B for Instances abz (Adamsa8al al. 1988)

name Km LB uB min Q1 Q2 Q3 max ttime (s)  btime (s)
abz5 1< 10 1234 | 1258 1312 1332 1358 1460 0.77 0.10
(1.94) (6.32) (7.94) (10.05) (18.3])
abz6 10«10 943 952 978.75 997 1012.5 1078 0.77 0.31
(0.95) (3.79) (5.73) (7.37) (14.32)
abz7 1520 656 725 750.75 763 781 810 10.91 3.49
(10.52) (14.44) (16.31) (19.05) (23.48)
abz8 1520 | 647 669 734 767 780 797.25 837 10.52 1.89
(9.72) (14.65) (16.59) (19.17) (25.11)
abz9 1520 | 661 679 754 782.5 792 809 874 10.47 1.36
(11.05) (15.24) (16.64) (19.15) (28.72)
Table B.2Results by GRASP_B&B for Instances ft (Fisher ahdmpson 1963)
name m | LB UB min Q1 Q2 Q3 max ttime (s) btime (s)
ft06 6% 6 55 55 59 59 61 66 0.14 0.13
(0.00) (7.27) (7.27)  (10.91)  (20.00)
ft10 10x 10 930 970 1026.75 1046 1073.25 1144 1.00 0.58
(4.30) (10.40)  (12.47)  (15.40) (23.01)
ft20 20x 5 1165 1283 1304 1318 1365 1409 0.47 0.01
(10.13)  (11.93) (13.13) (17.17) (20.94)
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Table B.3Results by GRASP_B&B for Instances la01-lal0 (Lewae 1984)

name nxm | LB UB min Q1 Q2 Q3 max ttime (s) btime (

la01 10<5 666 | 666 666 666 666 694 0.17 0.002
(0.00) (0.00) (0.00) (0.00) (4.20

la02 10<5 655 667 712 722 722 835 0.16 0.04
(1.83) (8.70) (10.23) (10.23)  (27.48)

la03 10«5 597 605 605 640 701 701 0.22 0.01
(1.34) (1.34) (7.20) (17.42) (17.42)

la04 10<5 590 607 610 648 648 672 0.17 0.01
(2.88) (3.39) (9.83) (9.83) (13.90)

la05 10«5 593 593 593 593 593 593 0.11 0.001
(0.00) (0.00) (0.00) (0.00) (0.00

la06 15<5 926 | 926 926 926 926 926 | 0.17 0.002
(0.00) (0.00) (0.00) (0.00) (0.00

la07 15<5 890 | 890 890 890 890 936 0.20 0.002
(0.00) (0.00) (0.00) (0.00) (5.17

la08 15<5 863 | 863 863 880 921 976 0.30 0.01
(0.00) (0.00) (1.97) (6.72) (13.09)

la09 15<5 951 | 951 951 951 951 953 0.28 0.003
(0.00) (0.00) (0.00) (0.00) (0.212

lal0 15<5 958 | 958 958 958 958 958 | 0.14 0.001
(0.00) (0.00) (0.00) (0.00) (0.00
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Table B.4Results by GRASP_B&B for Instances lall-la20 (Lewae 1984)

name nxm | LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

lal1l 20x 5 1222 | 1222 1222 1222 1222 1284 0.27 0.003
(0.00) (0.00) (0.00) (0.00) (5.07

lal2 20x 5 1039 | 1039 1039 1039 1039 1039 0.27 0.003
(0.00) (0.00) (0.00) (0.00) (0.00

lal3 20x 5 1150 | 1150 1150 1150 1150 1223 0.38 0.004
(0.00) (0.00) (0.00) (0.00) (6.35

lal4 20x 5 1292 | 1292 1292 1292 1292 1292 0.22 0.002
(0.00) (0.00) (0.00) (0.00) (0.00

lal5 20x 5 1207 | 1207 1240 1295 1295 1295 0.91 0.05
(0.00) (2.73) (7.29) (7.29) (7.29

la16 10x< 10 945 | 1012 1038.5 1049 1060 1099 0.74 0.02
(7.09) (9.89) (11.01) (12.17)  (16.3D)

lal7 10< 10 784 787 813.75 836.5 864.25 950 0.77 0.08
(0.38) (3.79) (6.70) (10.24)  (21.1y)

la18 10< 10 848 854 879.25 895 924 104p 0.75 0.3D
(0.71) (3.69) (5.54) (8.96) (22.88)

la19 10x< 10 842 861 893.75 917 940.5 1020 0.97 0.46
(2.26) (6.15) (8.91) (11.70)  (21.14)

1a20 10x< 10 902 920 960 976 1011.5 108p 0.81 0.08
(2.00) (6.43) (8.20) (12.14)  (19.73)
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Table B.5Results by GRASP_B&B for Instances la21-la30 (Lewae 1984)

name nxm | LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la21 15< 10 1046| 1092 1154 1177.5 1210.25 1286 2.05 0.10
(4.40) (10.33) (12.57) (15.70)  (22.94)

la22 15< 10 927 955 999 1029.5 1063.5 1192 1.80 0.99
(3.02) (7.77) (11.06) (14.72)  (28.5P)

la23 15< 10 1032| 1049 1089.25 1111 1136 1268 1.89 1.74
(1.65) (5.55) (7.66) (10.08)  (22.87)

la24 15¢< 10 935 971 1016 1030 1054.25 1104 1.84 0.63
(3.85) (8.66) (10.16) (12.75)  (18.0f)

la25 15¢< 10 977 | 1027  1082.75 1100 1122.25 1226 1.80 0.54
(5.12)  (10.82) (12.59) (14.87)  (25.49)

1a26 20x 10 1218| 1265 1321.75 1355 1376 1485 3.38 3.04
(3.86) (8.52) (11.25) (12.97)  (21.9p)

la27 20x 10 1235| 1308 1375 1399 1431.25 1538 3.56 0.18
(5.91) (11.39) (13.28) (15.89)  (24.5B)

la28 20x 10 1216| 1301  1360.75 1391 1413.25 1533 3.00 0.15
(6.99)  (11.90) (14.39) (16.22)  (26.07)

la29 20x 10 1152| 1248 1312.75 1339 1379 1466 3.30 0.86
(8.33)  (13.95) (16.23) (19.70)  (27.2B)

1a30 20x 10 1355| 1382  1432.75 1452.5 1477 1548 3.33 0.87
(1.99) (5.74) (7.20) (9.00) (14.24)
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Table B.6 Results by GRASP_B&B for Instances la31-la40 (Lewae 1984)

name nxm | LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

la31 30x 10 1784 | 1784 1806.75 1829.5 1866.25 2006 7.02 0.07
(0.00) (1.28) (2.55) (4.61) (12.44)

la32 30x 10 1850 | 1850 1868.75 1906 1931 2024 6.24 0.56
(0.00) (1.01) (3.03) (4.38) (9.412

la33 30x 10 1719| 1719 1729.75 1756.5 1797 1872 7.91 1.27%
(0.00) (0.63) (2.18) (4.54) (8.90

la34 30x 10 1721 1721 1787 1812 1845.25 2025 8.28 3.81
(0.00) (3.83) (5.29) (7.22) (17.66)

la35 30x 10 1888 | 1888 1901 1923 1978.25 2232 5.69 0.29
(0.00) (0.69) (1.85) (4.78) (18.22)

1a36 15< 15 1268 | 1325 1375.75 1395.5 1423.25 15p1 4.27 0.p9
(4.50) (8.50) (10.06) (12.24)  (19.9p)

la37 15¢ 15 1397 | 1479  1538.75 1565.5 1597.25 1642 4.80 4.03
(5.87)  (10.15) (12.06) (14.33) (17.54)

la38 15« 15 1196| 1274  1354.75 1381.5 1397.75 1471 5.11 0.2
(6.52) (13.27) (15.51) (16.87)  (22.99)

la39 15¢< 15 1233| 1309 1352.75 1374 1404.25 1468 4.45 2.98
(6.16) (9.71) (11.44) (13.89)  (19.0p)

la40 15< 15 1222 1291 1347 1369 1398.5 1451 5.39 3.6
(5.65)  (10.23) (12.03) (14.44) (18.74)
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Table B.7 Results by GRASP_B&B for Instances orb0l1-orb10flégate and Cook

1991)

name nxm | LB UB min Q1 Q2 Q3 max ttime (s) btime (s)

orb01 | 10x10 1059 1145 1181.75 1198 1219.25 1335% 0.99 0.03
(8.12) (11.59) (13.13) (15.13) (26.06

orb02 | 10x 10 888 918 959.75 983 1013.25 1085 0.95 0.10
(3.38) (8.08) (10.70) (14.10) (22.18

orb03 | 10x 10 1005 1098 1135.5 1155.5 1184.25 1289 1.02 0.34
(9.25) (12.99) (14.98) (17.84) (28.26

orb04 | 10x 10 1005 1066 1120 11445 1183 1255 1.13 0.82
(6.07) (11.44) (13.88) (17.71) (24.88

orb05 | 10x 10 887 911 966.75 1001 1014.25 1117 0.88 0.11
(2.71) (8.99) (12.85) (14.35) (25.93

orb06 | 10x 10 1010 1050 1108 11345 1172 1282 1.05 0.48
(3.96) (9.70) (12.33) (16.04) (26.93

orb07 | 10x 10 397 414 436.5 448 455 503 1.06 0.28
(4.28) (9.95) (12.85) (14.61) (26.70

orb08 | 10x 10 899 945 975 999 1032.75 1125 1.03 0.31
(5.12) (8.45) (11.12) (14.88) (25.14

orb09 | 10x 10 934 978 1003.75 1021 1053.75 1177 0.91 0.28
(4.71) (7.47) (9.31) (12.82) (26.02

orb10 | 10x 10 944 991 1024.75 1040 1073 1232 0.84 0.23
(4.98) (8.55) (10.17) (13.67) (30.51
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Table B.8 Results by GRASP_B&B for Instances swv01l-swv1oi&t Wu et al.

1992)

name nKm LB uB min Q1 Q2 Q3 max ttime (s) btime (s

swv0l | 20<10 1407 | 1605 1688 1762 1806.75 1900 3.67 3.67
(14.07)  (19.97)  (25.23)  (28.41) (35.04)

swv02 | 20<10 1475| 1601 1696 1729 1776.5 1940 3.27 0.29
(8.54) (14.98) (17.22) (20.44)  (31.53)

swv03 | 20x10 | 1369 1398 1582 1666.75 1704.5 1738.5 1964 3.49 501
(13.16)  (19.22) (21.92) (24.36)  (40.49)

swv04 | 20x10 | 1450 1483 1655 1737.5 17725 1816.25 1949 4.00 72 2
(11.60)  (17.16)  (19.52)  (22.47) (31.42)

swv05 | 20< 10 1424 | 1587 1660.75 1690 1718.25 1829 3.67 3.60
(11.45)  (16.63) (18.68) (20.66)  (28.44)

swv06 | 20x15| 1591 1678 1895 1975 2012.5 2064.25 2240 10.78 09 8.
(12.93)  (17.70) (19.93) (23.02)  (33.49)

swv07 | 20x15| 1446 1620 1833 1881.75 1921 1953.75 2076 11.55 31 2
(13.15) (16.16)  (18.58)  (20.60)  (28.1p)

swv08 | 20«15 | 1640 1763| 2001 2103.25 2150 2190 23118 11.03 9.0b
(13.50)  (19.30) (21.95) (24.22)  (31.48)

swv09 | 20x15| 1604 1663 1877 1984.75 2017.5 2088 2197 11.39 .0210
(12.87)  (19.35) (21.32) (25.56)  (32.11)

swvl0 | 20x15| 1631 1767 1978 2053.5 2102 2145 2288 10.06 4.48
(11.94) (16.21)  (18.96)  (21.39) (29.4|9)
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Table B.9 Results by GRASP_B&B for Instances swv1l-swv20i&t Wu et al.

1992)

name nKm LB uB min Q1 Q2 Q3 max ttime (s) btime (s

swvll | 50<10| 2983 2991 3366 3454.25 3498.5 3574 4047 62.36 73 8.
(12.54) (15.49)  (16.97)  (19.49) (35.31)

swvl2 | 50<10 | 2972 3003| 3422 3520.75 3569 3621 4196 141.92 8 5.6
(13.95)  (17.24) (18.85) (20.58)  (39.7R3)

swv1l3 | 50x 10 3104 3527 3601.25 3654 3698.25 4143 54.98 20.3
(13.63)  (16.02) (17.72) (19.14)  (33.47)

swvl4 | 50< 10 2968 | 3295 3362.25 3402.5 3469.5 4052 180.84 .1459
(11.02)  (13.28)  (14.64)  (16.90) (36.52)

swvl5 | 50<10 | 2885 2904| 3329 3458.5 3565 3634.25 3994 113.17 3.567
(14.63)  (19.09) (22.76) (25.15)  (37.53)

swv1l6 | 50< 10 2924 | 2924 2924 2924 2924 2962 9.67 0.10
(0.00) (0.00) (0.00) (0.00) (1.30)

swvl7 | 50« 10 2794 | 2794 2794 2798 2828 2949 16.97 0.68
(0.00) (0.00) (0.14) (1.22) (5.59)

swvl8 | 50x 10 2852 | 2852 2852 2852 2879 2985 15.61 0.16
(0.00) (0.00) (0.00) (0.95) (4.66)

swv1l9 | 50x 10 2843 | 2843 2864 2904 2972.5 3168 30.27 212
(0.00) (0.74) (2.15) (4.56) (11.43)

swv20 | 50< 10 2823 | 2823 2823 2846.5 2894.25 3045 17.39 0.87
(0.00) (0.00) (0.83) (2.52) (7.86)
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Table B.10Results by GRASP_B&B for Instances yn (Yamadaldaklano 1992)

name n<m LB UB min Q1 Q2 Q3 max ttime (s) btime (g

~

ynl 20x20 | 826 888 955 996.75 1010.5 1031.25 1084 23.45 2 4.7

(7.55)  (12.25)  (13.80)  (16.13)  (22.07)

yn2 20x20 | 861 909 987 1035.75 1047 1060 1133 25.38 12.43

(8.58)  (13.94)  (15.18)  (16.61) (24.64)

yn3 2020 | 827 893 996 1029.75 1049 1068.5 1111 25.34 11.91

(11.53) (15.31)  (17.47) (19.65) (24.41)

yn4 20x20 | 918 968| 1060 1117.75 1132 1158 1209 23.89 20.07

(9.50) (15.47)  (16.94) (19.63)  (24.9D)
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Table B.11Results by GRASP_B&B for Instances ta01-tal0 (dedl 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (s

ta01 1515 1231 1332 1387 1413 1438.25 1556 5.56 0.2
(8.20) (12.67) (14.78) (16.84) (26.40)

ta02 1515 1244 1313 1368.75 1394.5 1426.75 1499 5.562 4.9
(56.55) (10.03) (12.10) (14.69) (20.50)

ta03 1515 1218 1278 1346.75 1370 1403.25 1488 5.41 4.1
(4.93) (10.57) (12.48) (15.21) (22.17)

ta04 1515 1175 1249 1309 1330.5 1360.25 1518 6.16 3.4
(6.30) (11.40) (13.23) (15.77) (29.19)

ta05 1515 1224 1310 1369 1393.5 1432 1579 5.81 0.8]
(7.03) (11.85) (13.85) (16.99) (29.00)

ta06 1515 1238 1308 1362.75 1396 1422.5 1535 5.94 0.7
(5.65) (10.08) (12.76) (14.90) (23.99)

ta07 1515 1227 1299 1342 1364 1390.25 1549 5.14 2.3
(5.87) (9.37) (11.17) (13.30) (26.24)

ta08 1515 1217 1306 1371 1389.5 1414.25 1523 5.95 2.8
(7.31) (12.65) (14.17) (16.21) (25.14)

ta09 1515 1274 1395 1438 1465 1491 1614 6.11 1.5¢
(9.50) (12.87) (14.99) (17.03) (26.69)

tal0 1515 1241 1332 1387 1413 1438.25 1556 5.52 0.2
(7.33) (11.76) (13.86) (15.89) (25.3?)
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Table B.12Results by GRASP_B&B for Instances tall-ta20 (dal 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (s

~

tall 20x15 | 1323 1361 1497 1571 1597.5 1626.25 1727 11.11 00 8.

(9.99) (15.43) (17.38)  (19.49)  (26.89)

tal2 20x15 | 1351 1367 1511 1576.75 1590.5 1623.25 17p9 11.77 3.41

(10.53) (15.34) (16.35)  (18.75)  (25.0)

tal3 2015 | 1282 1342 1498 1559.5 15815 1618.25 1728 10.69 5.02

(11.62) (16.21) (17.85) (20.58)  (28.76)

tald 20x 15 1345 1439 1496.75 1527.5 1569 1692 11.59 2.32

(6.99) (11.28) (13.57)  (16.65)  (25.80)

tal5 20x15 | 1304 1340 1511 1576.25 1602 1639 1732 12.44 4,

W
()]

(12.76) (17.63) (19.55)  (22.31)  (29.25)

tal6 2015 | 1302 1360 1486 1551.75 15715 1609.25 16y7 11.20 5.94

(9.26)  (14.10) (15.55)  (18.33)  (23.31)

tal?7 20x 15 1462 1600 1661 1693.5 1713 19111 9.39 7.70

(9.44) (13.61) (15.83) (17.17)  (30.71)

tal8 2015 | 1369 1396 1543 1623 1652 1677.25 1782 12.20 7.97

(10.53) (16.26) (18.34)  (20.15)  (27.6%)

tal9 2015 | 1297 1335 1463 1542 1574 1616 1740 11.53 7.26

(9.59) (15.51) (17.90)  (21.05)  (30.34)

ta20 2015 | 1318 1351 1498 1549 1580 1617 1686 11.56 6.24

(10.88) (14.66) (16.95)  (19.69)  (24.80)
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Table B.13Results by GRASP_B&B for Instances ta21-ta20 (dal 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (S

ta21 2x20 | 1539 1644 1810 1894.5 1936 1970.25 2144 2097 1111
(10.10) (15.24) (17.76) (19.84) (30.41)

ta22 2x20 | 1511 1600 1792 1832.75 1865 1903 1989 22.48 6.0
(12.00) (14.55) (16.56) (18.94) (24.31)

ta23 2x20 | 1472 1557 1708  1768.75 1801 1839.25 1947 22.08 6.121
(9.70)  (13.60) (15.67) (18.13) (25.0%)

ta24 220 | 1602 1647 1778  1864.75 18945 1925.25 2014 19.19 17.08
(7.95) (13.22) (15.03) (16.89) (22.28)

ta25 2x20 | 1504 1595 1746  1830.75 1876 1913.5 1992 2041  .1216
(9.47) (14.78) (17.62) (19.97) (24.89)

ta26 2x20 | 1539 1645 1768  1863.75 1907 1950.25 2027 17.84 .68 2
(7.48)  (13.30) (15.93) (18.56) (23.22)

ta27 2x20 | 1616 1680 1839 1923.75 1954 1988.25 2149 19.84 7.861
(9.46) (14.51) (16.31) (18.35) (27.92)

ta28 2x20 | 1591 1614 1755 1837.5 1871 1908.75 2016 22.31  .1919
(8.74) (13.85) (15.92) (18.26) (24.91)

ta29 2x20 | 1514 1625 1717 1835.75 1864 1898.25 2012 20.16 .25 6
(5.66) (12.97) (14.71) (16.82) (23.82)

ta30 220 | 1473 1584 1737 1800.75 1827.5 1852.5 1960 17.55 6.49
(9.66)  (13.68) (15.37) (16.95) (23.74)

~
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Table B.14Results by GRASP_B&B for Instances ta31-ta40 (dal 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (s

~

ta31 30x 15 1764 1976 2059.75 2099.5 2135 2322 30.61 14.39

(12.02) (16.77) (19.02)  (21.03)  (31.63)

ta32 3x15 | 1774 1796 2029 21325 2165.5 2205 2356 30.61 8823.

(12.97) (18.74) (20.57)  (22.77)  (31.18)

ta33 30«15 | 1778 1793 2070 2171.25 2204 2265 2336 31.92 018.2

(15.45) (21.10) (22.92) (26.32)  (30.28)

ta34 3x15 | 1828 1829 2024 2114.25 2156 2186 2287 33.67 332.8

(10.66) (15.60) (17.88)  (19.52)  (25.04)

ta35 30x 15 2007 2093 2174.25 2208 2250.25 2434 35.30 13.41

(4.29)  (8.33) (10.01)  (12.12)  (22.27)

ta36 30< 15 1819 2040 21245 21535 2204.25 2307 30.53 3.97

(12.15) (16.79) (18.39)  (21.18)  (26.8B)

ta37 3x15 | 1771 1778 1967 2099.75 2136 2184.5 2408 29.03 .3915

(10.63) (18.10) (20.13)  (22.86)  (35.43)

ta38 30x 15 1673 1913 1976.75 2003.5 2046.25 2188 34.00 5812.

(14.35) (18.16) (19.75)  (22.31)  (30.78)

ta39 30< 15 1795 1966 2069.25 2107.5 2144 2321 31.38 13.49

(9.53) (15.28) (17.41)  (19.44)  (29.30)

ta40 30<15 | 1631 1674 1931 2012 20475 2077.25 2218 33.99 34 0.

(15.35) (20.19) (22.31)  (24.09)  (32.50)
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Table B.15Results by GRASP_B&B for Instances ta41-ta50 (dal 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (3)

tadl 3x20 | 1859 2018 2348  2413.75 2458 2494 2638 61.11 0.61
(16.35) (19.61) (21.80) (23.59) (30.72)

ta4?2 3x20 | 1867 1956 2206  2301.75 2341 2374.25 2513 62.33 9.244
(12.78) (17.68) (19.68) (21.38) (28.48)

ta43 3x20 | 1809 1859 2155 2228.5 2254 2294.5 2395 72.70 8950.
(15.92) (19.88) (21.25) (23.43) (28.83)

tad4 3x20 | 1927 1984 2300 2382.5 2418 2466 2517 64.80 11.66
(15.93) (20.09) (21.88) (24.29) (29.89)

tad5 3x20 | 1997 2000 2295 2358 2380 2410.25 2581 70.83 134.f
(14.75)  (17.90)  (19.00) (20.51) (29.0%)

ta46 3x20 | 1940 2021 2314 2399.5 2438 2481 2660 64.11 25.64
(14.50) (18.73) (20.63) (22.76) (31.62)

tad7 3x20 | 1789 1903 2151 2260.5 22995 2345.75 2443 63.99 63.35
(13.03) (18.79) (20.84) (23.27) (28.38)

ta48 3x20 | 1912 1952 2222 2325.5 2360 2407.5 2565 63.22 0660.
(13.83) (19.13) (20.90) (23.34) (31.40)

ta49 3x20 | 1915 1968 2250 2349.5 2390 2425 25680 65.27 11.Y5
(14.33) (19.39) (21.44) (23.22) (30.08)

ta50 3x20 | 1807 1928 2264 2347.5 2387 2431 2633 63.30 13.29
(17.43) (21.76) (23.81) (26.09) (36.57)
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Table B.16Results by GRASP_B&B for Instances ta51-ta60 (dadl 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (s

~

ta51 50x 15 2760 3001 3149 3227 3294 358y 139.88 65.74

(8.73)  (14.09) (16.92)  (19.35)  (29.96)

ta52 50x 15 2756 2940 3136 3216 3276.5 3590 128.36 11937

(6.68) (13.79) (16.69)  (18.89)  (30.26)

ta53 50< 15 2717 2895 2998 3031.5 3072.5 3219 116.94 87.70

(6.55)  (10.34) (11.58)  (13.08)  (18.48)

ta54 50x 15 2839 2914 3024.75 3092.5 3133.75 3280 11255 7615

(2.64) (6.54) (8.93)  (10.38)  (15.53)

ta55 50x 15 2679 2988 3133 3178 3247.5 3440 144.66 56.42

(11.53) (16.95) (18.63) (21.22)  (28.41)

ta56 50< 15 2781 2966 3122.75 3167 3230.25 3437 131.38 3.94

(6.65) (12.29) (13.88)  (16.15)  (23.59)

ta57 50x 15 2943 3101 3213.5 3256.5 3320.5 3485 106.42 727.6

(5.37)  (9.19) (10.65)  (12.83)  (18.42)

ta58 50x 15 2885 3103 3214.5 3273 3326.25 3438 146.91 004|3

(7.56)  (11.42) (13.45) (15.29)  (19.17)

ta59 50< 15 2655 2940 3038.25 3090 3139.5 3294 124.30 3193

(10.73) (14.44) (16.38)  (18.25)  (24.07)

ta60 50< 15 2723 2921 3048.5 3104 3160 333pP 121.80 86.48

(7.27)  (11.95) (13.99)  (16.05)  (22.62)
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Table B.17Results by GRASP_B&B for Instances ta61-ta70 (dal 1993)

name Km LB uB min Q1 Q2 Q3 max ttime (s) btime (3)

ta61 50 20 2868 3258 3369.5 3424 3484 3649 285.50 216.08
(13.60) (17.49) (19.39) (21.48) (27.23)

ta62 5x20 | 2869 2872 3306 3444 3493.5 3544 3730 311.99 2293
(15.11) (19.92) (21.64) (23.40) (29.87)

ta63 50« 20 2755 3130 3218.75 3273 3324.25 3487 315.13 5302
(13.61) (16.83) (18.80) (20.66) (26.57)

ta64 50 20 2702 3008  3180.25 3230 3287.75 3431 289.84 6253
(11.32) (17.70) (19.54) (21.68) (26.98)

ta65 50 20 2725 3104 32425 3286 3339 3569 323.23 42.02
(13.91) (18.99) (20.59) (22.53) (30.97)

ta66 50« 20 2845 3198 3320 3361 3415.5 3585 317.16 63.43
(12.41) (16.70) (18.14) (20.05) (26.01)

ta67 50 20 2825 3209 3339 3389.5 3435.25 3578 273.34 46.47
(13.59) (18.19) (19.98) (21.60) (26.65)

ta68 50 20 2784 3133  3235.75 3283 3337.5 3542 268.78 9230
(12.54) (16.23) (17.92) (19.88) (27.23)

ta69 50« 20 3071 3366 34475 3517 3576 373P 259.17 33.69
(9.61) (12.26) (14.52) (16.44) (21.7%)

ta70 50« 20 2995 3449  3528.75 3582 3633.25 3815 279.52 058.7
(15.16) (17.82) (19.60) (21.31) (27.38)
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Annex C — Computational Results for Tabu_VVI

C.1 Computational Results per Variant of Tabu_VVI

Table C.1 Results by Tabu_VVI: variants tabu_mvfct, tabu_isty and tabu_mv2_bb,

for all groups of instances, in average percentgthe relative error to the lower

bound, and the average time to the best, in seconds

sets of tabu_mvfct tabu_mv_bb tabu_mv2_bb
instances | avg(RE g) avg(time) | avg(REg) avgtime) | avg(REg) avgtime
abz 1.96 101.25 1.93 61.02 2.02 91.79
ft 0 0.96 0 0.58 0.29 8.41
la01-05 0 0.08 0 0.12 0.15 2.71
la06-10 0 0.03 0 0.03 0 1.00
la11-15 0 0.04 0 0.05 0 1.05
la16-20 0 2.67 0 1.67 0 0.18
la21-25 0.18 22.92 0.06 14.80 0.17 0.08
la26-30 0.28 67.26 0.26 40.88 0.61 0.03
la31-35 0 0.39 0 0.39 0 0.04
la36-40 0.39 65.02 0.22 33.50 0.48 0.05
orb 0.24 8.59 0.09 14.13 0.20 19.19
swv01-05 3.14 44.28 2.93 120.43 2.74 136.59
swv06-10 8.94 228.20 9.51 204.217 9.33 184.44
swv11-15 2.00 1045.08 2.03 825.21 1.96 1177./8
swv16-20 0 1.62 0 1.64 0 2.94
yn 7.71 341.02 7.91 73.61 7.42 336.11
ta01-10 0.74 37.78 0.81 67 0.75 124.58
tal1-20 3.66 101.22 3.70 86.60 3.70 307.70
ta21-30 6.57 289.45 6.60 269.97 6.56 479.69
ta31-40 1.69 386.45 1.60 258.49 1.92 463.43
ta41-50 6.12 1565.28 5.88 559.71 6.48 792.06
# best
# min 42+13 42+13 42+5
# only min 42+21 42+25 42+15
7 6 7
SUmMREs 305.38 303.21 313.97
sum time 33148.74 19375.1 31840.4
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Table C.2 Results by Tabu VVI: tatwinf and

tabu_mvinf_Is2, for all groups of instances, inrage percentage of the relative error to

variants tabu_mvinf_bb,

the lower bound, and the average time to the besgconds.

sets of tabu_mvinf_bb tabu_mvinf tabu_mvinf_Is2
instances | avg(RE g) avg(time) | avg(REg) avgtime) | avg(REg) avgtime
abz 1.93 98.82 211 63.77 2.38 70.58
ft 0.25 10.61 0 11.72 0 3.47
la01-05 0 0.29 0 0.12 0 0.52
la06-10 0 0.02 0 0.02 0 0.02
la11-15 0 0.05 0 0.04 0 0.04
la16-20 0 2.27 0 1.79 0 4.98
la21-25 0.10 27.16 0.11 23.13 0.30 14.59
la26-30 0.32 19.75 0.29 54.12 0.44 18.21
la31-35 0 0.39 0 0.38 0 0.28
la36-40 0.47 36.55 0.47 22.68 0.37 66.54
orb 0.24 11.63 0.23 7.00 0.22 19.09
swv01-05 291 86.32 2.89 88.05 3.30 66.16
swv06-10 9.65 160.14 8.89 336.94 9.59 127.20
swv11-15 1.85 1178.17 1.78 1734.51 3.38 1222.52
swv16-20 0 1.60 0 1.58 0 1.67
yn 7.81 160.66 7.49 339.33 8.09 168.35
ta01-10 0.97 70.11 0.63 77.72 0.44 126.27
tal1-20 3.65 132.14 3.47 54.20 3.90 137.72
ta21-30 6.63 281.16 6.51 319.27 6.53 253.49
ta31-40 1.69 288.37 1.79 230.90 2.09 14481
ta41-50 5.97 542.74 6.04 650.87 6.34 543.96
# best 42+5 42+7 42+11
# min 42+11 42+20 42+16
# only min 3
SUMRE s 309.66 299.34 326.31
sum time 21993.68 26427.78 20900.69
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Table C.3 Results by Tabu_VVI: variants tabu_mvinf_Is2_babu mvhp bb and

tabu_mvinfhp_bb, for all groups of instances, ierage percentage of the relative error

to the lower bound, and the average time to the beseconds.

sets of tabu_mvinf_Is2_bb tabu_mvhp_bb tabu_muvinlfitgp
instances | avg(RE g) avg(time) | avg(REg) avgtime) | avg(REg) avgtime
abz 2.05 41.15 1.99 31.38 2.02 45.5(
ft 0 15.28 0 16.03 0.22 22.96
la01-05 0 0.14 0 0.65 0 0.81
la06-10 0 0.02 0 0.03 0 0.03
la11-15 0 0.05 0 0.05 0 0.05
la16-20 0 1.89 0 1.19 0 1.37
la21-25 0.30 17.90 0.13 28.93 0.17 38.57
la26-30 0.37 39.72 0.44 29.31 0.38 37.19
la31-35 0 0.28 0 0.28 0 0.28
la36-40 0.47 77.70 0.35 117.26 0.44 82.79
orb 0.08 10.09 0.13 9.08 0.12 14.27
swv01-05 3.14 111.25 3.67 58.60 3.63 106.14
swv06-10 9.57 230.26 9.43 272.772 9.61 459.59
swv11-15 3.13 1801.37 3.57 938.57 3.57 1927.01
swv16-20 0 1.69 0 1.65 0 1.67
yn 7.67 175.71 7.70 385.95 7.65 517.7y7
ta01-10 0.67 58.97 0.86 61.24 0.71 94.4%
tal1-20 3.84 113.06 3.80 155.71 3.65 200.22
ta21-30 6.68 311.53 6.58 353.00 6.50 404.12
ta31-40 1.78 438.35 1.94 483.48 1.94 734.99
ta41-50 6.12 678.36 6.22 1040.2p 6.34 1657.p2
# best 42+10 42+11 42+10
# min 42+17 42+16 42+15
# only min 3 2 1
SumRE g 317.58 324.05 323.01
sum time 28469.35 30022.66 46695.71
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Table C.4 Results by Tabu_VVI. variants tabu_mvinfhp, tabw-2mfhp_bb and

tabu_mv-2infhp, for all groups of instances, inrage percentage of the relative error

to the lower bound, and the average time to the beseconds.

sets of tabu_mvinfhp tabu_mv-2infhp_bb tabu_mv42inf
instances | avg(RE g) avg(time) | avg(REg) avgtime) | avg(REg) avgtime
abz 2.05 234.93 231 126.66 1.99 243.72
ft 0 10.20 0 19.33 0 20.27
la01-05 0.21 0.76 0.31 0.65 0.31 0.37
la06-10 0 0.02 0 0.03 0 0.02
la11-15 0 0.05 0 0.05 0 0.05
la16-20 0 1.94 0 3.70 0 4.07
la21-25 0.15 33.13 0.47 11.24 0.32 24.81
la26-30 0.51 59.45 0.51 25.89 0.57 33.67
la31-35 0 0.28 0 0.28 0 0.28
la36-40 0.32 94.22 0.37 115.45 0.34 86.66
orb 0.11 22.88 0.19 13.37 0.38 12.22
swv01-05 3.78 97.06 3.66 87.37 3.88 154.34
swv06-10 9.44 374.73 9.44 325.15 9.69 359.73
swv11-15 3.58 916.70 3.83 852.87 4.67 695.72
swv16-20 0 1.68 0 1.66 0 1.68
yn 7.55 535.12 7.27 884.28 7.40 331.62
ta01-10 0.72 66.52 0.53 116.72 1.07 89.92
tal1-20 3.93 175.50 3.91 171.58 3.74 199.32
ta21-30 6.67 331.22 6.75 305.97 6.77 220.15
ta31-40 1.76 346.80 2.50 288.25 2.63 504.83
ta41-50 6.21 770.22 6.44 1052.20 6.45 1395.33
# best 42+9 42+7 42+5
# min 42+16 42+12 42+8
# only min 2 1 2
SumRE g 324.56 336.69 348.78
sum time 28377.25 30830.93 33630.7
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Table C.5 Results by Tabu_VVI: variants tabuls_mvinfhp_babuls mvinfhp and

tabuls_mv_infhp_bb, for all groups of instancesauwerage percentage of the relative

error to the lower bound, and the average timéediest, in seconds.

sets of tabuls_mvinfhp_bb tabuls_mvinfhp tabuls_imfhp bb
instances | avg(RE g) avg(time) | avg(REg) avgtime) | avg(REg) avgtime
abz 2.14 213.46 2.05 135.99 1.99 168.58
ft 0.39 6.22 0 11.42 0.39 11.81
la01-05 0 0.26 0 0.27 0 0.24
la06-10 0 0.02 0 0.03 0 0.03
la11-15 0 0.04 0 0.05 0 0.05
la16-20 0 1.46 0 1.32 0.10 2.62
la21-25 0.26 36.28 0.15 54.33 0.19 32.24
la26-30 0.43 75.97 0.51 95.08 0.73 31.35
la31-35 0 0.28 0 0.28 0 0.28
la36-40 0.28 124.86 0.47 80.35 0.49 120.56
orb 0.20 16.09 0.21 8.76 0.30 13.71
swv01-05 3.30 74.40 3.22 242.76 3.01 168.02
swv06-10 9.62 274.74 9.29 433.36 9.26 351.11
swv11-15 3.85 1026.71 3.37 1288.44 3.53 2292.86
swv16-20 0 1.66 0 1.65 0 1.69
yn 7.79 546.28 8.29 177.33 7.73 369.16
ta01-10 0.76 112.56 0.74 109.2§ 0.73 78.4Y
tal1-20 3.65 240.18 3.70 192.872 3.84 137.21
ta21-30 6.75 279.74 6.56 482.34 6.49 211.82
ta31-40 1.86 567.03 1.93 672.53 1.98 138.718
ta41-50 6.11 1487.36 6.17 602.63 6.20 1002.99
# best 42+6 42+6 42+5
# min 42+9 42+10 42+11
# only min 1 4 3
SumRE g 325.08 321.47 324.08
sum time 38384.13 33096.74 33190.08
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C.2 Computational Results of Tabu_VVI per Instance

Table C.6Best Results by Tabu_VVI for Instances abz (AdaBagas et al. 1988)

instance size bk _UB Tabu_VVI time # variantg
abz5 10x10 1234 1234 1.03 19
abz6 10x10 943 943 Lo 35
abz7 2015 656 663 272.41 1
abz8 2015 669 672 3.86 2
abz9 2015 679 685 129.98 3

Table C.7Best Results by Tabu_VVI for Instances ft (Fishied Thompson 1963)

instance size bk _UB Tabu_VVI time # variants
ft06 6X6 55 55 Lo 35
ft10 10x10 930 930 0.45 21
ft20 20%5 1165 1165 Lo 32

Table C.8Best Results by Tabu_VVI for Instances la01-lal®nrence 1984)

instance size bk _UB Tabu_VVI time # variants
la01 105 666 666 Lo 35
la02 105 655 655 Lo 30
la03 105 597 597 0.08 35
la04 105 590 590 0.06 35
la05 105 593 593 Lo 35
la06 155 926 926 0.02 35
la07 155 890 890 0.02 35
la08 155 863 863 0.03 35
[a09 155 951 951 0.03 35
la10 155 958 958 0.02 35
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Table C.9Best Results by Tabu_VVI for Instances lall-la2@xfrence 1984)

instance size bk _UB Tabu_VVI time # variants
lal1 20x5 1222 1222 0.03 35
lal2 20x5 1039 1039 0.02 35
lal3 20x5 1150 1150 0.03 35
lal4 20x5 1292 1292 0.02 35
la15 20x5 1207 1207 0.09 35
lal6 10x10 945 945 0.75 35
lal7 10x10 784 784 0.44 35
la18 10x10 848 848 Lo 35
la19 10x10 842 842 0.36 30
la20 10x10 902 902 0.66 33

Table C.10Best Results by Tabu_VVI for Instances la21-l1d3®rence 1984)

instance size bk _UB Tabu_VVI time # variants

la21 1510 1046 1046 26.13 8
la22 1510 927 927 3.95 23
la23 1510 1032 1032 Lo 35
la24 1510 935 935 1.95 1
la25 1510 977 977 7.69 6
la26 20x10 1218 1218 Lo 35
la27 20x10 1235 1235 249.80 1
la28 20x10 1216 1216 2.53 34
la29 20x10 1153 1163 164.64 1
la30 20x10 1355 1355 Lo 35
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Table C.11Best Results by Tabu_VVI for Instances la31-ldd®rence 1984)

instance size bk _UB Tabu_VVI time # variants
la31 30x10 1784 1784 Lo 35
la32 30x10 1850 1850 0.78 35
la33 30x10 1719 1719 Lo 35
la34 30x10 1721 1721 Lo 35
la35 30x10 1888 1888 0.55 35
la36 1515 1268 1268 2.16 15
la37 1515 1397 1397 68.17 1
la38 1515 1196 1196 154.42 1
la39 1515 1233 1233 30.61 12
la40 15x15 1222 1225 30.06 2

Table C.12Best Results by Tabu_VVI for Instances orb01-orpAPplegate and Cook

1991)
instance size bk _UB Tabu_VVI time # variants

orb01 10x10 1059 1059 2.47 32
orb02 10x10 888 888 11.17 4
orb03 10x10 1005 1005 Lo 16
orb04 10<10 1005 1005 8.33

orb05 10<10 887 887 12.56 8
orb06 10x10 1010 1010 2.42 15
orb07 10x10 397 397 0.97 35
orb08 10<10 899 899 Lo 14
orb09 10<10 934 934 4.19 28
orb10 10x10 944 944 0.88 35
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Table C.13Best Results by Tabu_VVI for Instances swv01l-sw{3trer, Wu et al.

1992)

instance size bk _UB Tabu_VVI time # variants
swv01 20<10 1407 1433 113.89 1
swv02 2010 1475 1485 143.23 2
swv03 2010 1398 1430 93.89 1
swv04 20<10 1483 1492 105.50 1
swv05 20<10 1424 1449 183.03 1
swv06 2015 1678 1700 417.69 1
swvQ7 2015 1620 1624 423.06 1
swv08 20<15 1763 1792 83.95 1
swv09 20<15 1663 1675 382.45 1
swv10 2015 1767 1765 101.06 1

Table C.14 Best Results by Tabu_VVI for Instances swv11l-sw{@trer, Wu et al.

1992)

instance size bk _UB Tabu_VVI time # variants
swvll 50<10 2991 3011 2138.31 1
swvl2 50<10 3003 3041 2309.63 1
swv13 50<10 3104 3129 2023.23 1
swvl4 50<10 2968 2979 774.42 1
swvl5 50<10 2904 2961 2027.30 1
swv16 50<10 2924 2924 1.09 35
swvl7 50<10 2794 2794 1.13 35
swv18 50<10 2852 2852 1.14 35
swv19 50<10 2843 2843 2.70 35
swv20 50<10 2823 2823 1.86 35

Table C.15Best Results by Tabu_VVI for Instances yn (Yamaxd Nakano 1992)

instance size bk _UB Tabu_VVI time # variants
ynl 20%x20 888 890 121.45 4
yn2 20X 20 909 911 158.27 1
yn3 20X 20 893 897 163.81 1
yn4 20%x20 968 973 212.25 2
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Table C.16Best Results by Tabu_VVI for Instances taO1-taldllfard 1993)

instance size bk _UB Tabu_VVI time # variants
ta01 15x15 1231 1244 119.11 2
ta02 15¢15 1244 1244 20.99 19
ta03 15¢15 1218 1218 75.49 2
ta04 1515 1175 1175 34.88 1
ta05 15x15 1224 1228 7.98 3
ta06 1515 1238 1241 10.05 6
ta07 1515 1227 1228 10.81 28
ta08 15¢15 1217 1217 26.11 9
ta09 1515 1274 1280 70.69 8
tal0 1515 1241 1244 119.14

Table C.17Best Results by Tabu_VVI for Instances tall-taldlliard 1993)

instance size bk _UB Tabu_VVI time # variants
tall 20<15 1361 1370 380.42 2
tal2 20x15 1367 1374 24.41 2
tal3 20x15 1342 1359 33.75 3
tald 20x 15 1345 1345 14.81 16
tals 20<15 1340 1356 101.67 1
tal6 20x15 1360 1365 103.84 1
tal7 20x15 1462 1477 88.91 2
tal8 20<15 1396 1417 28.16 1
tal9 20<15 1335 1343 51.75 3
ta20 20x15 1351 1358 944.70 1
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Table C.18Best Results by Tabu_VVI for Instances ta21-ta3llfard 1993)

instance size bk _UB Tabu_VVI time # variants
ta21 20<20 1644 1650 332.92 1
ta22 20<20 1600 1609 605.67 2
ta23 20< 20 1557 1568 579.52 2
ta24 20<20 1647 1649 253.78 2
ta25 20< 20 1595 1599 171.79 1
ta26 20< 20 1645 1661 570.95 1
ta27 20< 20 1680 1686 51.91 1
ta28 20<20 1614 1619 201.19 3
ta29 20<20 1625 1629 151.88 4
ta30 20< 20 1584 1599 270.59 2

Table C.19Best Results by Tabu_VVI for Instances ta31-tadlllard 1993)

instance size bk _UB Tabu_VVI time # variants
ta31 3015 1764 1766 61.22 5
ta32 3015 1796 1818 393.02 1
ta33 30<15 1793 1812 271.77 2
ta34 30<15 1829 1835 806.25 1
ta35 3015 2007 2007 Lo 35
ta36 3015 1819 1825 71.97 3
ta37 30x15 1778 1795 152.06 1
ta38 30<15 1673 1688 107.59 1
ta39 3015 1795 1806 256.78 1
ta40 3015 1674 1704 85.56 1
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Table C.20Best Results by Tabu_VVI for Instances ta41-taHllard 1993)

instance size bk _UB Tabu_VVI time # variants
tadl 30<20 2018 2035 3020.31 1
ta42 3020 1956 1974 146.45 1
ta43 3020 1859 1890 532.92 2
tad4 30<20 1984 2009 1257.19 1
tads 30<20 2000 2014 857.19 1
ta46 3020 2021 2045 316.70 1
tad47 3020 1903 1933 1361.02 2
ta48 30<20 1952 1984 310.14 1
ta49 30<20 1968 1998 1829.97 1
ta50 30x20 1928 1958 530.20 2
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