25 research outputs found

    Towards a More Flexible, Sustainable, Efficient and Reliable Induction Cooking: A Power Semiconductor Device Perspective

    Get PDF
    Esta tesis tiene como objetivo fundamental la mejora de la flexibilidad, sostenibilidad, eficiencia y fiabilidad de las cocinas de inducción por medio de la utilización de dispositivos semiconductores de potencia: Dentro de este marco, existe una funcionalidad que presenta un amplio rango de mejora. Se trata de la función de multiplexación de potencia, la cual pretende resolverse de una manera más eficaz por medio de la sustitución de los comúnmente utilizados relés electromecánicos por dispositivos de estado sólido. De entre todas las posibles implementaciones, se ha identificado entre las más prometedoras a aquellas basadas en dispositivos de alta movilidad de electrones (HEMT) de Nitruro de Galio (GaN) y de aquellas basadas en Carburo de Silicio (SiC), pues presentan unas características muy superiores a los relés a los que se pretende sustituir. Por el contrario, otras soluciones que inicialmente parecían ser muy prometedoras, como los MOSFETs de Súper-Unión, han presentado una serie de comportamientos anómalos, que han sido estudiados minuciosamente por medio de simulaciones físicas a nivel de chip. Además, se analiza en distintas condiciones la capacidad en cortocircuito de dispositivos convencionalmente empleados en cocinas de inducción, como son los IGBTs, tratándose de encontrar el equilibrio entre un comportamiento robusto al tiempo que se mantienen bajas las pérdidas de potencia. Por otra parte, también se estudia la robustez y fiabilidad de varios GaN HEMT de 600- 650 V tanto de forma experimental como por medio de simulaciones físicas. Finalmente se aborda el cálculo de las pérdidas de potencia en convertidores de potencia resonantes empleando técnicas de termografía infrarroja. Por medio de esta técnica no solo es posible medir de forma precisa las diferentes contribuciones de las pérdidas, sino que también es posible apreciar cómo se distribuye la corriente a nivel de chip cuando, por ejemplo, el componente opera en modo de conmutación dura. Como resultado, se obtiene información relevante relacionada con modos de fallo. Además, también ha sido aprovechar las caracterizaciones realizadas para obtener un modelo térmico de simulación.This thesis is focused on addressing a more flexible, sustainable, efficient and reliable induction cooking approach from a power semiconductor device perspective. In this framework, this PhD Thesis has identified the following activities to cover such demands: In view of the growing interest for an effective power multiplexing in Induction Heating (IH) applications, improved and efficient Solid State Relays (SSRs) as an alternative to the electromechanical relays (EMRs) are deeply investigated. In this context, emerging Gallium Nitride (GaN) High‐Electron‐Mobility Transistors (GaN HEMTs) and Silicon Carbide (SiC) based devices are identified as potential candidates for the mentioned application, featuring several improved characteristics over EMRs. On the contrary, other solutions, which seemed to be very promising, resulted to suffer from anomalous behaviors; i.e. SJ MOSFETs are thoroughly analysed by electro‐thermal physical simulations at the device level. Additionally, the Short Circuit (SC) capability of power semiconductor devices employed or with potential to be used in IH appliances is also analysed. On the one hand, conventional IGBTs SC behavior is evaluated under different test conditions so that to obtain the trade‐off between ruggedness and low power losses. Moreover, ruggedness and reliability of several normally‐off 600‐650 V GaN HEMTs are deeply investigated by experimentation and physics‐based simulation. Finally, power losses calculation at die‐level is performed for resonant power converters by means of using Infrared Thermography (IRT). This method assists to determine, at the die‐level, the power losses and current distribution in IGBTs used in resonant soft‐switching power converters when functioning within or outside the Zero Voltage Switching (ZVS) condition. As a result, relevant information is obtained related to decreasing the power losses during commutation in the final application, and a thermal model is extracted for simulation purposes.<br /

    Reduction of variable speed drive IGBT switching loss, utilising the IGBT gate drive, without increasing radio frequency radiated emissions

    Get PDF
    DEng ThesisRadio frequency radiated emission from a variable speed drive must be limited below defined limits to avoid interference with electronic equipment. It is possible to comply with the international standards however, the current state of the art methods such as large gate drive resistance and output filters significantly reduce the efficiency or increase the cost of the products. It is known that the main source of emissions emanate from the switching transients associated with the output power semiconductors, however the exact mechanisms and specific sources are unknown. This thesis examines the interaction of power devices during the switching transient identifying features which can be controlled by a sophisticated gate drive design. Analysis of the frequency content of the signals is presented together with methods to minimise power losses while maintaining compliance with radiated emission standards. A research program has been undertaken to identify the sources responsible for radiated emissions and predict a figure of merit as an indication of compliance. Measuring radio frequency content on high voltage and current signals is difficult and several techniques to accurately achieve this are presented. Simple passive gate drive solutions which can be easily implemented are examined along with a discussion on more complicated optimised solutions.Control Techniques and the Engineering and Physical Science Research Counci

    Investigation on smart bi-directional inverter with quantitative reactive power compensation and interleaved DC/DC converter for micro-grid system

    Get PDF
    The PhD project aims to develop a smart grid-connected inverter (SGCI) for a micro-grid, which can be applied in a built environment such as a community, and associated power electronic DC/DC converters. The micro-grid generally includes distributed renewable power generators and battery storage. The SGCI is a bi-directional DC/AC inverter for distributed generation with battery storage installed at its DC side. In one aspect, it is expected the DC/AC inverter functions as a controlled inverter that can deliver expected real power to the power grid with quantitative reactive power compensation (RPC). In other words, all the SGCIs in the community microgrid can share the reactive power of the whole community because a SGCI can quantify its active and reactive power output. It is also expected that the inverter can work in both on-grid and off-grid modes. In other words, the DC/AC inverter functions as a controlled rectifier with high quality power factor correction (PFC), which can deliver expected DC power from the AC power grid at unity power factor. With the above features, battery storage on the DC bus of the SGCI can be charged/discharged through a four-phase, interleaved, bi-directional, boost/buck DC/DC converter (IBDBBC) for distributed renewable power system, either wind or solar PV or hybrid wind/solar PV system. The IBDBBC can discharge power from a low voltage battery to a high voltage DC bus as the IBDBBC operates in boost mode, or it can also draw power from the DC bus to charge the battery as the IBDBBC operates in buck mode. Based on MATLAB/Simulink, a mathematical model was developed for the grid-connected bi-directional DC/AC inverter that operates as a rectifier with PFC and as a grid-connected inverter (GCI) with expected real power output and quantitative RPC. In a practical application, the sampling of input signal through AD converter usually has some noise due to common-mode interference; simulation results demonstrate that the second order generalised integrator (SOGI) has great advantages to prevent interference. Therefore, SOGI can be utilised to construct a pair of orthogonal signals in a single-phase system to instantaneously split grid’s active and reactive power to achieve RPC for local community loads. The methodology of the constructed the pair of orthogonal signals was also used to generate the required reference current for the DC/AC inverter when which operated as a single-phase rectifier with PFC. Using three TI C2000 Solar Inverter DSK Boards, a small lab scale distributed power system was developed. In the lab distributed power system, the operating mode of the inverters could be switched between on-grid and off-grid through instruction from the control centre. The lab test outcomes demonstrate that each distributed power system unit worked properly under loss of power grid signal, simulating grid failure

    Loss allocation in a distribution system with distributed generation units

    Get PDF
    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system in Brønderslev in Northern Jutland, including measurement data, has been studied

    Analysis of the experimental spectral coherence in the Nysted Wind Farm

    Get PDF
    In this paper, it is analysed the coherence between wind speeds located in a horizontal plane corresponding to hub height of wind turbines in a large wind farm. The coherence is calculated through real data from Nysted Offshore Wind Farm. Concretely, the wind speed measured in the 72 Wind Turbines and in 2 of the meteorological masts during 9 months. The results are analysed in the scale of power fluctuations in large offshore wind farms. This analysis shows the needing of a new spectral coherence model.The work presented in this paper has been done in the research Project ”Power Fluctuations from large offshore wind farms” financed by the Danish Transmission System Operator Energinet.dk as PSO 2004 project number 6506. A. Vigueras-Rodr´ıguez is supported by the Spanish Ministerio de Educaci´on y Ciencia through the grant program “Becas FPU” and from the national research project “ENE2006-15422-C02-02
    corecore