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Abstract 

Radio frequency radiated emission from a variable speed drive must be limited below 

defined limits to avoid interference with electronic equipment.  It is possible to comply 

with the international standards however, the current state of the art methods such as 

large gate drive resistance and output filters significantly reduce the efficiency or 

increase the cost of the products.  It is known that the main source of emissions emanate 

from the switching transients associated with the output power semiconductors, 

however the exact mechanisms and specific sources are unknown.  This thesis examines 

the interaction of power devices during the switching transient identifying features 

which can be controlled by a sophisticated gate drive design. Analysis of the frequency 

content of the signals is presented together with methods to minimise power losses 

while maintaining compliance with radiated emission standards.  A research program 

has been undertaken to identify the sources responsible for radiated emissions and 

predict a figure of merit as an indication of compliance.  Measuring radio frequency 

content on high voltage and current signals is difficult and several techniques to 

accurately achieve this are presented.  Simple passive gate drive solutions which can be 

easily implemented are examined along with a discussion on more complicated 

optimised solutions. 
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 Chapter 1: Introduction 

1.1 Power Losses and Radiated Emissions in a Variable Speed 

Drive 

Variable speed drives (VSD) in industrial applications are used to convert energy from a 

fixed frequency ac mains supply to a variable output frequency for speed control of an 

electrical machine.  Over the last few decades, the increase in the performance of the 

power transistors used to control the flow of power have led to smaller, more efficient 

devices.  Increases in microprocessor technology have allowed faster data processing 

improving the ability to execute complex control algorithms and improve the dynamic 

performance and precision of machine control.  With increasing acceptance of human 

induced climate change, users of VSDs demand more efficient products to reduce their 

carbon footprint while maintaining an acceptable cost of equipment.  While advances in 

individual components have contributed to the improvement in efficiency, the entire 

VSD system must be considered as a whole to leverage commercial and environmental 

benefits to the customer [1]. 

Control Techniques Unidrive SP
™

 is a range of ac VSDs used for high performance 

industrial applications.  The functional blocks within the VSD and system can be 

considered representative of a typical industrial VSD design and are illustrated in Figure 

1-1.  A three phase diode rectifier converts the sinusoidal mains voltages into a unipolar 

voltage which is then smoothed via the low pass LC filter to provide a smooth dc 

voltage.  A switch mode power supply (SMPS) converts the rectified and smoothed dc 

voltage to appropriate voltage levels suitable for a microprocessor and digital control 

electronics.  The control electronics provide the interface to the outside world receiving 

motion control demand signals and relaying confirmation of these operations.  The full 

bridge output stage is also connected to the dc bus where switching signals, provided 

from the control circuitry and software, create switching patterns to shape the output 

voltages and currents to the motor.  A cable containing three output phases, a safety 

earth and enclosed in a wire mesh shield connect the output of the VSD to a motor 

located at some application specific distance. 
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Figure 1-1: Block diagram representation of an ac-dc-ac VSD 

There are several modulation techniques used to control the switches in the output 

bridge to achieve sinusoidal outputs with minimal distortion and the maximum possible 

root mean square (r.m.s.) voltage.  For each case, when the required combination of 

insulated gate bipolar transistors (IGBTs) are switched on, the full dc bus voltage is 

applied to the terminals of the motor.  The inductance of the motor windings causes the 

current to change at a relatively slow rate.  When the desired current level has been 

achieved, the switches can be turned off.  To achieve a high fidelity sinusoidal current 

waveform, the switching frequency of the IGBTs must be several multiples of the 

fundamental frequency of the output current.  For the Unidrive SP
™

, the switching 

frequency can be selected from either: 3 kHz, 4 kHz, 6 kHz, 8 kHz or 12 kHz.  During 

the transient switching action (for both on to off and off to on), the IGBTs momentarily 

support both the full output phase current and simultaneously the full dc bus voltage.  

Under these conditions, the power loss is very high and the resulting energy is 

dissipated as heat.  When operating at the maximum switching frequency, there are 

24000 pulses of energy loss per second for each IGBT and diode in the output bridge 

contributing up to 60% of the total energy loss of the VSD depending on operating 

conditions
1
.  If the duration of each pulse can be minimised the total energy loss can be 

greatly reduced. 

The switching action of these devices establishes electric and magnetic fields with 

spectrum extending into radio frequencies. These radio frequencies can interfere with 

                                                 
1
 Based on SPMD1404 operating at 6 kHz switching frequency. 
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components and circuits within the product itself or can be transmitted from the product 

into the environment causing non-intentional interference with other products.  With the 

increasing use of electronics in an industrial environment for control and monitoring 

purposes, it is important that products do not interfere with the performance of 

neighbouring equipment in an unexpected manner.  International technical standards 

have been introduced to define the acceptable level of power supply disturbance and 

radio frequency emissions which a product can emit, to which other products must be 

immune [2, 3]. 

The radio frequency spectrum has been classified into bands for use with 

communication equipment.  The allowable level of unintentional signals are protected 

by national laws based on technical standards [4] which may be interpreted for specific 

products and environments.  At low frequencies (30 kHz to 300 kHz), medium 

frequencies (300 kHz to 3 MHz) and high frequency (3 MHz to 30 MHz), the national 

grid system of power cables can operate as efficient antennas transmitting noise in these 

frequency ranges into the atmosphere [5].  It is not practical to take measurement of an 

individual product’s emissions broadcast in this manner, however standards provide a 

test method to determine the voltage disturbance applied to the cables from an 

individual product.  These are referred to as conducted emissions and the limits are 

defined over a frequency range of 150 kHz to 30 MHz.  EMI filters can be designed to 

contain the common and differential mode currents, in this frequency range, within the 

VSD system and prevent conduction onto the mains supply.  While the filter design is 

complex requiring a detailed knowledge of material properties of ferrites and capacitors 

over wide operating ranges, there are known procedures to design such systems at an 

acceptable cost.  Above 30 MHz, (very high frequency (VHF), 30 - 300 MHz, ultra high 

frequency (UHF) (300 MHz to 3 GHz)) structures within VSD system including cables 

become efficient antennas and can radiate signals directly into the surrounding 

environment.  Generic standards applicable to a commercial VSD define an acceptable 

limit to these radiated emissions [4, 6]. 

As part of a VSD development process, the product is tested for compliance with the 

standards to ensure suitability for CE (Conformité Européenne) marking allowing it to 

be placed for sale on the market in Europe.  The VSD is installed in an open area test 
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site (OATS) in a manner representative of a customer installation with an 

electromagnetic interference (EMI) filter designed to suppress conducted emissions, 

communication cables and connections to a motor as described in the VSD installation 

manual.  An antenna is located at a distance of 3 m from the equipment under test 

(EUT) and connected to a receiver.  When the EUT is in its operating mode, the receiver 

software scans through the required frequency spectrum recording the measured 

electromagnetic field strength.  When the VSD rotates a motor, a significant increase in 

broadband emissions above background noise can be measured over the range of 30 

MHz to 100 MHz. 

The current state of art method for reducing the measured emissions is to increase the 

switching time for the IGBTs by increasing the gate resistance or to add additional 

filters [7-9].  However, as described above, increasing the switching time results in an 

increase of power loss, reducing the system efficiency and the addition of filters adds 

cost and increases the physical size of the system. 

It has been identified from work carried out at Control Techniques that different power 

semiconductor manufacturer’s devices can have different levels of radio frequency (RF) 

emissions for the same switching period.  From this observation, it can be deduced that 

the switching time may not be critical to the production of RF emissions but some less 

understood phenomenon. 

1.2 Objectives of the Work 

The main objective of this work is to provide an understanding of the linkages between 

the operation of power switching devices and the measured radiated emissions.  From 

this understanding, the sources of the radio frequency emissions should be identified in 

time.  The role and influence of the gate drive in generating the radio frequency content 

should be examined together with research into published gate drive control methods.  

A method to quantify measured radiated emissions across a wide frequency range is 

required and a comparison of measured electrical signals to radiated emissions limits 

defined in international standards is needed.  A possible solution to improve the trade 

off between switching loss and radiated emissions is required which can be extended to 
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include a method to assess the physical construction of a VSD for its ability to suppress 

radiated emissions.  

1.3 Overview of the Thesis 

This thesis consists of seven chapters, the first, giving an introduction to the objectives 

of the research task and a brief outline of the contributions to knowledge and 

commercial benefits. 

The research presented in chapter two gives background information to enable the 

reader to understand the problem in depth from several disciplines: power 

semiconductor physics; radio frequency engineering applied to a VSD system; and 

frequency analysis techniques for use at radio frequencies.  The limitation to the control 

of radiated emissions in IGBT switching transients is presented. 

In chapter three, a review of relevant published literature for gate driving techniques for 

IGBTs is researched.  The merits of these solutions when applied to radiated emissions 

and variable speed drives is discussed and identifies a lack of specific material in this 

area. 

Chapter four presents the practical application of the theory and determines the limits of 

common laboratory equipment for both measurement of radio frequency components 

within relatively high voltage and current switching signals.  The impact of VSD 

construction with regards to its influence on the switching transients and hence radiated 

emissions is discussed.  

Chapter five describes the evaluation of a simplified VSD system to determine the 

electrical sources responsible for the radio interference.  Sophisticated hardware is 

developed to accurately control features in the switching transient at realistic 

operational speeds.  The features of the switching signal responsible for the radiated 

emissions are identified and can be used to determine key parameters which can be 

controlled in a commercial product. 

Chapter six describes how methods to measure and control radiated emissions in a 

simplified system can be applied to a more complex commercial VSD operating in an 
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industrial environment with the expected fluctuation in supply voltage, load current and 

temperature.  The measurement techniques discussed in preceding chapters are 

implemented and evaluated to reduce the switch on energy loss while complying with 

international standards for radiated emissions. 

Chapter seven summarises the work presented in this thesis giving conclusions.  Further 

work is discussed regarding application of the techniques presented here to future 

semiconductor technologies such as wideband gap materials.  

1.4 The Contribution to Knowledge 

Throughout the research programme undertaken for the degree of Engineering 

Doctorate, several techniques have been used and discoveries identified which have not 

been published previously.   

In this thesis: 

 the dominant source of radiated emissions is found to be the RF content within 

the collector emitter voltage during the IGBT switching transient.  In a 

commercial VSD system, this finding is expanded to include the voltage 

transient measured between the output phase and ground connection. 

 the peak broadband emissions have been identified to occur at four specific 

points on the voltage waveform.  The location of the peak emission changes with 

load current and VSD construction. 

 it is found that the RF content in the IGBT collector current does not contribute 

to the measured radiated emissions.  

 the influence of the bus bar impedance on the IGBT switching trajectory has 

been identified and the potential opportunities to reduce the switching loss are 

discussed. 

A patent for design of gate drive circuitry has been filed (September 2012): 

 “Selectable impedance gate drive.” 

1.5 Commercial Benefits to Industry 

This research project carried out offers commercial benefits to industry by: 
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 Improving VSD gate drive design which can offer an increase in product 

efficiency, (a valuable benchmark versus competitors). 

 The increase in efficiency will offer a reduction in product size, which will 

reduce component costs and environmental impact through reduction in 

transported mass. 

 An improved dynamic performance offered by operation of a VSD at a higher 

switching frequency can improve process control offering further efficiencies in 

the manufacturing industries. 

 A reduction in switching losses can offer a reduction in thermal cycling of 

IGBTs giving a reduction in thermal fatigue increasing the useful lifetime of 

VSDs.  

 A radiated emissions figure of merit (REFOM) has been found which can be 

used in a laboratory to understand the radiated emissions sources from a product 

reducing product development time. 
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 Chapter 2: Key Principles 

2.1 Introduction 

This chapter describes the key principles which must be understood when considering 

the design of a gate drive circuit for low switching loss while considering the 

requirements for compliance to radiated emissions limits.  The three main topics 

include:  

1. Power Semiconductor Physics 

2. Radiated Emission Sources 

3. Frequency Analysis 

The switching operation of an IGBT is far from ideal. The operation of the IGBT is 

highly dependent on the impedance of the gate drive circuitry, impedance of the power 

circuit, dc bus voltage, load current and temperature [1, 10-12].  To understand how 

these parameters effect the device operation, an understanding of the semiconductor 

physics for both the IGBT and diode is required.  Developments in semiconductor 

technology have resulted in many competing technologies, each of which has benefits 

within a niche voltage or current rating.  Section 2.2 will discuss the characteristics of 

IGBTs and diodes which are used in state of the art inverters.  The theoretical design of 

the devices is discussed where they effect the electrical characteristics. The 

characteristics which can be influenced by gate drive circuit design, power circuit 

design and thermal performance where it relates to electrical characteristics and 

electromagnetic compatibility (EMC) are presented.  

Research into electromagnetic (EM) field radiation has been extensive for many years 

since first described by Maxwell [13-15].  The majority of the research has focused on 

the use of EM waves for intentional transmission at specific frequencies where the 

impedance of cables, power supplies, antennas and the physical dimensions of antennas 

can be carefully designed to maximise their radiation efficiency [15-17].  The type of 

radio signals which radiate from a VSD are broadband in content and emanate from 

multiple sources, voltages and currents, and radiate in all directions [9].  Important 

information describing the potential radiated emission sources is presented in this 

chapter. 
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Radiated emissions are known to arise from the transient switching voltages and 

currents of the IGBTs [18].  The radio frequency content within these signals occurs for 

a short duration relative to the switching periods.  Many published papers imply that an 

increase in switching time reduces the EMI emanating from a VSD [19, 20].  Analysis 

identifying the precise location in time of the radio frequency content and analytical 

methods to reduce the magnitude over the frequency range of interest is presented.  The 

shape of a switching transient is considered for its radio frequency content. 

2.2 Power Semiconductor Physics   

The majority of power semiconductor components are constructed from high quality 

silicon dies.  Research has been carried out into the use of alternative materials which 

offer superior characteristics such as silicon carbide and gallium nitride however at 

premium prices  [21, 22].  This section of the thesis will only consider devices which 

are currently available and used for mass market industrial VSDs.  The devices 

considered operate over a voltage range 600V to 2kV with a current rating up to 1000A. 

2.2.1 Diodes  

Diodes used in power electronics can be divided into two categories in terms of their 

semiconductor physics: the PIN diode and the Schottky diode.  The PIN diode uses a pn 

junction to block reverse bias voltages. When conducting in the forwards direction, the 

current is carried across the pn junction by minority carriers (holes in the n-type 

material, electrons in the p-type material).  The significance of this for power losses and 

for fast switching operation will be discussed in section 2.2.1.1.  The Schottky diode 

losses increase with blocking voltage and is not normally used above 600 V when 

constructed from silicon.  Power devices constructed from materials with higher 

avalanche voltages can utilise the Schottky diode construction up to higher voltages 

before the conduction losses prohibit this.  These will not be discussed in detail in this 

thesis [21]. 

2.2.1.1 PIN Diode Structure 

The silicon PIN diode is constructed with three distinct regions of doping.  To enable 

electrical connections to the device, a layer of metal must be deposited on each end to 

form contacts (see Figure 2-1).  The anode is heavily doped with acceptor ions to create 
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a p region which can create a low ohmic contact with the metal.  This is important to 

reduce power loss when current flows through the device (the high doping concentration 

is denoted with “+”).  For n-type material, the doping needs to be above 10
19

 cm
-3

 to 

achieve a low ohmic contact to the metallisation hence the inclusion of the n
+
 region at 

the cathode [23].  Doping in the middle region of the diode is low ( between 10
15

 to 10
17

 

cm
-3

) to support a high electric field and is denoted with “-”.  

Cathode

n
+

n-

Anode

p+

Cathode

n
+

n-

Anode

p+

a) b)  

Figure 2-1: Structure of PIN diode a) Epitaxial diode; b) Diffused diode 

The p
+
n

-
 junction is responsible for supporting the reverse blocking voltage.  The 

breakdown voltage can be increased by reducing the doping level in the n
-
 region (or 

drift layer). The avalanche breakdown voltage (Va) indicates the point where static 

avalanche initialises and can be determined from equation ( 2-1 ) [24]. 

Da NV  131034.5  ( 2-1 ) 

Where ND is the doping concentration of donor ions in the n
-
 region.   

At avalanche, the electrons are accelerated by the electric field with sufficient energy to 

excite an electron from the valence band into the conduction band generating an 

electron / hole pair.  The new electrons and holes are also accelerated by the electric 

field causing the process to repeat.  The electrons and holes contribute to the leakage 

current, increasing power dissipation in the diode which can lead to thermal destruction 

of the device [25]. 
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When the p
+
n junction is in high injection (discussed in section 2.2.1.4), the doping in 

the low doped n
-
 region does not contribute significantly to the charge balance i.e. the 

processes are the same as if this region is undoped.  For this reason it is referred to as 

intrinsic hence the “i” in PIN. 

The PIN diode can be constructed by two different methods depending on the blocking 

voltage required [26].  For low blocking voltages, the n
-
 region only needs to be a few 

m thick and so can be grown epitaxially on n
+
 substrate followed by a diffusion of 

acceptor ions to create the p
+
 region.  As the voltage requirements increase, it becomes 

more cost effective to begin with a n
-
 substrate then diffuse both the p

+
 and n

+
 region at 

each end.  

2.2.1.2 Static Operation  

2.2.1.2.1 Reverse Blocking 

The PIN diode operates under reverse bias using the depletion region set up by the pn 

junction to support high blocking voltages [24].  As the reverse voltage is increased, the 

depletion width increases.  The maximum electric field Em in an abrupt pn junction is 

given by equation ( 2-2 ). 

s

aD

m

VqN
E



2
  ( 2-2 ) 

where: 

 q is the electron charge; 

 s is the permittivity of the semiconductor. 

As the applied reverse voltage is increased, the depletion region expands and hence the 

region supporting the electric field also expands with a triangular characteristic.  This is 

referred to as a Non-Punch Through (NPT) diode and the maximum depletion width 

(W) for the device occurs at the avalanche voltage which is given by equation ( 2-3 ). 



Chapter 2: Key Principles  

______________________________________________________________________ 

12 

If the electric field reaches the n
+
 region before falling to zero, it reduces rapidly due to 

the high doping concentration giving an approximately trapezoidal electric field (see 

Figure 2-2).  This is referred to as a Punch Through diode (PT).  This is not strictly the 

correct terminology as the field does not reach another doping type however the title has 

generally been accepted [26]. 

p n- n

E

 

Figure 2-2: Electric field profile for NPT (solid) and PT (dashed) 

In a PT device, the electric field strength can be reduced across the n
-
 drift region to a 

level which will not cause avalanche in the n
+
 region.  The electric field strength can 

then reduce over a short distance in the n
+
 region allowing PT devices to be thinner for a 

given blocking voltage hence giving a lower forward voltage.  However, that can lead to 

unwanted characteristics such as a snappy behaviour when switching (see section 

2.2.1.4.3) [27].  This n
+
 layer is often referred to as the buffer layer or field stop layer.   

In practice the breakdown voltage at the edge of the component is lower than deep 

within the silicon.  There are various physical methods used to raise this voltage to the 

one dimensional (1D) theoretical condition.  Details of these will not be discussed 

further however they should be considered when modelling the device behaviour [24]. 

Datasheet values for reverse blocking capability are often quoted at 25C.  It is 

important to note that the breakdown voltage reduces by 1.5 V/K as less additional 

energy is required to excite the electron to the conduction band [24]. 

D

as

qN

V
W

2
  ( 2-3 ) 
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2.2.1.2.2 Forward Conduction 

The PIN diode consists of two junctions (J1 and J2) that can be represented in an energy 

band diagram (Figure 2-3).  Under forward bias conditions, holes are injected into the 

intrinsic region from the p
+
 region and electrons are injected into the intrinsic region 

from the n
+
 region.  Assuming the junctions are ideal emitters (i.e. only holes cross J1 

and only electrons cross J2) the holes and the electrons must recombine in the intrinsic 

region for current to flow. 

p
+

n- n
+

EC

EF

EV

J1 J2

Vbi(J1)

Vbi(J2)

ni

np0

np pn

pn0

n=p
nn = nn0pp = pp0

Low carrier lifetime 

plasma concentration

High carrier lifetime 

plasma concentration

Wn-

 

Figure 2-3: PIN diode band diagram and plasma concentration 

The concentration of the charge carriers (holes and electrons) will exceed the low 

doping concentration of the drift region giving a quasi neutral mix of charged particles 

which is referred to as plasma.  The voltage drop across the device when forward bias is 

given by equation ( 2-4 ).  It can be seen that the voltage drop across the n- region adds 

to the total forward voltage hence the requirement for a thin drift region, particularly at 

high voltages. 

-nJ2J1contactF V V VVV   ( 2-4 ) 

The forward voltage drop across the drift region (Vn-) is given in equation ( 2-5 ) which 

shows the dependence on the carrier lifetime () and the width of the intrinsic region 

(Wn-) as determined for the required blocking voltage, where  should be large to reduce 
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Vn-.  For a short carrier lifetime, the holes and electrons recombine after a short distance 

giving a catenary distribution.   

 D

W

n

n

e
q

kT
V




8

3
 ( 2-5 ) 

where: 

 k is Boltzmann’s constant 

 T is the Temperature 

 D is the diffusion constant for silicon 

2.2.1.3 PIN Diode Applications 

For a VSD output bridge and SMPS applications, the conduction loss is an important 

factor and hence a high plasma concentration is required to reduce the resistance.  

However as the switching frequency increases, the switching losses both in the diode 

and IGBT or metal oxide semiconductor field effect transistor (MOSFET) tend to 

dominate.  For these applications, the designed plasma concentration is a compromise 

between conduction loss and switching loss [11, 28, 29].  These diodes are often 

referred to as fast recovery epitaxial diodes (FRED).  When switching these devices 

rapidly, there are other interesting characteristics which must be considered. 

In an effort to reduce the plasma concentration, the carrier lifetime can be altered by 

irradiating a diode with high energy particles, proton and helium implantation or heavy 

metal diffusion such as platinum or gold [27, 30].  The plasma concentration can be 

shaped along the length of the diode by controlling the implantation energy to achieve 

the required depth of diffusion. 

2.2.1.4 PIN Diode Switching Characteristics 

2.2.1.4.1 Switch On 

When the diode begins to switch on, the voltage across it must first increase to the 

repetitive peak forward voltage (VFRM) before falling to VF (see Figure 2-4).  VFRM is a 

function of the rate of change of current (di/dt) and can be greater than 100 times VF 

[26].  This voltage overshoot also adds to the voltage stress on the switching device 
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(IGBT) which is conducting the full load current during this instant.  This voltage stress 

is in addition to the parasitic inductance voltage drops and can be difficult to measure 

from a module unless direct probing of the diode contacts can be achieved.  

VF

VFRM

IF

VF

t

V

 

Figure 2-4: Diode switch on waveform. 

When the diode becomes forward biased, the forward voltage has to overcome the 

resistance of the n
-
 region while the plasma is forming.  This voltage peak becomes 

more significant on high voltage components as the volume of plasma is larger [26]. 

2.2.1.4.2 Switch Off 

During switch off of the diode, the holes and electrons in the plasma recombine or are 

swept from both ends by a reverse recovery current (Irr).  The diode can only begin to 

support the voltage when the plasma concentration reaches zero at one end of the n
-
 

region allowing a depletion layer to form.  The stored charge in the diode can be 

considered in two distinct regions which can be observed as the diode switches off.  The 

total charge swept out by the reverse current is commonly referred to as reverse 

recovery charge (Qrr).  The diode stored charge (Qrs) or excess plasma must be removed 

to the point where the depletion layer just forms.  The charge that continues to be swept 

out of the diode to allow the depletion layer to expand is referred to as the diode 

depletion charge (Qrf) [11].  The rate of change of voltage (dV/dt) of the diode is 

determined by the concentration profile of Qrf throughout the n
-
 region, the rate of 

recombination, and the rate at which the charge carriers are swept out by load current. 

In Semikron publications [26, 27], reference is made to a softness factor to characterise 

the reverse recovery current of a diode (see Figure 2-5 and equation ( 2-6 )), however 

values for this softness factor are not published in their data sheets.  This could be a 
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useful figure however, it would have to include a plot of softness factor versus di/dt and 

given for a range of temperatures and load currents for a circuit designer to be able to 

apply to new designs.  

Commutation 

dIc/dt Recovery 

dIr/dt

IF

 

Figure 2-5: Soft Recovery PIN diode (softness factor S) 
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 ( 2-6 ) 

A diode is considered to be a hard recovery diode if the rate of change of commutation 

current (dIc/dt) is less than half of the rate of change in recovery current (dIr/dt) 

otherwise it is referred to as a soft recovery diode.  For a given stored charge the peak 

reverse recovery current (Irr) is proportional to di/dt. 

2.2.1.4.3 Snap-Off 

During switch off, it is possible to have very fast current transients during the reverse 

recovery period.  This will depend on operating conditions and diode characteristics.  

The high current transients have been blamed for increasing electromagnetic emissions 

and so diodes should be designed to avoid operating in this area [31, 32].  This very fast 

recovery is referred to as snap-off and can result from three different conditions within 

the diode.  The plasma and associated waveforms are illustrated in Figure 2-6. 

There are three different positions in the recovery tail where snap-off can occur leading 

to a different characteristic waveform [11, 27]:  

 Type 1: A shallow plasma in the middle of the n
-
 region can give a snap-off 

soon after the peak reverse recovery current. 
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 Type 2: An insufficient thickness of the diode n
-
 region may result in snap-off 

towards the end of the switch off period. 

 Type 3: An excessively strong anode emitter and/or weak cathode emitter may 

lead to snap-off in the middle phase of the switch off process. 

Commutation dic/dt

Recovery dir/dt

t

t

t

t

IF

IF

IF

IF

p n- n

Dn,Dp

Dn,Dp

Dn,Dp

Dn,Dp

a

b

c e

a

b
c

e

a

b c

e

a

b

c
d

Soft 

Switching

Type 1 

Snap-off

Type 2

Snap-off

Type 3

Snap-off

Snap-off

Snap-off

Snap-off

a b c d e

a b c d e

 

Figure 2-6: PIN diode plasma concentration during snap-off for different types of diodes 

There are various operating condition which can increase the chance of snap-off  [11]: 

 The carrier lifetime hence plasma concentration is a function of temperature.  At 

low temperature, the carrier lifetime is shorter hence the diode can become more 

snappy. This condition would typically be observed as type 1. 

 At a low forward current, the plasma concentration is low resulting in snappy 

behaviour (type 2). 

 At high dc bus voltage, the diode appears thinner because the depletion layer 

expands much faster increasing the risk of snap-off in the tail (type 3). 
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 High di/dt extracts the excess charge rapidly.  An initially low plasma 

concentration in the middle region will result in a snap off after the current peak 

(type 1). 

2.2.2 IGBT 

The IGBT combines the high current and voltage capability of the bipolar junction 

transistor (BJT) with the high input impedance of the MOSFET in a single device.  It 

has been assumed that a PIN diode has been used in the switching waveforms presented 

in this chapter unless otherwise stated. 

2.2.2.1 Device Structure 

The structure of an IGBT can be split into two different regions, the gate region and the 

high power region.  For the following description of the device structure and operation, 

the planar gate structure, Non-Punch Through technology is used.  This is extended in 

section 2.2.2.2 to include specific features which are used to customise the device 

depending on the application. 

The structure of the IGBT is shown in Figure 2-7.  Areas which have characteristics 

similar to simpler devices have been indicated as these will aid the description of device 

operation.  The n-channel MOSFET has been identified as the small area under the 

emitter contact and the polysilicon / oxide gate.  The n region under the emitter is highly 

doped to give a good ohmic contact to the emitter terminal.  This forms the source of the 

MOSFET.  The surrounding p region, referred to as the p-base, is usually the substrate 

or body in a MOSFET device.  The p-base region is also connected to the emitter 

terminal allowing the gate voltage to be referenced to the emitter creating a MOS 

junction.  The application of a positive voltage to the polysilicon gate, relative to the p-

base attracts electrons towards the gate which collect below the insulating oxide layer.  

When the concentration of free electrons in a very thin layer under the gate, is greater 

than the p-base doping concentration, this is called an inversion layer or channel. 

The n
-
 drift region forms the drain of the MOSFET.  When the drain is positively biased 

relative to the source and the inversion layer has formed, a current of majority carriers 

(electrons) will flow along the channel into the drain. 
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Figure 2-7: Planar gate, Non-Punch Through IGBT structure  

The pnp transistor consists of the p layer at the IGBT collector, n
-
drift layer and p-base 

layer connected to the IGBT emitter.  From the semiconductor point of view, the 

terminals of this device have been labelled incorrectly.  The emitter of the pnp transistor 

is actually the labelled as the collector of the IGBT and likewise for the pnp collector 

[11]. 

The JFET (junction field effect transistor) region is formed by adjacent cells in the drift 

region.  The depletion layer around the p-base acts to pinch off the current flowing from 

the channel and increases the IGBT resistance.  This effect increases as the cell density 

increases [11]. 

The npnp structure is often referred to as a parasitic thyristor.  The thyristor is normally 

in its blocking condition and hence does not influence the device performance.  The p-

base region of the IGBT forms part of the gate which is shorted to its cathode via the 

IGBT emitter terminal and remains off. Under conditions with high current densities or 

fast transients, a voltage drop across the p region can occur causing the thyristor to latch 

on.  The thyristor will remain in the conducting state until the voltage across the IGBT 

is reversed.  In most hard switched IGBT applications, this voltage across the device 

will not be reversed hence the latched IGBT leads to thermal runaway and device 

destruction. 
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Unlike a MOSFET, there is no reverse conducting path through an IGBT due to the p 

layer at the collector.  A separate freewheeling diode is always used in parallel to the 

IGBT for this purpose. 

The IGBT structure as shown in Figure 2-7 is a single unit cell.  This pattern is repeated 

many times throughout a single chip.  The number of unit cells hence area of the chip is 

determined by the required current.  The thickness of the device determines the blocking 

voltage in a similar manner to the PIN diode. 

The planar gate structure is often referred to as a DIGBT.  This is in reference to the 

construction techniques of double diffusing first the p-base followed by the n+ region to 

form the gate structure [33]. 

2.2.2.2 Evolution of Device Structure  

As IGBT technology and manufacturing capabilities have progressed, there have been 

several distinct changes to the device structures.  This section will discuss these 

improvements, associated electrical characteristics and applications. 

Competition between manufacturers has led to a proliferation of marketing terms to 

describe variants of IGBT structure [34].  The various names will be mentioned 

throughout this section.    

Non-Punch-Through  

The structure of the Non-Punch-Through IGBT has been described previously.  As 

manufacturing processes improve, the capability to manufacture thinner chips has led to 

a reduction in forward voltage drop for a given blocking voltage as illustrated in Figure 

2-8.  Enhancing the emitter efficiency (ratio of minority carrier current to total diffusion 

current crossing pn junction) of the p-emitter, has also reduced the on state voltage 

however this can lead to increase the switch off losses [35]. 
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Figure 2-8: Reduction in Vce with chip thickness [35] 

2.2.2.2.1 Punch Through (Field Stop) 

The Punch Through IGBTs have an additional n
+
 layer included in the device structure 

between the n
-
 drift and the p collector (see Figure 2-9).  This layer can be called a 

buffer layer or field stop layer.  Depending on the IGBT manufacturer, the device 

technology may be promoted as either Punch Through (PT) or Field Stop (FS) [36]. 
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Figure 2-9: Planar Gate, Punch Through IGBT structure 

The Non-Punch Through device is symmetrical i.e. the device can block both forward 

and reverse voltage. With the addition of the n
+
 buffer layer, the PT devices have 

reduced capability to block reverse voltages (reverse blocking of tens of volts for a 
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1200V device) [37].  Many circuit applications do not require the IGBT to block reverse 

voltages so this has not proven to be a commercial obstacle. 

The benefits for the n
+
 buffer layer are exposed when considering the forward blocking 

voltage.  In the same manner as the PIN diode, the electric field is dropped across the n
- 

drift region to a level where the n
+
 buffer layer can safely reduce the field in a shorter 

distance [38].  Using Punch Through technology allows the use of thinner devices for a 

given voltage rating compared to Non-Punch Through.  The thinner device reduces the 

forward voltage drop hence reduces the conduction losses. 

One of the advantages of the Punch Through device is the reduction in tail current if the 

electric field reaches the n
+
 buffer layer during switch off.  At high operating voltages, 

the tail current can become insignificant [36].  Depending on the resistivity of the drift 

region, the collector-emitter voltage at which the electric field reaches the Field Stop 

layer can be chosen by the device manufacturer for optimum performance.  When using 

these devices, it may be advantageous to have a gate driver circuit and PIN diode which 

causes an intentional voltage overshoot up to the device rating during switch-off to 

minimise power loss.  No work has been published in this area. 

With the reduction of device thickness for a given voltage, the total plasma is lower in 

the PT device compared to the NPT.  For high voltages devices, this gives a reduction in 

switching losses for similar operating conditions. 

Switch off losses in a PT device increase with temperature and are more sensitive to 

junction temperature than NPT.  PT have a small positive temperature coefficient [39] 

but this is less than the NPT.  Care should be taken if short circuit conditions are likely 

to occur as thermal runaway occurs at a lower temperature in PT devices compared to 

NPT devices. 

2.2.2.2.2 Trench Gate Devices 

The use of a trench gate eliminates the problems associated with the restricted JFET 

region in the IGBT.  A deep channel is etched into the device substrate which is then 

passivated with an oxide layer and filled with the polysilicon which will form the gate.  

The processing involved to construct the deep trench can be time consuming and hence 
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expensive.  A typical trench gate structure is shown in Figure 2-10. When a positive 

bias is applied to the gate, a vertical inversion layer (channel) forms through the p-base 

allowing conduction. 
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Figure 2-10: Trench Gate, Non-Punch Through IGBT structure 

The trench gate structure can be constructed with a tighter cell pitch compared to the 

planar structure.  This allows a higher current density and gives a lower Vce(sat) voltage 

drop for a given area reducing the conduction losses compared to the planar device. 

During early development of the trench gate, there were three disadvantages of this 

structure [40]: 

 Excessive over-current under short circuit conditions; 

 Low yield due to complex processing (1998); 

 Poor oxide reliability especially at high voltages [39]. 

Due to the lower Vce(sat) and higher cell density in the planar structure, the 

transconductance of the device is higher. The short circuit ruggedness is inversely 

proportional to the peak short circuit current [41].  The trench IGBT has more channel 

width due to smaller cell pitch resulting in higher peak current therefore lower short 

circuit withstand time. 
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2.2.2.2.3 CSTBT 

In an effort to reduce conduction loss, a new concept structure was published in 1996 

which is now available as a commercial product.  The carrier stored trench gate bipolar 

transistor (CSTBT) is similar to a PT trench gate however it includes an n
+
 layer 

between the p base and drift region (see Figure 2-11).  This n
+
 layer restricts the hole 

current through the device causing it to accumulate in the drift region.  The 

accumulation of holes adds to the plasma and lowers the resistance.  Forward voltage 

has been claimed to be reduced by 25% for the same switching loss as a trench gate 

device [42]. 
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Figure 2-11: Structure of CSTBT 

2.2.2.3 Operation 

2.2.2.3.1 Forward Blocking 

When the gate emitter voltage (Vge) is held below the threshold voltage (Vt) the channel 

inversion layer cannot form.  A forward bias applied to the IGBT is blocked by the pn 

junction between the p-base and n
- 
drift layer (J2) (see Figure 2-7) and is determined by 

the open base breakdown voltage of the internal pnp BJT [43].  To achieve high 

blocking voltage IGBTs, the n
-
 drift layer can be increased in thickness and the doping 

reduced to support the electric field. 
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2.2.2.3.2 Forward Conduction 

If a positive bias is applied across the gate emitter exceeding Vt, an inversion layer 

forms allowing the flow of current.  The collector emitter forward voltage has to be 

increased to exceed the built-in voltage of the pn junction at J1 before current will flow 

through the device [28].  This is illustrated in Figure 2-12.   
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Figure 2-12: IGBT forward characteristics 

When the IGBT is forward conducting, an electron current flows from the IGBT 

emitter, through the MOS channel into the drift region.  This electron current supplies 

the base current to the internal pnp structure.  By applying a higher gate voltage, more 

electron current can flow allowing a lower Vce for a given collector current.  The 

electrons in the drift region cause the base emitter (J1) of the pnp to be forward biased 

allowing holes to be injected into the drift region from the IGBT collector (pnp emitter).  

These holes are then swept into the collector of the pnp transistor allowing current 

conduction to take place.  The mixture of holes and electrons in the drift region is 

referred to as plasma and functions in a similar way to a PIN diode. 

As for the PIN diode, the need for low conduction loss has to be balanced with the need 

to both supply and extract the plasma quickly during switching (see Figure 2-13) [34].  

The carrier lifetime profile can be adjusted throughout the IGBT drift region to achieve 

the optimum operating point for the application.  The operating point for the device will 

depend on the switching frequency, operating voltage and load current of the 

application. 
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Figure 2-13: Example curve illustrating trade off between switching and conduction loss [34] 

2.2.3 Device Switching Characteristics 

2.2.3.1 Switch On 

The switching characteristics of the IGBT depend on the circuit in which they are used.  

To gain an initial understanding of the mechanisms, a typical test circuit is presented 

(see Figure 2-14).  The load is purely inductive and is in parallel with a freewheeling 

PIN diode.  Several authors have given a description of the switching mechanism and 

the most complete is found in [27]. 
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Figure 2-14: IGBT pulse test circuit 
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For the following switching patterns, a quasi-stationary model is used [27].  This 

assumes that the plasma and the space charge regions react quickly enough to assume 

their steady state at any instant during the switching transients. The voltage and current 

waveforms for switch on are shown in Figure 2-15. 
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Figure 2-15: IGBT switch-on waveforms with a bipolar diode 

Phase 1 (t0 to t1): At time t0, the demanded gate voltage is increased from a negative 

value (usually -6V) to a positive value (+15V)  and in represented in the diagram by the 

ideal switch S which is thrown to position 2 to begin to charge the gate capacitance 

(Cge) via the gate resistor Rg.  As Vge increases, the MOS junction creates and expands a 

depletion layer in the p-base region under the oxide, which, with further voltage 

increase forms an inversion layer.  Electrons can only pass through the inversion layer 

once established hence the pnp transistor cannot switch on until after this threshold 

voltage is reached. 
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The gate current Ig flowing through the gate resistor charges the input capacitance Cge 

and begins to discharge Cgc.  The rate of charge is determined by the series combination 

of the capacitance and the gate resistor.  This gate voltage at any point up to t1 can be 

calculated using equation ( 2-7 ). 
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where: 

 gcgeg CCR  .1  ( 2-8 ) 

By rearranging equation ( 2-7 ), the time between the operation of switch S and the 

inception of the collector current is known as the switch-on delay time td.on and is given 

by equation ( 2-9 ). 
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( 2-9 ) 

Phase 2 (t1 to t2): At t1, Vge exceeds the threshold voltage, Vt, electrons begin to flow 

through the MOS channel into the n
- 
region.  As this is the base of the pnp transistor, the 

emitter of the pnp (collector of IGBT) injects holes into the n
-
 region causing current (Ic) 

to flow through the IGBT. 

The gain (pnp) of the transistor in power IGBTs is very low, and as a result, the rise in 

collector current after t1 is closely related to the rise of the current in the MOS 

transistor.  Using the assumption that the IGBT’s collector current is approximately 

equal to the MOS current, the power MOSFET’s equations for the current rise related to 

the gate voltage can be applied [27]. 

The freewheeling diode DF remains forward biased until Ic reaches the value of the load 

current in the inductor (since IF = IL – Ic) hence the voltage across the diode remains 

positive holding the load voltage to the positive dc bus.  The rapid change in current due 

to commutation causes voltage drops in the parasitic inductances in the circuit such as 

the device bond wires and bus bar as seen in Figure 2-15.  The voltage across the IGBT 
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can be calculated from equation ( 2-10 ).  For the circuit setup as shown in Figure 2-14, 

the voltage drop across the diode would increase the voltage across the IGBT.  

 
dt

dI
LVVV c

FDCce   ( 2-10 ) 

It is important at this stage to understand how the drop in the voltage due to the parasitic 

inductance can reduce the ability to control the switch-on dIc/dt.  This can be examined 

by looking at the current through the gate collector capacitor as shown in equation         

( 2-11 ). 
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Cgc is related to the depletion layer within the IGBT, where the capacitance will increase 

with decreasing voltage [44].  As a result, the required discharge current Ig will change 

as a function of the change of Vgc.  The gate current Ig is determined by the voltage drop 

across the gate resistor ( 2-12 ), hence a reduction in Ig will lead to an increase in current 

flow into the Cge which would increase dVge/dt increasing the dIc/dt acting as a positive 

feedback loop [45].  The parameters of this feedback loop are dependent on the IGBT 

construction including the relative size of parasitic capacitors Cgc and Cge [46].  This 

effect can result in a loss of control of dIc/dt from the gate drive.  One method to reduce 

the impact of this is to add additional capacitance across the gate emitter [27].  This 

larger capacitance would absorb Ig minimising the increase in Vge. 
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Phase 3 and 4 (t2 to t4): At t2, the collector current Ic equals IL, and the current through 

the freewheeling diode, DF, has reduced to zero.  The PIN diode cannot support the 

reverse voltage until the plasma has recombined or been swept out.  The current in the 

diode continues to fall with the same di/dt, flowing in a negative direction.  At t3, when 

Qrs has been swept from the PIN diode the depletion layer begins to form at the pn 
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junction, the diode can then begin to block the voltage while Qrf continues to be 

removed. 

The voltage across the IGBT decreases at the same rate as the diode blocks the voltage.  

In the IGBT, Cgc is further discharged by the falling voltage, however, the reduction in 

collector emitter voltage reduces the depletion width.  The depletion can be thought of 

as a parallel plate capacitor, and as the depletion width reduces, the capacitance 

increases.  The current which flows from Cgc is drawn from both the gate supply and 

also from Cge (see Figure 2-16).  The result of pulling current from Cge is a reduced Vge, 

leaving a small peak in the Vge waveform and holding the IGBT in the active region.  

The reduction in Vge reduces the maximum collector current restricting and delaying the 

removal of the reverse recovery charge. 
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Figure 2-16: Current flow in IGBT internal capacitance when Vce falls 

Phase 5 and 6 (t4 to t6): After t4, the gate emitter voltage will continuously re-adjust to 

the falling reverse-recovery current of DF .  This change is not always easy to see as Vge 

is proportional to the square root of collector current.  The rate of change of Vce is 

limited by the slowest of either the charging of Cgc with the gate current or the 

discharging of the diode by the reverse recovery current. 

At t5, the diode tail current has fallen to zero and hence the gate voltage remains at a 

stable voltage which allows the IGBT to deliver the load current IL.  The gate-emitter 

voltage can be calculated based on the load current using equation ( 2-13 ) [27].  This 

has been simplified in equation ( 2-14 ) to emphasise the relationship between the 

collector current and the gate emitter voltage. 
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Where: 

 n is electron mobility; 

 Cox is the gate oxide capacitance; 

 Lch is the channel length; 

 Vt is the gate threshold voltage; 

 Vge is the gate emitter voltage; 

 K is a constant; 

 pnp is the gain of the IGBT pnp transistor.  

Since Vge remains almost constant during the time interval t4-t6, we can conclude that 

virtually all of the gate current Ig flows into the gate collector capacitance Cge.  In 

considering this, it is possible to see how the gate current Ig can be used to control the 

Vce transient. The maximum limit to the dVce/dt will be set by the diode reaching 

dynamic avalanche.  It is important to remember that Cgc continuously changes with 

voltage.  With conventional gate drives, this leads to a parabolic reduction in Vce. 

Phase 7 (t6 to t7): at t6, Vce has dropped to the level where the IGBT changes from the 

active transistor mode (desaturation) to the saturation region. In this mode, Vge is no 

longer related to the load current however, Vce is strongly dependant on Vge as more 

base current can flow into the pnp transistor.  In an effort to minimise the conduction 

losses, the level of Vge,on, should be chosen to be as high as possible while considering 

the short circuit protection.  The time taken to reach the Vge,on is determined by the time 

constant 2 as shown in equation ( 2-15 ). It should be noted that the capacitances Cgc 

and Cge have now increased compared to those used for time constant 1 due to the 

change in Vce.  The switching process is finished when Vce has reached Vce,sat. 
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  gcgeg CCR 2  ( 2-15 ) 

Figure 2-17 shows the switching trajectory taken on a Ic(Vce) characteristic curve.  This 

indicates how the load current changes with Vge (quadratic relationship as expected 

from equation ( 2-13 )).  It is obvious that the highest current achieved during switch on 

is related to the reverse recovery current.  It is important that the entire trajectory is 

within the IGBT safe operating area (SOA). 
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Figure 2-17: Ic(Vce) characteristic curve for switch on. 

2.2.3.2 Switch off 

To analyse the switch off waveforms, the same test circuit as shown in Figure 2-14 is 

used.  Initially, it is assumed that the load current is flowing through the inductor and 

the IGBT.  At time t0, the demand voltage is reduced to a low value (usually -6V) 

represent here by switch S thrown to the off position where it is assumed that Vge,off  is 

negative.  The waveforms are shown in Figure 2-18. 
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Figure 2-18: IGBT switch-off waveforms with bipolar diode 

Phase 1 (t0 to t1): Throwing the switch to the off position, allows the gate capacitor Cge 

to discharge and gate collector capacitor Cgc to charge.  The time constant during switch 

off is the same as that in phase 6 during switch on ( 2-15 ).  The gate voltage during this 

phase can be determined from equation ( 2-16 ). 
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During this stage, the IGBT remains in the saturation region and hence the gate voltage 

does not affect the collector current.  The charge carrier concentration in the channel 

reduces as Vge is reduced. This reduces the base current for the pnp transistor resulting 

in a small increase in Vce.  As the Vge is reduced further, the flow of electrons into the n
-
 

region ceases. 
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Phase 2 and 3 (t1 to t3): At time t1, the electron concentration at the p-base / n
- 
region 

reduces.  Due to the wide base of the BJT, the hole current is influenced by the electric 

field which is established by the electron current.  Consequently the hole current also 

reduces giving an increase in Vce.  After all the electrons have been swept from the drift 

region or recombined, the hole current rises rapidly to allow the load current to continue 

at a constant level [47]. The depletion region which forms, causes Vce to increase 

rapidly.  The maximum dVce/dt depends on the plasma concentration profile.  As in a 

PIN diode, there are several factors which may cause a lower dVce/dt: 

 When low current is flowing, the charge can only be swept out with a maximum 

rate dQ/dt = IL.  The expansion velocity of the depletion layer hence dVce/dt is 

related to the load current. 

 If dynamic avalanche occurs during voltage build-up, generation of new charge 

carriers takes place which must be swept from the device.  This causes a 

reduction in dVce/dt.  

 If the gate plateau voltage, (VGP) is greater than Vt, the MOS channel will still 

allow electrons to flow into the drift region.  This can cause the voltage to rise 

slowly until Vge falls below Vt.  This is related to the carrier lifetime and gate 

resistor value [27]. 

The voltage rise in a PT and NPT device can be very different.  The voltage rise (phase 

3) of a PT IGBT has an unusual shape which shows a decrease in dVce/dt followed by a 

fast increase.  The decrease is caused by high carrier concentration near the n
-
 region 

and buffer junction.  The fast increase is due to the electric field reaching the buffer 

layer [39]. 

Phase 4,5 and 6 (t3 to t6): at t3, the collector-emitter voltage reaches the dc bus voltage 

(VDC + VF + VFRM) and the free wheel diode can begin to conduct current.  The negative 

dIc/dt in the stray inductance L induces a voltage VL, given by equation ( 2-17 ) which 

appears on the IGBT as a transient voltage overshoot. 
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dt

di
LV C

L   ( 2-17 ) 

At t4, the rate of change in collector current has reached it maximum and Vce begins to 

reduce from the peak overshoot voltage.  This increases the Cgc further increasing the 

time for the gate voltage to decay. 

The few remaining holes in the drift region slowly get swept out allowing the IGBT 

current to drop to zero.  This section of the current waveforms is referred to as a current 

tail.  The tail current increases with junction temperature but the initial dIc/dt reduces 

with temperature [47]. 

The switch off loss is related to the amount of stored charge in the space charge region.  

For high voltage devices, the charge space charge region is wide to facilitate forward 

blocking, however this increases the switch off loss [35].  The switch off trajectory of 

current versus voltage is shown in Figure 2-19. 

Vce

Ic

VDCVce(sat)

Vge(ON)

11V

15V

13V

17V

7V

MOS 

pinch-off

t6
t5

t4

t3t2t1

 

Figure 2-19: Ic(Vce) characteristic curve for switch off 
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2.3 Radiated Emissions Sources from a VSD 

A distinct increase in radiated emissions from a VSD system can be easily detected 

when the full bridge output is enabled to rotate a motor.  The IGBT switching transients 

only exist in time for up to 200 ns for switch on and another 200 ns for switch off.  With 

a switching frequency of 10 kHz, the period is 100 s hence the emissions can be 

considered as a pulsed source.  A source which has a short duration in the time domain 

will have a broadband spectrum in the frequency domain.  In the case of a VSD the 

radiated emissions measurements are taken from 30 MHz to 1 GHz however, the 

increase in the emissions is often in the range of 30 MHz to 100 MHz [48]. 

When designing an antenna system for an intentional transmitter the geometry is 

carefully chosen to match the frequency of operation to ensure efficient radiation.  

However given the broadband nature of the source signal, it is not easy to identify a 

single antenna structure which radiates efficiently and in fact there are many possible 

antennas and emission paths which complicate the analysis. 

This section considers some antenna theory and applies it to a simple model of a 

variable speed drive system consisting of the VSD module, motor cable and motor to 

evaluate the possible sources of emissions. 

2.3.1 Emission Sources 

Seven possible parasitic antennas have been identified from a VSD system and are 

shown in Figure 2-20.  These consist of current loops which create magnetic fields and 

time varying voltages related to the IGBT switching of the high powered signals to the 

motor [49, 50].  The changing voltages can establish electric fields which can radiate.  

During the development of a VSD, a considerable effort is made to reduce the area of 

current loops within the VSD for both the performance benefit of reduced inductance 

and to minimise radiation.  However, given the conflicting requirements of creepage 

and clearance for functional safety and layout for thermal requirements, it is impossible 

to avoid some loop area.  Possible parasitic antennas within the system are identified as:   

1. The large loop consisting of one leg in a power module and the dc bus filter 

capacitors.  This is driven by differential mode currents creating H- fields.   



Chapter 2: Key Principles  

______________________________________________________________________ 

37 

2. H- fields generated by loops within the drive, can inductively couple onto other 

loops in the near field such as those formed by structural metal work, 

communications and sensor cables which themselves radiate giving a second 

potential source of emissions. 

3. The switched voltage applied to each phase cable will change potential relative 

to the ground plane at each switching instance.  Due to cost requirements and 

ease of installation, the braided cable used cannot provide a perfect shield.  E-

fields established between the three output phase conductors and the ground 

plane can give a third potential source of emissions. 

4. A significant parasitic capacitance exists between the cable shield and the phase 

conductors due to their close proximity.  The change in potential of the phase 

conductors due to IGBT switching causes a common mode current to return 

along the cable shield.  This current is returned to the dc bus capacitors via the 

EMI filter for conducted emissions.   

5. The second source of shield current arises from the imperfect cancellation of the 

magnetic field from the three phase currents.  As the phase conductors are not 

coaxial within the cable, the magnetic fields as seen by the shield induce 

opposing currents in the shield.  In a coaxial cable used for communications 

systems the continuous nature of the outer shield contains all the induced current 

on the inner layer of the conductor.  However due to the complex weave in a 

braided cable, the individual conductors can force this current towards the 

exterior of the shield causing radiation.  Given the imperfect shielding 

capability, magnetic fields established by the phase conductors can also directly 

radiate acting as a noise source. 

6. In large VSDs, the layout of the cable terminals spreads the phase conductors 

further apart.  The separation of the conductors can create a dipole antenna 

arrangement which can radiate electric fields.  Shielding of this area by 

conductive mechanical structures may reduce the effectiveness of this antenna 

however this is very dependent on individual VSD design. 

7. As the cables are unlikely to run in perfectly straight lines in a typical 

installation, several bends are required.  Bending can lead to scattering of the RF 

signals which can provide a seventh source of radiated emissions [15] [52].  
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While the cable shield has been identified as a potential source of emissions, it is 

important to consider the benefits it offers.  The power cables are often located in the 

vicinity of sensitive control cables.  There is a considerable reduction in the magnetic 

field and electric field particularly in the low frequency.  The behaviour as an antenna is 

difficult to predict due to unknown impedance, orientation, radiation resistance etc. 

[51]. 
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Figure 2-20: Illustration of Emissions sources from VSD system 

 

2.3.2 Power Cables 

Given the importance of the power cable with regards to radiated emissions, a closer 

look at its structure is required to understand the factors contributing to radiated 

emissions. 

The recommended cable for use with VSDs consists of four cores surrounded by a 

braided shield or armour as shown in Figure 2-21.  Three of the cores are used to supply 

power to the motor while the fourth provides a safety earth connection to restrict 
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dangerous voltages on parts which can be touched in the event of a motor fault.  The 

shield can be positioned close to the conductor insulation or may be separated from the 

conductors by a further layer of insulation.  The capacitance between the conductors and 

the shield reduces as the shield is moved further from the core.   

C1e

C12

C13

C14

C1s

a

ba

c

 

Figure 2-21: Cross section of power cable identifying internal capacitances for one conductor 

It is very difficult to achieve an accurate model of a power cable at high frequencies due 

to the influence of manufacturing tolerances.  Several cable models are discussed in the 

literature however these tests have been carried out in laboratory conditions where the 

cables have been held in fixed positions [53].  Along with the fundamental frequency 

required to rotate the motor, the power cables also carry the PWM switching 

frequencies and the higher frequency harmonics contained in the switching waveforms 

[54].  It is unclear how these models can be adapted to higher frequency ranges, 

different lengths of cables and different cable layouts due to the unpredictable change in 

geometry during installation arising from bending.  The unsymmetrical layout of the 

cable will affect the mutual inductance hence the impedance as seen between phase and 

ground will depend on currents flowing in neighbouring conductors. 

2.3.3 Cable Capacitance 

The parasitic capacitances increase the common mode current flowing in the conductor.  

This section will look at the cable construction to identify the capacitance and analyse 

the impact of a shield.  

For a radiated emissions test, the motor cable is connected between the VSD and the 

motor.  The VSD is mounted in a cabinet representing a typical customer application 
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and the cabinet is isolated from the ground plane to represent worst cast conditions.  The 

cabinet is connected to earth via the supply cable.  A motor is positioned a few 

centimetres above the ground plane also on an isolating platform.  The path taken by the 

cable will vary in the height above the ground plane.  In an ideal situation, an 

assumption can be made that the cable height is constant and that the cable is 

sufficiently long, then the capacitance per unit length can be calculated using the 

Method of Images [55]. 

The capacitance per metre depends on the conductor radius (r) and the height above 

ground (h) as shown in equation ( 2-18 ).  A plot of the capacitance is shown in Figure 

2-22 for a single conductor with a radius of 1.02 mm (equivalent to 2.5 mm
2
 cable) and 

for a radius of 2.025 mm (equivalent to 10 mm
2
 cable).  It can be seen how the 

capacitance reduces rapidly as the height is increased up to a distance of five times the 

radius and more gradually beyond this. 
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Figure 2-22: Cable capacitance to ground from a single conductor 

Within a cable, there are capacitances between conductors and between the conductors 

and the shield.  These capacitances have been identified in Figure 2-21 for one 

conductor and calculated for two sizes of typical cables (these cables include an 

additional layer of insulation between the shield and the conductor) in Table 2-1. The 

relative permittivity, r, is taken to be 2.7 (for PVC) for these calculations. 

Table 2-1: Calculated cable capacitance for a typical power cable 

Conductor 

area (mm
2
) 

a 

(mm) 

b 

(mm) 

c  

(mm) 

C12 

pF/m 

C13 

pF/m 

C14 

pF/m 

C1s 

pF/m 

C1e 

pF/m 

2.5 3.44 4.86 1.4 245.56 245.56 97.23 672.90 8.07 

10.0 6.05 8.55 2.0 721.23 721.23 120.92 731.13 8.97 
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The typical range of shield coverage is from 40% to 98% [49, 56].  To simplify the 

conductor to shield capacitance calculation, the shield is assumed to be solid and 

perfectly conducting.  To get a more accurate approximation, the capacitance should be 

multiplied by the shield optical coverage.  The capacitance between the conductor and 

ground should also be reduced by the inverse of this factor.  When considering this, and 

using the figures obtained in Table 2-1, it can be seen that the capacitance between the 

conductor and ground is insignificant when using a shielded cable. 

The individual capacitances calculated in Table 2-1, do not all require charging at the 

same switching instant.  The cable charging current can lead to significant heating of the 

power cable due to the cable resistance particularly at high switching frequencies. 

2.3.3.1 Skin Effect  

High frequency currents do not flow uniformly through a cross sectional area of 

conductor.  The current density is at its highest value on the outer surface of the 

conductor and falls off exponentially with depth.  This phenomenon is referred to as the 

skin effect and the skin depth is the distance at which the current density is reduced to a 

factor of e
-1

 [13].  

The high frequency current flows in a reduced area resulting in an increased resistance.  

This “ac” resistance can be calculated using equation ( 2-19 ) and can be seen to be 

frequency dependent. 

l
a

f
RAC 

s

s

2
 (if skin depth is much less than a) ( 2-19 ) 

where:  

 f is the frequency; 

 s is the material conductivity; 

  is the permeability; 

 a is the radius of the conductor; 

 l is the length of the conductor. 
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For power cables, the fundamental frequencies used to rotate a motor are of the order of 

a few Hertz up to several hundred Hertz.  The skin depth at these frequencies is larger 

than the radius of the conductors and hence this phenomenon is not observed.  When 

considering the radio frequency content of the signals, the skin depth at 30 MHz is 11.9 

m in copper which is less than the thickness of a braided shield.  At these frequencies, 

the contact impedance between the braids becomes capacitive reducing the impedance 

along the shield.  It is a combination of these effects which makes accurate predictions 

of the cable performance impractical for a user installed VSD application.  

2.3.4 Cable Inductance 

In a three phase, four core cable, the conductors are not balanced.  At a particular 

operating point, the current flowing in one conductor will be equal to the current 

flowing in both the other lines at a first approximation.  The distance between the shield 

and each conductor should ideally be constant.  The problem with the typical power 

cables is the use of a safety earth conductor which removes the symmetry from the 

cable and will lead to an increase in common mode currents which depend on the 3 

phase current vector [54].  As the IGBT switching events only occur for a short 

duration, coupling at radio frequencies is minimal and unlikely to influence the 

switching transients.  Alternative cable structures as shown in Figure 2-23b can preserve 

this symmetry among the three conductors.   

The mode conversion of differential mode currents to common mode currents due to the 

unsymmetrical cable structure can lead to radio frequency components of the phase 

currents contributing to radiated emissions.  It is not possible to quantify the magnitude 

of these currents as the high frequency content in the phase currents would occur at the 

same instant as the cable charging currents related to the dV/dt. 
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a) b)

 

Figure 2-23: Cable cross section a) 3 phase , 1 ground non-symmetrical  b) 3 phase, 3 ground, symmetrical. 

2.3.5 Braid Structure 

A typical braid structure is shown in Figure 2-24.  The variables between various 

designs of braid are described in [56] and include: the number of carriers (belts of 

wires); picks (number of carrier crossings per unit length); the ends (number of wires in 

each carrier); wire diameter and radius of the shield.  The pitch angle is the angle 

between two crossing carriers and is a major factor in determining the optical coverage.  

The optical coverage is usually given in percentage and is a ratio of the area covered by 

the wires to the area exposed by the small diamond spaces.  

The transfer impedance of a perforated shield is the result of two phenomena [56]: 

 diffusion through the metal (same as a solid shield the current has to diffuse 

through the shield due to skin depth) 

 mutual coupling through the holes. 

 

Figure 2-24: Structure of Braid 
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The transfer impedance can be calculated analytically for simple geometries.  This may 

be useful when comparing one cable to another however it is not a useful figure when 

evaluating a system performance as the connection method will usually have a larger 

impedance. 

Within a braided cable, the layers of the braid overlap.  This overlap causes an 

individual strand of braid to be displaced with regard to the axis of the cable.  This is 

referred to as porpoising.  Porpoising affects the shielding impedance with the 

continued change from outer layer to inner layer.  The braid will carry the external 

shield current over a short section however some of this will then be transferred to the 

inner structure as the strands swap position due to finite impedance at the cross over 

point [57].  The impedance at the cross over points is complex and will become more 

capacitive at radio frequencies however this impedance may vary strongly with cable 

bending. 

The weave angle greatly affects the mutual inductance of the shield for a given optical 

coverage.  This is related to the magnetic polarisation along the axis of the rhombus 

which is formed.  The mutual capacitance is not affected to the same extent by weave 

angle.  

The mutual inductance increases with the hole number and shape.  In a similar manner, 

increasing the inductance of the shield by increasing the weave angle reduces the 

benefit of the shield at high frequency due to resonance. 

There are a few general rules about shielding design which are useful to consider.  A 

shield having a given optical coverage will be more leaky given few large holes 

compared to many small holes.  This is shown in Figure 2-25 where the transfer 

impedance of a braid is compared to a solid copper tube.  is the weave angle; a is the 

radius of the shield, d is the tube wall thickness; K is the optical coverage; C is the 

number of carriers.  It can be seen that as the optical coverage is reduced, the transfer 

impedance increases at high frequencies.  It is assumed that the results shown in this 

graph continue up to higher frequencies. 
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Figure 2-25: Transfer Impedance of a Braided- wire shield [56] 

For coaxial cables, the shield transfer impedance is often published by the cable 

manufacturers. Similar data has not been found for three phase power cables. 

2.3.5.1 Impedance Matching 

It is common for the impedance of cables which carry radio frequency signals to be 

matched to the impedance of the source and load to avoid reflections.  Given the 

complex impedance of the motor (load), the broadband nature of the switching signals 

and the emphasis on reducing energy loss, it is not possible to implement impedance 

matching.  This can lead to line reflections and several cable resonance effects which 

can cause peaks in the radiated emissions spectrum [58]. 

2.3.6 Cable Summary 

The various cable parameters discussed above are important to precisely model the 

cable performance and impact on radiated emissions.  The most significant parameters 

are the capable capacitance as this can be seen to effect the switching transient of the 

IGBT and the inductance as this gives the transmission line properties associated with 
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reflected signals at higher frequencies.  The addition of a braided shield complicates the 

analysis of the radiated fields and radio frequency current paths however the benefits of 

including and properly terminating the shield to reduce the radiated field strength far 

outweighs the additional modelling complexity.  
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2.4 Frequency Analysis 

At a first approximation, the switching transients observed in the voltage and current are 

trapezoidal.  The rise and fall times are determined by the gate resistor value, load 

current, voltage etc. while the switching frequency and hence the period are selected by 

the user.  Many papers [59-61] cite the rate of change of this voltage (or current) to be 

the source of EMI and have attempted to implement strategies to control this rise time.  

This section will present an analysis of simple switching trajectories in the frequency 

domain using the Fourier Transform and the Wavelet Transform. 

2.4.1 Frequency Content in Switched Signals 

Several simple pulse waveforms are constructed in Matlab
®
 with a period of 1 ms, a 

50% duty with linear rise and fall trajectories as illustrated in Figure 2-26.  The 

rectangular pulse represents the ideal switching profile with instantaneous rise and fall.  

Two trapezoids are shown with a rise time of 100 ns (typical for voltage rise time 

switched by an IGBT), and 1 s.  Two functions, one whose first derivative and one 

whose third derivative is continuous have been constructed and are referred to as s-

ramps (similar to those found in motion control).  It is known from testing of IGBTs 

that the switching loss is proportional to the switching time hence minimising the 

switching time is a key objective in VSD design. 
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Figure 2-26: Sample pulse trajectories 

Assuming these signals repeat indefinitely, a Fourier Transform can be calculated to 

evaluate the frequency content.  An envelope is fitted over the resulting spectrum for 

each of the waveforms and the results are shown in Figure 2-27.  It can be seen that the 

square wave has the largest magnitude across the frequency range, however at lower 

frequencies around 1 MHz the signal levels are similar for all signals with a 100 ns rise 

time.  This is consistent with conducted emissions testing where the emissions can be 

related to the dV/dt of the switching transient.  The magnitude can be seen to fall 

linearly (-40 dB/decade) with frequency for the trapezoidal pulses however for the s-

ramp profiles, the rate of reduction in magnitude increases with frequency.  In this 

example, the magnitude of the s-ramp with a continuous first derivative at 100 MHz is 

comparable to the 1 s trapezoid.  However in the time domain, the rise time is ten 

times shorter which would lead to a proportional reduction in switching loss from the 

IGBT.  The broadband nature of the pulse in frequency domain illustrates that it is not 

necessary to detect a sinusoidal signal such as ringing in the switching transient to have 
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high frequency content.  Ringing would display a narrowband feature in the frequency 

domain and is not considered in the general problem of radiated emissions from VSDs. 

 

Figure 2-27: DFT of shaped pulse waveforms 

2.4.2 Limit of Curve Shaping for Radiated Emissions 

Shaping of the switching transients of an IGBT as illustrated in Figure 2-27 appears to 

offer potential to give a fast switching speed and a reduction of radio frequency 

components.  However, further examination of the theory presents a limitation where 

curve shaping can no longer offer benefits. 

An illustration in the frequency domain of a perfect trapezoidal waveform with a 100 ns 

rise time is shown in Figure 2-27.  The envelope for the frequency content initially falls 

by 20 dB/decade however at a break point, this then falls by 40 dB/decade.  The break 

point (fc1) occurs at a frequency determined by ( 2-20 ).  Utilising an s-ramp with the 

same rise time, a second break point can be observed where above this frequency, the 

magnitude decays at 60 dB/decade.  It is this second break point which offers the 

possibility to reduce radiated emissions if it occurs significantly below 30 MHz.   
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 ( 2-20 ) 

For a given magnitude of trapezoid (dc bus voltage) in the time domain, an attenuation 

of the frequency content above 30 MHz is required to pass the radiated emissions test.  

To take advantage of the 60 dB/decade reduction at 30 MHz, it is assumed that the 

second breakpoint must occur at or below 20 MHz.  The breakpoint utilising the s-ramp 

can be determined using equation ( 2-21 ) [62] which is dependent on the rise time of 

the first derivative of the switching signal (tr(dV/dt)). 

    
 

    
  

  
  

 
 
 ( 2-21 ) 

At the limit of the s-ramp curve, tr(dV/dt) = 0.5 x tr resulting in 50 ns for tr = 100 ns.  If we 

assume that fc2 must be at or below 20 MHz, this gives us a minimum tr = 31.8 ns.  The 

attenuation of the signal is relative to the magnitude of the trapezoid hence for a given 

limit in either voltage or current, the required attenuation will increase with voltage or 

current.  The attenuation of the signal can be determined using ( 2-22 ) where further 

sinc functions can be added for higher orders of smooth derivatives, again each with its 

rise time equal to half of the previous rise time. 

           (                     
  

  
  

 
 ) ( 2-22 ) 

As new semiconductor materials are developed which are capable of operating with 

shorter switching times, the benefits of curve shaping are likely to disappear and 

additional methods to contain the RF signals are required. 

2.4.3 Wavelet Transform 

A Fourier Transform decomposes a signal into a set of infinite sine waves with 

magnitude and relative phase.  While the signal can be reconstructed in the time 

domain, it is not possible to obtain information regarding the position in time for pulsed 

or discontinuous signals.  It is possible to apply windowing functions with the Fourier 

Transform assuming the signal repeats periodically however higher frequency 

components can be distorted by spectral leakage.  The wavelet transform presents a 
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method of identifying the frequency content of a signal and also provides a 

representation of this in the time domain [63, 64].  This is achieved using a user defined 

wave shape with zero mean, finite energy and of finite duration in the time domain 

referred to as a mother wavelet. 

This chosen mother wavelet can then be translated, dilated, and cross-correlated with 

the original signal. To illustrate this procedure, two trapezoidal wave shapes with a 100 

s rise and fall time and period of 1 ms, representing typical switching transients in a 

VSD are shown in Figure 2-28 and are evaluated using a Mexican Hat wavelet ( 2-24 ) 

(which is the first differential of the Gaussian Function ( 2-23 )).  The wavelet transform 

is shown in ( 2-24 ) where a is the scale used to assess different frequency content by 

dilation (and can be compared to  in the Fourier Transform) and b is the translation 

parameter to assess different time segments.  As the wavelets are not true sinusoids, the 

scale does not represent a true frequency [63]. Instead a pseudo-frequency can be 

related to the scale and the dominant frequency of the mother wavelet. 
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Figure 2-28: a) Trapezoidal pulse with 10us rise time. b) Trapezoidal pulse with overshoot. 

The plotted Scale in Figure 2-29 is logarithmic and is inversely proportional to the 

centre frequency.  In this case, scale values of 8.33 and 2500 correspond to 30 MHz and 
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1 kHz respectively.  The trapezoid having a period of 1 ms has a fundamental frequency 

of 1 kHz if repeated periodically.  In this example it can be seen that the maximum 

amplitude at 1 kHz is 0.75 across the time range.  Reading the frequency content with 

time requires careful attention when using the illustrated diagrams.  A sinusoidal 

waveform with a magnitude A will only achieve a magnitude A in the time domain 

when the phase corresponds to /2, likewise in the wavelet representation, the peak of 

this frequency content will only occur momentarily in time. 

 

Figure 2-29: Wavelet Transform of Trapezoidal pulse 1 kHz to 30 MHz 

The interesting application of the wavelet transform is to identify short time duration 

features which contain radio frequency content.  To illustrate this, the two trapezoids 

shown in Figure 2-28 are evaluated in Figure 2-30 and Figure 2-31 over a frequency 

range of 30 MHz to 100 MHz using the Mexican Hat wavelet at the scales indicated.  

For the trapezoidal pulse, four distinct areas of radio frequency content have been 

identified as corresponding to a discontinuity in the first derivative of the signal.  For 

the trapezoid signal with the overshoot five distinct regions of radio frequency can be 

identified.  In this example the largest magnitude signal can be easily identified in time 

and focused corrective action taken to minimise the radio frequency content in this 

specific area. 
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Figure 2-30: Wavelet Transform of Trapezoidal pulse 30 MHz to 100 MHz 

 

Figure 2-31: Wavelet Transform of Trapezoidal pulse with overshoot 30 MHz to 100 MHz 
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In signals measured from a VSD, it is unlikely that the rise time and fall time of the 

transient signals are equal.  Where the use of the wavelet transform has been 

demonstrated to identify the radio frequency content in the overshoot of the signal, the 

same techniques can be applied to both switch on and off transients. 

Considering the breakpoints described above, all frequencies up to the first breakpoint 

will appear to have a single pulse source of broadband emissions for the duration of the 

rise time.  For the ideal trapezoid, at frequencies beyond the breakpoint, there will be a 

pulse source at both the beginning and end of the rise transient.  As more breakpoints 

are added for the s-ramp, the number of pulsed sources further increases albeit at the 

higher frequencies and for shorter durations. 

2.5 Summary of Chapter 2 

This chapter has collected published information in three important disciplines which 

illustrate in detail how the power stage of a VSD is switched, how voltages and currents 

can travel along cables particularly at high frequencies and how the necessary physical 

structures such as cables and metal work can act as parasitic antennas.  Frequency 

analysis has been carried out on some typical switching transients in an effort to identify 

the potential sources of radio frequency interference in the frequency range of 30 MHz 

to 100 MHz responsible for radiated emissions.   

The switching transients of the IGBT are very dependent on the gate resistor selection 

influencing both the collector current and voltage trajectories.  A study of the switching 

transients highlighted how the current and voltage transients are mostly independent of 

each other and with sophisticated control techniques could be modified to influence the 

high frequency currents. 

The power cable used between the VSD and the motor is a very complex system when 

examined at radio frequencies.  The change in impedance with cable length, bending 

and termination methods provide quantities which are capable of radiating radio 

frequency components present on either the conductors or shield. 

In the frequency range associated with radiated emissions from a VSD, 30 - 100 MHz, 

the rise time of voltage and current transients are of secondary importance.  Short rise 
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times are needed to minimise switching loss and the finer details and the discontinuous 

higher derivatives of the signals are responsible for the radio frequency content. 
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 Chapter 3: Review of Gate Drive Circuits 

3.1 Introduction 

The gate drive circuit acts as the interface between the microcontroller and the IGBT.  

Its primary function is to respond to the logic level signal from the controller and shape 

the signal to a suitable form for the power device.  In addition to the primary function, 

the gate drive must also protect the switching device in the event of a predictable fault 

condition. 

In the description of IGBT switching transients, a simple fixed gate resistor is used to 

control the current flow into the gate of the IGBT.  Sophisticated methods have been 

found in the literature which are designed to meet specific applications and constraints 

for improved protection and performance.  These are achieved by controlling the timing 

and magnitude of the signals applied to the IGBT gate.  As shown in chapter 2, the RF 

content responsible for radiated emissions is confined to specific features in the 

switching transients.  Control of these features using a gate drive offers an opportunity 

to reduce radiated emissions without the need for expensive physical filters.  This 

chapter discusses these gate drive designs and identifies parameters which could be 

useful in the control of radiated emissions. 

3.1.1 Implementation of Gate Drive 

IGBTs are used in many products from VSDs to induction cookers to washing 

machines.  In many of these products, the cost effective solution for driving an IGBT is 

a commercially available modular gate drive.  These tend to include the interface and 

protection circuitry, isolated power supplies and condition monitoring. 

For very cost sensitive applications, the gate drive can be optimised to the user 

specification and constructed from discrete components.  This has the advantage in 

some topologies, where, for example, the over current protection features can be 

executed in a central processor, multiple power supplies can be combined for space and 

cost savings.  

IPMs (Intelligent Power Modules) or “SMART Modules” are modules which have the 

gate control inside constructed on an integrated circuit (IC).  It has been suggested that 
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this is only suitable for small power rating IGBTs due to peak current requirements 

however in [65] a 16A peak gate drive on an IC has been realised.  The combination of 

physically small features required for the logic control of the gate drive and the 

relatively large features required for the high voltage and current requirements needed 

to switch an IGBT can pose significant problems to device manufacturers leading to a 

poor yield [66].  While the IPMs carry a premium price, they have the advantage of 

reduced real estate and component count reducing the system costs.   

Attempts have been made to implement the gate drive on the same silicon as the power 

device [65]. Several problems with this include isolation during fault conditions, 

additional manufacturing processes leading to higher device cost and reduced yield.  As 

silicon on insulator (SOI) processes improve, the associated cost may make this 

technology more favourable [67]. 
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3.2 Inverter Configuration 

The majority of applications for IGBTs are in high powered circuits such as Switched 

Mode Power Supplies and Variable Speed Drives.  The arrangement of the power 

switches are, in many cases, determined by the application and control method. E.g. a 

Matrix converter has nine bi-directional switches, a Full Bridge inverter has six 

switches, and the majority of typical dc-dc converters have one or two switches [68].  

Each switch construction depends on the power rating of the application.  There are 

economical and technical restrictions on the size of the silicon which can be used to 

manufacture an IGBT [69].  To achieve higher power ratings, the chips need to be 

connected in series, parallel or both.  The gate drive requirements depend on the chosen 

configuration.  

The gate drive circuitry is only one piece of the complex VSD circuitry and as such 

requires an interface to a microprocessor for control signals.  The required interface can 

depend on the operation voltage, power topology, and number of IGBTs to be 

controlled.  It is assumed that all the control or sensor signals can be transmitted into the 

gate drive without delays or interference and these aspects will not be considered 

further. 

3.2.1 Single IGBT 

For low power circuits, a single IGBT chip solution is the simplest and cheapest 

solution.  The smallest IGBTs commercially available are rated at 1 A, 600 V.  The 

largest single chip IGBTs are rated at 300 Amps, 1200 Volts and are limited by thermal 

performance [70]. 

IGBTs do not have a body diode and need to have an anti-parallel diode to allow reverse 

conduction for inductive loads [71].  The diode is usually contained within the same 

package to minimise the stray inductance.  Small packages have low inductance and can 

have good thermal performance as they are not affected by the proximity of other 

devices [72].  



Chapter 3: Review of Gate Drive Circuits 

______________________________________________________________________ 

60 

3.2.2 Series IGBTs 

To achieve a higher blocking voltage using IGBTs, it can be useful to connect several 

devices in series.  This will give good results when the devices are static (i.e. either on 

or off).  When the devices change state, (switch on or switch off), it is important that the 

transient voltage is shared across all devices evenly to avoid excess stress to single 

devices.  Snubber networks are the traditional method for implementing the series 

connection of IGBTs by matching all the transients to the slowest device.  Snubber 

networks are bulky, dissipate energy, have a high component count taking valuable real 

estate and often suffer from low reliability [73]. 

Active gate drive controls have been designed to achieve voltage sharing without 

snubber networks [74].  These will be discussed further in section 3.4.2.2.  

Minimisation of switching loss is usually a secondary requirement in comparison to 

voltage sharing.  A small increase in IGBT loss can be tolerated in large systems where 

efficient cooling systems can be implemented, whereas incorrect voltage sharing will 

lead to device destruction. 

Allowing a system to operate at a higher bus voltage for a given power rating may offer 

significant benefits which may include: a lower operating current, smaller and cheaper 

power connectors and external equipment [73].  This needs to be balanced against the 

additional cost of the high voltage system.  While the dVce/dt of individual IGBTs can 

be controlled to a defined level, the dV/dt of the series connected system could be very 

large giving rise to EMI issues which may require additional filtering. 

3.2.3 Parallel IGBTs 

There are physical limits to IGBT cell current density and manufacturing limits to 

device chip area to meet satisfactory production yields [11].  To increase the current 

capability of a power switch, it can be useful to connect several IGBTs and diodes in 

parallel.  This can be achieved by paralleling discrete components or Si (silicon) chips 

within a module.  It is important that each device operates within its safe operating area 

at all times to avoid failure.  This can be difficult to control due to temperature 

differences across a module and parasitic elements exaggerated by the parallel 

connections.  Individual monitoring of IGBT chips is costly and often safety margins 
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are included in the system design especially in the switching characteristics to protect 

the worst case device. 
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3.3 Design Considerations 

The design of a gate drive for a commercial product must satisfy the functional 

specification and must provide protection to the power devices in the event of a likely 

fault condition.  While measurements of radiated emissions are not considered under 

fault conditions, several techniques implemented for protection highlight control 

parameters of the IGBT which can be influenced by the gate drive.  Several circuits are 

considered here to illustrate methods of voltage and current control by shaping the gate 

transient. 

3.3.1 Gate Drive Power Supply 

The most common power supply for an IGBT gate drive is an isolated dc to dc 

converter.  These devices are compact and offer galvanic isolation.  Several gate supply 

rails can be induced from a single primary circuit to save space and component count. 

The industry standard Vge,on for an IGBT control is 15 V. +20 Vge is the maximum 

rating of the majority of devices, limited by the maximum electric field strength allowed 

in the oxide layer.  Operating at a high gate voltage reduces the conduction losses but 

reduces the ability of the circuit to withstand short circuit conditions [66]. 

Negative bias (typically greater than -5V) is often applied to IGBTs to increase the 

immunity to dV/dt from the complementary power device switching.  Negative bias is 

not always necessary if other protection is provided.  The positive and negative gate 

supply voltages and impedance will affect the switching losses however this can be 

compensated for with the correct choice of gate resistor [75]. 

When choosing the gate drive power requirements, the gate charge data and not the gate 

capacitance should be used.  This is due to the Miller effect where the gate capacitance 

changes with the applied collector emitter voltage [76].  The large peak power to charge 

the gate only flows during the device switch on and off transient.  The average power 

may be several orders of magnitude less than this.  All components in the gate drive 

must be suitably rated to survive the peak power dissipation and average dissipation for 

the designed switching frequency.  
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For some gate drive topologies, monitoring of the supply voltage is necessary to avoid 

IGBT failure in the event of a voltage dip, for example, a reduction in gate voltage 

during the on state could cause the IGBT to operate in the active region leading to high 

power loss and thermal failure.  The supply impedance must be low to supply the large 

peak currents during switch on and off the IGBT.  If there is active under-voltage 

detection, it is important that this does not become unstable when switching the large 

peak currents [66]. 

3.3.2 Dead-Time Interlock 

IGBTs take a finite time to change state from low impedance to high impedance and 

vice versa.  In most inverter output stages, two devices are connected across a high 

voltage dc bus with the midpoint connected to the output terminal.  It is important that 

the devices are not allowed to conduct current at the same instant to avoid a shoot-

though [68].  A delay must be incorporated into the system to ensure one device has 

completely switched off (including tail current) before the other switches on.  This can 

be implemented in either software where a defined dead time or blanking period is 

included in the PWM signals, or in hardware. 

3.3.3 Temperature Sensing 

Temperature monitoring of the IGBT plays an important part in achieving the maximum 

IGBT performance.  Although the characteristics of the IGBT change with temperature, 

a study using this feedback to control the switching characteristics of the gate drive has 

not been found.  It is important when measuring the switching losses for online 

monitoring that it is carried out at the worst operating temperature [27].  While the 

characteristics of the device change with temperature, the additional expense to a gate 

drive of adapting to this may not be justified by the benefit of tracking the reduced 

losses. 

3.3.4 Overvoltage Protection 

During the switch off of an IGBT, the voltage across the device increases to the dc bus 

voltage.  As the current through the device begins to fall, the rapid change in current 

(dIc/dt) can produce a voltage across the parasitic inductances of the power loop 

consisting of the electrolytic capacitor, laminated bus bar and IGBT module bond wires.  
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A circuit designer must ensure that any voltage overshoot does not cause the IGBT to 

operate outside its SOA as this will lead to failure. 

It is possible to use active clamping methods to restrict the overvoltage during switch 

off as described in [77, 78] where a metal oxide varistor (MOV) or Zener diode in series 

with a blocking diode are inserted between the collector and gate to provide feedback 

(see Figure 3-1).  As the collector voltage increases beyond a designed limit, the 

feedback device conducts current into the gate terminal, charging the gate capacitance 

and increasing Vge. This action allows the IGBT to continue to operate in the active 

region reducing the dIc/dt hence limiting the voltage overshoot.  This is a low cost 

circuit to implement however achieving a reliable and repeatable performance is 

difficult due to the temperature dependence of MOVs and Zener diodes.  The value of 

the gate resistor must be chosen to ensure the gate plateau voltage is above the threshold 

voltage to avoid a delayed response [27].  

C

E

Zener MOV

G

 

Figure 3-1: Illustration of MOV or Zener used for overvoltage control 

3.3.5 Over-Current Protection 

For most gate drives, knowledge of the current is not required during normal switching 

and it is usually left to the microcontroller to switch the IGBTs.  However, many gate 

drives include protection features which detect fault currents. 

Uncontrolled over-current in an IGBT can drive the device out of saturation.  This 

causes the collector emitter voltage to increase leading to high power dissipation which 

can result in a thermal failure.  The types of faults which cause high currents to flow can 

be split into two categories: hard short circuit and soft short circuit.  The protection 

features for each case need to be considered separately. 
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Both hard and soft short circuits cause the IGBT to enter its active region.  In this 

condition, the output current is related to the gate voltage by the transconductance.  By 

monitoring the gate voltage, the short can be detected and the device switched off 

before damage is incurred [79].  In many gate drives, Vge is clamped to a maximum 

voltage using a Zener diode, restricting the maximum fault current.  By limiting the 

current, the gate controller may have more time to operate before the device is 

destroyed. 

When a load is connected to an IGBT via a long cable, the cable has a significant 

capacitance which must be charged as discussed in section 2.3.3.  This cable charging 

introduces large current spikes for a short duration at the beginning of each switching 

cycle.  It is important that these spikes do not cause damage to the IGBT.  

3.3.5.1 Hard Short Circuit 

During a hard short circuit, for example, a cable short or incorrect installation, the 

output phase current rises to a high level causing the IGBT to saturate.  Vce rises as the 

trajectory moves along the operating curve determined by the applied gate voltage, 

towards the desaturation boundary further increasing the loss in the device.  A 

protection circuit must act very quickly to limit the current by reducing the gate voltage 

and turn the device off.  This is in the order of 10 s to avoid thermal destruction of the 

device [66].  It is important that switching off an IGBT from the short circuit condition 

is carried out in a controlled manner to limit the dIc/dt and hence a dangerous voltage 

overshoot arising from the parasitic inductance of the circuit. 

3.3.5.2 Soft Short Circuit 

During a soft short circuit, the current rises to a level above the continuous current 

rating of the device.  This current can only be tolerated for a short period of time (up to 

a few ms depending on the current level) before damaging the device.  Such a fault may 

be the result of insulation break down in a long cable or the electric machine. 

In the protection method proposed by [80], Vce is used in conjunction with an RC filter 

to curve fit the protection to the SOA of the device during switch on (see Figure 3-2).  

In the event of the current approaching the SOA limit, the voltage across the IGBT 
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would increase.  This would reduce the current flowing from the gate circuit through D2 

and direct it through the RC network switching on MOSFET M1.  By using M1 in its 

active region, the IGBT gate capacitance would be discharged limiting the collector 

current but would not necessarily switch the IGBT off.  Using the RC network allows 

the device to operate to the limits of the SOA before switching off and may avoid 

tripping the VSD in an emergency situation.  As the capacitor is discharged slowly 

through R3, the cumulative effect of soft short circuits would be captured. 

While this proposed gate drive does offer protection to soft shorts, there are several 

challenges with using this type of gate drive.  The gate power supply must provide a 

continuous current source which reduces the advantage of the IGBT voltage control 

input.  The current limit for a given IGBT’s SOA has been determined from the thermal 

properties of the silicon chip.  It is not possible to operate at all points within the SOA 

continuously without destroying the IGBT requiring some method to signal to the 

control system that a fault has occurred and followed by the switching off of the device. 
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Figure 3-2: Gate Drive offering protection against soft shorts for limits of SOA. 

As with the hard short circuit case, the voltage overshoot would need to be considered 

to avoid stressing the device (an additional resistor in series with the MOSFET would 

achieve this). 
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3.3.6 Switching Loss  

Switching loss in an IGBT depends on many operating conditions.  Losses given in a 

datasheet only represent the losses due to the collector voltages and currents and do not 

include the dissipation in the gate as they are small in comparison [26]. 

As the gate voltage increases beyond the threshold, the collector current begins to 

increase.  This will increase to a peak value equal to the sum of the load current and the 

peak reverse recovery current in the free-wheeling diode.   The collector emitter voltage 

across the device will reduce slightly due to the parasitic inductance in the power loop, 

however, it remains at approximately the dc bus voltage.  When the collector current has 

reached its peak value, the current can then reduce to the load current.  The voltage 

across the device reduces to a small value related to the output current.  Integrating the 

product of the voltage and current during this period gives the switching energy 

dissipated as heat in the device.  The reverse of this process is repeated for switch off. 

Emitter inductance provides an unwanted feedback to the gate drive during switching 

transients with the effect of reducing the gate voltage as measured on the silicon during 

switch on and increasing the gate voltage during switch off.  This has the result of 

increasing the switching time resulting in an increase in switching loss.  This inductance 

becomes very important when switching parallel devices as it may lead to current 

sharing issues [81].  As the IGBT current rating increases, an additional emitter terminal 

(Kelvin Emitter) is added to the gate circuit to remove the influence of the load current.  

A large part of the switching losses during switch off are due to the tail current.  This is 

due to the charge stored in the base of the IGBTs BJT as discussed in chapter 2 and 

cannot be influenced by the gate voltage [71]. 

3.3.7 Conduction Loss 

When an IGBT is held in the off state, a leakage current in the order of several A can 

flow through the device.  The power loss associated with this leakage current is 

insignificant compared to switching losses and on state losses.  Conduction loss in an 

IGBT can be approximated by the sum of the voltage drop across the p-n junction and 

the voltage drop across the (on-state) MOSFET multiplied with the output current [71]. 
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The voltage drop across the MOSFET appears as a resistive drop increasing with 

collector current.  In the saturation region, the voltage across the MOS junction is 

directly related to the applied gate emitter voltage.  Increasing the gate voltage reduces 

Vce(sat) hence reduces the conduction losses.  When the gate voltage is increased, the 

available current under a short circuit condition also increases.  To protect against this 

situation, a very fast protection circuit is required [81]. 
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3.4 Control of Switching Transients 

The switching transients under normal operation are conventionally controlled with the 

selection of the gate resistor.  Several reasons for improved control for specific 

applications are discussed in this section with both passive gate drives and active gate 

drives controlling the entire switching cycle, specifically  dVce/dt and dIc/dt control. 

In the literature, many references are given to the influence of dV/dt and di/dt on EMI 

[59-61]. Special attention is given to circuits which apply special techniques to control 

these features.   

3.4.1 Passive Gate Drive 

The Conventional Gate Drive (CGD) is passive consisting of just a resistor to control 

the switching characteristics.  Designers of early IGBT gate drives adjusted the value of 

the gate resistor (Rg) to limit peak current during switch on and limit voltage overshoot 

during switch off [71, 82]. With improvements in the diode performance for fast 

switching applications, the stored charge in the diode has been reduced, reducing the 

peak reverse recover current and this is no longer the major concern when choosing the 

gate resistance.  With advanced IGBT module and dc bus layout, the stray inductance 

has been reduced which in turn reduces the voltage overshoot at turn off.  Different 

values of gate resistance can be used for switch on and switch off by utilising a diode to 

control the current flow [83].  In more recent application notes [84-86], reference has 

been made to use of these resistors to control EMI however the actual value to be used 

must be determined by trial and error. 

A small modification to the CGD circuit has been proposed in [87] by using a capacitor 

(Cx) connected across the gate emitter terminal (See Figure 3-3).  It was suspected that 

the EMI measured from the VSD resulted from the current ringing driven by the dIc/dt.  

During switch on, the increased capacitance in series with the gate resistor slows the 

dVge/dt thus reducing the dIc/dt (as linked via the transconductance).  As the capacitance 

is increased, a smaller gate resistance can be utilised for the required dIc/dt.  During the 

Miller plateau, the gate voltage remains constant, the voltage across the capacitor has no 

effect on the gate voltage or dVce/dt profile.  However, the reduced gate resistance 

allows a larger gate current to flow into the gate charging Cgc. The voltage fall time is 
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thus reduced resulting in a reduction in switching losses.  An attempt at radiated 

emission comparison has been carried out [87] using a loop antenna which shows a 

small reduction in switching loss and a significant reduction in noise emissions with this 

gate drive as illustrated in Figure 3-3. 
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Figure 3-3: a) CGD with Cge added; b) Change in switching loss and emissions with modified gate drive [87]. 

In [88], the RC network used above was expanded to a T network formed by two 

resistors and a capacitor (see Figure 3-4).  With the particular IGBT under test, it is 

found that the current flow needed to charge Cgc is not all supplied by the first gate 

resistor (Rext), instead, the voltage at Vge droops a little as charge is taken from the 
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IGBT parasitic Cge causing current to flow from the external gate capacitor (Cx) via Rint.  

The values of Rint and Cx are used to control the dVce/dt where Rext is used to control 

dIc/dt.  Correct sizing of the passive components is found to result in a reduction in time 

for Vce to fall but more specifically, the paper indicates a reduction in tail voltage 

related to the size of the capacitor.  The initial specification for this circuit is for a 

reduction in switching loss for a defined dIc/dt limit for the purpose of EMI 

performance however the reason for this limit and the type of EMI is not discussed. 
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Figure 3-4: T – Network and gate current waveforms. 

It has been shown in [89] (as discussed in chapter 2),  that the collector current during 

switch on can be related to the input voltage Vge during the phase from Vt to the 

beginning of the Miller plateau.  During the Miller plateau, the gate voltage is 

determined by the load current.  In the proposed gate drive, the reference voltage Vref is 

increased to the maximum Vcc (see Figure 3-5).  The gate voltage at the chip cannot be 

changed during the Miller plateau using a driver circuit.  The gate current can still be 

controlled during the Miller plateau.  Any additional voltage applied by the gate drive is 

dropped across the gate resistor.   
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Figure 3-5: Gate profile shaping using an RLC network [89] 
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The gate voltage shaping circuit consists of a simple RLC circuit (see Figure 3-5) and a 

current buffer.  While the values of the components have been calculated to control the 

rise time of Vge, the circuit topology is not much different from the conventional gate 

drive.  However, by placing these components before the current buffer circuit, high 

current can be applied to the gate terminal during the Miller plateau. 

A gate resistor has been used by [84, 89] to damp the oscillating circuit consisting of the 

gate capacitance, and gate and emitter parasitic inductance.  The resistance needed for 

damping is several times smaller than that recommended by the IGBT manufacturers.  

This circuit is simple to implement and gives good control over the switch on dI/dt.  

Switch off characteristics have not been discussed.  The dI/dt can be calculated and 

predefined for any IGBT with only a change in buffer and damping resistor needed. 

The gate drive shown in Figure 3-5 is evaluated in [90] for short circuit protection 

during a hard short circuit.  This circuit relies on the IGBT saturating, and entering the 

active region.  When operating in this mode, the dIc/dt can be related to the dVge/dt with 

the transconductance.  Using this relationship, the gate drive can switch off the IGBT 

with a limited dI/dt avoiding large overshoots. 

During normal switch off operation, the proposed gate drive would continue to shape 

the gate voltage with the same gradient as switch on.  Unfortunately, this would not give 

optimised control during switch off as the controlled gradient would take place as the 

voltage was falling and during the Miller plateau and would most likely be negatively 

biased during the current rise phase.  The switch on delay associated with increasing the 

gate voltage to the threshold voltage has not been considered with this proposal. 

For many applications, accurate control of the voltage transient is not required and the 

objective of the gate drive is to obtain the shortest possible switching time to minimise 

losses.  The patent described in [91] uses a simple passive capacitor positioned from the 

+15 V supply to the IGBT gate terminal as shown in Figure 3-6.  This can give an 

advantage by reducing the period of instability as Vce begins to fall by minimising the 

dip in the gate voltage by providing a low impedance path to provide charge to Cgc.  

While this method can reduce the switching losses, care is required in the power up 

sequence of such a circuit.  As the gate drive power supply voltage increases at power 
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up, a transient current pulse will flow increasing the gate voltage created by the 

potential divider of the internal Cge and external capacitance Cx.  This can momentarily 

turn on the IGBT causing shoot through and possible device failure if the dc supply is 

present on the IGBT collector. 

Rg

+V

-V

Cx

0V
 

Figure 3-6: Insertion of capacitor to improve stability of voltage transient. 

3.4.1.1 Sensing Using Gate Emitter Inductance 

Igarashi et al have proposed the use of current feedback within the gate drive to control 

the gate resistance [92].  A pulse transformer has been included in series with the 

freewheeling diode to indicate the point where the current begins and ends its transition 

(see Figure 3-7).  During the current ramp, the gate resistance is increased using a 

MOSFET to restrict the current rise time.  While this circuit has slowed the switching 

transient, oscillations on the voltage transient have resulted from the additional 

inductance.  
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Figure 3-7: Pulse transformer in series with freewheeling diode for current measurement 

 This method for current control has been improved in [93, 94] where the voltage drop 

across the emitter stray inductance is used to measure dI/dt.  A Zener diode is used to 

reduce the gate current if dI/dt exceeds a defined level removing the active components.  

The rated voltage of the Zener diode limits dI/dt where the value of resistor Rz 

determines the proportional gain for adjusting the gate current. A circuit diagram is 

shown in Figure 3-8.  
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Figure 3-8: dI/dt control using a Zener diode 
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The problem with the proposed dI/dt control using a Zener diode as the feedback 

device, is that the maximum Vge will be limited to the threshold voltage of the Zener 

diode during the IGBT on state (Vz = 12.5V in the example).  Operating an IGBT at a 

low gate voltage will increase the conduction losses in the device significantly.  While 

this circuit has been shown to provide dI/dt control, the current rise time is limited to 

600 ns which further increases the dissipated loss compared to open loop control with 

the same gate resistance.  The temperature dependence of the Zener diode threshold also 

needs to be considered for this design. 

3.4.2 Active Gate Drive 

Gate drives may contain many active components to realise features such as short 

circuit protection and are referred to as Active Gate Drives (AGD).  This section will 

only analyse driver circuits where the switching characteristics are actively controlled 

during normal operation of the device.  Initially the implementation of gate drive 

designs which control the entire switching profile will be presented.   

3.4.2.1 Complete Profile Gate Drives 

3.4.2.1.1 Three Stage Gate Drive 

A 3 stage AGD for a single IGBT has been proposed and evaluated by Vinod [84]. The 

aim of this gate drive is to limit dI/dt and dV/dt to avoid current and voltage overshoots 

when switching in a hard switched half bridge circuit. 

This design has three different modes of gate control which are selected by the 

microcontroller and output waveforms (see Figure 3-9):  

 Stage I - Rapidly increasing Vge from –Vge to Vt. 

 Stage II - Limit dI/dt. 

Stage III - Rapidly increasing Vge to Vgemax. 

The three stages are reversed for switch off with both dV/dt and dI/dt limited in stage II 

(see Figure 3-10). 
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Figure 3-9: Switch on waveforms [84] 
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Figure 3-10 : Switch off waveforms [84] 

To implement this circuit, two MOSFETS, six BJTs, ten resistors and a logic controller 

are required as shown in Figure 3-11 (a biased gate supply voltage has been assumed). 
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Figure 3-11: Three stage gate drive 

For switch on Stage I in Figure 3-9, M1 is switched on for a predefined time allowing a 

high current to charge the gate to the threshold voltage.  R1 is used to limit the peak 

current and provide damping in the gate drive.  B1 is used in the active region to control 

the current during Stage II.  The end of Stage II is detected using the parasitic 

inductance between the Kelvin and power emitter.  M1 is switched on again to bring Vge 

up to the 18 V supply voltage.  

The proposed circuit has effectively reduced both switch on and off times which would 

result in better current loop performance.  Stage II of this circuit has been designed to 

limit dI/dt to reduce the peak recovery current and associated ringing due to snap off by 

utilising a gate current control as opposed to the more commonly used voltage control.  

Emissions measurements have not been presented to confirm if this has reduced the 

EMI as claimed by Vinod.  By reducing the maximum dI/dt, the waveform has changed 

significantly resulting in longer switching time for stage II.  The increased gate current 

during the Miller plateau has increased dV/dt and the overall switching time is 

comparable to the CGD, however the switching losses have increased by approximately 

20% for a gate resistance of twice the datasheet value. 

The use of the voltage difference between the Kelvin emitter and power emitter to 

indicate the end of the current pulse is an interesting feature as it allows the gate drive 

circuit to adapt to different load currents.  As identified in the transconductance 
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equation ( 2-14 ), the load current does not change linearly with Vge, hence the imposed 

limit on the gate current will not give a constant di/dt over the entire rise time.  The 

limit must be set for the highest collector current to be used resulting in a longer than 

necessary turn on delay for low current conditions.  

During switch off, Stage II is initiated as the collector emitter voltage begins to rise.  

Reducing the gate current at this stage increases the switching time and unnecessarily 

increases device losses.  It would have been beneficial to allow the high gate current to 

be extracted until the voltage had risen to the dc bus level and then only reduce the gate 

current to limit dI/dt. However the change-over times are relatively short.  The proposed 

circuit has limited dI/dt and dV/dt but at the cost of increased switching losses when 

compared to the IGBT manufacturers recommended datasheet.  However, if a CGD 

with Rg = 5.6  is required to achieve the necessary dI/dt and dV/dt the losses in the 

AGD would be greatly reduced. 

A similar two stage gate drive has been presented by Wang where the timing for each 

stage is determined using a fixed RC network [95].  High current MOSFETS allow the 

gate current to flow for each stage.  The values of the resistance and capacitance in the 

timing circuit can be different for turn on and turn off and must be selected for each 

IGBT. 

3.4.2.1.2 Feedback Loop 

The function of the gate drive proposed by Schmitt [96] uses an EEPROM to define the 

switching signal for a defined 1 kV/s voltage transient with reduced switching loss 

compared to a CGD.  As previously seen, the switching profile has been split into 

various segments.  The gate current is increased to its maximum value to reduce the 

delay time.  As the collector current begins to rise, the gate current is reduced limiting 

dI/dt utilising feedback from the signal measured from the inductance in the emitter leg.  

Interestingly, the only limitation specified for dI/dt in this paper is the dynamic 

avalanche of the diode.  Vce is monitored using a capacitor and differential op amp.  As 

the voltage begins to fall, the gate current is adjusted to maintain a constant gradient of 

Vce.  A similar closed loop gate drive has been implemented to limit current overshoots 

at switch on and voltage overshoots at switch off [97].  This circuit used a fast op amp 
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to control the rise time in 500 ns.  Care is required to tune the circuit to avoid 

oscillations across the operating dc bus voltage range.   

Schmitt has not described how the use of the EEPROM memory for the gate profiles is 

adjusted for the differing load conditions, however it is an interesting combination of 

digital profile shaping with analogue feedback.  

3.4.2.1.3 Conducted Emissions from a MOSFET 

A two stage resistance controlled gate drive for a MOSFET is presented in [98]. One 

large value of resistor is used to limit dI/dt during switch on and switch off (see Figure 

3-12).  A smaller resistor is used during the Miller plateau to increase the switching 

speed hence increase dV/dt for the falling voltage.  The timing for the second resistor is 

controlled from an external processor although the details are not discussed.  This paper 

shows that the conducted emissions reduce if the MOSFET is switched slowly and that 

the switch on of the device has a greater impact on emissions than switch off.  It is not 

clear whether the dI/dt’s are the same for the CGD and the 2 stage gate drive.  Without 

this information, the results of this paper in terms of evaluating the gate drive for 

conducted emissions are inconclusive.  
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Figure 3-12: Switched resistance gate drive 

3.4.2.2 Methods to Control dVce/dt 

3.4.2.2.1 dV/dt Control for Series Devices 

Several papers have been published by Palmer for active voltage control whereby the 

IGBT collector emitter voltage is actively controlled within a feedback loop for series 

connected IGBTs [73, 74].  A predefined input signal wave shape is created using an 

integrator circuit (see Figure 3-13).  The output voltage ramp is measured using a 

voltage sense capacitor for each IGBT.  The difference between the feedback signal and 

the demand ramp, results in a control signal used to drive a high current buffer for the 

IGBT gate.  A gate resistance is used to maintain stability of the control loop.  The 

small signal performance is limited by the input capacitance in the presence of the gate 

resistor. 
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Figure 3-13: Feedback gate drive circuit for dV/dt control 

When several IGBTs are connected in series, it is important that all the devices switch 

together.  When the devices are on (low Vce), Cgc is greatest hence the lowest 

bandwidth.   

In [74], an initial bias step has been added to the control signal to ensure all IGBTs are 

in the high bandwidth controllable region before the dV/dt control is implemented (see 

Figure 3-14). 

 

Figure 3-14: Bias Step added to Voltage demand 

The limit of the bandwidth is determined by the IGBT and gate resistor, however details 

are not given of how this translates to a maximum dV/dt.  A limitation imposed by the 

bandwidth may restrict the control of radio frequency components responsible for 

radiated emissions. 

Very high bandwidth op amps are required to give adequate voltage control.  A 180 

MHz controller has been used in [99]. The amplifier gain and feedback gain are 

adjusted and an additional active snubber is placed between the collector and gate.  This 

resulted in a controlled dV/dt of 2.7 kV/us.  The addition of the active snubber allowed 
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the control loop to be stable with a smaller value for the Rg, resulting in lower switching 

losses.  Exact details of the active snubber circuit have not been provided. 

Park has used a feedback capacitor from the IGBT collector to sense the change in Vce 

[100].  This has been utilised with a current mirror to alter the current injected into the 

gate terminal.  The required dV/dt for both switch on and off can be determined by 

adjusting the parameters of the current mirror.  While it has been shown that this control 

works well over a range of dc bus voltages, the fastest controlled rise time when 

operating at 600 V is 2.3 kV/s giving a rise time of 260 ns which is not particularly 

quick. 

3.4.2.2.2 dV/dt Limiting 

In [93] dV/dt is sensed and differentiated using a capacitor connected to the collector.  

In this setup, dV/dt is not controlled, just limited by reducing the gate current if the 

dV/dt exceeds the required limit.  The details of the opamp have not been included.  The 

ramp is limited to 1 kV/s.  This is not a particular fast rate and as such has increased 

the losses in the device, however losses are not the most important control item in this 

case. A similar dV/dt control is used in [94]. 

3.4.2.2.3 dV/dt Control for Conducted Emissions 

A dV/dt control strategy presented in [101] uses a four stage resistor control to get a 

good compromise between conducted emission and IGBT performance.  Only one 

resistance value is used during a switching cycle the value of which is chosen depending 

on the output current.  In this case compliance to the standards required the average 

conducted emissions to be below a defined limit.  The dV/dt and magnitude of 

emissions for a given gate resistor value is measured.  By using a small resistor at high 

output currents, the switching loss could be reduced at the sacrifice of higher conducted 

emissions.  At lower output currents, the switching loss increase is less significant 

compared to the reduction in conducted emissions.  
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Figure 3-15: Gate drive schematic for control of conducted emissions. 

Figure 3-16 illustrates the choice of resistance value.  The optimisation function 

indicates the ratio between switching loss and conducted emissions.  A lower 

optimisation function gives the best solution.  This diagram indicated a different resistor 

value in 4 different current regions. 

 

Figure 3-16: Optimisation of four stage dV/dt control [101] 

In an application with a fixed frequency output, four different values of gate resistors 

are used giving, on average, a reduction in loss and also passing the conducted 

emissions standards.  This circuit would not be effective for variable frequency products 
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as the benefit of the averaging of conducted emissions could not be used for stationary 

vectors or low output frequencies.  However, such a circuit may find a use in a fixed 

frequency application such as a dc to ac converter supplying power to a mains network.  

In this case, the noise is measured using an average detector in which high levels of 

noise can be tolerated for a short period of time.  Most radiated emissions standards for 

a VSD require measurements to be made using a peak or quasi peak (QP) detector with 

a 120 kHz bandwidth. In these cases it is not possible to take advantage of averaging the 

noise. 

3.4.2.2.4 Parallel Gate Current Source / Sink 

In [86], the author is only concerned with limiting conducted EMI (150 kHz – 30 MHz).  

To achieve this, a conventional gate resistor is used to limit dI/dt during switch on and 

switch off to a value where conducted emissions would pass the test.  To minimise the 

switching loss, high gate current is applied to the gate in parallel to the gate resistor 

during the Miller region to increase the dV/dt.  By reducing the time for the voltage to 

fall, the switching losses have been reduced.  The point where the high current is 

enabled is determined by sensing the gate voltage.  This solution would work for all 

values of output current.  The dynamic performance of the current source is not 

discussed however, it is suspected that without some damping resistance the gate 

voltage of the IGBT may oscillate causing unwanted EMI.  Radiated emissions and the 

snap off performance of the diode are not considered. 
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Figure 3-17: Block diagram of high current gate drive. 
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3.4.2.3 Methods to Control dIC/dt 

3.4.2.3.1 Feed Forward Gate Drive 

In [100] a small external inductance has been added in series with the emitter of the 

IGBT.  The change in current through the inductor is detected as a voltage and used to 

actively control the gate voltage via the device transconductance to control the gradient 

of the current.  This method has been shown to work well and the rate of change of 

current can be programmed by the correct selection of components in the current mirror.  

This circuit is also evaluated with the dV/dt control discussed earlier without any 

detrimental interaction.  However adding additional inductance in series with the emitter 

is not usually desirable due to the resulting voltage overshoot at turn off.  In the 

example given, the rate of change of both voltage and current have been restricted 

without consideration of switching loss. 

3.4.2.4 2 Stage Switch Off 

In [94], a 2 stage switch off has been implemented to limit the dI/dt and hence limit the 

voltage overshoot.  A schematic for the gate drive can be seen in Figure 3-18.  As Vce 

begins to rise beyond 15 V, the low gate impedance path through the MOSFET T2 is 

disabled giving a higher gate resistance for switch off. 

In an ideal driver circuit, the high impedance gate drive should not be used until the 

moment the collector current begins to fall.  By sensing for a change of 15 V in Vce, the 

high impedance may switch on too early unnecessarily increasing the device losses.  

The driver circuit would have to include the time delay between detecting the voltage 

rise and changing the impedance of the gate path.  This would be different for every 

IGBT and would have to be calculated.  
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Figure 3-18:Two stage switch off gate drive 

3.4.3 Reduction of EMI 

Radio frequency electromagnetic interference (EMI) can be separated into four 

categories and the limits given in standards for VSDs [2]: 

 Conducted Emissions 

o 150 kHz to 30 MHz signals imposed onto the power cables from the 

equipment under test (EUT) and transmitted to the mains supply 

network. 

 Conducted Immunity 

o The EUT should function correctly when radio frequency signals from 

other equipment are coupled onto the supply and control cables. 

 Radiated Emissions  

o Signals in the frequency range 30 MHz and above radiated from the EUT 

and associated cables.   

 Radiated Immunity. 
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o The EUT should function correctly when subjected to an electromagnetic 

(EM) field at a defined field strength and frequency range.  Radiated 

immunity does not tend to be a problem for IGBTs due to the relatively 

large voltage thresholds and capacitances in the gate drive circuits.  

These interference limits are concerned with protecting other products however care 

needs to be taken within a VSD to ensure immunity to its own switching signals.  An 

example of this within the gate drive is the current which flows through parasitic 

capacitances in the IGBT due to the high dV/dt which can falsely trigger the 

complementary gate drive.  This is often protected by a negative gate supply rail or 

additional external gate emitter capacitances. 

Depending on the application of the product, each of the EMI categories will have 

permissible limits defined by product standards.  For both conducted emissions and 

radiated emissions, detailed linkages between IGBT switching and EMI need to be 

evaluated, however, the papers researched above indicate a relationship between dI/dt 

and dV/dt and the measured emissions where in general, faster switching of IGBTs is 

related to increases in EMI however there does not appear to be an appreciation of the 

exact mechanisms involved.  This lack of clarity is reflected in the presented solutions 

where some gate drives control dI/dt, while others control dV/dt and both claim to 

reduce EMI emissions.  Given the references to both dI/dt and dV/dt control when 

considering EMI, it is important to understand whether the signals measured in a 

radiated emissions setup are related to the electric or magnetic field. 

In many circuits output transients have been controlled using snubber components on 

the high power side of the device [93].  These components can be large, expensive, 

dissipate power and if not damped correctly can lead to resonance at radio frequencies. 

In an effort to reduce emissions, the active gate drive proposed in [84] is evaluated in 

[85] by comparison to a conventional gate drive.  It is interesting to note that during 

testing, both gate drives operated with the same dI/dt (100 A/us).  Both conducted 

emissions and radiated emissions are measured.  In both cases, the emissions were 

reduced using active control. This would imply that both emissions depend on dV/dt.  In 

other papers [86], dI/dt are cited as responsible for the conducted emissions. 
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Several papers refer to oscillations between parasitic capacitance and inductance within 

the modules as a cause of the measured radiated emissions.  Voltage and current 

waveforms have been captured but do not clearly indicate any oscillations.  The 

resonant frequencies of the loops in a module and estimates of the circulating current 

have been used to identify the emission sources however, the influence of the cable has 

not been considered for these tests [102, 103].  It has been found from measurements, 

that a motor cable must be attached between the VSD and motor for any significant 

radiated emissions.  The frequency analysis of a trapezoidal waveform presented in 

chapter 2 has shown that oscillating features do not need to be present for a signal to 

contain radio frequency components. 

To illustrate how a pulsed signal can be translated into narrow band oscillations, an 

example of a plucked guitar string can be used.  When a guitar string is plucked, (step 

input), the string will oscillate for some time at a defined frequency.  If you pluck it 

harder, the frequencies remain the same but the amplitude increases.  The same analogy 

can be applied to an antenna structure such as the cable where a step input EM wave is 

applied.  Natural frequencies will resonate transmitting higher emission levels than 

other frequencies.  The duration of the oscillation depends on the damping in the 

antenna at that frequency and the magnitude of the step input.  The receiver averages the 

measurement over a time period defined by the bandwidth (discussed in chapter 4.6).  

Likewise, a step input to the receiver can give varying levels of narrowband 

measurements. 

Attempts have been made by Rosales to create a three dimensional model of a drive and 

motor system connected via a cable and to evaluate this system for both radiated and 

conducted emissions utilising finite elements [104].  It is encouraging to find research 

into this area, however at present the models lack the necessary detail to accurately 

describe a practical system over the wide frequency range. The emissions sources have 

been modelled as time harmonic waves, the cables have solid shields and the motor 

model is simplified, neglecting the complex impedance of the parasitic capacitance 

between coils and the frame. 
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Several attempts have been successfully made to model the conducted emissions from a 

drive utilising measured or modelled dV/dt signals [105].  This can give reasonable 

accuracy at the lower frequencies associated with conducted emissions for a specific 

system layout however, the accuracy reduces at the frequencies increase.  At present the 

most reliable method to determine the RF content is via measurement on an OATS. 

3.5 Summary of Chapter 3 

This chapter has presented a summary of the published literature on gate drive 

topologies including a description of the main features of the gate drive which are 

related to the switching performance.  The commercial gate drive solutions tend are 

feature rich in terms of protection and cost effective if all features are required however, 

care needs to be taken to ensure the correct driver is chosen for each application.  

Several novel gate drives have been presented where the switching pattern has been 

adjusted to achieve specific results such as voltage sharing in series connections, limited 

voltage overshoots and reduced conducted emissions.  There is a common theme of 

minimising the switching loss in the devices and reducing switching times for improved 

control.  The additional benefit of reducing switching delays using the gate drive 

hardware needs to be balanced against the increased cost and complexity of the circuits 

versus delay compensation algorithms in the control software.  Several of the active gate 

drives have reduced the switching times of the IGBTs and improved control 

performance.  In such cases, the switching time may vary with output load conditions 

and this should be considered when evaluating the benefits to control systems. 

The novel gate drives have demonstrated that it is possible to control or limit dI/dt and 

dV/dt using the gate of the IGBT.  This removes the need for large lossy snubber 

components.  The gate drives performance can be adapted to the operating conditions 

providing optimum efficiency within the IGBT constraints such as voltage and current 

rating.  There appears to be a difference in opinion between gate drive designers to the 

best method of timing the various stages of switching profiles.  Several have opted for 

external, preconfigured times while others use feedback from the output signals.  The 

use of the feedback signals could be subject to noise and must be designed with suitable 
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immunity.  The predetermined time intervals do not adapt to operating conditions and 

may not give the optimum performance. 

Many of the papers presented have attempted to design a gate drive with the intention of 

reducing electromagnetic emissions.  There is disagreement in these papers to the 

source and mechanisms of both conducted and radiated emissions.  This needs to be 

determined before a suitable gate drive can be designed. 

It is clear that the control of the switching transient of an IGBT can be separated into 

stages, related to changes in the output waveforms.  This has been achieved initially 

using open loop control where the shape of the gate emitter voltage transient is shaped 

either passively or with active components corresponding to predefined timing routines.  

These strategies have been further improved with a closed loop performance to 

determine timing between the different stages and then to control the slopes of the 

transient voltages and currents.  While it has been demonstrated that control of these 

features is possible, it is not clear how the dV/dt and di/dt influence the radiated 

emissions measured from a VSD system. 
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 Chapter 4: Practical Measurements of IGBT Switching and 

Radiated Emissions 

4.1 Introduction 

The staged control of an IGBT output voltage and current utilising the gate transient 

was discussed in chapter 3.  Frequency analysis of a typical switching signal with 

different profile characteristics was presented in section 0 where it is shown, for 

example, that for a rise time of 100 ns, the frequencies associated with radiated 

emissions are contained in the fine details at the switching corners and not strictly 

related to the entire rise time.  This chapter will illustrate the ability to control an IGBT 

to remove the features responsible for radiated emissions and define the specifications 

of a gate drive to test for radiated emissions. 

The switching transients associated with IGBTs and diodes are of the order of hundreds 

of nanoseconds duration.  To capture and analyse the transient trajectory of the voltages 

and currents requires equipment with a high bandwidth, high voltage and high current 

capability.  The limits of this equipment will be discussed together with methods to 

improve the measurements.  Several tests are carried out to determine the limits of 

control of the IGBT transient features and their correspondence to the semiconductor 

theory presented in chapter 2. 

The switching transients are heavily dependent on the impedance of the dc link bus bar.  

An analytical study of the impact of switching loss is presented as a guide to future 

design and influence on radiated emissions. 

Repeatable measurements of radiated emissions in an open area test site are not easy.  It 

is important to establish the effect of the setup on the measured results.  The 

requirements for compliance with international standards shall be discussed together 

with precautions taken.  

4.2 Pulse Test Setup 

For a given IGBT operating point i.e. fixed voltage, load current and temperature, the 

influence of the gate voltage is determined with the intention of controlling the radio 

frequency content in the switching signals.  When operating at fixed load current, the 



Chapter 4: Practical Measurements 

______________________________________________________________________ 

93 

transient times for the voltages and currents are constant for each switching pulse.  

Under these conditions, as has been discussed in chapter 3, a feed-forward gate drive 

signal can be used with predetermined timings to control the current and voltage 

transients independently.  A 100 MHz arbitrary waveform generator (ARB) was used to 

generate a programmable gate signal and evaluate the response of the IGBT. 

When evaluating radio frequency content in the transient signals, it is important to avoid 

coupling signals from external sources such as the dc power supply.  A test rig was 

constructed as illustrated in Figure 4-1 with the block diagram shown in Figure 4-2. 

 

Figure 4-1: Photograph of Pulse Test Rig 
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Figure 4-2: Block Diagram of Pulse Test Rig 

The bus bar connects eight 2200 F electrolytic capacitors capable of supporting a dc 

bus voltage of up to 800 V.  The high voltage power supply unit (HV PSU) provides the 
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dc voltage to charge the capacitors when the charge circuit is enabled.  When the dc bus 

is charged, it is isolated from the dc power supply using low capacitance reed relays to 

attenuate any coupled radio frequency signals from the HV PSU (see Figure 4-3). 
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Figure 4-3: Pulse Test schematic 

The pulse test profile can be programmed into the ARB where an initial pulse allows the 

IGBT collector current to ramp up via the load inductor, the switch off transient at this 

point can be captured on the oscilloscope and further analysed.  After a short pause 

where the inductor current is carried in the freewheeling diode, the switch on IGBT 

transient is captured (see Figure 4-4).  The control signals from a microprocessor in a 

VSD give a step change in switching demand at each transition from on to off and vice 

versa.  By using the ARB to control this switching signal, the shape of the transient is 

controlled to evaluate specific features of the IGBT transients.  The current from the 

ARB has been amplified using an emitter follower with a suitable bandwidth. 
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Figure 4-4:  Timing diagram to achieve desired current level 

4.3 Measuring Equipment 

The transient collector emitter voltage, collector current, gate emitter voltage, gate 

current, demand signal and load current are captured using the oscilloscopes 

(DPO7453).  The captured data is analysed using Matlab
®
 to determine the switching 

loss and radio frequency content.  All signals are sampled every 200 ps for 10000 points 

(2 s) to ensure the bandwidth would be adequate for analysis up to 100MHz. The 

voltage probes (PHV641-L) have a bandwidth of 380 MHz while the dc current probes 

(TCP0030) have a bandwidth of 120 MHz.  A time delay of 14 ns is observed between 

the voltage and the active current probes however compensation for this delay is 

included in the Matlab
®
 analysis by time shifting the signals.  The influence of current 

probes and voltage probes on the measurements is discussed below.  Parasitic 

inductance in the module bond wires may lead to the voltages at the chip being 

significantly different to those measured at the terminals [78], however in this 
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investigation, loss measurements are only made for comparison and not used for a 

thermal design. 

A type K thermocouple is attached to the underside of the IGBT module in a channel 

(1.5 mm x 1.5 mm) milled into the copper base plate directly under the IGBT under test 

using Loctite
™

 Output 384 thermal adhesive.  The IGBT is mounted on a power resistor 

(HS300) which is used to heat the device above ambient temperature by controlling the 

applied voltage.  All measurements are taken after the temperatures have reached steady 

state where it is assumed that the IGBT junction temperature is equal to the measured 

case temperature.  Assuming that the switching energy during each pulse test is 

dissipated throughout the entire IGBT silicon volume, a typical energy pulse of 20 mJ 

would cause temperature rise of 4.86°C (See Appendix E).  The effects of temperature 

on the radiated emissions will be considered in chapter 5. 

4.3.1 Measuring Radio Frequency Content from Transient Signals 

The oscilloscope used to capture the switching transients has a bandwidth of 3 GHz and 

is more than adequate to capture signals in the time domain for analysis of frequencies 

of interest up to 100 MHz.  Signals with high frequency content are often used for 

communication purposes or clocks in digital systems which operate at low voltages (less 

than 5 V), however, the voltages switched by the IGBT are several hundreds of volts.  

The vertical resolution of a typical laboratory oscilloscope is eight bits which can be 

extended to ten bits by averaging multiple data captures.  With an IGBT operating with 

a 600 V dc bus, the vertical resolution must be set to at least 100 V per division to 

capture any voltage overshoot which may occur. The minimum voltage increment 

which can be recorded with this setting is 4 V.  Typical time domain switching signals 

are analysed below in the frequency domain using Fourier analysis to determine the 

frequency content.  

As only the transient is captured, there will be a large discontinuity at either the 

beginning or end of the data depending on whether the it is a turn on or a turn off 

transient.  This discontinuity will mask the high frequency content of the transient and is 

usually minimised using windowing.  With a transient signal between two constant dc 

levels, it is possible to completely remove the spectral leakage from the discontinuity 
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while perfectly preserving the radio frequency content.  To implement this, a mirror 

image of the signal about the discontinuity can be created.  The newly combined signal 

(original and mirror image) will remove one of the discontinuities.  The dc component 

of the switching signals are not of interest for the evaluation of radio frequency content 

hence the entire mirrored signal can be offset so the beginning and end values have zero 

amplitude. 

While the actual voltage measurements are necessary to capture time domain 

information, a high pass filter will remove the large magnitude, low frequency 

components while preserving the essential radio frequency content bringing it within the 

dynamic range of the oscilloscope.  Active filters operating with a high voltage and high 

bandwidth are not available so a passive filter, designed to attenuate frequencies at 1 

MHz and below by 100 dB was constructed.  A 6
th

 order filter is required to obtain the 

required attenuation as shown in Figure 4-5.  The frequency response shown in Figure 

4-6 was simulated using SIMetrix
®
 SPICE programme, where 100 dB attenuation has 

been achieved at 1 MHz (blue line).  A measurement of the constructed filter frequency 

response is also shown giving good correlation to the simulation between 5 to 80 MHz 

with some resonance features around 90 MHz due to the parasitic capacitances from the 

layout of the discrete components (green).  The measured results are used in further 

calculations. 

 

Figure 4-5: Passive filter schematic 
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Figure 4-6: Frequency Domain Filter and Wavelet Attenuation 

A measured Vce signal and a Vce signal filtered through the 6
th

 order filter can be seen in 

Figure 4-7a. A Discrete Fourier Transform (DFT) of these signals is given in Figure 

4-7b.  The Fourier analysis of the Vce trace can be seen to have a significant high 

frequency content which rolls off at approximately 20 dB/decade.  This is due to 

spectral leakage from the discontinuity at the beginning of the signal as discussed 

earlier. Fourier analysis of the mirrored signal illustrates how significant this spectral 

leakage can be and uncovers the actual radio frequency content in the signal. 
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Figure 4-7: a) Captured Vce and Vce filtered signals; b) Fourier analysis of voltage signals. 

Due to the limitations in the oscilloscope vertical resolution, the noise floor is reached 

due to quantisation error from the analogue to digital converter when the amplitude has 

fallen by 49.92 dB using the standard equation given in [106].  The analysis presented 

in section 0 has illustrated that a fixed attenuation gives different bandwidths depending 

on the wave shape.  For example, consider two trapezoids with different rise times.  The 

amplitude of the envelope in the frequency of a trapezoid with a rise time of 200 ns has 

decayed by 49.92 dB at 55 MHz.  However for a rise time of 100 ns, a 49.92 dB 

attenuation does not occur until 77 MHz.   

From the observed Vce measurement in Figure 4-7, the rise time is 155 ns however the 

noise floor restricts the measurement of frequency beyond 30 MHz.  This implies that 

the measured signal is not an ideal trapezoid but includes further break points which 

attenuate the higher frequency content.  To accurately measure the frequency content of 

the signal, the lower frequency components must be attenuated before measurement by 

the oscilloscope as illustrated with the high pass filter.  By utilising the passive filter, 
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the frequency where the noise floor begins can be extended towards 200 MHz as the 

vertical resolution on the oscilloscope can be increased.  As the attenuation response of 

the filter is not ideal, the amplitude of the filtered signal can be compensated across the 

known frequency range.  This is shown in the red trace in Figure 4-7b which shows 

good agreement to the unfiltered signal between 5 MHz and the noise floor.   

The Mexican Hat wavelet has a finite duration in the time domain and hence is useful to 

locate the position of frequency components in time with a known accuracy and linear 

phase.  The frequency response of the wavelet with a 30 MHz pseudo frequency is 

shown in Figure 4-6.  

Applying the wavelet analysis to a measured turn on voltage waveform (wVce), features 

with radio frequency components can be identified in Figure 4-8. A corresponding 

signal measured using the physical high pass filter (Vce filter) is shown in magenta. The 

collector current is shown for reference where it can be seen that the diode recovery 

does not display excess snappiness.  The wavelet analysis of Vce has identified four 

peaks of radio frequency emissions which can be correlated to features in the switching 

transient: 

 Point 1: Vce drops due to  Ic beginning to rise (wVce_1); 

 Point 2: dIc/dt reaches maximum rate of change(wVce_2); 

 Point 3:Vce begins to fall as diode supports voltage(wVce_3); 

 Point 4: Vce reaches IGBT saturation (wVce_4). 
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Figure 4-8: Mexican Hat Wavelet Analysis (with pseudo frequency of 30 MHz) of Vce and Vce Filter 

The impulse response for the passive filter is unknown however in comparison to the 

wavelet transform, it would appear to have a longer duration given the series of small 

peaks when the IGBT voltage has fallen to the saturation level.  This gives some 

uncertainty in the time domain location.  While the high pass filter gives more 

attenuation at low frequencies, it requires an additional channel in the oscilloscope 

limiting the choice of signals which can be measured. 

4.4 Dc Bus Bar Configuration  

The dc bus bar in a VSD is used to carry energy from the input rectifier to the dc link 

capacitors and onto the IGBT module where it is chopped by the IGBT switching action 

to give a variable frequency output.  The impedance of this bus bar will influence the 

switching characteristic of the IGBT and needs to be carefully considered in the design.  

This section looks at several simplified equations to determine the impact of the bus bar 

impedance on the switching transient.  While the bus bar may be a physically large 
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structure, it is only the impedance as observed from the IGBT module connections 

which will influence the switching process.  

As described in section 2.2.3.1, before the IGBT switches on, the load current is entirely 

supported by the diode and the current path as shown in Figure 4-9a.  As the current 

transfers to the IGBT, the current loop changes as shown in Figure 4-9b and Figure 4-9c 

during reverse recovery of the diode.  When the device is fully on the current loop is 

shown in Figure 4-9d.  The current transients versus time are shown in Figure 4-10 

along with the voltage induced across the stray inductance.  The stray inductance 

(Lmodule) in the IGBT module is shown as a lumped parameter in series with the IGBT 

emitter.  When the current rises through the IGBT, any inductance in the bus bar (Ls) is 

in series with the module inductance and referred to as (Lstray).  The voltage drop shown 

is resultant from the combination of these inductances. 
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Figure 4-9: Illustration of transient current path at switch on 
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Figure 4-10: Illustration of transient currents and induced voltage 

When the IGBT is not saturated, the rate of change in current is determined by the 

application of the gate voltage via the transconductance.  If the bus bar impedance is 

inductive, then the change in bus bar current gives a voltage drop across the inductance.  

This voltage drop does not affect the current transient provided the Vce is larger than Vce 

(sat) for the applied gate voltage at that instant.  During this transition, the load 

inductance acts as a current source. 

The power dissipated in the IGBT can be calculated from the product of the 

instantaneous voltage across the IGBT (Vce) and the current through the IGBT (Ic) as 

discussed later.  Increasing the bus bar stray inductance reduces Vce during the 

switching transient reducing the power losses in the first region.  There is minimal 

change to the diode reverse recovery process as the diode must block the full dc bus 

voltage at the end of the transient. 
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Figure 4-11: Effect of switch on power loss with bus bar inductance 

The energy dissipated during turn on can be approximated by finding the area of the two 

triangular segments.  During the rise of the collector current (tri), peak power loss is 

given by ( 4-1 ) and during the fall of the voltage by ( 4-2 ). 
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During switch off, the current transfers from the IGBT to the diode and the current flow 

is a little simpler as there are no reverse currents through the devices.  This follows 

reverse sequence of Figure 4-9d, b then a. The transients are illustrated versus time in 

Figure 4-12 with the different power losses depending on the stray inductance in Figure 

4-13. 
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Figure 4-12: Current transient during switch off 
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Figure 4-13: Change in switch off loss with increasing bus bar inductance 

The power loss during the rise of the voltage is not affected by the stray inductance         

( 4-3 ).It can be seen that the energy losses increase with the stray inductance for the 

same di/dt and can be described by equation  expanded in ( 4-4 ). 



Chapter 4: Practical Measurements 

______________________________________________________________________ 

107 

 
    

 
 
            

 

 
    

 
 
        (     

  
   

)
 

( 4-3 )  
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Combining equations ( 4-1 ), ( 4-2 ), ( 4-3 ) and ( 4-4 ) to give the total switching loss, ( 

4-5 ), the energy loss dependant on the stray inductance (EL) can be separated and is 

presented in ( 4-6 ). 
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From ( 4-6 ), it can be seen that the contribution to the total loss due to the stray 

inductance can be either positive or negative depending on the current levels and 

switching times.  The voltage fall time (tfv) is usually larger than the current rise time 

(tri) and apart from very low load currents, Irr is smaller than IL.  The combination of 

these factors leads to a reduction in total switching loss with an increase in stray 

inductance particularly at high currents. Table 4-1 illustrates a case with fixed transient 

times for a range of load currents and two inductance values using equation ( 4-6 ).  

With these transient parameters, increasing the inductance by an order of 10 gives a 

corresponding reduction in switching loss.  



Chapter 4: Practical Measurements 

______________________________________________________________________ 

108 

Table 4-1: Example of Loss Reduction due to Bus Bar Inductance 

 

  

At turn on, the limitation to the maximum inductance which can be used is determined 

by the induced voltage drop is equal to the dc bus voltage minus the IGBT saturation 

voltage.  At this point, the turn on losses have been minimised.  If we assume an equal 

rate of change of current at turn on and off, the same induced voltage is imposed onto 

the dc bus voltage at turn off which can stress the device.  This is particularly important 

during short circuit where the load current can rise very rapidly.  To take advantage of 

the reduction in loss requires careful transient control during switching off of the IGBT. 

In the analysis above, it is assumed that the impedance of the bus bar is inductive.  As 

the voltage overshoots during turn off are often a limiting factor of the switching speed, 

it is common practise to add additional capacitance close to the module to reduce the 

dynamic impedance.  It has been found that this can alter the measured radiated 

emissions [107].  Considering the piecewise transient trajectory, the impact on the 

radiated emissions can be considered using the frequency analysis presented in chapter 

2.  At turn on, the beginning and end of the voltage drop due to the stray inductance is 

related to dIc
2
/dt

2
.  Therefore an increase in the inductance would also increase radio 

tri (ns) 50 tri (ns) 50

tfv (ns) 100 tfv (ns) 100

Irr (A) 5 Irr (A) 5

L (nH) 5 L (nH) 50

IL (A) EL (uJ) Vce drop EL (uJ) Vce drop

1 0.0325 0.1 0.325 1

2 -0.0075 0.2 -0.075 2

3 -0.0575 0.3 -0.575 3

4 -0.1175 0.4 -1.175 4

5 -0.1875 0.5 -1.875 5

10 -0.6875 1 -6.875 10

20 -2.4375 2 -24.375 20

30 -5.1875 3 -51.875 30

40 -8.9375 4 -89.375 40

50 -13.6875 5 -136.875 50

100 -52.4375 10 -524.375 100
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frequency content in the voltage transient unless improved current transient control is 

implemented. 

At turn off, the dIc/dt must be reduced if the inductance is increased to maintain the 

IGBT within its SOA.  As a result the voltage overshoot may occur for longer with the 

same amplitude.  This would smooth the switching transient reducing the radio 

frequency content. 

4.5 Switching Loss Measurements 

IGBT switching loss must be determined by measurement from the final VSD system to 

ensure accurate results.  This is due to both the influence on the losses of the dc bus bar 

impedance and the capacitance of the load cable.  There is agreement among IGBT 

manufacturers on the procedure for calculating the switching energy from the measured 

voltage and current waveforms, however, the time span over which this measurement is 

taken varies.  IR measure loss from the point where Ic has risen to 5% of the load 

current until Vce falls to 5% of the dc voltage, Toshiba use 10% while others use 10% 

rise in Ic until Vce has fallen to 2% [12, 78, 81].  A European standard has been 

published in 2007 [108] which specifies that the switch on energy should be measured 

from the instant when Vge has risen to 10% of the gate supply voltage to the instant 

when the gate collector voltage has fallen to 2% of the of the dc bus voltage.  Energy is 

defined as the area under the power curve obtained from the product of the voltage and 

current transients, the beginning of the energy of the loss measurement is insignificant 

as losses due to leakage currents are insignificant.  However it is important to have a 

clearly defined boundary between the switching loss and conduction loss. 

Transient waveforms captured on the oscilloscope often contain many oscillations due 

to cable capacitance and inductance which occur at the point of switching.  To 

determine a nominal current level for each test, a straight line is plotted on the current 

waveform with a gradient to match the current rise due to the load inductor.  This is 

extended towards the point where the current first rose during turn on as illustrated in 

Figure 4-14. 
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Figure 4-14: Illustration of Ic at switch on 

The switch off energy span similarly has multiple definitions in the literature where the 

IEC60747-9 definition begins as Vge to has fallen to 90% of the turn on applied Vge until 

Ic has fallen to 2% of the device rated value [IEC60747].  It is important to capture the 

energy loss as Vge begins to fall as this will correspond to a small but significant 

increase in the Vce saturation voltage.  All the energy measurements given in the 

standard assume a simple gate resistor is used to control the switching transients.  This 

is not the case for AGD and hence throughout this work, switching energy has been 

calculated from the point when a change in switching power can be detected due to 

switching as illustrated in Figure 4-15. 

 

Figure 4-15: Power loss calculation for a switch on event. 
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4.5.1 IGBT Parasitic Elements 

The importance of the IGBT internal gate capacitances have been described in section 

2.2.3 in relation to the switching performance.  Figure 4-16 shows how the gate 

capacitance of an Infineon
™

 FP25R12KT4 IGBT changes with the applied gate emitter 

voltage when the collector terminal is floating.  This is measured using an LCR bridge 

where an applied 75 mV, 10 kHz signal is superimposed on a dc bias.  When Vge is 

below -1 V, the oxide capacitance can be measured to 6 nF.  As the voltage increases 

from -1 V to +6 V, a depletion layer forms and expands.  This shows a similar effect to 

increasing the gap between a parallel plate capacitor hence reducing the capacitance 

[44].  At 7 V, the capacitance increases significantly due to the formation of the 

inversion layer.  It should be noted that the threshold voltage changes significantly (up 

to 2.5 V) over the rated temperature range.  

 

Figure 4-16: IGBT gate capacitance versus gate voltage 

Due to fluctuations in the mains voltage, the voltage level on the dc bus can change 

during operation of the VSD.  As several of the internal capacitances within the IGBT 

are voltage dependent, the applied dc bus voltage can influence the gate trajectory as 

illustrated in Figure 4-17.  A step input voltage is applied via a large (33 ) gate 

resistance to bring the gate voltage up to the threshold voltage.  The capacitance is seen 



Chapter 4: Practical Measurements 

______________________________________________________________________ 

112 

to reduce with the applied collector emitter voltage due to the depletion layer allowing 

the gate voltage to increase rapidly.  This change in capacitance is due to the parasitic 

capacitance between the n-base and the gate which provides more charge to the gate at 

high collector emitter voltages [45].  This important characteristic adjusts the charge 

needed to bring the IGBT up to the threshold voltage and will have a significant impact 

on the gate drive requirements.     

 

Figure 4-17: Change in Vge with Vce 

4.5.2  IGBT transconductance 

Section 2.2.3 discussed how the transconductance based on the physical geometry of the 

IGBT can be used to relate the unsaturated load current to the gate emitter voltage.  To 

investigate the accuracy of this, a step input voltage is applied to the gate terminal via a 

33  resistor.  The collector currents are measured for different bus voltages at turn on 

and are presented in Figure 4-18.  Using equation ( 2-14 ) and the measured Vge, the 

collector current is reconstructed from the square of Vge above the threshold and then 
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multiplying by a K factor.  This process gives reasonable results however, the required 

K factor changes depending on Vce.   

 

Figure 4-18: Change in transconductance in practice 

The pnp transistor gain (αpnp) is dependent on the collector emitter voltage due to the 

change in width of the depletion layer within the IGBT.  The transistor gain increases 

(non-linearly) with collector voltage up to the reach through voltage for the Punch 

Through IGBT (point where the electric field reaches the n
+
 buffer). 

4.5.3 Intrinsic Time Delay in an IGBT 

With slow transients, the collector current can be related to the gate voltage (quasi-static 

condition), however there is an intrinsic delay between a change in the input gate 

voltage before a corresponding change in the output conditions can be detected.  Figure 

4-19 illustrates the delay between features in the gate signal and corresponding features 

in the collector current.  The threshold voltage (6.8 V) is subtracted from the measured 

Vge voltage, the result squared and multiplied by K (4.22).  Oscillations in the gate 
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voltage are also seen in the collector current where the delay (when compensated for 

probe delays) is approximately 25 ns.  The delay results from the time taken for the 

inversion layer to expand due to the velocity of the carriers. 

 

Figure 4-19: Intrinsic IGBT Loop Delay for Collector Current 

When the IGBT voltage begins to fall, the dV/dt is related to the gate current.  Where 

the gate voltage is held constant by the Miller effect, the gate current can be controlled 

by the voltage applied across the gate resistor.  In Figure 4-20 there is a small increase 

in gate current as Vce begins to fall.  After 252 ns, the applied gate voltage is increased, 

increasing the gate current and causing a corresponding increase in dV/dt. In this 

section, a delay of approximately 10 ns is measured.  In both cases, these time delays 

are too long to implement a closed loop feedback controller as part of the gate drive to 

reduce the radiated emissions.  This delay results from the time taken to charge the 

parasitic capacitances in both the IGBT and diode and expand the diode depletion layer. 
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Figure 4-20: Intrinsic IGBT Loop Delay for Collector Emitter Voltage 

While the measurements presented above display the delay between input and output 

response of the IGBT, it is important to observe the control of the switching transients 

by the gate signals.  The current transient can be controlled by the gate voltage via the 

transconductance of the IGBT while the voltage transient can be controlled by the gate 

current. 

4.5.4 Minimum Gate Resistance 

The area of the gate current loop depends on the layout of the track and any connecting 

wires to the IGBT terminals.  As a result, this loop will contain a significant inductance 

which can resonate with the IGBT capacitance.  To minimise the gate oscillations, a 

minimum value of gate resistance is used.  This is determined by measuring the 

impedance of the loop over a range of frequencies to determine a value for the lumped 

capacitance and inductance (biased above the threshold voltage).  Assuming a second 

order system, a resistor value can be chosen to give critical damping giving improved 

control over the gate currents and voltage (see Appendix B for calculations).  
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4.6 Radiated Emissions Measurements 

4.6.1 Open Area Test Site 

The standard for radiated emissions to which Control Techniques
™

 products comply is 

IEC61800-3 [6].  This specifies electric field strength limits which depend on the 

customer installation environment, power rating of the VSD and the frequency of the 

emissions (Table 4-2).  The Control Techniques VSDs are sold to customers with a 

class C2 environment however there are commercial benefits to expand the markets if 

the domestic limits can be met cost effectively. 

Table 4-2: Radiated Emission Limits at 10 m. 

Frequency (MHz) C1* (class B) 

Quasi-Peak 

dB(V/m) 

C2** (class A) 

Quasi-Peak dB 

(V/m) 

C3*** 

Quasi-Peak dB 

(V/m) 

30-230 30 40 50 

230 - 1000 37 47 60 

*C1: Domestic Environment, Vrated <1000 V, (class B refers to CISPR nomenclature) 

**C2: Any other environment Vrated<1000V, professional installation required (class A 

refers to CISPR nomenclature) 

***C3 Any other environment Vrated >1000V, or Irated >400A, professional installation 

required. 

 

The layout of the apparatus is described in IEC55022 and consists of a large conductive 

ground plane with an antenna located above the ground plane and directed towards the 

EUT at a distance of 3 m (see Figure 4-21) [109].  The equipment under test is placed 

on a table 1 m above the ground plane inside a non conductive shelter (no conductive 

parts including screws which could reflect the RF signals). The antenna cable is located 

under the ground plane and is connected to a receiver in the control shelter (with 
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windows as shown in the photograph) which, under software control, scans through the 

frequency range of interest and records the measured field strength. 

 

Figure 4-21: Photograph of the OATS used 

The shape of the ground plane can have an effect on the measured radiated emissions 

due to interference patterns from edge reflections [110].  For physically large EUTs, the 

proximity to the edge of the ground plane can change even though the distance to the 

antenna remains constant.  This can make comparisons between measurements of an 

EUT taken at different test sites difficult and requires the inclusion of uncertainty 

measurements.  By using a programmable gate drive, to evaluate different switching 

patterns for radiated emissions, the physical structure can remain static allowing 

accurate comparisons between different test patterns to assess potential sources or 

emissions. 

Table 4-2 gives the field strength limits when measured at 10 m, however it is allowable 

to introduce a 10 dB correction factor across the frequency range for measurements at 3 

m using the inverse distance fall off theory which assumes a simple hemispherical field 

pattern.  Measurements at 3 m give a better signal to noise ratio.  Studies by Mass and 

Kang have shown this parameter assumes a small radiating source with the antenna in 

the far field [111, 112].  Towards the lower frequencies, there is uncertainty that the 

antenna is in the far field at 3 m.  In a VSD, the radiating structures are potentially large 

due to the long cable length, different types of source antenna and their orientation have 

been shown to affect measurements due to the proximity to the ground plane.  Again, as 
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comparative measurements are taken this will work for the same physical setup, the 

attenuation across frequencies will remain constant for all tests. 

The specification for the receiver is given in CISPR16-1-1 and includes a bandwidth of 

120 kHz at -6 dB (see Figure 4-22 for acceptable pass band), a charge time of 1 ms and 

a discharge time of 550 ms for the quasi peak time constants [113].  The charge and 

discharge times have been determined from subjective annoyance levels by a listener of 

AM radio and are used to give a weighting to repetitive signal strength. 

 

Figure 4-22: CISPR16 pass band 

In a VSD, with a minimum switching frequency of 1 kHz, the transient duration is of 

the order of hundreds of nanoseconds hence a single pulse is unlikely to give large 

emissions with the charging time constant in the quasi peak detector.  However, the 

discharge time encompasses many switching transients so the overall measured result is 

close to but a little lower than the peak.  The effect of space vector modulation, and 

sinusoidal output current are captured by the quasi peak detector over the measurement 

time (at least 100 ms per measurement frequency to ensure that a steady state has been 

reached in the detector).  A sweep of the frequency range of interest can take up to 15 

minutes to complete.  

The 120 kHz bandwidth has a correspondingly long envelope in the time domain (in the 

order of 30 s).  Any pulsed signals which occur within this period are averaged to 

determine the peak emissions.  The period increases continuously in time only recording 
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either the peak or quasi peak value in the receiver.  Using a similar filter on the 

electrical signals may give an indication of the frequency content however it is not 

possible to locate the features of the transient signals responsible for emissions at the 

centre frequency. 

4.6.2 Gate Resistor Values 

To illustrate the frequency range of interest, a simplified pulse test rig (described in 

section 5.3) is used with a CGD, where a step voltage is applied to the gate of the IGBT 

via the gate resistor.  IGBT manufacturers often state a recommended gate resistor for 

this purpose, however the impedance of this test circuit (either gate loop or power loop) 

is not stated.  The three different gate resistance values used for a comparison of 

radiated emissions in the following illustration are: 

1) the minimum value used in a commercial product which complies with radiated 

emissions limits when used in a VSD (43.7 ); 

2) the manufacturers recommended data sheet resistance, (20 ); 

3) the minimum resistance calculated from measurements to give critical damping (5.6 

) as discussed in Appendix B. 

The pulse test setup is operating with a steady state load current to evaluate the transient 

performance for the switching waveforms.  The measured radiated emissions for the 

three different gate resistors for step demand (both turn on and off) are shown in Figure 

4-23.  Given the differences in the physical layout between a commercial VSD and the 

pulse test circuit, a direct comparison of radiated emission levels cannot be made, 

however the relative measurements from one test can be useful for an indication of the 

performance benefits of the gate drive.  It can be seen in Figure 4-23 that the emissions 

are highest with the smallest gate resistor and lowest with the largest gate resistor. 
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Figure 4-23: Measured Radiated Emissions from step input. 

From observing the frequency spectrum, it is clear that the broadband emissions from 

the IGBT can only be detected above the background measurements up to a maximum 

of 400 MHz in this case (for a commercial drive, emissions typically only measurable 

up to 100 MHz).  The emissions can be seen to decay with frequency at approximately 

40 dB / decade as is the case with a trapezoidal waveform in the time domain.  From 

previous experience, the radiated emissions resulting from the turn off transient are 

lower in magnitude than at turn on.  It can be seen over the frequency range 30-33 MHz 

that the largest resistor has the lowest emissions, however, between 33-42 MHz the 

emissions from the 43.7  resistor are higher than 20  resistor.  A method is required 

which looks at all the emissions across a wide frequency range to determine a figure of 

merit for a comparative analysis.  This is presented in section 5.5.1. 

4.7 Summary of Chapter 4 

The testing carried out and presented in this chapter has highlighted several important 

features of IGBT switching.  As a starting point, one important design consideration is 
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the bus bar inductance.  The stray inductance in the bus bar as seen by the IGBT module 

will significantly reduce the switch on losses by adjusting the switching trajectories.  

The resulting voltage overshoot at turn off must be controlled particularly during short 

circuit conditions to prevent damage to the device.  As the inductance influences the 

“corners” or second derivative of the switching transients, this will have an impact on 

radiated emissions.  Analysis of the influence will be discussed in chapter 5. 

The semiconductor theory presented in chapter 2 presents equations describing the 

operation of the IGBT, however measurement presented in this chapter demonstrate 

how the IGBT transient performance is dependent on many variables such as dc bus 

voltage, current, temperature and from internal feedback loops within the IGBT which 

can cause the switching mechanism to become unstable at high switching speeds.  

Control over both Ic and Vce transients is demonstrated at low speeds using Vge and Ig 

however, the intrinsic feedback delay due to parasitics within the device will not allow 

control, utilising feedback, over the fine details associated with the radio frequency 

content. 

A high pass filter is required to give a good resolution on the radio frequency 

components associated with radiated emissions when measured using a standard 

laboratory oscilloscope.  This is particularly important when operating at high dc bus 

voltages where the noise floor due to the vertical resolution restricts the highest 

frequencies which can be observed. 
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 Chapter 5: Determination of Key Linkages of Radiated Emissions 

to Measured Voltages and Currents 

5.1 Introduction 

The control of the IGBT switching trajectory utilising both the gate drive voltage, gate 

current and the bus bar inductance has been presented in earlier chapters.  Analysis 

methods to identify the location in the time domain of radio frequency content within a 

voltage or current signal have been discussed in section 2.4.3, however, the RF source 

signals and radiating structure in a VSD responsible for radiated emissions have not 

been identified. 

This chapter presents measurements of radiated emissions taken from a simplified setup 

which represent a VSD system.  Individual features in the voltage and current 

waveforms are adjusted using a custom, high frequency gate drive generator to assess 

their linkages to the measured radiated emissions.  

As discussed in section 4.4, the mechanical construction of the product and the 

electrical layout can influence the measured radiated emissions.  It has been shown that 

the gate emitter voltage can be used to control the collector emitter voltage and collector 

current transients which in turn adjust the RF content.  However, the linkage between 

the RF content in the electrical signals and the measured radiated emissions are 

unknown hence it is not possible to define a suitable limit for compliance to the 

standards.  In an effort to gain this knowledge, separate control of current and voltage 

transient features is required, so the designed waveform (constructed in section 5.2) is 

therefore modified to control the maximum voltage peak (hence, RF content) 

independently from the current peak.  However, any change in the current profile, even 

in the saturated mode, will have an effect on the collector voltage profile due to stray 

inductance effects. 
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5.2 Control of Wavelet Magnitude to Influence Radiated 

Emissions 

From measurements of radiated emissions from a VSD using a CGD fitted with 

different gate resistors, it is clear that a larger gate resistor, hence slower switching 

resulted in lower radiated emissions.  Measurements of the wavelet peaks in both 

voltage and current waveforms also reduce with increasing gate resistance.  To further 

analyze the linkage, a method to control the wavelet magnitudes while taking radiated 

emission measurements is required.  The duration of the wavelet peaks is of the order of 

a few nanoseconds.  It has been demonstrated in Chapter 4 that it is not possible to use 

closed loop feedback control to influence the gate signals over this time frame due to 

the intrinsic IGBT loop time delay.  Instead, a custom gate drive generator utilising a 

high speed Field Programmable Gate Array (FPGA) programmed with the required gate 

voltage profile is used.  The signals from the FPGA are converted using a digital to 

analogue converter (DAC) to produce a gate voltage with a 14 bit vertical resolution 

updated every 250 ps (4 GHz).  The design of this gate drive circuit is shown in 

Appendix A. 

While control of the current and voltage transients with the gate drive can be separated 

into different phases as described earlier, the first three out of four locations where the 

voltage wavelet magnitudes reach their peak occur when the current is strongly coupled 

due to the stray and parasitic components.  Under steady state operating conditions with 

a fixed dc bus voltage, temperature, and load current with constant ripple, a gate profile 

can be defined to minimise each wavelet magnitude in Vce and Ic in turn.  When a 

profile has been defined with minimal wavelet content, features can then be added 

which will increase the wavelet amplitude of the voltage and current independently. 

As a starting point, using the FPGA gate drive, a step voltage input is applied to the gate 

resistor representing the action of a CGD (Figure 5-1a).  A minimum resistance of 5.6  

is used to damp oscillations in the gate current loop circuit.  A switch on load current of 

10 A is used in each case and the associated switching transients are displayed in Figure 

5-1b.  A short cable connection to the inductor is used to reduce reflections giving 

clarity to the waveforms below, however a long cable is used for emissions 
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measurements.  To describe the operation, reference is made to the theoretical switching 

profile presented in Figure 2-15.  During switch on phase 1, (t0 to t1), the gate voltage 

(Vge) rises rapidly from a negative potential, through the threshold at which point the 

collector current begins to rise.  We can observe the first peak wavelet (wVce_1) in the 

voltage and current which occur simultaneously.  The current wavelet peak (wIc_1) is 

high as the current begins to increase rapidly and the voltage peak corresponds to the 

change in Vce due to the stray inductance.  As the collector current trajectory reaches its 

maximum rate of change, a second peak wVce_2 occurs.  The gate emitter voltage 

reaches its peak value as the collector current reaches its peak giving wIc_2.  At this 

time, the diode can begin to block voltage and hence Vce begins to drop giving wVce_3.  

As the diode finishes its recovery process, wIc_3 peak can be observed.  As Vce reaches 

the saturation voltage, wVce_4 occurs.  
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a. 

 

b. 

Figure 5-1: a) Vge Demand; b) Voltage and current wavelet transform for step input. 

As the collector current is related to Vge via the transconductance, it follows that the rate 

of change of the Vge during turn on dictates the rate of change of collector current.  

Using a CGD, the step voltage input causes the gate voltage to rise rapidly reaching its 

maximum rate of change as it crosses the threshold voltage.  This instigates an equally 

rapid rise in the collector current immediately the threshold has been crossed.  In an 

effort to gain control over the initial current rate of rise, the gate voltage is increased to 
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just below the threshold voltage and held for 85 ns to ensure the gate current has 

returned to zero separating switch on phase 1 and 2 (see Figure 5-2).  Vge is then 

increased with a step demand up to the maximum supply rail.  However, due to the gate 

loop inductance, the gate current hence gate terminal voltage, cannot rise instantly.  This 

reduces the rate of increase in collector current from previously observed.  It is clear to 

see that this simple change in wave shape has the positive effect of reducing both 

wVce_1, wVce_2 and wIc_1.  This shows that it is the third derivative of the current 

(d
3
i/dt

3
) at this point is responsible for wVce_1 and wVce_2. 
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a. 

 

b. 

Figure 5-2: a) Vge Demand; b) Voltage and current wavelet transform, held at Vt for 85ns. 

For phase 2, (t1 to t2), when the gate voltage rises above the threshold, the load current 

transfers from the diode to the IGBT.  The rate at which this happens is related to the 

transconductance of the IGBT as has been demonstrated previously.  It is difficult to use 

the transconductance equations to accurately predict the behaviour of the load current 
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from Vge over the entire time for the current to rise due to the feedback voltage from the 

drop across the stray inductance and the carrier transit time in the IGBT when switching 

at high speeds.  To further reduce wIc_1, Vge demand is shaped to slow down the rate of 

current rise as illustrated in Figure 5-3.  The gate demand profile, derived using trial and 

error methods, is based on an s-ramp where the timing is adjusted until the wIc_1 and 

wIc_2 are seen to decay.  This has the added benefit of further reducing wVce_1 and 

wVce_2. 

The rate of increase in the load current is controlled giving a gradual rise until it reaches 

a maximum value.  While the current rises slowly, the voltage drop across the parasitic 

inductance is still visible, but reduced.  When the load current is at its maximum rate of 

increase, Vce levels out creating a plateau in the wave shape. 
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a. 

 

b. 

Figure 5-3: a) Vge Demand; b) Voltage and current wavelet transform, controlled slope of Vge to influence Ic. 

When using a conventional gate drive, the diode reverse recovery current carried by the 

IGBT increases to its peak value then decays to the load current.  When the diode stored 

charge (Qrs) has been swept out, the depletion layer begins to form as the diode 

depletion charge (Qrf) is then removed.  This results in the falling of Vce as charge is 

swept out by the expanding depletion layer.  The depletion layer can be thought of as a 

parallel plate capacitor whose capacitance reduces as the depletion layer grows.  This 
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capacitance is discharged by the reverse recovery current while at the same time, the 

gate current charges the increasing capacitance (Cgc) within the IGBT.  The rate of 

change in voltage is limited by the slowest of these mechanisms hence at low load 

currents, dV/dt is restricted by the diode while at higher current Vce is restricted by the 

gate current.  At the peak of the reverse recovery current, the depletion capacitance is 

discharged at the fastest possible rate causing the Vce to fall very quickly as the diode 

begins to support the voltage.  This change in voltage is the source of the third peak 

voltage wavelet (wVce_3). 

In an effort to gain control over the rate of change in the depletion layer, the gate 

voltage is used to split the stored charge (Qrs) and the depletion charge (Qrf) into two 

separate regions as shown in Figure 5-4.  As the IGBT collector current is controlled by 

Vge, the collector current is reduced to match the load current at the point where all the 

diode stored charge is removed.  At this point, the depletion layer could not expand as 

there is no current flow through the diode and the entire bus voltage is dropped across 

the IGBT.  The IGBT is momentarily held at the limit of IGBT saturation equivalent to 

the load current.  At this point where Qrs has been removed, Vce does not drop but 

recovers to the dc bus voltage as there is no change in current to induce voltage drops in 

the stray inductance.  After a short pause where the gate current falls to zero, the 

remaining step demand is applied to the gate allowing completion of the switch on 

transient. 

This control method gives an unusual looking current transient with two peaks (see 

Figure 5-4).  The first collector current peak is associated with wavelet peak, wIc_2, and 

is significantly reduced.  As the voltage does not fall after the first wavelet current peak, 

wVce_2 has been further reduced.  The remaining voltage wavelet peaks wVce_3 and 

wVce_4, have been delayed in time until the voltage begins to fall as Qrf is discharged.  

Additional peaks have appeared in the current wavelet transform which correspond to 

the second current pulse as the demand is stepped up to the maximum Vge.  It can be 

seen that the gate voltage does not follow the demand signal precisely.  The IGBT’s 

internal positive feedback causes a region of instability.  As Cgc discharges with the 

falling collector voltage, the capacitance increases as the depletion width reduces.  This 
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is a nonlinear process which begins by adding additional charge to the Cge causing the 

Vge to increase followed by a period of extracting charge from Cge reducing Vge.  Precise 

control of the transient shapes through this region using the feed forward of the gate 

voltage is very difficult.  

 

a. 

 

b. 

Figure 5-4: a) Vge Demand; b) Voltage and current wavelet transform, controlled slope of Vge to remove Qrs. 

Towards the limit of saturation, a small increase in Vge moves the IGBT into the active 

region where the load current is related to gate voltage, allowing an increase in the 
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collector current which in turn allows the diode depletion region to expand.  The 

reduction in Vce causes Cgc to discharge taking current from the gate terminal or from 

Cge.  The gate current is determined by the voltage drop across the gate resistor however 

the voltage at the gate terminal does not change much during the Miller region hence 

the current flow can be controlled by the voltage applied to the gate resistor. 

A gate emitter voltage waveform is further adjusted causing Vce to begin to decrease at 

a rate which reduced wVce_3 as can be seen in Figure 5-5.  Vge is ramped up slowly to 

ensure the second derivative of Vce remains low, reducing the wavelet peak.  The actual 

voltage transient depends on the doping concentrations in the diode intrinsic region.  PT 

diodes may show a sharp change in dV/dt as the depletion region reaches the buffer 

layer depending on the voltage level.  As the voltage falls and approaches the on 

voltage, Vce(sat), the fourth wavelet voltage peak (wVce_4) occurs.  The Vge demand 

voltage is reduced just before this point to reduce the gate current hence limiting wVce_4.  

After this point, the diode tail current sweeps out the remaining charge with little 

change in voltage.  The third current peak in the wavelet magnitude occurred at the 

same time as wVce_4.  With the smooth transition of the diode tail current, wIc_3 is also 

reduced. 
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a. 

 

b. 

Figure 5-5: a)Vge Demand; b) Voltage and current wavelet transform, controlled slope of Vge to remove Qrf. 

5.2.1  Switching Loss 

One of the problems with the constructed Vge waveform is an increase in switching 

time.  The conventional gate drive fitted with the 43.7  resistor has been taken as a 

benchmark for comparison of switching loss as this represents what is currently possible 

in a commercial product.  The switching loss using the minimum gate resistor value has 

been reduced to approximately half of that used in the commercial product, however as 

discussed, this condition fails the radiated emissions test.  Each stage of the reduction of 
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the wavelet magnitudes described above has resulted in an increase in switching energy 

(see Table 5-1). 

Table 5-1: Switch on Loss 

Test conditions Eon (mJ) 

Rg = 43.7 , step input 1.300 

Rg = 5.6 , step input (Figure 5-1) 0.7368 

Threshold hold (Figure 5-2) 0.8152 

Ic control (Figure 5-3) 0.8632 

Separate diode charge (Figure 5-4) 1.4338 

Low wavelet switching (Figure 5-5) 2.1064 

 

5.2.2 Isolated Peak Voltage Wavelet 

The gate profile shown in Figure 5-5 has achieved a reduction in all the wavelet peaks 

throughout the switch on process.  To assess the contribution to radiated emissions from 

either the voltage or current wavelets, the peak wavelets are reintroduced at a point in 

the switching transient where they could be controlled independently. 

To induce a voltage disturbance, the gate signal is pulled low for a short period at the 

end of the Miller region then returned to the gate supply voltage (see Figure 5-6). This 

initiates the IGBT turn off procedure causing the collector emitter voltage to rise 

however, the voltage falls when the gate voltage is restored without disturbing the 

collector current.  The magnitude of this voltage spike is controlled by the duration and 

depth to which the Vge demand signal is reduced.  The waveforms captured in Figure 

5-6 shows a significant ripple in the collector current.  This can be attributed to the 

capacitance of the long cable added to the test setup representing the motor cable.  

Sample waveforms for different demand signals and their corresponding radiated 



Chapter 5: Determination of Key Linkages of Radiated Emissions to Measured Voltages 

and Currents 

______________________________________________________________________ 

135 

emission measurement are shown in Appendix D.  The load current continued to flow 

through the IGBT and did not transfer to the diode hence there is no change in the 

current wavelet. 

 

a. 

 

b. 

Figure 5-6: Illustration of wVce control 
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5.2.3 Isolated Peak Current Wavelet 

A similar method is used to isolate the peak current wavelet by introducing a step in the 

gate signal as the diode stored charge is removed.  This disturbance also causes a small 

change in the voltage wavelet due to linkage by the stray inductance. 

 

a. 

 

b. 

Figure 5-7: Illustration of wIc control 
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5.2.4 Switch Off Transient 

When switching the IGBT, it is necessary to evaluate the switch off transient for radio 

frequency content.  Control of the switch off transient via the gate drive signal is 

complex.  As discussed in chapter 2, the IGBT must first be brought into the active 

region by reducing the gate voltage.  However, when the collector emitter voltage has 

risen to the dc bus level, the collector current begins to reduce.  The rate of change in 

current is related to the rate of change in gate voltage however, the gate voltage may 

already be pulled below the threshold at the gate terminal of the IGBT.  To gain control, 

the gate signal would have to be increased to the limit of saturation at the point when 

Vce has risen to the dc bus level then reduced in a controlled manner during saturation as 

described in [84]. 

To ensure the switch off transient has minimal influence on the radiated emissions, it is 

possible to mimic the operation of a large gate resistor using a profile programmed into 

the FPGA (see Figure 5-8).  The turn off transients times have been increased with a 

slow linear ramp from positive to negative gate supply voltage.  This increases the 

switching losses, however this is not important for this evaluation. 

 

Figure 5-8:  wVce and wIc for switch off 
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5.3 Radiated Emissions Apparatus 

Radio frequency emissions radiate from the physical components in a VSD system.  The 

physical system is very complex as discussed in chapter 2 where the paths taken by the 

radio frequency currents are undefined.  This section examines the measuring apparatus 

setup, the VSD setup and simplifies the test system to gain an understanding of the 

influence of an IGBT transient on radiated emissions. 

5.3.1 Typical VSD Test Arrangement 

The schematic for a typical VSD radiated emissions test is shown in Figure 5-9 where 

the mains supply to the VSD is filtered by an external EMI filter.  The EMI filter is a 

custom design for the VSD to comply with conducted emissions limits defined in 

relevant standards [2, 3] and is installed during the testing as this is known to influence 

the radiated emissions by influencing current paths through stray capacitances. 

M

VSD

Ground Plane

Filter

 

Figure 5-9: Typical setup schematic for testing VSD for radiated emissions on an OATS 

To replicate a worst case typical customer installation, while complying with all the 

safety requirements and advice in the instruction manual, the filter and VSD are 

installed in an electrical cabinet on a metal ground reference plane.  The cabinet and 

motor are isolated from the OATS ground plane using a wooden pallet.  The safety earth 

conductors are attached to the filter, the VSD and motor in a daisy chain and the cable 

shields are connected at both ends of the motor cable as described in the VSD user 

manual. 
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The VSD power is supplied through this filter and rectified to give the dc bus voltage.  

The power for the control circuits is derived from the dc bus via a flyback converter.  A 

speed demand signal is applied which causes the unloaded motor to rotate during 

testing.  This is achieved by chopping the dc bus voltage across the inductance of the 

motor windings to create a current of the required frequency. 

The approximately sinusoidal output current, presents different load current to the 

switching transient of the IGBT on each switching cycle.  Depending on the load drawn 

by the motor, ripple voltages on the dc are also presented to the IGBT influencing the 

transient voltage.  While the VSD can operate in steady state, the switching transients 

for all six IGBTs vary continuously.  Radiated emissions measurements from this setup 

are useful to determine a pass or fail related to the defined limits but the source of the 

emissions cannot be determined. 

5.3.2 Simplified Test Setup 

To isolate the sources of the emissions, from the IGBT module, a single device is 

switched using the equipment previously used for pulse testing (Figure 4.3).  A lower 

IGBT is switched on allowing the current to flow through an inductor and a 5 m cable 

which represents a typical motor cable.  At 30 MHz, a wavelength of an EM wave in air 

is 10 m, and the half wavelength cable is an efficient antenna at the frequencies of 

interest.  Two power conductors are shorted at the far end of the cable with the shield 

and the third phase conductor connected to the earth conductor.  At the other end of the 

shield, the third power conductor and safety earth are connected to the metal frame of 

the test equipment which is connected to the earth of the power supply.  All the test 

equipment is positioned on an 80 cm tall wooden table to isolate it from the OATS 

ground plane.  The schematic for this setup is shown in Figure 5-10. 
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Figure 5-10: Setup of pulse testing equipment for radiated emissions on an OATS 

The gate demand voltage for the switching IGBT is controlled using the high bandwidth 

DAC where the duty cycle and gate profile are defined in the FPGA firmware.  A fixed 

frequency, fixed duty cycle signal is used to control the load current through the 

inductor.  The on pulse is of a short duration (2 s) allowing the current to ramp up to a 

peak level and the off time (364 s) allows the current to decay in the inductor and 

freewheeling diode due to losses.  With this setup, the load current at the point of switch 

on is consistent for each switching cycle giving a repeatable transient.  Similarly, the 

switch off transient occurs at the same current level on each cycle (see Figure 5-11). 
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Figure 5-11: Continuous pulse train with fixed duty cycle to determine load current. 

A photograph of the equipment located in the test shelter is shown in Figure 5-12a and 

the antenna position relative to the test shelter can be seen in Figure 5-12b.  The metal 

mesh ground plane is continuous under the test shelter and antenna.  The distance from 

the antenna to the closest edge of the equipment is 3 m. All power supplies are 

positioned close together with the cables held firmly in place.   
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a b 

Figure 5-12: a) Pulse test setup for radiated emissions, b) OATS. 

The 600 V power supply which is used to energise the dc bus, uses a variable 

transformer to give the required output voltage which is then rectified to dc.  The two 24 

V power supplies for the safety interlock and the FPGA board utilise switch mode 

power supplies and have a measurable frequency signature.  A frequency scan taken 

with all power supplies and oscilloscope (DPO7304) operating but without the IGBT 

switching shows a small increase in emissions (see Figure 5-13).  The change in load 

drawn from these power supplies will only have a minimal influence when the IGBT is 

switching hence the EMI signature does not alter.  Large spikes are visible in the 

measurement close to 100 MHz and at 250 MHz.  These are due to the broadcast radio 

stations which are weak at the measurement location in rural Wales.  Background 

measurements taken in a city contain significantly higher levels of noise and intentional 

transmitters. 
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Figure 5-13: Radiated Emissions from power supply units without the IGBT switching. 

5.4 Variables Influencing Radiated Emissions Measurements 

5.4.1 Signal Interference 

With a complex and unintentional transmitter such as a VSD system, there are many 

possible transmission sources as discussed in section 2.3.  It is possible that these 

sources will interact with each other depending on the type, orientation and distance 

from the source.  Figure 5-14 illustrates possible interference mechanisms.  Currents 

circulating within loops in the VSD such as those created by the dc bus capacitors, bus 

bar and IGBT module give rise to magnetic fields.  Other current loops such as those 

created by the gate current buffer and IGBT gate emitter capacitance can also create 

magnetic fields.  Depending on the relative orientation of these fields, it is possible to 

observe reinforcement or cancellation due to near field superposition. 

Electric fields are created around the VSD with the change in voltage relative to a 

reference ground.  Examples would be the voltage on the load cable connected to the 

collector of the IGBT and the gate terminal.  Again, superposition will occur in the near 

field.  As the transmitted signals move further from the VSD system and transition into 



Chapter 5: Determination of Key Linkages of Radiated Emissions to Measured Voltages 

and Currents 

______________________________________________________________________ 

144 

electromagnetic waves, fields arising from magnetic sources and fields arising from 

electric sources can combine according to the principle of superposition [114].  An 

antenna positioned in the far field is only capable of a spot measurement of the 

combined signal. 
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Figure 5-14: Signal path taken by radiated emission sources 

While the antenna is a physically large object, it can be considered to measure the 

emissions at a single point on a sphere with a 3 m radius from the EUT.  The conducting 

ground plane acts to reflect any signals with a negative elevation towards the antenna 

ensuring these are captured in the measurement.  One phenomenon associated with the 

reflected signal is phase cancellation (far field superposition).  If a continuous 

sinusoidal signal is transmitted from the EUT, the direct path from the EUT to the 

antenna is 3 m while the path of the reflected signal is longer and can be calculated by 

triangulation (see Appendix C for example calculations).  The phase change due to the 

different transit times leads to interference from the reflected signal.  This interference 

is consistent for tests with a continuous, fixed frequency, single emission source and 

fixed antenna height.  However, the broadband noise from the IGBT switching transient 

is emitted in short bursts potentially from multiple sources.  The time delay, and hence 

phase, of these bursts changes between gate voltage profiles.  For a broadband emission 

source such as switching edges of an IGBT, it is unlikely that interference would occur 

due to its existence in time for a short period, however, the antenna would receive two 

distinct pulses where the relative delay is determined by the transit path which, due to 
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the averaging effect of the receiver bandwidth (as discussed in section 4.6), would have 

the effect of increasing the measured signal. 

The antenna height is swept between 1 m and 4 m for a conformance measurement to 

allow for reflections by taking the highest value.  As the antenna height is adjusted on 

the vertical mast, two uncertainties are introduced: (i) as the direct distance to the EUT 

increases with antenna height, this results in a reduction in the measured field strength; 

(ii), the antenna factors are not known from different angle of incidences other than the 

main lobe and hence this introduces further errors into the measurement [115]. 

With the use of the low RF content gate profile, potential emissions sources have been 

separated and controlled independently.  Different profiles are implemented only in 

firmware hence no change to the physical radiating structure. In an effort to reduce the 

number of variables, all subsequent measurements are captured at an antenna height of 

one meter. 

The use of time domain measurements are proposed in Krug [116] where an antenna is 

used to detect the EM field however the technique differs from the CISPR16-1-1 

standard by using periodograms to analyse the signal in the time domain.  This analysis 

shows many parallels to the method proposed in this thesis with regards to correlating a 

time domain measurement to the required frequency domain measurement. However, 

the proposed measurements in this thesis are of the voltage and current signals 

responsible for the EM fields before any interference due to the physical structure. 

5.4.2 Azimuth 

An ideal isotropic antenna radiates equally in all directions when positioned in free 

space.  In practice real antennas will radiated more in one direction than any other and 

hence the azimuth pattern from the EUT must be considered.  In an effort to identify the 

directivity of the parasitic antennas from the simplified test setup, measurements are 

taken for a step demand gate profile with a fixed resistor.  The table supporting the 

apparatus is rotated 360° in 30° steps.  Figure 5-15 illustrates the results at selected 

frequencies where an increase in emissions above background due to IGBT switching is 

observed (the radial axis is electric field strength in dB (V/m)).  From this diagram, it 
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is possible to see the peak directivity when the table is oriented at 90° and 270°.  It is 

observed that as the EUT is not cylindrical, the shortest distance to the antenna changed 

with rotation about the table centre.  When considering the physical structure and 

change in direct distance, it is determined that directivity of the EUT is negligible. 

 

Figure 5-15: Azimuth pattern at select frequencies 

While some degree of directivity is expected, there are several reasons why this has not 

been observed: 

 The antenna used to measure the radio noise on the OATS is the Schaffner
®
 

CBL 6111C which has a half power beam width of 120° at 30 MHz which 

reduces with frequency to 80° at 1 GHz.  The wide beam width illuminates the 

entire EUT structure and ensures that the majority of radiated signals are 

captured. 

 The length of the cable attached to the test setup is 5 m long to give efficient 

radiation at 30 MHz however, the cable is held to the edges of the table where a 

portion is orientated in three normal directions.  This positioning will cause it to 

radiate in all directions. 
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 The ground plane used on the OATS consists of several layers of wire mesh with 

the dimensions as described in the CISPR standards. This meshed surface as 

opposed to a plane surface may have the effect of scattering the reflected 

emissions in all directions. 

As there appears to be little directivity from the EUT, all further measurements are 

taken at 0°. 

5.4.3 Temperature 

The measured emission spectrum is found to change with temperature as illustrated in 

Figure 5-16.  The simplified VSD system is enabled and temperatures are allowed to 

reach steady state before the first measurement is taken early in the morning with a low 

ambient temperature.  Further measurements are taken towards the afternoon as the 

ambient temperature rises.  The IGBT case temperature is recorded using a 

thermocouple. The reason for the change in emissions is the change in the IGBT silicon 

characteristics with temperature such as reduction of threshold voltage.  As the 

temperature increases from 33.5 °C to 38.4 °C, the peaks and troughs in the spectrum 

can be seen to shift towards the lower frequencies by 500 kHz as well as a change in 

magnitude.  Over such a small temperature range, the physical properties of the parasitic 

antennas are not expected to change.  While it is established that the temperature of the 

Si chip increases with each switch on pulse, the steady state operation of the pulse train 

removes any impact of this. 
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Figure 5-16 : Measured Radiated Emissions spectrum change with temperature  

To view the frequency content, the Vce and Ic transient signals are filtered in Matlab
®

 

using a band pass filter with a bandwidth of 120 kHz and adjusting the center frequency 

for each frequency of interest (see Figure 5-17 and Figure 5-18).  Examination of the 

voltage waveforms also show spectrum changes with temperature however it has not 

been posible to correlate these to the peaks and troughs in the field strength as measured 

by the antenna.  This is due to the radiation efficiency changing with frequency from the 

parasitic antennas. 
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Figure 5-17: Frequency spectrum of Vce change with temperature 

 

 

Figure 5-18: Frequency spectrum of Ic change with temperature 

It is clear that the envelope of the spectrum does not change significantly over this 

temperature range.  The temperaure of the EUT is not normally controlled during an 

OATS measurement due to the interference from heating and cooling equipment 

however, further research is required to determine the worst operating temperature for 
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the IGBT with regards to radiated emissions and potentially using the figure of merit 

described in section 5.5.1 and laboratory measurements. 

5.5 Identification and Influence of Radiated Emissions Sources 

It has been shown that the radiated emissions measured from a VSD are dependent on 

the gate profile as illustrated by the use of different gate resistor values.  It has also been 

shown that the radio frequency content as identified using the wavelet transform can be 

controlled with a specifically shaped gate profile.  However it is unclear how the 

magnitude of the features identified by the wavelet transform can be related to the 

measured radiated emissions.  The following section describes how the key linkages are 

identified and can be used as a useful tool for the prediction of radiated emissions. 

5.5.1 Radiated Emissions Figure of Merit 

The radiated emissions measurements are made using a receiver with a bandwidth of 

120 kHz.  In the time domain, this translates to a 30 s period (to capture 95 % of the 

energy).  Analysis over such a long time relative to the IGBT switching transient cannot 

be used to locate the radio frequency content in time.  As shown, the Mexican hat 

wavelet transform improves on this utilising its bandwidth of 34.54 MHz with a time 

window of 10 ns.  

For radiated emissions measurements, the standards set a limit line across a range of 

frequencies.  A measurement above this limit at a single frequency is sufficient to fail a 

test, however, this may arise from a resonance feature peculiar to equipment 

connections and layout.  As the emissions from the IGBT are broadband in nature in this 

work, the r.m.s. value of the emissions between 30 to 50 MHz from the peak detector is 

calculated for each frequency spectrum sweep and used as the radiated emissions figure 

of merit (REFOM) to describe that measurement.  This increases the weighting of the 

measured peak values while considering the frequency range covered by the wavelet 

transform.  For each gate profile applied to the IGBT, a REFOM can be calculated. 

5.5.2 Analysis of Electrical Signals 

To capture the electrical voltage and current waveforms requires the use of probes 

connected to the circuits as previously discussed.  The gate emitter voltage probe is 
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connected using small coils soldered to the IGBT terminals to reduce the inductance of 

the scope ground terminal.  The collector and emitter terminals on the IGBT are 

separated too far to use the same connection method.  The extra length of the ground 

lead is wrapped around the probe to minimise the stray inductance.  The addition of 

voltage probes onto the nodes of the IGBT terminals adds additional capacitance 

however this is small compared to the IGBT internal capacitances.  Inserting current 

probes around the wires adds additional impedance where datasheet values are 0.15  at 

10 MHz and 0.7  at 100 MHz in series with the gate resistor and so, for consistency 

between electrical and radio measurements, and to allow correlation between the 

wavelet transform from the measured electrical signals and the EM waves, all probes 

remained connected in the circuit throughout testing.  The oscilloscope is used to 

capture the Vge, Ig, Vce and Ic. There are no further channels available on the scope to 

capture the filtered Vce or load current. 

Where the wavelet transform gives a good insight to the time location of the RF content, 

the resulting measurement needs to be presented in a form which can be directly 

compared to the REFOM.  As mentioned previously, the peak detector with 120 kHz 

bandwidth averages the amplitude of the signals in the time domain over 30 s hence 

for an IGBT transition time of several hundred nanoseconds, the RE measurement using 

the peak detector includes a contribution from each of the peaks identified by the 

wavelet transform.  As the radio frequency content only appears during the transient and 

not when fully switched on or off, the mean wavelet transform over the measurement 

time of (2 s) is used to describe each test and are referred to as wVce_mean, wIc_mean, 

wIg_mean and wVge_mean for each of the measured signals. 

5.5.3 Emissions Sources and Gate Profiles 

It is shown in Figure 5-13 that the power supplies and measuring equipment has a small 

but measurable emission signature in the frequency domain.  In a similar manner, when 

the FPGA programme controls the shaped pulse train to the IGBT but with the high 

voltage dc power supply discharged, a significant increase in emissions is measured.  

When the gate drive PCB is disconnected from the IGBT and operated in an identical 

manner, the increase in emissions can no longer be detected hence it is deduced the 
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emissions arise from either the magnetic field from the gate current loop (formed from 

the gate drive output, through the short wire through which the gate current is measured, 

through the Cge and returning through the short emitter wire) or the electric field from 

the gate emitter voltage. This loop is larger than would be expected in a commercial 

VSD as a Tektronix
™

 TCP0030 current probe is inserted.  In an effort to characterise 

this phenomenon, two sets of measurements are taken and analysed.  For the first set, 

the gate wires are maintained as short as possible while allowing for the connection of 

the current probe.  In the second set, the emitter wire in the gate loop is significantly 

increased to create a large loop antenna shown in Figure 5-19.  The two test series are 

referred to as “No Loop” tests and “Loop” tests. 

a. b. 

Figure 5-19: a) Connection of FPGA gate drive PCB to IGBT, No Loop; b) connection with Loop inserted in 

path 

To assess the impact of the RF content in the gate current on the emissions, the REFOM 

is plotted against the measured wIg_mean in Figure 5-20 on a linear scale.  The radiated 

emissions have increased significantly with the addition of the gate loop which can be 

used to identify the loop as the emissions source.  It is not possible to fully characterise 

the performance of this loop antenna from these limited test results and broadband 

frequency measurements. While these emissions are present and significant, field 

strength is low in comparison to those from the IGBT when switching high voltages and 

currents. While the applied gate profiles in each case are identical, the addition of the 

large loop in the gate circuit alters the impedance and resonance which strongly 
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influences the measured gate voltage at the terminals of the IGBT.  Several 

measurements were repeated and checked to ensure consistent measurements however 

only one result for each setup is shown.  This scenario illustrates how a change in the 

physical structure of the EUT can influence both the electrical signals within the circuit 

and also the radiated field strength. 

 

Figure 5-20: Change in REFOM versus wIg_mean  

The mean of the voltage wavelet transform (wVge_mean) is also plotted against REFOM 

in Figure 5-21.  It can be observed that REFOM increases approximately linearly with 

the wVge_mean for both sets of tests but with a different gradient.  This is unexpected as 

the change to the parasitic electric field antenna due to the loop is minimal hence the E-

fields relative to the ground reference will not change. 
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Figure 5-21: Change in REFOM versus wVge_mean  

The increase in REFOM with gate voltage can be explained when considering the 

circuit impedance.  The wavelet transform shows that the RF peaks in the voltage and 

current occur at the same location in time and hence are linked via the circuit 

impedance.  This can be seen in Figure 5-22 where the peak wavelet magnitude for the 

gate voltage (wVge_pk) is plotted against the peak wavelet magnitude for the gate current 

(wIg_pk).  A trend line has been fitted which identifies the impedance over the frequency 

range evaluated by the wavelet transform.  
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Figure 5-22: Change in gate circuit impedance Loop and No Loop 

Enabling the dc bus voltage and repeating measurements with the range of gate demand 

profiles for both Loop and No Loop conditions, the REFOM is plotted versus the mean 

of the wavelet transform of Vce (wVce_mean) in Figure 5-23 and wIc_mean in Figure 5-24.  

It can clearly be seen that the emissions increase approximately linearly with voltage.  

The inclusion of the gate wire loop alters the magnitude of the RF components for each 

test however the relationship between the REFOM and wVce_mean is constant.  This 

indicates that the small increase in emissions due to the gate circuit loop is insignificant 

to the measured RE when the IGBT is switching at a high bus voltage (however this 

may be responsible for some of the variance in the measurement). 
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Figure 5-23: REFOM versus wVce_mean 

As identified earlier, a rapid change in collector current induces a change in the 

collector emitter voltage due to the stray inductance and is unavoidable. However 

during the switching transients, a change in current as the diode begins to block voltage 

will correspond to a large change in Vce due to the transitional changes within the 

devices.  Care has been taken to only include the results where there is minimal change 

in Vce due only to the stray inductance in Figure 5-24.  No correlation could be found 

between the current and wavelet magnitudes and the emissions. 
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Figure 5-24: REFOM versus wIc_mean 

To assess the use of the Vce high pass filter, the Ic probe is disconnected from the 

oscilloscope (but remains connected in the circuit) and series gate profiles are re-

evaluated.  A DFT of the filtered signal is carried out and the mean of all components 

between 30-50 MHz calculated and referred to as VRF. VRF is plotted against REFOM in 

Figure 5-25. 

As with the wVce_mean, a linear trend line can be fitted to the data using linear regression 

further confirming that the dominant source of the radiated emissions can be related to 

the RF content in Vce.  The goodness of fit in both cases has been evaluated using the 

coefficient of determination (R
2
) where a value of 1 is a perfect match.  When using the 

wavelet transform, R
2
 = 0.74 compared to R

2
 = 0.88 for the filtered signal.  The radiated 

emissions can be approximately related to the mean of the filtered voltage be equation    

( 5-1 ). 

                  
                 ( 5-1 ) 
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Figure 5-25: REFOM versus VRF 

As the radiated emissions limits are defined in dB, a comparison between REFOM and 

the VRF shows a maximum error ± 1.0 dB V/m for this setup (see Figure 5-26).  Using 

wavelets alone, the maximum error is ± 3.2 dB V/m.  The variance can be attributed to 

fluctuations in temperature, contributions from other sources such as gate current, 

background disturbances, etc. 
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Figure 5-26: Predicted REFOM from VRF measurements 

There is a clear relationship between the measured radiated emissions from the 

simplified test setup and the measured collector emitter voltage wavelet magnitude 

which is further improved with the use of a high pass filter.  There remains a significant 

uncertainty surrounding the exact sources.  While no clear linkage can be determined 

between wIc and REFOM, the testing of the gate loop indicates that the current loop can 

be an effective source of emissions and may be responsible for the variance.  In a real 

VSD, the collector current loop and loop impedance would be further reduced with 

careful design consideration and is hence less likely to contribute to the emissions.  

The potential sources of RE are considered in chapter 2 where the cable can act as an 

antenna for several sources.  While the main electrical source for the measured radiated 

emissions has been determined above to be Vce, it is not clear which of the identified 

antennas is responsible for the emissions.  These details would be important factors in 

the cable selection however when using the IGBT gate drive to reduce radiated 

emissions, this is not important. 

5.5.4 Minimum Rise/Fall Time 

The location of the breakpoints in an ideal trapezoidal is discussed in chapter 2 where it 

is shown that the radio frequency components can only be influenced by waveform 
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shaping for a limited range of rise/fall times using a trapezoidal approximation.  The 

rise time can be reduced further with the use of an s-ramp profile while having a lower 

amplitude above 30 MHz.  For the simplified test setup used above, and using equation 

( 5-1 ) to fit VRF to REFOM, a value of 40 dB (V/m) corresponds to 0.245 V (107.8 dB 

V).  While the limit lines given in Table 4-2 (and adjusted for measurements at 3 m) 

are for a quasi peak detector, it is found that an REFOM of 40 dB (V/m) gives a pass 

for most tests when using a quasi peak detector. 

The newly defined voltage limit can be used in conjunction with the analysis in section 

0 where the envelope of the signal spectrum must be at or below the limit at 30 MHz.  

Evaluation of this limit for an ideal trapezoid and a 1
st
 derivative s-ramp switching 

pattern is shown in Figure 5-27.   

The envelope can be constructed for the waveforms by plotting the breakpoints and 

connecting them with straight lines with increasing gradient.  The amplitude up to the 

first frequency break point (fc1) is given by ( 5-2 ) where T is the measurement period 

and t is the on time of the trapezoid.  The second break point (fc2) (equation ( 5-4 )) is 

given for a rise time (tr) where a rise time of 134 ns and will just meet the limit for RE 

at 30 MHz with the trapezoidal waveform as shown in Figure 5-27.  Using an ideal s-

ramp where the time for the first derivative (tr_dv/dt) is half of tr introduces a third 

breakpoint (fc3) (equation ( 5-5 )). The rise time can be reduced to 77 ns while still 

meeting the required limit at 30MHz for the s-ramp.  Section 4.4 described how the 

switching losses are dependent on the voltage rise time hence by using a shaped voltage 

transient, the losses can be reduced in comparison to the ideal trapezoid.  When using a 

43.7  resistor and a step gate voltage input which passed the radiated emissions test, 

the measured rise time is 121 ns which lies between the two ideal wave shapes 

presented here. 
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Figure 5-27: Rise Time Limits based on Ideal Trapezoid and Ideal S-ramp 
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The amplitude at fc1 is related to the dc bus voltage as given in ( 5-2 )  (600V in this 

example).  Using this relationship, it becomes clear that as the bus voltage increases, tr 

must have a corresponding increase to maintain compliance to the emission limits.  

Conversely, as the voltage is reduced, tr can reduce. 
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5.6 Summary of Chapter 5 

The control of the radio frequency content in the switch on transient of an IGBT via the 

gate emitter demand voltage has been demonstrated.  By utilising this technique, it is 

possible to separate in time the features in the collector current waveform from those in 

the collector emitter voltage. 

Although the relative magnitude of voltage in collector emitter voltage and gate emitter 

voltage is very different, the radiated emissions depend on the antenna efficiency hence 

signals cannot be compared to each other as the layout, separation and loop areas etc are 

different.  A simplified radiated emissions apparatus setup has been described and 

investigated for a comparative evaluation for the dominant source of radiated emissions.  

Four potential sources have been measured and while it is possible to see that more than 

one source is responsible for the measured radiated emissions, a strong dependence on 

the radio frequency content measured from the collector emitter voltage has been found.  

No relationship could be found between the RF content in the collector current and the 

measured radiated emissions. 

This voltage has been analysed mathematically using the wavelet transform to both 

identify the dominant sources of the emissions in time and also using a hardware high 

pass filter to improve the signal to noise ratio.  In both cases, the emissions increased 

linearly with the mean of the calculated and measured signals.  The variance and hence 

error in predicting the emissions is lower when using the hardware filter.  Using this 

presented method of measurement, a very strong linkage between electrical 

measurements and radiated emissions has been established and has achieved a key 

objective of this research. 

Using the relationship linking electrical measurements to radiated emissions, the 

allowable RF content in the collector emitter voltage can be predicted for each physical 

structure to comply with the radiated emissions limits in the standards.  This has then 

been translated into an allowable rise time for the ideal trapezoidal waveform and the s-

ramp.  In reality, the switching pattern is likely to lie within these two ideal shapes 

hence these can be used as a guide to possible switching losses. 
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While the linkage has been established between the collector emitter voltage and 

radiated emissions, it is not possible to determine which mechanism or mode as 

described in section 2.3.1 is predominately responsible for the transmitting antenna, 

however several mechanisms can be discounted such as the current loops within the 

drive and current loops coupling in the near field.  This is an area for further study to 

determine the exact radiating structures.  The sacrifice of the switching losses using this 

gate driving process is not important for the research in this chapter.  Now that the 

linkage of the collector emitter voltage to radiated emissions is confirmed, it is possible 

to investigate the operational modes of the VSD system and implement this new 

knowledge to reduce the switching losses. 
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 Chapter 6: Radiated Emissions from a Variable Speed Drive 

6.1 Introduction 

This chapter examines how the linkages which have been determined in chapter 5 

between radiated emissions and the RF content in the collector emitter voltage (VRF) 

can be exploited to reduce the switching losses in a VSD system capable of rotating a 

motor.  A commercially available VSD, Control Techniques
™

 DST1405, is studied in 

detail including all components which influence the impedance of the output phase 

connection and the physical connection of the shield.  The wavelet transform is used to 

illustrate the sources of the peak of the RF content whereas the high pass filter discussed 

in chapter 4 is used to evaluate and predict the radiated emissions.  The effect of the 

switching frequency and modulation strategy on radiated emissions are presented and 

discussed. 

The relationship between the switching energy loss and the radiated emissions with both 

fixed resistor gate drive and shaped gate transient are presented together with a possible 

circuit solution to exploit the optimum solution. 

6.2 The Commercial VSD for Evaluation 

A Control Techniques
™

 DST1405 servo drive is chosen for evaluation of the radiated 

emissions performance.  This VSD consists of a three phase rectifier, dc bus capacitors 

and 6 discrete IGBT and diode DuoPacks.  The IGBTs are Infineon
™

 IKW40N120T2 

trench gate and field stop technology IGBTs with soft, fast recovery PT anti-parallel 

diodes and do not contain an internal gate resistor.  The gate drive consists of a fixed 

resistor for switch on with a parallel path to reduce the switch off resistance.  The IGBT 

datasheet recommends the use of a 12  resistor however for compliance with radiated 

emissions, a 24.2  resistance is used leading to higher than desired switching losses. 

6.2.1 Modulation Strategy 

To create the sinusoidal output voltages and currents, the VSD must control the 

switching pattern of the six IGBTs.  Modulation strategies differ in software complexity 

and performance, however space vector modulation (SVM) is used in the DST1405 [1, 

117].  Output demand vectors can be represented by time averaging three different 



Chapter 6: Radiated Emissions from a Variable Speed Drive 

______________________________________________________________________ 

165 

switching combinations in a particular sextant for the hexagon as shown in Figure 6-1 

where the rotational speed of the vector determines the fundamental electrical output 

frequency.  Each leg in the IGBT bridge is represented with either a 1 or 0 indicating the 

output phase as either high or low. 
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Figure 6-1: Illustration of SVM 

During radiated emissions testing, a permanent magnet motor is rotated at no load and 

at a constant speed.  The required torque, hence, current increases slightly with output 

speed to supply the increased motor losses.  As discussed previously, the bandwidth of 

the receiving antenna during radiated emissions, is 30 s.  When operating at a low 

speed, the required output voltage is low hence time period d is short compared to 

period a ashown in Figure 6-1.  At low current, the three rising edges  and the three 

falling edges are close in time when using SVM.  It is possible that all six pulses occur 

within the response time of the receiver even for low switching frequencies.  At low 

currents, and when operating with a fixed gate resistor, the transient voltages contain 

higher levels of RF content as will be discussed in section 6.4.  Under these conditions, 

the measured radiated emissions will be high.  As the speed increases, the first three 

pulses separate in time from the latter three pulses due to the increasing back 

electromotive force (e.m.f.) and fall outside the measuring period reducing the measured 
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radiated emissions.  Measurements (using a peak detector) with different motor 

rotational speed are shown in Figure 6-2. 

 

Figure 6-2: Change in radiated emissions levels with change in motor rotational speed. 

The cable capacitance as seen by the VSD depends on the output vector position.  To 

determine the impact of this on radiated emissions testing, the VSD is set to a stationary 

output vector and the emissions measured.  The vector is rotated by 30° and the 

measurements repeated.  The results can be seen in Figure 6-3.  It is clear that the 

spectrum changes with the vector however, there are two distinct signatures shown.  At 

0°, and at intervals of 60°, only one phase in the cable is switched high to the dc bus 

voltage however at 30° and at intervals of 60°, two phases are switched to the dc bus 

voltage.  During the compliance testing, the quasi peak receiver time constants smooth 

out the influence of the RE change with vector positions and hence give another 

explanation for the quasi peak value being lower than the peak. 
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Figure 6-3: Change in radiated emission levels with output vector. 

6.2.2 Switching Frequency 

The DST1405 switching frequency is user selectable and can be used to optimise the 

system dynamic performance, reduce audible noise or increase VSD or motor 

efficiency.  Radiated emissions measurements from operation at different switching 

frequencies, are shown in Figure 6-4.  An increase in the peak emissions can be 

observed as the switching frequency increases but only at low rotational speeds.  This 

phenomenon can also be related to the modulation strategy where the time between 

switching periods is reduced at higher switching frequencies causing more pulses to be 

captured within the receiver period. 



Chapter 6: Radiated Emissions from a Variable Speed Drive 

______________________________________________________________________ 

168 

 

Figure 6-4: Change of radiated emissions with switching frequency 

6.2.3 Gate Drive 

The gate supply rails are powered using a flyback converter from the dc bus which 

gives four isolated 24 V gate supplies, one to power the three lower IGBTs and one for 

each of the upper devices.  The schematic is shown in Figure 6-5 where the voltage 

from the transformer secondary windings is rectified and filtered.  The voltage rails are 

split using a Zener diode to give +18 V and -6 V relative to the IGBT emitter.  The 

switching signal is supplied from the microprocessor via an optocoupler which provides 

galvanic isolation.  When switched on, current flows from the +18 V supply rail, 

through the series resistors (Ron_a and Ron_b) to the gate terminal of the IGBT and returns 

from the emitter to the negative rail via the capacitor (Cge_x).  For switch off, the 

optocoupler switches the output to the -6 V rail which discharges the IGBT gate 

capacitance via the parallel combination of the resistors (Ron_b and Ron_a//Roff).  The 

values of three gate resistors are determined during product development to provide 

compliance to IEC61800-3 [6] for radiated emissions.  The gate voltage is held negative 

when off to increase the noise margin for immunity to high dV/dt on the phase 

conductor particularly during short circuit conditions. 
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Figure 6-5: DST1405 gate drive circuit. 

For accurate control purposes, the output current must be known for each switching 

cycle.  The output phase is connected to a primary winding of a direct current current 

transformer (DCCT) where two output phases are combined on one DCCT reducing the 

number of required DCCTs to two.  A current is applied to the secondary winding of the 

DCCT to maintain zero flux in the measuring device. The bandwidth of the DCCT 

circuit is 100 kHz which is suitable for measuring at the maximum output frequency but 

cannot measure any EMI related phenomenon. 

A common mode filter (toroidal ferrite) surrounds the three output phase connectors 

(with two turns of each phase) which provides high impedance at high frequencies and 
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is intended to reduce radiated emissions.  The three output phases terminate in a 

connector to which the motor cable is attached.  The cable shield is connected to a 

specially provided bracket providing low impedance to the reference ground.  In the 

simplified test setup, the emitter of the IGBT is connected to ground, the test chassis 

and cable shield, hence, measurements of Vce are relevant for radiated emissions.  The 

cable shield is no longer connected to the IGBT emitter when the VSD power is 

supplied through the rectifier however the VSD ground is connected to the negative dc 

bus via an X1 class capacitor providing low impedance between the shield and dc link 

at radio frequencies. 

To facilitate compliance to conducted emissions a custom designed conducted EMI 

filter is connected between the mains supply and the rectifier.  This prevents HF signals 

from propagating along the mains cables and provides a reduction in radiated emissions. 

6.3 Measuring Probes and Ancillary Hardware 

As noted during the RE measurements of the simplified VSD system, the impedance of 

the measuring probes has a strong influence on the IGBT transient switching trajectory.  

When carrying out pulse testing for energy loss measurements, a current probe is 

required to determine the collector current trajectory.  The influence of this probe on the 

voltage transient can be seen in Figure 6-6 where the initial step in the voltage is due to 

the probe insertion impedance and the stray inductance of the wire loop required to 

physically locate the probe.  The potential error in RF measurement due to the probes 

can be seen in Figure 6-7 where a significant difference can be observed in the wavelet 

magnitudes.  When the VSD system is evaluated for RE, measuring probes are not 

attached and so it is important that the same circuit impedance is used for any laboratory 

measurements.  The connection of the conducted EMI filter, all appropriate earthing 

structures and cable length as used for RE testing are included in laboratory 

measurements for RE as these also influence the switching trajectory and the dissipated 

switching loss. 
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Figure 6-6: Impact of current probe on voltage switching trajectory 

 

Figure 6-7:  wVce for switch on transient with and without collector current probe. 
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To achieve the necessary high bandwidth for the radiated emissions, non-isolated 

voltage probes are used.  The current measurement is made on the motor end of phase 

conductor where the probe impedance is small compared to the load and hence will 

have minimal influence on the switching trajectory.  The cable capacitance (phase to all 

other phases and shield = 1.2 nF for the 5 m cable tested) is significantly greater than 

the probe capacitance (6 pF) and no influence of the voltage probes could be detected.  

The unused phase is connected to positive dc while capturing voltage measurements.  

Figure 6-8 illustrates the measurement setup. 
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Figure 6-8: VSD Pulse Test Setup. 

6.4 Fixed Gate Resistor VSD Operation 

As shown previously, it is possible to make a VSD to comply with the radiated 

emissions limits by increasing the gate resistance.  To rotate an electrical machine, the 

output current varies sinusoidally at a frequency related to the motor rotational speed.  

The torque delivered to the load is determined by the magnitude of the output current 

from the VSD.  Considering this, the load current, as chopped by the IGBT will vary 

between zero Amperes and the VSD maximum overload current. 

As established from the semiconductor physics in chapter 2, the transient operation of 

the IGBT and diode will vary with the collector current.  To determine the influence of 

this on the radiated emissions, pulse testing is carried out on the DST1405 servo VSD 

with the designed gate impedance (24.2 ) over the current range.  The voltage 

transient is measured between the output phase terminal and the negative dc terminal for 

several load currents (Figure 6-9). 
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Figure 6-9: Switch on transient and peak emissions for Rg = 24.2   

A 200 V undershoot can be seen in the voltage waveform when measured at the VSD’s 

terminals which is not present in the simplified test setup.  As the IGBT switches on, the 

change in voltage creates a travelling wave along the cable towards the motor.  The 

terminal impedance of the motor is significantly higher than that of the cable hence 

current reflections occur [13, 16, 118].  The effect of cable reflections are observed 

previously in the collector current of the simplified pulse test setup, however they did 

not contribute to a significant disturbance in the voltage waveforms. 

The change in the voltage waveform can be attributed to the use of the common mode 

toroidal ferrite which surrounds the three phase conductors as they leave the VSD and 

the DCCT.  The inclusion of the ferrite presents three new effects with regards to 

radiated emissions: 

1. a higher impedance is seen by the IGBT which reduces the transient time of the 

IGBT which, in turn, generates more RF content when measured at Vce. 
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2. some of this RF content is blocked from reaching the cable by the ferrite which 

induces a series voltage to compensate.  The current which still contains a 

significant RF content, travels along the cable and reflects from the motor terminals.  

This reflected current returns to the VSD and is observed flowing through the IGBT 

collector. 

3. due to the high impedance of the ferrite, a voltage drop due to the reflected current 

flowing through the ferrite creates the 200 V undershoot is observed.  The DCCT is 

connected in series with the ferrite and contributes to the impedances as shown in 

Figure 6-10 measured with zero curent bias. 

 

Figure 6-10: Measured Impedance of Ferrite and DCCT 

This operation of the ferrite is an example of mode conversion where a differential 

current with RF content reflects along the phase conductor and creates a common mode 

voltage drop which contributes to radiated emissions.  It also provides coupling between 

the output phases minimising the net common mode RF voltage. 

When operating with a three phase output the sum of the three phase currents is 

approximately zero hence the ferrite does not saturate.  During this pulse testing, only 

one phase is enabled hence the ferrite aims to restrict all the current.  The ferrite does 

not approach saturation during this testing and its temperature remains below the curie 

point (112 
 
°C) [119]. 



Chapter 6: Radiated Emissions from a Variable Speed Drive 

______________________________________________________________________ 

175 

As the voltage on the cable is responsible for the radiated emissions, the series of testing 

is repeated with the output voltage measured relative to ground rather than the negative 

dc bus (see Figure 6-11). The transient voltage pattern is similar to Vce measurements 

however the voltage has been offset by 300 V.  This is due to the dc power supply 

reference to ground.  The magnitude of the wavelet transform has altered a little due to 

the impedance between the ground and negative dc bus.  At the lowest measured 

current, the reflected current returns to the VSD before the IGBT voltage has finished 

its transient.  The voltage drop across the ferrite adds to the falling voltage drop across 

the IGBT giving a large peak in RF content at this point. 

 

Figure 6-11: Switch on transient and peak emissions for Rg = 24.2  measured to ground 

At higher load currents, the voltage of the Miller plateau has increased hence the 

available gate current to complete the switching transient is reduced resulting in lower 

dV/dt.  As the dV/dt reduces, likewise the reflected current magnitude hence voltage 

undershoot also reduces.  The dV/dt versus current is shown in Figure 6-12 for different 

gate resistor values. 
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Figure 6-12: Change in dV/dt with current 

This series of pulse tests is repeated using the manufacturers’ datasheet Rg value of 12 

 (Figure 6-13).  In this case, we can see a slight voltage drop due to the stray 

inductance of the bus bar and the increased rate of change in current due to the smaller 

resistor.  The bus bar inductance in this physically small VSD is low and includes a 

snubber capacitor located close to the IGBTs to limit voltage overshoots during the 

switch off of a short circuit condition.  Therefore the large step in voltage as seen in the 

simplified setup cannot be observed.  As the dV/dt has increased with this resistor value, 

it is possible to see a change in the shape of the voltage transient at low currents.  The 

voltage transient can be seen to approach the IGBT saturation voltage just as the 

reflected current returns.  In this case, the peak emissions remain at the point where the 

diode begins to support the voltage. 
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Figure 6-13: Switch on transient and peak emissions for Rg = 12  

For testing with the 4.0  gate resistor (shown in Figure 6-14), the further increase in 

dV/dt has led to a pronounced step in the voltage transient at the low currents.  At this 

point, it can be seen that the peak wavelet magnitude occurs as the IGBT reaches the 

saturation voltage (point 4) just before the reflected current causes the voltage to 

undershoot. 
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Figure 6-14: Switch on transient and peak emissions for Rg = 4  

6.5 Switching Energy Loss 

One of the important parameters which depends on the switching speed and hence the 

gate resistance is the switching loss.  For each of the conditions shown above, the 

switch on energy loss is calculated from the voltage and current waveforms and is 

plotted in Figure 6-15. (Note the collector current transient is measured during a 

separate pulse test from that used to measure wVce to avoid distortion of the waveform).  

Although the exact switching energy cannot be accurately measured with this method, it 

does give a useful basis for a comparative evaluation. 
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Figure 6-15: Eon for each of the above conditions  

As expected, the switching time (hence switching loss) increases with the gate 

resistance.  Under these conditions, the loss using the 24.2  resistor has increased by 

33 % compared to the datasheet resistance of 12 . 

6.6 Radiated Emissions Predictions 

It was found in chapter 5 that the measured radiated emissions can be predicted from the 

measurement of the voltage transient using a physical high pass filter (VRF).  The results 

for each of the three gate resistances are shown in Figure 6-16 versus current.  It is clear 

that for each case, the highest level of RF content is present at the lowest output current 

and as expected, the smallest gate resistor contains the largest voltage magnitude. 
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Figure 6-16: change in VRF with current for different Rg. 

As discussed in chapter 3, many publications in the literature have assumed that the 

radiated emissions are related to the dV/dt of the switching transient and while there is a 

relationship, this does not explain all the possible characteristics.  Comparing Figure 

6-16 to Figure 6-12 there is a general trend for emissions to reduce as the load current 

increases, However observing the dV/dt alone does not indicate the significant increase 

in emissions at low currents. 

Radiated emissions measurements of the DST1405 (using the peak detector) from the 

three gate resistors are shown in Figure 6-17.  It is clear to see how the reduction in gate 

resistance gives an increase in the radiate emissions, however it is important to note that 

the increase is not equal across the entire frequency range.  For example  between 30-33 

MHz, there is no difference in the measured emissions from the 24.2  resistor and the 

12  resistor however the peak value at approximately 40 MHz varies significantly for 

the three cases. 
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Figure 6-17: Measured Radiated Emissions for different Rg values 

6.6.1 Switch Off 

In the simplified testing, the switch off transient remained constant throughout all 

testing hence its impact on emissions is disregarded.  With a fixed gate resistor value in 

the gate drive, it is not possible to ignore the contribution to RE.  The different tests 

have been identified using the switch on resistance value shown in Figure 6-5 where Rg 

is the sum of Ron_a and Ron_b.  For turn off, Ron_a is connected in parallel with Roff which 

in this case was a 6.8  resistor resulting in a lower resistance during switch off.  The 

peak emissions at switch off, as determined using the wavelet transform, for the 

DST1405 VSD always occurs at the peak of the voltage overshoot due to the diode 

forward recovery and stray inductance and hence increases with current as shown in 

Figure 6-18.  At the higher load currents, the diode forward recovery voltage begins to 

decay before the peak voltage due to stray inductance has been reached smoothing the 

peak of the transient, reducing VRF. 
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Figure 6-18: change in VRF with current for different Rg at switch off. 

The RF content in the switch off voltage is significantly lower than for switch on at low 

currents however this does increase to be a significant value at higher currents.  The 

change in gate resistance has only a minimal influence on the measured emissions.  As 

discussed in chapter 4, the receiver bandwidth of 120 kHz (which relates to a period of 

approximately 30 s) will capture a contribution of the switch off transient at low 

currents.  Where the mean of the filtered signal between 30-50 MHz is taken in for 

switch on, the sum of switch on and switch off is shown in Figure 6-19 and used to 

predict the radiated emissions. 
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Figure 6-19: change in VRF with current for different Rg (sum of switch off and switch on). 

6.6.2 Filter Components 

Two techniques have been used in the DST1405 to reduce the radiated emissions.  The 

first is the inclusion of the EMC capacitor between ground and negative dc and 

secondly the ferrite ring surrounding the output phases.  To assess the influence of these 

components, each is removed in turn from the VSD and the frequency content of the 

voltage transient measured at the VSD terminals with a gate resistance of 24.2 . The 

results (for switch on), shown in Figure 6-20 are the RF content versus current. 
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Figure 6-20: Measured VRF with various combinations of filter components 

It can be seen that the EMC cap offers a significant reduction of RF components across 

the range of currents.  The addition of the ferrite has reduced the RF components 

significantly at low current outputs however the benefits are less clear as the output 

current increases. 

Comparing the measured voltage results above to the measured radiated emissions for 

the four conditions (Figure 6-21 and Figure 6-22), the major problem with interpreting 

radiated emissions is highlighted.  Where REFOM is calculated for each test 

configuration (and shown in the key) the order of these results can be correlated to the 

voltage measured with the high pass filter when the motor is rotated at 100 rpm (Figure 

6-21).  However, when the motor is rotated at 3000 rpm, the REFOMs for two of the 

conditions swap rank. 
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Figure 6-21: Measured Radiated Emissions for VSD internal filter components at 100 rpm 

 

Figure 6-22: Measured Radiated Emissions for VSD internal filter components at 3000 rpm 

In an effort to clarify this change of order, the REFOM for the two rotational speeds are 

plotted against the high pass filter output (sum for switch on and off) in Figure 6-23.  

By fitting a logarithmic curve to the datasets, it can be seen that the maximum deviation 

is ± 3dB.  Hence the difference in emissions as predicted by the high pass filter is within 

an expected measurement error.  This change of emissions with speed is an important 
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variable where the worst operating condition should be identified to determine a suitable 

pass / fail limit for VRF for a range of drives. 

 

Figure 6-23: DST1405 REFOM versus measured RF content in voltage  

6.7 Implementation of Passive Circuits to Increase Efficiency  

From studying the voltage transient of the DST1405 VSD with the wavelet transform, it 

is clear that the low bus bar and module inductance does not create a source for radiated 

emissions hence there are no peaks at potential points 1 and 2 (wVce_1 and wVce_2).  

Instead, at point 3 as the diode begins to block voltage and at point 4 as the voltage 

approaches saturation are the dominant sources of the emissions. Several passive gate 

drive solutions are implemented in an attempt to reduce the switching loss while 

maintaining compliance with radiated emissions limits. 

6.7.1 Additional Cge 

Several gate drive solutions examined in chapter 3 utilised the addition of an external 

gate emitter capacitance (Cge) in an attempt to reduce the IGBT switching losses.  This 
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operates by shaping the switching transient separating the time constant associated with 

the collector current rise time from the gate impedance seen as Vce begins to fall.  To 

assess the benefit of this for the DST1405, pulse testing is carried out with various 

values of Cge added and the results are shown in Figure 6-24. 

 

Figure 6-24: Switch on loss versus VRF with external Cge 

The loss for a 24.2  fixed resistor is measured at different output currents and is shown 

in blue.  The loss is reduced by using the 12  resistor, however VRF increases as shown 

previously.  The pale grey lines interpolate between the results indicating how the points 

may change for intermediated values of fixed resistance.  Two load current points have 

been assessed for the addition of Cge, 5 A and 25 A.  At 5 A, small values of capacitance 

offer little benefit to either the loss or emissions, however as the capacitance is 

increased to 680 pF, there is a 19 % reduction in switching energy with no change in 

VRF.  As the capacitance is increased further to 6.8 nF, the losses have been reduced by 

22 % compared to the 24.2  measurement with a comparable VRF.  This is a very 
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desirable solution at reducing the radiated emissions as discussed in literature presented 

in chapter 3.   

While the reduction in switching loss is desirable, it must be considered over the entire 

operating range of the IGBT.  When operating with an output current of 25 A (highest 

loss in the diagram) the addition of a capacitance does not reduce VRF however it has 

increased the switching loss by 23 % (Figure 6-24).  The benefits in loss reduction at 

low currents are not sufficient to offset increases in losses at high currents. 

Further attempts to shape the switching transient using passive devices resulted in a 

similar performance where each output current level could be optimised however 

changes due to temperature such as a shift in threshold voltage or load current reduced 

the performance.  As an example of this, a capacitor is placed in parallel with the gate 

resistor to increase  dIc/dt as illustrated in Figure 6-25. 

EGCge

Cg

Rg_a Rg_b C

 

Figure 6-25: Passive gate drive, parallel capacitor 

The series combination of the capacitors creates a potential divider which rapidly brings 

the gate voltage up to the Miller voltage for the designed output current.  As the 

collector current is related to the gate voltage above the threshold by the 

transconductance, the collector current also rises rapidly reducing the switching losses 

in this period.  The gate resistor then limited the gate current during the Miller region 

controlling the voltage transient.  By careful adjustment of the ratio of capacitance 

values, the peak emissions located at point 4 (voltage approaching Vce(sat)) can be 

independently reduced however this is very sensitive to load current due to the changing 

Miller voltage. 

6.8 Switched Impedance 

The method presented in this thesis to measure and quantify the RF content in voltage 

switching signals illustrates interesting properties and opportunities for reduction of 
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switching loss while maintaining compliance with radiated emissions.  In Figure 6-16 

the reduction in emissions with output current has been identified while also illustrating 

that lower loss, albeit with higher emissions can be achieved using a lower gate 

resistance.  Figure 6-24 progresses this further showing how the gate impedance as a 

whole can be considered to control the balance of low switching loss with compliance 

with RE.  To take advantage of this curve shape with an adaptable gate drive with 

selectable gate impedance could be used as illustrated in Figure 6-26.   
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Figure 6-26: Selectable Gate impedance 

During VSD operation, the decision of which impedance to select can be determined 

from the output current which can either be measured within the gate drive through 

various parameters of the IGBT such as Vce(sat) or Miller voltage or measured externally 

and fed through an opto-isolator to preserve galvanic isolation. The decisions can be 

made on a cycle by cycle basis hence operating at the output switching frequency.  The 
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number of gate impedance choices is application specific where a high number can be 

used to optimise performance of the entire switching profile. 

6.9 Simple control of wVce_1 with threshold hold circuit 

As presented in this thesis, the first peak source of radiated emissions (wVce_1) occurs as 

the load current begins to increase and is related to the stray inductance in the bus bar 

loop.  In an effort to reduce the peak value of this, it is possible to utilise the stray 

inductance in the gate circuit loop.   

When applying a step input demand to turn on an IGBT using a fixed gate resistor, the 

rate of change of Vge is initially limited by the gate loop inductance.  As the voltage 

trajectory increases towards the threshold voltage (VT), the rate of change in voltage 

further increases.  Under these conditions, the rapid change in Vge beyond the threshold 

voltage demands a correspondingly rapid increase in Ic linked via the transconductance.  

However, if the gate voltage is initially held to a constant level just below the threshold, 

before increasing with the step demand, the inductance in the gate loop slows the Vge 

trajectory causing a corresponding reduction in the initial collector current trajectory.  

A simple threshold circuit is constructed as shown in Figure 6-27.  A demand signal is 

applied to the gate drive from the microprocessor.  The gate voltage is rapidly increased 

to a voltage just below the device threshold, held for a defined time, and then continues 

towards the on voltage. 
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Figure 6-27: Gate Threshold – Hold Circuit 

Measurements of the voltage and current transients are shown in Figure 6-28 for three 

different plateau voltages.  Figure 6-28a shows how Vge is increased from the normally 

off -6 V up to either 3.12 V, 4.75 V or 7.12 V then held for approximately 100 ns.  In 

the third case (red), 7.12 V is too close to the threshold voltage and collector current 

begins to flow.  The small reduction in Vce allows Vge to continue to rise further due to 

the positive feedback loop.  This condition is unstable and increases the time taken for 

turn on, increasing the switching losses.  For the two cases with the lower voltages, a 

small change in the current transient is visible in Figure 6-28b with corresponding 

change in voltage trajectory shown in Figure 6-28c.  The significant difference is visible 

in both wVce_1 and wVce_2 where the peak wavelet values have reduced by up to 15 %. 
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a. b. 

c. d. 

Figure 6-28: Threshold hold transient waveforms a) Vge, b) Ic, c)Vce, d)wVce. 

This circuit works well at controlling the peak emissions at a specific operating point 

while preserving the low sensitivity to noise from the negative gate voltage.  The IGBT 

threshold can change by up to 2.5 V with changing temperature so the defined operation 

level must take this into consideration to reduce the emissions across all operating 

conditions. 

6.10 Summary of Chapter 6 

The radiated emissions from a commercially available servo drive have been considered 

in this chapter.  The VSD system including cable and motor are very complex when 

considered at radio frequencies.  The unmatched impedances of the cable contribute to 

current reflections and changing impedance depending on modulation strategy and 

output vector add to the list of variables which contribute to the measured emissions.  
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The VSD must comply with the radiated emissions limits under all operating conditions 

so performance with motor rotation speed and switching frequency must be considered. 

It is found that the radiated emissions change with the load current when operating with 

a fixed gate resistor value and the location in the switching transient of the peak 

emissions has been shown and related to the semiconductor device physics. 

The method of measuring the RF content of the voltage signals, presented in chapter 5, 

has been used with the VSD and found to show good correlation over a range of gate 

resistors and filter components.  The addition of a capacitor between negative dc bus 

and ground connection has given a reduction in broadband emissions which has further 

been improved with the use of a ferrite. 

Passive methods of controlling the gate transient presented in literature in chapter 3 

have been examined and found to offer improvements at specific operating points 

however these may have a detrimental effect as the voltage, output current and 

temperature change throughout operation.  A method to select the optimum solution has 

been presented which can operate at two stage for low or high currents or can be 

expanded in complexity to increase the number of stages further optimising the gate 

drive.  A patent has been applied for this gate drive solution for by Control Techniques. 
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 Chapter 7: Conclusions 

7.1 General Overview 

The main objective of this work, to determine the source of radiated emissions from a 

VSD, is addressed in this thesis.  The complex interaction between the IGBT and diode 

in the output leg has been described using semiconductor physics and methods to 

control the switching trajectory researched.  It is possible to define a gate emitter 

voltage trajectory to optimise the dissipated switching energy while complying with the 

radiated emissions limits as defined in the standards, however this must be optimised 

for varying load current, voltage and temperature.  Optimisation of the switching 

trajectory gives a significant reduction in switching loss in comparison to the state of the 

art method of a fixed gate impedance. 

7.2 Frequency Analysis 

It was previously known that the radiated emissions from a VSD can only be detected 

when the output is switching.  This led to research into the switching transients as the 

source of the radio frequency noise considered in the time domain.  A 120 kHz band 

pass filter as used by the receiver does not give adequate resolution in the time domain 

to identify features responsible for radio frequency content.  Analysis of the pulsed 

signals using a Fourier Transform also masks the time location of the frequency content 

of the signals, however, the use of the wavelet transform offers a compromise between a 

narrow time window and narrow frequency bandwidth.  With typical voltage and 

current rise times of 100 ns, the frequency content of interest (>30 MHz) is found to 

occur in the finer details of the switching transient and is not necessarily related to the 

rise time of the entire transient.   

7.3 Transient waveform shape 

Using this knowledge, shaping of the transient trajectory can be used to attenuate the 

radio frequencies while maintain similar loss values.  However, there is a limitation to 

how far this concept can be taken as the transient rise times are reduced.  It is confirmed 

by measurements of radiated emissions that the measured rise time of the transient 

voltage in a commercial VSD lies between the theoretical case of the ideal trapezoid and 

the optimised case for the s-ramp where the first derivative is continuous.  From these 
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pulsed signals, it is clear that it is not necessary to observe ringing in the transient 

signals for radiated emissions to occur.  

7.4 Gate Drive Solutions 

Many papers have been published describing novel methods to control an IGBT gate 

drive switching transient to provide an optimised solution for a given application.  No 

published solutions could be found specifically to control radiated emissions in the 30 to 

1000 MHz range, however many claimed benefits for EMC without specific 

descriptions.  A selection of the most promising for transient control is presented for 

di/dt and dv/dt.  However, measurements presented here from pulse testing of an IGBT 

show that the intrinsic time delays within the IGBT are large, preventing the use of 

feedback for control of radiated emissions.  A feed-forward solution is the most flexible 

control method for this research programme.  A high bandwidth feed forward gate drive 

was designed and built as a research tool to give fine control over the IGBT switching 

transients by generating custom gate emitter voltage profiles. 

Four transient signal sources were measured under control of the gate drive to assess 

their impact on radiated emissions.  The RF content in the gate drive circuit can emit 

measurable radio frequency radiation particularly from poorly designed, large loop 

areas.  From an understanding of the device physics, the collector current trajectory can 

be controlled independently from the voltage transient.  By utilising this control method, 

it is possible to create a wide range of test profiles to determine the linkage to the 

measured radiated emissions.  This gate drive is prohibitively large and expensive to be 

used in a commercial product, however the high specification is necessary for the 

research exercise presented in this thesis. 

7.5 Measuring RF Content in Electrical Signals 

Measuring the RF content in a high voltage signal is complicated by the limited vertical 

resolution of available oscilloscopes.  The use of wavelet analysis on the measured 

transient identifies the position in time of the peak emissions sources, however there is a 

degree of uncertainty around the result due to insufficient attenuation of lower (<30 

MHz) and higher (>100 MHz) frequencies.  The use of a physical, sixth order, high pass 
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filter sufficiently attenuates the low frequency content to bring the higher frequency 

components within the dynamic range of the oscilloscope.   

The connection of probes to the VSD system can lead to waveform distortion due to the 

insertion impedance which becomes critical at radio frequencies.  The VSD construction 

and impedance to ground are critical to achieve suitable radiated emissions performance 

and as such, measurements taken of the voltage transient must include all physical 

components of the drive system which will be used for radiated emissions testing. 

7.6 Dominant Source of Radiated Emissions 

The broadband radiated emissions from a VSD are seen to occur up to 100 MHz.  A 

method to capture this detail when measured using a 120 kHz bandwidth receiver has 

been presented and referred to as the radiated emissions figure of merit (REFOM).  

Measured resonance effects which cause crests and troughs in the spectrum caused by 

the physical structures such as the cables can be minimised by the REFOM while giving 

a good representation of the generated spectrum from the IGBT.  A strong correlation is 

found between the frequency content in the collector emitter voltage and the REFOM.  

Using the average output from the filter for the physical setup used throughout this 

testing, an error of ± 1 dB was found when predicting the REFOM.  While no 

correlation could be found for the RF content in the collector current, it has been shown 

from both semiconductor theory and measurements that the transient voltage depends 

heavily on the collector current transient therefore requiring careful control of the entire 

switching transient.  The measured radiated emissions change with temperature due to 

changes in the switching trajectory resulting from the silicon characteristics.  

Measurements using the passive filter over a temperature range are required to 

determine the worst case operating condition. 

7.7  Radiated Emissions from a Commercial VSD 

A VSD is a complex system when considered at radio frequencies.  The physical 

structures required to support the components, provide cooling and safety separation can 

contain many parasitic antennas.  The linkages found between RF content in the output 

phase voltage to ground show a strong correlation to the measured REFOM.  From 
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measurements of this voltage from a VSD which is compliant to international standards, 

a limit can be determined which can be used for product design purposes. 

Control of radiated emission from a VSD is a difficult task given the wide range of 

operating conditions: ripple on the supply voltages; sinusoidal output currents; and 

fluctuating temperatures.  By examining the features of the switching transient using the 

wavelet transform, the individual features responsible for radiated emission can be 

identified and corrective action taken by control of the gate drive.  For a fixed resistor 

gate drive, operation at low currents (below ten percent) is found to give higher 

emissions than operation at higher load currents. 

A possible solution to achieve an optimised performance is presented where the desired 

gate impedance can be selected depending on the operating conditions. Such a solution 

can provide minimal additional switching loss for the compliance with radiated 

emission limits. 

7.8 Benefits of the reduction in RE 

Radiated emissions standards have a pass / fail limit line which must be adhered to for 

compliance.  There is no advantage gained by further reducing signals significantly 

below this limit. However, improvements in the trade off between dissipated switching 

loss versus radiated emissions potentially offer significant environmental and 

commercial advantages. 

A large percentage of the volume and weight of a VSD consists of the cooling system – 

heat sink and fans.  By improving the efficiency of the IGBT switching transient, the 

energy which must be dispersed by the cooling system to maintain components within 

their safe operating area is reduced leading to smaller, lighter and cheaper VSDs.  The 

weight of the VSD is rarely a consideration for industrial installations however initial 

transportation costs can be significant for large, heavy systems. 

An increase in operating switching frequency allows faster current control loops to 

operate before reaching the limits of the VSD cooling systems.  This can result in better 

control performance of equipment and plant creating better products with less waste. 
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7.9 New Technology Devices 

With customer demands for higher efficiency products, device manufacturers are 

engaged in considerable efforts to reduce both switching and conduction losses.  New 

unipolar devices made from wide band gap materials such as Silicon Carbide (SiC) and 

Gallium Nitride (GaN), can be operated at higher voltages with lower conduction losses 

[21, 22, 120, 121].  Using the unipolar devices removes the need to create electron/hole 

plasma during switching.  As a result, these devices are capable of switching with lower 

losses and with higher transient speeds.  As illustrated in chapter 2, the attenuation of 

high frequency components in a switching signal is possible by curve shaping, however, 

the benefits of this reduce as the rise time reduces.  It also becomes increasingly 

difficult to implement any curve shaping techniques as the rise times are reduced to a 

few nanoseconds. 

With the reduction in costs of wide band gap devices, the radiated emissions will again 

become a significant design issue due to voltage transition times approaching 5-10 ns.  

Operation in this area with 600V supply voltages will not allow control of radiated 

emissions by curve shaping.  The slowing of the transients to comply with international 

standards removes the potential gain of the technology to save switching energy.  

Output filters will be required for such products to maintain compliance to radiated 

emissions standards however, operation with very high switching frequencies can lead 

to efficient output filter designs removing the PWM transients from the cables. 

7.10 Recommendations for Further work 

The research presented here has focused on the capability to balance radiated emissions 

with switching energy loss utilising the IGBT gate drive.  This method has potential 

benefits for the current generation of Si devices however as discussed above, further 

techniques are required to fully utilise new material devices.  Some areas where further 

work is required to implement this are: 

1. Asymmetric bus bar inductance: 

The influence of the bus bar impedance on switching loss has been discussed in 

this thesis.  Increasing the inductance at turn on helps to lower losses while 

increasing the inductance at turn off can increase losses and increase the 
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potentially damaging voltage overshoot.  New materials are being researched 

which have a property of asymmetric magnetic hysteresis.  If these can be 

adapted for use at high powers to control the inductance based on the current 

direction, there is a large potential for energy saving in all hard switched 

converters [122].  

2. Combined Input / Output filter: 

It has been presented here that the impedance to ground is important for radiated 

emissions.  This is due to the RF content in the phase conductors being 

capacitively coupled to ground in the cable and motor.  These currents flowing 

in the ground must find a return path back to the DC bus.  By using output filters 

designed to contain the RF content away from the ground, and within the VSD, 

the need for screened cable and associated radiated emission problems would be 

removed. 

3. Better cable design: 

The capacitance of the motor cable has been shown to be significant for radiated 

emissions by the presence of two distinct signatures depending on the VSD 

output vector.  Improved cable design with reduced capacitance to ground while 

maintaining good performance shield to avoid cross coupling could increase the 

allowable RF generation limit as discussed here. 
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 APPENDIX A: 4 GHz Gate Drive Design 

A.1 Scope 

To achieve precision control over the IGBT gate voltage transient, suitable for 

measurements of radiated emissions, a feed forward gate drive was designed and 

constructed.  This section presents the specification, schematics and PCB design 

required to implement the gate drive. 

A.2 Specification and key components 

Feature Specification 

Timing The output voltage should be capable of changing 

every 250 ps (4 GHz) 

Input Supply Single 24 V supply  

Gate Output 

Characteristics 

Minimum positive output voltage:+15 V 

Minimum negative output voltage : -5 V 

Output resolution: 12 bit 

Peak current 5 A for 200 ns repeating every 50 s 

Dimensions The outline dimension of a single drive board is 

not critical. However short connections to the 

IGBT are essential 

Board outline: 176 x 150 mm 

I/O Specification 11 User programmable IO pins 

8 DIP switches to assist with evaluation 

Bank of 8 LEDs to assist with evaluation 

LED indication for “FPGA Programmed” 

FPGA programming port 

Manual Reset button 

Two Push button inputs 

16 bit ADC for current feedback (5 V operation) 

Isolated input for connection to drive.   

CMR = 3000 V\s 

Isolation voltage = 600 VDC 

 

DAC To achieve the high speed output, a 4 GHz digital 

to analogue (DAC) is required.  The most suitable 

part is the MAX5881 which giving 12-bit 

resolution, max of 4.3 GHz output clocking 

frequency. Four, 12 bit, parallel port inputs 

clocking at 1Gb/s (DDR). 
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FPGA The FPGA needs to be suitable to store a large 

memory for a 10 s output profile (1.92 Mb) and 

clock out the memory at 1 Gb/s on 4 parallel 12 

bit ports. 

Low level timing controllers to define load 

current during pulse testing. 

Current loop control for continuous operation. 

Chosen part: VX6VLX75T-3ff484 from Xilinx 

Opamp 

 

Slew rate of the opamp must be a minimum of 

200V/s and operate from a 24 V supply. 

Chosen part: THS3091 from Texas Instruments 

Internal Power Supplies 5.0 V used for: 

Current Feedback circuitry and ADC:  

Current requirements: 289 mA 

3.3 V used for: 

DAC 

Clock synthesizer 

Current requirements: 670 mA 

2.5 V used for: 

FPGA , 

I/O 

Current feedback ADC 

Current requirements: 355 mA 

1.8 V used for: 

DAC 

Flash memory 

Current requirements: 15 mA 

1.0 V used for: 

FPGA 

Current requirements: 1 A 

24 V used for: 

Output Voltage Amplifier 

Output Current Buffer 

All other Power supplies 

Current requirement: 420 mA 

A.3 Schematic 

The schematic was drawn using Altium Designer 6.0 and used to create the netlist for 

the PCB layout.  The schematic version shown, is the latest version including all 

modifications required to the voltage amplifier found during testing (Figure A-1 to 

Figure A-10).  The modifications required (which differ from the PCB layout) include: a 

biasing circuit to correct the output voltage; and a termination resistor on the input of 

the opamp. The bias circuit was constructed on vero board and is visible in the thermal 
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image (Figure A-15) while the termination resistor was mounted directly on the pins of 

the opamp. 

 

Figure A-1: Schematic Page 1 

 

Figure A-2: Schematic Page 2 
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Figure A-3: Schematic Page 3 

 

Figure A-4: Schematic Page 4 
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Figure A-5: Schematic Page 5 

 

Figure A-6: Schematic Page 6 
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Figure A-7: Schematic Page 7 

 

Figure A-8: Schematic Page 8 
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Figure A-9: Schematic Page 9 

 

Figure A-10: Schematic Page 10 
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A.4 PCB 

Due to the high signal speed, and compact pin out of the FPGA and DAC BGA 

packages, the PCB design requires careful consideration to ensure good signal integrity.  

In particular, routing the 48 differential, high speed signals from the FPGA to the DAC 

with the same impedance, transit time and with minimal cross talk is essential.  Both the 

FPGA and DAC have 50  internal termination resistors which reduces the complexity 

of the design.  The signals were laid in two internal layers with a ground plane above 

and below each.  The separation between the differential lines was maintained to give a 

100  differential impedance. The length of each pair of traces was controlled by 

twisting the signal lines around each other as shown in Figure A-11. (The lines which 

had to travel the shortest distance required the most manipulation to maintain the length 

without compromising the complex impedance). 

 

Figure A-11: High Speed signal tracks 
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Several components required multiple voltage rails, the most appropriate method to 

maintain signal integrity is to include two power planes.  The shape of the power planes 

determined the overall component placement (see Figure A-12 and Figure A-13).  All 

components are attached to the top of the board and the top and bottom of the board 

were used for low speed signalling.  All vias were through hole which could also be 

used for functional the completed board.  The top and bottom surfaces were finished 

with immersion gold. 

 

Figure A-12: PCB Power Layer 1 
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Figure A-13: PCB Power layer 2 

A.5 Simulation 

The critical design parameter for this PCB was the signal integrity of the high speed 

data lines.  To ensure that the time delays between traces is acceptable, a simulation is 

carried out using ADS 2009.  The PCB Gerber files for the signal layers are imported 

and converted to EDSarchive files suitable for the momentum EM solver. The mesh 

fitted is suitable to simulate up to 10 GHz which corresponded to the FPGA signal 

harmonic content, due to the short rise time.  As all signals originate in the FPGA and 

terminate in the DAC, an IBIS model for the termination was not considered necessary.  

An ideal 100  resistor was used to terminate the differential pairs. 

Due to the complexity, computational memory requirements and time to solve, only 

three pairs of traces were simulated at a time.  Each trace was evaluated for signal 

propagation time, voltage overshoot and crosstalk by applying a step voltage input to 
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each pair in turn.  A typical result is shown in Figure A-14 where each trace was 

evaluated.  The spacing between traces was designed to give at least -28 dB of cross talk 

(10 mil spacing).  From the simulated result, -37.7 dB has been achieved. The maximum 

overshoot measured during switching was 7.0% which is within the acceptable range for 

the DAC of +/- 20%. The mean propagation time for all the traces was found to be 638 

ps and difference between the fastest and slowest trace was found to be 24 ps which is 

suitable for the DAC operation. 

 

Figure A-14: Delay time and crosstalk for Data line D1, D2 and D3. 

A.6 Measurement 

After construction, the PCB was functionally tested.  All parameters were found to meet 

or exceed the specification after the modifications described earlier were included.  The 

most significant test to demonstrate the high speed capability of the output amplifiers 

was a step response measurement.  The achieved rise time from the voltage amplifier 

from -5 V to +15 V is 6 ns corresponding to 3.3 kV/us. 

The power drawn from the 24 V supply was measured as 10.25 W which is in line with 

expectations.  To ensure that all components remained within their designed operating 

range, a thermal image was captured when operated from 24 V, clocking with a 4 GHz 

output.  PSU3 is close to its maximum operating temperature under these conditions 

however an aluminium heat sink is added as a precaution which is visible in Figure 

A-15. 
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Figure A-15: Thermal image of operation PCB. 
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A.7 Assembled FPGA Gate Drive 

 

Figure A-16: Photograph of FPGA gate drive with programmer. 
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 Appendix B: Derivation of Minimum Gate Resistor 

The gate voltage and current transient is greatly influenced by the chosen gate resistor.  

A large resistor, increases Vge rise time up to the Miller region due to the Rg.(Cge +Cgc) 

time constant.  During the Miller region, the gate current is limited by the gate supply 

voltage and the gate resistance.  When using the designed feed-forward gate drive, the 

gate voltage demand can be rapidly adjusted.  By using this control method, the large 

gate resistance value is no longer needed to control switching timings.  However, due to 

the stray inductance in the gate loop, voltage oscillations can occur with the internal 

gate capacitance.  To avoid this, a minimum value of gate resistance is required to 

provide damping.  Assuming a second order system, a resistance can be calculated to 

give critically damped operation using equation ( B-1 ).  The inductance and 

capacitance in the loop are measured from a frequency sweep as shown in (see Figure 

B-1).   

For the FP25R12KT4 connected to the FPGA gate drive, the IGBT is connected to the 

gate terminal using the same short wire links used during pulse testing and radiated 

emission testing.  The gate resistor is replaced with a zero Ohm link.  The current buffer 

transistors are removed and a sinusoidal voltage is swept with increasing frequency.  

The current is measured at each frequency and the impedance calculated (see Figure 

B-1).  The values of capacitance and inductance are found to be 3.1 nF and 20 nH 

respectively which gives a minimum gate resistance of 5.08  for critical damping. 

  
  

 
 
 

 
 

( B-1 ) 
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Figure B-1: Curve fitting to estimate gate capacitance and inductance 
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 Appendix C: Reflected Signal Interference in Antenna Measurements 

When using an open area test site with a conductive ground plane, there are two signal 

paths for the radiated signal to travel to the measuring antenna.  These are the direct 

path and the reflected path.  The distance of each of these paths differs depending on 

both the equipment height and the antenna height (see Figure C-1) [123].  The speed of 

the electromagnetic waves is assumed constant in air, correspondingly the change in 

path length of the two signals leads to different arrival at the antenna.  Figures for the 

delay in time and phase for a typical OATS are given in Table C-1 and Table C-2.  
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Figure C-1: Illustration of direct and reflected radiated emissions paths. 
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Table C-1: Signal transit time for various antenna heights. 

Antenna 

Height 

(m) 

Direct 

Length 

(m) 

Reflected 

Length 

(m) 

Difference 

in path 

length (m) 

Transit Time 

difference (s) 

1.00 3.00 3.61 0.61 2.02E-09 

2.00 3.16 4.24 1.08 3.60E-09 

3.00 3.61 5.00 1.39 4.65E-09 

4.00 4.24 5.83 1.59 5.29E-09 

 

Table C-2: Phase delay for different frequencies at different antenna heights. 

Antenna 
Height 

(m) 

Freq 
(MHz) 

30 40 50 60 80 100 

1.00 
Phase 
delay 

(degrees) 

21.80 29.07 36.33 43.60 58.13 72.67 

2.00 38.89 51.86 64.82 77.79 103.71 129.64 

3.00 50.20 66.93 83.67 100.40 133.87 167.33 

4.00 57.18 76.24 95.30 114.36 152.48 190.60 

  

Period at 
Frequency 

(ns) 

33.33 25.00 20.00 16.67 12.50 10.00 

 

Table C-3: Constants used to calculate the above tables. 

Constants       

Speed of light 3.00E+08 m\s 
Distance to Antenna  3 m 

Height of EUT  1 m 
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 Appendix D:  Shaped Gate Transients and Radiated Emissions 

Measurements 

 

It is desirable to independently control the peak magnitude of the RF content in the 

collector emitter voltage and the collector current.  This is achieved with a series of gate 

demand signals which achieved different a peak magnitude.  The measured IGBT turn 

on transients are displayed in this appendix along with the measured radiated emissions 

sweep for several tests.  All tests were carried out under the following conditions: 

Rg  = 5.6 

Iload  = 10 A 

T  = 25 °C 

Vdc  = 600 V 
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Signal name: Vpk02-0 - Loop 

 

 

 
Figure D-1: RE from signal Vpk02_0 
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Signal name: Vpk02 -05- Loop 

 

 

 
Figure D-2: RE from signal Vpk02_05 
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Signal name: Vpk02-10 - Loop 

 

 

 
Figure D-3: RE from signal Vpk02_10 
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Signal name: Vpk02-16 - Loop 

 

 

 
Figure D-4: RE from signal Vpk02_16 
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Signal name: Vpk02-17 - Loop 

 

 

 
Figure D-5: RE from signal Vpk02_17 
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Signal name: Vpk02-18 - Loop 

 

 

 
Figure D-6: RE from signal Vpk02_18 
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 Appendix E: Temperature rise in IGBT die from pulse of energy loss 

The duration of the switching transient for the IGBTs is from 100 to 200 ns.  During 

this short time, it is assumed that and heat does not dissipate into the surrounding 

materials.  The constants used to calculate the temperature rise are given in Table E-1.  

The temperature rise for different energy pulses as shown in Table E-2.  

Table E-1: Physical constants and dimensions of IGBT die 

Constants at room temperature (280.15 K) 

Density 2330 kgm^-3 

Cp  705 J/(kgK)) 

   IGBT measured dimensions 

Length 6.33 mm 

Width 3.44 mm 

Height 0.115 mm 

Volume 2.5041E-09 m3 

 

 

Table E-2: Temperature rise in Silicon for given energy pulse 

Energy 
pulse (mJ) 

DT (K) 

5 1.22 

10 2.43 

15 3.65 

20 4.86 

25 6.08 

30 7.29 

35 8.51 

40 9.72 

45 10.94 

50 12.16 
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