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Abstract 

The PhD project aims to develop a smart grid-connected inverter (SGCI) for a micro-grid, 

which can be applied in a built environment such as a community, and associated power 

electronic DC/DC converters.  The micro-grid generally includes distributed renewable power 

generators and battery storage. 

The SGCI is a bi-directional DC/AC inverter for distributed generation with battery storage 

installed at its DC side.  In one aspect, it is expected the DC/AC inverter functions as a 

controlled inverter that can deliver expected real power to the power grid with quantitative 

reactive power compensation (RPC).  In other words, all the SGCIs in the community 

microgrid can share the reactive power of the whole community because a SGCI can quantify 

its active and reactive power output.  It is also expected that the inverter can work in both on-

grid and off-grid modes.  In other words, the DC/AC inverter functions as a controlled rectifier 

with high quality power factor correction (PFC), which can deliver expected DC power from 

the AC power grid at unity power factor. With the above features, battery storage on the DC 

bus of the SGCI can be charged/discharged through a four-phase, interleaved, bi-directional, 

boost/buck DC/DC converter (IBDBBC) for distributed renewable power system, either wind 

or solar PV or hybrid wind/solar PV system.  The IBDBBC can discharge power from a low 

voltage battery to a high voltage DC bus as the IBDBBC operates in boost mode, or it can also 

draw power from the DC bus to charge the battery as the IBDBBC operates in buck mode. 

Based on MATLAB/Simulink, a mathematical model was developed for the grid-connected 

bi-directional DC/AC inverter that operates as a rectifier with PFC and as a grid-connected 

inverter (GCI) with expected real power output and quantitative RPC. 

In a practical application, the sampling of input signal through  AD converter usually has some 

noise due to common-mode interference; simulation results demonstrate that the second order 



 

IV 

 

generalised integrator (SOGI) has great advantages to prevent interference.  Therefore, SOGI 

can be utilised to construct a pair of orthogonal signals in a single-phase system to 

instantaneously split grid’s active and reactive power to achieve RPC for local community 

loads.  The methodology of the constructed the pair of orthogonal signals was also used to 

generate the required reference current for the DC/AC inverter when which operated as a 

single-phase rectifier with PFC. 

Using three TI C2000 Solar Inverter DSK Boards, a small lab scale distributed power system 

was developed. In the lab distributed power system, the operating mode of the inverters could 

be switched between on-grid and off-grid through instruction from the control centre. The lab 

test outcomes demonstrate that each distributed power system unit worked properly under loss 

of power grid signal, simulating grid failure. 
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Chapter 1 Introduction 

1.1 Motivation 

In the past two decades, renewable power generation, such as wind and solar power, have 

experienced a considerable growth due to the problems the world faces in the dual challenges 

of fossil fuel depletion and carbon dioxide emissions (Fthenakis, et al., 2009).  However the 

intermittent nature of renewable energy sources (typically wind and solar energy sources) is a 

major issue for the renewable power industry.  DC/AC inverters play a key role in renewable 

power generation, which interfaces renewable power generators with the grid.  However, a 

conventional GCI injects power from the renewable power generator directly into the grid, 

which fluctuates with the intermittent and unstable renewable energy sources.   

Furthermore, the increase in generation uncertainty created by intermittent sources, such as 

photovoltaic (PV) cells and wind turbines, presents a challenge to the system stability of large 

power grids (Eltawil & Zhao, 2010).  Renewable energy sources such as solar and wind are 

intermittent energy resources, especially as wind speeds and cloud movements cannot be 

accurately forecast in real time.  For the solar energy, the maximum solar radiation occurs at 

around 13:00 hours each day.  That means the power output of a solar PV panel theoretically 

reaches its maximum at this time despite the domestic demand being minimum.  Therefore 

renewable power systems may operate in troughs of power demand,  however the GCIs with 

an MPPT still output power into the grid in accordance with the code of compliance.  Therefore, 

this may cause a voltage rise in the utility grid, which could result in the generation system 

being forced to be disconnected from the power grid when the voltage of the utility grid reaches 

its top limit.  
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Moreover, for a utility grid to operate properly, it is a prerequisite for GCIs to inject power into 

the grid when power is available. This means the primary issue of a GCI not being able to 

generate power even under the situation of best weather conditions for generation while the 

power grid is cut off for a reason either foreseeable (such as scheduled maintenance and power 

curtailment when power supply does not meet demand in general) or unforeseeable incidence 

(such as fire, flood).  This is especially the case in some areas of the power system which are 

relatively vulnerable such as in developing countries in Saharan Africa and South‐Asian where 

there are excellent solar energy sources, but unreliable or unavailable electricity grids. 

 

Figure 1- 1 Conventional RPC for solar PV power system 

Taken from (Eltawil & Zhao, 2010) 

In addition, the increasing application of nonlinear loads, such as induction cookers, large 

variable frequency drives (VFD), switching-power supplies, induction motors and welding 

machine, may cause distribution system power quality issues, especially the production of a 

significant amount of reactive power and harmonics (Renukadevi & Jayanand, 2015).  

However, conventional distributed generation systems have limited capability to RPC.  The 

use of a complementary external passive parallel RLC (resistor, inductor and capacitor) 

components or static synchronous compensator (STACOM) at the point common coupling 
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(PCC) shown in Figure 1-1 can provide compensation (Medina, et al., 2016). This increases 

the system and operation cost.  

Finally, Llaria and Chicco presented that a system based on small-scale cogeneration could be 

more suitable than a large-scale distributed generation (Llaria, et al., 2011) (Chicco & 

Mancarella, 2009).  Residential roof mounted solar PV system can be considered as a small-

scale generation, so each individual small-scale system like that, connected to the same 

substation or community, can constitute a micro-grid system.  But for the residential roof 

mounted solar PV system or commercial small-scale renewable power system, using Economy 

7, a type of electricity tariff  based on the time of use, the price of electricity on Economy 7 is 

very low during night, however night-time is the period of the lowest electricity consumption. 

1.2 Aims and objectives 

This thesis aims  

1) To develop a bi-directional GCI with RPC for a micro-grid by using interconnected 

small-scale GCIs sharing responsibility for community reactive power. 

2) To develop an interleaved bi-directional boost/buck direction current to direction 

current (DC/DC) converter interfacing the DC link and the battery bank for 

charging/discharging batteries. 

To mitigate the output voltage fluctuation from GCIs and improve customers’ profitability, a 

battery bank at the inverter DC side, is included, interfaced by a bi-directional DC/DC 

converter with a DC-Bus as shown in Figure 1-2.  In the community micro-grid, each individual 

inverter only injects excess power into the utility grid, generated from the renewable energy 

source (RES), with the premise that the battery bank is fully charged and the customers’ 

requirements are completely met.  During low tariff periods the inverter can be operated as an 

AC/DC controllable active rectifier to draw power from the utility grid to provide energy to 
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charge the battery bank by means of the bi-directional boost/buck DC/DC converter.  Therefore, 

the inverter with those two control rules can minimise the end-user’s electricity costs. 

              

Figure 1- 2 Proposed the diagram of small-scale GCIS 

Figure 1-2 presents the community micro-grid formed with a number of individual small-scale 

GCI system (GCIS), in which, the GCIS is integrated with a maximum power point tracking 

(MPPT) regulated DC/DC converter connecting solar PV panels or AC/DC converter 

connecting wind turbine generator, a bi-directional boos-buck DC/DC converters for 

charging/discharging batteries, and a bi-directional DC/AC inverter with RPC interfacing the 

DC bus and AC grid.  A single GCI cannot provide RPC for a whole system, if each GCIS in 

the micro-grid system can quantitatively share responsibility RPC for whole system, then the 

conventional RPC devices or equipment illustrated in Figure 1-1 can be removed at the PCC 

node.  

Figure 1-3 illustrates a diagram of micro-grid system, which consists of solar PV generations, 

wind turbines, electrical vehicle (EV), public utilities, GCISs and control centre.  The Presented 

GCIS is used to interface between distributed sources and micro-grid.  
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Figure 1- 3 Diagram of smart distributed micro-grid 

There are a number of established algorithms that can be employed to implement MPPT for 

both wind turbines and solar PV systems.  Therefore, the MPPT algorithms are not considered 

in this thesis.  To develop a smart GCIS for the micro-grid, the objectives of the project are: 

1. To investigate the design process of a phase-locked loop (PLL) based on second order 

generalised integrator (SOGIPLL) for synchronising with the grid voltage and 

constructing orthogonal signals. 

2. To model a bi-directional multi-phase interleaved boost/buck DC/DC converter. 

3. To model an active rectifier with PFC based on the topologies of GCI for single-phase 

system. 

4. To model a controllable active space vector pulse width modulation (SVPWM) rectifier 

with PFC based on the topologies of GCI for three-phase system. 

5. To model a dispatchable single-phase hysteresis band GCI with RPC. 

GCIS 

GCIS 

GCIS GCIS 

GCIS 

PCC 

Control 

Centre 

Micro-turbine Micro-turbine 

GCIS GCIS 
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6. To model a dispatchable three-phase SVPWM GCI with RPC. 

7. To model multi-inverter sharing RPC for a micro-grid. 

8. To compare the results of modelling with measurements on a laboratory system. 

1.3 State of the art technologies 

Nowadays, with technological developments, many clean renewable energy resources, such as 

solar, wind, hydro, tidal and biomass power are being utilised without emissions.  Although 

renewable energy resources are clean and favoured by researchers for generation, the high 

penetration of renewable energy in distributed generation is associated with many new 

technical challenges in practical applications, such as grid voltage fluctuation, frequency 

regulation and RPC.  Thereby, large amount of GCIs without proper technical infrastructure  

could have an impact and place significant harmonic stress on the electricity grid (Obi & Bass, 

2016), unless the increasing GCIs have the dispatchable characteristics (Zarina, et al., 2012).  

Hence, during recent years, the micro-grid concept has been introduced, consisting of several 

alternative sources which can be considered plug-in or –out, while distributing electricity more 

efficiently and securely (Aghajani, et al., 2015) (Kamankesh, et al., 2016).   

A micro-grid is commonly defined as a small community of interconnected loads and small-

scale distributed generators (DGs) which can be dispatched or regulated by a control centre.  A 

micro-grid is typically supplied by a MV/LV substation, and generally comprises DG, a smart 

meter and information communication (Sbordone, et al., 2016).  The DG interfaces the resource 

and the micro-grid, it plays an important role, with the features of maintaining voltage balance, 

provide peak-shaving, optimise energy flux, and offer auxiliary services, which can be easily 

plugged-in or -out.   

In the future, the numerous unpredictable loads introduced into the micro-grid, such as the 

expected increase of a number of EV charging stations, could bring chaos to a distributed grid 
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that has been fluctuating due to the intermittent nature of renewable energy sources.  Sbordone 

et al propose solving these problems  (Sbordone, et al., 2016) by the concept of integrating 

autonomous energy storage system at a location near the substation for reducing variability of 

power flow, providing balancing support, peak-shaving and load shifting.  Panwar et al. present 

a strategy of incorporating regenerative fuel cells and EVs to solve the problem discussed 

above (Panwar, et al., 2015). Though the approach of configuring storage devices near a 

substation could enhance the stability of an entire distributed grid system, for a distributed 

micro-grid system, except the stabilising the grid, and minimising the user’s costs which is also 

an important factor to be considered. 

The voltage source inverter (VSI) is the most widely employed topology for this role with some 

common filter circuits, L (inductor) or LCL (inductor, capacitor and inductor), to achieve a 

DC/AC GCI for distributed generation (Sampaio, et al., 2016).   Several related papers present 

various current control algorithms to feed active power into the grid.  In order to enhance the 

stability of the grid system, the requirement of RPC has drawn more interest from researchers 

in the past few years.   

1.3.1 Techniques related to RPC 

The most common volt amperes reactive (VAR) control approach for both small-scale and 

large-scale distributed generation is ensuring the inverter operates at a constant, unity power 

factor. The approach of utilising large passive capacitive banks or STACOM, at the PCC node, 

to maintain unity power factor is widely used.  However, the major drawback of these 

approaches is not being able to inject RPC back to the grid. In other words, these approaches 

do not offer RPC for domestic loads. Variable power factor is a popular method, in which an 

inverse relationship between 
𝛥𝑃

𝛥𝑄
 and the ratio of  

𝑅

𝑋
 at the PCC is established by setting the 

voltage variation difference to 0 (Smith, et al., 2011). This method observes the voltage 
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changes at the PCC to determine the extent of RPC.  This is rather similar to the droop control 

technique, in which active power changing affects the grid frequency and reactive power 

influences grid voltage magnitude (Samadi, et al., 2014) (Rouzbehi, et al., 2014). 

Sampaio et al. present, according to active and reactive power transfer, a strategy to control the 

power transfer angle by means of stabilising active power output and to control reactive power 

by reducing voltage magnitude fluctuation, which is actually quite similar to the droop control 

(Sampaio, et al., 2016).  

Liu et al. proposed a topology of a single-stage for a single-phase GCI with wide range RPC, 

in which 3 full-bridge inverters are connected in series.  One of the inverters injects active 

power into the main grid, and the other two auxiliary inverters interface dedicated energy 

storage for the grid, providing RPC, see Figure 1-4 (Liu, et al., 2010).  

 

Figure 1- 4 Topology of single-stage GCI 

Taken from (Liu, et al., 2010) 
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1.3.2 Techniques for energy storage 

Energy storage systems (ESS) can be traced back to early last century when power generation 

was often shut down overnight because power electronics control technology was not available 

(Baker & Collinson, 1999) (Suberu, et al., 2014) (Chen, et al., 2009).  Initially, the commonly 

used ESS approach for peak-shaving in practical applications was hydroelectric pumped 

storage (HPS).  With the technical development of storage, there are variety of storage media, 

including HPS, compressed air, flywheel, battery, flow battery, capacitor or supercapacitor, 

superconducting magnet, solar fuels and thermal energy storage (Luo, et al., 2015) (Kousksou, 

et al., 2014) (Rodrigues, et al., 2014) (Abdin, et al., 2015). 

In recent years, integrating ESS into distributed generation systems has attracted many 

researchers’ attention, associated with high penetration of renewable energy generation with 

unpredictable power fluctuation.  These ESS especially include battery systems technology, 

which is the most widespread energy storage device for power applications.  Batteries can be 

configured in different sizes with wide capacities ranging from watt-hours to gigawatt-hours 

(Aneke & Wang, 2016).  There are many articles proposing a variety of applications aimed at 

mitigating fluctuation, balancing intermittency of wind or other renewables and RPC, by means 

of installing a central ESS close to the electrical substation (Suberu, et al., 2014) (Chicco & 

Mancarella, 2009) (Chen, et al., 2009).  

1.4 Major contributions 

1.4.1 GCI output with RPC 

The thesis describes a novel algorithm, based on D-Q theory, to split the active and reactive 

currents, to quantitatively control active and reactive power for GCI.   
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1.4.2 Interleaved bi-directional DC/DC converter for charging/discharging battery 

In order to reduce the ripple of converter current and improve thermal dissipation issue, the 

thesis presents a topology of four-phase interleaved bi-directional DC/DC boost/buck converter 

(IDBBBC) for charging/discharging battery. 

1.4.3 MRes dissertation and publications 

1. Fan, Z. & Liu, X., 2015. Smart Inverter with Active Power Control and Reactive Power 

Compensation. Journal of Electrical and Electronic Engineering, pp. 139-145. 

2. Fan, Z., 2012. Mathematical Modelling of Grid Connected Fixed-Pitch Variable-Speed 

Permanent Magnet Synchronous Generators for Wind Turbines, Preston: UCLAN. 

3. Fan, Z. & Liu, X., 2012. A novel universal voltage sag detection algorithm. Power 

Engineering and Automation Conference (PEAM), IEEE publisher. 

4. Wen, C., Lu, G., Wang, P., Li, Z., Liu, X., Fan, Z., 2011. Vector control strategy for 

small-scale grid-connected PMSG wind turbine converter Innovative Smart Grid 

Technologies (ISGT Europe) conference, IEEE publisher. 

5. Fan, Z. & Liu, X., Reactive power compensation for single-phase inverter in microgrid 

submitted to International Journal of Advanced Engineering Research and Science to 

be reviewed. 

1.5 Outline of the thesis 

The structure of the thesis is as follows: In order to demonstrate methodologies and algorithms, 

simulations and experiments have been carried out which require specific software tools and 

hardware development kits to support them.   

Chapter 2 describes the software tools, integrated development environment (IDE), the 

hardware development kit and mathematical tools. 
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Chapter 3 describes the step-by-step procedures on how to design a SOGIPLL for an embedded 

real time system and an algorithm, which is demonstrated through MATLAB/Simulink 

modelling and hardware implementation.  PLL as a fundamental function for GCI plays a key 

role for an on-grid system. 

Chapter 4 describes in detail the design of a three-phase SVPWM rectifier through constructing 

a pair of orthogonal signals for single-phase current, adopting Clarke’s and Park’s 

transformation into a single-phase system to split active and reactive current for a single-phase 

system.  The modelling of both three-phase and single-phase rectifiers, and experimental work 

based on a three-phase SVPWM rectifier are conducted. 

Chapter 5 describes the modelling of a four-phase, bi-directional, interleaved, boost/buck 

DC/DC converter, which can be an ideal charging/discharging converter for the battery storage 

in a micro-grid. 

Chapter 6 presents a smart dispatchable GCI with RPC and the simulation model of multi-

inverters synergistically providing RPC for a micro-grid. 

Chapter 7 concludes the project with discussion of the project outcomes and briefs future 

research directions.  
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Chapter 2 Experimental Environment 

2.1 Introduction 

In order to achieve power flow bi-directionally in a micro-grid,  some key factors must to be 

taken into account for building an experimental environment for a three-phase system achieve 

rectifier, based on a GCI topology.  Another experimental environment for a single-phase GCI 

built to demonstrate multi-inverters operating synchronously in a stand-alone system without 

grid support.   

Because the purpose of the rectifier is to achieve bi-directional power flow based on the inverter 

topology, Figure 2-1 illustrates a bi-directional rectifier/inverter topology in three-phase 

system consisting of 6 switching devices, if swapping the input and output in the figure, the 

system can be considered as the conventional three-phase inverter.  This requires 6 PWM signal 

channels, and 3 sampling of phase voltages, and currents and 1 of DC bus voltage, totally 

requiring 7 channels of analogue to digital (AD) signal conversion.  Another issue which has 

to be considered is to minimise filter inductance size before output by increasing the PWM 

signal frequency.  Moreover, the algorithms for a three-phase SVPWM rectifier system contain 

complex trigonometrical functions and proportional-integral-derivative (PID) control which 

require mathematical floating point calculations.  Therefore, a high speed TMS320F28335 

processor with built-in floating-point unit was utilised to implement the three-phase AC/DC 

rectifier system. 
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Figure 2- 1 Structure of bi-directional three-phase rectifier/inverter topology 

Digital Signal Processor (DSP) TMS320F28335 is a high-performance real-time controller 

with single-precision Floating-Point Unit (FPU) from Texas Instruments (TI).  

TMS320F28335 has a good number of peripheral ports, such as 18 PWM outputs and 16 

channels 12-Bit ADC.  

The C2000 Solar Inverter Development Kit (SDK) shown in Figure 2-2 is designed to achieve 

the general functions of a GCI.  There are some special functions required by the thesis which 

need extra hardware to support them, such as inverter outputs synchronised with each other 

when operating in off-grid mode.   Therefore, the control board has been re-designed by the 

author, as shown in Figure 2-4, to replace the original control board SDK shown in Figure 2-
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3, using A LPC2132 NXP ARM microcontroller control the main board of the C2000™ SDK 

and this is utilised to implementing a single-phase inverter controlled by a central controller, 

implemented on a LPC2132 development board, illustrated in Figure 2-5. 

 

Figure 2- 2 The main board of C2000™ SDK 

 

Figure 2- 3 Control board of C2000™SDK 
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Figure 2- 4 Re-designed control board 

 

Figure 2- 5 Central control board 
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C/C ++ was employed to program the controllers using CCS3.3 IDE and Keil uVision 4.0 for 

the TI DSP processor and ARM microcontroller respectively.  All simulations in this thesis 

were modelled in MATLAB/ SIMULINK; part of the algorithms have been conducted through 

experiments, such as SVPWM rectifier in three-phase system. Three GCI operate in stand-

alone mode. 

2.2 Hardware environment 

2.2.1 C2000 Solar PV inverter development board 

Figures 2-2 and 2-3 show the C2000™ SDK is a development platform based on a DSP C2000 

Microcontroller from Texas Instruments.  The Development Kit is a general and conventional 

inverter, which is insufficient to provide communications between the inverter and a central 

controller.  Therefore, the circuit of the control part of the Inverter Development Kit was 

redesigned and the C2000 Microcontroller replaced by a NXP LPC2132 ARM microcontroller 

to implement the function of a standalone inverter, which was used to demonstrate the 

feasibility of solving synchronising issues under circumstances of multi-inverter operate in off-

grid mode.  In the experiment, only three inverters connected together operate in off-grid mode. 

2.2.2 NXP LPC 2132 ARM 

The LPC2132 microcontroller is based on a 16/32-bit ARM7TDMI-S control processor unit 

(CPU) with real-time emulation and embedded trace support and a 64kB embedded high-speed 

flash memory. A 128-bit wide memory interface and unique accelerator architecture enable 32-

bit code execution at maximum clock rate.  LPC2132 has 6 channels of PWM and 8 channels 

of 10-Bit A/D converter which are sufficient to implement a single-phase full-bridge inverter. 

2.2.3 TMS320F28335 DSP 

TMS320F28335 is a high-performance static CMOS (Complementary Metal-Oxide 

Semiconductor) technology with speed up to 6.67ns cycle time.  The total harmonic distortion 
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(THD) is inversely proportional to the switching frequency of the rectifier/inverter-bridge, 

which means using a high-speed DSP to implement active rectifier with PFC or GCI, which 

has the features of high reliability and power quality.   

Enhanced control peripherals include 18 PWM outputs and 16 channel AD converters with 12-

Bits resolution and 80ns high speed sampling rate.  The most prominent feature of the F28335 

DSP is that it has an excellent floating point, built-in coprocessor. 

2.2.4 Insulated-gate bipolar transistor (IGBT) 

An IGBT FF75R12RT4 shown in Figure 2-6 was utilised to build the three-phase 

rectifier/inverter-bridge; it is 34mm module with fast Trench/Fieldstop IGBT4 and Emitter 

Controlled 4 diodes, produced by Infineon.  The voltage stresses of FF75R12RT4 between 

collector and emitter is up to 1200V, continuous DC maximum collector current is 75A and 

maximum repetitive peak collector current is 150A.  The maximum turn-on and turn-off delay 

times are 0.15μs and 0.40μs respectively for inductive loads (MK, 2013-11-05).   

 

Figure 2- 6 IGBT FF75R12RT4 
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2.2.5 Voltage and current transducers 

TBC50SYH was chosen to measure three-phase rectifier current due to its 50A nominal current 

rating. The TBC-SYH series high-precision current sensor is a closed loop device based on 

Hall Effect, with a galvanic isolation between primary and secondary circuit.  It has strong anti-

jamming ability and can provide accurate electronic measurement of DC, AC or pulsed currents.  

The TLP7820 optically isolated amplifier was used to measure voltage, using a delta-sigma 

AD converter input circuit and providing an analogue output via a 1 bit D/A and a low pass 

filter. Figure 2-7 shows sampling of an input voltage. 

 

Figure 2-7 Sampling circuit of input voltage 

The TLP7820 device, which is shown in Figure 2-8, can detect small current and voltage 

fluctuations with high-precision.  It offers a common-mode transient immunity of 15kV/μs 

minimum, enabling stable operation in electrically noisy environments. 

 

Figure 2- 8 TLP7820 device 
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Figure 2- 9 Linear relationship between input and output of TLP7820 

According to the datasheet of the TLP7820, the analogue input voltage is limited between -300 

mV +300 mV as shown in Figure 2-9.   Assuming a maximum input the AC peak voltage of 

300 × √2V, this must then be attenuated to 300mV.  According to Figure 2-7, the gains Gs of 

sampling input voltage can be obtained in the following equation: 

𝐺𝑆 =
𝑅2

𝑅1𝑎 + 𝑅1𝑏 + 𝑅1𝑐 + 𝑅2
= 7.7459 × 10−4                          (2 − 1) 

Because the TLP7820 output signal is limited -300mV and +300mV without an amplifier, an 

additional stage of amplification with a gain of 10 was added between the output and sampling 

input, as shown in Figure 2-10.  
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Figure 2- 10 Sampling Gain  

2.3 Software environment 

2.3.1 MATLAB/Simulink 

Simulink is a user friendly block diagram environment for simulation and Model-Based design, 

supporting simulation, automatic code generation, and continuous test and verification of 

embedded systems. 

Simulink provides a graphical editor, customizable block libraries, and solvers for modelling 

and simulating dynamic systems. It is integrated with MATLAB, enabling incorporation of 

MATLAB algorithms into models and exportation of simulation results to MATLAB for 

further analysis. 

2.3.2 Keil uVision  

The MDK-ARM is a complete IDE for Cortex-M, Cortex-R4, ARM7 and ARM9 processor 

based devices.  It is specifically designed for microcontroller applications with easy to use and 
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powerfully adequate for most embedded applications.  Therefore, MDK-ARM was chosen to 

program the central control system using C/C++ language.  

2.3.3 Code composer studio 

Code composer studio (CCS) is an IDE that supports TI’s Microcontroller and Embedded 

Processors portfolio and comprises a suite of tools used to develop and debug embedded 

applications.  CCS has resources to help developers, which can shorten development cycles 

and reduce development costs and improve development efficiency.  The technology of Real-

time Exchange Data (RTXD) was developed by TI, and gives designers continuous, real-time 

visibility into their applications. The bi-directional capability allows developers to access data 

from the application for real-time visibility, or to simulate data input to the DSP, perhaps before 

real-time sensor hardware is available. 

In Simulink, the accuracy of results of simulation depends on the time step interval (The Math 

Works 2011). In general, the smaller the time step, the more accurate the simulated results.  In 

the case of variable-step solvers, the solver can automatically determine the time step; in the 

case of fixed-step solvers, the time step can be specified.  Therefore, the results of simulation 

based on MATLAB/Simulink have some tolerances compared with ideal mathematical models. 

2.4 Mathematical methods 

2.4.1 Clarke’s transformation 

Clarke’s Transformation as shown in Figure 2-11.  Considering a vector X (xa, xb and xc), a-, 

b- and c- are the component vectors in directions a, b and c, respectively, in the static three-

phase system.  xα and xβ are α- and b-component vectors of X in the stationary two-phase  frame 

αβ respectively.  As Figure shows, the vector X in three-phase system can be expressed in 

stationary two-phase frame. 
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Figure 2 -  11 Clarke’s Transformation 

The voltages of a three-phase balanced system can be written as the following mathematical 

model: 

{
 

 
𝑣𝑎 = 𝑣𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡              

𝑣𝑏 = 𝑣𝑚𝑎𝑥 𝑐𝑜𝑠 (𝜔𝑡 −
2𝜋

3
)

𝑣𝑐 = 𝑣𝑚𝑎𝑥 𝑐𝑜𝑠 (𝜔𝑡 −
4𝜋

3
)

                                                               (2-2) 

Let 

𝑣𝛼 = 𝑣𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡 

And the orthogonal variable of 𝑣𝛼 be 𝑣𝛽 , so that: 

𝑣𝛽 = 𝑣𝑚𝑎𝑥 𝑠𝑖𝑛 𝜔𝑡 

Adopting 𝑣𝛼 and 𝑣𝛽 to simplify Equation (2-2) as follows: 

𝑣𝑎 = 𝑣𝛼                                                                              (2 − 2.1) 

𝑣𝑏 = 𝑣𝑚𝑎𝑥(cos𝜔𝑡 𝑐𝑜𝑠
2𝜋

3
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2𝜋

3
) 

xβ 

α 
a 

b 

c β 

X 

xα xa 
xb 

xc 
xc’ 

xβ’ 



 

23 

 

      = −
1

2
𝑣𝛼 +

√3

2
𝑣𝛽                                                       (2 − 2.2) 

𝑣𝑐 = 𝑣𝑚𝑎𝑥(𝑐𝑜𝑠 𝜔𝑡 𝑐𝑜𝑠
2𝜋

3
− 𝑠𝑖𝑛𝜔𝑡𝑠𝑖𝑛

2𝜋

3
) 

      = −
1

2
𝑣𝛼 −

√3

2
𝑣𝛽                                                       (2 − 2.3) 

Therefore, rearranging va, vb and vc 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = 𝐴 [

𝑣𝛼
𝑣𝛽
]                                                     (2 − 3) 

where  A =[

1 0

−1/2 √3 2⁄

−1/2 −√3 2⁄

] 

2.4.2 Inverter Clarke’s transformation 

Finding the inverse matrix for the matrix A, then multiplying both sides of Equation (2-3) by 

the inverse of A results in Equation (2-4) giving 𝑣𝛼 and 𝑣𝛽.   

[
𝑣𝛼
𝑣𝛽
] =

2

3
[
1 −1/2 −1/2

0 √3/2 −√3/2
] [

𝑣𝑎
𝑣𝑏
𝑣𝑐
]                                       (2 − 4) 

where, 

𝑣𝛼, 𝑣𝛽 are the stationary orthogonal reference frame quantities. 

2.4.3 Park’s transformation 

The two-axis stationary orthogonal reference frame quantities are transformed into a d-q 

rotating reference frame using the Park’s transformation as illustrated in Figure 2-12. 
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Figure 2-  12 Park’s transformation 

The rotating reference frame d-q quantities can be obtained as follows. 

{
𝑣𝑑 = 𝑣𝛼 𝑐𝑜𝑠 ∅ + 𝑣𝛽 𝑠𝑖𝑛 ∅

𝑣𝑞 = 𝑣𝛽 𝑐𝑜𝑠 ∅ − 𝑣𝛼 𝑠𝑖𝑛 ∅
                                                         (2 − 5)  

where, 

vd, vq are the rotating reference frame quantities. 

vα , vβ are the stationary orthogonal reference frame quantities. 

ø is the rotational angle. 

2.4.4 Inverse Park’s transformation 

Then the Inverse Park’s transformation can be expressed as the following equation: 

{
𝑣𝛼 = 𝑣𝑑 𝑐𝑜𝑠 ∅ − 𝑣𝑞 𝑠𝑖𝑛 ∅

𝑣𝛽 = 𝑣𝑞 𝑐𝑜𝑠 ∅ + 𝑣𝑑 𝑠𝑖𝑛 ∅
                                                             (2 − 6)  

where, 

vd, vq are the rotating reference frame quantities. 

vα , vβ are the stationary orthogonal reference frame quantities. 

ø is the rotational angle. 

ø 

  

d 

 

α 

 

β 

 q 

 



 

25 

 

2.4.5 P-Q theory 

The voltages of a three-phase balanced system can be written as the following mathematical 

model: 

{
 

 
𝑣𝑠𝑎 = 𝐴𝑚 cos𝜔𝑡              

𝑣𝑠𝑏 = 𝐴𝑚 cos (𝜔𝑡 −
2𝜋

3
)

𝑣𝑠𝑐 = 𝐴𝑚 cos (𝜔𝑡 −
4𝜋

3
)

                                                               (2-7) 

Through the d-q coordinate transformation, the voltage of a three-phase system in the d-q 

rotating frame system can be expressed as:  

{
𝑣𝑑 = 𝐴𝑚
𝑣𝑞 = 0    

                                                                                             (2-8) 

According to the instantaneous power of P-Q theory, the three-phase active power P and 

reactive power Q can be written in the stationary frame system αβ as 

[
𝑃
𝑄
] = [

𝑣𝛼 𝑣𝛽
𝑣𝛽 −𝑣𝛼

] [
𝑖𝛼
𝑖𝛽
]                                                                       (2-9) 

where vα ,vβ and iα, iβ are mutually orthogonal pair of voltages and currents respectively.  

Through Park’s transformation, Equation (2-9) can be expressed as follows: 

{
𝑃 = 𝑣𝑑𝑖𝑑 + 𝑣𝑑𝑖𝑞𝑐𝑜𝑠𝜔𝑡(𝑠𝑖𝑛𝜔𝑡 − 𝑐𝑜𝑠𝜔𝑡)

𝑄 = −𝑣𝑑𝑖𝑞                                                      
                                    (2-10) 

In Equation (2-10), as iq approaches 0 then the reactive power component approaches 0 and 

only the active power remains, i.e. the term vdid.  Through analysing the above equation, the 

reactive power Q of the power grid can be controlled by adjusting the instantaneous quadrature 

component of current iq in the d-q rotating frame. 
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2.5 Summary 

In this chapter, the experimental environment, including hardware, software and programming 

IDE, are briefly introduced.  Mathematical tools, particularly Park’s, Clarke’s transformation 

and P-Q theory, are addressed as well. These tools are widely employed in power electronic 

control algorithm development.  
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Chapter 3 Phase-Locked Loop 

3.1 Introduction 

PLLs are common signal processing methods. They are widely used in applications such as 

measurement, coherent demodulation, time synchronisation, frequency synthesis, and other 

signal processing fields.  There are a number of types of PLL depending on the implementation 

technology, including analogue PLL (APLL), digital PLL (DPLL), synchronous frame PLL 

(SFPLL) and soft PLL (SPLL). In the development of virtual radio technology, SPLL has been 

used widely (Liu, et al., 2007).  The basic principle of SPLL is similar to that of conventional 

PLL, but differs significantly in the mathematical model, parameter design and implementation 

modalities (Bhardwaj, 2013) (Guo, et al., 2011).   

The frequency, phase angle and amplitude of the AC voltage on the electricity grid are critical 

parameters for a GCI, employed to inject AC power to the grid, to ensure the inverter system 

operates properly and does not cause grid transients. In order to generate the reference control 

signals for the PWM control of the inverter switches, accurate detection of the phase angle of 

the electrical quantities on the grid is essential.  

A few topologies of PLL for GCIs have been implemented in industrial applications.  The sine 

and cosine of the phase angle are key parameters for a GCI; conventional methods yield those 

parameters by firstly obtaining phase angle from the power grid voltage, then through a series 

triangular computations.  Actually, because the grid voltage is a sine signal,  obtaining the grid 

voltage phase angle is unnecessary if a pair of orthogonal signals from a sampling of the sine 

signal can be obtained.  The SOGI can generate a pair of orthogonal signals, therefore a 

SOGIPLL, with a strong anti-interference PLL algorithm, has been introduced to achieve phase 

synchronisation with the grid. This technique has been analysed in detail in the analogue 
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continuous-time domain (Rodriguez, et al., 2009) and the implementation in the digital 

discrete-time domain is described in this chapter. Finally the results of simulation are presented.  

3.2 Generic PLL 

Figure 3-1 shows the functional block diagram of a generic PLL, where øi and øo are the relative 

phase angles of the input and output voltage signals vi and vo.  The Phase Detector multiplies 

the input and output signals and produces a voltage vd proportional to the phase difference 

between the input frequency with feedback frequency output , which contains a second 

harmonic term that need to be removed by the Loop Filter, which is a low-pass filter.  The 

Loop Filter outputs voltage vvco which is proportional to the phase difference øi - øo and 

employed to control the Voltage Controlled Oscillator (VCO). 

 

 

 

 

 

Figure 3- 1 Diagram of generic PLL 

A conventional linearised SFPLL block diagram is illustrated in Figure 3-2, which is widely 

employed in three-phase GCI applications.  The instantaneous phase angle ø is detected by 

synchronising the d-q rotating reference frame with the three-phase electricity grid.  When the 

phase angle is locked to the phase angle of grid voltage vector, the output quadrature 

component should be 0 and the direct component indicates the grid voltage amplitude. 
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Figure 3- 2 Linearised conventional SFPLL block diagram 

3.3 SOGISPLL mathematical model 

Figures 3-3 and 3-4 illustrate block diagrams of both open-loop and close-loop 

implementations of a SOGI, respectively (Fan & Liu, 2015). 

 

Figure 3- 3 Open-loop system of SOGI 

 

Figure 3- 4 Close-loop system of SOGI 

According to the Figures above, let X represent the input signal visinωt, let Y1 represent the 

output signal vosinωt and Y2 represent the output signal –vocosωt, then the mathematical model 

of the close-loop system in the Laplace domain can be expressed as: 
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{
𝑌1 =

(𝐾(𝑋 − 𝑌1) − 𝑌2)𝜔

𝑠

𝑌2 =
𝑌1𝜔

𝑠
                             

                                                 (3 − 1) 

where,  

K is the gain which affects the speed of response and the bandwidth of the close-loop 

system, 

ω is the signal frequency in radians, and 

1

𝑠
  is the integrator in Laplace domain. 

Substituting 
𝑌1𝜔

𝑠
  for Y2 and rearranging Equation (3-1) yields: 

{
 

 𝑌1 =
𝐾𝜔𝑠𝑋

𝑠2+𝐾𝜔𝑠+𝜔2
                              

𝑌2 =
𝐾𝜔𝑠𝑋

𝑠2+𝐾𝜔𝑠+𝜔2
∙
𝜔
𝑠
                             

                   ( 3 − 2) 

So the transfer function of the close-loop system can be obtained as: 

{
𝐻𝑠1 =

𝑌1
𝑋
=

𝐾𝜔𝑠

𝑠2 + 𝐾𝜔𝑠 + 𝜔2
                              

𝐻𝑠2 =
𝑌2
𝑋
=

𝐾𝜔2

𝑠2 + 𝐾𝜔𝑠 + 𝜔2
                                    

         ( 3 − 3) 

Converting the denominators to the standard second order form: 

𝑠2 + 2ζ𝜔𝑠 + 𝜔2                                                            (3 − 4)                                                      

where, ζ is the damping factor (typically ζ=1/√2=0.707), so in the term of denominator of 

Equation (3-3), K = 2ζ = 1.414 and the frequency of the electricity grid is 50 Hz, which means 

ω =250 rad/s. 
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Figure 3-5 illustrates the step responses of the system with the gain of K= 0.5, 1.2, 1.414, 2 and 

3 respectively. These responses show that the system reaches steady state conditions, and the 

shortest time is 0.0247s when the gain K = 2ζ = √2 (i.e. ζ = 
1

√2
), as the response in red on the 

graph below.  

 

Figure 3- 5 Step responses of a closed-loop SOGIPLL in continuous-time 

Equation (3-3) is the transfer function of the close-loop system in continuous-time in the 

Laplace domain.  The equivalent discrete-time transfer function is required to implement the 

second order integrator in a digital signal system.  There are a number of methods that can be 

employed to obtain the discrete-time approximation of a continuous-time transfer function, 

such as Forward Difference, Backward Difference, Tustin’s Approximation and Bilinear 

Transformation. (Ogata, 1995).   

Tustin’s approximation, also known as Euler’s method or Trapezoidal Approximation, 

(Ciobotaru, et al., 2006) is a common method and is demonstrated below using the substitution 

2
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𝐻𝑠1 =
𝑌1
𝑋
=

𝐾𝜔𝑠

𝑠 + 𝐾𝜔𝑠 + 𝜔2
=

444.2208𝑠

𝑠2 + 444.2208𝑠 + 98696.044
 

Substituting 
2

𝑇

𝑧−1

𝑧+1
 for the Laplace operator for s and sampling time 2e-5s for T, results in 

𝐻𝑧1 =
444.2208

2
2 × 10−5

𝑧 − 1
𝑧 + 1

(
2

2 × 10−5
𝑧 − 1
𝑧 + 1)

2

+ 444.2208
2

2 × 10−5
𝑧 − 1
𝑧 + 1 + 98696.044

 

This result simplifies to 

𝐻𝑧1 =
0.004423𝑧2 − 0.004423

𝑧2 + 1.991𝑧 + 0.9912
                                                           (3 − 5) 

 

𝐻𝑠2 =
𝑌2
𝑋
=

𝐾𝜔2

𝑠2 + 𝐾𝜔𝑠 + 𝜔2
=

139556.21

𝑠2 + 444.2208𝑠 + 98696.044
 

Substituting the Laplace operator s with 
2

𝑇

𝑍−1

𝑍+1
  and sampling time T with 2e-5s 

 𝐻𝑧2  =
139556.21

(
2

2 × 10−5
𝑧 − 1
𝑧 + 1)

2

+ 444.2208
2

2 × 10−5
𝑧 − 1
𝑧 + 1 + 98696.044

 

On rearrangement this becomes 

𝐻𝑧2 =
1.389 × 10−5 𝑧2 + 2.779 × 10−5𝑧 + 1.389 × 10−5

𝑧2 + 1.991𝑧 + 0.9912
                             (3 − 6) 

MATLAB’s c2d command can also be utilised to convert continuous to discrete transfer 

function as in the following example. 
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The MATLAB results and the results produces by Tustin’s Approximation are the same. 
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3.4 Discrete Implementation of SOGIPLL 

Equations (3-5) and (3-6) show that the SOGIPLL system response functions are second-order 

digital filters with feedback. Hence, they can be achieved using an infinite impulse response 

(IIR) digital filter.  The standard form of a digital second order IIR filter is shown below: 

𝐻𝑑(𝑍) =
𝑏0  + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

𝑎0  + 𝑎1𝑧−1 + 𝑎2𝑧−2
 

where  b0, b1 and b2 are feed-forward coefficients 

  a0, a1 and a2 are feed-back coefficients 

Figure 3-6 shows a general block diagram of the digital second order IIR filter in Direct Form 

II structure. 

 

Figure 3- 6 Direct Form II structure for IIR filter 

where the Z-1 blocks represent a single sample delay and the nodes E(n), E(n-1) and E(n-2) represent 

memory for temporary storage during the calculations. 

The Equations of the discrete transfer function, (3-5) and (3-6), can be written as the 

relationship between instantaneous input and output as follows: 
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𝐻𝑧1 =
𝑣𝑜(𝑛)

𝑣𝑖(𝑛)
=
𝑌1(𝑛)

𝑋(𝑛)
=
0.004423𝑧2 − 0.004423

𝑧2 + 1.991𝑧 + 0.9912
                                                             (3 − 7) 

𝐻𝑧2 =
𝑣𝑜(𝑛)

𝑣𝑖(𝑛)
=
𝑌2(𝑛)

𝑋(𝑛)
=
1.389𝑧 + 2.779 × 10−5𝑧 + 1.389 × 10−5

𝑍2 + 1.991𝑧 + 0.9912
                               (3 − 8) 

where  vi(n) is the system discrete input and vo(n) is the system discrete output. 

Multiplying the numerator and denominator by z-2 and solving for instantaneous output Y1(n).  

For Equation (3-7) this gives. 

(1+1.991z-1+0.9912z-2)Y1(n) = (0.004423-0.4423z-2)X(n)  

Which yields 

Y1(n) = 0.004423X(n)-0.4423z-2X(n)-1.991Z-1Y1(n)-0.9912z-2Y1(n) 

According to X(n)z
-k= X(n-k) and Y1(n)z

-k= Y2(n-k), rearranging the equation above gives 

Y1(n) = 0.004423X(n)-0.4423X(n-2)-1.991Y1(n-1)-0.9912Y1(n-2)                           (3-9) 

Now for Equation (3-9), multiplying the numerator and denominator by z-2 and solving for 

instantaneous output Y2(n) gives. 

(1+1.991z-1+0.9912z-2)Y2(n) = (1.389x10-5+2.779x10-5z-1+1.389x10-5z-2)X(n) 

Substituting X(n)z
-k= X(n-k) and Y2(n)z

-k= Y2(n-k),  and rearranging gives 

Y2(n) = 1.389x10-5X(n)+2.779x10-5X(n-1)+1.389x10-5X(n-2)- 1.991Y2(n-1)-

0.9912Y2(n-2)               (3-10) 

3.5 Simulation 

The Simulink model created by utilising MATLAB/Simulink according to Equations (3-9) and 

(3-10) is illustrated in Figure 3-7.  A random white noise generator is added at the input terminal 

to test the stability and anti-interference capability of the system. In a practical system, the 
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sampling accuracy of the analogue to digital signal converter is affected by noise and/or system 

drift.  

 

Figure 3- 7 Simulink model of SOGIPLL 

 

Figure 3- 8 Comparison between input with white noises and PLL output 
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Figure 3- 9 Comparison of original input and PLL output 

Figure 3-8 shows that the output of the SOGIPLL has anti-interference performance when 

random white noise is added to an input signal with 50 Hz frequency.  Additionally, Figure 3-

9 shows the sine (blue line) and cosine (green line) generated by the SOGIPLL follows the 

original input signal (red line) after one periods, the difference between the output (blue line) 

and the input (red line) wave has decreased to negligible levels. 

3.6 Summary 

The simulation results demonstrate that SOGI orthogonal output signals with anti-interference 

performance can be employed to implement PLL in a GCIS.  In addition, SOGI only requires 

one input signal, which means the model can be applied in both single-phase and three-phase 

GCIs. 
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Chapter 4 AC to DC Rectifier 

4.1 Introduction 

A Three-phase SVPWM rectifier has attractive characteristics  including  controllable DC 

output voltage, low THD, high power factor for the grid current (Zheng, et al., 2010), and bi-

directional power flow, which are the major features considered in this thesis.   

Rapid growth of renewable power generation in the past decade has certainly been facilitated 

advanced inverter technology development, which plays a key role in interfacing renewable 

power generators with the power grid.  The most popular three-phase inverter circuit consists 

of six IGBT switches in a full-bridge configuration, because  IGBT has relative higher voltage 

and current rating.  The single-phase inverter circuit is formed by four IGBT switches in a full-

bridge. 

The full-bridge topology composed of IGBTs or MOSFETs not only utilities to inverter DC 

voltage into power grid, it also can implement an active controllable rectifier.   

Because each switching devices in full-bridge circuit is equipped with an anti-parallel, flywheel 

diode to protect the device if the load is inductive, as all the switching devices without PWM 

control signals the full-bridge circuit could be operated in the uncontrollable rectifier mode, 

because of each switching device has flywheel diode connected in shunt.   

As using PWM signals to control switching devices, then the full-bridge topology could be 

operated in active controllable rectifier or inverter mode, which depends on different control 

algorithms. 

During off-peak or low-tariff hours for peak-hour or high-tariff hours use, integrating energy 

storage on the DC bus link to store power from grid has great potential advantage. 
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Conventional renewable energy GCI interfaces to the power grid with as much renewable 

generator power output as it can deliver but does not offer RPC, which is normally provided 

by dedicated local reactive power or is matched by the reactive capability of synchronous 

generators in large power stations. 

For a load centre, it is a general practice to compensate reactive power demand from the load 

centre at the PCC so as to maintain a statutory voltage at the PCC and the distribution network 

and minimise the line loss. Large synchronous generators are required to produce reactive 

power, because transmission lines demand reactive power in addition to that needed at 

distribution load centres. For a more distributed power generation system, it would be ideal 

that all generation units share the responsibility of providing reactive power. 

There are a number of topologies presented to implement active rectifiers with PFC, such as 

the buck rectifier, boost rectifier, buck-boost rectifier, H-bridge converters (Rodriguez, et al., 

2016), and Vienna rectifier (Kedjar, et al., 2014; Shaon & Salam, 2014).  Figure 4-1 shows the 

basic rectifier topologies with PFC.  

Although all the topologies of single-phase active rectifiers shown in Figure 4-1 can achieve 

high performance PFC, only Figure 4-1(d) can provide bi-directional power flow for a single-

phase system. 
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Figure 4- 1 Basic rectifier topologies with PFC 
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Because the voltage stress of each switching device is only half of the total output voltage, the 

topology of the Vienna rectifier shown in Figure 4-2 is the most attractive (Shaon & Salam, 

2014) in the application of large power rectifiers.  

 

Figure 4- 2 Topology of Vienna rectifier 

In terms of control measures, there are many control techniques presented in literature; 

examples include  PWM, sinusoidal PWM (SPWM), Hysteresis PWM (HPWM), SVPWM, 

and Fuzzy PWM (FPWM).  Although the switching losses of the SPWM can be reduced by 

means of modifying the carrier signal, it results in greater harmonic distortion, which causes 

poor power factor (Ting, et al., 2015).  The control algorithm of HPWM is simple and has 

greater dynamic response than the PWM and SVPWM because the  PWM ratio is adjusted at 

each PWM period; on the other hand, it has a higher ripple current (Ting, et al., 2015).   The 

SVPWM has low switching losses and provides superior overall performance and power 

conversion efficiency (Ahmed & Ali, 2013), and is broadly used to implement active 

controllable rectifiers with PFC in three-phase systems. 

The PWM algorithm is widely used in single-phase, buck, boost, and buck-boost rectifiers, 

according to the linear relationship between the instantaneous input and output to regulate the 

ratio of PWM duty. 
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This chapter presents a SVPWM rectifier algorithm based on three-phase GCI topology to 

achieve an active rectifier with PFC and presents a novel rectifier algorithm for a single-phase 

rectifier with PFC, so that an inverter cannot only deliver quantitative active power with 

quantitative RPC to the grid when it operates as an inverter, but can also implement an active 

rectifier with PFC. 

In the topology of a three-phase inverter shown in Figure 4-3, each of the IGBTs shunts a 

freewheeling diode in the full-bridge inverter circuit so as to provide a complete circuit loop to 

protect the IGBTs from being damaged by the reverse current of an inductive load when the 

IGBTs are switched off.  This means the circuit actually can be operated as a conventional 

uncontrolled rectifier while the voltage source is considered as an electrical load. 

 

   

Figure 4- 3 Topology of three-phase full-bridge inverter 

The disadvantages of a conventional power rectifier utilising passive diodes and capacitors 

contain AC current distortion and harmonic injection to the power grid.  Harmonics are a major 

factor in determining power quality due to increasing non-linear loads; its impedance changes 

with the applied voltage in power systems.  Harmonics cause problems in power systems and 

in consumer products, such as voltage distortion at the PCC (Bakar, 2008), capacitors in 
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equipment overheating, motor vibration, excessive neutral currents and lower power factor 

(Kale & Ozdemir, 2005), contribute low power conversion efficiency to the system.  So 

improving the power factor, stabilising the rectifier DC output and reducing harmonic 

distortion has attracted the interest of many researchers (Moungkhum & Subsingha, 2013).  

Figure 4-3 is similar to  Figure 2-1, they can attain bi-directional current flowing high power 

quality active rectifier or GCI in a three-phase system.  Therefore, the following research about 

three-phase active rectifier is based on this concept. 

4.2 Mathematical model of three-phase active rectifier 

Figure 4-4 illustrates a topology from a  MATLAB/Simulink of a three-phase full-bridge active 

rectifier.  The full-bridge topology also can be operated in GCI mode if PWM control signals 

are changed and the load RL in Figure 4-4 is replaced with a DC voltage source, for example 

DC bus link. 

 

Figure 4- 4 Topology of three-phase full-bridge active rectifier 
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Hence, the topology illustrated above is able to implement power flowing bi-directionally.  The 

relationships in a dynamic three-phase system of current and voltage can be described in a 

switched functional mathematical model as follows: 

{
 
 
 

 
 
 𝐿
𝑑𝑖𝑎
𝑑𝑡

= 𝑒𝑎 −𝑅𝑖𝑎 − 𝑣𝑑𝑐 (
2𝑆𝑢 − 𝑆𝑣 − 𝑆𝑤

3
)

𝐿
𝑑𝑖𝑏
𝑑𝑡

= 𝑒𝑏 −𝑅𝑖𝑏 − 𝑣𝑑𝑐 (
2𝑆𝑣 − 𝑆𝑢 − 𝑆𝑤

3
)

𝐿
𝑑𝑖𝑐
𝑑𝑡

= 𝑒𝑐 − 𝑅𝑖𝑐 − 𝑣𝑑𝑐 (
2𝑆𝑤 − 𝑆𝑢 − 𝑆𝑣

3
)

                                              (4 − 1) 

where  

ia, ib and ic are the instantaneous AC currents of phases A, B and C respectively. 

 ea, eb and ec are the instantaneous voltages of the power grid. 

 vdc is the voltage of the DC bus. 

R is the equivalent resistance of the input filter inductors shown in Figure 4-4. 

L is the inductance of the input filter inductors shown in Figure 4-4. 

Su, Sv and Sw are the switching status of the upper switching devices of each pair 

switching devices such as S1 and S2, S3 and S4, S5 and S6 in Figure 4-4 respectively, in 

which, logic 1 represents that the upper devices are switched on and logic 0 means 

switched off. 

The mathematical model of the three-phase static system is clearly described by Equation (4-

1).  However, according to Equation (4-1) the design of the control system is a difficult 

challenge due to the fact that the equation shows the system is a time-variant AC system and 

the variables to be controlled couple each other making the system complex.  Therefore, 

applying Clarke’s and Park’s transformation simplifies the process.    
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Through Clarke’s and Park’s transformation, Equation (4-1) mathematical model  yields  the 

d-q rotating reference frame as follows: 

{
 

 𝐿
𝑑𝑖𝑑
𝑑𝑡

= 𝑒𝑑 −𝑅𝑖𝑑 − 𝑣𝑑𝑐𝑆𝑑 +𝜔𝐿𝑖𝑞

𝐿
𝑑𝑖𝑞
𝑑𝑡

= 𝑒𝑞 −𝑅𝑖𝑞 − 𝑣𝑑𝑐𝑆𝑞 −𝜔𝐿𝑖𝑑

                                                   (4 − 2) 

where  

ed and eq are d and q components of the grid three-phase voltage vector (edq) 

respectively. 

vdcSd and vdcSq are d and q components of the voltage vector of the rectifier at the 

three-phase grid side respectively. 

id and iq are d and q components of the current vector of the rectifier at the three-phase 

grid side  respectively. 

In the d-q rotating reference frame, assuming the ed component of the grid three-phase voltage 

vector falls in the d-direction, the eq component is equal to 0.  The d and q components in 

Equation (4-2) still couple each other, so using the feed forward decoupling control method 

(Milosevic, 2003) with PI control for the current in the d-q frame, then the d and q components 

of the voltage vector of the rectifier, at the three-phase grid side can be obtained as follows: 

    {
𝑣𝑑 = − (𝐾𝑑𝑝 +

𝐾𝑑𝑖
𝑆
) (𝑖𝑑𝑟 − 𝑖𝑑)+ 𝑒𝑑 +𝜔𝐿𝑖𝑞

𝑣𝑞 = − (𝐾𝑞𝑝 +
𝐾𝑞𝑖

𝑆
) (𝑖𝑞𝑟 − 𝑖𝑞)+ 𝑒𝑞 −𝜔𝐿𝑖𝑑

                                                   (4 − 3) 

where  

Kdp and Kqp are the proportional gain of the PI compensator. 

Kdi and Kpi are the integrator gain of the PI compensator. 

idr and iqr are reference current for d and q components of the current vector. 
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Because at the grid side, d- and q- components of three-phase VSR, vd = vdcSd and vq =vdcSq,  

so substituting Equation (4-3) into Equation (4-2) to eliminate terms of 𝑒𝑑 − 𝑣𝑑𝑐𝑆𝑑 + 𝜔𝐿𝑖𝑞 

and 𝑒𝑞 − 𝑣𝑑𝑐𝑆𝑞 − 𝜔𝐿𝑖𝑑 respectively gives:  

{
 
 

 
 𝐿
𝑑𝑖𝑑
𝑑𝑡

= −𝑅𝑖𝑑 + (𝐾𝑑𝑝 +
𝐾𝑑𝑖
𝑆
) (𝑖𝑑𝑟 − 𝑖𝑑)

𝐿
𝑑𝑖𝑞
𝑑𝑡

= −𝑅𝑖𝑞 + (𝐾𝑞𝑝 +
𝐾𝑞𝑖
𝑆
) (𝑖𝑞𝑟 − 𝑖𝑞)

                                                   (4 − 4) 

4.3 Current loop design 

The feed forward control as described in Equations (4-3) and (4-4) reveals that the current loop 

of a three-phase voltage source rectifier has been successfully achieved.  

This analysis only focuses on the d-axis quantities of current due to the symmetry between the 

d and q current quantities, as Equation (4-4) suggests. 

In practical applications, considering some delays from sampling to computation results, in 

order to enhance system performance and controlled accuracy, it is necessary to add certain 

delays and gain parameters into a system.  The d-component of the current loop control diagram 

with the perturbation of d-component of the power grid is illustrated in Figure 4-5. 

 

Figure 4- 5 d-component of current-loop control diagram 

In Figure 4-5, Ts is the system sampling time, KPWM is the system equivalent gain of the PWM, 

R is the equivalent resistance of the input filter inductor and L is the inductance, ed is the 

perturbation of the voltage d-component at the grid side.  In order to facilitate analysis and 

design of the system, writing the PI control equation in a pole-zero style (assuming the small 

1

𝑇𝑠𝑠 + 1
 𝐾𝑝 +

𝐾𝑖
𝑠

 
𝐾𝑃𝑊𝑀

0.5𝑇𝑠𝑠 + 1
 

1

𝑅 + 𝑠𝐿
 

ed 

id id_ref 
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fluctuation of d-axis quantities of the grid voltage is ignored and combining the two delays in 

the  transfer function, Ts and 0.5 Ts), then the current-loop control diagram can be simplified as 

in Figure 4-5. 

𝐾𝑝 +
𝐾𝑖
𝑠
= 𝐾𝑝

𝑠 + 𝐴

𝑠
= 𝐾𝑝

1
𝐴 𝑠 + 1

1
𝐴 𝑠

 

where 𝐴 =
𝐾𝑖

𝐾𝑝
. 

 

Figure 4- 6 Simplified current-loop control 

According to the classical control theory, classical type I control system has faster response 

than type II and III.   In Figure 4-6, the system could be simplified to a type I control system if 

PI’s zero can eliminate transfer function’s pole. So assuming A = R/L, the open-loop transfer 

function of the simplified current-loop control shown in Figure 4-6 can be expressed as the 

following mathematical model. 

𝐻𝑖𝑑 =
𝐾𝑝𝐾𝑃𝑊𝑀

𝑠𝐿(1.5𝑇𝑠𝑠 + 1)
                                                       (4 − 5) 

According to Equation (4-5), the block diagram in Figure 4-6 can be equivalently further 

simplified as in the following figure. 

 

Figure 4- 7 Final d-component of current-loop control 

𝐾𝑝
𝑠 + 𝐴

𝑠
 

𝐾𝑃𝑊𝑀
1.5𝑇𝑠𝑠 + 1

 
1

𝑅 + 𝑠𝐿
 

id id_ref 

𝐾𝑝𝐾𝑃𝑊𝑀

𝑠𝐿(1.5𝑇𝑠𝑠 + 1)
 

id id_ref 
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Let 𝐾 =
𝐾𝑝𝐾𝑃𝑊𝑀

𝐿
, then the open-loop transfer function of the current id shown in Figure 4-6 can 

be expressed as: 

𝐻𝑖𝑑 =
𝐾

𝑠(1.5𝑇𝑠𝑠 + 1)
                                       (4 − 6) 

And the close-loop transfer function of the current id shown in Figure 4-7 can be obtained as: 

𝐸𝑠 =

𝐾
𝑠(1.5𝑇𝑠𝑠 + 1)

1 +
𝐾

𝑠(1.5𝑇𝑠𝑠 + 1)

=
𝐾

𝑠(1.5𝑇𝑠𝑠 + 1) + 𝐾
 

=

𝐾
1.5𝑇𝑠

𝑠2 +
1

1.5𝑇𝑠
𝑠 +

𝐾
1.5𝑇𝑠

                                                        (4 − 7)  

Now convert the denominator of Es to the standard form below 

𝑠2 + 2ϛωs + 𝜔2                                                   (4 − 8) 

Comparing Equation (4-7) with the standard form Equation (4-8) yields the following two 

quantities. 

𝜔 = √
𝐾

1.5𝑇𝑠
 

ϛ =
1

2√1.5𝐾𝑇𝑠
 

Typically the damping factor ϛ = 
1

√2
≈ 0.707 is used with K =

𝐾𝑝𝐾𝑃𝑊𝑀

𝐿
 , then the proportional 

parameter KP of the current loop can be obtained as 

𝐾𝑃 =
𝐿

3𝑇𝑠𝐾𝑃𝑊𝑀
                                                     (4 − 9) 
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Because 
𝐾𝑖

𝐾𝑝
=

𝑅

𝐿
, the integral parameter can be found 

𝐾𝑖 =
𝐾𝑃𝑅

𝐿
=

𝑅

3𝑇𝑆𝐾𝑃𝑊𝑀
                                        (4 − 10) 

Thus, Equations (4-9) and (4-10) represent the proportional and integral parameters of the PI 

controller for the current loop Kdp and Kdi in Equation (4-4). 

 4.4 Voltage loop design 

In the d-q rotating reference frame, the system Equation (4-8) can be expressed as  

{
𝐿𝑝𝑖𝑑 = 𝑒𝑑 −𝑅𝑖𝑑 − 𝑣𝑑 +𝜔𝐿𝑖𝑞
𝐿𝑝𝑖𝑞 = 𝑒𝑞 −𝑅𝑖𝑞 − 𝑣𝑞 −𝜔𝐿𝑖𝑑

                                                   (4 − 11) 

𝑣𝑑𝑐𝑖𝑑𝑐 =
3

2
(𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞)                                                           (4 − 12) 

𝑝𝑣𝑑𝑐=
1

𝐶𝑜
(𝑖𝑑𝑐 − 𝑖𝐿)                                                                       (4 − 13) 

where  

p is the differential operator d/dt, 

ed and eq are the d-axis and q-axis voltage components of the power grid respectively, 

R is the equivalent resistance of input filter inductor, 

vd and vq are the d-axis and q-axis voltage components of the rectifier at the AC side, 

respectively, 

L is the inductance of input filter inductor, 

ω is the angular frequency of the voltage of the power grid in rad/s, 
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id and iq are the d-axis and q-axis current components of the rectifier at the AC side, 

respectively, 

Co is the capacitance of the output filter of the rectifier, 

iL is the DC load current, 

vdc is the DC output voltage, and 

idc is the rectifier output current. 

Assuming the system is operating on rectifier mode with unity power factor and the d-axis 

component of the rectifier at the AC side overlaps with the d-axis component of the power grid 

(which means eq = 0, vq=0 and iq =0), then Equations (4-11), (4-12) and (4-13) can be simplified 

as 

𝑝𝑖𝑑 =
𝑒𝑑 − 𝑣𝑑 − 𝑅𝑖𝑑

𝐿
                                             (4 − 14) 

𝑣𝑖𝑑𝑐 = 𝑣𝑑𝑖𝑑                                                               (4 − 15) 

𝑝𝑣 =
𝑖𝑑𝑐 − 𝑖𝐿
𝐶

                                                           (4 − 16) 

where, 

v = 
2

3
𝑣𝑑𝑐 and 𝐶 =

3

2
𝐶𝑜. 

According to Equation (4-16), the second order differential equation of the output DC voltage 

v can be written as 

𝑣 = 𝑝 (
𝑖𝑑𝑐 − 𝑖𝐿
𝐶

 ) =
1

𝐶
𝑝𝑖𝑑𝑐 −

1

𝐶
𝑝𝑖𝐿                                              (4 − 17) 

And rearranging Equation (4-15) yields the rectifier output current idc as 
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𝑖𝑑𝑐 =
𝑣𝑑
𝑣
𝑖𝑑                                                                  (4 − 18) 

Differentiating both sides of the above equation gives 

𝑝𝑖𝑑𝑐 = 𝑝 (
𝑣𝑑
𝑣
𝑖𝑑) = 𝑖𝑑𝑝

𝑣𝑑
𝑣
+
𝑣𝑑
𝑣
𝑝𝑖𝑑                                         (4 − 19) 

Combining Equations (4-16) and (4-18) yields the d-component of the current of the rectifier 

at the AC side, id. 

𝑖𝑑 =
𝑣

𝑣𝑑
𝑖𝑑𝑐 =

𝑣

𝑣𝑑
(𝐶𝑝𝑣 + 𝑖𝐿)                                                         (4 − 20)  

Substituting Equation (4-20) into Equation (4-14) with id yields 

𝑝𝑖𝑑 =
𝑒𝑑 − 𝑣𝑑
𝐿

−
𝑅

𝐿
·
𝑣

𝑣𝑑
(𝐶𝑝𝑣 + 𝑖𝐿)                                            (4 − 21) 

Substituting Equations (4-20) and (4-21) into Equation (4-19) with id and pid, then substituting 

the new Equation (4-19) into Equation (4-17) with pidc yields the second order differential 

equation of the DC output voltage v as 

𝑣 = 𝑝 (
𝑖𝑑𝑐−𝑖𝐿

𝐶
 )                                                                                                                       

= [
𝑣

𝑣𝑑
𝑝 (
𝑣𝑑
𝑣
) −

𝑅

𝐿
] +

𝑣𝑑(𝑒𝑑 − 𝑣𝑑)

𝑣𝐿𝐶
 −
𝑖𝐿
𝐶
[𝑝 +

𝑅

𝐿
−
𝑣

𝑣𝑑
𝑝 (
𝑣𝑑
𝑣
)]                 (4 − 22) 

Rearranging Equations (4-22) and (4-16) as a state equation gives 

𝑝[𝑋] = AX + BU                                                        (4 − 23) 

where 

 X = [
𝑉

𝑖𝑑𝑐−𝑖𝐿

𝐶

] 
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             𝐴 = [

0 1

0
𝑣

𝑣𝑑
𝑝 (
𝑣𝑑
𝑣
) −

𝑅

𝐿
]                                                                               

             𝐵 = [

0
𝑣𝑑(𝑒𝑑 − 𝑣𝑑)

𝑣𝐿𝐶
−
𝑖𝐿
𝐶
[𝑝 +

𝑅

𝐿
−
𝑣

𝑣𝑑
𝑝 (
𝑣𝑑
𝑣
)]
]                                         

Equation (4-23) is a nonlinear system due to the term 
𝑣

𝑣𝑑
𝑝(

𝑣𝑑

𝑣
), which results in an extremely 

complicated control system.  In order to simplify the system, assume there is a linear 

relationship between the DC output voltage and the d-component of the rectifier input voltage 

at the AC side as vd=kv, hence Equation (4-23) can be written as a linear system thus: 

𝑝[𝑋] = A′X + B′ U                                                       (4 − 24) 

where 

                𝐴′ = [
0 1

−
𝑘2

𝐿𝐶
−
𝑅

𝐿

]                        

                𝐵′ = [
0

𝑘𝑒𝑑
𝐿𝐶

−
𝑖𝐿
𝐶
(𝑝 +

𝑅

𝐿
)
] 

The transfer function of the close-loop control system can be found by comparing the 

characteristic equation of a control system with Equation (4-24), which is the state-space in 

controllable canonical form. 

Because  

𝑠𝐼 − 𝐴′ = [
𝑠 0
0 𝑠

] − [
0 1

−
𝑘2

𝐿𝐶
−
𝑅

𝐿

] 

 = [
𝑠 −1
𝑘2

𝐿𝐶
𝑠 +

𝑅

𝐿

] 
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Hence, the characteristic equation can be expressed as 

𝑑𝑒𝑡(𝑠𝐼 − 𝐴′) = 𝑠 (𝑠 +
𝑅

𝐿
) +

𝑘2

𝐿𝐶
= 0 

or 

𝑠2 +
𝑅

𝐿
𝑠 +

𝑘2

𝐿𝐶
= 0                                                  (4 − 25) 

Then the un-damped natural frequency and damping factor can be obtained as 

𝜔 =
𝑘

√𝐿𝐶
                                                              (4 − 26) 

ϛ =
𝑅

2𝑘
√
𝐶

𝐿
                                                            (4 − 27) 

A desirable value of the damping factor is between 0.6 to 0.8 with the ideal value being 
1

√2
.  

Because, if the damping factor is too small, this will result in system oscillation; and if the 

damping factor is too large, the system response will be slow.  

The proportional gain parameter, k, of the system can be selected by the appropriate choice of 

the input filter inductor and output filter capacitor values. 

4.5 Simulation of a three-phase SVPWM active rectifier 

The mathematical model of the current and voltage control loops of a three-phase power system 

have been designed in the previous analysis.  However, accurately determining the position in 

a rotation frame system by sampling the voltage of the three-phase power grid is a crucial point 

for the field orientated SVPWM control algorithm.  The SVPWM algorithm is generally 

composed of the following subsystems: PLL for synchronisation, Identify Sector, Firing time 

of the six switch devices, Park’s, Clarke’s, Inverse Park’s and Inverse Clarke’s transformations.   
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Detailed design of a PLL for synchronisation has been introduced in Chapter 3, and will not be 

described again here.   

4.5.1 Identify sector 

Figure 4-8 shows the relationship of the normalised sinusoidal waves of a three-phase system.  

The period of the sinusoidal waves of a three-phase system can be divided into 6 sectors, 

delimited by the zero crossing points of the 3 sine waves, i.e. 0, π/3, 2π/3, π, 4π/3, 5π/3 and 2π 

radians.  

In Figure 4-8, the blue, green and red lines indicate the phase voltages of the A Phase, B Phase 

and C Phase respectively, in a three-phase balance system. Figure 4-8 shows the voltage of 

Phase A is greater than or equal to zero from 0 to π radians and is less than or equal to zero 

from π to 2π radians.  Similarly Phase B is positive or zero from 0 to π/3 and from 4π/3 to 2π 

radians, and negative or zero from π/3 to 4π/3 radians. Also, Phase C is positive or zero from 

2π/3 to 5π/3 radians, negative or zero from 0 to 2π/3 and from 5π/3 to 2π radians. 

 

 

Figure 4- 8 Normalised sinusoidal waves of three-phase voltage 
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The sectors in Figure 4-8 can be represented logically, assuming logic 1 represents the 

corresponding phase voltage is greater than 0 and logic 0 represents it when less than 0, then 

according to the above analysis the logic relationship between the three phases in the six sectors 

is shown in the following table.  

Sectors in 

Figure 4-8 
Areas Phase A Phase B Phase C 

1 0 - π/3 1 1 0 

2 π/3 - 2π/3 1 0 0 

3 2π/3 - π 1 0 1 

4 π - 4π/3 0 0 1 

5 4π/3 - 5π/3 0 1 1 

6 5π/3 - 2π 0 1 0 

 

Table 4- 1 Logical relationship between voltage and each phase 
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4.5.2 Determine firing time for switching devices 

 

Figure 4- 9 Vector synthesis schematic in sector 1 

Figure 4-9 illustrates the vector synthesis schematic in Sector 1 between 0 and π/3 radian in 

Figure 4-8.  Assuming Tz is the normalised time unit, analysis of the figure shows that the firing 

times T1 and T2 can be obtained by the following equations: 

|�⃗� 𝑟𝑒𝑓|

𝑠𝑖𝑛 (
2𝜋
3 )

=
|𝑉1⃗⃗  ⃗|𝑇1

𝑠𝑖𝑛(
𝜋
3 − 𝛼)

                                       (4 − 28) 

|�⃗� 𝑟𝑒𝑓|

𝑠𝑖𝑛 (
2𝜋
3 )

=
|𝑉2⃗⃗  ⃗|𝑇2
𝑠𝑖𝑛(𝛼)

                                               (4 − 29) 

Because  

|𝑉1⃗⃗  ⃗| = |𝑉2⃗⃗  ⃗| = |𝑈𝑑𝑐| 

Therefore 

q 

d 

α 

𝑇2
𝑇𝑍
𝑉2⃗⃗  ⃗ 

𝑇1
𝑇𝑍
𝑉1⃗⃗  ⃗ 

�⃗� 2 

�⃗� 1 

�⃗� 𝑟𝑒𝑓 

π/3 



 

57 

 

𝑇1 =
|�⃗� 𝑟𝑒𝑓|

|𝑉1⃗⃗  ⃗|

𝑠𝑖𝑛(
𝜋
3 − 𝛼)

𝑠𝑖𝑛 (
2𝜋
3 )

= 𝑀 𝑠𝑖𝑛 (
𝜋

3
− 𝛼)                   (4 − 30) 

𝑇2 =
|�⃗� 𝑟𝑒𝑓|

|𝑉1⃗⃗  ⃗|

𝑠𝑖𝑛 𝛼

𝑠𝑖𝑛 (
2𝜋
3 )

= 𝑀 𝑠𝑖𝑛 𝛼                                    (4 − 31) 

𝑇0 = 𝑇𝑍 − 𝑇1 − 𝑇2                                                             (4 − 32) 

T0 is the time when both the upper and lower arms in the inverter-bridge are switched off, 

and 

where M is the ratio of modulation,  

𝑀 =
2

√3

|�⃗� 𝑟𝑒𝑓|

|𝑈𝑑𝑐|
                                                                 (4 − 33) 

Figure 4-10 shows that one period of the output voltage is divided into 6 patterns.  The patterns 

show the switched on/off state of the upper arms in the inverter-bridge, which is generally 

composed with IGBTs or MOSFETs.  Because the states of lower arms are opposite to the 

upper arms, the state of on/off states for the lower arms are easy to obtain, therefore only the 

upper arm control signals are shown in Figure 4-10.    
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(a) Sector 1 switching state                                       (b) Sector 2 switching state 
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(c) Sector 3 switching state                                        (d) Sector 4 switching state 
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 (e) Sector 5 switching state                                          (f) Sector 6 switching state 

Figure 4- 10 The patterns of voltage vectors 

Taken from (Cai, 2006) 
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The firing times of each switch in the upper arms of the bridge in the different Sectors can be 

obtained from Figure 4-10 as follows (Fan, 2012). 

Sector 1: 

{
 
 

 
 𝐹𝑆1 = 𝑇1 + 𝑇2 +

𝑇0

2

𝐹𝑆3 = 𝑇2 +
𝑇0

2
          

𝐹𝑆5 =
𝑇0

2
                    

                                            (4 − 34)  

Sector 2: 

 

{
 
 

 
 𝐹𝑆1 = 𝑇1 +

𝑇0

2
          

𝐹𝑆3 = 𝑇1 + 𝑇2 +
𝑇0

2

𝐹𝑆5 =
𝑇0

2
                    

                                            (4 − 35) 

 Sector 3: 

 

{
 
 

 
 𝐹𝑆1 =

𝑇0

2
                    

𝐹𝑆3 = 𝑇1 + 𝑇2 +
𝑇0

2
 

𝐹𝑆5 = 𝑇2 +
𝑇0

2
          

                                            (4 − 36) 

 Sector 4: 

  

{
 
 

 
 𝐹𝑆1 =

𝑇0

2
                    

𝐹𝑆3 = 𝑇1 +
𝑇0

2
          

𝐹𝑆5 = 𝑇1 + 𝑇2 +
𝑇0

2

                                             (4 − 37)   

 Sector 5: 

 

{
 
 

 
 𝐹𝑆1 = 𝑇2 +

𝑇0

2
        

𝐹𝑆3 =
𝑇0

2
                   

𝐹𝑆5 = 𝑇1 + 𝑇2 +
𝑇0

2

                                                (4 − 38)    
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Sector 6: 

 

{
 
 

 
 𝐹𝑆1 = 𝑇1 + 𝑇2 +

𝑇0

2

𝐹𝑆3 =
𝑇0

2
                   

𝐹𝑆5 = 𝑇1 +
𝑇0

2
         

                                                 (4 − 39)  

4.5.3 Over modulation 

Generally, calculating the firing time of each of the switching devices in the inverter-bridge 

does not cause any problems in theory.   In practical applications, however, over modulation 

errors can be introduced in the calculation of the vector due to following reasons: 

 Mathematical operations in the algorithm (particularly multiply, divide and 

trigonometrical operators) may introduce rounding/truncation errors; and 

 Calculation across Sector boundaries may result in errors in the synthesis of the 

vectors. 

Therefore, in order to solve the problem of over modulation, linear modulation and non-linear 

modulation are employed to control over modulation (Fan, 2012). 

If the module is working during the dead time, i.e. when T0 is greater than or equal to 0, 

Equations (4-30), (4-31) and (4-32) will be executed.  Otherwise Equations (4-40), (4-41) and 

(4-42) below will be executed. 

𝑇1
′ =

𝑇1
𝑇1 + 𝑇2

𝑇𝑧                                                   (4 − 40) 

𝑇2
′ =

𝑇2
𝑇1 + 𝑇2

𝑇𝑧                                                  (4 − 41) 
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𝑇0 = 0                                                                   (4 − 42) 

4.5.4 Generating controlled PWM for SVPWM 

Figure 4-11 illustrates the principle of PWM generation.  A triangular waveform carrier wave 

is compared with a sine wave reference signal, the state of output is positive when the value of 

the reference signal is greater than the carrier waveform, otherwise it is negative.   

             

 

Figure 4- 11 The principle of PWM generation 

The output logical relationships of PWM can be described in mathematical form as follows: 

  0   2π   π   π/2   3π/2 
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𝑉𝑃𝑊𝑀 = {
   1   𝑖𝑓 𝑉𝑟𝑒𝑓 ≥ 𝑉𝑡𝑟𝑖 
−1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

                                         (4 − 43) 

where 

VPWM is the logical value of PWM output, 1 represents upper arm is switched on, 

-1 represents lower arm is switched on 

  Vref is the refrence modulation sine wave 

Vtri is the triangular carried wave 

In Figure 4-11, the modulation waveform is a refrence sine wave, but for SVPWM algorithm, 

the ideal modulation waveforms is a saddle-like shapes, as in Figure 4-12.  To compare with 

tranditional sine modulation waveform, the utilization of the DC-bus voltage was improved 

(Infineon Technologies AG, 2006).   

 

Figure 4- 12 Ideal modulation waveform of SVPWM 

4.6 Modelling three-phase SVPWM rectifier 

All the models of Clarke, Inverse Clarke, Park, Inverse Park, Identify Area and Firing time 

have been modelled as MATLAB Function Blocks as this is the most convenient way to 
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achieve the complex mathematical calculations required and to implement the design in a real 

time embedded system in the future.  The input filter inductor coils have an inductance of 3mH 

and equivalent resistance of 0.5Ω.  The sample time of system is 100ms.  The frequency of the 

power grid is 50Hz.  

4.6.1 Modelling identify area and firing time 

Figure 4-13 illustrates the modelling of current controlled-loop according to Equation (4-3) 

stated previously, and the parameters of the PI controller are listed in the figure. 

 

 

Figure 4- 13 Modelling of current controlled-loop 

Figure 4-14 depicts a model of the three-phase SVPWM rectifier, which can be operated as a 

normal SVPWM rectifier without PFC, or a SVPWM rectifier with PFC which requires a 

change of the PWM control signals for the Rectifier Bridge, i.e. the block of SVPWM, which 

generates PWM signals for normal rectifier without PFC to be changed as the block of PFC 

SVPWM, which generates PWM signals for rectifier with PFC.  The blocks of V_CLARKER 

and I_CLARKER transform three-phase reference frame into stationary orthogonal reference 

frame for voltage and current of the grid respectively.  The blocks of V_PARK and I_PARK 
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convert vectors in two-phase stationary orthogonal frame into rotating orthogonal reference 

frame for voltage and current respectively.  The block of Synthesised Vd_Vq implements 

Equation (4-7), the block of INV_PARK achieves inverse of Park’s transformation from the 

rotating orthogonal reference frame to the stationary orthogonal frame. 

In the simulation, the peak value of the input three-phase AC voltage is 310V and the frequency 

is 50Hz;   the input filter is formed by an inductor 3mH and an equivalent resistor 0.5Ω in serial, 

the capacitance of the output filter capacitor is 2000μF, the resistance of the load is 30Ω and 

the sampling time of simulation system is 10μs. 

 

Figure 4- 14 Modelling of three-phase SVPWM rectifier with/without PFC 
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As the figure shows, the topology of the rectifier bridge is composed of six IGBT devices, 

which is exactly the same as the inverter-bridge of a three-phase GCI.   

For GCIS, if the Load in the figure is considered as a DC voltage source or DC bus then the 

system can be operated as GCI injecting power into the power grid.  

Figure 4-15 shows the simulated results of the generated normalised control saddled waves of 

the SVPWM which are compared with counters to generate the PWM control signals.  The 

experimental results of control saddled waves are shown in Figure 4-16, 4-17 and 4-18 which 

are used to compare with the up-down timer register in the DSP chip to generate PWM signals 

to control switched devices S1 – S6.  The saddled waves in Figure 4-16, 4-17 and 4-18 were 

captured through CCS 3.3 IDE for TI DSP. 

 

Figure 4- 15 Generated saddled modulation waveform 

  

0 pi 2pi
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in radius

N
o
rm

a
lis

e
d
 f

ir
in

g
 t

im
e

 

 

Firing time for M1

Firing time for M3

Firing time for M5

π   2π 

  T=2π 



 

66 

 

 

    

Figure 4- 16 Experiment result of Phase A saddled carried waveform 

  

Figure 4- 17 Experiment result of Phase B saddled carried waveform 

 

Figure 4- 18 Experiment result of Phase C saddled carried waveform 
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As Figure 4-19 shows, although the rectifier employs SVPWM algorithm to generate PWM 

control signals, there is no current control-loop for PFC.  Therefore, the input current appears 

as a smooth sine wave,  but lags the voltage due to the filter inductor coils.  Figure 4-20 

illustrates the results of SVPWM rectifier with PFC, in which the current is in phase with the 

voltage.  After PFC, analysis and comparison of the current waveforms in Figure 4-21, shows 

the THD of the input current is 1.72%, less than the general threshold 3%, which means the 

quality of input current is satisfied. 

 

Figure 4- 19 Phase A current and voltage without PFC 

 

Figure 4- 20 Phase A current and voltage after PFC 
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Figure 4- 21 Analysis of harmonic distortion 

Figure 4-22 (a) illustrates the experimental comparison of Phase A current and voltage waves 

of an uncontrolled rectifier, in the figure, the yellow trace is voltage signal and the magenta 

trace is current signal.  Intuitively there is gross distortion on the current wave.  Figure 4-22 (b) 

shows experimental results of SVPWM rectifier without PFC; it can be seen that the distortion 

content of the input Phase A current is eliminated using the SVPWM algorithm.  However, 

although the power quality has been dramatically improved, the power efficiency and voltage 

utilisation still need to be improved.   Figure 4-22 (c) demonstrates the results of SVPWM 

rectifier with PFC, as the figure shows that the current is in phase with the voltage on Phase A 

when the SVPWM algorithm, including voltage and current control-loops are used. 
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(a) Uncontrolled rectifier voltage and current 

 

(b) SVPWM rectifier voltage and current without PFC 

 

(c) SVPWM rectifier voltage and current with PFC 

Figure 4- 22 Experimental results 
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4.7 Modelling single-phase rectifier 

P-Q theory is a powerful tool to apply for three-phase system (Afonso, et al., 2003). Three-

phase active rectifier has been described previously and successfully modelled in section 4.6.  

The theory of this three-phase active rectifier is based on control of reactive current which is 

obtained through Clarke and Park transformations.  Using the same approach, a novel method 

of single-phase rectification is presented in this section.  The strategy of single-phase rectifier 

with PFC is illustrated in Figure 4-23. 

 

Figure 4- 23 Strategy of single--phase rectifier with PFC 
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be as close to zero as possible.  Then using the Inverse Park’s transformation to generate a 

reference current, which is used to compare with the actual input current to generate PWM 

control signals for the rectifier bridge.   

 

Figure 4- 24 Model of single-phase rectifier with PFC 

Figure 4-24 shows the complete simulation model of the single-phase rectifier with PFC in 

MATLAB/Simulink environment.  The sampling time of the simulation model is 10μs, the 

peak value of input voltage sine wave is 110V, the inductance of both input filter inductors L1 

and L2 are 2.5mH, the load comprises a 1mH inductor in serial with a 30Ω resistor and the 

capacity of the output filter capacitor is 4700µF. 

Figure 4-25 shows the results of the single-phase rectifier, in which the current is in phase with 

the voltage, and Figure 4-26 illustrates the harmonic analysis of input current.  This, analysis 

shows less than 1.4%, THD, which means power quality of the input has been greatly improved 

and enhanced. 
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Figure 4- 25 Results of single-phase rectifier 

 

Figure 4- 26 Harmonic analysis of input current 

4.8 Summary 

In order to implement a DC/AC power inverter so that electrical power can be converted bi-
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AC grid side, an ideal rectifier and inverter based on the same topology for both single-phase 

and three-phase power system have been considered in this chapter.  

Using the concept of three-phase PFC rectifier and the P-Q theory of instantaneous reactive 

power, through a detailed mathematical analysis and design process for a three-phase SVPWM 

rectifier, a novel method of constructing a pair of orthogonal signals for current sampling and 

using Clarke’s and Park’s transformation to split active and reactive components of the input 

current for single-phase rectifier for a bi-directional H-bridge converter, was presented in this 

chapter. 

Simulation models of both three-phase and single-phase systems were developed in 

MATLAB/Simulink environment.  By analysing the simulation results, it is apparent that the 

input power quality is considerably improved.  
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Chapter 5 Bi-directional interleaved boost/buck 

DC/DC converter 

5.1 Introduction 

For a renewable power system, directly injecting power into the power grid impacts the grid 

power quality, due to renewable source intermittency and random characteristics.  In order to 

stabilise inverter output and enhance end-user’s benefits from integrated renewable power 

system, a battery bank is typically included at the user terminal to buffer fluctuations and meet 

end-user’s expectations.   

Battery bank capacity is proportional to cost, so the main problem in providing the best cost-

effective configuration of the battery bank is that the battery bank terminal voltage might not 

match the DC Bus voltage.  In this case, it is necessary to have a bi-directional DC/DC 

converter to interface between a higher DC bus potential and lower battery voltage. 

This chapter presents a novel four-phase interleaved boost/buck topology to implement power 

flow bi-directionally between the higher and lower potentials, which means the boost and buck 

can be achieved on a same topology by swapping the input and output terminals. 

With the rapid development of power electronics, to improve power supply quality, reliability 

and efficiency, there are a number of topologies for DC/DC converters that have been put 

forward in the past two decades.  According to the method of electrical connection, the DC/DC 

converter is categorised into two classes: isolated and non-isolated.  Normally, an isolated 

DC/DC converter uses a transformer between the input source and output circuit, providing 

electrical isolation via the magnetic coupling in the transformer.  The advantage of an isolated 
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converter is a high safety level; however the drawback is loss of power in the transformer and 

associated isolation circuitry and high cost.   

In this project, it was decided to simulate a non-isolated DC/DC converter because the 

fundamental principle of isolated and non-isolated converters are the same. 

There are four basic converter topologies employed practically in renewable power systems: 

the step-down (Buck) circuit, the step-up (Boost) circuit, the boost-buck converter and the Ćuk 

converter (Maniktala, 2006).   

Whatever the converter topology, it can be subdivided into continuous conduction mode (CCM) 

or discontinuous conduction mode (DCM). In a CCM converter, the current through the 

inductor L is always positive and never equal to zero in any switching period of the switching 

device M;  in a DCM converter, the current is not always positive. 

5.2 Buck converter 

A step-down circuit, also known as a buck circuit, is shown in Figure 5-1.  The circuit consists 

of a voltage source vs, a switching device S1 connected in series with vs, a reverse biased diode 

D1 shunts the voltage source and switch combination, across which an LC filter provides the 

output to a resistive load R1.   

 

Figure 5- 1 Topology of buck converter 
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For the buck converter, from Figure 5-1, in the steady state, the relationship between the input 

voltage vs, output voltage vo, and the duty ratio of switching time D can be obtained as 

(Czarkowski, 2007): 

 (𝑣𝑠 − 𝑣𝑜)𝐷𝑇 = 𝑣𝑜(1 − 𝐷)𝑇              (5-1) 

Dividing both sides by the switching time period, T, and rearranging the relationship between 

output and input voltage, we have: 

𝐴 ≡  
𝑣𝑜

𝑣𝑠
= 𝐷                           (5-2) 

where A is the buck circuit gain.  

For the buck circuit, based on Equation 1, it can be summarised that the input voltage is always 

greater than the output voltage. Therefore, this topology is appropriate for applications where 

the load voltage is relatively low, such as a battery charging circuit. This type of circuit is 

commonly used in laptop power supply. 

If the switching frequency is fixed, the inductor inductance L1 in the buck circuit determines 

whether the circuit operates in CCM or DCM mode.  The critical inductance between CCM 

and DCM is given by (Czarkowski, 2007):  

𝐿1 =
(1−𝐷2)𝑅1

2𝑓
                         (5-3) 

L1 is the critical inductance of the inductor,  

D is the ratio duty of the switching period for switching devices S1,  

R1 is the load resistance in Figure 5-1, and 

f is the switching frequency. 
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If the inductance of inductor is greater than the critical inductance L1 then the circuit operates 

in CCM, otherwise in DCM. 

5.3 Boost converter 

Figure 5-2 shows the circuit of a simple boost converter.  It consists of a voltage source vs, in 

series with an inductor L1 used for energy storage, a switching device S1, a diode D1, a filter 

capacitor C1 and a load R1.  

 

Figure 5- 2  Circuit of boost converter 

When the switching device S1 is conducting, energy is stored in the inductor L1. Assuming all 

devices are ideal and the voltage across the capacitor C1 is greater than the source voltage vs, 

then the diode D1 is reversely biased and the capacitor provides the energy needs of the load 

R1.  During this time, i.e. the switching device S1 is conducting, the current through the inductor 

rises linearly.  When the switching device S1 is opened, the diode D1 conducts the current 

through the inductor L1, providing current for the load R1 and (re)charging the capacitor C1. 

In the steady state, using Faraday’s law, the relationship between the switching duty ratio of 

the switching devices D1, the output voltage vo and the input voltage vs can be obtained as 

(Czarkowski, 2007): 

vo vs S1 

L1 D1 
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𝑣𝑠𝐷𝑇 = (𝑣𝑜 − 𝑣𝑠)(1 − 𝐷)𝑇                      (5-4) 

Dividing both sides by the switching period, T, and rearranging the relationship between output 

and input voltage, we have: 

𝐴 ≡  
𝑣𝑜

𝑣𝑠
 =

1

1−𝐷
                                        (5-5) 

where A is the boost circuit gain. 

Equation 5-5 shows that the boost circuit gain is always greater than 1, which means that the 

output voltage is higher than the input voltage.  Hence, the boost circuit is widely employed in 

the field of RES to increase the voltage of DC bus link in order to ensure that power can be 

adequately injected into the power grid. 

For the boost circuit, once the switching frequency is confirmed, the inductance of L1 

determines the operating mode of circuit, as given by (Czarkowski, 2007): 

𝐿1 =
(1−𝐷)2𝐷𝑅

2𝑓
                       (5-6) 

where  

L1 is the critical inductance of inductor in Figure 5-2,  

D is the ratio duty of the switching period,  

R1 is the load resistance in Figure 5-2, and 

f is the switching frequency. 

If the inductance of inductor in Figure 5-2 is greater than L1, the circuit is operated in CCM, 

otherwise in DCM. 
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Most MPPT units, which are used in the application of solar PV system, are based on DC to 

DC converters of either a Boost or Buck topology, and the article (Glasner & Appelbaum, 1996) 

demonstrates that a Boost converter has higher power conversion efficiency than a Buck 

converter.     

All switch-mode power supplies are made up of a buck or boost topology or combination of 

buck and boost with or without transformers (Billings, 2003).  In a buck converter the input 

current is discontinuous and the output current is continuous.  Conversely, in a boost converter 

the input current is continuous and output current is discontinuous (Billings, 2003; Maniktala, 

2006).  

5.4 Interleaved boost circuit 

Interleaved topology was introduced to overcome the problems of ripple current, thermal 

dissipation and large filter capacitor bank requirements at the input or output terminal of 

switch-mode power supplies, widely employed in the application of computer power supply. 

 

Figure 5- 3 Basic interleaved boost topology 

Figure 5-3 shows a basic interleaved boost topology which consists of two boost circuits, S1 

and S2 connected in parallel.  The two PWM signals, PWM1 and PWM2 driving the switches 
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are mutually 180 degree out of phase.  The total current supplied for the load is split between 

the two paths, reducing the required size of the inductors and capacitor and significantly 

reducing the I2R losses (thermal dissipation) compared to the conventional boost topology.  

Also, because the total current is divided into two paths to deliver to the output terminal, the 

two path currents are eventually combined at the capacitor C1 in Figure 5-3, so the ripple 

frequency at the load is doubled but at smaller amplitude therefore can be more easily filtered.  

The interleaved topology has the following four advantages: 

 improvement in the power quality; 

 increased efficiency from reduced thermal dissipation in the circuit; 

 reduced size of the filter inductor; and 

 reduced output ripple voltage. 

Typically, a renewable power system operates at a high voltage potential,  and there is a 

potential difference between the DC bus and the battery bank.  For this project, a four-phase 

interleaved bi-directional boost-buck converter (IBDBBC) is proposed and modelled in 

MATLAB/Simulink. 

5.5 Modelling four-phase IBDBBC under boost mode 

A four-phase IBDBBC is derived from a conventional boost and buck converter.  For 

comparison purposes, it is essential to create both simulation models for the four-phase 

IBDBBC and the conventional boost converter with the same parameters for the components 

in both circuits.  Figure 5-4 is a simulation model of a conventional boost converter which is 

created in MATLAB/Simulink.  In the figure, the input DC voltage source vs is 200V and the 

expected output voltage at the filter capacitor C1 terminal is 450V.  In the circuit, the inductance 

of energy stored inductor L1 is 200μH, the inductance of output filter inductor L2 is 50μH, the 

capacitance of output filter capacitor C1 is 2200μF, and the resistance of load R1 is 10Ω. The 
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frequency of PWM signal is 5kHz.  All those parameters in the simulation model were initially 

given based on the author’s experience; after several simulations, they were eventually 

confirmed. 

 

Figure 5- 4 Conventional boost circuit model 

 

Figure 5- 5 Simulation of four-phase IBDBBC circuit   

Figure 5-5 shows a four-phase IBDBBC operating under boost mode.  In the simulation model, 

all the parameters of the components in the circuit are the same as in Figure 5-4.  The frequency 

of the controlled PWM signals is 5kHz, vs is considered as an input battery bank with a nominal 
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voltage 200Vdc, the R1 10Ω is the load of the circuit, which can be considered as a higher 

potential DC bus, so the expected output voltage of the boost converter is 450V.  The 

inductances of the input and output filter inductors L6 and L5 are 50μH each, filter capacitors 

C2 and C1 are 2200μF each, and the inductance of energy stored inductors L1-L4 are 200μH 

each.  The blocks of PWM Boost and PWM Buck generate four-phase PWM signals for boost 

mode and buck mode respectively. 

In Figure 5-5, the circuit operates under boost mode which means power can be delivered from 

the low potential side to the high potential side when PWM1-PWM4 are activated and PWM5-

PWM8 are disabled. Conversely, swapping the input and output side, enable PWM5-PWM8 and 

disable PWM1-PWM4, the circuit operates under buck mode.   

Figure 5-6 illustrates the four-phase PWM signals generated by the block of PWM Boost for 

boost mode operation, in which, the PWM signals are out of phase 90o to each other.  

The simulation result of the current flowing through the energy stored inductor in the 

conventional boost topology is shown in Figure 5-7.  As the simulation result in Figure 5-7 

shows, the maximum peak current carried by the inductor reached roughly 75A.  Comparing 

this with the results of four-phase IBDBBC circuit shown in Figure 5-8, the current flowing 

through each inductor is significantly reduced and the average current of each inductor is 

approximately reduced by about 50%. This means the thermal dissipation (I2R losses) problems 

of the electronic components are considerably reduced. 
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Figure 5- 6 Generated PWM signals 

 

Figure 5- 7 Inductor current of conventional CCM boost circuit 
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Figure 5- 8 Inductor currents of IBDBBC circuit 

Figure 5-9 and 5-10 show the simulation results of the output DC voltage of the conventional 

boost and the four-phase IBDBBC circuit, respectively.   

As Figure 5-9 illustrates the voltage output of the conventional boost circuit has a ripple voltage 

of about 2.25V.  By contrast, the output from the IBDBBC circuit only has a ripple voltage of 

about 0.2V, as shown in Figure 5-10. This  means the output power quality of four-phase 

IBDBBC is much better than conventional boost.  

Additionally, in the simulation results of the four-phase IBDBBC circuit, the frequency of 

ripple voltage is 4 times that of a conventional boost circuit.  That means the output ripple 

voltage can be filtered easily with a relatively small size capacitor.    
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Figure 5- 9 DC output voltage of conventional boost circuit 

 

 

Figure 5- 10 DC output voltage of four-phase IBDBBC circuit 
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5.6 Modelling four-phase IBDBBC under buck mode 

Figure 5-11 illustrates a simulation model of the IBDBBC operating under buck mode, the 

switching signals PWM5-PWM8 are enabled and PWM1-PWM4 are disabled, which means 

the input terminals and output terminals are conversely changed comparing with Figure 5-5.  

All the parameters of the components and the simulation conditions are exactly the same as 

under boost mode which was described in the previous section and shown in Figure 5-5.  In 

order to observe the response of converter output voltage, at the point of 0.2s, input voltage 

steps up from 350Vdc to 450Vdc.  In order to compare with interleaved boost circuit in Figure 

5-5, most devices in the figure remains unchanged but the PWM control signals, and the input 

and output terminals are swapped. 

 

Figure 5- 11 Simulation of four-phase IBDBBC under buck mode 

The simulation results for the input and output currents of the interleaved buck converter are 

shown in Figure 5-12.  It can be seen that the output current is continuous and input current is 

discontinuous.  
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Figure 5- 12 Input and output current 

The voltage of a battery bank is generally more stable than the DC bus voltage due to the 

intermittent character of the renewable energy source which causes the generator output with 

fluctuation.  Figure 5-13 illustrates that the charging voltage at the battery terminal remains 

almost constant at approximately 200Vdc when the DC bus voltage steps up from 350Vdc to 

450Vdc.  

Figure 5-14 demonstrates that the output ripple voltage of the four-phase IBDBBC operating 

under buck mode remains relatively small when the input steps up from 350V to 450V. The 

ripple increases from approximately 0.06V to around 0.15V. 
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Figure 5- 13 Input and output voltage 

 

Figure 5- 14 Output voltage ripple 
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5.7 Summary 

A novel four-phase IBDBBC to deal with the bi-directional power flow between a DC bus and 

a battery bank has been proposed, designed, modelled and simulated. Comparing this design 

with the conventional boost-buck converter, the four-phase IBDBBC can significantly reduce 

the ripple of output voltage, the thermal dissipation and the current stress on the switching 

devices.    
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Chapter 6 GCI with RPC 

6.1 Introduction 

This chapter presents a novel control strategy for a single-phase inverter to achieve RPC and 

output active power when the inverter is connected to a single-phase electricity grid.  Because 

the SOGI introduced in Chapter 3 can produce a pair of orthogonal signals, it is used to 

construct an orthogonal current signal for splitting active and reactive current based on the 

instantaneous load current sampled from the single-phase grid. The active and reactive current 

of the grid can be rapidly decomposed through trigonometric calculation.  The reference current 

of the inverter output can be produced through the actual active and reactive currents which 

are obtained in the previous stage. Then the re-synthesised reference current is compared with 

the inverter output current, and the difference is used to generate the PWM signals for 

controlling the IGBT devices. 

The GCI is one of the most important parts of a distributed generator using renewable energy 

sources. The power output from solar PV panels is DC, so the inverter plays a key role to 

convert DC to AC power.  Although most wind turbines generate AC power, however, the AC 

power generated by wind turbines cannot be fed directly into the power grid. For example, 

wind turbines with synchronous generators output AC power with variable frequency due to 

constantly changing wind speed, and the variable frequency AC power must be converted to a 

fixed frequency AC power through AC/DC and DC/AC conversions for grid connection. 

The conventional GCI interfacing a renewable power generator and the electricity grid is 

generally equipped with an MPPT algorithm which is expected to draw maximum power from 

the renewable source.  However, the conventional GCI has some critical issues.  Firstly, the 

inverter injects maximum power into the grid with the fluctuation of renewable energy sources 



 

91 

 

without providing RPC.  Secondly, the inverter feeds the power to the grid as much as it can 

without considering the grid condition (such as voltage, frequency and power factor) and power 

demand on the grid. 

Based on their applications, the inverters for renewable power generators can be categorised 

into standalone inverters and GCIs.  Generally the characteristic of a standalone system is 

equipped with an energy storage which can be used to maximally extract energy from the 

renewable sources and consistently provide power for loads while smoothing or even 

eliminating renewable source fluctuation.  Most GCIs without energy storage devices consider 

the utility grid as a battery of unlimited capacity.  The conventional GCI is generally composed 

of an MPPT block, PLL block and DC/AC inverter block.  The MPPT is realised to ensure 

maximum power from the renewable source at any time, PLL block is used to synchronise the 

inverter power output with power grid voltage, and DC/AC inverter is tasked to feed the power 

generated by the renewable power generator into the grid. 

Initially, the technology of standalone inverters and GCIs  gradually evolved from the 

application of VFD, where AC power supply with variable frequency is required to improve 

performance, such as for an induction motor.  Hence, the control algorithms of an RES inverter 

is similar to that for a VFD. 

The GCI can be considered as an interface device between the RES and the grid.  There are a 

number of of topologies and control methodologies which have been implemented in the last 

two decades. With the historic development of GCIs in the area of solar PV power systems, 

they can be divided into three types: centralised inverter, string inverter and multi-string 

inverter (Kjaer, et al., 2005).   Additionally, based on whether the inverter has a transformer or 

not, the GCI can also be categorised as a transformer inverter or transformerless inverter.   
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The centralised inverter operates between the grid and large number of solar PV panels 

connected in series strings to produce adequate voltage.  The series strings are connected in 

parallel through anti-reverse current diodes.  The major drawback of this type of system is that 

the plant with central inverter shuts down if any problem occurs in the inverter.  A further 

drawback is that the effect of shading using centralised inverter is worse than when using string 

inverters. For example, when clouds gather over a solar power farm, the performance and 

effectiveness of the system using string inverters is better than for a centralised inverter system.  

Although the string-inverter technology can reduce the power losses on the DC bus, however, 

it treats group’s panel as a single large panel, any problems of single panel could impact whole 

system performance.  The technology of multi-string systems is an advanced development of 

string-inverter systems, in which each string has its own DC to DC converter with MPPT 

supplying power to the DC bus link and from there then injects AC power into the utility grid 

via a common inverter.  All the inverter systems discussed above inject the maximum possible 

power into the electricity grid, even in the situation of that the capability of utility grid provided 

matched customer’s electricity requirement.  Also, it is rare that a GCI can quantitatively 

provide RPC.  

6.2 Topologies of a GCI 

For a DC/AC inverter, according to its AC output waveforms, it can be considered as a VSI, 

where the independently controlled AC output is the voltage waveform.  Alternatively, it can 

be considered as a CSI, where the independently controlled AC output is the current waveform 

(Espinoza, 2001).  There are a number of methods and techniques which are widely utilised to 

implement VSIs and CSIs. According to the PWM carrier wave, the methods are classified into 

many types, such as Square-wave Operation, Carrier-based PWM, Switch Frequency Optimal 

(SFO)-PWM, Regular and Non-regular Sampled PWM, Selective Harmonic Elimination PWM 

(SHEM), SVPWM (Amatoul, et al., 2012) (Espinoza, 2001) and Hysteresis Current Control 
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(HCC) (Bode & Holmes, 2000).  HCC has the advantage of an inverter output with small output 

current ripples, and it is a real time control methodology with very good stability, close tracking 

of current requirements and rapid transient response (Kojabadi, et al., 2006).  Hence, HCC is 

widely used for single-phase GCIs.   

According to practical applications, GCIs can be categorised as single-phase VSI, three-phase 

VSI, single-phase CSI and three-phase CSI.  The inverter can be divided into half-bridge and 

full-bridge on the basis of the number of inverter legs.   The topologies of a half-bridge VSI 

and a full-bridge VSI, based in a single-phase system are shown in Figures 6-1 and 6-2 

respectively.  In Figure 6-1 the two large capacitors provide a central neutral point for the load.  

That implies the voltage across each capacitor should be equal to half voltage supply vs/2.   

 

Figure 6- 1 Topology of half-bridge single-phase VSI 
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Figure 6- 2 The topology of full-bridge single-phase VSI 

In the full-bridge single-phase VSI, illustrated in Figure 6-2, an additional leg of switches 

(controlled in anti-phase) is utilised to replace the neutral point.  In both the half-bridge VSI 

and the full-bridge VSI, the top switch and bottom switch in the same leg are not allowed to be 

switched “on” simultaneously. If switching devices S1 and S2 (or S3 and S4) are switched “on” 

at the same time, this would create a short circuit across the DC power supply, vs.  

6.3 GCI based on HCC  

Figure 6-3 shows the block diagram of generally grid-connected single-phase inverter based 

on close-loop HCC.  The PLL block produces normalised sinusoidal signal which is 

synchronous with power grid.  The inverter output targeted current IRef multiply PLL output to 

generate instantaneous reference current, iRef.  The generated instantaneous reference current 

iRef, is compared with the output current of the inverter io to yield an offset error signal, ∆i, 

which is the input of the hysteresis controller.  According to the extent of the offset error, the 

controller determines which pair of the switching devices S1 and S4 or S2 and S3 should be 

switched “on” or “off”.  If iRef is positive, the output current of the inverter will be increased as 

the switching devices S1 and S4 are switched “on” (with S2 and S3 switched “off”).  Conversely, 

the current will be decreased as S2 and S3 are switched “on” (with S1 and S4 switched “off”).  If 
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iRef is negative, switching “on” S1 and S4 (with S2 and S3 switched “off”) will cause the absolute 

value of io to be decreased, otherwise it will be increased.  To summarise the above analysis, 

the output current of the inverter will be increased when S1 and S4 are switched “on” (with S2 

and S3 switched “off”); switching “on” S2 and S3 (with S1 and S4 switched “off”) will cause the 

output current of the inverter to be decreased.  Therefore, if the hysteresis band is set as 2∆i, 

then the output current is between iRef +∆i and iRef -∆i. 

 

Figure 6- 3 Structure of DC/AC inverter based on HCC 

6.4 Simulation of conventional single-phase GCI 

The output voltage of the inverter has to be synchronised with the grid voltage, which means 

it is essential to embed the function of PLL in the inverter for tracking the phase angle of the 

grid voltage.  

Assume the grid voltage is 

𝑣 = 𝐴 sin𝜔𝑡                                                              (6 − 1) 

where A is the amplitude of the grid voltage, ω is the angular frequency of the grid voltage. 

Taking derivative with respect to time from Equation (6-1) yields: 
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𝑑𝑣

𝑑𝑡
= 𝐴𝜔 cos𝜔𝑡                                                         (6 − 2) 

The tangent of instantaneous phase angle of the grid voltage can be obtained as: 

tan 𝜃 =
𝑣𝜔

𝑑𝑣
𝑑𝑡⁄
=
𝐴𝜔 sin𝜔𝑡

𝐴𝜔 cos𝜔𝑡
= tan𝜔𝑡                                     (6 − 3) 

 

Figure 6- 4 Simulation model of conventional PLL for GCI 

Figure 6-4 is the simulation block diagram which is utilised to implement the PLL function for 

GCI according to Equations (6-1) to (6-3). 
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Figure 6- 5 Simulation model of full-bridge single-phase GCI 

Figure 6-5 is the complete simulation model of a full-bridge single-phase GCI with hysteresis 

control (bang-bang).  In the figure, the inverter-bridge is formed by 4 IGBTs, IGBT1, IGBT2, 

IGBT3 and IGBT4.  The block of PLL takes instantaneous voltage of the grid as input signal to 

attain normalised sine and cosine values of the grid voltage phase angle.  The block of PWM 

Generator produces 4 channels of control PWM signals for the inverter-bridge in accordance 

with input voltage, the phase angle of grid voltage and the output current of the inverter.  The 

block of Source generates a dynamically varying DC power supply to simply simulate PV panel 

output with fluctuation.     

In order to observe changes of the inverter output as the voltage on the DC bus varies, an input 

voltage source is provided, as shown in Figure 6-6 (a).  Figure 6-6 (b) shows the output current 

of the inverter.  The amplitude of output current of the inverter varies as a result of the changes 

of the input voltage.   

IGBT1 IGBT2 

IGBT3 IGBT4 



 

98 

 

 

Figure 6- 6 Simulation results of full-bridge single-phase GCI 

 

Figure 6- 7 Output current of conventional GCI 

Figure 6-7 illustrates the relationship between the grid voltage and the output current of the 

inverter.  The output current is in phase with the grid voltage, i.e. there is no reactive power 

injection to the grid from the inverter.   
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Through analysing the simulation results as shown in Figure 6-6 and 6-7, it can be said that 

inverter output current follows the changes of the voltage on the DC-bus, and output current is 

in phase with the grid voltage. 

6.5 RPC  

This section presents a novel algorithm to deliver quantitative RPC for a micro-grid. 

The conventional STATCOM is generally connected to the grid in parallel with a load. The 

output reactive power and current of the STATCOM can be controlled by means of adjusting 

either the voltage at the PCC, or the amplitude and phase angle of the current outputted from 

STATCOM.     

Supposing a smart micro-grid system is installed in a community, which comprises a number 

of small scale distributed generators (SSDG) with RPC, a central controller, current and voltage 

transducers, and a communication system.   A stable and secure generation system should 

guarantee that residents in the community are not affected by unpredictable power cut off from 

the main grid.  Therefore, the whole system without grid support should deliver both active 

power and reactive power to meet the power demands of the community.  A single small scale 

SSDG, in a smart micro-grid, is not capable of completely compensating the whole micro-grid 

system’s reactive power.  However, the whole system’s reactive power may be compensated 

collectively by all the SSDGs, because each SSDG can deliver a certain amount of reactive 

power.  

 

Figure 6- 8 Schematic diagram of GCI 
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Figure 6-8 shows an equivalent schematic of a single-phase GCI which is connected into the 

power grid through an output filter inductor with inductance ωL. 

Generally, the impedance of an electricity grid is inductance, which means the grid as a load 

consumes reactive power, and the load’s current lags the voltage with a certain phase angle.  

Therefore, if the inverter output current leads the grid voltage with a certain same phase angle, 

then the grid reactive power can be compensated. 

 

Figure 6- 9 Vector relationships of GCI 

Figure 6-9 illustrates the vector relationships between the output current Io of the inverter, the 

load current IL and the grid voltage vg.  In Figure 6-9, the load current IL is lagging by a phase 

angle θ with respect to the grid voltage vg.  The load current can be decomposed into active and 

reactive currents ILd and ILq respectively.  Figure 6-9 illustrates that if the inverter output current 

Io is composed by an active current component Iod and a reactive current component Ioq, which 

is equal in magnitude to the load reactive current component ILq but opposite in phase to ILq, 
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the whole system’s reactive power can be completely compensated by the inverter, thereby 

achieving the objective to inject active power to the grid with RPC. 

6.5.1 Control strategies 

The theory of instantaneous active and reactive power is the well-known p-q theory which is 

most widely used in time-domain reference current generation techniques (Golestan, et al., 

2013; Wang, et al., 2007). The SOGI is widely exploited to achieve PLL (Golestan, et al., 2013) 

(Rodriguez, et al., 2009) (Fedele, 2012) and to eliminate, or reduce, the instantaneous noise 

level in many fields, such as control theory, relaying protection, signal processing, radio 

frequency, power systems. (Fedele, 2012).  In the present study, SOGI is utilised to construct 

a pair of orthogonal trigonometric functions for the load current in a single phase system, which 

is sampled at the PCC of the micro-grid, as shown in Figure 6-10. 

 

Figure 6- 10 PCC of single-phases system 

As previously discussed in chapter 4, instantaneous active and reactive power can be 

represented as Equation (4-4).  In the equation, as iq, the q-axis component of the grid current, 

approaches 0, the reactive power component Q approaches 0 and only the d-axis component, 
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vdid, the active power term remains.  Through analysis of the above equation, the reactive power 

Q of the power grid can be controlled by adjusting iq, the instantaneous quadrature component 

of current, in the d-q rotating frame. 

Through the above analysis, the reactive and active power can be regulated by adjusting 

components of id and iq individually. The d- and q- axis components can be obtained by means 

of transformation from the stationary frame, and those two signals are an orthogonal pair of the 

load currents.  Therefore, for a single-phase system, it is necessary to construct a pair of 

orthogonal signals from the load current as Figure 6-11 illustrates. 

 

Figure 6- 11 Structure of control algorithm 

The single-phase instantaneous voltage of the power grid and the load current are given by: 
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where 

iref 

id_ref 

igrid 

id 

iq 

Cos Sin 

Producing 

Orthogonal 

Signal 

Reference 

current 

generator 

Phase 

Locked 

Loop 

Instantaneous reactive 

and active currents of 

Grid calculation 

vg 

io 

PWM 

Generator 

IGBT  

Array 

Grid 



 

103 

 

 vmax is the peak value of the grid voltage. 

     Imax is the peak value of the load current. 

     Iα is the instantaneous load current. 

    𝜃 is the phase angle of the load current respect to the grid voltage. 

The orthogonal component of the instantaneous load current in Equation (6-5) can be obtained 

as:  

𝐼𝛽 = 𝐼𝑚𝑎𝑥 𝑠𝑖𝑛(𝜔𝑡 − 𝜃)                   (6-6) 

Conducting trigonometric calculation for Equations (6-5) and (6-6) yields: 

𝐼𝛼 = 𝐼𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡 𝑐𝑜𝑠 𝜃 + 𝐼𝑚𝑎𝑥 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛 𝜃      (6-7) 

𝐼𝛽 = 𝐼𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡 𝑠𝑖𝑛 𝜃 − 𝐼𝑚𝑎𝑥 𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠 𝜃         (6-8) 

[
𝐼𝛼
𝐼𝛽
] = [

𝑐𝑜𝑠 𝜔𝑡 𝑠𝑖𝑛𝜔𝑡
− 𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜔𝑡

] [
𝐼𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃
𝐼𝑚𝑎𝑥 𝑠𝑖𝑛 𝜃

]          (6-9) 

To obtain the active and reactive load current by multiplying both sides of Equation (6-9) by 

the matrix [
𝑐𝑜𝑠 𝜔𝑡 −𝑠𝑖𝑛 𝜔𝑡
𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜔𝑡

] gives 

[
𝐼𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃
𝐼𝑚𝑎𝑥 𝑠𝑖𝑛 𝜃

] = [
𝑐𝑜𝑠 𝜔𝑡 −𝑠𝑖𝑛𝜔𝑡
𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜔𝑡

] [
𝐼𝛼  
𝐼𝛽
]           (6-10) 

From Equation (6-10), the active current id and reactive current iq are decomposed from the 

load current given in Equation (6-5), which are Imaxcos𝜃, Imaxsin𝜃 respectively.  

Figure 6-12 illustrates a block diagram of RPC for a single-phase system, which is based on 

the above equations.  The control system takes instantaneous samples of grid voltage vg and 

the load current of grid ig, calculates the reactive power current component iq which is used to 
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combine with the demanding active power current id_re to generate a reference current iref for 

the inverter output. 

 

 

Figure 6- 12 Diagram of RPC 

The sine and cosine functions in Equation (6-10), can be provided by a PLL module, as 

illustrated in Figure 6-13, which is a module designed to obtain instantaneous active and 

reactive power from the grid.  The block of the Orthogonal Generator in Figure 6-13 is an SOGI 

module introduced in Chapter 3, which is employed to generate a pair of orthogonal signals 

according with sampling current signal ig. 

 

Figure 6- 13 Split instantaneous active and reactive current 
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The system samples the grid voltage to ensure the voltage output of the inverter is completely 

synchronous with the grid in the terms of frequency, phase angle and the root mean square 

(RMS) value. 

Figure 6-14 implements Equation (6-9), which illustrates that the module produces the output 

reference current of the inverter according to the demanding reactive current ig obtained from 

the grid current, the inverter providing active current id_def in accordance with instructions from 

the control centre , and the PLL signals. 

 

Figure 6- 14 Generated reference current 

6.6 Simulation of single-phase GCI with RPC 

Figure 6-15 illustrates a MATLAB/Simulink model of a single-phase GCI with RPC, which is 

based on the diagram shown in Figure 6-12.  In the simulation model, the PLL block assures 

the GCI output voltage is synchronous with the grid voltage.  The block labelled D_Q 

decomposes the grid current to obtain the reactive and active components of the grid current. 
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signals for the inverter-bridge.  
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In the simulation model, R1 represents the equivalent sampling impedance of output current 

and the resistance of R1 is 1Ω; L3 is the filter inductor at the inverter output and the inductance 

of L3 is 10mH; Z1 is formed by a 200Ω resistor connected in series with a 10mH inductor, 

which represents the domestic load of a residential home; and Z2 is formed by a 5Ω resistor 

connected in serial with a 10mH inductor, which represents the public loads in a community.  

The grid voltage is a sinusoidal voltage of frequency 50 Hz. 

 

Figure 6- 15 Modelling of single-phase inverter 

 

Figure 6- 16 Generated orthogonal signals 
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Figure 6-16 illustrates the simulation results of the orthogonal system output a pair of 50Hz 

negative sine (black trace) and negative cosine wave (blue trace) with respect to a 50Hz input 

negative cosine wave (red trace) signal.  This figure shows that the two output sine (black trace) 

and cosine (blue trace) signals accurately formed a quadrature pair.  Although there is some 

transient error when the system is started, the system rapidly reaches steady-state conditions 

(within one cycle) and the produced sinusoidal signal coincides with the input signal.   

Constructing a pair of orthogonal signals is a foundation of splitting active and reactive current 

for single-phase system, so the simulation results mean that a pair of orthogonal signals have 

been successfully constructed for splitting active and reactive current in single-phase system 

which will be described in the subsequent section.  
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Figure 6- 17 Grid voltage and current without RPC 

 

Figure 6- 18 Grid voltage and current with RPC 

The load current lags the grid voltage by a certain phase angle, as shown in Figure 6-17.  There 

is considerable contrast with Figure 6-18, in which, the phase angle of load current perfectly 

matches that of the grid voltage after RPC is applied to the grid by the inverter that utilizes the 

presented method of RPC. 
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Comparison of active and reactive power provided by the power grid before and after RPC is 

applied, and is illustrated in Figure 6-19 and 6-20 respectively.  The results of simulation 

distinctly demonstrate that the reactive power supported by the grid has been dramatically 

reduced.   

 

Figure 6- 19 Comparison of active and reactive power without RPC 

 

Figure 6- 20 Comparison of active and reactive power with RPC 
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Figure 6- 21 Another comparison of active and reactive 

Comparing Figure 6-20 and 6-21, the active power supported by the grid is reduced to 

approximately 5.8 kW in Figure 6-21 from previous 7.1 kW shown in Figure 6-20, whilst the 

reactive power provided by the grid in two Figures has not changed.  This means that the 

simulation model of the GCI can quantitatively output active power and provide RPC.  

Therefore, it can also be said that the output of GCI can separately control the active power 

and reactive power according to the demands from the loads.   

Figure 6-22 shows the simulation results of the GCI output without RPC.  The red line shows 

that the inverter injects 0 power into the grid, from 0 to 4 π.  After 4π, the inverter starts to 

inject 8A into the grid.  Figure 6-24 also demonstrates that the inverter will still provide power 

for the residential load when the inverter delivers 0 power into the grid (the green trace).  
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Figure 6- 22 Inverter injects zero power into the grid 

 

Figure 6- 23 Inverter injects zero active power with RPC 
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has reached steady state conditions, the grid current reduces by approximately 8A comparing 

the peak values. 

6.7 Simulation of three-phase GCI with RPC 

In the previous section, the simulation of a single-phase GCI has demonstrated the feasibility 

of inverter output active power with RPC.  In a whole community, one GCI being responsible 

for the reactive power requirement of the whole community is impossible.  Figure 6-24 

illustrates two three-phase GCIs connected with the power grid in parallel to jointly provide 

for the reactive power requirements of common facilities.  The common facilities are formed 

by three resistor-inductor (RL) loads in star connection, each RL load consists of a 10Ω resistor 

connected in series with a 5mH inductor. The output filter of both inverters is formed by a 0.5Ω 

resistor connected in series with a 2mH inductor.  For the simulation system, the input DC bus 

voltage is 600V, the peak value of the grid voltage is 310V and frequency of the grid is 50Hz. 
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Figure 6- 24 Three-phase GCI with RPC 

Simulation results of the current and voltage of Phase A of the three-phase GCI are shown in 

Figure 6-25.  It is apparent that the grid current is in phase with the voltage, which means the 

reactive power requirement of common facilities has been compensated by the two inverters.   

Figure 6-26 shows  the Phase A currents of the two inverter outputs, the Phase A grid current 

and the Phase A voltage waveforms.  Although the two inverter output currents are not in phase 

with each other and not the same amplitude, the grid current is in phase with the voltage.  
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Figure 6- 25 Current and voltage of the gird 

 

Figure 6- 26 Current and voltage waveforms 
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delivering power to the micro-grid, and controlled by a central controller. R3 represents public 

facilities (such as small-scale wind turbine, any equipment contained motor, transformer.), 

which is formed by a 5Ω resistor connected in series with a 10mH inductor.  R2, R6 and R7 

represent domestic loads which are 200Ω. R1, R4 and R5 represent the equivalent impedance of 

filter inductors and distribution lines, which are 10mH.      

 

Figure 6- 27 Multi-inverters with RPC in a micro-grid 
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the public facilities for the micro-grid and INVERTER3 generates 10A of active power current 

with ½ of the reactive power current of the public facilities for the micro-grid. 

Figure 6-28 illustrates the simulation results of the grid current and voltage; the grid current is 

in phase with the voltage with the three inverters sharing reactive power. Figure 6-31 

demonstrates that the simulated power factor of the grid at the PCC is extremely close to unity, 

which means the required reactive power of public facility in the micro-grid has been 

compensated collectively by the three distributed GCIs.    

 

Figure 6- 28 Current and voltage of the gird 
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Figure 6- 29 Power factor 

Figure 6-30 shows the output currents of the inverters, the grid current and the grid voltage. It 

is clear that inverter output currents are neither in phase with each other nor the grid voltage, 

and the amplitudes of the inverter output currents are not equal. However, the grid current is 

completely in phase with grid voltage. This demonstrates that each GCI can supply different 

amounts of active and reactive power according to its own circumstances. 

 

Figure 6- 30 Currents and voltage after PFC 
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Figure 6- 31 Conventional inverter output current and grid voltage 

Figure 6-31 illustrates the output current of three inverters when they only inject active power 

into the grid, in which, the output current of the inverters are in phase with the grid, but the 

grid current increases approximately to 12A comparing with Figure 6-30. 
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grid to provide a synchronising signal for all the inverters in the micro-grid community.  Zero-

crossing method is the simplest way to yield the grid frequency and phase angle information 

(Gardner, 2005).  This section proposes a novel method to generate a small zero-crossing signal 

by the central controller in a practical application to enable the inverters in a micro-grid to 

operate properly on off-grid mode. 

6.9.1 Generating synchronous signal 

An ARM7 core LPC2132 from NXP is utilised to generate the synchronising signal.  In the 

experimental set-up, a case study of an inverter output voltage of frequency 50Hz is considered.  

Therefore, the central controller only needs to generate a square wave of 50Hz with 50% duty 

ratio for all the inverters.  

Assuming a 50Hz sinusoidal wave has 256 sampling points, i.e. the time interval between each 

sampling point is 1/50/256 = 78.125us.  The external crystal of ARM LPC2132 is 11.0592 

MHz, the internal core clock frequency is configured as 5 times the external crystal frequency 

and the clock frequency of ARM peripheral bus is half of internal core clock frequency.   

Figure 6-32 shows that the Timer 0 block in the LPC2132 connects with ARM peripheral bus, 

the number of clocks cycles between each sampling point can be obtained as follows: 

𝑁𝑐 =
𝐹𝑝𝑐𝑙𝑘

2𝐹𝑔𝑁𝑠 
                                                   (6 − 11) 

where 

 Nc is the number of clock cycles between each sampling point 

 Fpclk is the frequency of ARM peripheral bus 

 Fg is the frequency of electrical power 

 Ns is the number of sampling point in each period. 
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Therefore, if the value of Prescale Register 0 T0PR in LPC2132 is configured to be Ns, and the 

Match Register 0 T0MR0 is configured as 1, when the Timer 0 Counter T0TC is equal to T0MR0, 

Timer 0 interrupt can be triggered automatically to produce a toggle of one of the input and 

output (IO) pins as an output in the Timer 0 interrupts routine to broadcast a synchronising 

signal for each inverter.  

 

Figure 6- 32 LPC213x block diagram 

Taken from (NXP Semiconductors, 2012) 
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6.9.2 Frequency synchronisation 

Figure 6-33 illustrates a square wave with 50% duty ratio; the conventional approach starts 

counting clocks at the rising at point A, storing the number of clock cycles at the falling edge 

at point B and stopping the count and storing the number of clock cycles at point C, then 

calculates the total number of clock cycles captured over one cycle, which can be used to 

determine the frequency of the square wave. 

 

Figure 6- 33 Square wave 

Signal attenuation in a practical long-distance transmission system is a concern. This can result 

in inaccurate determination of the frequency.  The key parameters of the inverters’ output 

frequency and number of samples can be broadcasted to all inverters through communication 

by the central controller. Then, each inverter starts from 0, counts to the sampling number and 

each rising edge resets the sampling sequence to 0. 

6.9.3 Experiment and results 

Figure 6-34 shows a lab simulation model of smart micro-grid comprising three 1kW C2000 

solar DC/AC Single-Phase Inverters working at off-grid mode; an ARM LPC 2132 

development toolkit board which is employed to represent the central controller to generate the 

synchronising signal for three inverters.  110 MHz digital storage oscilloscope with two input 

channel was used to measure inverter and control centre output signals.  Programming IDE is 

based on ARM MDK, using the joint test action group (JTAG) simulated tool to debug and 

download program.  
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Figure 6- 34 Experimental setup of three off-grid inverters connected togother 

Figure 6-35 (a) illustrates the output results of inverter1 (Yellow trace) and inverter2 (Cyan 

trace), 6-35 (b) shows the output results of inverter2 (Cyan trace) and inverter3 (Yellow trace). 

The results in Figure 6-35 clearly demonstrates that the output voltages of the three inverters 

are completely in phase with each other. 

       

(a) Output of inverter1 and inverter2                                      (b) Output of inverter2 and inverter3 

Figure 6- 35 Output voltages of two off-grid inverters 

Figure 6-36 reveals the frequency of the inverter2 (Cyan trace) output voltage, which 

synchronises with the input square wave which is shown in Figure 6-36 (yellow trace).  

Generating 

Synchronous 

square wave 

Inverter 1 

Inverter 2 

Inverter 3 



 

123 

 

Considering Figures 6-35 and 6-36, it can be stated that the outputs of the three off-grid 

inverters are completely synchronised.   

 

Figure 6- 36 Comparison of inverter output (Cyan trace) and input (Yellow trace) 

synchronous signal 

6.10 Summary 

Through modelling a GCI with RPC and analysing the simulation results, it has been 

demonstrated that the presented method of separating active and reactive current components 

of the grid to quantitatively control reactive power has been successfully achieved.  That means 

the inverter can inject controlled active power into the grid and provide certain amounts of 

RPC. It has also been demonstrated that the inverter can inject zero active power into the grid 

and operate as STACOM providing RPC for the grid.  In Section 6.9, the comparison of 

experimental results from the three off-grid single-phase inverters has shown that they can be 

synchronised whilst working on off-grid mode in a community micro-grid. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions and Discussion 

This project implemented a simulation model of a smart micro-grid in which RPC was achieved 

through each GCI in the smart micro-grid by quantitatively producing a certain amount of 

reactive current so as to collectively share the reactive power demand from the smart micro-

grid.   A bi-directional DC/AC inverter and an interleaved DC/DC converter was simulated in 

MATLAB/Simulink, which was employed to charging and discharging battery storage.  In 

experimental work, implemented three-phase SVPWM rectifier based on a full-bridge inverter 

circuit.  Another experimental work connecting three 1kW inverters to simulate a small-scale 

micro-grid demonstrated that anyone of inverter output voltage and phase is consistent with 

each other’s without support from external grid voltage, frequency and phase signals, typically 

from a diesel generator.  The significance of solving the issue of synchronisation of the 

inverters in a micro-grid is that domestic users are not seriously affected in the event of grid 

collapse or cut off, or the micro-grid working in standalone mode. 

In order to provide the micro-grid with a stable and continue power supply, the smart micro-

grid not only operates under on-grid mode but also runs on off-grid mode.   

There are a number of issues to be considered as the micro-grid works on off-grid mode, such 

as inverter synchronisation with the grid, RPC, remote control, optimisation and end-user’s 

benefit.  Except synchronous issue between the each inverter, all the issues addressed above 

have to be faced in GCI system as well.  Therefore, detecting zero-crossing method 

implemented to allows three GCIs to be synchronised and work properly to solve inverter no 

power output in the situation of power cut-off while the generated sources are abundant.   
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An inverter and rectifier, based on the same IGBT full-bridge topology (let’s call it as 

converter), has been successfully modelled in MATLAB/Simulink. The operating mode of the 

converter can be switched between inverting and rectifying modes in accordance with end-

user’s demands or by remote control.  During low grid electricity tariff periods the converter 

may work as a rectifier taking electricity from the AC grid and storing DC power in a battery 

bank configured to enhance users’ profit.  When the converter operates in inverting mode the 

priority is to meet the residential demand on electricity, and only the excess power from the 

renewable power generator is injected into the power grid, which improves users’ benefits and 

reduces reverse power flow to the power grid. 

A single-phase GCI with RPC and rectifier input PFC has been developed, adopting the same 

algorithm employed in three-phase GCI to separate the active and reactive power for the 

inverter output. This reduces code and data size, increases code execution speed and saves 

memory space in practical application real-time system. 

Chapter 4 presented detailed step-by-step design procedures and simulation of a SOGIPLL for 

a real-time system.  Simulation results demonstrate that the SOGIPLL algorithm has strong 

anti-interference performance. 

Chapter 5 introduced a topology of a four-phase IBDBBC to implement a bi-directional DC 

power transfer between a low voltage battery storage system and a high voltage DC bus.  

Simulation results reveal that the ripple voltage of the converter output was significantly 

reduced, which allows the size of the filter elements to be reduced, and the power switching 

device’s voltage and current stresses have been significantly improved.  However, the cost of 

the four-phase IBDBBC was higher than the cost of a simple circuit topology. 

Chapter 6 presented a lab simulation model of a micro-grid comprising three shunt GCIs.  In 

the lab simulation model, the three inverters inject different amounts of active power into the 
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grid and provide different amounts of reactive power for common loads to successfully 

implement RPC for the micro-grid. 

7.2 Future work 

Although the three-phase GCI and the four-phase IBDBBC have been designed and modelled 

in MATLAB/Simulink, it was not implemented in a practical application due to limited lab 

resources. 

Theoretical analysis reveals that a change of reactive power demand will be reflected in a 

change in voltage at the side of inverter output .  However, in a practical application, due to the 

intrinsic voltage fluctuations and harmonics on the power grid, measuring the voltage change 

to derive the RPC is very difficult.  Further work is needed to overcome these problems and 

thereby improve the RPC in real systems. 

This project and thesis have focused only on the core technology of implementing the 

functionality of a micro-grid system.  It was impossible to consider the battery storage system 

in terms of capacity, configuration and lifecycle.  Those factors need to be investigated in the 

future to determine the optimum battery storage system solutions suitable for end-users with 

different generation potential and residential loads, whilst also considering storage system costs, 

power sourcing and grid electricity tariff. 
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Appendix A Schematic Of Control Board For Single-

Phase Inverter 
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Appendix B Schematic Of Sensors 
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Appendix C Schematic Of Main Control For 

Rectifier 
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Appendix D Schematic Of Signal Pre-Processing 
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Appendix E MATLAB Function Program 

E.1 Clarke’s transformation 

function [Alpha,Belta]= fcn(Va,Vb,Vc) 
%#codegen 
Alpha = 2*(Va-(Vb+Vc)/2)/3; 
Belta = 1.732*(Vb-Vc)/3; 

 

 

E.2 Park’s transformation 

function [Vd,Vq]= fcn(Alpha,Belta,Sin,Cos) 
%#codege 
Vd = Alpha*Cos + Belta*Sin; 
Vq = Belta*Cos - Alpha*Sin; 

 

E.3 Inverse Park’s transformation 

function [Alpha,Belta]= fcn(Vd,Vq,Sin,Cos) 
%#codege 
Alpha = Vd*Cos - Vq*Sin; 
Belta = Vq*Cos + Vd*Sin; 

 

E.4 Identify area 

function [Area,T1,T2]= fcn(Alpha,Belta,Udc) 
%#codege 
a=0; 
b=0; 
c=0; 
x=0; 
y=0; 
z=0; 
A=0; 
B=0; 

  
Output=0; 
a=Belta; 
b=0.5*(sqrt(3)*Alpha-Belta); 
c=-0.5*(sqrt(3)*Alpha+Belta); 

  
A=Alpha; 
B=Belta; 

  
x=1.732*B/Udc; 
y=(1.5*A+0.866*B)/Udc; 
z=(0.866*B-1.5*A)/Udc; 

  
if a>0 
    a=1; 
else 
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    a=0; 
end 
if b>0 
    b=1; 
else 
    b=0; 
end 
if c>0 
    c=1; 
else 
    c=0; 
end 
N=int16(a+2*b+4*c); 
if(N==0) 
    N=int16(1); 
end 
switch (N) 
    case 1              %%%Area 2 
        Output=2; 
        T1=y; 
        T2=z; 
    case 2              %%%Area 6 
        Output=6; 
        T1=-x; 
        T2=y; 
    case 3              %%%Area 1 
        Output=1; 
        T1=-z; 
        T2=x; 
    case 4              %%%Area 4 
        Output=4; 
        T1=z; 
        T2=-x; 
    case 5 
        Output=3;       %%%Area 3 
        T1=x; 
        T2=-y; 
    case 6              %%%Area 5 
        Output=5; 
        T1=-y; 
        T2=-z; 
    otherwise 
        Output=1; 
        T1=z; 
        T2=y; 
end 
Area=N; 
if((T1+T2)>1)  %%% Over-modulation 
    T1=T1/(T1+T2); 
    T2=T2/(T1+T2); 
end 

 

E.5 Firing time calculation 

  
function [Ta,Tb,Tc]= fcn(Sector,Time) 
TA=0; 
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TB=0; 
TC=0; 
TD=0; 
Ts=1e-4; 
TA=Time(3)/4; 
TB=Time(1)/2+TA; 
TC=Time(2)/2+TA; 
TD=Time(1)/2+Time(2)/2+TA; 

  
switch (int16(Sector)) 
    case 1 
        Ta=TB; 
        Tb=TD; 
        Tc=TA; 
    case 2 
        Ta=TD; 
        Tb=TA; 
        Tc=TB; 
    case 3 
        Ta=TD; 
        Tb=TC; 
        Tc=TA; 
    case 4 
        Ta=TA; 
        Tb=TB; 
        Tc=TD; 
    case 5 
        Ta=TA; 
        Tb=TD; 
        Tc=TC; 
    case 6 
        Ta=TC; 
        Tb=TA; 
        Tc=TD; 
    otherwise 
        Ta=Time(3)/4; 
        Tb=Time(3)/4; 
        Tc=Time(3)/4; 
end 
Ta=Ta*2; 
Tb=Tb*2; 
Tc=Tc*2; 
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Appendix F Central Control Program 

F.1 Main function codes 

/*=================================================*/ 

#include <LPC213X.H> 

#include "initPLL.h" 

#include "pwm.h" 

#include "Timer.h" 

#include "adc.h" 

#include "definition.h" 

/*=================================================*/ 

extern void ExtInit(void); 

/*=================================================*/ 

int main(void) 

{ 

 InitPLL();     

 IO0DIR|=OPRLY;   

 SETIO0(OPRLY,0); //Switched off inverter output 

 InitDAC();    //Initialised DAC function 

 InitADC();    //Initialised ADC function 

 ExtInit(); 

 InitTimer0(); 

 while(1); 

 return 0; 

} 

/*=================================================*/ 

F.2 Configure PLL 

/*=================================================*/ 

#define FOSC 11059200 

//#define FOSC 10000000 
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#define FCCLK FOSC*5 

#define PCLK FCCLK/2 

/*=================================================*/ 

void InitPLL(void) 

{ 

 //The processor clock is configured 50MHz as the osciilator is 10MHz 

 PLLCFG=(((FCCLK/FOSC)-1)|(2<<6));  

 PLLCON=0x01; //Enable pll and connect it 

 PLLFEED=0xAA; //Feeding pll 

 PLLFEED=0x55; //Fedding pll 

 while(!(PLLSTAT&(1<<10))); 

 PLLCON=0x03; 

 PLLFEED=0xAA; //Feeding pll 

 PLLFEED=0x55; //Fedding pll 

 VPBDIV=0x02; //The APB bus clock is half of the processor clock 

} 

/*=================================================*/ 

F.3 Timer 0 codes 

/*=================================================*/ 

#define SAMPLE_POINT 256 

#define FREQ_GRID 50 

/*=================================================*/ 

void __irq Timer0_isr(void) 

{ 

 static int Count=0;  

 T0IR|=0x01; 

 Count++; 

 if(Count>=256) 

 { 

  Count=0; 

 } 
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 if(Count==0) 

 { 

  SETIO0(OPRLY,0); 

 } 

 else if(Count==128) 

 { 

  SETIO0(OPRLY,1); 

 } 

 VICVectAddr=0;       

} 

/*=================================================*/ 

void InitTimer0(void) 

{ 

 int mSecond5=0;       

 VICIntSelect&=(~(1<<4)); // Assigning timer0 to irq interrupt 

 VICVectCntl0=0x20|4;  // Slot 0 appoint to timer0 interrupt 

 VICVectAddr0=(unsigned int)&Timer0_isr; 

 VICIntEnable|=(1<<4);  // Enable the interrupt of timer0  

 T0TCR=0;    // Disable timer0 for configuration 

 T0CTCR=0;    // Timer model 

 //The sampling frequency is configured as 50x256 

 mSecond5=PCLK/FREQ_GRID/SAMPLE_POINT/10 - 1; 

 T0PR=mSecond5; 

 T0MCR=0x0003;   // TC will be reset if MR0 matches it 

 T0TCR=0x01;   //Timer0 start to run 

 T0MR0=9; 

 VICVectAddr=0;   //clear interrupt vector address 

} 

/*=================================================*/ 
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Appendix G Inverter Program 

G.1 Main function codes 

/*=================================================*/ 

#include <LPC213X.H> 

#include "initPLL.h" 

#include "pwm.h" 

#include "Timer.h" 

#include "adc.h" 

#include "serial.h" 

/*=================================================*/ 

#defineS_OFF_GRID    0 

#define S_WAITING_ON_GRID_OUTPUT  1 

#define S_ON_GRID_OUTPUT   2 

#define S_WAITING_STOP_ON_GRID  3 

#define S_WAITING_OFF_GRID_OUTPUT 4 

#define S_OFF_GRID_OUTPUT    5 

#define S_WAITING_STOP_OFF_GRID   6 

#define OPRLY (1<<25) 

#define SETIO0(o,s) { \ 

 if(s==0)    \ 

  IO0CLR|=o;   \ 

 else     \ 

  IO0SET|=o;   \ 

} 

#define SETIO1(o,s) { \ 

 if(s==0)    \ 

  IO1CLR|=o;   \ 

 else     \ 

  IO1SET|=o;   \ 

} 
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/*=================================================*/ 

typedef struct{ 

 int16 State; 

 int16 (*GetState)(void); 

 void (*ChangeState)(int16); 

}tagSystem; 

typedef struct{ 

 uint32 Direction; 

 uint32 (*GetDirection)(void); 

 void (*ChangeDirection)(uint32); 

}tagBridge; 

 

extern unsigned int const Sinewave[SAMPLE_POINT]; 

extern void TestFunction(void); 

extern void ExtInit(void); 

int16 ReadSystemState(void ); 

void WriteSystemState(int16 Value); 

uint32 KeyScan(void); 

tagSystem System={S_OFF_GRID,ReadSystemState,WriteSystemState}; 

/*=================================================*/ 

int16 ReadSystemState(void) 

{ 

 return(System.State); 

} 

/*=================================================*/ 

void WriteSystemState(int16 Value) 

{ 

 System.State=Value; 

} 

/*=================================================*/ 

void InitIO(void) 

{ 
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 IO1DIR=(1<<25); 

 SETIO1(OPRLY,0); 

#ifdef DEBUG 

 IO1DIR=(1<<16); 

 SETIO1(LINEZERO,1); 

#endif 

} 

/*=================================================*/ 

int main(void) 

{ 

 int16 SystemState; 

 InitPLL(); 

 PWMInitial(); 

 InitDAC(); 

 InitADC(); 

 InitUart1(); 

 ExtInit(); 

 InitIO(); 

 InitTimer0(); 

 while(1) 

 { 

  if(!KeyScan()) 

  { 

   SystemState=System.GetState(); 

#ifdef DEBUG    

   //The system is operating on grid 

if(SystemState==S_OFF_GRID)     

   { 

    //The system is Waiting to output to the grid 

    System.ChangeState(S_WAITING_ON_GRID_OUTPUT); 

   } 

   else if(SystemState==S_ON_GRID_OUTPUT)   

   //The system is outputing to the grid 
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   { 

    //The system is waitting to off the grid 

    System.ChangeState(S_WAITING_STOP_ON_GRID); 

   }    

#else 

   if(SystemState==S_OFF_GRID) 

   { 

    System.ChangeState(S_WAITING_OFF_GRID_OUTPUT); 

   } 

   else if(SystemState==S_OFF_GRID_OUTPUT) 

   { 

    System.ChangeState(S_WAITING_STOP_OFF_GRID); 

   } 

#endif 

  } 

 } 

 return 0; 

} 

/*=================================================*/ 

#define SW_ON (1<<10) 

void DelaymS(uint16 mSecond) 

{ 

 uint16 i; 

 while(--mSecond) 

 { 

  i=10000; 

  while(--i); 

 } 

} 

/*=================================================*/ 

uint32 KeyScan(void) 

{ 
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 uint32 KeyValue=0; 

 KeyValue=IO0PIN; 

 KeyValue&=SW_ON; 

 if(KeyValue==0) 

 { 

  DelaymS(1); 

  do{ 

   KeyValue=IO0PIN; 

   KeyValue&=SW_ON; 

  }while (KeyValue==0); 

  KeyValue=0; 

 } 

 return KeyValue; 

} 

/*=================================================*/ 

G.2 Extern interrupts codes 

/*=================================================*/ 

#include <LPC213X.H> 

#include "pwm.h" 

#include "main.h" 

#include "definition.h"  

//Timer0  VICVectCntl0 

//Ext3   VICVectCntl3 

//Ext2   VICVectCntl4 

//Uart1  VICVectCntl5 

extern tagBridge Bridge; 

extern tagSystem System; 

extern unsigned int PeroidReset; 

extern unsigned int Count; 

void __irq ExtINT3_isr(void); 

void __irq ExtINT2_isr(void); 
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/*=================================================*/ 

void ExtInit(void) 

{ 

 PINSEL0&=0x3FFFFFFF; 

 PINSEL0|=0x80000000;  // P0.15 is asigned to EINT2 

 PINSEL1&=0xCFFFFFFF; 

 PINSEL1|=0x20000000;  // P0.30 is asigned to EINT3 

 EXTMODE|=((1<<2)|(1<<3)); // Ext2 and Ext3 is edge sensetive 

 EXTPOLAR|=((1<<2)|(1<<3)); // Ext2 and Ext3 is rising-edge sensitive 

 VICIntSelect&=(~(1<<16));  // Assigning Ext2 to irq interrupt 

 VICIntSelect&=(~(1<<17));  // Assigning Ext3 to irq interrupt 

 VICVectCntl4=0x20|16;  // Slot 4 appoint to Ext3 interrupt 

 VICVectCntl3=0x20|17;  // Slot 3 appoint to Ext3 interrupt 

 VICVectAddr3=(unsigned int)&ExtINT3_isr; 

 VICVectAddr4=(unsigned int)&ExtINT2_isr; 

 VICIntEnable|=(1<<16);  // Enable the interrupt of ExtINT2   

 VICIntEnable|=(1<<17);  // Enable the interrupt of ExtINT3   

 EXTINT|=((1<<2)|(1<<3));  // Clear extenal interrupt 2 and3 

} 

/*=================================================*/ 

void __irq ExtINT3_isr(void) 

{ 

 uint32 Direction=POSITIVE; 

 uint32 SystemState; 

 EXTINT|=(1<<3);    // Clear extenal interrupt 3 

 SystemState=System.GetState(); 

 if(SystemState==S_WAITING_ON_GRID_OUTPUT) 

 { 

  SystemState=S_ON_GRID_OUTPUT; 

  System.ChangeState(SystemState); 

  SETIO1(OPRLY,1); 

 } 
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 else if(SystemState==S_WAITING_STOP_ON_GRID) 

 { 

  SystemState=S_OFF_GRID; 

  System.ChangeState(SystemState); 

  SETIO1(OPRLY,0); 

 } 

 if(SystemState==S_ON_GRID_OUTPUT) 

 { 

  Direction=Bridge.GetDirection(); 

  Direction^=0x01; 

  Bridge.ChangeDirection(Direction); 

 } 

 VICVectAddr=0;       

} 

/*=================================================*/ 

void __irq ExtINT2_isr(void) 

{ 

 EXTINT|=(1<<2);    // Clear interrupt flag 

 PeroidReset=1; 

 VICVectAddr=0;    // return interrupt routine   

} 

/*=================================================*/ 
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G.3 Timer 0 codes 

/*=================================================*/ 

#include <LPC213X.H> 

#include "initPLL.h" 

#include "Timer.h" 

#include "PWM.h" 

#include "adc.h" 

#include "definition.h" 

/*=================================================*/ 

unsigned int SinePointer=0; 

unsigned int SampleOrder=INC_DIR; 

unsigned int Count=0; 

unsigned int PeroidReset=0; 

//unsigned int Direction=POSITIVE; 

extern tagFIR FIR; 

extern tagSystem System; 

extern tagBridge Bridge; 

/*=================================================*/ 

unsigned int const Sinewave[HALF_SAMPLE_POINT]= 

{ 

 0,25,49,74,98,122,147,171,195,219,243,267,290,314,337,360, 

 383,405,428,450,471,493,514,535,556,576,596,615,634,653,672,690, 

 707,724,741,757,773,788,803,818,831,845,858,870,882,893,904,914, 

 924,933,942,950,957,964,970,976,981,985,989,992,995,997,999,1001, 

 1001,1001,999,997,995,992,989,985,981,976,970,964,957,950,942,933, 

 924,914,904,893,882,870,858,845,831,818,803,788,773,757,741,724, 

 707,690,672,653,634,615,596,576,556,535,514,493,471,450,428,405, 

 383,360,337,314,290,267,243,219,195,171,147,122,98,74,49,25 

}; 

/*=================================================*/ 

void __irq Timer0_isr(void) 
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{ 

 static int i=0; 

 static int HistoryDir=POSITIVE; 

 uint32 Direction; 

 unsigned int Value; 

 int16 SystemState; 

 T0IR|=0x01; 

 if(PeroidReset) 

 { 

  PeroidReset=0; 

  Count=0; 

 } 

 Value=Sinewave[i]; 

 Value*=9;      //The output 90% of full 

 Value/=10; 

 i++; 

 SystemState=System.GetState(); 

 Direction=Bridge.GetDirection(); 

 if(i>=HALF_SAMPLE_POINT) 

 {   

  i=0; 

//The system is going to output in off-grid mode 

  if(SystemState==S_WAITING_OFF_GRID_OUTPUT)   

  { 

   System.ChangeState(S_OFF_GRID_OUTPUT); 

   SystemState=S_OFF_GRID_OUTPUT; 

   SETIO1(OPRLY,1); 

  }else if(SystemState==S_WAITING_STOP_OFF_GRID)   

  //The system is going to stop output in off-grid mode 

  { 

   System.ChangeState(S_OFF_GRID); 

   SystemState=S_OFF_GRID; 

   SETIO1(OPRLY,0); 
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  }   

 } 

 if(SystemState==S_OFF_GRID_OUTPUT) //Off-grid output 

 { 

  if(i==0) 

  { 

   Direction^=1; 

   Bridge.ChangeDirection(Direction); 

   ZeroCrossing(Direction); 

  } 

  if(Direction==POSITIVE) 

  {  

   PWMMR1=Value; 

   PWMMR5=Value; 

   PWMLER=((1<<1)|(1<<5)); 

  } 

  else 

  { 

   PWMMR3=Value; 

   PWMMR2=Value; 

   PWMLER=((1<<2)|(1<<3)); 

  } 

 } 

 else if (SystemState==S_ON_GRID_OUTPUT) //On-grid output 

 { 

  Direction=Bridge.GetDirection(); 

  PWM_UpgradeValue(Value,Direction); 

  if(Direction!=HistoryDir) 

  { 

   HistoryDir=Direction; 

   ZeroCrossing(Direction); 

  } 
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 } 

 else 

 { 

  PWM2_IO_LOW(); 

  PWM5_IO_LOW(); 

  PWM1_IO_LOW(); 

  PWM3_IO_LOW(); 

  SETIO1(OPRLY,0); 

 } 

 VICVectAddr=0;       

} 

/*=================================================*/ 

void InitTimer0(void) 

{ 

 int mSecond5=0; 

 VICIntSelect&=(~(1<<4));  // Assigning timer0 to irq interrupt 

 VICVectCntl0=0x20|4;  // Slot 0 appoint to timer0 interrupt 

 VICVectAddr0=(unsigned int)&Timer0_isr; 

 VICIntEnable|=(1<<4);  // Enable the interrupt of timer0  

 T0TCR=0;    // Disable timer0 for configuration 

 T0CTCR=0;     // Timer model 

 mSecond5=PCLK/FREQ_GRID/SAMPLE_POINT/10 - 1; 

 T0PR=mSecond5; 

 T0MCR=0x0003;   // TC will be reset if MR0 matches it 

 T0TCR=0x01; 

 T0MR0=9; 

 VICVectAddr=0;       

} 

/*=================================================*/ 
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G.4 PWM generator codes   

/*=================================================*/ 

#include <LPC213X.H> 

//#include <LPC21xx.H> 

#include "main.h" 

#include "pwm.h" 

#define PWM1_BITS 0 

#define PWM2_BITS 14 

#define PWM3_BITS 2 

#define PWM5_BITS 10 

typedef struct{ 

 uint32 Direction; 

 uint32 (*GetDirection)(void); 

 void (*ChangeDirection)(uint32); 

}tagBridge; 

tagBridge Bridge={POSITIVE,ReadDirection,WriteDirection}; 

void __irq isr_PWM(void); 

/*=================================================*/ 

void ZeroCrossing(unsigned int Direction) 

{ 

 if (Direction==POSITIVE) 

 { 

  //First step is Disable PWM3 output 

  PWM3_IO_LOW();        

  PWM2_IO_LOW();        

  PWM1Connect();         

  PWM5Connect(); 

 } 

 else 

 { 

  PWM1_IO_LOW(); 
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  PWM5_IO_LOW();         

  PWM3Connect(); 

  PWM2Connect(); 

 } 

} 

/*=================================================*/ 

void PWMInitial(void) 

{ 

 IO0DIR|=(0x00000003|(1<<PWM2_IO)|(1<<PWM5_IO));  

 PINSEL0|=(2<<PWM1_BITS|2<<PWM2_BITS)|(2<<PWM3_BITS); 

 PINSEL1|=(1<<PWM5_BITS); 

 PWM1_IO_LOW(); 

 PWM3_IO_LOW(); 

 PWM2_IO_LOW(); 

 PWM5_IO_LOW(); 

 PWMPCR=((1<<PWM1ENA)|(1<<PWM3ENA) 

|(1<<PWM2ENA)|(1<<PWM5ENA)); 

 PWMTCR=0x02;     //reset pwm timer counter 

 PWMPR=0;     // no prescale 

 PWMMCR=0x02; 

 PWMMR0=1000;     

 PWMLER=0x0B;  

 PWMTCR=0x09; 

} 

/*=================================================*/ 

uint32 ReadDirection(void) 

{ 

 return Bridge.Direction; 

} 

/*=================================================*/ 

void WriteDirection(uint32 Direction) 

{ 
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 Bridge.Direction=Direction; 

} 

/*=================================================*/ 

void PWM_UpgradeValue(uint32 Value, uint32 Direction) 

{ 

 if(Direction==POSITIVE) 

 {  

  PWMMR1=Value; 

  PWMMR5=Value; 

  PWMLER=((1<<1)|(1<<5)); 

 } 

 else 

 { 

  PWMMR3=Value; 

  PWMMR2=Value; 

  PWMLER=((1<<2)|(1<<3)); 

 } 

} 

/*=================================================*/ 
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Appendix H Three-phase SVPWM Rectifier 

Program 

H.1 Three-phase rectifier with PFC codes 

/*=================================================*/ 

#include "DSP28x_Project.h" 

#include "definition.h" 

#include <math.h> 

/*=================================================*/ 

#define RATE_MODULATION 1 

#define OFFSET 500 

#define MAX_VALUE_COMP 1000//1875 

#define MAX_SAMPLE_VAL 4095 

#define MAX_INPUT_VOL 3 

#define GRID_FRE 50 

#define LIN_VAL 2.5E-3 

#define TS 1000 

 

#define MAX_AC_CURRENT 50 

#define MAX_DC_BUS  750 

#define SAMPLE_GAIN MAX_SAMPLE_VAL/MAX_INPUT_VOL 

 

#define VOL_CROSS_ZERO 1706 //4095*1.25/3 

#define CUR_CROSS_ZERO 2048 

#define VOL_GAIN 300 

#define CUR_GAIN 25 

#define MODULATION_RATE 1 

 

#define DC_BUS 600 

//Sampling Frequency 
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//    12.8K 

#define A1 -1.961 

#define A2 0.96159 

#define B0 0.01921 

#define B1 -0.01921 

#define B2 0.0002362 

#define B3 2*B2 

#define B4 B2 

/*=================================================*/ 

SOGIType PhaseAValue={0,0}; 

SOGIType PhaseBValue={0,0}; 

SOGIType PhaseCValue={0,0}; 

PLL PLLPhaseA={0,1}; 

extern void PWM_ModifyRate(TagModuleTime PWMTimer); 

/*=================================================*/ 

int GetAmplitude(ThreePhase *pInput) 

{ 

 float Amplitude,Alpha,Beta; 

 Alpha=2.0/3*pInput->PhaseA- 

    2.0/3*0.5*(pInput->PhaseB+pInput->PhaseC); 

 Beta=1.732/3*(pInput->PhaseB-pInput->PhaseC); 

 Amplitude=Alpha*Alpha+Beta*Beta; 

 Amplitude=sqrt(Amplitude); 

 return((int)Amplitude); 

} 

/*=================================================*/ 

float SOGIFilterA(float Value) 

{ 

 float Temp1,Temp2,ReturnValue; 

 Temp1=-1.961*PhaseAValue.Zeta1; 

 Temp2=0.96159*PhaseAValue.Zeta2; 

 Temp1=Temp1+Temp2; 
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 Temp1=Value-Temp1; 

 Temp2=-0.01921*PhaseAValue.Zeta2; 

 PhaseAValue.Zeta2=PhaseAValue.Zeta1; 

 PhaseAValue.Zeta1=Temp1; 

 Temp1=0.01921*Temp1; 

 ReturnValue=Temp1+Temp2; 

 return ReturnValue; 

} 

/*=================================================*/ 

float SOGIFilterB(float Value) 

{ 

 float Temp1,Temp2,ReturnValue; 

 Temp1=-1.961*PhaseBValue.Zeta1; 

 Temp2=0.96159*PhaseBValue.Zeta2; 

 Temp1=Temp1+Temp2; 

 Temp1=Value-Temp1; 

 Temp2=-0.01921*PhaseBValue.Zeta2; 

 PhaseBValue.Zeta2=PhaseBValue.Zeta1; 

 PhaseBValue.Zeta1=Temp1; 

 Temp1=0.01921*Temp1; 

 ReturnValue=Temp1+Temp2; 

 return ReturnValue; 

} 

/*=================================================*/ 

float SOGIFilterC(float Value) 

{ 

 float Temp1,Temp2,ReturnValue; 

 Temp1=-1.961*PhaseCValue.Zeta1; 

 Temp2=0.96159*PhaseCValue.Zeta2; 

 Temp1=Temp1+Temp2; 

 Temp1=Value-Temp1; 

 Temp2=-0.01921*PhaseCValue.Zeta2; 



 

154 

 

 PhaseCValue.Zeta2=PhaseCValue.Zeta1; 

 PhaseCValue.Zeta1=Temp1; 

 Temp1=0.01921*Temp1; 

 ReturnValue=Temp1+Temp2; 

 return ReturnValue; 

} 

/*=================================================*/ 

float SOGIFilter(SOGIType *pNode,float Value) 

{ 

 float Temp1,Temp2,ReturnValue; 

 Temp1=pNode->Zeta1*A1; 

 Temp2=pNode->Zeta2*A2; 

 Temp1=Temp1+Temp2; 

 Temp1=Value-Temp1; 

 Temp2=pNode->Zeta2*B1; 

 pNode->Zeta2=pNode->Zeta1; 

 pNode->Zeta1=Temp1; 

 Temp1=Temp1*B0; 

 ReturnValue=Temp1+Temp2; 

 return ReturnValue; 

} 

/*=================================================*/ 

void PLLFilter(SOGIType *pNode,PLL *pPLL, float Value) 

{ 

 float Node0,Node1,Node2,Temp1,Temp2,Temp3; 

 Node1=pNode->Zeta1; 

 Node2=pNode->Zeta2; 

 Temp1=pNode->Zeta1*A1; 

 Temp2=pNode->Zeta2*A2; 

 Temp1=Temp1+Temp2; 

 Node0=Value-Temp1; 

 Temp2=pNode->Zeta2*B1; 
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 Temp1=Node0*B0; 

 pPLL->Sin=Temp1+Temp2; 

 

 Temp1=Node0*B2; 

 Temp2=Node1*B3; 

 Temp3=Node2*B4; 

 pPLL->Cos=-(Temp1+Temp2+Temp3); 

 pNode->Zeta2=Node1; 

 pNode->Zeta1=Node0; 

} 

/*=================================================*/ 

void PreProcessSamples(VISamples *pSample) 

{ 

 static int Count=0; 

 (*pSample).Voltage.PhaseA-=VOL_CROSS_ZERO; 

 (*pSample).Voltage.PhaseA*=VOL_GAIN; 

 (*pSample).Voltage.PhaseB-=VOL_CROSS_ZERO; 

 (*pSample).Voltage.PhaseB*=VOL_GAIN; 

 (*pSample).Voltage.PhaseC-=VOL_CROSS_ZERO; 

 (*pSample).Voltage.PhaseC*=VOL_GAIN; 

 

 (*pSample).Current.PhaseA-=CUR_CROSS_ZERO; 

 (*pSample).Current.PhaseA*=CUR_GAIN;  

 (*pSample).Current.PhaseB-=CUR_CROSS_ZERO; 

 (*pSample).Current.PhaseB*=CUR_GAIN;  

 (*pSample).Current.PhaseC-=CUR_CROSS_ZERO; 

 (*pSample).Current.PhaseC*=CUR_GAIN;  

 

 (*pSample).Voltage.PhaseA/=SAMPLE_GAIN; 

 (*pSample).Voltage.PhaseB/=SAMPLE_GAIN; 

 (*pSample).Voltage.PhaseC/=SAMPLE_GAIN; 

 (*pSample).Current.PhaseA/=SAMPLE_GAIN; 
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 (*pSample).Current.PhaseB/=SAMPLE_GAIN; 

 (*pSample).Current.PhaseC/=SAMPLE_GAIN; 

 

 (*pSample).dcbus*=MAX_DC_BUS; 

 (*pSample).dcbus/=MAX_SAMPLE_VAL; 

 

 CurrentA=SOGIFilter(&PhaseAValue,(*pSample).Current.PhaseA); 

 CurrentB=SOGIFilter(&PhaseBValue,(*pSample).Current.PhaseB); 

 CurrentC=SOGIFilter(&PhaseCValue,(*pSample).Current.PhaseC); 

 (*pSample).Current.PhaseA=CurrentA; 

 (*pSample).Current.PhaseB=CurrentB; 

 (*pSample).Current.PhaseC=CurrentC; 

 Temp=SOGIFilterA((*pSample).Voltage.PhaseA); 

 (*pSample).Voltage.PhaseA=Temp; 

 

 Temp=SOGIFilterB((*pSample).Voltage.PhaseB); 

 (*pSample).Voltage.PhaseB=Temp; 

 

 Temp=SOGIFilterC((*pSample).Voltage.PhaseC); 

 (*pSample).Voltage.PhaseC=Temp; 

} 

/*=================================================*/ 

void ClarkeTransf(ThreePhase *pInput, ClarkeType *pOutput) 

{ 

pOutput->Alpha=2.0/3*pInput->PhaseA-   

          2.0/3*0.5*(pInput->PhaseB+pInput->PhaseC); 

 pOutput->Beta=1.732/3*(pInput->PhaseB-pInput->PhaseC); 

} 

/*=================================================*/ 

void InvParkTransf(InvParkType *Input, ClarkeType *Output) 

{ 

Output->Alpha=Input->Cos*Input->ParkOut.Direct- 
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        Input->Sin*Input->ParkOut.Quadrature; 

Output->Beta=Input->Cos*Input->ParkOut.Quadrature+ 

   Input->Sin*Input->ParkOut.Direct; 

} 

/*=================================================*/ 

void ParkTransf(ParkInputType *Input, ParkType *Output) 

{ 

Output->Direct=Input->Stationary.Alpha*Input->Cos+ 

      Input->Stationary.Beta*Input->Sin; 

Output->Quadrature=Input->Stationary.Beta*Input->Cos- 

       Input->Stationary.Alpha*Input->Sin; 

} 

/*=================================================*/ 

void PhaseLockedLoop(ParkInputType *pVoltage,PLL *pll) 

{ 

 float Amplitude=0; 

 Amplitude=pVoltage->Stationary.Alpha*pVoltage->Stationary.Alpha+ 

pVoltage->Stationary.Beta*pVoltage->Stationary.Beta; 

 Amplitude=sqrt(Amplitude); 

 if(Amplitude>180) 

 { 

  pll->Cos=pVoltage->Stationary.Alpha/Amplitude; 

  pll->Sin=pVoltage->Stationary.Beta/Amplitude; 

 } 

} 

/*=================================================*/ 

void GetInvParkVal(InvParkType *pInvPark) 

{ 

 float Vd,Vq,IDref,IQref; 

 PIDController(pInvPark->DCVol,DC_BUS,&DCVoltage); 

 IDref=DC_BUS-pInvPark->DCVol; 

 IDref-=pInvPark->Current.Direct; 
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 PIDController(pInvPark->Current.Direct,DCVoltage.OuputValue, 

&DirectCurrent); 

 IQref=0-pInvPark->Current.Quadrature; 

 PIDController(pInvPark->Current.Quadrature,0,&QuadratureCurrent); 

 Vd=pInvPark->Current.Quadrature*(6.283185*GRID_FRE*LIN_VAL); 

 Vd+=pInvPark->Voltage.Direct; 

 Vd-=DirectCurrent.OuputValue; 

 Vd-=IDref; 

  

 Vq=pInvPark->Voltage.Quadrature; 

 Vq-=QuadratureCurrent.OuputValue; 

 Vq-=IQref; 

 Vq-=pInvPark->Current.Direct*(6.283185*GRID_FRE*LIN_VAL); 

 pInvPark->ParkOut.Direct=Vd; 

 pInvPark->ParkOut.Quadrature=Vq; 

} 

/*=================================================*/ 

void GetModuleTime(ClarkeType *pPointer, TagModuleTime *pCOMP) 

{ 

 float a,b,c; 

 unsigned int Area=0; 

 float T1,T2,T0,X,Y,Z,TA,TB,TC,TD,TimerA,TimerB,TimerC; 

 /*The variable a,b,c are used to determine sectors*/ 

 a=pPointer->Beta; 

 b=0.866*pPointer->Alpha-0.5*pPointer->Beta; 

 c=-0.866*pPointer->Alpha-0.5*pPointer->Beta; 

 /*X,Y,Z are utilised to obtain module time*/ 

 X=(1.732*pPointer->Beta)*RATE_MODULATION/DC_BUS; 

 Y=(1.5*pPointer->Alpha+0.866*pPointer->Beta)* 

     RATE_MODULATION/DC_BUS; 

 Z=(0.866*pPointer->Beta-1.5*pPointer->Alpha)* 

     RATE_MODULATION/DC_BUS; 
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 if(a>0) 

  Area=1; 

 if(b>0) 

  Area+=2; 

 if(c>0) 

  Area+=4; 

 switch(Area) 

 { 

  case 1: 

   T1=Y; 

   T2=Z; 

   if((T1+T2)>1) 

   { 

    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 

   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TB; 

   TimerB=TD; 

   TimerC=TA;    

   break; 

  case 2: 

   T1=-X; 

   T2=Y; 

   if((T1+T2)>1) 

   { 
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    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 

   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TD; 

   TimerB=TA; 

   TimerC=TB;    

   break; 

  case 3: 

   T1=-Z; 

   T2=X; 

   if((T1+T2)>1) 

   { 

    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 

   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TD; 

   TimerB=TC; 

   TimerC=TA;    
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   break; 

  case 4: 

   T1=Z; 

   T2=-X; 

   if((T1+T2)>1) 

   { 

    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 

   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TA; 

   TimerB=TB; 

   TimerC=TD;    

   break; 

  case 5: 

   T1=X; 

   T2=-Y; 

   if((T1+T2)>1) 

   { 

    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 
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   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TA; 

   TimerB=TD; 

   TimerC=TC;    

   break; 

  case 6: 

   T1=-Y; 

   T2=-Z; 

   if((T1+T2)>1) 

   { 

    T1=T1/(T1+T2); 

    T2=T2/(T1+T2); 

   } 

   T0=TS*(1-T1-T2); 

   T1=TS*T1; 

   T2=TS*T2; 

   TA=T0/4; 

   TB=T1/2+TA; 

   TC=T2/2+TA; 

   TD=T1/2+T2/2+TA; 

   TimerA=TC;  //Notice variable TC, TA and TD are float types 

   TimerB=TA; 

   TimerC=TD;    

   break; 

 } 

 pCOMP->CompareA=(unsigned int)(TimerA+0.5); 

 pCOMP->CompareB=(unsigned int)(TimerB+0.5); 

 pCOMP->CompareC=(unsigned int)(TimerC+0.5); 

} 

/*=================================================*/ 
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void GeneratePWM(VISamples *pSample) 

{ 

 float MaxValue,MinValue,PhaseA,PhaseB,PhaseC,Temp; 

 static int i=0; 

 static int ACAmplitude=0; 

 static int PhaseLocked=0; 

 static float PastSinValue=0.0001; 

 ParkInputType Voltages; 

 ParkInputType Currents; 

 ParkType VParkOut; 

 ParkType IParkOut; 

 InvParkType InvParkInput; 

 ClarkeType InvClarke;  

 TagModuleTime Comp; 

  

 TagModuleTime PWMTimer; 

 PhaseA=0; 

 PhaseB=0; 

 PhaseC=0; 

 PreProcessSamples(pSample); 

 ACAmplitude=GetAmplitude(&((*pSample).Voltage)); 

 if(ACAmplitude>10) 

 { 

  if(i<1000) 

   i++; 

 } 

 else 

 { 

  i=0; 

  PWMTimer.CompareA=0; 

  PWMTimer.CompareB=0; 

  PWMTimer.CompareC=0; 
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  PWM_ModifyRate(PWMTimer); 

 } 

 if(i>=1000) 

 { 

  PhaseA=(*pSample).Voltage.PhaseA; 

  PhaseB=(*pSample).Voltage.PhaseB; 

  PhaseC=(*pSample).Voltage.PhaseC; 

  PhaseA/=ACAmplitude; 

  PhaseB/=ACAmplitude; 

  PhaseC/=ACAmplitude; 

 

  ClarkeTransf(&(pSample->Current),&(Currents.Stationary)); 

  ClarkeTransf(&(pSample->Voltage),&(Voltages.Stationary)); 

   

  PhaseLockedLoop(&Voltages,&PLLPhaseA); 

  if(PhaseLocked==1) 

  { 

   Voltages.Cos=PLLPhaseA.Cos; 

   Voltages.Sin=PLLPhaseA.Sin; 

   Currents.Cos=PLLPhaseA.Cos; 

   Currents.Sin=PLLPhaseA.Sin; 

   InvParkInput.Cos=PLLPhaseA.Cos; 

   InvParkInput.Sin=PLLPhaseA.Sin; 

   ParkTransf(&Voltages,&VParkOut); 

   ParkTransf(&Currents,&IParkOut); 

   InvParkInput.Voltage.Direct=VParkOut.Direct; 

   InvParkInput.Voltage.Quadrature=VParkOut.Quadrature; 

   InvParkInput.Current.Direct=IParkOut.Direct; 

   InvParkInput.Current.Quadrature=IParkOut.Quadrature; 

   InvParkInput.DCVol=pSample->dcbus; 

   GetInvParkVal(&InvParkInput); 

   InvParkTransf(&InvParkInput,&InvClarke); 
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   GetModuleTime(&InvClarke,&Comp); 

  } 

  else 

  { 

   if((PLLPhaseA.Sin>0)&&(PastSinValue<0)) 

   { 

    PhaseLocked=1; 

   } 

   else 

    PastSinValue=PLLPhaseA.Sin; 

  } 

   

 } 

} 

/*=================================================*/ 
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H.2 SVPWM generation 

/*=================================================*/ 

#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File 

#include "definition.h" 

//#define MAX_LEN 50  

#define MAX_LEN 33  

#define GOING_UP 1 

#define GOING_DOWN 0 

#define SYSCLK 150000000 

#define EPWM_DIV 4 

#define FR_SWITCH10K 1000//SYSCLK/2/EPWM_DIV/10000 

/*=================================================*/ 

void InitPWM(void) 

{ 

 EALLOW; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO0=1; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO1=1; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO2=1; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO3=1; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO4=1; 

 GpioCtrlRegs.GPAMUX1.bit.GPIO5=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO0=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO1=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO2=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO3=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO4=1; 

 GpioCtrlRegs.GPADIR.bit.GPIO5=1; 

 

 EPwm1Regs.TBPRD=FR_SWITCH10K; 

 EPwm1Regs.TBPHS.half.TBPHS=0; 

 EPwm1Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; 
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 EPwm1Regs.TBCTL.bit.PHSEN=TB_DISABLE; 

 EPwm1Regs.TBCTL.bit.PRDLD=TB_SHADOW; 

 EPwm1Regs.TBCTL.bit.SYNCOSEL=TB_CTR_ZERO; 

 EPwm1Regs.TBCTL.bit.HSPCLKDIV=TB_DIV4; 

 EPwm1Regs.CMPCTL.bit.SHDWAMODE=CC_SHADOW; 

 EPwm1Regs.CMPCTL.bit.SHDWBMODE=CC_SHADOW; 

 EPwm1Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; 

 EPwm1Regs.CMPCTL.bit.LOADBMODE=CC_CTR_ZERO; 

 

 EPwm1Regs.AQCTLA.bit.CAU=AQ_CLEAR; 

 EPwm1Regs.AQCTLA.bit.CAD=AQ_SET; 

 

 EPwm1Regs.DBCTL.bit.OUT_MODE=DB_FULL_ENABLE; 

 EPwm1Regs.DBCTL.bit.POLSEL=DB_ACTV_HIC; 

 EPwm1Regs.DBFED=50; 

 EPwm1Regs.DBRED=50; 

 

 EPwm2Regs.TBPRD=FR_SWITCH10K; 

 EPwm2Regs.TBPHS.half.TBPHS=0; 

 EPwm2Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; 

 EPwm2Regs.TBCTL.bit.PHSEN=TB_ENABLE; 

 EPwm2Regs.TBCTL.bit.PRDLD=TB_SHADOW; 

 EPwm2Regs.TBCTL.bit.SYNCOSEL=TB_SYNC_IN; 

 EPwm2Regs.TBCTL.bit.HSPCLKDIV=TB_DIV4; 

 EPwm2Regs.CMPCTL.bit.SHDWAMODE=CC_SHADOW; 

 EPwm2Regs.CMPCTL.bit.SHDWBMODE=CC_SHADOW; 

 EPwm2Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; 

 EPwm2Regs.CMPCTL.bit.LOADBMODE=CC_CTR_ZERO; 

 

 EPwm2Regs.AQCTLA.bit.CAU=AQ_CLEAR; 

 EPwm2Regs.AQCTLA.bit.CAD=AQ_SET; 
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 EPwm2Regs.DBCTL.bit.OUT_MODE=DB_FULL_ENABLE; 

 EPwm2Regs.DBCTL.bit.POLSEL=DB_ACTV_HIC; 

 EPwm2Regs.DBFED=50; 

 EPwm2Regs.DBRED=50;  

 

 EPwm3Regs.TBPRD=FR_SWITCH10K; 

 EPwm3Regs.TBPHS.half.TBPHS=0; 

 EPwm3Regs.TBCTL.bit.PHSEN=TB_ENABLE; 

 EPwm3Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; 

 EPwm3Regs.TBCTL.bit.PRDLD=TB_SHADOW; 

 EPwm3Regs.TBCTL.bit.SYNCOSEL=TB_SYNC_IN; 

 EPwm3Regs.TBCTL.bit.HSPCLKDIV=TB_DIV4; 

 EPwm3Regs.CMPCTL.bit.SHDWAMODE=CC_SHADOW; 

 EPwm3Regs.CMPCTL.bit.SHDWBMODE=CC_SHADOW; 

 EPwm3Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; 

 EPwm3Regs.CMPCTL.bit.LOADBMODE=CC_CTR_ZERO; 

 EPwm3Regs.AQCTLA.bit.CAU=AQ_CLEAR; 

 EPwm3Regs.AQCTLA.bit.CAD=AQ_SET; 

 

 EPwm3Regs.DBCTL.bit.OUT_MODE=DB_FULL_ENABLE; 

 EPwm3Regs.DBCTL.bit.POLSEL=DB_ACTV_HIC; 

 EPwm3Regs.DBFED=50; 

 EPwm3Regs.DBRED=50; 

 EPwm1Regs.TBCTR=0; 

 EPwm2Regs.TBCTR=0; 

 EPwm3Regs.TBCTR=0; 

 EDIS; 

} 

/*=================================================*/ 

void PWM_ModifyRate(TagModuleTime PWMTimer) 

{ 

 EPwm1Regs.CMPA.half.CMPA=PWMTimer.CompareA; 



 

169 

 

 EPwm2Regs.CMPA.half.CMPA=PWMTimer.CompareB; 

 EPwm3Regs.CMPA.half.CMPA=PWMTimer.CompareC; 

} 

/*=================================================*/ 
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H.3 ADC sampling codes 

/*=================================================*/ 

#include "DSP28x_Project.h" 

#include "definition.h" 

#include <math.h> 

/*=================================================*/ 

#if(CPU_FRQ_150MHZ) 

 #define ADC_MODCLK 0x03 // High speed peripherial clock 

 // HSPCLK=SYSCLKOUT/(2*ADC_MODCLK) 

#endif    //HSPCLK=150M/(2*3)=25M 

 

#if(CPU_FRQ_100MHZ) 

 #define ADC_MODCLK 0x02 

#endif 

 

#define ADC_CKPS 0x3  //12.5MHz 

#define ADC_SHCLK  0xf 

#define SYSCLK  150000000 

#define TS_1M SYSCLK/2/1000000 

#define TS_100K SYSCLK/2/100000 

#define TS_50K SYSCLK/2/50000 

#define TS_20K SYSCLK/2/20000 

#define TS_12_8K SYSCLK/2/12800 

#define TS_10K SYSCLK/2/10000 

#define TS_3K2 SYSCLK/2/3200 

/*=================================================*/ 

//#define ADC_Cal (void (*)(void))0x380080 

extern void GeneratePWM(VISamples *); 

Uint32 ConversionCount=0; 

Uint16 Voltage1; 

Uint16 Voltage2; 
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Uint16 Voltage3; 

Uint16 Voltage4; 

Uint16 Voltage5; 

Uint16 Voltage6; 

Uint16 Voltage7; 

Uint16 Voltage8; 

VISamples ADCSample; 

TagModuleTime PWMTimer; 

/*=================================================*/ 

void ConfigureAdc(void) 

{ 

// Configure ADC 

 EALLOW; 

 AdcRegs.ADCTRL1.bit.SEQ_CASC=1; 

 AdcRegs.ADCTRL3.bit.SMODE_SEL=0; 

 AdcRegs.ADCTRL3.bit.ADCCLKPS=ADC_CKPS; 

 AdcRegs.ADCTRL1.bit.ACQ_PS=ADC_SHCLK; 

 AdcRegs.ADCMAXCONV.all = 0x0007;       // Setup 2 conv's on SEQ1 

// Setup ADCINA3 as 1st SEQ1 conv. 

AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;  

 // Setup ADCINA2 as 2nd SEQ1 conv. 

AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;  

 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; 

 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; 

 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; 

 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; 

 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; 

 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; 

 AdcRegs.ADCOFFTRIM.all=0x01FA; //Offset value is -6 

// Enable SOCA from ePWM to start SEQ1 

 AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1; 

// Enable SEQ1 interrupt (every EOS) 
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 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1=1;   

 AdcRegs.ADCTRL1.bit.CONT_RUN=1; 

 EPwm4Regs.ETSEL.bit.SOCAEN = 1;        // Enable SOC on A group 

 // Select SOC from from CPMA on upcount 

 EPwm4Regs.ETSEL.bit.SOCASEL=4;     

 EPwm4Regs.ETPS.bit.SOCAPRD = 1;        // Generate pulse on 1st event 

 EPwm4Regs.CMPA.half.CMPA = 0x0080;   // Set compare A value 

 EPwm4Regs.TBPRD = TS_12_8K;              // Set period for ePWM1 

 EPwm4Regs.TBCTL.bit.CTRMODE = 0;    // count up and start 

 EDIS; 

} 

/*=================================================*/ 

interrupt void  adc_isr(void) 

{ 

 Voltage1 = (AdcRegs.ADCRESULT0 >>4); //AN0  

 Voltage2 = (AdcRegs.ADCRESULT1 >>4); 

 Voltage3 = (AdcRegs.ADCRESULT2 >>4); 

 Voltage4 = (AdcRegs.ADCRESULT3 >>4); 

 Voltage5 = (AdcRegs.ADCRESULT4 >>4); 

 Voltage6 = (AdcRegs.ADCRESULT5 >>4); 

 Voltage7 = (AdcRegs.ADCRESULT6 >>4); 

 Voltage8 = (AdcRegs.ADCRESULT7 >>4); 

 ADCSample.Voltage.PhaseA=Voltage5; 

 ADCSample.Current.PhaseA=Voltage6; 

 ADCSample.Voltage.PhaseB=Voltage3; 

 ADCSample.Current.PhaseB=Voltage4; 

 ADCSample.Voltage.PhaseC=Voltage1; 

 ADCSample.Current.PhaseC=Voltage2; 

 ADCSample.dcbus=Voltage7; 

 GeneratePWM(&ADCSample); 

 Voltage1=0; 

 Voltage2=0; 
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 Voltage3=0; 

 Voltage4=0; 

 Voltage5=0; 

 Voltage6=0; 

 Voltage7=0; 

 Voltage8=0; 

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1 

 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit 

// Acknowledge interrupt to PIE 

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;     

return; 

} 

/*=================================================*/ 
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