349 research outputs found

    Optimal Overhaul-Replacement Policies for Repairable Machine Sold with Warranty

    Get PDF
    This research deals with an overhaul-replacement policy for a repairable machine sold with Free Replacement Warranty (FRW). The machine will be used for a finite horizon, T (T <ï‚¥), and evaluated at a fixed interval, s (s< T). At each evaluation point, the buyer considers three alternative decisions i.e. Keep the machine, Overhaul it, or Replace it with a new identical one. An overhaul can reduce the machine age virtually, but not to a point that the machine is as good as new. If the machine fails during the warranty period, it is rectified at no cost to the buyer. Any failure occurring before and after the expiry of the warranty is restored by minimal repair. An overhaul-replacement policy is formulated for such machines by using dynamic programming approach to obtain the buyer's optimal policy. The results show that a significant rejuvenation effect due to overhaul may extend the length of machine life cycle and delay the replacement decision. In contrast, the warranty stimulates early machine replacement and by then increases the replacement frequencies for a certain range of replacement cost. This demonstrates that to minimize the total ownership cost over T the buyer needs to consider the minimal repair cost reduction due to rejuvenation effect of overhaul as well as the warranty benefit due to replacement. Numerical examples are presented for both illustrating the optimal policy and describing the behavior of the optimal solution

    Warranty and Sustainable Improvement of Used Products through Remanufacturing

    Get PDF
    Currently, a large number of used/second-hand products are being sold with remanufacturing. Remanufacturing is a process of bringing used products to a better functional state and can be applied as a way for (1) controlling the deterioration process, (2) reducing the likelihood of a failure over the warranty period and (3) making the used item effectively younger. Remanufacturing is relatively a new concept and has received very limited attention. In this paper, we develop an important sustainable improvement approach for used items sold with failure free warranty to determine the optimal improvement level. Our model makes a useful contribution to the reliability growth literature, as it captures the uncertainty and suggests improvement in the remanufacturing process. By using this model, the dealers can decide whether and how much to invest in remanufacturing projects

    A unified methodology of maintenance management for repairable systems based on optimal stopping theory

    Get PDF
    This dissertation focuses on the study of maintenance management for repairable systems based on optimal stopping theory. From reliability engineering’s point of view, all systems are subject to deterioration with age and usage. System deterioration can take various forms, including wear, fatigue, fracture, cracking, breaking, corrosion, erosion and instability, any of which may ultimately cause the system to fail to perform its required function. Consequently, controlling system deterioration through maintenance and thus controlling the risk of system failure becomes beneficial or even necessary. Decision makers constantly face two fundamental problems with respect to system maintenance. One is whether or when preventive maintenance should be performed in order to avoid costly failures. The other problem is how to make the choice among different maintenance actions in response to a system failure. The whole purpose of maintenance management is to keep the system in good working condition at a reasonably low cost, thus the tradeoff between cost and condition plays a central role in the study of maintenance management, which demands rigorous optimization. The agenda of this research is to develop a unified methodology for modeling and optimization of maintenance systems. A general modeling framework with six classifying criteria is to be developed to formulate and analyze a wide range of maintenance systems which include many existing models in the literature. A unified optimization procedure is developed based on optimal stopping, semi-martingale, and lambda-maximization techniques to solve these models contained in the framework. A comprehensive model is proposed and solved in this general framework using the developed procedure which incorporates many other models as special cases. Policy comparison and policy optimality are studied to offer further insights. Along the theoretical development, numerical examples are provided to illustrate the applicability of the methodology. The main contribution of this research is that the unified modeling framework and systematic optimization procedure structurize the pool of models and policies, weed out non-optimal policies, and establish a theoretical foundation for further development

    Post-Sale Cost Modeling and Optimization Linking Warranty and Preventive Maintenance

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Warranty service contracts design for deteriorating products with maintenance duration commitments

    Get PDF
    With the increasing diversification of customers’ demand and purchasing behaviors, more and more manufacturers have focused their attention on the warranty service contracts design. The maintenance duration of the sold product, which plays an important role in the normal production and operation process of the user, is frequently taken into consideration in warranty contracts. In this study, we design different warranty contracts with various combinations of maintenance duration and availability requirements. The manufacturer commits to compensate for each overdue repair or failing to satisfy the availability target. The customers’ choice behavior is described by the multinomial logit (MNL) model, and customers often form their own minimum acceptable levels (also referred to as reference points) of maintenance duration and availability when making purchasing decisions, which have an impact on the contract choice. The expected warranty servicing profit is maximized to determine the optimal price, maintenance duration and availability. Finally, the proposed warranty contracts are demonstrated by numerical examples. We find that the maintenance duration affects not only the warranty cost but also the customer choice, which further affects the optimal contract pricing and profits

    Some contributions to modeling usage sensitive warranty servicing strategies and their analyses

    Get PDF
    Providing a warranty as a part of a product\u27s sale is a common practice in industry. Parameters of such warranties (e.g., its duration limits, intensity of use) must be carefully specified to ensure their financial viability. A great deal of effort has been accordingly devoted in attempts to reduce the costs of warranties via appropriately designed strategies to service them. many such strategies, that aim to reduce the total expected costs of the warrantor or / and are appealing in other ways such as being more pragmatic to implement - have been suggested in the literature. Design, analysis and optimization of such servicing strategies is thus a topic of great research interest in many fields. In this dissertation, several warranty servicing strategies in two-dimensional warranty regimes, typically defined by a rectangle in the age-usage plane, have been proposed, analyzed and numerically illustrated. Two different approaches of modeling such usage sensitive warranty strategies are considered in the spirit of Jack, Iskandar and Murthy (2009) and Iskandar (2005). An `Accelerated Failure Time\u27 (AFT) formulation is employed to model product degradation resulting due to excessive usage rate of consumers. The focus of this research is on the analysis of warranty costs borne by the manufacturer (or seller or third party warranty providers) subject to various factors such as product\u27s sale price, consumer\u27s usage rate, types and costs of repair actions. By taking into account the impact of the rate of use of an item on its lifetime, a central focus of our research is on warranty cost models that are sensitive to the usage rate. Specifically, except the model in Chapter 4 where the rate at which an item is used is considered to be a random variable; all other warranty servicing policies that we consider, have usage rate as a fixed parameter, and hence are policies conditional on the rate of use. Such an approach allows us to examine the impact of a consumer\u27s usage rate on the expected warranty costs. For the purpose of designing warranties, exploring such sensitivity analysis may in fact suggest putting an upper limit on the rate of use within the warranty contract, as for example in case of new or leased vehicle warranties. A Bayesian approach of modeling 2-D Pro-rated warranty (PRW) with preventive maintenance is considered and explored in the spirit of Huang and Fang (2008). A decision regarding the optimal PRW proportion (paid by the manufacturer to repair failed item) and optimal warranty period that maximizes the expected profit of the rm under different usage rates of the consumers is explored in this research. A Bayesian updating process used in this context combines expert opinions with market data to improve the accuracy of the parameter estimates. The expected profit model investigated here captures the impact of juggling decision variables of 2-D pro-rated warranty and investigates the sensitivity of the total expected profit to the extent of mis-specification in prior information

    Smart Maintenance Decision Support Systems (SMDSS)

    Get PDF
    Computerized information systems are used in all contemporary industries and have been applied to track maintenance information and history. To a lesser extent, such information systems have also been used to predict or simulate maintenance decisions and actions. This work details two models, a population data analysis, and a system infrastructure, to aid operations and maintenance managers with the difficult resource allocation decisions they face in the field. The first model addresses the consideration of component dependency for series network connections using a Markov Decision Process model and solution algorithm. The second model addresses the prioritization of maintenance activities for a fleet of equipment using an Analytical Hierarchy Process and solution algorithm. A recurrent event data analysis is performed for a population data set. The final element is the information system architecture linking these two models to a marketing information system in order to provide quotations for maintenance services. The specific industry of interest is the electrical power equipment industry with a focus on circuit breaker maintenance decision actions and priorities and the development of quotations for repair and replacement services. This dissertation is arranged in a three paper format in which each topic is self contained to one chapter of this document
    corecore