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Abstract

Spare parts are of key importance for equipment intensive industries –such as Mining,

Aeronautic, or Defense– since their role is to efficiently support the operation of critical

equipment and enhance system performance, thereby meeting business success.

Organizations within such industries face continuous challenges to improve utilization,

reduce costs, and manage risks. Miscalculating these decisions might lead to overstress

on equipment and associated spare components, thus affecting availability, reliability, and

system throughput. Critical spare parts therefore merit complex modeling. However, an

asset management perspective –a systemic means of optimally managing resources to

ensure sustainable business goals– has not been integrated into every vital decision stage

of spares policies.

In an effort to include this type of approach, this research has modeled the spares process

from selection of the most important resources to supply chain requirements. The general

objective of this thesis is to develop an asset management-based framework to optimize the

life cycle of critical spare parts by integrating five key decision areas, namely: prioritization,

ordering, replacement, maintenance outsourcing, and pool allocation. These areas are

crucial to performance excellence for asset intensive firms.

The resulting support system is documented by five ISI journal articles dealing with the key

decision areas. The methodology is illustrated by an introduction, real-industry case studies,

and sequential addressing of aims and contributions for each appended paper. They are

summarized as follows. First, Paper I “Throughput centered prioritization of machines in

transfer lines” delivers the graphical tool called System Efficiency Influence Diagram, which

prioritizes the critical resources for system throughput considering intermediate buffers.

Second, Paper II “Critical spare parts ordering decisions using conditional reliability and

stochastic lead time” introduces the concept of Condition-Based Service Level to define

the spares ordering time at which the system operation is sufficiently reliable to withstand

lead time variability. Third, Paper III “Value-based optimization of intervention intervals

for critical mining components” shows the influence of business value for accelerating

versus postponing the optimal epoch to perform the spares replacement. Fourth, Paper IV

“Optimizing maintenance service contracts under imperfect maintenance and a finite time

horizon” sets contract conditions for motivating service receivers and external providers
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to reach win-win coordination. Lastly, Paper V “A decision-making framework to integrate

maintenance contract conditions with critical spares management” profitably allocates the

components pool within the maintenance service contract. The enriched models and

graphical tools developed in these papers are useful for operations design and major

planning.

This thesis provides asset managers with integrated decision-making models to optimize

the life cycle of critical spare parts under a systemic perspective. The research builds

an interesting bridge across the areas of condition-based maintenance, outsourcing

coordination, and joint decisions on reliability engineering and stockholding policies. This

interaction works toward modeling the spares process key decision stages in order to

efficiently enhance system performance within equipment intensive industries. In summary,

the methodology contributes to continuous improvement and firm profitability since business-

oriented approaches are included. This thesis has confirmed the value of moving from a

maintenance viewpoint biased by single interests to a perspective considering the whole

system: the physical asset management perspective.
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Resumen

Los repuestos son de importancia clave para industrias de capital intensivo –como Minerı́a,

Aeronáutica, o Defensa– debido a su rol de soportar eficientemente la operación de equipos

crı́ticos para mejorar el rendimiento del sistema, logrando ası́ el éxito de negocio.

Las organizaciones dentro de tales industrias enfrentan desafı́os continuos para aumentar

utilización, reducir costos, y manejar riesgos. La falta de guı́a en estas decisiones

puede conducir a una sobre-exigencia de equipos y componentes asociados, afectando

disponibilidad, confiabilidad, y productividad del sistema. Los repuestos crı́ticos ameritan,

por lo tanto, un modelado complejo. Sin embargo, una perspectiva de gestión de

activos fı́sicos –un método sistémico para el manejo óptimo de recursos que garantice

sustentablemente objetivos de negocio– no ha sido integrada en cada etapa vital de decisión

de las polı́ticas de repuestos.

En un esfuerzo por incluir tal enfoque, esta investigación ha modelado el proceso

de repuestos desde la selección de recursos hasta requerimientos de la cadena de

abastecimiento. El objetivo general de esta tesis consiste en desarrollar un esquema

basado sobre la gestión de activos para optimizar todo el ciclo de vida de los repuestos

crı́ticos, mediante la integración de cinco áreas claves de decisión: priorización, pedido,

reemplazo, externalización, y manejo de grupos de componentes. Estas áreas son cruciales

para la excelencia en desempeño de las empresas de capital intensivo.

El sistema de soporte resultante es documentado por cinco artı́culos en revistas ISI

que tratan tales áreas claves de decisión. La metodologı́a es ilustrada a través de una

introducción, casos de estudios reales, y el logro secuencial de objetivos y contribuciones

de cada paper adjunto. Éstos se resumen a continuación. Primero, Paper I “Throughput

centered prioritization of machines in transfer lines” entrega la herramienta gráfica

denominada Diagrama de Influencia para la Eficiencia de Sistema, la cual prioriza los

recursos crı́ticos para el rendimiento considerando acumuladores intermedios. Segundo,

Paper II “Critical spare parts ordering decisions using conditional reliability and stochastic

lead time” introduce el concepto de Nivel de Servicio Basado sobre Condición para definir

el momento de pedido de repuestos en que la operación es suficientemente confiable

para soportar la variabilidad de los tiempos de entrega. Tercero, Paper III “Value-based

optimization of intervention intervals for critical mining components” muestra la influencia
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del valor de negocio para anticipar o posponer la época óptima para reemplazar los

componentes. Cuarto, Paper IV “Optimizing maintenance service contracts under imperfect

maintenance and a finite time horizon” establece las condiciones contractuales que motivan

a clientes y proveedores externos de servicios para alcanzar una coordinación ganar-

ganar. Por último, Paper V “A decision-making framework to integrate maintenance

contract conditions with critical spares management” asigna rentablemente el pool de

componentes dentro del contrato de servicios de mantenimiento. Los modelos enriquecidos

y herramientas gráficas desarrolladas en estos papers son útiles para diseño de procesos

de planta y planificación de largo plazo.

Esta tesis provee a los gestores de activos con modelos integrados de soporte de decisiones

para optimizar el ciclo de vida de repuestos crı́ticos bajo una perspectiva sistémica. La

investigación construye un interesante puente a través de las áreas de mantenimiento

basado sobre condiciones, coordinación en externalización, y decisiones conjuntas de

ingenierı́a de confiabilidad y polı́ticas de abastecimiento. Esta interacción responde al

objetivo de modelar las etapas clave de decisión del proceso de repuestos y mejorar

eficientemente el rendimiento del sistema en industrias intensivas de capital. En resumen,

la metodologı́a contribuye al mejoramiento continuo y la rentabilidad de la empresa puesto

que se incluyen enfoques orientados al negocio. Esta tesis ha confirmado el valor de

pasar desde una visión de mantenimiento sesgada por intereses particulares hacia una

perspectiva que considere todo el sistema: la perspectiva de gestión de activos fı́sicos.
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Pontificia Universidad Católica de Chile (PUC) and The University of Queensland of Australia

(UQ).

I would like to acknowledge both of my supervisors, Professor Rodrigo Pascual (PUC) and

Professor Peter Knights (UQ), without whose guidance and support this accomplishment

would not have been possible. I owe my interest in physical asset management to Professor

Pascual. His passionate enthusiasm encouraged me to pursue this research. I am deeply

grateful to Professor Knights, who shared his expert knowledge and generously invited me

to a marvelous doctoral stay period in Australia.

I also sincerely thank Professor Darko Louit, Professor Jorge Vera, Professor Raúl Castro,
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1. INTRODUCTION

Spare parts play an essential role in supporting critical equipment to efficiently enhance

system performance, thereby meeting the business premise of succeeding in asset intensive

industries such as Mining, Aeronautic, and Defense, among others.

Efficient spares management is a strategic driver for companies in which success strongly

relies on equipment performance. As competitive organizations, asset intensive industries

face continuous challenges to improve utilization, reduce costs, and manage risks. However,

misguiding these challenges may cause overstress on machines and related components,

affecting availability, reliability, and more importantly, system throughput. Some of those

assets are particularly critical for operational performance. This criticality, as a function of

equipment use, is defined by its relevance in sustaining safe and efficient production (Dekker,

Kleijn, & De Rooij, 1998). The operation of equipment that fulfills such characteristics is

supported by critical spare parts (Louit, 2007). Critical spare components are linked to

large investments, high reliability requirements, extended lead times, and plant shutdowns

with severe impacts on operational continuity (Godoy, Pascual, & Knights, 2013). Decision-

making models to deal with critical spare parts are therefore essential to balance both

operational and financial goals.

The core of this research is on those critical spares that affect production and safety,

are expensive, with high reliability requirements, and are usually associated with higher

lead times. Hence, these spare components merit complex modeling. These items

are also considered critical when they support essential equipment in an operational

environment (Louit, 2007). Henceforward, all spare parts that meet these characteristics

will be called “Condition Managed Critical Spares”, or just CMS. Figure 1-1 shows a diagram

of the spare parts that we are focusing on. CMS are repairable, however their repair times

are generally slower than supplier lead times. This particularity turns these CMS into non-

repairable spare parts for the purposes of this model. As CMS are not always available in

store, CMS condition is monitored as a mitigation measure of its criticality in the operation.

Physical Asset Management (PAM) is an effective approach in pursuit of ensuring system

performance requirements. PAM is simply defined as the optimal way of managing assets to

achieve a desired and sustainable outcome (International Organization for Standarization,

2012; British Standards Institution, 2008). PAM has evolved from a maintenance perspective
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confined by reactive tasks to a strategic dimension that covers every stage in the life cycle

of systems (Campbell, Jardine, & McGlynn, 2011; Jardine & Tsang, 2006). An example

of this wider context includes an integrated model for systematic decisions regarding

resources critical to business success. This thesis attempts to analyze the entire spare

parts management process, from selection of the most important resources to logistic

outsourcing considerations, i.e. common but critical decisions faced within the capital

intensive industry. Although the focus is primarily on the Mining industry, the extension

to other asset-intensive industries is straightforward. Expecting to improve the applicability,

the theory is complemented by real industry-based case studies.

The hypothesis is the following: “An integral critical spare part modeling approach that

includes every stage in the asset life cycle must efficiently ensure that business requirements

have been achieved”. Nevertheless, an asset management perspective –perceived as a

systemic means of optimally handling resources to ensure sustainable business goals– has

not been integrated into every vital decision stage of spares policies.

Therefore, the general objective of this thesis is to develop an asset management-

based framework to optimize the entire life cycle of spare parts by integrating five key

decision areas, which are crucial to performance excellence of equipment intensive

firms. This integrated scheme includes the following stages: prioritization, ordering,

replacement, maintenance outsourcing, and pool allocation. In particular, it is intended:

(i) To formulate new and enriched mathematical models for each stage of spares

management.

(ii) To create user-friendly tools based on cost, risk, and benefit, to efficiently guide

decision-makers.

(iii) To consolidate the developed tools into integrated decision-making models under the

asset management strategy.

Interestingly, the research builds a bridge across the areas of throughput requirements,

condition-based maintenance, logistics, business value, outsourcing coordination, and joint

decisions on reliability engineering and stockholding policies.

The resulting support system is the product of five ISI journal articles documenting these

key decision areas. These articles are listed in the “List of Papers” chapter. The thesis is
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Figure 1-1: Condition managed critical spare parts

illustrated by a summary, real-industry case studies, and sequential addressing of aims for

each appended article. These papers are summarized in the “Thesis Scope” section. Their

link and contribution to the final result of the thesis –namely, the integrated decision-making

models– are outlined in the “Thesis Structure” section. The details are presented in each

chapter throughout the complete document.

The rest of this thesis is organized as follows. Chapter 2 handles the prioritization problem

in production lines with intermediate buffers. Chapter 3 introduces the concept of Condition-

Based Service Level to determine the spare ordering time when an operation is reliable and

can withstand the lead time variability. It also helps to define insurance spares. Chapter 4

discusses the real value of whether to accelerate or postpone a spare replacement in order

to maximize business objectives, by satisfying both reliability constraints and time windows.

Chapter 5 sets contract conditions that motivate service receivers and external providers to

continually improve their maintenance services and reach a win-win coordination. Chapter

6 delivers an original joint value –preventive interval and stock level– to set the optimal

agreement to profitably allocate the components pool within the maintenance service

contract. Subsidization bonuses and break-even fees are also estimated to induce service
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providers to adjust their policy when needed. Finally, Chapter 7 encloses the conclusions

and delivers areas for further research.

1.1 Thesis Scope

The thesis scope is based on five key themes concerning to the entire process of

critical spare parts management, which are summarized below.

1.1.1 Throughput-based prioritization of systems and spare parts

In an environment of scarce resources and complex production systems,

prioritizing is key to confront the challenge of physical asset management. In the

literature, there exist a number of techniques to prioritize maintenance decisions

that consider safety, technical and business perspectives. However, the effect

of risk-mitigating elements –such as intermediate buffers in production lines– on

prioritization has not yet been investigated in depth. In this line, the work proposes

a user-friendly graphical technique called the System Efficiency Influence Diagram

(SEID). Asset managers may use SEID to identify machines that have a greater

impact on the system throughput, and thus set prioritized maintenance policies

and/or redesign buffers capacities. The tool provides insight to the analyst as it

deconstructs the influence of a given machine on system throughput as a product

of two elements: (i) the system influence efficiency factor and (ii) the machine

unavailability factor. We illustrate its applicability using three case studies: a four-

machine transfer line, a vehicle assembly line, and an open-pit mining conveyor

system. The results confirm that machines with greater unavailability factors are

not necessarily the most important for production line efficiency, as is the case

when no intermediate buffers exist. As a decision aid tool, SEID emphasizes the

need to move to a systems engineering perspective rather than a maintenance

vision focused on machine availability.

1.1.2 Critical spare parts ordering decisions

Asset-intensive companies face great pressure to reduce operating costs

and increase utilization. This scenario often leads to overstress on critical

equipment and associated spare parts, affecting availability, reliability, and
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system performance. As these resources considerably impact on financial and

operational structures, there is a high demand for decision-making methods

for spare parts process management. We proposed an ordering decision-aid

technique which uses a measurement of spare performance based on the stress-

strength interference theory, which we have called Condition-Based Service Level

(CBSL). We focus on Condition Managed Critical Spares (CMS), namely, spares

which are expensive, highly reliable, with higher lead times, and are not available

in store. As a mitigation measure, CMS are under condition monitoring. The aim

of the paper is to orient the decision time for CMS ordering or to just continue the

operation. The paper presents a graphic technique considering a rule for decision

based on both condition-based reliability function and a stochastic/fixed lead time.

For the stochastic lead time case, results show that the technique is effective for

determining when the system operation is reliable and can withstand the lead time

variability, satisfying a desired service level. Additionally, for the constant lead time

case, the technique helps to define insurance spares. In conclusion, the ordering

decision rule presented is useful to asset managers for enhancing the operational

continuity affected by spare parts.

1.1.3 Replacement intervals for critical spare components

Highly competitive industries, such as Mining, face constant pressure for

continuous improvement. This increasing need for efficiency demands the use

of reliability and benefit models, especially for significant investment equipment

and components. Critical major components –e.g. mill liners, shovel swing

transmissions or haul truck engines– are related to lengthy shutdowns with a

considerable impact on financial structure. In this context, cost optimization is

a widely-used principle for scheduling component replacements. However, this

practice does not traditionally involve considering external factors of interest –

such as business-market conditions– which can radically alter decisions. To

overcome this limitation, we have proposed a criterion based on the estimation

of revenues –under several commodity price scenarios– both at the time of

component intervention and during the major shutdown time window. This work

aims to guide the decision about the best moment to replace, considering the

maximization of value-added rather than simply minimization of costs. The

paper presents a model to evaluate this optimal value by estimating the net
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benefit, as it is subjected to a certain discount rate, considering the copper

price, component survival probabilities (using Condition-Based Maintenance,

CBM), cost and expected downtime. The results show the influence of business

objectives in identifying the real value of waiting for the right epoch to perform an

intervention, in order to optimize the decision benefit and satisfy both reliability

constraints and time windows. In conclusion, business profitability opportunities

increase when maximization of value-added is included as part of the complete

asset management system.

1.1.4 Maintenance outsourcing under realistic contract conditions

When companies decide to outsource their services, the most important

arguments usually include: focus on the core business, ability to access high

quality services at lower costs, and risk transfer sharing. However, contractual

agreements have typically followed structures in which both the client and the

contractor attempt to maximize their own expected profits in a non-coordinated

way. Although previous research has considered supply chain coordination

by means of contracts, it has included unrealistic hypotheses such as perfect

maintenance and/or infinite time-span contracts. The present work overcomes

these limitations by studying contractual conditions in order to coordinate the

supply chain through a preventive maintenance strategy that maximizes the total

expected profit for both parties in a finite time-span contract. This paper presents

a model to establish such conditions when maintenance is imperfect and the

contract duration is fixed through a number of preventive maintenance actions

along a significative part of the asset life cycle under consideration. We also

study the cases where the owner is profit-centered or service-centered, while the

contractor is profit-centered. Results show that players can achieve a greater

benefit than what could have been obtained separately. The formulation leads to

a win-win coordination under a set of restrictions that can be evaluated a priori.

The proposed contract conditions motivate stakeholders to continually improve

their maintenance services to reach channel coordination, where both contract

parties obtain higher rewards.
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1.1.5 Pool allocation of critical spare components

Maintenance outsourcing is a strategic driver for asset intensive industries

pursuing supply chain performance enhancement. Spare parts management

plays a relevant role in this premise since it has a significant impact on equipment

availability, and hence on business success. Designing critical spares policies

might therefore seriously affect maintenance contracts profitability, yet service

receivers and external providers traditionally attempt to benefit separately. To

coordinate both chain parties, we investigated whether the spare components pool

should be managed in-house or contracted out. This paper provides a decision-

making framework to efficiently integrate contractual conditions with critical spares

stockholding. Using an imperfect maintenance strategy over a finite horizon, the

scheme maximizes chain returns whilst evaluating the impact of an additional

part to stock. As a result, an original joint value –preventive interval and stock

level– sets the optimal agreement to profitably allocate the components pool

within the service contract. Subsidization bonuses on preventive interventions

and pooling costs are also estimated to induce the service provider to adjust its

policy when needed. The proposed contractual conditions motivate stakeholders

to continuously improve maintenance performance and supply practices, thus

obtaining higher joint benefits.

1.2 Relevant Literature

The following literature review is structured as the aforementioned five key decision

areas.

1.2.1 Throughput centered prioritization in the presence of buffers

Pareto analysis has been commonly used to select the components and most

critical failure modes of a system. A limitation of this approach is that it uses

a single criterion to prioritize. In maintenance management, availability is a

typical indicator. This indicator does not allow to ensure whether the cause

of failure is a high frequency (reliability) or long downtime (maintainability).

To help overcome this problem, Labib (1998) suggests the Decision Making

Grid. It uses a diagram that includes frequency and downtime, allowing the

monitoring of equipment and indicating the appropriate action. An example
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of a non-graphical technique is the Analytic Hierarchy Process, which uses

pairwise comparisons and relies on the judgements of experts to derive priority

scales (Saaty, 2008). A disadvantage of using this method is that in situations

with a sizeable number of alternatives, the required comparison step can be

unwieldy and excessive resource consuming. In the case of Failure Mode and

Effect Analysis (FMEA), the rating to calculate the priority of the failures is called

risk priority number (Franceschini & Galetto, 2001), severity (Pasquini, Pozzi,

& Save, 2011) and/or criticality rank (Selvik & Aven, 2011), which is worked

out by the product of different ratings: frequency, consequence, detectability,

etc. Nonetheless, in many cases the estimation of these factors can be highly

subjective. A more advanced technique is proposed by Knights (2004) through the

Jack Knife Diagram (JKD), a logarithmic scatter plot that involves simultaneously

three performance indicators: frequency, downtime, and unavailability. Using

JKD, it is possible to classify failures as acute and/or chronic. Acute failures

indicate problems in inspections, resource availability, preventive maintenance,

among others. Furthermore, chronic failures indicate problems in equipment

operation and materials quality. The JKD technique only considers time based

information, excluding economic effects which certainly affect prioritization in a

business context. In order to surpass this limitation, Pascual, Del Castillo, Louit,

and Knights (2009) propose the Cost Scatter Diagram (CSD) that incorporates the

economic dimension and includes JKD analysis as a special case. This technique

explores the opportunities for improvement using business-oriented performance

indicators, such as: total costs, direct costs, availability, frequency, and downtime.

None of the aforementioned tools explicitly consider that in production systems

there exist elements that mitigate the impact upon the occurrence of unanticipated

events (i.e. failures), and even expected (scheduled maintenance). These

elements range from stockpiles (buffers), redundant equipment, availability of in

situ spare parts, to insurance against all risks, to mention some of them.

A production line may have none, one, or many intermediate buffers. If any

of the machines of the line fails, the buffers can eliminate/mitigate the idleness

that produces the flow discontinuity, enhancing the production rate. While

larger buffers can absorb longer interruptions, they also increase inventory

costs (Burman, Gershwin, & Suyematsu, 1998). This observation justifies

inventory reduction strategies such as the well-known Just in Time (Shah & Ward,
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2003). As the interruption in production flows may generate costly consequences,

the reduced presence of buffers in plants has created the need to continuously

improve maintenance strategies (and priority setting needs) (Crespo & Gupta,

2006).

In the context of decision making for production systems, there is a relevant

difference between maintenance management and physical asset management.

According to PAS-55 (British Standards Institution, 2008), asset management

is defined as: systematic and coordinated activities and practices through

which an organization optimally manages its assets, and their associated

performance, risks and expenditures over their lifecycle for the purpose of

achieving its organizational strategic plan. In maintenance management, a

common performance indicator is machine availability. Although it may seem

suitable that the maintenance function focuses on improving the equipment

availability, it may also lead to reduced care on production efficiency and

to a biased business vision. Asset management avoids optimizing indices

separately and advises applying a global perspective considering the implications

of maintenance policies within the organization strategic plan (Crespo, Gupta,

& Sánchez, 2003). According to Li, Blumenfeld, Huang, and Alden (2009),

throughput is relevant for the design, operation and management of production

systems, because it measures the system production volume and represents the

line efficiency. Then, a key performance indicator for asset managers may be

the system throughput or, complementarily, the production efficiency. The latter

sets a need to characterize the system efficiency, and thus to provide a systems

engineering management perspective. Simulation based efficiency estimation

provides a guide for incorporating realistic conditions to evaluate system level

improvements. As example, Murino, Romano, and Zoppoli (2009) use simulation

to consider the effect of condition based maintenance. However, time, cost

and expertise required to develop simulation models may impose a barrier for

their application in industry (Kortelainen, Salmikuukka, & Pursio, 2000; Louit,

2007; Murino et al., 2009). Analytical modeling may offer a simpler and cheaper

alternative to simulation. One example is the DDX method (Dallery, David, & Xie,

1989), which considers transfer lines with unreliable machines and finite buffers.

In the case of a homogeneous line, the behavior is approximated by a continuous

flow model and decomposing the system into sets of two-machine lines (for which
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closed solution exist). The decomposition results in a simple and fast algorithm

which provides performance indicators, such as expected throughput and buffer

levels. Experimental results have shown that this approximate technique is very

accurate. In the case of a non-homogeneous line, a simple method is introduced

to transform it into a homogeneous line. In addition to DDX, there exist a number

of analytical models to estimate the system throughput. A review of these methods

can be found in Li et al. (2009).

1.2.2 Ordering decisions using conditional reliability and stochastic lead

time

Spare parts play a fundamental role in the support of critical equipment.

In a typical company, approximately one third of all assets corresponds to

inventories (Dı́az & Fu, 1997). Of these assets, critical spare parts have special

relevance because they are associated with both significant investment and high

reliability requirements. As an example, spares inventories sum up above US$ 50

billion in the airlines business (Kilpi & Vepsäläinen, 2004). The mismanagement

of spare parts that support critical equipment conduces to considerable impacts

on financial structure and severe consequences on operational continuity. The

improvement of key profits on both logistics and maintenance performance

can be achieved by inventory management of costly components, which have

extremely criticality on equipment-intensive industries (Braglia & Frosolini, 2013).

Therefore, efficient decisions about spare-stocking policies can become essential

in the cost structure of companies. In order to provide an efficient spare

management performance, a suitable ordering strategy can be relevant. A spare

part classification scheme becomes necessary to set optimal policies for those

spares that may affect the system the most, and at the least effort.

The need for spare parts inventories is dictated by maintenance actions (Kennedy,

Wayne Patterson, & Fredendall, 2002). In addition, maintenance strategy

can be treated by Condition-Based Maintenance (CBM). In this case, models

incorporate information about equipment conditions in order to estimate the

conditional reliability. This information comes from, for instance, vibrations

measurements, oil analysis, sensors data, operating conditions, among others.

These measures are called covariates. Covariates may be included on the
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conditional reliability using the Proportional Hazards Model (PHM) (Cox, 1972),

which allows combining age and environmental conditions. In the interaction

between operational environment and equipment, while age can be relatively

easy to notice, deterioration can be measured by conditions assessment (Amari,

McLaughlin, & Pham, 2006). Therefore, CBM becomes useful to set maintenance

policies even with different levels of monitoring restrictions. Compared to usual

time-based maintenance strategies, condition monitoring systems offer significant

potential to add economic value to spares management performance (Van

Horenbeek, Van Ostaeyen, Duflou, & Pintelon, 2013).

Lead time is another important aspect to consider in spare parts ordering. The

random time between fault event and the actual component failure may cause

system performance deteriorations (Das & Acharya, 2004). Nonetheless, it also

provides a opportunity window to set replacement policies. Logistically, there are

also delays between the order of spares and their arrival (Wang, Chu, & Mao,

2009). This situation is even more crucial when spare parts are critical, since

they are not always available at the supplier store. Customs delays and the

need of special transport are a source of significant lead times; moreover, when

dealing with complex equipment parts made to order, lead times may exceed a

year (Van Jaarsveld & Dekker, 2011). The lack of these items because of a delay

in delivery (and their consequent installation) may have severe consequences in

the operational continuity.

Previous works have treated the decision-making process using CBM, for

instance: research deals with a continuously deteriorating system which is

inspected at random times sequentially chosen with the help of a maintenance

scheduling function (Dieulle, Berenguer, Grall, & Roussignol, 2003). There

is also research obtaining an analytical model of the policy for stochastically

deteriorating systems (Grall, Berenguer, & Dieulle, 2002). However, spare

parts issues are not included on those papers. Furthermore, there are several

researches for CBM policies that consider unlimited spare parts which always

are available (Amari & McLaughlin, 2004). Nevertheless, the focus of this

paper is on critical spare parts which are, precisely, not available in store.

According to (Wang, Chu, & Mao, 2008), few existing ordering and replacement

policies are proposed in the context of condition-based maintenance. In fact, the

11



work described by Wang et al. (2008) aims to optimize CBM and spare order

management jointly. Kawai (1983a) and Kawai (1983b) consider optimal ordering

and replacement policy of a Markovian degradation system under complete

and incomplete observation, respectively. However, the difference between

this thesis and the works stated above is the need to install a user-friendly

technique to decision-making process for asset managers in order to improve

the spare parts management considering the unique characteristics of CMS. In

accordance with current industrial requirements, a graphical tool of this type

could be readily implemented. Spare parts estimation based on reliability and

environment-operational conditions is a method to improve supportability. This

method can guarantee non-delay in spare parts logistics and improve production

output (Ghodrati, Banjevic, & Jardine, 2010).

1.2.3 Value-based optimization of replacement intervals

Growing business performance targets can be addressed by using reliability

models. From the maintenance excellence viewpoint, the optimization of asset

replacement and resource requirements decisions is essential for the continuous

improvement (Jardine & Tsang, 2006). This becomes even more decisive in

the case of asset intensive industries –such as Mining, Aeronautic, Defense, or

Nuclear industries– with high investment equipment to perform operations. The

constant pressure to reduce costs and increase utilization often leads to a stress

on equipment, affecting reliability and throughput (Godoy et al., 2013). Hence,

the interest lies in improving the system reliability. The operation of essential

equipment is supported by critical components (Louit, 2007). Consequently,

reliability enhancement of complex equipment can be achieved by preventive

replacement of its critical components (Jardine & Tsang, 2006). Critical major

components are often expensive and need high reliability standards, they are

habitually related to extended lead times and influence on production and

safety (Godoy et al., 2013). They are often related to lengthy plant shutdowns with

associated production losses. These expected losses have a significant impact

on tactical, financial, and logistic considerations. As a mitigation measure to this

impact, critical components are monitored by using Condition-based Maintenance

(CBM) (Godoy et al., 2013). Examples of these items in the mining industry are:

mill liners, shovel swing transmissions, and haul truck engines. The challenge is
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to identify an optimal change-out epoch to intervene in major critical components

in order to meet both reliability constraints and business goals.

Business-market conditions have the potential to change major components

optimisation decisions. Replacement optimisation criteria depend on objectives

that firms attempt to achieve. Internal scheduling principles, such as cost

or availability, are traditionally preferred for setting maintenance intervention

policies. Cost minimisation is based on the assumption to balance both

replacement and operating costs (Jardine & Tsang, 2006). In turn, availability

maximization (or downtime minimization) is in search of a balance between

preventive replacement downtime and failure replacement downtime (Campbell

et al., 2011). Using this kind of criteria, an optimal components overhaul and

replacement policy can be properly defined to accomplish internal performance

targets. Nevertheless, these widely-used practices do not usually consider

relevant external factors, such as current business scenario at replacement epoch.

Commodities price is an example of these external conditions in asset intensive

industries. Different commodity prices (e.g. copper) may postpone or accelerate

cost-based replacement decisions. If a favourable-price scenario is faced, then it

could be more profitable to delay the intervention epoch and continue operating.

Relevant assumptions and limitations of the model are the following:

• It is not intended to provide a perfect forecast of copper prices, but rather

the objective as value-adding is to include other relevant decision factors in

addition to traditional cost minimization.

• Value creation can be considered as the difference between free cash

flow and capital employed multiplied by the weighted average cost of

capital (Adams, 2002).

• Short-term models are not suitable for the kind of components of this work.

Major intervention intervals are set by several months or even years, and

associated shutdowns by weeks.
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As the idea is to facilitate the model applicability, a simpler but reasonable moving

average method was used. Mean squared errors from moving average were

sufficiently close to more advanced methods, such as exponential and logistic

autoregressive models (ESTAR and LSTAR) or first-order autoregressive process

AR(1). See Engel and Valdés (2002) for a further explanation of these methods

on copper price forecasts.

1.2.4 Optimizing maintenance service contracts under imperfect maintenance

and a finite time horizon

Coordination in the supply chain, i.e. channel coordination, plays a relevant role

on outsourcing. In the current dynamic environment, coordination of the parties

is essential for services in the chain. Kumar (2001) suggests that two types of

coordination are necessary in supply chain management: horizontal coordination

(between the players who belong to the related industry) and vertical coordination

(across industry and companies). Although the need for coordination is becoming

increasingly evident, efforts to create infrastructures to enact such coordination

are still in their early stages. Kumar (2001) states that supply chains can create

systems that integrate instant visibility and whole dynamic supply chains on an

as-needed basis. Those chains are more likely to reach competitive advantages

over those that do not adopt such systems.

There are several methods to achieve cooperation among a client and a

contractor. A common practice is to use a work package contract which specifies

a maintenance strategy and a cost structure that leads the contractor to accept

the deal. This kind of contract falls into the category of labor plus parts, in

which the contractor sees no incentives to improve its performance (Tarakci, Tang,

Moskowitz, & Plante, 2006a), as the more its services are required, the more the

contractor earns. For the contractor, the usual focus is to keep customer loyalty

by showing capability to outperform competitors (Egemen & Mohamed, 2006).

Another aspect to take into account when negotiating contracts is the system

level at which the contract acts on a system. The contract may include the

maintenance of (usually) a single component of a complex system and can also

be an umbrella or full service contract considering the whole system. An example
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of the first case is presented by Tarakci et al. (2006a). The same authors

study a manufacturing system with multiple processes where each component

is maintained independently (Tarakci, Tang, Moskowitz, & Plante, 2006b).

Considering the need for reaching effective coordination of the supply chain, Tarakci

et al. (2006a) study incentives to maximize the total profit of the service chain.

Namely, contracts which aims to achieve a win-win coordination to maximize the

profits of the actors. According to Tarakci et al. (2006a), these contracts lead the

contractor to improve the performance of maintenance operations. They demon-

strate that this kind of contracts can be an effective tool to achieve the desired

overall coordination. Nevertheless, they consider both perfect maintenance for

preventive actions and infinite horizon contracts. These two limitations do not

seem to make a realistic condition for a full implementation of the model in the

operational reality.

The inclusion of imperfect maintenance contributes to a realistic modeling of

system failure rates. Changes in failure patterns strongly influence maintenance

and replacement decisions (Pascual & Ortega, 2006). Perfect maintenance

contemplates that every maintenance action returns the system to its“as good

as new” condition. However, Malik (1979) points out that working systems

under wear-out failures are not expected to be restored to a new condition, and

proposes the inclusion of a maintenance improvement factor for imperfect repairs.

Furthermore, Nakagawa (1979) suggests that failure rate functions on imperfect

maintenance cases could be adjusted using a probability approach; thus, the

action is perfect “as good as new”) with probability (1-α) and minimal (“as bad

as old”) with probability α. Zhang and Jardine (1998) argue that enhancements by

overhauls tend to be magnified by Nakagawa’s model and there is a possibility that

the failure rate could be bounded; consequently, the appropriateness of the model

could be restrained. Zhang and Jardine present an optional approach in which the

system failure rate function is in a dynamic modification between overhaul period,

since this rate is considered between “as bad as old” and “as good as previous

overhaul period” using a fixed degree. Zhang and Jardine’s approach is used

in the model formulation of the present paper. Due to imperfect maintenance

sets the system failure rate between a new condition and a previous to failure
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condition (Pham & Wang, 1996), the incorporation of this realistic assumption is

fundamental for model applicability.

An important aspect that should be considered during the coordination process

is the time-horizon of the contracts. This condition does not only hold because

the amortization of investments by the provider but also because the assets

under consideration suffer in general an aging process that increases the need to

perform maintenance and overhaul actions. Regarding this, Lugtigheid, Jardine,

and Jiang (2007) focus on finite-horizon service contracts. They note the

lack of literature for finite-horizon contracts, and present several methods and

consider repair/replacement for critical components. In our case, the focus is

not on component level, but on system level. Complementarily, Nakagawa and

Mizutani (2009) propose finite-interval versions for classic replacement models,

such as models of periodic replacement with minimal repair, block replacement

and simple replacement. Regarding the aging process is often an effect of

imperfect maintenance practices that can be modeled using different approaches,

many of them described in references such as Wang (2002); Li and Shaked

(2003); Nicolai and Dekker (2008). Nakagawa (1979) also consider imperfect

maintenance models but do not split costs into in-house and outsourcing costs.

In this article we focus on the well known method described by Zhang and Jardine

(1998), but the application of the concepts to other approaches like virtual age

models (Kijima, 1989) is straightforward.

1.2.5 A decision-making framework to integrate maintenance contract

conditions with critical spares management

As an interesting strategy to achieve cost-benefits, consolidating inventory

locations by cooperative pooling has been addressed by Kilpi and Vepsäläinen

(2004); Lee (1987); Dada (1992); Benjaafar, Cooper, and Kim (2005), among

other studies. In the context of repairable spares pooling, the cost allocation

problem is analyzed using game theoretic models by Wong, Oudheusden, and

Cattrysse (2007). As recent implementations, a virtual pooled inventory by

managing information systems is included in Braglia and Frosolini (2013) and a

calculation model of spare parts demand, storage and purchase planning in the

coal mining industry is reported by Qing he, Yan hui, Zong qing, and Qing wen
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(2011). When dealing with cooperation in contractual alliances, the study of Gulati

(1995) states the relevance of interfirm trust to deter opportunistic behaviour in a

shared ownership structure. Such trust is an important issue related to pooling

strategies. A widely applied modeling for repairable items stockholding focused

on system availability and spares investment is provided by Sherbrooke (2004).

Since its accuracy to determine the optimal inventory levels for both single-site

and multi-echelon techniques, the above-mentioned model is used to adapt the

concept of spare service level in the present paper.

Maintenance outsourcing under supply chain coordination is discussed by Tarakci

et al. (2006a), a study that deals with incentive contracts terms to coordinate

agents and clients by a maintenance policy seeking to optimize the total profit.

The work of Pascual, Godoy, and Figueroa (2012) extends this approach by

incorporating realistic conditions, such as imperfect maintenance and finite

time-span contract . That model adapts the failure rate by using the system

improvement model of Zhang and Jardine (1998). Such concepts of profitable

coordination and imperfect maintenance are also used in the present paper to

improve the practical applicability for asset intensive operations.

There are studies that specifically deal with allocation spare parts in service

contracts. A paper intending to incorporate repair contract selection and spares

provisioning under a multicriteria approach is presented in Teixeira de Almeida

(2001). In Nowicki, Kumar, Steudel, and Verma (2008), a profit-centric model

is presented for spares provisioning under a logistics contract for multi-item and

multi-echelon scenario. In Mirzahosseinian and Piplani (2011), an inventory model

is developed for a repairable parts system by varying failure and repair rates. A

dynamic stocking policy to replenish the inventory to meet the time-varying spare

parts demand is proposed by Jin and Tian (2012). A reliability-based maintenance

strategy required for the spares inventory is described in Kurniati and Yeh (2013),

although its scope does not cover contract conditions. Since the relevant effect of

warranties as service contracting, a three-partite stochastic model including client,

agent, and customer is presented in Gamchi, Esmaeili, and Monfared (2013).

However, none of these works has faced the pool management problem by using

the realistic assumptions of imperfect maintenance, finite contract duration, or

profitable channel coordination.
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Regardless of the extensive literature, the present paper introduces new

contributions in terms of formulation and analytical properties. To the best of

our knowledge, a model capable of delivering profitable decisions to allocate the

pool of critical spare parts within maintenance outsourcing contracts –via the

inclusion of imperfect maintenance and the optimal conditions for supply chain

coordination– has not been addressed in the literature.

1.3 Thesis Structure

The methodology is illustrated by a sequential achievement of the objectives of each

paper appended to this thesis, as follows. Paper I aims to select systems and

components to be studied by ranking their criticality. It proposes a user-friendly

graphical technique in order to handle the prioritization problem in production lines

with intermediate buffers. This technique has been called the System Efficiency

Influence Diagram (SEID). After prioritizing the most important spare components,

Paper II attempts to orient the time decision to balance critical spare parts ordering

with continuation of operation. It presents a graphic technique which considers a

rule decision based on both condition-based reliability function and stochastic/fixed

lead time. This performance indicator has been called Condition-Based Service Level

(CBSL). Another question of interest is when to replace, Paper III guides the decision

about the best epoch to intervene in major critical components. It is considered the

maximization of business value, rather than simple minimization of cost. Condition-

based maintenance is also used in the estimation of conditional reliability across the

study period. A next step under the PAM perspective is to balance in-house critical

resources with outsourcing services, Paper IV determines contractual conditions

to coordinate the supply chain through a preventive maintenance strategy. This

maximizes the total expected profit for both contractor and customer, under imperfect

maintenance and a finite time-span contract. Finally, an interesting closure of the

thesis is to integrate such maintenance contracting terms with spares supply practices.

Paper V efficiently integrates contractual conditions with critical spares stockholding.

An original joint value –preventive maintenance interval and spares stock level– sets

the optimal agreement to profitably allocate the pool of components within the service

contract.
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The results obtained from Paper I to Paper V allow integrating the models developed into

a general decision support system for critical spare parts under an asset management

perspective. This general structure is indicated in Figure 1-2. The research, models, and

decision tools involved are presented in the following sections.
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2. THROUGHPUT CENTERED PRIORITIZATION IN THE PRESENCE OF BUFFERS:

THE SYSTEM EFFICIENCY INFLUENCE DIAGRAM

The key is not to prioritize what is on your schedule, but to schedule your priorities.

— STEPHEN COVEY

To meet the increasing challenges of current industrial environment, organizations must

continuously enhance their capability to add value and improve the cost-effectiveness of

their decision processes. These include the selection of those systems (machines) and

actions that may render the highest overall savings with the lowest efforts, and then, set their

associated lifecycle policy resolutions. Setting such policies requires resources. As these

resources are usually scarce and the number of machines is usually high, a systematic

prioritization process must be established (Pascual, Del Castillo, et al., 2009) and a proper

decision aid tool must be selected.

Pareto analysis has been commonly used to select the components and most critical failure

modes of a system. A limitation of this approach is that it uses a single criterion to prioritize.

In maintenance management, availability is a typical indicator. This indicator does not allow

to ensure whether the cause of failure is a high frequency (reliability) or long downtime

(maintainability). To help overcome this problem, Labib (1998) suggests the Decision Making

Grid. It uses a diagram that includes frequency and downtime, allowing the monitoring of

equipment and indicating the appropriate action. An example of a non-graphical technique

is the Analytic Hierarchy Process, which uses pairwise comparisons and relies on the

judgements of experts to derive priority scales (Saaty, 2008). A disadvantage of using this

method is that in situations with a sizeable number of alternatives, the required comparison

step can be unwieldy and excessive resource consuming. In the case of Failure Mode and

Effect Analysis (FMEA), the rating to calculate the priority of the failures is called risk priority

number (Franceschini & Galetto, 2001), severity (Pasquini et al., 2011) and/or criticality rank

(Selvik & Aven, 2011), which is worked out by the product of different ratings: frequency,

consequence, detectability, etc. Nonetheless, in many cases the estimation of these factors

can be highly subjective. A more advanced technique is proposed by Knights (2004)

through the Jack Knife Diagram (JKD), a logarithmic scatter plot that involves simultaneously

three performance indicators: frequency, downtime, and unavailability. Using JKD, it is

possible to classify failures as acute and/or chronic. Acute failures indicate problems in

inspections, resource availability, preventive maintenance, among others. Furthermore,
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chronic failures indicate problems in equipment operation and materials quality. The JKD

technique only considers time based information, excluding economic effects which certainly

affect prioritization in a business context. In order to surpass this limitation, Pascual,

Del Castillo, et al. (2009) propose the Cost Scatter Diagram (CSD) that incorporates the

economic dimension and includes JKD analysis as a special case. This technique explores

the opportunities for improvement using business-oriented performance indicators, such as:

total costs, direct costs, availability, frequency, and downtime. None of the aforementioned

tools explicitly consider that in production systems there exist elements that mitigate the

impact upon the occurrence of unanticipated events (i.e. failures), and even expected

(scheduled maintenance). These elements range from stockpiles (buffers), redundant

equipment, availability of in situ spare parts, to insurance against all risks, to mention some

of them.

A production line may have none, one, or many intermediate buffers. If any of the

machines of the line fails, the buffers can eliminate/mitigate the idleness that produces the

flow discontinuity, enhancing the production rate. While larger buffers can absorb longer

interruptions, they also increase inventory costs (Burman et al., 1998). This observation

justifies inventory reduction strategies such as the well-known Just in Time (Shah &

Ward, 2003). As the interruption in production flows may generate costly consequences,

the reduced presence of buffers in plants has created the need to continuously improve

maintenance strategies (and priority setting needs) (Crespo & Gupta, 2006).

In the context of decision making for production systems, there is a relevant difference

between maintenance management and physical asset management. According to PAS-

55 (British Standards Institution, 2008), asset management is defined as: systematic and

coordinated activities and practices through which an organization optimally manages its

assets, and their associated performance, risks and expenditures over their lifecycle for

the purpose of achieving its organizational strategic plan. In maintenance management,

a common performance indicator is machine availability. Although it may seem suitable

that the maintenance function keep focus on improving the equipment availability, it may

also lead to reduced care on production efficiency and to a biased business vision.

Asset management avoids to optimize indices separately, and advices applying a global

perspective considering the implications of maintenance policies within the organization

strategic plan (Crespo et al., 2003). According to Li et al. (2009), throughput is relevant

for the design, operation and management of production systems, because it measures
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the system production volume and represents the line efficiency. Then, a key performance

indicator for asset managers may be the system throughput or, complementarily, the

production efficiency. The latter sets a need to characterize the system efficiency, and thus

to provide a systems engineering management perspective. Simulation based efficiency

estimation provides a guide for incorporating realistic conditions to evaluate system level

improvements. As example, Murino et al. (2009) use simulation to consider effect of

condition based maintenance. However, time, cost and expertise required to develop

simulation models may impose a barrier for their application in industry (Kortelainen et

al., 2000; Louit, 2007; Murino et al., 2009). Analytical modeling may offer a simpler

and cheaper alternative to simulation. One example is the DDX method (Dallery et al.,

1989), which considers transfer lines with unreliable machines and finite buffers. In the

case of a homogeneous line, the behavior is approximated by a continuous flow model and

decomposing the system into sets of two-machine lines (for which closed solution exist). The

decomposition results in a simple and fast algorithm which provides performance indicators,

such as expected throughput and buffer levels. Experimental results have shown that this

approximate technique is very accurate. In the case of a non-homogeneous line, a simple

method is introduced to transform it into a homogeneous line. In addition to DDX, there

exist a number of analytical models to estimate the system throughput. A review of these

methods can be found in Li et al. (2009).

To handle the prioritization problem in production lines this paper proposes the System

Efficiency Influence Diagram (SEID). Its associated performance indicator is the expected

system throughput. To illustrate its significance, three case studies are presented. The

efficiency estimation is performed in our cases using the DDX method, which allows the

estimation of the so-called influence factors. SEID may also be implemented using other

throughput estimation models, including simulation.

Through the use of prioritization tools already mentioned, maintainers can make decisions

about maintenance policies. However, such tools consider only an equipment level criterion

(individual machine availability). Maintainers can use SEID to prioritize and make decisions

about maintenance policies to be used too, but with a system criterion, namely considering

the system throughput. On the other hand, a designer can use SEID to set the capacities of

the buffers, knowing how each machine influences the line efficiency due to the presence of

such buffers. Asset managers may also be interested in increasing the system efficiency to
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achieve the production goals of the company. SEID may give them an accurate prioritization

criterion to analyze ways to increase throughput consequently.

Having introduced the importance of the proposed decision aid tool in the context of

prioritization and system efficiency, the rest of the chapter is organized as follows:

Section 2.1 presents the SEID. Section 2.2 describes the case studies, the numerical case of

a production line of four equipments, the case of a real line of vehicle assembly, and the real

case of a production line in a mining operation. Finally, Section 2.3 reveals the conclusions

of the work.

2.1 SEID Technique

A line with k machines in series is considered. If all machines operate, the system

throughput is λp (production units per unit time). The first machine is never starved

(always has raw material available) and the last is never blocked (can work continuously

because it is never obstructed due to downtime of downstream machines or saturation

of the downstream buffer). The failure rate (the inverse of the mean time to fail) of

machine i is λi, and its repair rate is µi, i = 1, ..., k. We define the unavailability factor

as

Di =
λi
µi
, i = 1...k. (2.1)

From Buzacott and Hanifin (1978), the expected efficiency (produced units/planned

units, when no failures occur) of a system without buffers (η0) is

η0 =
1

1 +
∑k

i=1Di

. (2.2)

On the other hand, Buzacott (1967) states that the system efficiency with infinite buffers

(η∞) should be limited by the least efficient machine, as follows

η∞ = min{ηi}, i = 1...k, (2.3)

where ηi = 1
1+Di

. Therefore, the system efficiency η with finite buffers must be between

the limits: η0 ≤ η ≤ η∞.

The presence of buffers and their associated capacity do affect the system efficiency.

For priority setting purposes, we propose to use an equivalent system without buffers,
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similar to Equation (2.2), but adding system influence factors ρi, i = 1...k to take into

account the presence of buffers. Hence, the following metamodel constitutes the basis

for SEID

η(d0) =
1

1 +
∑k

i=1 ρi(d0)Di

, (2.4)

where d0 is the configuration vector defined by the equipment parameters and the

capacities ci of current buffers in a system, namely: d0 = {λ1, µ1, c1, ..., ck−1, λk, µk}.

To estimate the influence parameters, the original system is perturbed and the

efficiency is estimated. This generates a linear system of equations based on

Ax = b, (2.5)

where A is the matrix formed by unavailability factors Di (D∗ij indicates the perturbed

unavailability factor), x is the unknown vector with the influence parameters, and b the

vector that is derived from SEID metamodel. Then, the estimation of ρ is given by the

resolution of

D11 D12 D13 · · · D1k

D∗21 D22 D23 · · · D2k

D31 D∗32 D33 · · · D3k

...
...

... . . . ...

Dk1 Dk2 Dk3 D∗k−1k−1 Dkk
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
=



1
η1
− 1

1
η2
− 1

1
η3
− 1
...

1
ηk
− 1


.

From observation of Equation (2.4), when ρiDi is relatively large, the effect of the i-th

machine on the system efficiency is greater with respect to other machines. While Di

only depends on the i-th machine, ρi depends on the system configuration vector d0.

This allows defining a scatter diagram, where one axis is the unavailability factor Di

of each machine when working alone, while the other axis is its system efficiency

influence factor (ρi) given the current system design configuration (d0). Figure 2-

1 shows an example of this technique for a 3-machine system. Each hyperbola

represents an iso-influence line on the system expected throughput. Applying a

logarithmic scale to the axes, they are displayed as linear isoquants, facilitating the

analysis. This new graph with bi-logarithmic axes is shown in Figure 2-2, which has

been selected to make the analysis using the SEID technique.
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Figure 2-2: SEID with bi-logarithmic axes

As aforementioned, the largest ρD products set the order of priority for the machines.

In the case of Figure 2-2, the descending order would be: 1, 2, and 3. Machine 3

has a higher unavailability factor compared to machine 2, but ρ2D2 is higher than

ρ3D3. From the standpoint of system throughput, machine 3 is the less relevant.
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Figure 2-2 has been divided into four quadrants. To set the axes, we have used,

arbitrarily, the mean values of machine unavailability factors and system efficiency

influence factors respectively. In quadrant IV there are machines with a higher system

efficiency influence factor, and in quadrant II are positioned those having a higher

unavailability factor. However, the quadrant I is the most critical to prioritize according

to system efficiency throughput, because it concentrates all machines having both

high unavailability factor and large system system efficiency influence factor. In

this quadrant the ρD isoquants with higher value are located. In the same way, in

quadrant III are ρD isoquants that may be regarded less critical for system efficiency.

Figure 2-3 shows an example of how the SEID metamodel fits well in a 2-machine

system. It is composed of a crushing plant, a milling plant, and an intermediate stock

pile (Madariaga & Pascual, 2009). From Figure 2-3, it is possible to deduce that ρ factor

behaves in an accurate way around real data provided by the case. The estimated

efficiency using SEID technique is very close to the one calculated using the model,

which may be analytical –such as DDX– or simulation-based.
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Table 2-1: Parameters of case study 1. λp = 1

Machine Failure rate (h−1) Repair rate (h−1) Buffer capacity

1 0.04 0.08 20

2 0.02 0.04 0

3 0.03 0.06 20

4 0.02 0.04 -

2.2 Case Studies

Three case studies illustrate the benefits of using SEID. The first study is a numerical

case of a four-machines production line using data from an example given by Dallery

et al. (1989), which illustrates the significant differences in analysis obtained compared

with JKD. To demonstrate practical experience of applying SEID, the second case

considers a vehicle assembly line, described in Tempelmeier (2003). Finally, the third

study is based on a real case described by Madariaga and Pascual (2009), which

shows a conveyor system within a mining operation in Chile.

2.2.1 Case Study 1. Four-machines transfer line

Table 2-1 lists the parameters of a numerical case taken from Dallery et al. (1989).

JKD (Figure 2-4) for this case shows that unavailability factor is identical for all four

machines, so they share the same unavailability factor isoquant. JKD does not allow

priority setting based on machine availability. The analyst using JKD would have to

choose machine reliability (frequency) or machine maintainability (downtime) as priority

setting criterion. SEID (Figure 2-5) shows better results as it is able to discriminate

among the machines. Priorities in descending order are: 2, 3, 4, and 1 respectively.

To check SEID consistency, we also ranked machines by observing the change in

efficiency when perturbing the unavailability factor of each machine separately by 10%

with respect to the reference configuration (Table 2-2). Machine rankings are the

same for both methods. As an advantage, SEID graphically discriminates which factor

(unavailability or system influence) is the dominant to explain the importance of a given

machine on the expected throughput.
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Table 2-2: Comparison of priorities using DDX and SEID

Machine ∆η DDX order SEID order

1 0.0034 4 4

2 0.0074 1 1

3 0.0071 2 2

4 0.0042 3 3

Table 2-3: Parameters of case study 2. λp = 2.1

Machine Failure rate (min−1) Repair rate (min−1) Buffer capacity

1 0.000459 0.020 14

2 0.000498 0.024 9

3 0.000296 0.018 9

4 0.000252 0.036 16

5 0.000346 0.021 28

6 0.000841 0.036 23

7 0.000194 0.015 27

8 0.000884 0.029 8

9 0.000794 0.023 12

10 0.000122 0.030 28

11 0.000084 0.028 6

12 0.000130 0.032 9

13 0.000515 0.017 12

14 0.000311 0.026 8

15 0.000675 0.026 24

16 0.000232 0.021 29

17 0.000412 0.021 10

18 0.000147 0.018 13

19 0.000621 0.023 -

2.2.2 Case Study 2. Vehicle assembly line

Table 2-3 shows an adapted version of a case described by Tempelmeier (2003), and

lists the parameters of a production line of 19 machines with intermediate buffers. JKD

analysis (Figure 2-6) indicates that the most critical machines for prioritization are: 9,

and 13 or 8 equally in the second and third. We also used this case to show a three
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dimensional version of SEID (Figure 2-7). On the horizontal plane may be observed

the axes that build a similar graph to JKD (downtime and frequency), but additionally

Figure 2-7 shows the influence factors on the vertical axis. In this format, JKD is a

special case of SEID.

Similar to the previous case, there are machines with higher associated ρ (in this case,

the machines: 7, 9, and 13), but as the focus is on system efficiency, Figure 2-8 shows

SEID in its 2D version which is easier to interpret.

Comparing Figures 2-6 and 2-8 respectively, although the machines 9, 13, and 8

remain the most critical for the system throughput, there are machines which are at

the top of prioritization according JKD analysis, but from the focus of efficiency they

are less important. An example of this priority difference is machine 2. It has a high

unavailability factor but a medium influence factor. Some machines rank higher if we

consider throughput as priority setting indicator.

Regardless of the existence of some overlap of a critical priority for the present case

between the JKD and SEID, the main difference is SEID gives a completely different

approach to prioritization than JKD. The focus is no longer centered on a machine

perspective, but on a systemic one.

2.2.3 Case Study 3. Mining conveyor system

Table 2-4 shows the parameters of a real line with 11 machines, with three intermediate

stockpiles, associated to a copper mining operation in northern Chile (Madariaga &

Pascual, 2009). SEID is shown in Figure 2-9. We observe two clusters with respect to

the influence parameters. Again, machines with similar levels of unavailability factors

such as 2 and 6 highly differ in its importance of efficiency due to the existing buffer
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configuration. Note that machine 6 is surrounded by buffers. It is not the case of

machine 2.
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Table 2-4: Parameters of case study 3. λp = 4.0

Machine MTBF (h) MTTR (h) Buffer capacity (kton)

1 2.07 0.27 0

2 34.48 0.72 0

3 12.66 0.38 0

4 47.62 0.40 0

5 20.83 0.66 15

6 55.56 1.04 15

7 142.86 0.97 15

8 33.33 1.19 0

9 27.03 0.78 0

10 19.23 0.75 0

11 10.87 1.50 -

2.3 Conclusions

The work proposes a graphical technique for decision-making to prioritize equipments

according to their effect on the expected system efficiency and taking into account

intermediate buffers. SEID represents an effective tool to quantitatively show how

system efficiency is more interesting from a business perspective than machine

availability. The grounds for the SEID development are the assumptions of Markovian

processes for both the failure and the repair rates. The proposed tool avoids prioritizing

using equipment level tools, such as JKD or CSD, or setting priorities only with capital

investments as selection criterion. Due to the existence of buffers, it is possible that

relatively low investment equipment or machines with relatively high availability are the

most critical for the system throughput. SEID highlights how machines with higher

inherent unavailability factors are not necessarily the most relevant for efficiency. The

technique can be used by asset managers to make decisions about maintenance

policies and redesign buffer capacities. As future development, the SEID technique

can be extended in order to be used with general distributions for both the failure and

repair processes.
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3. CRITICAL SPARE PARTS ORDERING DECISIONS USING CONDITIONAL

RELIABILITY AND STOCHASTIC LEAD TIME

A fair request should be followed by the deed in silence.

— DANTE ALIGHIERI

Decision-making processes are crucial for organizations within a scenario of intense

competitiveness. Since companies are frequently required to reduce production costs

and increase asset utilization, misguided decisions may lead to over-stress on equipment.

This situation affects reliability and, more importantly, system throughput. Continuous

improvement of the ability to add value and enhance profitability of operations is needed by

firms in pursuit of performance excellence (Jardine & Tsang, 2006). An efficient resources

ordering is indispensable to achieve significant availability exigencies of equipment-intensive

industries, such as Mining, Aeronautic, Nuclear Energy, or Defense. This equipment

is supported by spare parts inventories, which are particularly relevant considering the

influence of stock-outs on downtime (Louit, 2007). Appropriate spare parts allocation

decisions are therefore essential to system performance of these industries.

Spare parts play a fundamental role in the support of critical equipment. In a typical

company, approximately one third of all assets corresponds to inventories (Dı́az & Fu, 1997).

Of these assets, critical spare parts have special relevance because they are associated

with both significant investment and high reliability requirements. As an example, spares

inventories sum up above US$ 50 billion in the airlines business (Kilpi & Vepsäläinen,

2004). The mismanagement of spare parts that support critical equipment conduces

to considerable impacts on financial structure and severe consequences on operational

continuity. The improvement of key profits on both logistics and maintenance performance

can be achieved by inventory management of costly components, which have extremely

criticality on equipment-intensive industries (Braglia & Frosolini, 2013). Therefore, efficient

decisions about spare-stocking policies can become essential in the cost structure of

companies. In order to provide an efficient spare management performance, a suitable

ordering strategy can be relevant. A spare part classification scheme becomes necessary

to set optimal policies for those spares that may affect the system the most, and at the least

effort. We proposed an ordering decision-aid method to secure the spare management

performance into an operational environment that needs continuity to compete into a

demanding business context.
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3.1 Critical Spare Parts and Maintenance Strategy

The need for spare parts inventories is dictated by maintenance actions (Kennedy

et al., 2002). In addition, maintenance strategy can be treated by Condition-Based

Maintenance (CBM). In this case, models incorporate information about equipment

conditions in order to estimate the conditional reliability. This information comes

from, for instance, vibrations measurements, oil analysis, sensors data, operating

conditions, among others. These measures are called covariates. Covariates may be

included on the conditional reliability using the Proportional Hazards Model (PHM) (Cox,

1972), which allows combining age and environmental conditions. In the interaction

between operational environment and equipment, while age can be relatively easy to

notice, deterioration can be measured by conditions assessment (Amari et al., 2006).

Therefore, CBM becomes useful to set maintenance policies even with different levels

of monitoring restrictions. Compared to usual time-based maintenance strategies,

condition monitoring systems offer significant potential to add economic value to spares

management performance (Van Horenbeek et al., 2013). Particularly, this paper uses

CBM models to calculate conditional reliability in order to make ordering or replacement

decisions.

Lead time is another important aspect to consider in spare parts ordering. The

random time between fault event and the actual component failure may cause system

performance deteriorations (Das & Acharya, 2004). Nonetheless, it also provides a

opportunity window to set replacement policies. Logistically, there are also delays

between the order of spares and their arrival (Wang et al., 2009). This situation is

even more crucial when spare parts are critical, since they are not always available

at the supplier store. Customs delays and the need of special transport are a source

of significant lead times; moreover, when dealing with complex equipment parts made

to order, lead times may exceed a year (Van Jaarsveld & Dekker, 2011). The lack of

these items because of a delay in delivery (and their consequent installation) may have

severe consequences in the operational continuity.

The core of this paper is on those critical spare parts that affect production, safety,

are expensive, highly reliable, and usually are associated with higher lead times.

These items are critical too, when they support equipment which is essential in an

operational environment (Louit, 2007). Henceforward, all spare parts that meet these
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characteristics will be called, “Condition Managed Critical Spares”, or just CMS. CMS

are repairable, however their repair times are slower than supplier lead times, this

particularity turns these CMS into non-repairable spare parts for the purposes of this

model. As CMS are not available in store, CMS condition is monitored as a mitigation

measure to its criticality in the operation. Justification for not having them in store lies

in the expectation that the CBM models will predict failures with sufficient lead time to

overcome the need for spare-stocking.

Previous works have treated the decision-making process using CBM, for instance:

research deals with a continuously deteriorating system which is inspected at random

times sequentially chosen with the help of a maintenance scheduling function (Dieulle

et al., 2003). There is also research obtaining an analytical model of the policy for

stochastically deteriorating systems (Grall et al., 2002). However, spare parts issues

are not included on those papers. Furthermore, there are several researches for

CBM policies that consider unlimited spare parts which always are available (Amari

& McLaughlin, 2004). Nevertheless, the focus of this paper is on critical spare parts

which are, precisely, not available in store. According to (Wang et al., 2008), few

existing ordering and replacement policies are proposed in the context of condition-

based maintenance. In fact, the work described by Wang et al. (2008) aims to optimize

CBM and spare order management jointly. Kawai (1983a) and Kawai (1983b) consider

optimal ordering and replacement policy of a Markovian degradation system under

complete and incomplete observation, respectively. However, the difference between

this paper and the works stated above is the need to install a user-friendly technique

to decision-making process for asset managers in order to improve the spare parts

management considering the unique characteristics of CMS. In accordance with current

industrial requirements, a graphical tool of this type could be easy to implement.

Spare parts estimation based on reliability and environment-operational conditions is

a method to improve supportability. This method can guarantee non-delay in spare

parts logistics and to improve production output (Ghodrati et al., 2010).

3.2 Spare Management Performance: Condition-Based Service Level

There are several definitions to measure spare management performance. According

to (Feeney & Sherbrooke, 1965) three obvious indicators are ready rate, fill rate, and

units in service. Ready rate is the probability that an item observed at a random point in
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time has no back orders (back order is considered as any demand that cannot be met

from stock). Fill rate is defined as the expected number of units demanded per time

period for an item that can be immediately satisfied from stock at hand. Meanwhile,

units in service are the expected number of units in routine resupply or repair at a

random point in time. The work stated by (Louit, 2007) uses the instantaneous reliability

of stock term as one of its criteria for determining an optimal stock level. Instantaneous

reliability is defined as the probability of a spare being available at any given moment

in time. This measurement can be equivalent to fill rate. In spite of these valuable

definitions, the spare part reliability concept used in this paper is significantly different.

The source of this distinction is given by the critical nature of spare parts which are

considered in this paper, specially its uniqueness characteristic. Usually, these kinds of

critical spare parts are not available in store, thus a common concept such as fill rate is

not completely applicable.

For the latter reason, it seems appropriate to introduce a new concept which we

have called as “Condition-Based Service Level” (CBSL). CBSL is based on the stress-

strength interference theory (Ebeling, 2005). This theory considers two main variables:

a stress which is any load applied on a system and that may produce a failure (in

this case, depletion on service level), and a strength which is the maximum value that

system can withstand without failing. Therefore, CBSL is defined as the probability

that the stress does not overcome the strength. Stress-strength interference models

are widely applied in component reliability analysis (Xie & Wang, 2008). Due to the

model ability to be used when probability distributions are known and, also, both stress

and strength could be general in meaning (Xie & Wang, 2008), it is possible to adapt

a version. For purposes of this paper, stress can be represented by lead time and

strength by conditional reliability.

The paper presents a graphic method which uses CBSL as key indicator, to achieve an

effective policy to define the suitable time for CMS ordering, through a rule decision based

on both condition-based reliability function and a stochastic/fixed lead time. The aim of the

paper is orienting the decision about CMS ordering or to continue the operation process

without ordering. The reliability threshold can be chosen by each company according to

their own needs of service level.
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Having introduced the importance of CMS ordering process in the context of operational

continuity, the rest of the chapter is organized as follows: Section 3.3 indicates the model

formulation. Section 3.4 shows the associated case study. Finally, Section 3.5 reveals the

conclusion of the work.

3.3 Model Formulation

In order to precise the CMS ordering decision-making, it is necessary to estimate the

conditional reliability and add the influence of lead times. The following items define

the calculation methodology of these aspects.

3.3.1 Conditional reliability model

For the sake of self-containment, we describe in detail relevant elements which

are developed in Banjevic, Jardine, Makis, and Ennis (2001); Banjevic and Jardine

(2006). Reliability function is based primarily on the Markov Failure Time Process

model. The reliability function of an item can be defined as the probability of

survival after a certain interval of time t. For the conditional case (namely,

assuming that item has been operated by a time x), the probability of interest is

P (T > t|T > x), where T is the equipment lifetime. This reliability is interesting in

CBM, given that it is assumed that the item has been operated until the inspection

moment (Louit, 2007). It is assumed that hazard rate can be incorporated into

the model using PHM, e.g. Cox (1972); Pascual, Martı́nez, Louit, and Jardine

(2009); Vlok, Coetzee, Banjevic, Jardine, and Makis (2002). This method is widely

accepted in order to incorporate condition data of equipment (Louit, 2007) (as

used in CBM). Hence

λ(t) = λ(t, Z(t)) = λ0(t)e
∑

i γiZi(t), (3.1)

where λ0(t) is a baseline hazard rate, while γi is the weight of each time-

dependent covariate Zi(t). For the present paper, a Weibull-PHM was used, thus

the hazard rate is

λ(t) = λ(t, Z(t)) =
β

η

(
t

η

)β−1

e
∑

i γiZi(t), t ≥ 0. (3.2)
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The use of Non-Homogeneous Markov Process (NHMP) is of particular interest

in applications of CBM (Louit, 2007; Banjevic & Jardine, 2006). Transition

probabilities (from a state i to a state j, of covariates under study) can be defined

as

Lij(x, t) = P (T > t, Z(t) = j|T > x, Z(x) = i), x ≤ t, (3.3)

where T is a random variable representing the failure time of the item. Note that

covariates Z(x) can be discretized within intervals using values ranges for a finite

number of states: 0, 1, 2, . . . , s. For example, if the condition under study is the oil

level of a motor, the states could be described through intervals with levels limits

as: “low”, “normal”, and “dangerous”.

Thus, it is possible to find a relationship between hazard rate and transition

probabilities Lij(x, t) (Banjevic & Jardine, 2006). The reliability of interest can

be obtained combining both concepts (conditional probability and PHM). The

reliability at time t, given that the spare has survived until a time x, and at that

time x the condition is Z(x) = i, is given by

R(t|x, i) = P (T > t|T > x,Z(x) = i) =
∑
j

Lij(x, t), x ≤ t. (3.4)

If the matrix L(x, t) = [Lij(x, t)] is defined and it is assumed that L(x, x) = I (where

I is the identity matrix), the Markov property can be used (Banjevic & Jardine,

2006). Using the methodology stated in Banjevic et al. (2001), it is demonstrable

that all functions Lij(x, t), x ≤ t satisfy the following system of equations

∂

∂t
L(x, t) = L(x, t)L(t) = L(x, t)(Λ(t)− D(t)). (3.5)

Let:

• Λ(t) = [λij(x)] is the matrix of transition rates. The transition rates λij(x) can

be estimated using the approach of Banjevic et al. (2001).

• D(t) = [λ(t, i)δij] is a diagonal matrix, with δij = pij(x, x) (i.e., it takes the

value 1 when i = j, and the value 0 when i 6= j). For this particular case,

D(t) =

[(
β
η

(
t
η

)β−1

e
∑

i γiZi(t)

)
δij

]
.
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In order to solve the system described in Equation (3.5), two cases are

identified (Banjevic & Jardine, 2006):

• Case I: If the failure rate is only a function of the condition process, namely:

λ(t) = g(Z(t)). Then, the solution is given by

L(0, t) = e(Λ−D)t. (3.6)

• Case II: If the failure rate is a function of age and current condition state,

namely: λ(t) = g(t, Z(t)). Thus, the solution can be approximated by the

following method called “product-property”

L(k∆,m∆) ≈
m−1∏
i=k

L̃[i], (3.7)

where

L̃[k] = e−
∫ (k+1)∆
k∆ D(t)dteΛ∆. (3.8)

∆ defines the approximation interval length, such that: k∆ ≤ x ≤ (k + 1)∆

and (m − 1)∆ ≤ t ≤ m∆, k < m (Louit, 2007). In general, while the value

of ∆ is smaller, the precision of the reliability estimation is better (Banjevic &

Jardine, 2006) (but also the amount of iterations will be larger).

The stated Case II corresponds to Weibull-PHM model used in this paper, because

of it depends on age and condition. Then, the “product-property” method was

used in order to estimate the matrix of transition probabilities, and consequently,

the reliability function. In Banjevic and Jardine (2006) also is defined other

method to estimate the solution of the system of equations (3.5), called “product-

integral” method. However, the “product-property” method is more accurate than

the “product-integral” method when larger values of ∆ are used. Besides, the

“product-property” method is convenient because it requires the estimation of only

one transition matrix.

3.3.2 Condition-Based Service Level (CBSL)

CBSL could be estimated adapting the structure given by stress-strength

interference theory (Ebeling, 2005). Let x be the stress random variable and f(x)

be its probability density function. Likewise, let y be the strength random variable
41



and f(y) be its probability density function. Therefore, the probability that stress

does not exceed an x0 value is

P (x ≤ x0) = Fx(x0) =

∫ x0

0

fx(x)dx. (3.9)

Also, the probability that strength does not exceed an y0 value is

P (y ≤ y0) = Fy(y0) =

∫ y0

0

fy(y)dy. (3.10)

In order to calculate CBSL, this paper uses lead time as equivalent to stress

and conditional reliability as equivalent to strength. While conditional reliability

is estimated using the model described in Section 3.3.1, the work adds the effect

of lead time considering two cases described by Ebeling (2005): (i) stochastic

lead time (stress) and stochastic conditional reliability (strength), and (ii) constant

lead time (stress) and stochastic conditional reliability (strength).

3.3.2.1 Stochastic lead time and stochastic conditional reliability

If both variables are stochastic, CBSL is the probability that lead time (stress)

is less than conditional reliability (strength). Or equivalently, the probability that

conditional reliability exceeds lead time. As a result, CBSL is given by

CBSL = P (x ≤ y) =

∫ ∞
0

[∫ y

0

fx(x)dx

]
fy(y)dy

=

∫ ∞
0

Fx(y)fy(y)dy.

(3.11)

Figure 3-1 exhibits the CBSL which is defined by the area where both tail curves

overlap or interfere with each other. This interference analysis between stress and

strength is the reason of the theory name.

3.3.2.2 Constant Lead time and Stochastic Conditional Reliability

If the lead time is a known constant value xs and conditional reliability is a

random variable, then CBSL is the probability that conditional reliability exceeds
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Figure 3-1: CBSL as overlap of conditional reliability and lead time

the constant lead time. Hence

CBSL = P (y ≥ xs) =

∫ ∞
xs

fy(y)dy. (3.12)

Consequently, this instance could be considered as a special case of when both

stress and strength are stochastic.

3.3.3 Spare part ordering decision rule

Considering a deterministic lead time L, spare part ordering time To is defined

by time Tth at which desired reliability threshold Rth is reached. Note that

often a constant lead time is not the case and variations on the delivery time

exist (Pascual, Martı́nez, et al., 2009). Companies can choose several scenarios

of reliability threshold in order to obtain a given service level. Therefore, the

decision rule can be described by

To = inf{t ≥ 0 : L ≥ Tth}. (3.13)

Figure 3-2 illustrates this rule. It uses data from a numerical example given

by Banjevic and Jardine (2006). If lead time L is less than Tth at a given inspection

time t (case shown by L1) then equipment can continue operating with the same

spare part, because there is enough time until the arrival of a new spare faced

with a potential need (because of the policy to keep reliability Rth). If lead time
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Figure 3-2: Spare part ordering decision rule

Table 3-1: Baseline hazard rate parameters for electric motor

Parameter Value Units

β 3.5

η 19003 (h)

γ 0.0001742 (ml/particles)

L is greater than Tth (case shown by L2) then an ordering decision is required,

otherwise spare part will not be able to ensure the operational continuity of the

equipment supported by the spare-stocking. If lead time L and Tth are equal then

an ordering decision must be also made, because this situation is likely to require

a setup time for the new spare part.

3.4 Case Study

The following case is an adapted version of a case study described by Pascual,

Martı́nez, et al. (2009). The spare of interest is an electric motor of a mining haul

truck and, based on expert judgement, oil is the key factor to model the condition

process. Table 3-1 describes the model parameters. Covariates were discretized in

three bands, as shown in Table 3-2. In addition to, Table 3-3 indicates the estimated

matrix of transition probabilities.
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Table 3-2: Oil initial system states and covariate bands

Initial state Covariate band (ml/particles) State value (particles/ml)

State 0 (0 . . . 53.73) 7

State 1 (53.73 . . . 87.91) 76.5

State 2 (87.91 . . .∞) 11586

Table 3-3: Transition probabilities for motor condition

j 1 2 3

p1-j 0.99797 0.00202 0.00001

p2-j 0.00159 0.99832 0.00009

p3-j 0.00317 0.00181 0.99505
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Figure 3-3: Conditional reliability function at different oil initial states

Figure 3-3 shows the conditional reliability function estimated for 3 different initial states

of oil, using the methodology indicated in Section 3.3.1. Working ages have been set

in operational hours (h).

Furthermore, conditional reliability is fitted with a Weibull distribution for different initial

survival times (t0 = 0 (months), t0 = 12 (months), and t0 = 24 months)). Figure 3-4

displays the model fit. A Kolgomorov-Smirnov test was applied to prove the model and

the results were satisfactory.
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Figure 3-4: Weibull model fit for conditional reliability for different initial survival times

Having set the Weibull distribution for conditional reliability and considering the CBSL

definition, the two cases mentioned in Section 3.3.2 are tested. Firstly, the case where

both lead time (stress) and conditional reliability (strength) are stochastic. Secondly,

the case where conditional reliability is stochastic, but lead time is constant.

3.4.1 Condition-Based Service Level considering stochastic lead time

We tested using different distributions for lead time (including constant lead time in

next section). In this sense, the aim is determining the capability to withstand the

lead time variability. The choice of any lead time distribution is defined by delivery

constraints of spare part supplier. Figure 3-5 exhibits four distributions which are

considered to fit lead time, namely: Exponential, Truncated Normal, Weibull with

2 parameters (Weibull (2p)), and Weibull with 3 parameters (Weibull (3p)). The

same mean is set for all distributions. Using an estimated operational utilization of

80%, mean lead time is set at 2,730 (h) (3 operational months).

Figure 3-6 exhibits a performance realization as a result of evolution over time (t)

because of interaction between conditional reliability and lead time. Conditional

reliability has been fitted as a Weibull (2p) distribution. Figure 3-7 is a top view

of the same realization which illustrates that CBSL (probability that strength is

greater than stress) is declining as the conditional reliability decreases. In other

words, component is becoming older over time because the evolution of condition,

thus service level is also declining.
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Figure 3-6: Performance realization of stress versus strength

Figures 3-8, 3-9, 3-10, and 3-11 show the values of CBSL for different scenarios of

mean lead time and for different initial survival times. Standard deviation depends

on each distribution. If CBSL is greater than a given reliability threshold Rth,

then the system is able to resist stress satisfying the desired service level. Thus,

equipment can continue operating and a spare part order is not necessary. On

the other hand, if CBSL is less than Rth, then a spare part order is mandatory

because of spare part will not be able to withstand the lead time variability, and

the desired reliability would not be accomplished.

47



Figure 3-7: Top view of CBSL for a given realization
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Figure 3-8: CBSL for initial survival time of 0 (months)

3.4.2 Condition-Based Service Level considering constant lead time

Table 3-4 evidences the decision-making for different reliability thresholds and

their respective working ages, where spare part ordering depends on the decision

rule (Section 3.3.3). In the current case, three threshold values are considered,

namely: 99%, 95%, and 90%. Three lead time scenarios in order to realize the

effect of them on service level are considered. Markov reliability model allows

setting any initial condition for spares. In this regard, a complete range of practical

operational environments can be represented. For instance, if it is assumed that

the motor is new, then the initial condition is “as-good-as new” (“State 0”).
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Figure 3-9: CBSL for initial survival time of 3 (months)
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Figure 3-10: CBSL for initial survival time of 6 (months)

As expected, when lead time is increasing, reliability constraints are more

demanding and ordering decision time turns sooner. As shown in Table 3-4, for a

reliability threshold of 95%, the decision changes from “continue” without ordering

to “order” the spare, when the lead time increases from 847 (h) to 3388 (h). On

the other hand, initial condition states also play a role. For a lead time of 1694 (h)

and at the same reliability threshold of 95%, a greater deterioration level makes to

change the decision from “continue” to“order”.

Working age of this decision map makes practical sense until approximately 6

months of expected lead time. If lead time is greater than that period, then it could
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Figure 3-11: CBSL for initial survival time of 12 (months)

Table 3-4: Motor ordering decision for different reliability thresholds and lead time
scenarios

Expected lead time :

910 (h) (1 month)

Expected time (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 494 467 122 Order Order Order

95% 1753 1723 1067 Continue Continue Continue

90% 3100 3074 2518 Continue Continue Continue

Expected lead time :

2,730 (h) (3 months)

Expected time to order (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 494 467 122 Order Order Order

95% 1753 1723 1067 Order Order Order

90% 3100 3074 2818 Continue Continue Continue

Expected lead time :

5,460 (h) (6 months)

Expected time to order (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 494 467 122 Order Order Order

95% 1753 1723 1067 Order Order Order

90% 3100 3074 2518 Order Order Order

be better to stock spare parts. However, CMS are unique and are not backed-

up. Therefore, another important factor is when the component becomes older.

Figure 3-12 demonstrates this situation, considering different scenarios of η to
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Figure 3-12: Conditional reliability considering aging by depletion of η

Table 3-5: Motor ordering decision for different reliability thresholds and several
lead time scenarios by depletion of η

Expected lead time :

910 (h) (1 month)

Expected time (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 284 283 227 Order Order Order

95% 1074 1068 917 Continue Continue Continue

90% 1905 1897 1691 Continue Continue Continue

Expected lead time :

2,730 (h) (3 months)

Expected time to order (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 284 283 227 Order Order Order

95% 1074 1068 917 Order Order Order

90% 1905 1897 1691 Order Order Order

Expected lead time :

5,460 (h) (6 months)

Expected time to order (h) Ordering decision

Reliability threshold State 0 State 1 State 2 State 0 State 1 State 2

99% 284 283 227 Order Order Order

95% 1074 1068 917 Order Order Order

90% 1905 1897 1691 Order Order Order

a situation of increasing aging. Table 3-5 displays the same decision map but

considering (2/3)η from the original value.
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Using new η, the situation becomes critical at a lower time. With the original

model, the scenario of “always ordering” happened just at 6 months. With new η,

the decision of “always ordering” should be already made with any initial state at

3 months. This is relevant because if lead time is 6 months, spare parts should

be purchased as soon as the component starts to operate. Then, with this map is

also possible to visualize those parts that can be classified as insurance spares.

3.5 Conclusions

This work provides a technique to enhance spare parts ordering decision-making when

companies need to ensure a reliability threshold restricted by a lead time. Case study

showed that condition data could be an accurate indicator of component state affecting

the shape of reliability function. The ordering process can be affected by different

initial survival times and initial condition states; they can change the decision for same

reliability threshold even. On the other hand, lead time is a relevant factor in ordering

decision. The ordering policy is sensitive to different scenarios of lead times; they

can also modify the spare part ordering decision if the aim is ensuring the operational

continuity of the equipment supported by the spare part stock. It was concluded that,

in order to fulfill with operational continuity, condition data can be a powerful tool for

including in spare management. The need of focus on critical spares and severe

consequences on equipment performance, demands a friendly technique which can

be used in an environment where decisions are needed quickly, in this regard, the

presented decision rule is easy to implement graphically and it can be used by asset

managers to enhance operational continuity.
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4. VALUE-BASED OPTIMIZATION OF REPLACEMENT INTERVALS FOR CRITICAL

MINING COMPONENTS

I can make a General in five minutes but a good horse is hard to replace.

— ABRAHAM LINCOLN

Critical equipment are the functional basis of performance on operating lines of asset-

intensive industries. In the support of this kind of equipment, spare parts play a fundamental

role. Critical spares are associated with both significant investment and high reliability

requirements. Their mismanagement leads to considerable impacts on financial structure

and severe consequences on operational continuity. Concordantly to this economical

criticality, there usually are few, or just zero, critical spares available at stores. In order

to overcome the need for spare-stocking, it appears the necessity for techniques with the

capacity to predict failures of spare parts before catastrophic situations occur. An efficient

method to deal with this situation is monitoring spares conditions through Condition-Based

Maintenance (CBM). Nevertheless, optimal CBM decisions are based on minimization of

direct maintenance costs, which can misguide the orientation of business objectives.

Value-adding demands enriched methods for enhancing efficiency, reliability and profitability

of decision-making processes. Continuous improvement of performance is required by

the increasing competitiveness in which companies are currently involved. Desired and

sustainable outcomes can be accomplished through an optimal approach of managing

assets (International Organization for Standarization, 2012). Asset management has

evolved from having a narrow purpose of just fixing broken items, to a strategic wider role

covering the whole life cycle system and securing future maintenance requirements (Jardine

& Tsang, 2006). This perspective creates a need for excellent practices. Asset management

excellence pursues exceptional plant efficiency by means of balancing performance, risk,

and cost within a random-nature industrial environment (Campbell et al., 2011). Accordingly,

competitive industries cope with an unceasing exigency to add value in their processes.

Growing business performance targets can be addressed by using reliability models. From

the maintenance excellence viewpoint, the optimization of asset replacement and resource

requirements decisions is essential for the continuous improvement (Jardine & Tsang,

2006). This becomes even more decisive in the case of asset intensive industries –such

as Mining, Aeronautic, Defense, or Nuclear industries– with high investment equipment to
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perform operations. The constant pressure to reduce costs and increase utilization often

leads to a stress on equipment, affecting reliability and throughput (Godoy et al., 2013).

Hence, the interest lies in improving the system reliability. The operation of essential

equipment is supported by critical components (Louit, 2007). Consequently, reliability

enhancement of complex equipment can be achieved by preventive replacement of its

critical components (Jardine & Tsang, 2006). Critical major components are often expensive

and need high reliability standards, they are habitually related to extended lead times

and influence on production and safety (Godoy et al., 2013). They are often related to

lengthy plant shutdowns with associated production losses. These expected losses have a

significant impact on tactical, financial, and logistic considerations. As a mitigation measure

to this impact, critical components are monitored by using Condition-based Maintenance

(CBM) (Godoy et al., 2013). Examples of these items within the Mining industry are: mill

liners, shovel swing transmissions, and haul truck engines. The challenge is to identify an

optimal change-out epoch to intervene in major critical components in order to meet both

reliability constraints and business goals.

Business-market conditions have the potential to change major components optimisation

decisions. Replacement optimisation criteria depend on objectives that firms attempt

to achieve. Internal scheduling principles, such as cost or availability, are traditionally

preferred for setting maintenance intervention policies. Cost minimization is based on the

assumption to balance both replacement and operating costs (Jardine & Tsang, 2006).

In turn, availability maximization (or downtime minimization) is in search of a balance

between preventive replacement downtime and failure replacement downtime (Campbell et

al., 2011). Using this kind of criteria, an optimal components overhaul and replacement

policy can be properly defined to accomplish internal performance targets. Nevertheless,

these widely-used practices do not usually consider relevant external factors, such as current

business scenario at replacement epoch. Commodities price is an example of these external

conditions in asset intensive industries. Different commodity prices (e.g. copper) may

postpone or accelerate cost-based replacement decisions. If a favourable-price scenario

is faced, then it could be more profitable to delay the intervention epoch and continue

operating. This decision, however, needs to be balanced against the risk of unplanned

failure. Figure 4-1 describes this decision rule. Although the minimum cost would still

be an optimal point, external conditions should modify replacement policies in pursuit of

increasing revenues and adding value. In consequence, internal criteria might disregard
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Figure 4-1: Value-adding decision rule

valuable decision-making information, which can be covered when business conditions are

taken into account.

In order to overcome the abstraction from business conditions, we have proposed a

component replacement policy focused on economic benefits over the time-span given

by major shutdowns. To estimate revenues, several commodity price scenarios have

been contemplated during intervention time-windows. Instead of exclusive consideration

of involved costs, the criterion is based on both maximization of revenue and achievement

of reliability goals. For purposes of this work, this approach has been termed value-adding.

In order to meet business needs, the question arises from addressing the best moment to

intervene. The purpose is to take advantage of extra-benefits at favorable commodity prices

epochs. Therefore, the aim of this work is to advise the decision-making process about

the best epoch to replace major components under the value-adding criterion. The paper

presents a model to establish such optimal epoch. Variables examined are estimation of

net benefits subject to an interest rate for discounting, commodity prices, condition-based

reliability, intervention costs, and expected downtime during major component shutdowns.

Relevant assumptions and limitations of the model are the following:
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• It is not intended to provide a perfect forecast of copper prices, but rather the objective

as value-adding is to include other relevant decision factors in addition to traditional

cost minimization.

• Following previous idea, value creation can be considered as the difference between

free cash flow and capital employed multiplied by the weighted average cost of

capital (Adams, 2002).

• Short-term models are not suitable for the kind of components of this work. Major

intervention intervals are set by several months or even years, and associated

shutdowns by weeks.

Once the relevance of both reliability and production value conditions in CBM decisions has

been introduced, the rest of this chapter is structured as follows. Section 4.1 describes

the model formulation which includes the value-adding as major component intervention

criterion. Section 4.2 illustrates a case study for the Mining industry. In Section 4.3,

conclusions about the application are announced.

4.1 Model formulation

As discussed, this model attempts to establish an optimal change-out epoch to

intervene in major critical components under an entire maintenance process value

criterion. The following sections describe the calculation methodology of conditional

reliability function and value-adding optimization model.

4.1.1 Conditional reliability function

The reliability function of an item is its probability of survival over a certain time

interval. Let P (T > t|T > x) be the conditional probability, where T is the

lifetime of the component which has already been operated by a time x. As a

CBM strategy has been selected, it is necessary to estimate a hazard rate λ(t)

which includes the equipment condition. Proportional Hazards Model (PHM) (Cox,

1972) allows incorporating this conditional information. In this work, a hazard rate

from Weibull-PHM model is used. Where γi is the weight of each time-dependent

covariate Zi(t) which describes the condition process of interest.

λ(t) = λ(t, Z(t)) =
β

η

(
t

η

)β−1

e
∑

i γiZi(t), t ≥ 0. (4.1)
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A conditional reliability function has been set following the procedure described

in Banjevic and Jardine (2006). Let Lij(x, t) be the transition probabilities of

covariates under study (from a state i to a state j) defined by the following Non-

Homogeneous Markov Process

Lij(x, t) = P (T > t, Z(t) = j|T > x, Z(x) = i), x ≤ t. (4.2)

Therefore, the reliability at time t, given that the critical component has survived

until a time x with a condition Z(x) = i, is estimated by

R(t|x, i) = P (T > t|T > x,Z(x) = i) =
∑
j

Lij(x, t), x ≤ t. (4.3)

4.1.2 Traditional cost optimization models

In case of short-term component replacement decisions, (Jardine & Tsang, 2006)

suggest the minimization of total expected cost per unit time C(tp), as the ratio

between the total expected replacement cost per cycle and the expected cycle

length. Where Cp and Cf are the total cost of a preventive replacement and a

failure replacement, respectively, and M(tp) is the mean time to failure. Hence,

the model in order to find an optimal age tp to perform a component replacement

is

C(tp) =
CpR(tp) + CfF (tp)

tpR(tp) +M(tp)F (tp)
. (4.4)

In case of long-term capital equipment replacement decisions, the need for

including an interest rate for discounting is addressed. The goal is to establish

an optimal replacement age n to minimize total discounted cost C(n). The model

presented by Jardine and Tsang (2006) is

C(n) =

∑n
i=1Cir

i + rn(A− Sn)

1− rn
, (4.5)

where Ci is the operation and maintenance cost in the ith period, A is the

acquisition cost of capital equipment, Sn is the resale value of equipment, and

r =
(

1
1+interest rate/100

)n
is the discount factor.
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4.1.3 Value-adding optimization model

Although the usefulness of previous optimization models presented, unique

characteristics from major critical components considered in this work make the

need for a new concept. Replacement of these components cannot be treated

as a short-time decision; thus, the model from Equation (4.4) is not completely

applicable. On the other hand, though these components are not exactly capital

equipment, their replacements imply medium-long term decisions as the model

from Equation (4.5). Hence, a combination of both models is a suitable option

for major critical component replacement. As discussed by Jardine and Tsang

(2006), when the time value of money is incorporated into analyses of discounted

benefits (or equivalently value-adding V , as contemplated in this work)

max (V ) = max
[
v(tr) + v(tr)r

i + v(tr)r
2i + . . .+ v(tr)r

(n−1)i
]
. (4.6)

Rather than using
[
v(tr)
tr

]
as in short-term models, maximizing benefits is

equivalent to

max (V ) ≡ max

[
v(tr)

1− rn

]
. (4.7)

In consequence, the goal of this value-adding optimization is addressing both

business goals and conditional reliability from CBM strategies. This new model

has been designed as follows.

Net benefits, NB(tr), are given by

NB(tr) = Revenues(tr)−Operating Costs(tr)

= (Plb(tr)− Clb(tr)) Production(tr),
(4.8)

where Plb and Clb are the market commodity price and the production cost,

respectively.

As benefits, BEN(tr), are dependent on conditional reliability function, then

BEN(tr) = NB(tr) ·OEE ·R(t|x, i), (4.9)

where OEE = Utilization× Performance×Quality.
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Intervention replacement costs (Crp) per cycle are set as done by traditional

models, but using CBM conditional reliability and with the distinction given by

analysis from Equation (4.9), as follows

Crp = Cp ·R(t|x, i) + Cf · F (t|x, i). (4.10)

When dealing with costs, models habitually only consider intervention costs. To

surpass this limitation, breakdown cost (Cbd) during components shutdown has

been added.

Cbd = cs

∫ ti+∆shutdown lengthi

ti

(1−R(t|x, i))dt, (4.11)

where the shortage cost rate cs is the production loss caused by the equipment

downtime.

The aim is to establish a major critical component replacement interval (n)

that maximizes the profit net margin between discounted benefits BEN(tr) and

replacement costs, over a long period, rather than only cost minimization. Thus,

the model for maximizing value is defined as

max (V (n)) ≡

max

[∑n
i=1 BENir

i − (
∑n

i=1 (Crp + Cbd) r
i + rn (A− Sn))

1− rn

]
.

(4.12)

Due to the kind of components dealt in this work, Sn could be ignored. Equivalent

Annual Cost (EAC) can be calculated using the capital recovery factor (CRF) as

follows: EAC = max (V (n)) · CRF. When models are based on a geometric

progression over an infinite period, then CRF equals the interest rate.

4.2 Case study

The following is an adapted version of a case study described by Pascual, Martı́nez,

et al. (2009). The critical component of interest is a motor stator on a SAG mill in

a northern Chile mining firm. Expert criterion has suggested setting oil as the factor

to explain the condition process (Zi(t)). After the conditional reliability is calculated,

the optimal replacement times under both minimization of costs and value-adding

optimization are compared.
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Table 4-1: Transition probabilities for motor stator condition

j 1 2 3

p1-j 0.99797 0.00202 0.00001

p2-j 0.00159 0.99832 0.00009

p3-j 0.00317 0.00181 0.99505
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Figure 4-2: Weibull-PHM conditional reliability for different initial states of oil

4.2.1 Condition-based reliability

As discussed in the methodology section, estimated parameters using Weibull-

PHM are: β = 3.35, η = 22,531 (h), and γ = 1.74210−4 (ml/particles). Table 4-1

indicates the matrix of transition probabilities.

Figure 4-2 shows the conditional reliability function using the methodology

described in section 4.1.1. Despite a continuous degradation through the time-

span, oil levels are assumed to be in the best level at the beginning of the analysis,

e.g. at component installation moment. The application of a Kolgomorov-Smirnov

test on model results has been satisfactory. This estimated reliability is used as

output for optimization models presented in the following sections.
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Table 4-2: Cost parameters for optimization model

Parameter Value Units

Preventive replacement cost 150,000 US$

Corrective replacement cost 318,000 US$

Shortage cost rate 2,349 US$/h

Acquisition cost 900,000 US$

4.2.2 Application of traditional cost optimization model

Table 4-2 lists cost parameters used in this case study. It is assumed no resale

value of replaced component. Interest rate for discounting is 10% annual. After

adapting Equation (4.12) for only consideration of internal costs, the optimal

replacement time is estimated as: 17 (months) with a total discounted cost of

US$ 1,822,247 (EAC = US$ 190,813).

4.2.3 Application of value-adding optimization model

Net benefits were calculated through an estimation of commodity prices during

the study period. A lesson learned from this process is explained as follows. In

the first place, a Markov process was used and validated by 3 years of copper

prices historical data. But then, as the idea is to facilitate the model applicability, a

simpler but reasonable moving average method was used. Mean squared errors

from moving average were sufficiently close to more advanced methods, such

as exponential and logistic autoregressive models (ESTAR and LSTAR) or first-

order autoregressive process AR(1). See Engel and Valdés (2002) for a further

explanation of these methods on copper price forecasts.

Inspection periods were set by trimesters. Hence, OEE was also varying

through the case study length. Namely, utilization and productivity were changing

during the scope time. Therefore, the best time to replace the motor stator

under value-adding maximization criteria is by: 21 (months). The highest

net benefit is achieved at this time. Thus, the discounted value V (n) is:

US$ 7,058,243 (EAC = US$ 739,090). Figure 4-3 illustrates a comparison

between cost optimization model and value-adding model. Optimal points from

both criteria denote the difference of replacement epochs. If value-adding

criterion is adopted, then replacement decision is postponed by 2830 (hours),
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Figure 4-3: Comparison of optimal replacement times under cost and value-
adding optimizations

approximately 4 (months). This new epoch should be a helpful factor in long-term

major shutdowns planning.

Despite of this is a particular case, it is clear to note that when both value

creation and reliability are taken into account rather than internal costs, the critical

component replacement epoch is highly susceptible to be modified (postponed or

accelerated) in favor of financial strategy.

4.3 Conclusions

This work has presented a model to determine the optimal epoch to replace major

critical components with lengthy shutdowns associated, under a value-adding criterion

which allows addressing both conditional reliability and business goals. It has

been shown that conditional reliability under a CBM strategy is a suitable input to

replacement methods, as a measure of performance monitoring of high financial impact

components. Value creation strategy has enriched the decision-making process, by

quantifying the real value of postponing or accelerating the right epoch to perform an

intervention. Copper prices were included into value-adding analyzes, but performance

measurements, such as OEE, are reasonable options. Rather than an accurate

prediction of commodity prices, the general aim of this work is to diffuse a new concept

in pursuit of business goals instead of simply cost minimization. Due to the fact that the

components considered support critical equipment, model results have the potential
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to be useful decision elements in long-term major shutdowns planning. Continuous

improvement and firm profitability is favored when value-adding approach is included

in asset management conception, as a systemic viewpoint of the whole business.
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5. OPTIMIZING MAINTENANCE SERVICE CONTRACTS UNDER IMPERFECT

MAINTENANCE AND A FINITE TIME HORIZON

Our success has really been based on partnerships from the very beginning.

— BILL GATES

The introduction of standards such as the impending ISO 55001 (International Organization

for Standarization, 2012) or PAS-55 (British Standards Institution, 2008) , and the

increasing concern on sustainable manage life cycle costs have intensified the use of

asset management techniques to estimate resources from system design, to operation and

disposal (Jardine & Tsang, 2006; Lugtigheid et al., 2007). One way to achieve that is to

balance in-house resources and to outsource business functions like maintenance.

Before the 1970s, most equipment maintenance was done with in-house resources.

Nevertheless, due to the systems have been growing in complexity, it is more competitive

that system service can be supplied by specialized external agent with specialized

equipment (Ding, Lisnianski, Frenkel, & Khvatskin, 2009). In the last decade, maintenance

outsourcing has significantly increased its relevance. Outsourcing has become a business

key to reach a competitive advantage, since products and services can be offered by outside

suppliers in a more efficient and effective way (Yang, Kim, Nam, & Min, 2007). There has

also been a paradigm shift in asset management, in which maintenance has evolved from

a cost-generating activity to a value-adding function; nowadays, outsourcing is viewed as a

mode not only to ensure cost objectives, but also accessing better quality of service and

improving the product delivery capability (Kumar, 2008). Outsourcing also involves risk

transfer. The cost of this transfer may be estimated as the difference between outsourcing

a task and performing it in-house (Dunlop, 2004). Through maintenance externalization, a

set of advantages are obtained for the client, namely: (i) best maintenance practices due

to expertise of the providers and the use of the latest maintenance technology, (ii) risk

mitigation of high costs by setting for-purpose service contracts, (iii) reducing of capital

investments, and (iv) in-house managers can spend more time in the strategic aspects

of the business. On the contrary, some disadvantages are: (i) cost of contracting scarce

services, making it possible to increase monopolistic behavior from the contractor, (ii) a

potentially risky dependency, e.g., control of machine availability transferred to a contractor,

(iii) loss of corporative know-how, and (iv) the need to supervise the attainment of contract

goals (and corresponding conflicts in case of non-performance) and to manage external
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resources (Jackson & Pascual, 2008). This last issue is critical since employees reporting

may cause conflicts between the contractor and the client. Employees technically report to

the contractor, but in fact, they are often under direct control of the client (Kumar, 2008).

Possible litigation problems may also arise in the service sourcing relationship, for example,

an accident involving contractors (Cawley, 2003). The optimal profile of risk implies a

practical offsetting of operational risks and litigation risks (Dunlop, 2004).

A potential side product of outsourcing is backsourcing. It refers to the internalization

process after the outsourcing has failed. Whitten and Leidner (2006) show that although

the choice to outsource has been exhaustively considered by researchers, the decision to

backsource has not received equal attention. According to them, product quality, service

quality, relationship quality, and switching costs are variables related to the decision to

implement backsourcing. Likewise, internal strategic guidelines of organizations also have

an effect on the decision to backsource. Wong and Jaya (2008) suggests that service

sourcing strategies can be influenced by power and politics at top level management,

because managers have different experiences, backgrounds, philosophies, and knowledge,

which may impact the decision-making process.

The existence of poorly defined contracts often produces a difference between the

service level delivered by contractors and the performance expected by clients. This

gap may become an important factor to consider when choosing between in-house or

outsourcing (Wong & Jaya, 2008). Tseng, Tang, Moskowitz, and Plante (2009) point out

that services provided by contractors should be explicit in maintenance contracts conditions

in order to avoid unilateral decisions by contractors or clients. Tseng et al state that this

specification creates a certain rigidity of contractual terms, and factors such as scheduling

of maintenance activities or flexibility for adopting new technologies have an impact on

maintenance outsourcing coordination. In the current increasing competitive industry

scenario, effective channel coordination has become crucial; which has attracted the interest

of numerous empirical and theoretical studies (Tarakci et al., 2006a). The situation highlights

the need for designing performance-based contracts to achieve a win-win coordination for

clients and contractors at the same time; namely, a channel coordination.

Desired channel coordination is relevant not only to for-profit companies, but also to service-

oriented organizations. Non-profit organizations have some characteristics that differentiate

them from the profit-centered companies, including: (i) non-profit organizations do not have
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owners, (ii) these firms are not allowed to make a profit, and (iii) many of these organizations

have tax privileges (Glaeser, 2002). The focus of non-profit organizations is on achieving a

high service-level. An example of this situation, it may be found in defense industry, where

the equipment availability is critical to provide dissuasive power to the country.

Having introduced the relevance of maintenance outsourcing, its specific drivers and border

conditions, and the need for contracts to attain channel coordination, the rest of the chapter

is structured as follows. Section 5.1 shows the problem formulation noting the implications

of imperfect maintenance and finite-horizon service contracts. The model formulation is

explained in Section 5.2. Section 5.3 presents the coordination mechanisms for profit

centered clients. Section 5.4 describes the case of non-profit centered clients. Finally,

Section 5.5 provides the conclusions of the work.

5.1 Problem formulation

Coordination in the supply chain, i.e. channel coordination, plays a relevant role

on outsourcing. In the current dynamic environment, coordination of the parties

is essential for services in the chain. Kumar (2001) suggests that two types of

coordination are necessary in supply chain management: horizontal coordination

(between the players who belong to the related industry) and vertical coordination

(across industry and companies). Although the need for coordination is becoming

increasingly evident, efforts to create infrastructures to enact such coordination are

still in their early stages. Kumar states that supply chains can create systems that

integrate instant visibility and whole dynamic supply chains on an as-needed basis.

Those chains are more likely to reach competitive advantages over those that do not

adopt such systems (Kumar, 2001).

There are several methods to achieve cooperation among a client and a contractor.

A common practice is to use a work package contract which specifies a maintenance

strategy and a cost structure that leads the contractor to accept the deal. This kind

of contract falls into the category of labor plus parts, in which the contractor sees no

incentives to improve its performance (Tarakci et al., 2006a), as the more its services

are required, the more the contractor earns. For the contractor, the usual focus is

to keep customer loyalty by showing capability to outperform competitors (Egemen &

Mohamed, 2006).
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Another aspect to take into account when negotiating contracts is the system level at

which the contract acts on a system. The contract may include the maintenance of

(usually) a single component of a complex system and can also be an umbrella or

full service contract considering the whole system. An example of the first case is

presented by Tarakci et al. (2006a). The same authors study a manufacturing system

with multiple processes where each component is maintained independently (Tarakci

et al., 2006b).

Considering the need for reaching effective coordination of the supply chain, Tarakci et

al. (2006a) study incentives to maximize the total profit of the service chain. Namely,

contracts which aims to achieve a win-win coordination to maximize the profits of

the actors. According to Tarakci et al. (2006a), these contracts lead the contractor

to improve the performance of maintenance operations. They demonstrate that this

kind of contracts can be an effective tool to achieve the desired overall coordination.

Nevertheless, they consider both perfect maintenance for preventive actions and

infinite horizon contracts. These two limitations do not seem to make a realistic

condition for a full implementation of the model in the operational reality.

The inclusion of imperfect maintenance contributes to a realistic modeling of system

failure rates. Changes in failure patterns strongly influence maintenance and

replacement decisions (Pascual & Ortega, 2006). Perfect maintenance contemplates

that every maintenance action returns the system to its “as good as new” condition.

However, Malik (1979) points out that working systems under wear-out failures are

not expected to be restored to a new condition, and proposes the inclusion of a

maintenance improvement factor for imperfect repairs. Furthermore, Nakagawa (1979)

suggests that failure rate functions on imperfect maintenance cases could be adjusted

using a probability approach; thus, the action is perfect (“as good as new”) with

probability (1-α) and minimal (“as bad as old”) with probability α. Zhang and Jardine

(1998) argue that enhancements by overhauls tend to be magnified by Nakagawa’s

model and there is a possibility that the failure rate could be bounded; consequently,

the appropriateness of the model could be restrained. Zhang and Jardine present an

optional approach in which the system failure rate function is in a dynamic modification

between overhaul period, since this rate is considered between “as bad as old” and

“as good as previous overhaul period” using a fixed degree. Zhang and Jardine’s

approach is used in the model formulation of the present paper. Due to imperfect

67



maintenance sets the system failure rate between a new condition and a previous to

failure condition (Pham & Wang, 1996), the incorporation of this realistic assumption is

fundamental for model applicability.

An important aspect that should be considered during the coordination process

is the time-horizon of the contracts. This condition does not only hold because

the amortization of investments by the provider but also because the assets under

consideration suffer in general an aging process that increases the need to perform

maintenance and overhaul actions. Regarding this, Lugtigheid et al. (2007) focus

on finite-horizon service contracts. They note the lack of literature for finite-horizon

contracts, and present several methods and consider repair/replacement for critical

components. In our case, the focus is not on component level, but on system level.

Complementarily, Nakagawa and Mizutani (2009) propose finite-interval versions for

classic replacement models, such as models of periodic replacement with minimal

repair, block replacement and simple replacement. Regarding the aging process

is often an effect of imperfect maintenance practices that can be modeled using

different approaches, many of them described in references such as Wang (2002);

Li and Shaked (2003); Nicolai and Dekker (2008). Nakagawa and Mizutani (2009)

also consider imperfect maintenance models but do not split costs into in-house and

outsourcing costs. In this article we focus on the well known method described

by Zhang and Jardine (1998), but the reach of the concepts to other approaches like

virtual age models (Kijima, 1989) is straightforward.

5.2 Model formulation

Let us consider an equipment whose maintenance the client wishes to subcontract.

According to clients own needs, and considering the service supply chain benefits, he

intends to offer a contract that: (i) maximizes the sum of expected profits for the parties

along the duration of the contract, (ii) minimizes his maintenance costs subject to a

service level constraint. The first situation may appear when both parties are profit-

centered (i.e. a mine site and a haul-truck maintenance contractor). In the second

case, the client is committed to obtain a given service level and intends to minimize the

maintenance costs while the contractor is profit-centered (i.e. a hospital and the critical

equipment maintenance contractor).
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For tractability of analyses, we limit to consider the following conditions:

(i) The system failure rate function follows a Weibull distribution with shape parameter

β (integer) and

β > 1. (5.1)

(ii) A preventive maintenance action restores the system to almost as good as new

condition (Zhang & Jardine, 1998) as follows

λk(t) = αλk−1(t− T ) + (1− α)λk−1(t), (5.2)

where t represents time, k corresponds to the index of the k-th preventive action,

and α is the maintenance improvement factor with 0 ≤ α ≤ 1.

(iii) Corrective maintenance is minimal.

(iv) Direct (spare+labour) costs and durations of preventive maintenance are Cp

(monetary units, mu) and Tp (time units, tu), respectively.

(v) Direct costs and durations of corrective maintenance are, correspondingly, Cr (mu)

and Tr (tu).

(vi) The interval between preventive maintenance is T (tu).

(vii) The contractor is free to select the age T at which he will perform preventive

maintenance.

(viii) The basic service fee is p (mu/tu).

(ix) The contractor sets a minimum expected profit π (mu/tu) to participate in the

game.

(x) The net revenue of the client after production costs is R (mu/tu).

(xi) The contract lasts from the beginning of a system life-cycle to the end of the n-th

overhaul.

Before the first preventive maintenance the failure rate is

λ(t) = λ0βt
β−1, t < T. (5.3)

The expected number of failures N , after n overhauls is

N(nT ) =
n∑
i=0

 n

i

αn−i(1− α)i−1N0(iT ), (5.4)

where N0 =
∫ nT

0
λ(t)dt.
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Table 5-1: κ vs n

β κ

1 n

2 n2(1− α) + nα

3 n(n− 1)(n− 2)(1− α)2 + 3n(n− 1)(1− α) + n

For n ≥ β and β integer, the expected number of failures is

N(nT ) = κλ0T
β,

where κ depends on α and n. Some values are shown in Table 5-1.

The expected interval availability during the contract is

A(nT ) =
nT −N(nT )Tr
n (T + Tp)

, (5.5)

and the expected profit for the buyer is

Πm(nT ) = RA(nT )− p. (5.6)

The expected maintenance (direct) costs are

ci(nT ) =
nCp +N(nT )Cr
n (T + Tp)

, (5.7)

which leads to the expected contractor profit

Πc(nT ) = p− ci(nT ). (5.8)

Following the lead of Tarakci et al. (2006a),when Equations (5.6) and (5.8) are

compared for a fixed fee p, it is clear that the client wishes to maximize availability

(which is equal to utilization in our case), while the contractor wishes to minimize

maintenance costs. It is necessary to propose a contract to achieve collaboration for

both parties. With that in mind, the expected profit of the service chain is

Π(nT ) = RA(nT )− ci(nT ). (5.9)
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To achieve channel coordination it is necessary to maximize Π(nT ), however, this

situation hardly ever will be reached if both the client and the contractor try to maximize

their own objective functions, as shown in the following Lemma.

Lemma 5.1. Define

gα(T ) = κλ0

(
(β − 1)T β + βTpT

β−1
)

(5.10)

Then,

(i) The optimal solution that maximizes the client’s profit is T ∗m, which satisfies:

gα(T ∗m) = n
Tp
Tr

(5.11)

(ii) The optimal solution that maximizes the contractor’s profit is T ∗c , which satisfies:

gα(T ∗c ) = n
Cp
Cr

(5.12)

(iii) The optimal solution that maximizes the total profit is T ∗, which satisfies:

gα(T ∗) = n
RTp + Cp
RTr + Cr

(5.13)

This result is equivalent to the one developed by Tarakci et al. (2006a); however, some

significant differences exist between both results. Note that the definition of gα(T )

differs from the definition of g(T ) proposed by Tarakci et al. in a κ factor which depends

on both n and α. This factor is important, as it takes into account that the contract has

a finite time horizon and that overhauls don’t leave the system in a as good as new

condition.

With the following Lemmas, we discuss the dependence of the function gα(T ) on

model’s constants and the effect of finite time horizon and imperfect maintenance

hypothesis in the setting of optimal preventive maintenance (PM) intervals.

Lemma 5.2. In ceteris paribus condition:

(i) The optimal maintenance intervals for the client, the contractor, and the service

chain decrease in the scale and shape parameters of process failure-rate function.

(ii) The optimal PM interval T ∗m for the client increases in the PM time Tp, but that of

the contractor (T ∗c ) decreases in PM time.
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Lemma 5.2 is completely analogous to the one proved by Tarakci et al., and it shows

the same intuitive facts for our case; if there is a higher process deterioration rate, more

frequent overhauls would be necessary from the point of view of all players. However,

if an improvement in the PM time is made for the contractor, the effect on optimal times

will be opposite for the parties, and channel coordination will be more difficult to reach.

On other hand, in a first analysis of Equations (5.11), (5.12) and (5.13), it would appear

that if n is increased, then the optimal intervals will be increased. This observation is

not valid, because gα is a function that depends on n, so it is not straightforward how

variations on n affects the value of optimal PM intervals.

The following Lemmas show an interesting relationship between κ(α, n) and n, which

allow us to understand the dependence of the optimal PM intervals on contract’s

horizon time.

Lemma 5.3. Let

κ(α, n) =
n∑
i=0

(
n

i

)
αn−i(1− α)i−1iβ (5.14)

α ∈ [0, 1], β ≥ 1 and n ∈ N, then:

κ(α, n) ≥ n (5.15)

Lemma 5.4. Let n, i ∈ N, n ≥ i, β ∈ R, β ≥ 1, then:(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
iβ ≥ (n+ 1)

(
n

i− 1

)
(i− 1)β (5.16)

Lemma 5.5. Let α ∈ [0, 1], β ≥ 1 and n ∈ N, then:

n

κ(α, n)
≥ n+ 1

κ(α, n+ 1)
(5.17)
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Tarakci et al. (2006a) showed that the optimal PM intervals, assuming an infinite time

horizon and a renewal process, were given by

g(T ∗mrp
) =

Tp
Tr
, (5.18)

g(T ∗crp) =
Cp
Cr
, (5.19)

g(T ∗rp) =
RTp + Cp
RTr + Cr

. (5.20)

According to their definitions, gα and g are related as follows

gα(T ) = κ(α, n)g(T ). (5.21)

Hence, we can re-write optimality conditions of Lemma 5.1 in terms of g(T )

g(T ∗mn+1
) =

n+ 1

κ(α, n+ 1)

Tp
Tr
≤ g(T ∗mn

) =
n

κ(α, n)

Tp
Tr
≤ Tp
Tr

= g(T ∗mrp
), (5.22)

g(T ∗cn+1
) =

n+ 1

κ(α, n+ 1)

Cp
Cr
≤ g(T ∗cn) =

n

κ(α, n)

Cp
Cr
≤ Cp
Cr

= g(T ∗crp), (5.23)

g(T ∗n+1) =
n+ 1

κ(α, n+ 1)

RTp + Cp
RTr + Cr

≤ g(T ∗n)

=
n

κ(α, n)

RTp + Cp
RTr + Cr

≤ RTp + Cp
RTr + Cr

= g(T ∗rp).

(5.24)

Inequalities in Equations (5.22), (5.23), (5.24) follow from Lemmas 3, 4 and 5. As g(T )

is an increasing function, it is straightforward that optimal PM intervals for finite horizon

contracts are smaller or equal than optimal PM intervals for an infinite horizon contract,

in ceteris paribus condition. Even more, PM intervals will be smaller in contracts with

more periods agreed, i.e., only because the contract is longer we have to do more

preventive maintenance.

On the other hand, considering the κ(α, n) definition, we can notice that a lower α lets

to increase κ. This result is very intuitive, since a low improvement in failure rate after

an overhauling creates incentives to do PM more often.

Moreover, it is straightforward to prove that

lim
α→1

κ(α, n) = lim
α→1

n∑
i=0

(
n

i

)
αn−i(1− α)i−1iβ = n. (5.25)
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Thus, looking at Equations (5.22), (5.23) and (5.24) we can conclude that if perfect

overhauls are performed, (renewal process) optimal conditions will not depend on n,

then the decisions over PM intervals will not depend on contract time horizon.

Since all right hand expressions in optimal PM interval condition in Equations (5.22),

(5.23), (5.24) are weighed by n/κ(α, n), which does not depend on T , Lemma 3

of Tarakci et al. (2006a) is applicable. It allow us to state an analogous Lemma.

Lemma 5.6. The relationships among the optimal PM intervals for the client, the

contractor, and the service chain are given by: (i) T ∗c = T ∗m = T ∗ if Cp/Cr = Tp/Tr;

(ii) T ∗c > T ∗ > T ∗m if Cp/Cr > Tp/Tr; and (iii) T ∗c < T ∗ < T ∗m if Cp/Cr < Tp/Tr.

5.3 Coordination mechanisms for profit centered clients

The following sections define both the cost subsidization contract and uptime target

and bonus contract for profit centered clients. Lastly, a corresponding case study is

developed.

5.3.1 The cost subsidization contract

Basis for establishing the Cost Subsidization contract is given by Tarakci et al.

(2006a). If T ∗c > T ∗, the client agrees to subsidize the cost of the preventive

maintenance in order to make them more attractive for the contractor, who wishes

to maximize his profit. Let ∆Cp be that bonus, then, the effective cost observed by

the contractor of a preventive maintenance is

C ′p = Cp −∆Cp. (5.26)

In order to obtain T ∗′c = T ∗ we know that

gα(T ∗) = n
RTp + Cp
RTr + Cr

= n
C ′p
Cr

= gα(T ∗
′

c ), (5.27)

then

C ′p = Cr
RTp + Cp
RTr + Cr

, (5.28)

and

∆Cp = Cp − C ′p. (5.29)
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The result showed by Equation (5.28) is remarkable, because it is exactly the

same than the one obtained for infinite time contracts with renewal process failure.

The expected profit for the contractor is now

Πc(nT ) = p− ci(nT ) +
n∆Cp

n(T + Tp)
= p− ci(nT ) +

∆Cp
T + Tp

, (5.30)

and for the client

Πm(nT ) = RA(nT )− p− n∆Cp
n(T + Tp)

= RA(nT )− p− ∆Cp
T + Tp

. (5.31)

Lemma 5.7. Channel coordination can be achieved using Cost Subsidization

contract with p ∈ [p1, p2], where:

p1 = π + ci(nT
∗)− ∆Cp

T ∗ + Tp
≥ 0 (5.32)

p2 = RA(nT ∗) + π − Π(nT ∗c )− ∆Cp
T ∗ + Tp

≥ p1 (5.33)

If T ∗c < T ∗, the client agrees to subsidize the cost of the corrective maintenance in

order to make them more attractive for the contractor, who wishes to maximize his

profit. Let ∆Cr be that bonus, then, the effective cost observed by the contractor

of a preventive maintenance is

C ′r = Cr −∆Cr. (5.34)

In order to obtain T ∗′c = T ∗ we know that

gα(T ∗) = n
RTp + Cp
RTr + Cr

= n
Cp
C ′r

= gα(T ∗
′

c ), (5.35)

then

C ′r = Cp
RTr + Cr
RTp + Cp

, (5.36)

and

∆Cr = Cr − C ′r. (5.37)
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The expected profit for the contractor is now

Πc(nT ) = p− ci(nT ) +
N(nT )∆Cr
n(T + Tp)

, (5.38)

and for the client

Πm(nT ) = RA(nT )− p− N(nT )∆Cr
n(T + Tp)

. (5.39)

Lemma 5.8. Channel coordination can be achieved using Cost Subsidization

contract with p ∈ [p1, p2], where:

p1 = π + ci(nT
∗)− N(nT ∗)∆Cr

n(T ∗ + Tp)
≥ 0 (5.40)

p2 = RA(nT ∗) + π − Π(nT ∗c )− N(nT ∗)∆Cr
n(T ∗ + Tp)

≥ p1 (5.41)

5.3.2 The Uptime Target and Bonus (UTB) contract

Basis for establishing the UTB contract is given by Tarakci et al. (2006a). If the

contractor achieves an uptime level above a target uptime τ , the client agrees to

increase the contract attractiveness by a per-unit-time bonus B. Both contractor’s

profit and client’s profit respectively become:

Π′c(nT ) = p− ci(nT ) +B[A(nT )− τ ]+, (5.42)

where [x]+ = max{x, 0},

Π′m(nT ) = RA(nT )− p−B[A(nT )− τ ]+. (5.43)

Thus, the client selectsB, τ , and p, in order to incentive the contractor chooses the

interval T ∗ to maximize the profit Π′c(nT ). In this case, the channel coordination is

set by the following Lemma.
76



Table 5-2: Initial parameters

Parameter Value

λ0 0.001

β 3

Tp 1

Tr 0.30

Cp 8

Cr 0.40

R 15

p 2.50

π 2.50

α 0.90

n 5

Lemma 5.9. Channel coordination can be achieved using UTB contract with

τ ∈ [τ1, τ2] and p ∈ [p1, p2], where:

τ1 =
Π(nT ∗)− π

R
(5.44)

τ2 = A(nT ∗)− ci(nT
∗)− ci(nT ∗c )

R
(5.45)

p1 = Rτ + π − Π(nT ∗) (5.46)

p2 = Rτ + π − Π(nT ∗c ) (5.47)

5.3.3 Case study

Let us consider a customized version of the case described by Tarakci et al.

(2006a). Parameter values are shown in Table 5-2. We are interested in a

study of the optimal interval T for contractor, client and service chain, respectively.

Figure 5-1 displays such values in terms of gα(T ), whereas Figure 5-2 exhibits a

study of κ in terms of β and n. In summary, Table 5-3 shows results for this initial

case. Figure 5-3 and Figure 5-4 show a study of availability in terms of T , and

the expected profits, respectively. Then, the optimal duration of the contract is:

n(T ∗ + Tp) = 5(9.56 + 1) = 52.80.
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Figure 5-2: Study of κ

Table 5-3: No incentives. Results.

T A Π Πm Πc

T ∗m 8.48 0.850 10.21

T ∗ 9.56 0.848 11.88

T ∗c 15.79 0.777 1.67
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Figure 5-3: Study of A, where ∗ indicates each optimal value
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Figure 5-4: Study of the expected profits

When the optimal PM interval (T ∗) is set, then the fee p to be adopted by the client

for satisfying the contractor’s minimum expected profit, i.e., the equilibrium service

fee, is: 3.33. If Πc is below π, as this case with: p = 2.50, then the contractor does

not respond to that profit. Hence, it is necessary to seek ways to motivate.

Because of T ∗c > T ∗, it turns necessary to enlarge the PM frequency made by

the contractor. Considering the previous example, now the interest is in finding

a bonus ∆Cp, which sets the optimal point for the contractor with the one of the

service chain. As shown in Table 5-3, this point is located at: T ∗ = 9.56. Evaluating
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Figure 5-5: Expected profits in terms of T with bonus for preventive actions

Equation (5.29) it is possible to calculate the bonus, then

∆Cp = 6.12 .

Figure 5-5 shows an study of the profits for both parties (Equations (5.30) and

(5.31) as a function of T ). Note that even if the bonus is obtained, the contractor

still does not respond as the expected profit is below π. Utilizing Equations (5.32)

and 5.33, the limits for the service fee are: p1 = 2.75 and p2 = 3.67. Following

the lead of Tarakci et al. (2006a), the extra profit from channel coordination is the

difference between p2 and p1, which in this case is: 0.92. This can be distributed

between the contractor and the client by choosing p (p ∈ [p1, p2]). For example, if

p is set at: 3.30, then the contractor’s profit is: 3.05 (greater than the contractor’s

minimum expected profit), and the client’s profit is: 8.84. In these conditions,

the contractor receives an incentive for entering to the coordination process. The

sensitivity of this calculation is shown by Figure 5-6, where the equilibrium service

fee decreases because the incentive given by cost subsidization.

5.4 Non-profit centered clients

In several organizations (military, public services, etc.), the main interest is to provide a

contracted service level (i.e., availability or dissuasive power) at minimum direct cost. In

general, a reference value is set (from benchmarks with similar organizations abroad or

just imposed) and/or because budget or capacity constraints. Let us consider the case
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Figure 5-6: Decreasing of equilibrium service fee

where Ar is the reference availability. Notice that the client is interested in achieving

the contracted service level, in order to obtain an achievable profit for its own benefit

and for the contractor as well.

5.4.1 Bonus to preventive actions

Let T ∗m2
be the interval that achieves

A(T ∗m2
) = Ar.

Ar should be feasible, then, a necessary condition is

Ar ≤ max(A). (5.48)

Note that the client only needs to give the bonus to the contractor if T ∗m2
≤ T ∗c .

Otherwise, the contractor is already working on the interval; therefore, the client

does not have to provide the incentive. Depending on the cost ratios, it is needed

to evaluate the potentially feasible solutions according to roots of

κλ0TrT
β + (Ar − 1)nT + ArnTp = 0. (5.49)

If the left-hand side of the above equation is considered, it is efficiently reasonable

to choose the largest T that achieves Ar. To provide an incentive for the contractor
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Figure 5-7: Potential solutions by setting Ar = 0.83

to set T = T ∗m2
, he must perceive a C ′′

p such that

n
C

′′
p

Cr
= gα(T ∗m2

), (5.50)

which allows to set the incentive at

∆Cp = Cp − C ′′p . (5.51)

5.4.2 Case study

Let us consider the case previously analyzed. The client has set its reference

availability at: Ar = 0.83. If Equation (5.49) is evaluated, then two potential

solutions appear:

T1 = 5.60 and T2 = 12.05.

These potential solutions can be seen on the Figure 5-7. If both solutions are

evaluated in Equations (5.50) and (5.51), two different bonuses are obtained.

For the sake of generality, the following example is enunciated. If the service

level is set at the contractor’s availability, namely: Ar = 0.777, the two potential

solutions for T are: Ta = 3.64 and Tb = 15.79. Respectively, potential bonuses

are: ∆Cpa = 7.87 and ∆Cpb = 0. In spite of two numerical solutions for achieving

the same Ar, if PM interval is set as equal as the contractor’s interval, there is no
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Figure 5-8: Profit for the contractor by setting the feasible maximum availability

necessity of any incentive. Expectedly in these circumstances, the largest solution

for T is the most economically suitable.

Due to the largest T achieves the identical desired availability with the lowest

cost for the client, the most efficient option is estimating the bonus (∆Cp) using:

T2 = 12.05. Then

∆Cp = 4.34. (5.52)

In the same way, if the client fixes the feasible maximum availability like a target,

namely when: Ar = 0.8497, then: T ∗m2
= 8.48 (the same as T ∗m). But in this case

C ′′p is: 1.33, and the client must pay a bonus of: 6.67 for each preventive action.

This result is consequent with the bigger challenge for increasing the service level.

Finally, Figure 5-8 shows the rising of the contractor’s profit from a no incentive

contract to a bonus to preventive actions contract.

5.5 Conclusions

This article introduces a model that defines contractual conditions to coordinate

the supply chain. This is achieved by setting a preventive maintenance strategy

that maximizes the total expected profit for clients and contractors, who usually

try to optimize their profits separately. In particular, the method finds the optimal
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interval between preventive maintenance for the contractor, client and service chain,

correspondingly. The study extended previous works by considering imperfect

maintenance and finite-horizon service contracts, and also shows how these affect

stakeholder’s decision-making. Previous works have been extended to consider not

only profit-centered clients, but also non-profit centered clients. We have evaluated

how to achieve the desired supply channel coordination. In order to encourage both

players to optimize their actions altogether and thus achieving the increase of their

expected profits.

In the profit-centered clients case, we have found the optimal duration of the contract

which reaches channel coordination. However, there are scenarios where the expected

profit for the contractor is not enough to drive changes in his preventive maintenance

interval. One way to motivate him is that the client pays a bonus for each preventive

maintenance made by the contractor, provided that interventions enable to achieve the

supply chain optimization. We estimated such bonus.

For non-profit centered clients, we evaluated the optimal interval to achieve a reference

availability delivered by the client. Again, we offer a bonus that motivates the contractor

to achieve the desired availability, maximizing profits for himself and the entire supply

chain.

Finally, we demonstrated that the model achieves win-win coordination of the supply

chain. Client and contractor are encouraged to improve continually their maintenance

services, as profits increase with respect to those obtained when no coordination

occurs.
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6. A DECISION-MAKING FRAMEWORK TO INTEGRATE MAINTENANCE CONTRACT

CONDITIONS WITH CRITICAL SPARES MANAGEMENT

The best result will come from everyone doing what is best for himself and the group.

— JOHN NASH

Maintenance outsourcing is a strategic means to improve business performance. Outsourcing

creates value through the use of external resources by and for companies to acquire and

sustain competitiveness (Arnold, 2000). The maintenance function is a main driver of

outsourcing since it has excellent potential to achieve cost benefits and enhance perfor-

mance among partners (Kumar, 2008). This business purpose is meaningful for asset

intensive industries –such as Mining, Aeronautic, or Defense– which face substantial in-

vestment in maintaining complex equipment and high demand on system availability. For

these firms, the main reasons to contract out maintenance tasks rather than perform them

in-house are focusing on core business, accessing highly specialized services at competitive

costs, and sharing risks (Kumar, 2008; Tarakci et al., 2006a; Pascual et al., 2012; Jackson &

Pascual, 2008). When dealing with outsourcing, effective supply chain coordination allows

achieving a rewarding situation for all stakeholders (Tarakci et al., 2006a). Accordingly, a

model capable of coordinately optimizing performance can lead to successful maintenance

contracting strategies in capital intensive environments.

Spare parts management has a critical role toward operational efficiency of asset intensive

industries. Equipment criticality is defined by the most relevant assets that efficiently

and safely sustain production (Dekker et al., 1998). The operation of such equipment is

consequently supported by critical spare parts (Louit, 2007). Major spare components are

related to considerable investment, high reliability requirements, extended lead times, and

plant shutdowns with important effects on operational continuity (Godoy et al., 2013). A

method to prevent production loss events is having inventories at hand, especially when

either target service levels or backorder penalties are large (Glasserman, 1997). This

is the case of capital intensive firms, wherein critical spares storage is directly linked to

business success due to the impact of stock-outs on assets utilization (Louit, 2007). As an

example, the aviation supply chain holds a remarkable US$ 50 billion in spares inventories to

provide availability service (Kilpi & Vepsäläinen, 2004). Efficient critical spares stockholding

is therefore essential for companies in which success strongly depends on equipment

performance.
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Maintenance contracts profitability can be significantly affected by critical spares policies.

Particularly, the stock of critical repairable spares can be interpreted as a pool of components

from where replacements are satisfied (Louit, 2007). Consistently with the serious impact

on operational and financial performance, managing the pool of critical spare components

becomes a key to improve profits within the service contract. Nevertheless, as it depends

on the decision-maker’s position, both supply chain parties –service receiver (client) and

external provider (agent)– traditionally intend to maximize benefits separately. If the

client controls the spare parts pool, there are scarce incentives for the provider to avoid

an indiscriminate use of components aside from regular restraints. Conversely, if the

agent administers the pool, rational use of components turns reasonable. Critical spares

stockholding is a supply chain lever to keep maintenance outsourcing viable for the parties

involved.

In order to coordinate the contracting parties, we investigated whether or not the client should

outsource the management of the pool of spare components to the agent. This paper

provides a decision-making framework to profitably integrate the contractual maintenance

strategy with critical spares stockholding. The scheme is based on a joint value –preventive

interval and stock level– that maximizes the supply chain returns whilst evaluating the impact

of an additional part to stock. Using an imperfect maintenance strategy over a finite horizon,

the model leads to an optimal decision to allocate the critical spare components pool

within the outsourcing contract. An interesting link is thus created between maintenance

performance indicators and supply chain practices.

Having introduced the importance of allocating critical spare parts management within

maintenance service contracts for asset intensive industries, the rest of the paper is

organized as follows. Section 6.1 states the differences between the enriched concept

of the present paper and relevant existent researches. Section 6.2 describes the model

formulation to integrate maintenance and spares supply indicators. Section 6.3 presents a

case study within the Mining industry, which holds substantial spares inventories to ensure

system performance. Finally, Section 6.4 provides the main implications of applying the joint

model to coordinate the outsourcing strategy under an asset management perspective.
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6.1 Literature review

The following literature review is structured as the importance of the management of

the pool of critical spares within maintenance outsourcing contracts.

As an interesting strategy to achieve cost-benefits, consolidating inventory locations

by cooperative pooling has been addressed by Kilpi and Vepsäläinen (2004); Lee

(1987); Dada (1992); Benjaafar et al. (2005), among other studies. In the context of

repairable spares pooling, the cost allocation problem is analyzed using game theoretic

models by Wong et al. (2007). As recent implementations, a virtual pooled inventory

by managing information systems is included in Braglia and Frosolini (2013) and a

calculation model of spare parts demand, storage and purchase planning in the coal

mining industry is reported by Qing he et al. (2011). When dealing with cooperation

in contractual alliances, the study of Gulati (1995) states the relevance of interfirm

trust to deter opportunistic behaviour in a shared ownership structure. Such trust is an

important issue related to pooling strategies. A widely applied modeling for repairable

items stockholding focused on system availability and spares investment is provided

by Sherbrooke (2004). Since its accuracy to determine the optimal inventory levels for

both single-site and multi-echelon techniques, the above-mentioned model is used to

adapt the concept of spare service level in the present paper.

Maintenance outsourcing under supply chain coordination is discussed by Tarakci et

al. (2006a), a study that deals with incentive contracts terms to coordinate agents

and clients by a maintenance policy seeking to optimize the total profit. The work

of Pascual et al. (2012) extends this approach by incorporating realistic conditions,

such as imperfect maintenance and finite time-span contract . That model adapts

the failure rate by using the system improvement model of Zhang and Jardine (1998).

Such concepts of profitable coordination and imperfect maintenance are also used in

the present paper to improve the practical applicability for asset intensive operations.

There are studies that specifically deal with allocation spare parts in service contracts.

A paper intending to incorporate repair contract selection and spares provisioning

under a multicriteria approach is presented in Teixeira de Almeida (2001). In Nowicki et

al. (2008), a profit-centric model is presented for spares provisioning under a logistics

contract for multi-item and multi-echelon scenario. In Mirzahosseinian and Piplani
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(2011), an inventory model is developed for a repairable parts system by varying failure

and repair rates. A dynamic stocking policy to replenish the inventory to meet the time-

varying spare parts demand is proposed by Jin and Tian (2012). A reliability-based

maintenance strategy required for the spares inventory is described in Kurniati and

Yeh (2013), although its scope does not cover contract conditions. Since the relevant

effect of warranties as service contracting, a three-partite stochastic model including

manufacturer, agent, and customer is presented in Gamchi et al. (2013). However,

none of these works has faced the pool management problem by using the realistic

assumptions of imperfect maintenance, finite contract duration, or profitable channel

coordination.

Regardless of the extensive literature, the present paper introduces new contributions

in terms of formulation and analytical properties. To the best of our knowledge, a model

capable of delivering profitable decisions to allocate the pool of critical spare parts

within maintenance outsourcing contracts –via the inclusion of imperfect maintenance

and the optimal conditions for supply chain coordination– has not been addressed in

the literature.

6.2 Model Formulation

Consider a system belongs to a fleet of equipment whose operation is supported by

a pool of repairable components. The proposed model optimizes the management

decisions of critical spare components within the outsourcing service contract. The

formulation is presented in three sections as follows: (i) preventive maintenance (PM)

policy under the contractual conditions scheme, (ii) service level associated with the

stock of critical spare parts, and (iii) decision-making model to integrate PM interval

with optimal spares inventory to maximize global profits. The terms “client” and

“agent” will henceforth be adopted to indicate service receiver and external provider,

respectively.

6.2.1 Contractual preventive maintenance policy

Let the maintenance of the fleet system be contracted out by the client to the

agent. For sake of self-containment, relevant maintenance contract conditions –

such as imperfect maintenance and finite contract horizon– developed in Tarakci
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et al. (2006a); Pascual et al. (2012); Zhang and Jardine (1998) are described in

detail. The scheme is set by the following conditions.

(i) The interval between preventive interventions (PM interval) is T .

(ii) The agent is free to select the age T at which PM will be performed.

(iii) Direct costs and length of PM are, respectively, Cp and Tp.

(iv) Direct costs and length of corrective interventions are, respectively, Cr and

Tr.

(v) The basic service fee to the agent is p.

(vi) The net revenue of the client after production costs is r.

(vii) The agent set a minimum expected profit π to participate in the game.

(viii) The finite horizon is as the contract lasts from the beginning of a system life

cycle to the end of the n-th overhaul.

The system has a Weibull distribution with shape parameter

β > 1. (6.1)

The inclusion of imperfect maintenance into the failure rate is based on the system

improvement model (Zhang & Jardine, 1998). Each PM intervention restores the

system condition according to

hk(t) = αhk−1(t− T ) + (1− α)hk−1(t), (6.2)

where t denotes lifetime, k corresponds to the index of the k-th preventive action,

and α ∈ [0, 1] is the maintenance improvement factor.

Before the first preventive intervention, the failure rate is:

h(t) = h0βt
β−1, t < T. (6.3)
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Table 6-1: Values of κ as inclusion of imperfect maintenance and finite horizon

β κ

1 n

2 n2(1− α) + nα

3 n(n− 1)(n− 2)(1− α)2 + 3n(n− 1)(1− α) + n

The expected number of failures H after n overhauls is

H(nT ) =
n∑
i=0

 n

i

αn−i(1− α)i−1H0(iT ), (6.4)

where H0 =
∫ nT

0
h(t)dt.

For β integer, the expected number of failures is

H(nT ) = κh0T
β, (6.5)

where values of κ, some of them summarized in Table 6-1, depend on both α and

n for different integer values of β. Nevertheless, H(nT ) for non-integers values of

beta is straightforward to calculate by using generic series defining the expected

number of failures for any non-homogeneous Poisson process.

As the duration of the contract is n (T + Tp), the expected maintenance direct cost

is

CM(nT ) =
Cp +H(nT )Cr
n (T + Tp)

. (6.6)

In addition, the expected availability during the contract as a function of

maintenance interventions is

AM(nT ) =
nT −H(nT )Tr
n (T + Tp)

. (6.7)

From a perspective biased by single interests, it is clear that the client focuses on

maximizing availability, whereas the agent focuses on minimizing maintenance

costs. To achieve the cooperation of both parties, the next sections describe

an optimal PM interval (T ) aiming to the entire chain benefit while adding the

influence of the critical spares inventory.
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6.2.2 Spare components service level

The concept of spare components service level allows incorporating the preven-

tive maintenance policy described in the above-mentioned section. Estimation of

system availability as a function of critical spare parts stock is adapted from the

inventory model for repairable items developed in Sherbrooke (2004). For sake

of conciseness, an one component case is treated but the extension to multi-

components is straightforward. The approach is as follows.

• The system belonging to the fleet of equipment requires I types of repairable

spare components.

• The fleet size is N and the multiplicity of each type of spare components in

the equipment is zi.

• Stock level of critical spare parts is S.

• Turn-around time, as the workshop repair cycle from removal of a component

until readiness to use, is Tat.

We propose the following approach to incorporate the impact of PM interval on

the critical spare parts demand to workshop. The demand λ(T ) is updated as a

function of each interval T from the maintenance policy by

λ(T ) =
Nzi

MTBI(T ) + TpR(T ) + Tr (1−R(T ))
, (6.8)

where R(T ) is the reliability function at T and MTBI(T ) =
∫ T

0
R(t)dt is the mean

time between interventions.

Expected backorders with spares stock level S, the unfilled number of demands

for not having sufficient inventory, is

EBO(s) =
∞∑

j=S+1

(j − S)
(λ(T )Tat)

je−(λ(T )Tat)

j!
. (6.9)
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Expected service level of equipment given by spares stock is then

AS(S) =
I∏
i=1

(
1− EBOi(Si)

Nzi

)zi
(6.10)

where the aim is to maximize equipment availability, or analogously to minimize

expected backorders, as a function of the optimal investment in critical spare part

inventories.

This service level usually corresponds to the fraction of time that equipment

can operate because of critical spare parts are at hand. Nevertheless, in this

indicator it has been included the maintenance policy from the critical system

under contracting. In the next section, both maintenance contracts conditions

and spare components service level are linked as an integrated approach.

6.2.3 Optimal integration of maintenance policy with spares service level

The following model provides a decision-making framework to optimally decide

whether the spare components pool should be managed by the client or the agent.

Taking this premise into account, the system availability of interest is that which

integrates the maintenance preventive policy with the spares service level, so that

A(nT, S) = 1−
∏

(1− AM(nT )) (1− AS(S)) , (6.11)

where AM(nT ) is given by Equation (6.7) and AS(S) by Equation (6.10).

Expected global cost of spares inventory CG(S) during the contract is

CG(S) = Cv(S) + Ch(S) + Cd(S), (6.12)

where

• Cv(S) = ncu

(
S0 +

∑
j Sj

)
· CRF is the discounted acquisition cost of

investment in spare parts, where cu is the new spare acquisition cost, i is

the discount factor, and

CRF =

(
i(1 + i)n(T+Tp)

i(1 + i)n(T+Tp) − 1

)
is the capital recovery factor across the contract horizon n(T + Tp).
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• Ch(S) = ncu

(
S0 +

∑
j Sj

)
ch0 ·CRF is the holding cost for keeping inventories

at hand, where ch0 is the holding cost rate.

• Cd(S) = cd0(1−A(nT, S))
∑

j Nj is the downtime cost given by the production

loss period, where cd0 is the downtime cost rate.

This model is capable of efficiently integrating critical spare parts stockholding with

outsourcing contracts design. The main options to handle the spare components

pool within the maintenance service contract are presented in the following

sections.

6.2.3.1 Option 1: Client manages the pool of spare parts

Option 1 sets the contractual framework in which the client agrees to manage

the pool of spare components. In this scenario, although agreement restraints,

there are no major incentives for the agent to avoid an indiscriminate use of

components. Following the lead of Tarakci et al. (2006a) and Pascual et al. (2012),

profits for the supply chain can be adapted as follows.

Let Πc(nT, S) be the expected profit for the client. As the client manages the

pool, its profit is affected by the entire spares global cost; that is, acquisition cost,

holding cost, and downtime cost. Hence, this profit is

Πc(nT, S) = rA(nT, S)− p− CG(S). (6.13)

Moreover, let Πa(nT, S) be the expected profit for the agent. Under this scenario,

the profit for the agent is only affected by the service fee and the preventive

maintenance cost. That is

Πa(nT, S) = p− CM(nT ). (6.14)

6.2.3.2 Option 2: Agent manages the pool of spare parts

Option 2 sets the contractual framework in which the agent agrees to handle the

pool of spare components. If so, a policy based on rational use of components

turns suitable for the agent. Profits for the supply chain are the following.
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Although the client does not cover the entire spares global cost, its benefit is

still impacted by the related downtime cost. The expected profit for the client is

therefore

Πc(nT, S) = rA(nT, S)− p− Cd(S). (6.15)

As the agent manages the pool, its benefit is affected by both acquisition cost and

holding cost. The expected profit for the agent is hereby

Πa(nT, S) = p− CM(nT )− (Cv(S) + Ch(S)). (6.16)

Ultimately, the total expected profit for the service chain Π(nT, S) valid for both

Option 1 and Option 2 is

Π(nT, S) = rA(nT, S)− CM(nT )− CG(S). (6.17)

Using this framework, the chain coordination can be achieved by selecting the

optimal joint value [T, S] that maximizes Π(nT, S). This policy profitably allocates

the spare components pool, while both contracting parties obtaining higher

benefits than pursuing single objectives separately.

6.2.4 Coordination mechanisms for optimal joint values

Coordination mechanisms can be used to ensure a cooperative setting under the

above-mentioned Option 1 and Option 2. Following the lead of Tarakci et al.

(2006a) and Pascual et al. (2012), subsidization bonuses on both PM intervals

and spares pooling costs can be adapted to set parties joint values [T, S] with the

one of the supply chain.

6.2.4.1 Cost subsidization under Option 1

When the PM interval of the agent is higher than optimal T of the supply chain,

the client agrees to subsidize the direct cost of PM to create an incentive for the

agent. If let ∆Cp be the PM subsidization bonus, the new preventive cost is

C ′p = Cp −∆Cp. (6.18)
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The expected profit for the client adding the PM bonus effect is

Πc(nT, S) = rA(nT, S)− p− CG(S)− n∆Cp
n(T + Tp)

= rA(nT, S)− p− CG(S)− ∆Cp
T + Tp

.

(6.19)

The expected profit for the agent adding the PM bonus effect is

Πa(nT, S) = p− CM(nT ) +
n∆Cp

n(T + Tp)

= p− CM(nT ) +
∆Cp
T + Tp

.

(6.20)

With the optimal selection of ∆Cp, the agent is encouraged to adjust its PM interval

as needed for chain coordination.

6.2.4.2 Cost subsidization under Option 2

Since under Option 2 the agent manages the pool, another mechanism is needed

to cope with its extra acquisition and holding costs. Although similar to the

aforesaid PM bonus, this model is rather based on subsidizing the spares pooling

cost. The scheme creates an incentive for selecting the optimal stock level of the

chain, while it keeps the benefits of adjusting the PM interval. Let ∆cu be the

inventory subsidization bonus, the new acquisition cost is thus

c′u = cu −∆cu. (6.21)

The expected profit for the client adding the pooling bonus effect is

Πc(nT, S) =

rA(nT, S)− p− Cd(S)− ∆Cp
T + Tp

−∆cu

(
S0 +

∑
j

Sj

)
.

(6.22)

The expected profit for the agent adding the pooling bonus effect is

Πa(nT, S) =

p− CM(nT )− (Cv + Ch) (S) +
∆Cp
T + Tp

+ ∆cu

(
S0 +

∑
j

Sj

)
.

(6.23)
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Table 6-2: Parameters for the joint maintenance-stockholding model

Management area Parameter Value Unit

Preventive maintenance h0 0.001 (1/Kh)

strategy β 3

Tp 1 (Kh)

Tr .3 (Kh)

Cp 8 (KUS$)

Cr .4 (KUS$)

r 1500 (KUS$)

p 350 (KUS$)

α 0.95

n 5 (overhauls)

Spare components N 20 (trucks)

stockholding zi 1 (alternator/truck)

Tat 933 (h)

cu 80 (KUS$)

cd0 5.3 (KUS$/h/truck)

ch0 0.1 (1/alternator investment)

i 0.1

The cost subsidization models for Option 1 and Option 2 induce the agent to

optimally perform both maintenance and stockholding services. Such policy

ensures maximum supply chain performance.

6.3 Case study

In the following case study, the critical components of interest are principal alternators

of a fleet of haul trucks operating in a copper mining company. This client contracts

out the fleet maintenance service to a specialized agent attempting to ensure high

equipment performance. The parameters for the preventive maintenance strategy and

spare components stockholding are shown in Table 6-2.

Figure 6-1 shows the system availability resulting of merging both the availability

related to maintenance strategy and the spares stockholding service level. Higher

service level can be provided as the spares stock level S increases, but higher

investment is required. Moreover, the optimal PM interval T changes over the

associated spares stock range. Under the proposed framework, the system availability
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Figure 6-1: System availability by integrating T and S

A(nT, S) is clearly a performance indicator of interest and thereby it is used to

coordinate the chain profits during the contract.

Figures 6-2 and 6-3 reveal the differences in profits depending on the allocating position

of the critical spare components pool. The results of the aforementioned Option 1

and Option 2 are obtained by solving Equations (6.13) to (6.17) as follows. When

the client manages the pool, the joint values [T, S] are [18 × 103, 0] for the agent and

[11×103, 3] for the client. The corresponding single profits are Πa(nT, S) =US$ 287, 888

and Πc(nT, S) =US$ 935, 142. Conversely, when the agent manages the pool, the

joint values are [18 × 103, 0] for the agent and [10 × 103, 10] for the client. The

respective single profits are Πa(nT, S) =US$ 287, 888 and Πc(nT, S) =US$ 1, 149, 772.

It is considered that p is set to fulfill the profit constraint π. Before subsidization,

the corresponding profits for the supply chain by using optimal parties T ∗ intervals

are Π(nT ∗a , S) =US$ 1, 169, 230 and Π(nT ∗c , S) =US$ 1, 211, 243 for Option 1, and

Π(nT ∗a , S) =US$ 1, 169, 230 and Π(nT ∗c , S) =US$ 1, 206, 436 for Option 2. However,

the optimal supply chain joint value [T ∗, S∗] is [15 × 103, 3], which leads to a higher

profit Π(nT, S) =US$ 1, 219, 018. Therefore, the optimal duration of the contract is

n(T ∗ + Tp) = 5(15 + 1)× 103 = 80× 103(h).

From the previous results, it is clear that taking into account the entire supply chain

is the best possible scenario. As anticipated, the agent must be motivated to adjust
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its PM interval and stock as needed for chain coordination. To achieve this result, the

cooperative mechanisms described in Section 6.2.4 are used. Under Option 1, the

interval of the agent is certainly higher than desired, thus the client subsidizes the PM

cost. In this case, ∆Cp = 2.853 sets the agent’s PM interval with the optimal interval of

the chain, namely from T = 18× 103 to T = 15× 103. Under Option 2, it is clear that the

agent attempts to keep the stock level as low as possible since the extra acquisition

and holding costs. Hence, the client decides to subsidize those significant inventory

costs. In this case, ∆cu = 55.030 sets the the stock level with the optimal stock of the

chain.

After subsidization, profits for the whole supply chain by using optimal single intervals

align with the maximum value Π(nT, S) =US$ 1, 219, 018. Nonetheless, as expected,

the single profits change across options. For example, the client’s profit decreases

from US$935, 142 (Option 1) and US$1, 149, 772 (Option 2) to US$915, 065 due to to

the subsidization mechanism, and the agent’s profit increases from US$287, 888 to

US$303, 953. For further details on changes for both subsidization options, Figures 6-4

and 6-5 denote a sensitivity analysis for those optimal joint values that maximize the

profit for the entire channel. Note that after the application of both bonuses, the joint

values of agent and contractor align with the optimal joint value of the supply chain

[15×103, 3]. Hence, the desired coordination is achieved. As demonstrated, the supply

chain benefit is higher than those single profits obtained by the contracting parties.

Consequently, the proposed framework motivates both chain parties to improve their

maintenance and supply services continuously.

6.4 Conclusions

This chapter has introduced a model for defining the optimal manager of the pool

of components within outsourcing services. A decision-making framework has been

provided to integrate preventive maintenance with critical spares stockholding for
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Figure 6-2: Study of optimal T and S when the client manages the pool of spare
components

contract profitability. Using an imperfect maintenance strategy over a nite horizon,

the allocation scheme induces the parties involved to perform maintenance and supply

activities cooperatively, rather than a separated non-optimal way. This aim is achieved

by setting an original joint value consisting of the preventive maintenance interval and

the spare parts stock level that maximizes the total expected profit for both client and

agent.

It has been found the joint values that reach the supply chain coordination for the

two options under study, when the client administers the spare components and when

the agent is the pool manager. However, there are scenarios where the expected

profit is not sufficient to drive changes in the policy. To provide an incentive to set

parties’ joint values with the optimal benefit of the supply chain, subsidization bonuses

on both additional PM performed and spares pooling costs are practicable methods.

The procedure to estimate such bonuses has been developed.
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Figure 6-3: Study of optimal T and S when the agent manages the pool of spare
components

Finally, we have demonstrated that the model is capable of coordinately optimizing

business performance for the entire supply chain. Both client and agent are

encouraged to continually improve their maintenance services and supply practices,

thus obtaining higher joint benefits compared to those single profits when no

coordination occurs. Accordingly, this research has built an interesting bridge between

the decision areas of preventive maintenance strategy and spare parts management.
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7. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

This doctoral thesis has integrated a decision-making framework to optimize the life cycle

of critical spare parts under an asset management perspective. This approach has been

accomplished by covering every vital stage of the decision process, from selection of

the most important resources to supply chain considerations. Interestingly, the research

has built a bridge across several asset management goals related to the following

areas: throughput requirements, condition-based maintenance, logistics, business value,

outsourcing coordination, and joint decisions on reliability engineering and stockholding

policies. Several enriched models and user-friendly graphical tools have been developed

for the sake of increasing the applicability of both business and quantitative risk analyses

by asset managers. In brief, the goal of consolidating an asset management-based

decision scheme for critical spares has been addressed in order to efficiently support the

enhancement of system performance within equipment intensive industries.

The thesis has been documented by five ISI journal articles that form the integrated decision-

making system. As shown by the “List of Papers” chapter, four of them have already been

published and the fifth is currently under review by its corresponding journal. Findings,

contributions, and areas for further development from these papers –i.e. chapters of the

thesis– are summarized below.

7.1 Findings

The research objective has been to develop an asset management-based framework

to optimize the life cycle of critical spare parts by integrating five key decision areas,

namely: prioritization, ordering, replacement, maintenance outsourcing, and pool

allocation. As the resulting support system is documented by five ISI journal articles

dealing with the key decision areas, this thesis has met the general objective by a

sequential addressing of aims and contributions for each appended paper, as follows.

In Chapter 2, a decision-making tool called the System Efficiency Influence Diagram

(SEID) is provided to prioritize equipment and resources by ranking their impact on

system throughput when intermediate buffers –such as stockpiles– are taken into

account. This effect on throughput is more interesting to a business perspective

than simple machine availability. Since buffers exist, it is highlighted that equipment
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with greater unavailability factors is not always the most important to prioritize. Even

equipment with relatively low investment involved can turn out to be the most critical.

When dealing with business as a main focus, equipment with the largest effect in

throughput should be ranked as first priority. Therefore, SEID contributes to the

evolution to an asset management perspective in place of maintenance policies

focusing only on equipment. In this chapter, the asset management perspective is

defined by system throughput as a global indicator of interest.

Chapter 3 introduces the concept of Condition-Based Service Level (CBSL), which

is useful in defining the time at which the system operation is sufficiently reliable to

withstand the spares lead time variability. It presents a graphical technique based on

both conditional reliability and stochastic or fixed lead time. Such a technique allows

the spares ordering decision to be enhanced to satisfy the desired CBSL. The ordering

policy turns out to be sensitive to both conditional reliability variables and lead time

scenarios, modifying decisions for similar service level thresholds.

Chapter 4 shows the influence of business value on the optimal epoch for major

component replacements when facing lengthy shutdowns. This work continually

monitors the performance of high financial impact interventions, while satisfying both

reliability and time window constraints.

In Chapter 5, a systemic rewarding win-win coordination is set by proposed contract

conditions that encourage service receivers (clients) and external providers (agents) to

continuously improve their maintenance services. A preventive maintenance strategy

maximizes the supply chain’s expected profit. Previous research is extended by

considering imperfect maintenance and the realistic finite horizon of contracts. Profit

and non-profit-centered customers are included. Results show that the contracting

parties involved can achieve a higher benefit than any obtained separately.

In Chapter 6, a model is elaborated to profitably allocate the pool of spare components

within the maintenance service contract. A new joint value –consisting of the preventive

maintenance interval and spare parts stock level– maximizes the total expected profit

for both client and agent. Two management options are considered: when the client is

the manager of the group of spares, and when the agent handles the components pool.
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When the expected profit is insufficient to drive changes in policies, the procedure for

estimating subsidizing bonuses and break-even fees is introduced.

7.2 Original Contributions

This thesis provides asset managers with integrated decision-making models to

optimize the life cycle of critical spares under an asset management perspective. The

research builds an interesting bridge across the areas of condition-based maintenance,

outsourcing coordination, and joint decisions on reliability engineering and stockholding

policies. The original contributions of this thesis are outlined as follows.

• The graphical prioritization tool provided, SEID, is capable of effectively quanti-

fying the impact of equipment on system throughput. It avoids prioritizing on an

equipment level and setting priorities only with capital investments as criteria. This

technique can be useful for making decisions about maintenance policies and re-

designing buffer capacities.

• To address the need for effective decision-making, the graphical tool for ordering

spares based on the CBSL decision rule helps to ensure operational continuity of

the equipment supported by the spare parts stock.

• The value-adding decision rule, applied in components replacement, has enriched

the decision-making process by quantifying the real value of postponing or accel-

erating the most favorable epoch to perform an intervention.

• In maintenance outsourcing, the asset management strategy is illustrated by the

contractual conditions to pursue the entire system profit instead of single benefits.

In this coordinated scenario, the contracting parties jointly optimize their actions,

thus improving overall financial and maintenance policies.

• The asset management perspective of pooling allocation is denoted by the in-

teresting joint model that integrates reliability engineering and spares stockholding

policies for global contract profitability. The original joint value provided –consisting

of the preventive maintenance interval and the spare parts stock level– allows the
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maximization of total expected profit for both the service receiver and external

provider.

In summary, the methodology and integrated models presented in this thesis contribute

to continuous improvement and firm profitability since business-oriented approaches

are included. The enriched models and graphical tools developed in these chapters

–i.e. papers– are useful for operations design and major planning within critical spare

parts management.

7.3 Recommendations for Future Research

The areas for future research are organized as the papers were introduced in the

thesis. These recommendations are indicated as follows.

• Future works in prioritization could incorporate the issue of redesigning the buffers

within the SEID technique. In this case, it is also possible to create a scatter di-

agram with one axis for the efficiency influence factor, one for the unavailability

factor, and one for normalized buffer capacity. Another possible extension is to un-

balance the operating lines in pursuit of increasing the expected productivity rate.

• The asset management approach pursued by this thesis is characterized in spares

ordering by the inclusion of logistics considerations into the reliability engineering

analysis. Merging CBSL with associated maintenance and logistics costs is an op-

portunity for model enhancement in order to enrich the desired global perspective.

• In the case of value-adding intervention intervals, although copper prices were

included in the analysis, the use of other performance measurements is a reason-

able option to include in future work.

• For maintenance outsourcing, a direct extension of the formulation presented in

this thesis is to consider how the replacement may affect the conditions of the ser-

vice contract.

• As an area for further research into spares pool allocation, the model can be ex-

tended to include the maximization of the service chain discounted profit over a
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finite or infinite time horizon. It is also interesting to explore further modeling of

the coordination problem under the approach of Supply Chain and Management

Science (rather than Reliability Engineering). This last issue is also an indicator

that there is a potential significant impact from the solid quantitative view and so-

phisticated modeling that have been presented in this thesis.

This thesis provides asset managers wishing to optimize the entire life cycle of spare parts

with five key decision areas, which are critical to performance excellence and hence to

business success of equipment intensive industries. The resulting integrated decision-

making models contribute to the continuous improvement and firm profitability, since the

problem areas covered include value-adding approaches within an asset management

conception. The criticality of the spare components considered merits the use of complex

models and graphical tools, which supply useful decision elements in long-term plant design

processes and major planning. In summary, every section of this research is dedicated to

ensuring an optimal way of managing critical spares to attain a sustainable organization

outcome. The thesis has confirmed the value of evolving from a maintenance vision, biased

by local subsystems, to a systemic viewpoint of the whole business: the physical asset

management perspective.
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A PROOF OF LEMMAS

PROOF OF LEMMA 5.1. Without the loss of generality, we prove the condition of optimality

for the client (Equation 5.11). To find the PM interval that maximizes Πm(nT ), we have to

consider its first and second derivative with respect to T . It is easy to show that:

∂Πm(nT )

∂T
= R

n2Tp − κλ0nTr
(
(β − 1)T β + βTpT

β−1
)

(n(T + Tp))
2 (A.1)

According to the first order optimality condition, setting ∂Πm(nT )
∂T

= 0, we obtain the following

Equation for T , in order to search critical points of Πm(nT ):

n2Tp − κλ0nTr
(
(β − 1)T β + βTpT

β−1
)

= 0 (A.2)

Or equivalently:

n2Tp − nTrgα(T ) = 0 (A.3)

The PM T that satisfies Equation A.3 is called T ∗m. T ∗m exists because gα(0) = 0 , gα(T ) is a

continuous function, increasing and unbounded. Finally, from Equation A.3 we can conclude

that:

gα(T ∗m) = n
Tp
Tr

(A.4)

The second derivative of Πm(nT ) with respect to T is given for:

∂2Πm(nT )

∂T 2
= −Rnλ0κTr(β − 1)(β − 2)T β + 2nλ0κTrβ(β − 2)TpT

β−1

n2(T + Tp)3

− R
nλ0κTrβ(β − 1)T 2

p T
β−2 + 2n2Tp

n2(T + Tp)3
(A.5)

If β ≥ 2, ∂2Πm(nT )
∂T 2 is negative for all T > 0 and, then, Πm(nT ) is a strictly concave function

of T and, as T ∗m satisfies the first order optimality condition, we can conclude that T ∗m is the

global maximum of the Πm(nT ) function. Moreover, this fact proves that T ∗m is unique. In an

analogous way, we can prove parts (2) and (3) of the Lemma. �

PROOF OF LEMMA 5.2. (i) Given λ1
0, λ

2
0, c ∈ c+, λ2

0 > λ1
0. Suppose that:

κλ1
0

(
(β − 1)T β1 + βTpT

β−1
1

)
= c (A.6)

κλ2
0

(
(β − 1)T β2 + βTpT

β−1
2

)
= c (A.7)
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Then,
(β − 1)T β1 + βTpT

β−1
1

(β − 1)T β2 + βTpT
β−1
2

=
λ2

0

λ1
0

> 1 (A.8)

Thus,

(β − 1)T β1 + βTpT
β−1
1 > (β − 1)T β2 + βTpT

β−1
2 (A.9)

Is easy to see, for β > 1, that function f define as f(T ) = (β − 1)T β + βTpT
β−1,

T ∈ R+ , is an increasing function in T . Therefore, from Equation A.9 we conclude that

T1 > T2. As c is any positive real, in particular, we can take either c = nTp
Tr

, c = nCp

Cr
or

c = nRTp+Cp

RTr+Cr
, and conclude that, for each case, if the scale parameter increases, then

the optimal preventive interval will decrease. In an analogous way, we can prove that if

the shape parameter increases, then the optimal preventive interval will decrease too.

(ii) Considerer two preventive maintenance times, Tp1 and Tp2, Tp2 > Tp1, and the following

two optimality conditions for the client:

κλ0

(
(β − 1)T β1 + βTp1T

β−1
1

)
=
nTp1

Tr
(A.10)

κλ0

(
(β − 1)T β2 + βTp2T

β−1
2

)
=
nTp2

Tr
(A.11)

Or equivalently,

c1 =
κλ0 (β − 1)T β1

Tp1

+ βT β−1
1 =

n

Tr
(A.12)

c2 =
κλ0 (β − 1)T β2

Tp2

+ βT β−1
2 =

n

Tr
(A.13)

As Tp2 > Tp1, then 1
Tp1

> 1
Tp2

. Now, suppose that T1 > T2, thus:

c1 =
κλ0 (β − 1)T β1

Tp1

+ βT β−1
1 >

κλ0 (β − 1)T β2
Tp2

+ βT β−1
2 = c2 (A.14)

The statement in Equation A.14 is a contradiction, because for definition c1 = c2,

therefore T1 < T2. This fact means that the optimal preventive interval for the client

increases in the preventive maintenance time. On the other hand, considerer the

optimal condition for the contractor given for the following Equation:

κλ0

(
(β − 1)T β + βTpT

β−1
)

=
nCp
Cr

(A.15)

(
(β − 1)T β + βTpT

β−1
)

=
nCp
Crκλ0

(A.16)

In ceteris paribus condition, the right hand of Equation A.16 holds constant, thus, if

we increase Tp, T must be lower in order to balance the equation, in other words,
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the optimal PM interval for the contractor decreases if preventive maintenance time

increases.

�

PROOF OF LEMMA 5.3. For induction: For n=1, the truthfulness of the statement is shown.

Suppose that Equation 5.15 is true for certain n. Now, we have to prove that:

κ(α, n+ 1) ≥ n+ 1 (A.17)

Equation A.17 is equivalent to:

κ(α, n+ 1) =
n+1∑
i=0

(
n+ 1

i

)
αn+1−i(1− α)i−1iβ ≥ n+ 1 (A.18)

If we concentrate on the left hand of Equation A.18, thanks to Pascal’s identity we can state

that:

n+1∑
i=0

(
n+ 1

i

)
αn+1−i(1− α)i−1iβ =

n+1∑
i=0

((
n

i− 1

)
+

(
n

i

))
αn+1−i(1− α)i−1iβ (A.19)

Thus,

κ(α, n+ 1) =
n∑
i=0

(
n

i− 1

)
αn+1−i(1− α)i−1iβ+

n∑
i=0

(
n

i

)
αn+1−i(1− α)i−1iβ + (1− α)n(n+ 1)β

(A.20)

Now, the first term on the right hand can be developed as follows:

n∑
i=0

(
n

i− 1

)
αn+1−i(1− α)i−1iβ =

n∑
i=1

(
n

i− 1

)
αn+1−i(1− α)i−1iβ (A.21)

=
n−1∑
i=0

(
n

i

)
αn−i(1− α)i(i+ 1)β (A.22)

For β ≥ 1, (i+ 1)β ≥ iβ + 1, ∀n ∈ N . So,

n−1∑
i=0

(
n

i

)
αn−i(1− α)i(i+ 1)β ≥

n−1∑
i=0

(
n

i

)
αn−i(1− α)iiβ +

n−1∑
i=0

(
n

i

)
αn−i(1− α)i = τ1 (A.23)

But,

τ1 = (1− α)

(
n∑
i=0

(
n

i

)
αn−i(1− α)i−1iβ − (1− α)n−1nβ

)
+ (α + 1− α)n − (1− α)n (A.24)
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By inductive hypothesis,
∑n

i=0

(
n
i

)
αn−i(1− α)i−1iβ ≥ n, Hence:

τ1 ≥ (1− α)
(
n− (1− α)n−1nβ

)
+ 1− (1− α)n (A.25)

On the other hand; the second term in Equation A.18 can be bounded in the following way:

n∑
i=0

(
n

i

)
αn+1−i(1− α)i−1iβ = α

n∑
i=0

(
n

i

)
αn+1−i(1− α)i−1iβ ≥ αn (A.26)

Finally, applying the inequality A.25 and Equation A.26 in Equation A.18, we can state that:

n+1∑
i=0

(
n+ 1

i

)
αn+1−i(1− α)i−1iβ ≥(1− α)

(
n− (1− α)n−1nβ

)
+

1− (1− α)n + αn+ (1− α)n(n+ 1)β

(A.27)

Simplifying;

n+1∑
i=0

(
n+ 1

i

)
αn+1−i(1− α)i−1iβ ≥ n+ 1 + (1− α)n((n+ 1)β − nβ − 1) (A.28)

As (1− α)n((n+ 1)β − nβ − 1) ≥ 0 for β ≥ 1, α ∈ [0, 1] and n ∈ N , then

n+1∑
i=0

(
n+ 1

i

)
αn+1−i(1− α)i−1iβ ≥ n+ 1 (A.29)

�

PROOF OF LEMMA 5.4.(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
iβ =

(
n(n+ 1)!

(n+ 1− i)!i!
− (n+ 1)!

(n− i)!i!

)
iβ (A.30)

=
(n+ 1)!

(n− i)!i!

(
n

n+ 1− i
− 1

)
iβ (A.31)

=
(n+ 1)!

(n+ 1− i)!i!
(i− 1)iβ (A.32)

But, as β ≥ 1 and i ∈ N , then iβ ≥ (i− 1)β. Therefore, from Equation A.32 we can conclude:

(n+ 1)!

(n+ 1− i)!i!
(i− 1)iβ ≥ (n+ 1)!

(n+ 1− i)!i!
(i− 1)(i− 1)β (A.33)

=
(n+ 1)!

(n+ 1− i)!(i− 1)!
(i− 1)β (A.34)

= (n+ 1)

(
n

i− 1

)
(i− 1)β (A.35)

�
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PROOF OF LEMMA 5.5. Prove Equation 5.17 is equivalent to show that:

nκ(α, n+ 1)− (n+ 1)κ(α, n) ≥ 0 (A.36)

And we choose this alternative for proving the statement. Using the definition of κ(α, n) we

can state:

nκ(α, n+ 1)− (n+ 1)κ(α, n) = n
n+1∑
i=0

(
n+ 1

i

)
αn−i(1− α)i−1iβ

− (n+ 1)
n∑
i=0

(
n

i

)
αn−i(1− α)i−1iβ (A.37)

= θ1 (A.38)

Developing θ1;

θ1 =
n+1∑
i=0

n

(
n+ 1

i

)
αn−i(1− α)i−1iβ −

n∑
i=0

(n+ 1)

(
n

i

)
αn−i(1− α)i−1iβ (A.39)

We can re-write the last Equation in a more convenient way:

θ1 = n(1− α)n(n+ 1)β +
n∑
i=0

(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
αn+1−i(1− α)i−1iβ

+
n∑
i=0

(n+ 1)

(
n

i

)
αn+1−i(1− α)i−1iβ −

n∑
i=0

(n+ 1)

(
n

i

)
αn−i(1− α)i−1iβ

= n(1− α)n(n+ 1)β +
n∑
i=0

(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
αn+1−i(1− α)i−1iβ

+
n∑
i=0

(n+ 1)

(
n

i

)
αn−i(1− α)i−1iβ(α− 1)

= n(1− α)n(n+ 1)β +
n∑
i=0

(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
αn+1−i(1− α)i−1iβ

−
n+1∑
i=1

(n+ 1)

(
n

i− 1

)
αn+1−i(1− α)i−1(i− 1)β (A.40)

Notice that the term for i = 0 in the first sum in Equation A.40 is null, so we can state that:

θ1 = n(1− α)n(n+ 1)β +
n∑
i=1

(
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

))
αn+1−i(1− α)i−1iβ

−
n+1∑
i=1

(n+ 1)

(
n

i− 1

)
αn+1−i(1− α)i−1(i− 1)β

=
n∑
i=1

([
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

)]
iβ − (n+ 1)

(
n

i− 1

)
(i− 1)β

)
αn+1−i(1− α)i−1

+ (1− α)n
(
n(n+ 1)β − (n+ 1)nβ

)
(A.41)
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Thanks to Lemma 5.4 we know that, for all 0 ≤ i ≤ n:([
n

(
n+ 1

i

)
− (n+ 1)

(
n

i

)]
iβ − (n+ 1)

(
n

i− 1

)
(i− 1)β

)
≥ 0 (A.42)

Moreover, α ≥ 0, (1− α) ≥ 0 and n(n+ 1)β − (n+ 1)nβ ≥ 0, if β ≥ 1 and n ∈ N , considering

this we can conclude that every term in Equation A.41 is positive, then θ1 ≥ 0.

�
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a b s t r a c t

Maintenance outsourcing is a strategic driver for asset intensive industries pursuing to enhance supply
chain performance. Spare parts management plays a relevant role in this premise since its significant
impact on equipment availability, and hence on business success. Designing critical spares policies might
therefore seriously affect maintenance contracts profitability, yet service receivers and external
providers traditionally attempt to benefit separately. To coordinate both chain parties, we investigated
whether the spare components pool should be managed in-house or contracted out. This paper provides
a decision-making framework to efficiently integrate contractual conditions with critical spares stock-
holding. Using an imperfect maintenance strategy over a finite horizon, the scheme maximizes chain
returns whilst evaluating the impact of an additional part to stock. As result, an original joint value –

preventive interval and stock level – sets the optimal agreement to profitably allocate the components
pool within the service contract. Subsidization bonuses on preventive interventions and pooling costs
are also estimated to induce the service provider to adjust its policy when needed. The proposed
contractual conditions motivate stakeholders to continuously improve maintenance performance and
supply practices, thus obtaining higher joint benefits.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance outsourcing is a strategic means to improve
business performance. Outsourcing creates value through the use
of external resources by and for companies to acquire and sustain
competitiveness [1]. The maintenance function is a main driver of
outsourcing since it has excellent potential to achieve cost benefits
and enhance performance among partners [2]. This business
purpose is meaningful for asset intensive industries – such as
mining, aeronautic, or defence – which face substantial invest-
ment in maintaining complex equipment and high demand on
system availability. For these firms, the main reasons to contract
out maintenance tasks rather than perform them in-house are
focusing on core business, accessing highly specialized services at
competitive costs, and sharing risks [2–5]. When dealing with
outsourcing, effective supply chain coordination allows achieving
a rewarding situation for all stakeholders [3]. Accordingly, a model
capable of coordinately optimizing performance can lead to
successful maintenance contracting strategies in capital intensive
environments.

Spare parts management has a critical role toward operational
efficiency of asset intensive industries. Equipment criticality is
defined by the most relevant assets that efficiently and safely
sustain production [6]. The operation of such equipment is con-
sequently supported by critical spare parts [7]. Major spare
components are related to considerable investment, high relia-
bility requirements, extended lead times, and plant shutdowns
with important effects on operational continuity [8]. A method to
prevent production loss events is having inventories at hand,
especially when either target service levels or backorder penalties
are large [9]. This is the case of capital intensive firms, wherein
critical spares storage is directly linked to business success due to
the impact of stock-outs on assets utilization [7]. As an example,
the aviation supply chain holds a remarkable US$ 50 billion in
spares inventories to provide availability service [10]. Efficient
critical spares stockholding is therefore essential for companies in
which success strongly depends on equipment performance.

Maintenance contracts profitability can be significantly affected
by critical spares policies. Particularly, the stock of critical repair-
able spares can be interpreted as a pool of components from
where replacements are satisfied [7]. Consistently with the serious
impact on operational and financial performance, managing the
pool of critical spare components becomes a key to improve
profits within the service contract. Nevertheless, as it depends
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on the decision-maker's position, both supply chain parties – service
receiver (client) and external provider (agent) – traditionally intend
to maximize benefits separately. If the client controls the spare parts
pool, there are scarce incentives for the provider to avoid an indis-
criminate use of components aside from regular restraints. Conver-
sely, if the agent administers the pool, rational use of components
turns reasonable. Critical spares stockholding is a supply chain lever
to keep maintenance outsourcing viable for the parties involved.

In order to coordinate the contracting parties, we investigated
whether or not the client should outsource the management of the
pool of spare components to the agent. This paper provides a
decision-making framework to profitably integrate the contractual
maintenance strategy with critical spares stockholding. The
scheme is based on a joint value – preventive interval and stock
level – that maximizes the supply chain returns whilst evaluating
the impact of an additional part to stock. Using an imperfect
maintenance strategy over a finite horizon, the model leads to an
optimal decision to allocate the critical spare components pool
within the outsourcing contract. An interesting link is thus created
between maintenance performance indicators and supply chain
practices.

Having introduced the importance of allocating critical spare
parts management within maintenance service contracts for asset
intensive industries, the rest of the paper is organized as follows.
Section 2 states the differences between the enriched concept of
the present paper and relevant existent researches. Section 3
describes the model formulation to integrate maintenance and
spares supply indicators. Section 4 presents a case study in the
mining industry, which holds substantial spares inventories to
ensure system performance. Finally, Section 5 provides the main
implications of applying the joint model to coordinate the out-
sourcing strategy under an asset management perspective.

2. Literature review

The following literature review is structured as the importance
of the management of the pool of critical spares within main-
tenance outsourcing contracts.

As an interesting strategy to achieve cost-benefits, consolidat-
ing inventory locations by cooperative pooling has been addressed
in [10–13], among other studies. In the context of repairable spares
pooling, the cost allocation problem is analyzed using game
theoretic models in [14]. Recent implementations are a virtual
pooled inventory by managing information systems [15] and a
calculation model of spare parts demand, storage and purchase
planning in the coal mining industry [16]. When dealing with
cooperation in contractual alliances, the study of [17] states the
relevance of interfirm trust to deter opportunistic behaviour in a
shared ownership structure. Such trust is an important issue
related to pooling strategies. A widely applied modeling for
repairable items stockholding focused on system availability and
spares investment is provided in [18]. Since its accuracy to
determine the optimal inventory levels for both single-site and
multi-echelon techniques, the above-mentioned model is used to
adapt the concept of spare service level in the present paper.

Maintenance outsourcing under supply chain coordination is
discussed in [3], a study that deals with incentive contracts terms
to coordinate agents and clients by a maintenance policy seeking
to optimize the total profit. The work of [4] extends this approach
by incorporating realistic conditions, such as imperfect mainte-
nance and finite time-span contract. That model adapts the failure
rate by using the system improvement model of [19]. Such
concepts of profitable coordination and imperfect maintenance
are also used in the present paper to improve the practical
applicability for asset intensive operations.

There are studies that specifically deal with allocation spare
parts in service contracts. A paper intending to incorporate repair
contract selection and spares provisioning under a multicriteria
approach is presented in [20]. In [21], a profit-centric model is
presented for spares provisioning under a logistics contract for
multi-item and multi-echelon scenario. In [22], an inventory
model is developed for a repairable parts system by varying failure
and repair rates. A dynamic stocking policy to replenish the
inventory to meet the time-varying spare parts demand is pro-
posed in [23]. A reliability-based maintenance strategy required
for the spares inventory is described in [24], although its scope
does not cover contract conditions. Since the relevant effect of
warranties as service contracting, a three-partite stochastic model
including manufacturer, agent, and customer is presented in [25].
However, none of these works has faced the pool management
problem by using the realistic assumptions of imperfect main-
tenance, finite contract duration, or profitable channel
coordination.

Regardless of the extensive literature, the present paper intro-
duces new contributions in terms of formulation and analytical
properties. To the best of our knowledge, a model capable of
delivering profitable decisions to allocate the pool of critical spare
parts within maintenance outsourcing contracts – via the inclusion of
imperfect maintenance and the optimal conditions for supply chain
coordination – has not been addressed in the literature.

3. Model formulation

Consider a system belongs to a fleet of equipment whose
operation is supported by a pool of repairable components.
The proposed model optimizes the management decisions of
critical spare components within the outsourcing service contract.
The formulation is presented in three sections as follows:
(i) preventive maintenance (PM) policy under the contractual
conditions scheme, (ii) service level associated with the stock of
critical spare parts, and (iii) decision-making model to integrate
PM interval with optimal spares inventory to maximize global
profits. The terms “client” and “agent” will henceforth be adopted
to indicate service receiver and external provider, respectively.

3.1. Contractual preventive maintenance policy

Let the maintenance of the fleet system be contracted out by
the client to the agent. For sake of self-containment, relevant
maintenance contract conditions – such as imperfect maintenance
and finite contract horizon – developed in [3,4,19] are described in
detail. The scheme is set by the following conditions.

� The interval between preventive interventions (PM interval) is
T.

� The agent is free to select the age T at which PM will be
performed.

� Direct costs and length of PM are, respectively, Cp and Tp.� Direct costs and length of corrective interventions are, respec-
tively, Cr and Tr.� The basic service fee to the agent is p.

� The net revenue of the client after production costs is r.
� The agent sets a minimum expected profit π to participate in

the game.
� The finite horizon is as the contract lasts from the beginning of

a system life cycle to the end of the n-th overhaul.

The system has a Weibull distribution with shape parameter

β41: ð1Þ
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The inclusion of imperfect maintenance into the failure rate is
based on the system improvement model [19]. Each PM interven-
tion restores the system condition according to

hkðtÞ ¼ αhk�1ðt�TÞþð1�αÞhk�1ðtÞ ð2Þ
where t denotes lifetime, k corresponds to the index of the k-th
preventive action, and αA ½0;1� is the maintenance improvement
factor.

Before the first preventive intervention, the failure rate is

hðtÞ ¼ h0βtβ�1; toT : ð3Þ
The expected number of failures H after n overhauls is

HðnTÞ ¼ ∑
n

i ¼ 0

n

i

� �
αn� ið1�αÞi�1H0ðiTÞ ð4Þ

where H0 ¼
R nT
0 hðtÞ dt.

For β integer, the expected number of failures is

HðnTÞ ¼ κh0T
β ð5Þ

where values of κ, some of them summarized in Table 1, depend
on both α and n for different integer values of β. Nevertheless,
H(nT) for non-integers values of beta is straightforward to
calculate by using generic series defining the expected number
of failures for any non-homogeneous Poisson process.

As the duration of the contract is nðTþTpÞ, the expected
maintenance direct cost is

CMðnTÞ ¼
CpþHðnTÞCr

nðTþTpÞ
: ð6Þ

In addition, the expected availability during the contract as a
function of maintenance interventions is

AMðnTÞ ¼
nT�HðnTÞTr

nðTþTpÞ
: ð7Þ

From a perspective biased by single interests, it is clear that the
client focuses on maximizing availability, whereas the agent
focuses on minimizing maintenance costs. To achieve the coopera-
tion of both parties, the next sections describe an optimal PM
interval (T) aiming to the entire chain benefit while adding the
influence of the critical spares inventory.

3.2. Spare components service level

The concept of spare components service level allows incorpor-
ating the preventive maintenance policy described in the above-
mentioned section. Estimation of system availability as a function
of critical spare parts stock is adapted from the inventory model
for repairable items developed in [18]. For sake of conciseness, a
one component case is treated but the extension to multi-
components is straightforward. The approach is as follows.

� The system belonging to the fleet of equipment requires I types
of repairable spare components.

� The fleet size is N and the multiplicity of each type of spare
components in the equipment is zi.� Stock level of critical spare parts is S.

� Turn-around time, as the workshop repair cycle from removal
of a component until readiness to use, is Tat.

We propose the following approach to incorporate the impact
of PM interval on the critical spare parts demand to workshop. The
demand λðTÞ is updated as a function of each interval T from the
maintenance policy by

λðTÞ ¼ Nzi
MTBIðTÞþTpRðTÞþTrð1�RðTÞÞ ð8Þ

where R(T) is the reliability function at T and MTBIðTÞ ¼ R T
0 RðtÞ dt

is the mean time between interventions.
Expected backorders with spares stock level S, the unfilled

number of demands for not having sufficient inventory, is

EBOðsÞ ¼ ∑
1

j ¼ Sþ1
ðj�SÞðλðTÞTatÞje�ðλðTÞTat Þ

j!
: ð9Þ

Expected service level of equipment given by spares stock is
then

ASðSÞ ¼ ∏
I

i ¼ 1
1�EBOiðSiÞ

Nzi

� �zi
ð10Þ

where the aim is to maximize equipment availability, or analo-
gously to minimize expected backorders, as a function of the
optimal investment in critical spare part inventories.

This service level usually corresponds to the fraction of time
that equipment can operate because of critical spare parts that are
at hand. Nevertheless, in this indicator it has been included the
maintenance policy from the critical system under contracting. In
the next section, both maintenance contracts conditions and spare
components service level are linked as an integrated approach.

3.3. Optimal integration of maintenance policy with spares service
level

The following model provides a decision-making framework to
optimally decide whether the spare components pool should be
managed by the client or the agent. Taking this premise into account,
the system availability of interest is that which integrates the
maintenance preventive policy with the spares service level, so that

AðnT ; SÞ ¼ 1�∏ð1�AMðnTÞÞð1�ASðSÞÞ ð11Þ
where AM(nT) is given by Eq. (7) and AS(S) by Eq. (10).

Expected global cost of spares inventory CG(S) during the
contract is

CGðSÞ ¼ CvðSÞþChðSÞþCdðSÞ ð12Þ
where

� CvðSÞ ¼ ncuðS0þ∑
j
SjÞCRF is the discounted acquisition cost of

investment in spare parts, where cu is the new spare acquisition
cost, i is the discount factor, and

CRF ¼ ið1þ iÞnðTþTpÞ

ið1þ iÞnðTþTpÞ �1

 !

is the capital recovery factor across the contract horizon
nðTþTpÞ.� ChðSÞ ¼ ncuðS0þ∑

j
SjÞch0CRF is the holding cost for keeping

inventories at hand, where ch0 is the holding cost rate.
� CdðSÞ ¼ cd0ð1�AðnT ; SÞÞ∑jNj is the downtime cost given by the

production loss period, where cd0 is the downtime cost rate.

This model is capable of efficiently integrating critical spare parts
stockholding with outsourcing contracts design. The main options to

Table 1
Values of κ as inclusion of imperfect maintenance
and finite horizon.

β κ

1 n
2 n2ð1�αÞþnα
3 nðn�1Þðn�2Þð1�αÞ2þ3nðn�1Þð1�αÞþn
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handle the spare components pool within the maintenance service
contract are presented in the following subsections.

3.3.1. Option 1: client manages the pool of spare parts
Option 1 sets the contractual framework inwhich the client agrees

to manage the pool of spare components. In this scenario, although
agreement restraints, there are no major incentives for the agent to
avoid an indiscriminate use of components. Following the lead of [3]
and [4], profits for the supply chain can be adapted as follows.

Let ΠcðnT ; SÞ be the expected profit for the client. As the client
manages the pool, its profit is affected by the entire spares global
cost; that is, acquisition cost, holding cost, and downtime cost.
Hence, this profit is

ΠcðnT ; SÞ ¼ rAðnT ; SÞ�p�CGðSÞ: ð13Þ
Moreover, let ΠaðnT ; SÞ be the expected profit for the agent.

Under this scenario, the profit for the agent is only affected by the
service fee and the preventive maintenance cost. That is

ΠaðnT ; SÞ ¼ p�CMðnTÞ: ð14Þ

3.3.2. Option 2: agent manages the pool of spare parts
Option 2 sets the contractual framework in which the agent

agrees to handle the pool of spare components. If so, a policy
based on rational use of components turns suitable for the agent.
Profits for the supply chain are the following.

Although the client does not cover the entire spares global cost,
its benefit is still impacted by the related downtime cost. The
expected profit for the client is therefore

ΠcðnT ; SÞ ¼ rAðnT ; SÞ�p�CdðSÞ: ð15Þ
As the agent manages the pool, its benefit is affected by both

acquisition cost and holding cost. The expected profit for the agent
is hereby

ΠaðnT ; SÞ ¼ p�CMðnTÞ�ðCvðSÞþChðSÞÞ: ð16Þ
Ultimately, the total expected profit for the service chain

ΠðnT ; SÞ valid for both Option 1 and Option 2 is

ΠðnT ; SÞ ¼ rAðnT ; SÞ�CMðnTÞ�CGðSÞ: ð17Þ
Using this framework, the chain coordination can be achieved

by selecting the optimal joint value ½T ; S� that maximizes ΠðnT ; SÞ.
This policy profitably allocates the spare components pool, while
both contracting parties obtaining higher benefits than pursuing
single objectives separately.

3.4. Coordination mechanisms for optimal joint values

Coordination mechanisms can be used to ensure a cooperative
setting under the above-mentioned Option 1 and Option 2.
Following the lead of [3] and [4], subsidization bonuses on both
PM intervals and spares pooling costs can be adapted to set
parties' joint values ½T ; S� with the one of the supply chain.

3.4.1. Cost subsidization under Option 1
When the PM interval of the agent is higher than optimal T of

the supply chain, the client agrees to subsidize the direct cost of
PM to create an incentive for the agent. If let ΔCp be the PM
subsidization bonus, the new preventive cost is

C 0
p ¼ Cp�ΔCp: ð18Þ
The expected profit for the client adding the PM bonus effect is

ΠcðnT ; SÞ ¼ rAðnT ; SÞ�p�CGðSÞ�
nΔCp

nðTþTpÞ

¼ rAðnT ; SÞ�p�CGðSÞ�
ΔCp

TþTp
: ð19Þ

The expected profit for the agent adding the PM bonus effect is

ΠaðnT ; SÞ ¼ p�CMðnTÞþ
nΔCp

nðTþTpÞ

¼ p�CMðnTÞþ
ΔCp

TþTp
: ð20Þ

With the optimal selection of ΔCp, the agent is encouraged to
adjust its PM interval as needed for chain coordination.

3.4.2. Cost subsidization under Option 2
Since under Option 2 the agent manages the pool, another

mechanism is needed to cope with its extra acquisition and
holding costs. Although similar to the aforesaid PM bonus, this
model is rather based on subsidizing the spares pooling cost. The
scheme creates an incentive for selecting the optimal stock level of
the chain, while it keeps the benefits of adjusting the PM interval.
Let Δcu be the inventory subsidization bonus, the new acquisition
cost is thus

c0u ¼ cu�Δcu: ð21Þ
The expected profit for the client adding the pooling bonus

effect is

ΠcðnT ; SÞ ¼ rAðnT ; SÞ�p�CdðSÞ�
ΔCp

TþTp
�Δcu S0þ∑

j
Sj

 !
: ð22Þ

The expected profit for the agent adding the pooling bonus
effect is

ΠaðnT ; SÞ ¼ p�CMðnTÞ�ðCvðSÞþChðSÞÞþ
ΔCp

TþTp
þΔcu S0þ∑

j
Sj

 !
:

ð23Þ
The cost subsidization models for Option 1 and Option 2 induce

the agent to optimally perform both maintenance and stockhold-
ing services. Such policy ensures maximum supply chain
performance.

4. Case study

In the following case study, the critical components of interest
are principal alternators of a fleet of haul trucks operating in a
copper mining company. This client contracts out the fleet main-
tenance service to a specialized agent attempting to ensure high
equipment performance. The parameters for the preventive

Table 2
Parameters for the joint maintenance-stockholding model.

Management area Parameter Value Unit

Preventive maintenance strategy h0 0.001 (1/Kh)
β 3
Tp 1 (Kh)
Tr 0.3 (Kh)
Cp 8 (KUS$)
Cr 0.4 (KUS$)
r 1500 (KUS$)
p 350 (KUS$)
α 0.95
n 5 (overhauls)

Spare components stockholding N 20 (trucks)
zi 1 (alternator/truck)
Tat 933 (h)
cu 80 (KUS$)
cd0 5.3 (KUS$/h/truck)
ch0 0.1 (1/alternator

investment)
i 0.1
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maintenance strategy and spare components stockholding are
shown in Table 2.

Fig. 1 shows the system availability resulting in merging of both
the availability related to maintenance strategy and the spares
stockholding service level. Higher service level can be provided as
the spares stock level S increases, but higher investment is
required. Moreover, the optimal PM interval T changes over the
associated spares stock range. Under the proposed framework, the
system availability AðnT ; SÞ is clearly a performance indicator of
interest and thereby it is used to coordinate the chain profits
during the contract.

Figs. 2 and 3 reveal the differences in profits depending on the
allocating position of the critical spare components pool. The
results of the aforementioned Option 1 and Option 2 are obtained
by solving Eqs. (13–17) as follows. When the client manages the
pool, the joint values ½T ; S� are 18� 103;0

h i
for the agent and

11� 103;3
h i

for the client. The corresponding single profits are
ΠaðnT ; SÞ ¼US$ 287;888 and ΠcðnT ; SÞ ¼US$ 935;142. Conversely,
when the agent manages the pool, the joint values are
18� 103;0
h i

for the agent and 10� 103;10
h i

for the client. The
respective single profits are ΠaðnT ; SÞ ¼US$ 287;888 and
ΠcðnT ; SÞ ¼US$ 1;149;772. It is considered that p is set to fulfill
the profit constraint π. Before subsidization, the corresponding
profits for the supply chain by using optimal parties Tn intervals
are ΠðnTn

a; SÞ ¼US$ 1;169;230 and ΠðnTn

c ; SÞ ¼US$ 1;211;243 for
Option 1, and ΠðnTn

a; SÞ ¼US$ 1;169;230 and ΠðnTn

c ; SÞ ¼US$
1;206;436 for Option 2. However, the optimal supply chain joint
value ½Tn; Sn� is 15� 103;3

h i
, which leads to a higher profit

ΠðnT ; SÞ ¼US$ 1;219;018. Therefore, the optimal duration of the
contract is nðTnþTpÞ ¼ 5ð15þ1Þ � 103 ¼ 80� 103ðhÞ:

From the previous results, it is clear that taking into account
the entire supply chain is the best possible scenario. As antici-
pated, the agent must be motivated to adjust its PM interval and
stock as needed for chain coordination. To achieve this result, the
cooperative mechanisms described in Section 3.4 are used. Under
Option 1, the interval of the agent is certainly higher than desired,
thus the client subsidizes the PM cost. In this case, ΔCp ¼ 2:853
sets the agent's PM interval with the optimal interval of the chain,
namely from T¼18�103 to 15�103. Under Option 2, it is clear
that the agent attempts to keep the stock level as low as possible
since the extra acquisition and holding costs. Hence, the client
decides to subsidize those significant inventory costs. In this case,
Δcu ¼ 55:030 sets the stock level with the optimal stock of
the chain.

After subsidization, profits for the whole supply chain by using
optimal single intervals align with the maximum value
ΠðnT ; SÞ ¼US$ 1;219;018. Nonetheless, as expected, the single
profits change across options. For example, the client's profit

decreases from US$935;142 ðOption 1Þ and US$1;149;772 ðOption 2Þ
to US$915;065 due to the subsidization mechanism, and the
agent's profit increases from US$287;888 to US$303;953. For
further details on changes for both subsidization options, Figs. 4
and 5 denote a sensitivity analysis for those optimal joint values
that maximize the profit for the entire channel. Note that after the
application of both bonuses, the joint values of agent and
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contractor align with the optimal joint value of the supply chain
[15�103, 3]. Hence, the desired coordination is achieved. As
demonstrated, the supply chain benefit is higher than those single
profits obtained by the contracting parties. Consequently, the
proposed framework motivates both chain parties to improve
their maintenance and supply services continuously.

5. Conclusions

This paper has introduced a model for defining the optimal
manager of the pool of components within outsourcing services.
A decision-making framework has been provided to integrate
preventive maintenance with critical spares stockholding for
contract profitability. Using an imperfect maintenance strategy
over a finite horizon, the allocation scheme induces the parties
involved to perform maintenance and supply activities coopera-
tively, rather than a separated non-optimal way. This aim is
achieved by setting an original joint value consisting of the
preventive maintenance interval and the spare parts stock level
that maximizes the total expected profit for both client and agent.

It has been found that the joint values reach the supply chain
coordination for the two options under study, when the client
administers the spare components and when the agent is the pool
manager. However, there are scenarios where the expected profit
is not sufficient to drive changes in the policy. To provide an
incentive to set parties’ joint values with the optimal benefit of the
supply chain, subsidization bonuses on both additional PM per-
formed and spares pooling costs are practicable methods. The
procedure to estimate such bonuses has been developed.

Finally, we have demonstrated that the model is capable of
coordinately optimizing business performance for the entire
supply chain. Both client and agent are encouraged to continually
improve their maintenance services and supply practices, thus
obtaining higher joint benefits compared to those single profits
when no coordination occurs. Accordingly, this research has built
an interesting bridge between the decision areas of preventive
maintenance strategy and spare parts management.
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a b s t r a c t

Asset-intensive companies face great pressure to reduce operation costs and increase utilization. This
scenario often leads to over-stress on critical equipment and its spare parts associated, affecting
availability, reliability, and system performance. As these resources impact considerably on financial
and operational structures, the opportunity is given by demand for decision-making methods for the
management of spare parts processes. We proposed an ordering decision-aid technique which uses a
measurement of spare performance, based on the stress–strength interference theory; which we have
called Condition-Based Service Level (CBSL). We focus on Condition Managed Critical Spares (CMS), namely,
spares which are expensive, highly reliable, with higher lead times, and are not available in store. As a
mitigation measure, CMS are under condition monitoring. The aim of the paper is orienting the decision
time for CMS ordering or just continuing the operation. The paper presents a graphic technique which
considers a rule for decision based on both condition-based reliability function and a stochastic/fixed
lead time. For the stochastic lead time case, results show that technique is effective to determine the time
when the system operation is reliable and can withstand the lead time variability, satisfying a desired
service level. Additionally, for the constant lead time case, the technique helps to define insurance spares.
In conclusion, presented ordering decision rule is useful to asset managers for enhancing the operational
continuity affected by spare parts.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Decision-making processes are crucial for organizations within
a scenario of intense competitiveness. Since companies are
frequently required to reduce production costs and increase asset
utilization, misguided decisions may lead to over-stress on equip-
ment. This situation affects reliability and, more importantly,
system throughput. Continuous improvement of the ability to
add value and enhance profitability of operations is needed by
firms in pursuit of performance excellence [1]. An efficient
resources ordering is indispensable to achieve significant avail-
ability exigencies of equipment-intensive industries, such as
mining, aeronautic, nuclear energy, or defence. This equipment is
supported by spare parts inventories, which are particularly
relevant considering the influence of stock-outs on downtime
[2]. Appropriate spare parts allocation decisions are therefore
essential to system performance of these industries.

Spare parts play a fundamental role in the support of critical
equipment. In a typical company, approximately one third of all
assets corresponds to inventories [3]. Of these assets, critical spare

parts have special relevance because they are associated with both
significant investment and high reliability requirements. As an
example, spares inventories sum up above US$ 50 billion in the
airlines business [4]. The mismanagement of spare parts that
support critical equipment conduces to considerable impacts on
financial structure and severe consequences on operational con-
tinuity. The improvement of key profits on both logistics and
maintenance performance can be achieved by inventory manage-
ment of costly components, which have extremely criticality on
equipment-intensive industries [5]. Therefore, efficient decisions
about spare-stocking policies can become essential in the cost
structure of companies. In order to provide an efficient spare
management performance, a suitable ordering strategy can be
relevant. A spare part classification scheme becomes necessary to
set optimal policies for those spares that may affect the system the
most, and at the least effort. We proposed an ordering decision-aid
method to secure the spare management performance into an
operational environment that needs continuity to compete into a
demanding business context.

1.1. Critical spare parts and maintenance strategy

The need for spare parts inventories is dictated by maintenance
actions [6]. In addition, maintenance strategy can be treated by
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Condition-Based Maintenance (CBM). In this case, models
incorporate information about equipment conditions in order to
estimate the conditional reliability. This information comes from,
for instance, vibrations measurements, oil analysis, sensors data,
operating conditions, among others. These measures are called
covariates. Covariates may be included on the conditional relia-
bility using the Proportional Hazards Model (PHM) [7], which
allows combining age and environmental conditions. In the inter-
action between operational environment and equipment, while
age can be relatively easy to notice, deterioration can be measured
by conditions assessment [8]. Therefore, CBM becomes useful to
set maintenance policies even with different levels of monitoring
restrictions. Compared to usual time-based maintenance strate-
gies, condition monitoring systems offer significant potential to
add economic value to spares management performance [9].
Particularly, this paper uses CBM models to calculate conditional
reliability in order to make ordering or replacement decisions.

Lead time is another important aspect to consider in spare
parts ordering. The random time between fault event and the
actual component failure may cause system performance dete-
riorations [10]. Nonetheless, it also provides a opportunity win-
dow to set replacement policies. Logistically, there are also delays
between the order of spares and their arrival [11]. This situation is
even more crucial when spare parts are critical, since they are not
always available at the supplier store. Customs delays and the
need of special transport are a source of significant lead times;
moreover, when dealing with complex equipment parts made to
order, lead times may exceed a year [12]. The lack of these items
because of a delay in delivery (and their consequent installation)
may have severe consequences in the operational continuity.

The core of this paper is on those critical spare parts that affect
production, safety, are expensive, highly reliable, and usually are
associated with higher lead times. These items are critical too, when
they support equipment which is essential in an operational environ-
ment [2]. Henceforward, all spare parts that meet these characteristics
will be called, “Condition Managed Critical Spares”, or just CMS. Fig. 1
shows a diagramwith the spare parts that we are focusing on. CMS are
repairable, however their repair times are slower than supplier lead
times, this particularity turns these CMS into non-repairable spare
parts for the purposes of this model. As CMS are not available in store,
CMS condition is monitored as a mitigation measure to its criticality in
the operation. Justification for not having them in store lies in the
expectation that the CBM models will predict failures with sufficient
lead time to overcome the need for spare-stocking.

Previous works have treated the decision-making process using
CBM, for instance: research deals with a continuously deteriorating
system which is inspected at random times sequentially chosen with
the help of a maintenance scheduling function [13]. There is also
research obtaining an analytical model of the policy for stochastically
deteriorating systems [14]. However, spare parts issues are not
included on those papers. Furthermore, there are several researches
for CBM policies that consider unlimited spare parts which always
are available [15]. Nevertheless, the focus of this paper is on critical
spare parts which are, precisely, not available in store. According to
[16], few existing ordering and replacement policies are proposed in
the context of condition-based maintenance. In fact, the work
described by [16] aims to optimize CBM and spare order manage-
ment jointly. Other works [17,18] consider optimal ordering and
replacement policy of a Markovian degradation system under
complete and incomplete observation, respectively. However, the
difference between this paper and the works stated above is the need
to install a user-friendly technique to decision-making process for
asset managers in order to improve the spare parts management
considering the unique characteristics of CMS. In accordance with
current industrial requirements, a graphical tool of this type could be
easy to implement. Spare parts estimation based on reliability and

environment-operational conditions is a method to improve
supportability. This method can guarantee non-delay in spare parts
logistics and to improve production output [19].

1.2. Spare management performance: condition-based service level

There are several definitions to measure spare management
performance. According to [20] three obvious indicators are ready
rate, fill rate, and units in service. Ready rate is the probability that an
item observed at a random point in time has no back orders (back
order is considered as any demand that cannot be met from stock). Fill
rate is defined as the expected number of units demanded per time
period for an item that can be immediately satisfied from stock at
hand. Meanwhile, units in service are the expected number of units in
routine resupply or repair at a random point in time. The work stated
by [2] uses the instantaneous reliability of stock term as one of its
criteria for determining an optimal stock level. Instantaneous reliability
is defined as the probability of a spare being available at any given
moment in time. This measurement can be equivalent to fill rate. In
spite of these valuable definitions, the spare part reliability concept
used in this paper is significantly different. The source of this
distinction is given by the critical nature of spare parts which are
considered in this paper, specially its uniqueness characteristic.
Usually, these kinds of critical spare parts are not available in store,
thus a common concept such as fill rate is not completely applicable.

For the latter reason, it seems appropriate to introduce a new
concept which we have called as “Condition-Based Service Level”
(CBSL). CBSL is based on the stress–strength interference theory [21].
This theory considers two main variables: a stress which is any load
applied on a system and that may produce a failure (in this case,
depletion on service level), and a strength which is the maximum
value that system can withstand without failing. Therefore, CBSL is
defined as the probability that the stress does not overcome the
strength. Stress–strength interference models are widely applied in
component reliability analysis [22]. Due to the model ability to be
used when probability distributions are known and, also, both stress
and strength could be general in meaning [22], it is possible to adapt
a version. For purposes of this paper, stress can be represented by
lead time and strength by conditional reliability.

The paper presents a graphic method which uses CBSL as key
indicator, to achieve an effective policy to define the suitable time
for CMS ordering, through a rule decision based on both
condition-based reliability function and a stochastic/fixed lead
time. The aim of the paper is orienting the decision about CMS
ordering or to continue the operation process without ordering.
The reliability threshold can be chosen by each company according
to their own needs of service level.

Having introduced the importance of CMS ordering process in
the context of operational continuity, the rest of the paper is
organized as follows: Section 2 indicates the model formulation.
Section 3 shows the associated case study. Finally, Section 4
reveals the conclusion of the work.

2. Model formulation

In order to precise the CMS ordering decision-making, it is
necessary to estimate the conditional reliability and add the
influence of lead times. The following items define the calculation
methodology of these aspects.

2.1. Conditional reliability model

For the sake of self-containment, we describe in detail relevant
elements which are developed in [23,24]. Reliability function is based
primarily on the Markov Failure Time Process model. The reliability
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function of an item can be defined as the probability of survival after
a certain interval of time t. For the conditional case (namely,
assuming that item has been operated by a time x), the probability
of interest is PðT4tjT4xÞ, where T is the equipment lifetime. This
reliability is interesting in CBM, given that it is assumed that the item
has been operated until the inspection moment [2]. It is assumed
that hazard rate can be incorporated into the model using PHM, e.g.
[7,25,26]. This method is widely accepted in order to incorporate
condition data of equipment [2] (as used in CBM). Hence

λðtÞ ¼ λðt; ZðtÞÞ ¼ λ0ðtÞe∑iγiZiðtÞ ð1Þ

where λ0ðtÞ is a baseline hazard rate, while γi is the weight of each
time-dependent covariate Zi(t). For the present paper, a Weibull-PHM
was used, thus the hazard rate is

λðtÞ ¼ λðt; ZðtÞÞ ¼ β

η

t
η

� �β−1

e∑iγiZiðtÞ; t≥0 ð2Þ

The use of Non-Homogeneous Markov Process (NHMP) is of
particular interest in applications of CBM [2,24]. Transition prob-
abilities (from a state i to a state j, of covariates under study) can
be defined as

Lijðx; tÞ ¼ PðT4t; ZðtÞ ¼ jjT4x; ZðxÞ ¼ iÞ; x≤t ð3Þ

where T is a random variable representing the failure time of the
item. Note that covariates Z(x) can be discretized within intervals
using values ranges for a finite number of states: 0;1;2;…; s. For
example, if the condition under study is the oil level of a motor,
the states could be described through intervals with levels limits
as: “low”, “normal”, and “dangerous”.

Thus, it is possible to find a relationship between hazard rate and
transition probabilities Lijðx; tÞ [24]. The reliability of interest can be
obtained combining both concepts (conditional probability and PHM).

The reliability at time t, given that the spare has survived until a
time x, and at that time x the condition is ZðxÞ ¼ i, is given by

Rðtjx; iÞ ¼ PðT4tjT4x; ZðxÞ ¼ iÞ ¼∑
j
Lijðx; tÞ; x≤t ð4Þ

If the matrix Lðx; tÞ ¼ ½Lijðx; tÞ� is defined and it is assumed that
Lðx; xÞ ¼ I (where I is the identity matrix), the Markov property can
be used [24].

Then, it is demonstrable that all functions Lijðx; tÞ; x≤t satisfy
the system of equations [23]:

∂
∂t

Lðx; tÞ ¼ Lðx; tÞLðtÞ ¼ Lðx; tÞðΛðtÞ−DðtÞÞ ð5Þ

Let

� ΛðtÞ ¼ ½λijðxÞ� is the matrix of transition rates. The transition
rates λijðxÞ can be estimated using the approach of [23].

� DðtÞ ¼ ½λðt; iÞδij� is a diagonal matrix, with δij ¼ pijðx; xÞ (i.e., it
takes the value 1 when i¼ j, and the value 0 when i≠j). For this
particular case, DðtÞ ¼ ½ðβ=ηðt=ηÞβ−1e∑iγiZiðtÞÞδij�.

In order to solve the system of equations described in Eq. (5),
two cases are identified [24]:

(i) Case I: If the failure rate is only a function of the condition
process, namely λðtÞ ¼ gðZðtÞÞ. Then, the solution is given by

Lð0; tÞ ¼ eðΛ−DÞt ð6Þ

Fig. 1. Condition managed critical spares.
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(ii) Case II: If the failure rate is a function of age and current
condition state, namely: λðtÞ ¼ gðt; ZðtÞÞ. Then, the solution can
be approximated for the following method called “product-
property”.

LðkΔ;mΔÞ≈ ∏
m−1

i ¼ k

~L½i� ð7Þ

where

~L ½k� ¼ e−
R ðkþ1ÞΔ
kΔ

DðtÞ dteΛΔ ð8Þ

Δ defines the approximation interval length, such that
kΔ≤x≤ðkþ 1ÞΔ and ðm−1ÞΔ≤t ≤mΔ, kom [2]. In general, while
the value of Δ is smaller, the precision of the reliability
estimation is better [24] (but also the amount of iterations
will be larger).

The stated Case II corresponds to Weibull-PHM model used in
this paper, because of it depends on age and condition. Then, the
“product-property” method was used in order to estimate the
matrix of transition probabilities, and consequently, the reliability
function. In [24] also is defined other method to estimate the
solution of the system of Eq. 5 called “product-integral” method.
However, the “product-property” method is more accurate than
the “product-integral” method when larger values of Δ are used.
Besides, the ”product-property” method is convenient because it
requires the estimation of only one transition matrix.

2.2. Condition-based service level (CBSL)

CBSL could be estimated adapting the structure given by stress–
strength interference theory [21]. Let x be the stress random
variable and f(x) be its probability density function. Likewise, let
y be the strength random variable and f(y) be its probability
density function. Therefore, the probability that stress does not
exceed an x0 value is

Pðx≤x0Þ ¼ Fxðx0Þ ¼
Z x0

0
f xðxÞ dx ð9Þ

Also, the probability that strength does not exceed an y0 value
is

Pðy≤y0Þ ¼ Fyðy0Þ ¼
Z y0

0
f yðyÞ dy ð10Þ

In order to calculate CBSL, this paper recognizes lead time as
equivalent to stress and conditional reliability as equivalent to
strength. While conditional reliability is estimated using the
model described in Section 2.1, the work adds the effect of lead
time considering two cases described by [21]: (i) stochastic lead
time (stress) and stochastic conditional reliability (strength), and
(ii) constant lead time (stress) and stochastic conditional reliability
(strength).

2.2.1. Stochastic lead time and stochastic conditional reliability
If both variables are stochastic, CBSL is the probability that lead

time (stress) is less than conditional reliability (strength). Or
equivalently, the probability that conditional reliability exceeds
lead time. As a result, CBSL is given by

CBSL¼ Pðx≤yÞ ¼
Z ∞

0

Z y

0
f xðxÞ dx

� �
f yðyÞ dy¼

Z ∞

0
FxðyÞf yðyÞ dy

ð11Þ
Fig. 2 exhibits the CBSL which is defined by the area where both

tail curves overlap or interfere with each other. This interference
analysis between stress and strength is the reason of the theory name.

2.2.2. Constant lead time and stochastic conditional reliability
If the lead time is a known constant value xs and conditional

reliability is a random variable, then CBSL is the probability that
conditional reliability exceeds the constant lead time. Hence

CBSL¼ Pðy≥xsÞ ¼
Z ∞

xs
f yðyÞ dy ð12Þ

Consequently, this instance could be considered as a special
case of when both stress and strength are stochastic.

2.3. Spare part ordering decision rule

Considering a deterministic lead time L, spare part ordering
time To is defined by time Tth at which desired reliability threshold
Rth is reached. Note that often a constant lead time is not the case
and variations on the delivery time exist [25]. Companies can
choose several scenarios of reliability threshold in order to obtain
a given service level. Therefore, the decision rule can be described
by

To ¼ infft≥0 : L≥Tthg ð13Þ
Fig. 3 illustrates this rule. It uses data from a numerical example

given by [24]. If lead time L is less than Tth at a given inspection
time t (case shown by L1) then equipment can continue operating
with the same spare part, because there is enough time until the
arrival of a new spare faced with a potential need (because of
the policy to keep reliability Rth). If lead time L is greater than Tth
(case shown by L2) then an ordering decision is required, other-
wise spare part will not be able to ensure the operational
continuity of the equipment supported by the spare-stocking. If
lead time L and Tth are equal then an ordering decision must be
also made, because this situation is likely to require a setup time
for the new spare part.

3. Case study

3.1. Condition-based reliability

The following case is an adapted version of a case study
described by [25]. The spare of interest is an electric motor of a
mining haul truck and, based on expert judgement, oil is the key
factor to model the condition process. Table 1 describes the model
parameters. Covariates were discretized in three bands, as shown
in Table 2. In addition to, Table 3 indicates the estimated matrix of
transition probabilities.

The conditional reliability function can be estimated for the 3
different initial states of oil by using the methodology indicated in
Section 2.1. As an example, Fig. 4 shows the conditional reliability
for State 0. Working ages have been set in operational hours (h).
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Fig. 2. CBSL as overlap of conditional reliability and lead time.
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Conditional reliability is fitted with a Weibull distribution for
different initial survival times (t0 ¼ 0 (h) or 0 (months),
t0 ¼ 10;920 (h) or 12 (months), and t0 ¼ 21840 (h) or 24 (months).
Fig. 5 displays the model fit. A Kolgomorov–Smirnov test was
applied to prove the model and the results were satisfactory.

Having set the Weibull distribution for conditional reliability
and considering the CBSL definition, the two cases mentioned in
Section 2.2 are tested. Firstly, the case where both lead time
(stress) and conditional reliability (strength) are stochastic. Sec-
ondly, the case where conditional reliability is stochastic, but lead
time is constant.

3.2. Condition-based service level considering stochastic lead time

We test using different distributions for lead time (including
constant lead time in next section). In this sense, the aim is
determining the capability to withstand lead time variability. The

choice of any lead time distribution is defined by delivery
constraints of spare part supplier. Fig. 6 exhibits four distributions
which are considered to fit lead time, namely: exponential,
truncated normal, Weibull with 2 parameters (Weibull (2p)), and
Weibull with 3 parameters (Weibull (3p)). The same mean is set
for all distributions. With an estimated operational utilization of
80%, 1 operational week is equivalent to 210 operational hours (h).
In this case, mean lead time is set at 2730 (h) (equivalent to 13
weeks or 3 months).

Fig. 7 exhibits a performance realization as a result of evolution
over time (t) because of interaction between conditional reliability
and lead time. Conditional reliability has been fitted as a Weibull
(2p) distribution. Fig. 8 is a top view of the same realization which
illustrates that CBSL (probability that strength is greater than
stress) is declining as the conditional reliability decreases. In other
words, component is becoming older over time because the
evolution of condition, thus service level is also declining.
Figs. 9–12 show the values of CBSL for different scenarios of mean
lead time and for different initial survival times. Standard devia-
tion depends on each distribution.

If CBSL is greater than a given reliability threshold Rth, then the
system is able to resist stress satisfying the desired service level.
Thus, equipment can continue operating and a spare part order is
not necessary. On the other hand, if CBSL is less than Rth, then a
spare part order is mandatory because of spare part will not be
able to withstand the lead time variability, and the desired
reliability would not be accomplished.
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Fig. 3. Spare part ordering decision rule.

Table 1
Baseline hazard rate parameters.

Parameter Value Units

β 3.5
η 19,003 (h)
γ 0.0001742 (ml/particles)

Table 2
Oil initial system states and covariate bands.

Initial state Covariate band (ml/particles) State value (particles/ml)

State 0 (0…53.73) 7
State 1 (53.73…87.91) 76.5
State 2 ð87:91…∞Þ 11,586

Table 3
Transition probabilities for motor condition.

j 1 2 3

p1-j 0.99797 0.00202 0.00001
p2-j 0.00159 0.99832 0.00009
p3-j 0.00317 0.00181 0.99505
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Fig. 5. Weibull model fit for conditional reliability at different initial survival
times.
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3.3. Condition-based service level considering constant lead time
(special case)

Table 4 evidences the decision-making for different reliability
thresholds and their respective working ages, where spare part
ordering depends on the decision rule (Section 2.3). In the current
case, three threshold values are considered, namely: 99%, 95%, and
90%. Three lead time scenarios in order to realize the effect of
them on service level are considered. Markov reliability model

allows setting any initial condition for spares. In this regard, a
complete range of practical operational environments can be
represented. For example, if it is assumed that the motor is new,
then the initial condition is “as-good-as new” (“State 0”).

As expected, when lead time is increasing, reliability con-
straints are more demanding and ordering decision time turns
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Fig. 8. Top view of CBSL for a given realization.
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Fig. 10. CBSL for initial survival time of 3 months.
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Fig. 11. CBSL for initial survival time of 6 months.
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sooner. As shown in Table 4, for a reliability threshold of 95%, the
decision changes from “continue” without ordering to “order” the
spare, when the lead time increases from 847 (h) to 3388 (h). On
the other hand, initial condition states also play a role. For a lead
time of 1694 (h) and at the same reliability threshold of 95%, a
greater deterioration level makes to change the decision from
“continue” to “order”.

Working age of this decision map makes practical sense until
approximately 6 months of expected lead time. If lead time is
greater than that period, then it could be better to stock spare
parts. However, CMS are unique and are not backed-up. Therefore,
another important factor is when the component becomes older.
Fig. 13 demonstrates this situation, considering different scenarios
of η to a situation of increasing aging. Table 5 displays the same
decision map but considering ð2=3Þη from the original value.

Using new η, the situation becomes critical at a lower time.
With the original model, the scenario of “always ordering” hap-
pened just at 6 months. With new η, the decision of “always
ordering” should be already made with any initial state at
3 months. This is relevant because if lead time is 6 months, spare
parts should be purchased as soon as the component starts to
operate. Then, with this map is also possible to visualize those
parts that can be classified as insurance spares.

4. Conclusions

This work provides a technique to enhance spare parts ordering
decision-making when companies need to ensure a reliability
threshold restricted by a lead time. Case study showed that
condition data could be an accurate indicator of component state
affecting the shape of reliability function. The ordering process can
be affected by different initial survival times and initial condition
states; they can change the decision for same reliability threshold
even. On the other hand, lead time is a relevant factor in ordering
decision. The ordering policy is sensitive to different scenarios of
lead times; they can also modify the spare part ordering decision if
the aim is ensuring the operational continuity of the equipment
supported by the spare part stock. It was concluded that, in order
to fulfill with operational continuity, condition data can be a
powerful tool for including in spare management. The need of
focus on critical spares and severe consequences on equipment
performance, demands a friendly technique which can be used in
an environment where decisions are needed quickly, in this
regard, the presented decision rule is easy to implement graphi-
cally and it can be used by asset managers to enhance operational
continuity.

Future works may include a combination of CBSL with asso-
ciated maintenance and logistics costs in order to obtain a global
perspective of asset management.
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Fig. 12. CBSL for initial survival time of 12 months.

Table 4
Motor ordering decision for different reliability thresholds, considering several lead time scenarios.

Reliability threshold (%) Expected time (h) Ordering decision

State 0 State 1 State 2 State 0 State 1 State 2

Expected lead time¼910 (h) (1 month).
99 494 467 122 Order Order Order
95 1753 1723 1067 Continue Continue Continue
90 3100 3074 2518 Continue Continue Continue

Expected time to order (h)
Expected lead time¼2730 (h) (3 months)
99 494 467 122 Order Order Order
95 1753 1723 1067 Continue Continue Order
90 3100 3074 2518 Continue Continue Order

Expected time to order (h)
Expected lead time¼5460 (h) (6 months)
99 494 467 122 Order Order Order
95 1753 1723 1067 Order Order Order
90 3100 3074 2518 Order Order Order
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Fig. 13. Conditional reliability considering aging by depletion of η.
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a b s t r a c t

Maintenance outsourcing is a strategic driver for asset intensive industries pursuing to enhance supply
chain performance. Spare parts management plays a relevant role in this premise since its significant
impact on equipment availability, and hence on business success. Designing critical spares policies might
therefore seriously affect maintenance contracts profitability, yet service receivers and external
providers traditionally attempt to benefit separately. To coordinate both chain parties, we investigated
whether the spare components pool should be managed in-house or contracted out. This paper provides
a decision-making framework to efficiently integrate contractual conditions with critical spares stock-
holding. Using an imperfect maintenance strategy over a finite horizon, the scheme maximizes chain
returns whilst evaluating the impact of an additional part to stock. As result, an original joint value –

preventive interval and stock level – sets the optimal agreement to profitably allocate the components
pool within the service contract. Subsidization bonuses on preventive interventions and pooling costs
are also estimated to induce the service provider to adjust its policy when needed. The proposed
contractual conditions motivate stakeholders to continuously improve maintenance performance and
supply practices, thus obtaining higher joint benefits.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance outsourcing is a strategic means to improve
business performance. Outsourcing creates value through the use
of external resources by and for companies to acquire and sustain
competitiveness [1]. The maintenance function is a main driver of
outsourcing since it has excellent potential to achieve cost benefits
and enhance performance among partners [2]. This business
purpose is meaningful for asset intensive industries – such as
mining, aeronautic, or defence – which face substantial invest-
ment in maintaining complex equipment and high demand on
system availability. For these firms, the main reasons to contract
out maintenance tasks rather than perform them in-house are
focusing on core business, accessing highly specialized services at
competitive costs, and sharing risks [2–5]. When dealing with
outsourcing, effective supply chain coordination allows achieving
a rewarding situation for all stakeholders [3]. Accordingly, a model
capable of coordinately optimizing performance can lead to
successful maintenance contracting strategies in capital intensive
environments.

Spare parts management has a critical role toward operational
efficiency of asset intensive industries. Equipment criticality is
defined by the most relevant assets that efficiently and safely
sustain production [6]. The operation of such equipment is con-
sequently supported by critical spare parts [7]. Major spare
components are related to considerable investment, high relia-
bility requirements, extended lead times, and plant shutdowns
with important effects on operational continuity [8]. A method to
prevent production loss events is having inventories at hand,
especially when either target service levels or backorder penalties
are large [9]. This is the case of capital intensive firms, wherein
critical spares storage is directly linked to business success due to
the impact of stock-outs on assets utilization [7]. As an example,
the aviation supply chain holds a remarkable US$ 50 billion in
spares inventories to provide availability service [10]. Efficient
critical spares stockholding is therefore essential for companies in
which success strongly depends on equipment performance.

Maintenance contracts profitability can be significantly affected
by critical spares policies. Particularly, the stock of critical repair-
able spares can be interpreted as a pool of components from
where replacements are satisfied [7]. Consistently with the serious
impact on operational and financial performance, managing the
pool of critical spare components becomes a key to improve
profits within the service contract. Nevertheless, as it depends
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Optimizing maintenance service contracts
under imperfect maintenance and a finite
time horizon
R. Pascuala*†, D. Godoya and H. Figueroab

When a company decides to outsource a service, the most important reasons for doing so usually are to focus on core business, to
be able to access high-quality services at lower costs, or to benefit from risk sharing. However, service contracts typically follow a
structure whereby both owner and contractor attempt to maximize expected profits in a noncoordinated way. Previous research has
considered supply chain coordination by means of contracts but is based on unrealistic assumptions such as perfect maintenance
and infinite time-span contracts. In this work, these limitations are overcome by defining the supply chain through a preventive
maintenance strategy that maximizes the total expected profit for both parties in a finite time-span contract. This paper presents
a model to establish such conditions when maintenance is imperfect, and the contract duration is fixed through a number of
preventive maintenance actions along a significant part of the asset life cycle under consideration. This formulation leads to a
win–win coordination under a set of restrictions that can be evaluated a priori. The proposed contract conditions motivate
stakeholders to continually improve their maintenance services to reach channel coordination in which both parties obtain higher
rewards. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: maintenance; service contracts; imperfect maintenance; finite time horizon

1. Introduction

The introduction of standards such as PAS-55 [1] and ISO 14001 [2] and the increasing concern on sustainably managing
of life cycle costs has intensified the use of asset management techniques to estimate resources from system design to
operation and disposal [3,4]. One way to achieve this is to balance in-house resources and to outsource business functions
such as maintenance.

Before the 1970s, most equipment maintenance was performed with in-house resources. Nevertheless, because the
systems have been growing in complexity, it is more competitive to supply system service using specialized external agents
and equipment [5]. In the past decade, maintenance outsourcing has significantly increased in relevance. Outsourcing has
become a business key to reach a competitive advantage because products and services can be offered by outside suppliers
in a more efficient and effective way [6]. There has also been a paradigm shift in asset management, in which mainte-
nance has evolved from a cost-generating activity to a value-adding function; currently, outsourcing is viewed not only
as a way to ensure cost objectives but also as a way to access better quality of service and improve the product delivery
capability [7]. Outsourcing also involves risk transfer. The cost of this transfer may be estimated as the difference between
outsourcing a task and performing it in-house [8]. Through maintenance externalization, a set of advantages is obtained for
the manufacturer, namely (i) best maintenance practices due to expertise of the providers and use of the latest maintenance
technology, (ii) risk mitigation of high costs by setting for-purpose service contracts, (iii) reduction of capital invest-
ments, and (iv) ability of in-house managers to spend more time in the strategic aspects of the business. On the contrary,
some disadvantages are (i) cost of contracting scarce services, making it possible for the contractor to increase monop-
olistic behavior, (ii) a potentially risky dependency, such as control of machine availability transferred to a contractor,
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Abstract

Highly competitive industries, such as mining, face constant pressure for continuous improvement. This increasing
need for efficiency demands the use of models of reliability and benefit, especially for significant investment equip-
ment and components. Critical major components -e.g. mill liners, shovel swing transmissions or haul truck engines-
are related to lengthy shutdowns with a considerable impact on the financial structure. In this context, cost optimiza-
tion is a widely-used principle to schedule component replacements. However, this practice traditionally involves not
considering external factors of interest, such as business-market conditions, which can radically change decisions. To
overcome this limitation, we have proposed a criterion based on the estimation of revenues -under several commodity
price scenarios- at both the component intervention epoch and time-window during major shutdowns. The aim of this
work is to guide the decision about the best epoch to replace, considering the maximization of value-adding rather
than simply minimization of costs. The paper presents a model to evaluate such optimal value by estimating the net
benefit subject to certain interest rate for discounting, considering the copper price, component survival probabilities
(using Condition-Based Maintenance, CBM), cost and expected downtime. Results show the influence of business
objectives to identify the real value of waiting the right epoch to perform an intervention, in order to optimize the
decision benefit, satisfying both reliability constraints and time-windows. In conclusion, business profitability op-
portunities increase when maximization of value-adding is included as part of a complete view of asset management
system.

Keywords: Value-based optimization, Critical components, Optimal replacement.

1. Introduction

Value-adding requires enriched methods for enhanc-
ing efficiency, reliability and profitability of decision-
making processes. Continuous improvement of perfor-
mance is required by the increasing competitiveness in
which companies are currently involved. Desired and
sustainable outcomes can be accomplished through an
optimal approach of managing assets [1, 2]. Asset Man-
agement has evolved from having a narrow purpose of
just fixing broken items, to a strategic wider role cov-
ering the whole life cycle system and securing future
maintenance requirements [3]. This perspective creates
a need for excellent practices. Maintenance excellence
pursues exceptional plant efficiency by means of balanc-
ing performance, risk, and cost within a random-nature
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industrial environment [4]. Accordingly, competitive
industries cope with an unceasing exigency to add value
in their processes.

Growing business performance targets can be ad-
dressed by using reliability models. From the mainte-
nance excellence viewpoint, the optimization of asset
replacement and resource requirements decisions is es-
sential for continuous improvement [3]. This becomes
even more decisive in the case of asset intensive in-
dustries -such as mining, aeronautic, defence, or nu-
clear industries- with high investment equipment to per-
form operations. The constant pressure to reduce costs
and increase utilization often leads to a stress on equip-
ment, affecting reliability and throughput [5]. Hence,
the interest lies in improving system reliability. The
operation of essential equipment is supported by criti-
cal components [6]. Consequently, reliability enhance-
ment of complex equipment can be achieved by preven-
tive replacement of its critical components [3]. Crit-
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a b s t r a c t

Asset-intensive companies face great pressure to reduce operation costs and increase utilization. This
scenario often leads to over-stress on critical equipment and its spare parts associated, affecting
availability, reliability, and system performance. As these resources impact considerably on financial
and operational structures, the opportunity is given by demand for decision-making methods for the
management of spare parts processes. We proposed an ordering decision-aid technique which uses a
measurement of spare performance, based on the stress–strength interference theory; which we have
called Condition-Based Service Level (CBSL). We focus on Condition Managed Critical Spares (CMS), namely,
spares which are expensive, highly reliable, with higher lead times, and are not available in store. As a
mitigation measure, CMS are under condition monitoring. The aim of the paper is orienting the decision
time for CMS ordering or just continuing the operation. The paper presents a graphic technique which
considers a rule for decision based on both condition-based reliability function and a stochastic/fixed
lead time. For the stochastic lead time case, results show that technique is effective to determine the time
when the system operation is reliable and can withstand the lead time variability, satisfying a desired
service level. Additionally, for the constant lead time case, the technique helps to define insurance spares.
In conclusion, presented ordering decision rule is useful to asset managers for enhancing the operational
continuity affected by spare parts.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Decision-making processes are crucial for organizations within
a scenario of intense competitiveness. Since companies are
frequently required to reduce production costs and increase asset
utilization, misguided decisions may lead to over-stress on equip-
ment. This situation affects reliability and, more importantly,
system throughput. Continuous improvement of the ability to
add value and enhance profitability of operations is needed by
firms in pursuit of performance excellence [1]. An efficient
resources ordering is indispensable to achieve significant avail-
ability exigencies of equipment-intensive industries, such as
mining, aeronautic, nuclear energy, or defence. This equipment is
supported by spare parts inventories, which are particularly
relevant considering the influence of stock-outs on downtime
[2]. Appropriate spare parts allocation decisions are therefore
essential to system performance of these industries.

Spare parts play a fundamental role in the support of critical
equipment. In a typical company, approximately one third of all
assets corresponds to inventories [3]. Of these assets, critical spare

parts have special relevance because they are associated with both
significant investment and high reliability requirements. As an
example, spares inventories sum up above US$ 50 billion in the
airlines business [4]. The mismanagement of spare parts that
support critical equipment conduces to considerable impacts on
financial structure and severe consequences on operational con-
tinuity. The improvement of key profits on both logistics and
maintenance performance can be achieved by inventory manage-
ment of costly components, which have extremely criticality on
equipment-intensive industries [5]. Therefore, efficient decisions
about spare-stocking policies can become essential in the cost
structure of companies. In order to provide an efficient spare
management performance, a suitable ordering strategy can be
relevant. A spare part classification scheme becomes necessary to
set optimal policies for those spares that may affect the system the
most, and at the least effort. We proposed an ordering decision-aid
method to secure the spare management performance into an
operational environment that needs continuity to compete into a
demanding business context.

1.1. Critical spare parts and maintenance strategy

The need for spare parts inventories is dictated by maintenance
actions [6]. In addition, maintenance strategy can be treated by
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a b s t r a c t

In an environment of scarce resources and complex production systems, prioritizing is key to confront

the challenge of managing physical assets. In the literature, there exist a number of techniques to

prioritize maintenance decisions that consider safety, technical and business perspectives. However,

the effect of risk mitigating elements—such as intermediate buffers in production lines—on prioritiza-

tion has not yet been investigated in depth. In this line, the work proposes a user-friendly graphical

technique called the system efficiency influence diagram (SEID). Asset managers may use SEID to identify

machines that have a greater impact on the system throughput, and thus set prioritized maintenance

policies and/or redesign of buffers capacities. The tool provides insight to the analyst as it decomposes

the influence of a given machine on the system throughput as a product of two elements: (1) system

influence efficiency factor and (2) machine unavailability factor. We illustrate its applicability using

three case studies: a four-machine transfer line, a vehicle assembly line, and an open-pit mining

conveyor system. The results confirm that the machines with greater unavailability factors are not

necessarily the most important for the efficiency of the production line, as it is the case when no

intermediate buffers exist. As a decision aid tool, SEID emphasizes the need to move from a

maintenance vision focused on machine availability, to a systems engineering perspective.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To meet the increasing challenges of current industrial envir-
onment, organizations must continuously enhance their capabil-
ity to add value and improve the cost-effectiveness of their
decision processes. These include the selection of those systems
(machines) and actions that may render the highest overall
savings with the lowest efforts, and then, set their associated
lifecycle policy resolutions. Setting such policies requires
resources. As these resources are usually scarce and the number
of machines is usually high, a systematic prioritization process
must be established [1] and a proper decision aid tool must be
selected.

The Pareto analysis has been commonly used to select the
components and most critical failure modes of a system. A
limitation of this approach is that it uses a single criterion to
prioritize. In maintenance management, availability is a typical
indicator. This indicator does not allow to ensure whether the
cause of failure is a high frequency (reliability) or long downtime
(maintainability). To help overcome this problem, Labib [2]
suggests the decision-making grid. It uses a diagram that includes

frequency and downtime, allowing the monitoring of equipment
and indicating the appropriate action. An example of a non-
graphical technique is the analytic hierarchy process which uses
pairwise comparisons and relies on the judgements of experts to
derive priority scales [3]. A disadvantage of using this method is
that in situations with a sizeable number of alternatives, the
required comparison step can be unwieldy and excessive resource
consuming. In the case of failure mode and effect analysis (FMEA),
the rating to calculate the priority of the failures is called risk

priority number [4], severity [5] and/or criticality rank [6], which
is worked out by the product of different ratings: frequency,
consequence, detectability, etc. Nonetheless, in many cases the
estimation of these factors can be highly subjective. A more
advanced technique is proposed by Knights [7] through the Jack

knife diagram (JKD), a logarithmic scatter plot that involves
simultaneously three performance indicators: frequency, down-
time, and unavailability. Using JKD, it is possible to classify
failures as acute and/or chronic. Acute failures indicate problems
in inspections, resource availability, preventive maintenance,
among others. Furthermore, chronic failures indicate problems
in equipment operation and materials quality. The JKD technique
only considers time-based information, excluding economic
effects which certainly affect prioritization in a business context.
In order to surpass this limitation, Pascual et al. [1] propose the
cost scatter diagram (CSD) that incorporates the economic
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