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SUMMARY 

 

This thesis investigates several important issues in post-sale cost modeling and 

optimization. The costing of a maintenance program is analyzed under the warranty 

context from both the manufacturer’s and consumer’s point of view. In particular, for 

the manufacturer, we study the issue of warranty cost analysis where preventive 

maintenance (PM) is an important planning tool in terms of service improvement and 

warranty cost reduction. For the consumer, we investigate the PM scheduling problem 

during the product life cycle where warranty is an important factor in influencing the 

maintenance decisions. In addition to costing analysis, warranty as an effective 

marketing instrument for enhancing the revenue is also discussed.  

In the modeling of warranty expense for complex systems, the majority of researchers 

presume the system as a “black box” which does not utilize the information of inner 

structure. Chapter 3 studies two basic system structures, i.e. series and parallel, and 

derives the respective warranty cost functions under renewable warranty policies. 

Unique in this study is the incorporation of failure dependence factor between each 

two of the system components. We investigate the impact of such factor on the total 

warranty expense and the risk of ignoring it.  

Manufacturers usually rely on the age information of a product as the single metric for 

maintenance design under warranty. Such policy may result in unnecessary 

maintenance operations for products with inadequate deteriorations. In Chapter 4, we 

propose such a condition-based warranty policy that counts on the product state 

information for executing maintenance decisions. We derive the warranty cost 
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functions under both renewable and non-renewable warranty policies, based on which 

the optimal scheduling of inspection services is further analyzed. 

For the owners of industrial equipments, investing in maintenance is widely modeled 

from the costing perspective while the value or return of maintenance investments is 

seldom emphasized. Motivated by this, Chapter 5 investigates the optimal design of 

maintenance servicing on revenue-generating equipments by integrating both the cost 

and value aspects of maintenance. The study assumes imperfect maintenance 

operations and generalizes the existing periodic PM models. The influence of warranty 

as well as many other models parameters on the optimal PM decisions is illustrated. 

In the design of maintenance policies, two major assumptions are commonly adopted: 

binary system (i.e. functioning or failed) and infinite planning horizon. In contrast, 

almost all systems are operating under finite life times and many of them exhibit 

multiple performance levels. Therefore, in Chapter 6, we investigate the repair-

replacement policies for multi-state systems (MSS) under finite life cycles. Corrective 

and preventive replacement decisions are modeled and compared via two control 

parameters – a threshold on the current system state and a threshold on the residual life 

cycle. Value of time is taken into account for the maintenance cost modeling. 

Extension is further made to generalize the cost functions under the warranty context.   

Warranty as an effective product marketing tool has been extensively studied in the 

literature. Majority of the researchers focus on the joint determination of selling price 

and warranty length that maximizes the seller’s profit (rate) function. In Chapter 7, we 

further extend this topic by integrating the factor of the buyer’s age-replacement 

decisions into the design phase of the seller’s product marketing strategy. For such 
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integration to be viable, a game theoretic model is formulated that allows the seller to 

foresee the buyer’s maintenance decisions and subsequently make his own moves.   
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CHAPTER 1 INTRODUCTION 

 

In this thesis, we investigates several important issues in the post-sale cost modeling 

and optimization from both the manufacturer’s (seller) and consumer’s perspective 

(buyer) by considering a comprehensive set of cost factors, such as characteristics of 

warranty and preventive maintenance policies, maintenance cost structure, system 

structure and dependence, product ageing mechanism, value of time, product demand 

function, and different maintenance planning horizons. Warranty and preventive 

maintenance (PM) are modeled interactively to either enhance the seller’s warranty 

servicing strategy or reduce the buyer’s life-cycle maintenance cost.    

Chapter 1 introduces the roles and various types of product warranty, presents the 

classification of maintenance, illustrates the maintenance cost factors and elaborates 

the scope and objective of this research. An outline of the thesis is provided thereafter.  

1.1 Product Warranty 

Almost all products are released in the market with certain forms of warranty. A 

warranty is a contractual agreement that requires the manufacturer to rectify all the 

failures incurred within the warranty period. A validated warranty contract should 

contain at least three attributes: the length of warranty coverage (fixed or random), the 

methods for compensation, and the conditions under which such compensations would 

be materialized. The last attribute is closely related to the legal aspect of warranty 

execution, while the first two are often used to differentiate or categorize the 

warranties.  
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1.1.1  Role of Warranty 

Warranty serves different roles for manufacturers and consumers. From the 

manufacturer’s perspective, the main role of a warranty is to promote sales. In other 

words, warranties are mainly used by manufacturers for marketing purposes. 

Consumers usually view better warranty terms as signals for better product quality and 

this will have positive influence on their purchase decisions. On the other hand, 

warranty also serves as an important protection tool for manufacturers in terms of 

reducing disputes with consumers upon product failures. It elucidates the consumer’s 

obligations for care and maintenance of the product and therefore insures against 

excessive warranty claims caused by inappropriate use of the product.  

From the consumer’s perspective, the main role of a warranty is to provide protection 

against premature failures. By clearly defining the consumer’s rights for warranty 

execution, a warranty provides a means of rectification for failures under normal usage 

conditions. Also warranty is informative in the sense that it serves as an indicator for 

product performance and reliability. This typically makes sense in those highly 

competitive markets where products have become much more complex and less easily 

evaluated by the users. 

Some researchers also report the role of warranty from an investing perspective (Priest, 

1981). In general, warranty as an integral part of the sale is factored into the product 

price. Insightful customers can often view such additional payments at purchase as 

investments confining future financial losses due to failures. On the other hand, 

through offering warranty services, manufacturers may successfully establish a long-

term relationship with customers, and thereby retain their business even after the 

warranty has expired (such as by selling extended warranties). 
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1.1.2  Warranty Policies 

Numerous types of warranty policies have been proposed within the last few decades. 

A simple but relatively complete taxonomy of warranty policies can be found in 

Blischke and Murthy (1992). To serve our purpose, we categorize warranty policies 

according to three attributes: renewability, methods for warranty compensation and the 

dimensionality.  

Renewable and Non-Renewable Warranties 

Warranty policies can be classified as either renewable or non-renewable. For 

renewable warranties, whenever a product fails within the warranty period under 

normal usage conditions, compensation is made to the buyer with an identical warranty 

provided. The same process is repeated until no failure has incurred in the prescribed 

warranty length. Thus, the total time under warranty (or warranty cycle for short) is a 

random variable and jointly determined by the warranty length and product failure 

mechanism. On the other hand, majority of warranties are non-renewable in the sense 

that it will automatically expire after a fixed length of usage. One should notice that 

offering renewable warranties could be costly to the sellers. Therefore, it is mainly 

provided to certain inexpensive and non-repairable products such as microwaves, 

coffee grinders and so forth. However, as product features among comparable models 

of competing brands become more and more indistinguishable, one would expect to 

observe a growing interest in renewable warranties for marketing high-priced products. 

Free-Replacement and Pro-Rata Warranties 

Warranty policies can be grouped by their methods of compensation specified in the 

warranty contracts. A free-replacement warranty (FRW) requires the manufacturer to 

be fully responsible for the product failures within the warranty period, and fix the 
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problems (either by repair or replacement) without extra charge to customers. FRW 

has been offered on a wide range of repairable and irreparable products such as 

automobiles, home appliances and expensive electronic components. It is considered 

as favorable to customers since manufacturers have to bear all the warranty cost risk. A 

pro-rata warranty (PRW), on the other hand, indicates a prorated cost-sharing scheme 

between the manufacturers and customers. Upon premature failures, the customer can 

choose either renew the product at a reduced price or receive a cash rebate from the 

manufacturer. The renewing cost or the amount of rebate is not fixed and usually 

depends on the age of the product. Many relatively inexpensive products are sold 

under this policy, such as automobile tires, batteries and so forth. Also, FRW and PRW 

can be combined. For example, under a one-year warranty contract, the manufacturer 

can provide free-replacement services upon failure during the first two months and 

apply the pro-rata policies during the remaining period.  

Both FRW and PRW (and combination FRW/PRW) can be further extended to 

renewable warranty settings. They are mostly known as renewing free-replacement 

warranties (RFRW) and renewing pro-rata warranties (RPRW) in the literature. These 

four types of warranty policies serve as a foundation for many variants of post-sale 

service plans offered in the market, which subsequently provide abundant marketing 

solutions for the seller. 

One-Dimensional and Two-Dimensional Warranties 

Warranty policies can be grouped into either one-dimensional or two-dimensional. 

Most warranties are one-dimensional for which the warranty terms are based on the 

product age or usage, but not both. In comparison, two-dimensional warranties, which 

rely on both the product age and usage, are mainly offered in auto industries. For 
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example, typical warranty terms for a new warranted car include a 36-month age limit 

and a 36000-mile mileage limit, with certain parts (such as power train) under 

prolonged warranty protection. Since two-dimensional warranties would expire when 

either the age or the usage exceeds the limit, it is considered to be more advantageous 

to manufacturers compared with one-dimensional warranties. One should notice that 

for many products, measuring product usage (or other replaceable attribute) is difficult 

to the sellers, and the administration cost for executing such warranties could be very 

high. Therefore, two-dimensional warranties are not favored in many industries. This 

thesis will only cover the study of one-dimensional warranties. 

1.2  Maintenance 

1.2.1  Classification on Maintenance  

Maintenance is the set of all technical and administrative actions intended to maintain 

a system in or restore it to a state in which it can perform its required functions 

(Dekker, 1996). According to Wang (2002), a maintenance activity can be categorized 

along three dimensions: the type of maintenance, the degree of maintenance and the 

type of system to be maintained. 

Corrective and Preventive Maintenance 

Maintenance can be categorized into two major types: corrective maintenance (CM) 

and preventive maintenance (PM). Corrective maintenance (CM) actions are 

unscheduled actions intended to restore a system from a failed state to an operational 

state. This involves either repair or replacement of failed components. In contrast, 

preventive maintenance (PM) actions are scheduled actions carried out to either reduce 

the likelihood of a failure or prolong the life of the system. PM actions are not always 
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planned by the buyers. Instead, since most products are sold with warranty, it is 

important for manufacturers to design a good PM program in order to reduce the total 

cost of warranty service. 

Perfect, Minimal and Imperfect Maintenance 

Maintenance can be classified according to the degree of improvement on the system 

operating conditions right after the maintenance. Perfect maintenance restores a system 

operating condition to “as good as new” (AGAN). That is, upon a perfect maintenance, 

a system has the same failure mechanism as a new one. Typically, replacement of a 

failed system by a new one is considered as a perfect maintenance operation, where the 

number of replacements over a fixed period can be analyzed by the renewal theory 

(Barlow and Proschan, 1965). 

Minimal repair/maintenance, on the other hand, restores a system to the same 

operating condition right before it fails. It was first proposed in Barlow and Hunter 

(1960) and also referred as “as bad as old” (ABAO) maintenance in the literature. 

For a minimally repaired system, its failure mechanism can be modeled by a non-

homogeneous Poisson process (NHPP). Specifically, its failure rate (or hazard rate) 

function h(.) coincides with the intensity function of NHPP, which can be defined as 

lim
∆

∆
∆ 1                                                           1.1   

where F(.) is the failure time distribution of the system.  

As an attempt to generalize perfect and minimal maintenances, imperfect maintenance 

restores a system operating condition to somewhere between AGAN and ABAO. It is a 

more realistic model because, for most systems in real-world situations, the working 
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condition after the maintenance (or repair) does not fall into the two extreme states but 

rather somewhere in between.  

Various methods have been proposed in the literature to model imperfect maintenance 

operations. Some of them are proposed for the CM and some are designed initially for 

the PM. However, most of these methods can be well applied to both CM and PM 

activities and have been thereby used interchangeably in the recent literature (Wu and 

Zuo, 2010). 

Pham and Wang (1996) provided a taxonomy for these models. They emphasized on 

the modeling methods utilizing (p,q) rule, improvement factor, virtual age, shock 

model, quasi-renewal process and several other methods. Nakagawa (2005) further 

classified these methods into four major types, dealing with probability, age, failure 

rate and cost respectively, and with age and rate being the most popular modeling 

subjects in the literature.   

Maintenance on Single-Component and Multi-Component System 

Maintenance can be applied to either a single-component system or a multi-component 

system. For multi-component systems, the maintenance plan is developed by utilizing 

both the system structure information and the dependence among its subcomponents. 

In contrast, the single-component maintenance is mainly modeled via a “black-box” 

approach. Typically, a complex system may be modeled as a single component if its 

inner structure cannot be identified or the reliability of the individual subcomponent 

does not directly affect that of the system (Valdez-Flores and Feldman, 1989).  

There are two major types of dependences for multi-component system maintenance: 

economic dependence and failure dependence. Economic dependence describes the 

strategy for replacing/repairing a group of components simultaneously at a cost (or 
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time) less than the separate maintenance of each subcomponent (Tsokos and Shimi, 

1977). It is also referred as the opportunistic maintenance strategies. This type of 

strategy is usually applied to continuous operating systems, such as aircrafts, 

telecommunication systems, production lines, where the downtime cost of the system 

is much higher than the maintenance cost. In contrast, failure dependence characterizes 

the properties of component-level degradations that cannot be stochastically isolated. 

Failure dependence will normally accelerate the ageing process of a system, and 

ignoring such factor may lead to either insufficient maintenance or underestimation of 

the maintenance cost during the planning stage. 

1.2.2  Preventive Maintenance Policies 

A preventive maintenance (PM) policy represents the set of rules that a PM program 

should follow in order to achieve certain pre-specified goal(s). The set of rules 

normally includes the frequency of PM actions, the degree of each PM, and the 

conditions under which a PM is to be implemented. The goal(s) of a PM policy can be 

either cost-centered or reliability-centered, or the combination of these two. To be 

specific, a PM policy can be developed to minimize the maintenance cost, to achieve 

certain reliability target, or to minimize the maintenance cost subject to reliability 

constraint. In comparison, most PM policies are developed for cost minimization 

purposes. 

Based on whether the operating condition of a system is monitored or not, preventive 

maintenance (PM) policies can be grouped into either time-based maintenance (TBM) 

policies or condition-based maintenance (CBM) policies. The former refers to the 

planned maintenance actions carried out at specific calendar times regardless of system 

condition, while the latter is based on observing and collecting information concerning 
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the condition of system for executing maintenance actions. TBM is easy to implement 

in practice which assumes the underlying life time distribution has been statistically or 

experimentally made known (Gertsbakh, 1977). CBM on the other hand is more 

dependent on the availability of monitoring technique and facilities. Some systems are 

subject to failures only if it deteriorates beyond certain threshold level. In this sense, 

CBM can be very effective in preventing excessive maintenance for systems with 

inadequate deteriorations (Grall et al., 2002a).  

Wang (2002) provided a thorough review of the time-based PM policies in the 

literature. The author addressed the age-dependent PM policy, periodic PM policy, 

failure limit policy, sequential PM policy, repair limit policy and several other policies. 

Among these, the age-dependent PM policy and periodic PM policy are most 

embraced in practice. 

1.3  Maintenance Cost Factor 

The costing of a maintenance program can be generally studied from two perspectives: 

the manufacturer’s perspective and the consumer’s perspective. The former is to 

evaluate the maintenance cost over the warranty period whereas the latter is to conduct 

cost analysis over the life time of a product. Each perspective of studies has to be 

related to many cost factors. The following is a list of common factors which we 

believe should be contained in any maintenance cost models. 

1. Warranty and preventive maintenance policies 

2. Maintenance cost structure 

3. Product ageing mechanism 

4. Impact of maintenance on the product reliability 

5. Criterion for cost measurement 
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1.3.1  Warranty and Preventive Maintenance Policies 

Interpretation of the first cost factor is critical for understanding the motivation of this 

research.  

The design of warranty and PM policies is of special importance to the cost analysis of 

a maintenance program. From the manufacturer’s perspective, the maintenance costs 

under warranty are mainly determined by the attributes of warranty policies such as the 

length of warranty coverage and the methods for compensation. For example, longer 

warranty coverage or better compensation to the consumer upon product failures (such 

as a FRW) will normally incur a higher service cost to the manufacturer. From the 

consumer’s perspective, the maintenance costs will be influenced by the PM policies 

such as the frequency and degree of PM actions carried out during the product life 

cycle. For example, more frequent PMs or deeper degree of maintenance (such as 

perfect maintenance) will reduce the likelihood of unexpected system breakdowns as 

well as the corrective maintenance (CM) cost upon failures. 

On the other hand, it is important to notice that, for many cases the design of warranty 

and PM policies are not separate processes but has to be integrated. Such argument can 

be justified from three aspects, and each of them can substantially complicate the 

procedure of maintenance cost modeling. 

1) Almost all products are released with warranty. Implementing a PM program 

from the consumer’s perspective is inevitably affected by the design of 

warranty policies, which usually cover the initial period of product life cycle. 

Typically, the presence of warranty protection reduces the maintenance duties 

of the consumer and may subsequently influence his PM decisions.  
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2) For the manufacturer, designing a good maintenance program under warranty is 

an important issue. Majority of warranty policies only specify the types of 

maintenance actions (repair or replacement) carried out upon product failures. 

However, such CM policies are sometimes costly if a failure can lead to a much 

higher repair cost or result in a negative image to the product quality. Therefore, 

it is justifiable for the manufacturer to further incorporate the concept of 

“preventive maintenance” into the warranty design. 

3) For the manufacturer, the consumer’s PM efforts within the warranty period 

will also have impact on the manufacturer’s warranty related decisions. For 

example, maintenance efforts from the consumer’s side reduce the warranty 

burden for the manufacturer, and this may enable the manufacturer to provide 

longer warranty coverage as responses to the consumer’s maintenance 

contributions (Pascual and Ortega, 2006; Huang and Yen, 2009). In particular, 

a common reason why the consumer implements PMs under warranty is to 

reduce the downtime cost of failures. Practically speaking, warranty and 

maintenance contracts as such may appear in a negotiable scheme (Jackson and 

Pascual, 2008; Wang, 2010). 

Overall, PM modeling plays an important role in the warranty design and vice versa. 

The interactions between these two should be carefully investigated in order to 

enhance the related post-sale decisions. 

1.3.2  Maintenance Cost Structure 

In addition to the post-sale service design, maintenance cost structure is another key 

factor to be modeled. It refers to the set of maintenance costs associated with different 

degrees and types of maintenance actions, which usually includes minimal repair, 
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imperfect and perfect maintenance (either corrective or preventive), replacement, 

inspection, testing and so forth. Strictly speaking, these costs are random in nature and 

need to be modeled by suitable distribution functions. However, due to the scarcity of 

data, in practice they are often averaged and modeled as constant values.  

1.3.3  Product Ageing Mechanism 

The product ageing mechanism can be characterized by the joint behavior of product 

(or system) degradation and failure process. This involves the consideration of system 

structure and dependence, reliability of components, system state space, and 

maintenance impact on system functionality. System structure is critical in determining 

the overall reliability. In particular, for multi-component systems, component failures 

may not be stochastically independent. The existence of failure dependence accelerates 

the ageing process, and may cause premature failures and result in higher maintenance 

cost.  

Majority of warranty and maintenance policies are developed for binary systems, 

which are functioning or failed subject to a single stage of degradation. A multi-state 

system (MSS) generalizes the binary state assumption by considering a set of system 

states and involves several stages of degradation before it reaches the complete (or 

degradation) failure. Maintenance cost modeling for MSS often resorts to the Markov 

decision processes, with both repair and replacement costs being considered as 

functions of degradation stages. 

1.3.4  Impact of Maintenance on the Product Reliability 

The impact of maintenance on product reliability is also crucial to the maintenance 

cost modeling. For a non-repairable product, given perfect replacement, the time to 
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first failure and those of the subsequent failures generally follow the same distributions. 

However, if the product is repairable and the repair is imperfect, then a distinct failure 

distribution function should be adopted for modeling the maintenance cost after each 

failure. Similar logic can apply to imperfect PM activities. In particular, the degree of 

imperfect PM is often negatively correlated with the frequency of PM, both of which 

have to be carefully designed in the maintenance practice.  

1.3.5  Criterion for Cost Measurement 

Maintenance cost can be measured based on different criterions. The choice of any will 

have direct impact on the maintenance costing as well as the design of warranty and 

maintenance policies. In the following we illustrate three major types of cost criterions. 

1) Expected maintenance cost (EMC) vs. expected discounted maintenance cost 

(EDMC). The difference between these two is that the EDMC incorporates the 

value of time and discounts all the future maintenance expenditures into their 

respective present values. In correspondence, the warranty costs are measured 

as expected warranty cost (EWC) and expected discounted warranty cost 

(EDWC) respectively. 

2) Cost per item sold vs. cost for all items sold. The former calculates the 

maintenance expenditure on a unit sale and can be analyzed within either 

warranty period (the seller’s perspective) or product life cycle (the buyer’s 

perspective). The latter on the other hand measures the total maintenance cost 

incurred by a population of identical products which is usually governed by the 

demand or sales of the product. In practice, instead of analyzing the total 

maintenance cost under warranty, manufacturers are more interested in 

measuring the total profit generated from selling these products.  
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3) Cost over a finite planning horizon vs. cost per unit time. Most products have 

finite life cycles in the sense that they will be disposed after certain periods of 

usage. However, if the assumption of repeated purchases hold for the buyer 

(mainly to serve for long-term missions), then maintenance actions can be 

modeled by renewal reward processes (Ross, 1970) which measure the cost on 

a unit time basis over an infinite planning horizon.  

Let R(t) denote the total reward earned by time t, Rn denote the reward during 

the nth renewal cycle and Zn denote the length of nth renewal cycle. The long-

run average return is given by the following  

lim                                                                   1.2  

where Rn and Zn (n = 1,2,…) are i.i.d. random variables. Such approach usually 

leads to the simplification of maintenance cost formulation but only provides 

an approximation to the reality. 

 

1.4  Problems and Research Objectives 

Due to the interdisciplinary nature, warranty has been investigated by researchers in 

many different ways. A list of over 13 areas of study is given in Murthy and 

Djamaludin (2002). To serve our purpose, we categorize them into the study of three 

basic problems. 

I. Determining the actual cost of a warranty program for a particular product or 

maintenance service.  

II. Designing a proper warranty service strategy to either reduce the warranty cost 

or enhance the revenue. 
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III. Investigating warranty as a factor in studying other disciplines, such as 

engineering (e.g. maintenance, logistics), accounting, legislation, marketing, 

economic and societal, etc.  

As mentioned earlier, PM modeling plays an important role in the warranty service 

design and vice versa. In particular, for Problems I and II, PM is an important planning 

tool in terms of enhancing the warranty servicing, reducing the warranty cost, and 

promoting the sales revenue. In contrast, for Problem III, warranty design becomes an 

important factor in influencing the buyer’s (preventive) maintenance decisions over the 

product life cycle. 

By realizing this, the primary goal of this research is to model warranty and preventive 

maintenance (PM) interactively in order to enhance the existing studies on post-sale 

cost analysis and optimization. As far as we see, such a joint consideration hasn’t been 

sufficiently addressed in the warranty and maintenance literature. 

In addition, by putting PM modeling under the warranty context, this research attempts 

to study or enhance the study of the following research issues. 

1. Warranty cost modeling for complex system with failure dependence 

Compared to the “black-box” approach, an improved way for modeling 

warranty cost of complex system is to incorporate the internal system structure. 

However, by ignoring failure dependence among system components, warranty 

cost models may no longer be accurate and mostly the manufacturer risks 

affording higher warranty expense due to the increase in unprecedented failures. 

As such it seems necessary to model the warranty cost of complex systems by 

incorporating the failure dependence among components. 
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2. Warranty service design considering condition-based maintenance 

Most researchers rely on the age information of a product for the design of 

maintenance services under warranty, which may result in unnecessary 

maintenance operations for products with inadequate deteriorations. In order to 

resolve this problem, condition-based PM strategy may be explored which 

maintains the product based on the level of actual deterioration.  

3. Maintenance service design for multi-state systems (MSS) under finite 

planning horizon 

Due to the complexity of ageing mechanism, majority of maintenance policies 

for MSS are proposed under infinite planning horizons, which measure the 

maintenance cost on a unit time basis and subsequently bring technical 

convenience for formulating and resolving the maintenance problem. 

Formulating a MSS maintenance policy under a finite horizon remains to be a 

challenge research issue despite of the fact that almost all systems are 

functioning with finite life cycles. It is therefore important to study a finite-

horizon maintenance policy dedicated for the MSS. 

4. Maintenance service design including the value aspect of maintenance 

Optimal maintenance service design is usually selected from a set of the 

maintenance policies that leads to the minimum maintenance expenditure. 

However, such cost-centric maintenance design often ignores the value of 

maintenance, and may lead to sub-optimal maintenance strategies (Marais and 

Saleh, 2009). On the other hand, an industrial or service system usually creates 

more output (or revenue) to the operators if it receives better maintenance 

services that help retain its productivity. This justifies the value aspect of 
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maintenance and should be appropriately reflected in the maintenance cost 

models in order to enhance the maintenance decisions.   

5. Integrated consideration of the buyer’s and the seller’s post-sale service designs 

Post-sale service designs for the manufacturer and the consumer are often made 

separately. This enables one to focus on the study from a single perspective and 

helps simplify the decision making processes. However, such arrangement may 

not be appropriate sometimes, in particular when concerning the interaction 

between the designs of warranty and PM policies (as highlighted in Section 

1.3.1). For such situation, it is important to explore the feasibility of unifying 

both the buyer’s and the seller’s post-sale decisions for which knowing the 

decision of one perspective could potentially enhance that of the other. 

6. Maintenance cost modeling incorporating the value of time 

Generally speaking, maintenance cost is not incurred at the stage of 

maintenance planning but rather spent in future and allocated over the system 

life cycle. For the purpose of budget allocation or balance-sheet reporting, it 

seems necessary to incorporate the value of time because the accuracy of cost 

estimation could be crucial to decision makers. So far, little attention has been 

paid to studying this issue. 

For better understanding the objectives of this research and the limitations of existing 

literature, a separate review will be provided in the next chapter.  

1.5  Organization of the Thesis 

Warranty and maintenance literature are vast and disjoint. This thesis does not attempt 

to cover a wide range of topics in these two areas. Instead, we focus on the costing 
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perspective of the study and explore the research issues that require an integrated 

consideration of warranty and preventive maintenance. 

In Chapter 2, we present a thorough review of existing literature linking warranty and 

PM modeling. Reviews of warranty and PM cost models are presented as well.  

Chapters 3 and 4 focus on the warranty cost analysis for the manufacturer. In Chapter 

3, we study a comprehensive warranty policy for multi-component systems for which 

component failures are not stochastically independent. In order to improve the system 

reliability, we assume that opportunistic PM services are implemented upon system 

failures. Chapter 4 proposes a condition-based warranty servicing strategy that relies 

on the system state information for executing PM decisions. We derive warranty cost 

functions under both renewable and non-renewable warranty settings, based on which 

the optimal scheduling of condition monitoring services is further analyzed. 

Chapters 5 and 6 focus on the life-cycle maintenance cost analysis for the buyer. 

Chapter 5 investigates the optimal design of maintenance servicing on revenue-

generating equipments by integrating both the cost and value aspects of maintenance. 

The influence of warranty as well as many other models parameters on the buyer’s 

optimal PM decisions is discussed. Chapter 6 investigates the repair-replacement 

policies for multi-state systems (MSS) that operate under finite life cycles. The 

formulations of maintenance cost models take into account both the value of time and 

initial warranty coverage during the system life cycle. 

Chapter 7 focuses on the enhancement of sales revenue for a specific product by 

properly integrating the seller’s warranty design with the buyer’s age-dependent PM 

decisions. The demand of the product is assumed to be governed by the selling price, 

the warranty length as well as the buyer’s PM decisions. In order to link the buyer’s 
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PM decisions with the seller’s warranty design, a game theoretic model is formulated 

that allows the seller to foresee the buyer’s decisions and subsequently make his own 

decisions.   

Chapter 8 presents the summary and future works of this research. A skeleton of this 

thesis is shown in Figure 1.1. 

 
Figure 1.1 Map of study linking warranty and preventive maintenance modeling 
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CHAPTER 2 LITERATURE REVIEW 

 

In this chapter, we provide some background information for warranty and preventive 

maintenance (PM) cost modeling and optimization. Reviews of existing literature 

linking warranty and PM modeling are presented in detail.  

2.1  Methods for Modeling Imperfect Maintenance 

Post-sale cost modeling and service design depend crucially on the selection of 

imperfect maintenance (IM) models. An IM model is used to measure the effectiveness 

of an IM activity on the system reliability, which can be either a CM activity or a PM 

activity. We refer them in the following as “CM model” and “PM model” respectively.  

According to Nakagawa (1988), majority of the IM models deal with the age or the 

failure rate of the maintained system. These models can be generally categorized into 

three groups: age reduction models, hazard-rate reduction models, and a hybrid of both. 

For the ease of illustration, the following notations are used in this section: 

  time between ( 1)th IM and th IM 

∑   calendar time of the th IM 

.    1,2, …, hazard rate function of the system after the th IM  

.    hazard rate function of the system without IM  

We assume that the time is reset to zero at each IM. In other words,  in fact 

reflects the hazard level of the system at calendar time ∑ . In addition, , , … 
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is a series of random variables for imperfect CM activities whereas they are pre-

specified for PM activities.  

Age Reduction Models 

Age reduction models are the most commonly used IM models. Nakagawa (1988) 

developed two imperfect PM models. One is an age reduction model (NAKI), while 

another is a hazard rate reduction model (NAKII). In NAKI model, the age of the 

system after the th PM reduce to  when it was  before PM. Therefore the hazard 

rate function  after the th PM is given by 

, 0 1          2.1  

Kijima et al. (1988) and Kijima (1989) introduced two types of CM models, Type I 

and Type II, using the concept of virtual age (also referred as effective age). The idea 

is to distinguish between the system’s calendar age, which is the time elapsed since the 

system is put into use, with the virtual age of the system, which describes its present 

functionality when compared to a new system. However, applications of these two 

models are not constrained to CM activities. They have been recently used for 

modeling PM activities (Kahle, 2007; Bartholomew-Biggs et al., 2009). When 

modeling PM activities, Type II model in Kijima (1989) coincides with the NAKI 

model mentioned previously; therefore, we only present Type I model here. Let  

denote the virtual age of the system immediately after the th repair (or PM). Type I 

model assumes that   for 0,1 , and therefore hazard rate 

function  after the kth repair is given by 
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,       0 1             2.2  

In other words, the effect of th repair only works on the ageing of the system taken 

place since the ( 1)th repair. It is different from NAKI or Type II model in Kijima 

(1989) where each PM is assumed to cause an effective decrease in all the aging that 

has taken place since time zero. Unlike Type II model, repeated repairs under Type I 

model generally have no cumulative age-reduction effects. Dagpunar (1997) further 

considered the case in which the virtual age after the th repair can be expressed as 

 where .  is an arbitrary scaling function that models the 

effectiveness of repair. The model was further generalized in Seo and Bai (2004) 

where  is modeled as , . 

Canfield (1986) considered the following periodic PM model with PM interval : 

1 , 0   2.3  

where  represents the level of PM restoration or the quality of PM. The main feature 

of this model is that the PM restores the shape of the hazard function at effect age  to 

the level at effective age  whereas the hazard level remains unchanged after the 

PM. The model depicts those minor PM activities, such as lubrication, adjustment, 

cleaning, etc, which slow the system deterioration but fail to bring the system to a 

younger condition. Parameter  in Canfield’s model is assumed to be fixed. Wu and 

Clements-Croome (2005) further considered  as a random variable and develop PM 

policies. 
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Brown and Proschan (1983) proposed the ,  model to describe the repair impact on 

the system reliability. In their model, the repair restores the system operating condition 

to a brand-new condition with probability  and to a minimally-repaired condition with 

probability 1 . In this sense, ,  model is essentially a type of age reduction 

model where the amount of age reduction is either zero or the entire operating life 

since last perfect repair. Again, it includes AGAN and ABAO as special cases when 

1 and 0 respectively. Block et al. (1985) generalized the ,  model to the 

,  model by assuming the probabilities to be time-dependent. Their model 

was later extended to , , , , ,  model in Makis and Jardine (1992) by 

making the probabilities depend on both time t and the number of failures n and also 

by considering the case when the repair is unsuccessful (with probability , 1

, , ). Compared to other age reduction models, these models assumed 

either AGAN or ABAO, and therefore failed to describe any kind of system aging. 

Hazard-Rate Reduction and Hybrid Models 

Another branch of IM model are the hazard-rate reduction models. Nguyen and 

Murthy (1981) assumed that the system deteriorates with time as well as with the 

number of CMs carried out. After each CM, the failure rate of the system increases by 

following a distinct hazard rate function, i.e.  with 0 0 . 

Nakagawa (1988) (NAKII model) considered a special case of Nguyen and Murthy 

(1981) by assuming , 1; and therefore the hazard rate function 

after the th CM is simply given by 

,      1                          2.4  
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By integrating the NAKI and NAKII models, a hybrid IM model was proposed in Lin 

et al. (2000, 2001): 

, 0 1    2.5  

The effectiveness of IM is modeled from two aspects: one for its immediate reduction 

of the system effective age and the other for the alteration of the shape of the hazard 

rate function. NAKI and NAKII become the special cases of the hybrid model when 

1 and 0 respectively. 

Another interesting hybrid model is based on the geometric process and mainly applied 

for CM activities. Lam (1988) defined the geometric process as an alternative to the 

non-homogeneous Poisson process (NHPP); that is, a sequence of random variables 

, , … is a geometric process if the distribution function of  is given by for 

1,2, … and  is a positive constant. The hazard rate changes from  before 

the kth CM activity to  after the CM. The model can be used to describe 

imperfect CM activities if 0 1 . Wang and Pham (1996) later referred to a 

process similar to the geometric process as a quasi-renewal process. Finkelstein (1993) 

developed a very similar model where he defined a general deteriorating renewal 

process such that . So far, however, very few works in the literature 

consider geometric processes in the modeling of PM activities. 

2.2  Warranty Cost and Revenue Analysis 

In this section, reviews of existing literature on warranty cost modeling per unit sale 

from the manufacturer’s perspective are presented. We focus on one-dimensional 

warranties offered to both single-component systems and multi-component systems. 
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For studies covering two-dimensional warranties, we refer to Moskowitz and Chun 

(1994), Murthy et al. (1995), Iskandar and Murthy (2003, 2005).  

In the case of multiple sales, the warranty costs are mainly analyzed as part of the 

revenue structure. An important branch of warranty literature is to model the warranty, 

selling price and product demand jointly in order to maximize the total profit for the 

manufacturer. This review will cover this topic as well. 

Warranty Cost Analysis for Single-Component Systems 

Majority of warranty cost models are derived for single-component systems via a 

“black-box” approach. This usually leads to technical convenience for formulating 

various warranty cost functions.  

Blischke and Scheuer (1975) first derived the expected warranty cost (EWC) functions 

for a free-replacement warranty (FRW) policy. Consider a non-repairable product 

having failure distribution  and sold under a FRW with warranty period . Let  be 

the average cost to a seller for replacing a failed product and  be the total warranty 

cost. The EWC per item sold to the seller is given as  

                                                                           2.6  

where .  is the renewal function associated with .  

More frequently, non-repairable products are sold under pro-rata warranties (PRW) 

which require the seller to refund part of the purchase price to the buyer upon product 

failures under warranty. The ways of refund are vast and generally determined by the 

rebate functions. Let  be the average purchase cost to a buyer and .  be the rebate 

function associated with PRW. If a proportional linear rebate function as below is used, 
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1 / , 0
0, otherwise                                        2.7  

then the EWC can be expressed as 

                                                                 2.8  

On the other hand, for repairable products, it is natural that the product may not always 

be replaced upon failures. Many researchers assume that the product is minimally 

repaired upon failures and therefore the product ageing process can be described by a 

NHPP. This result has been very useful in analyzing many warranty and maintenance 

policies involving minimal repair. The related references are Park (1979), Phelps 

(1983), Sheu (1990), Murthy (1991), Aven and Jensen (2000), Ja et al. (2001). Among 

these studies, the minimal repair cost can be fixed, deterministic functions of time or 

random in nature, with the former two as special cases of the latter. For example, 

consider a minimally repaired product subject to a NHPP ageing process , 0  

with intensity function . . Suppose that the repair cost  at time  is random 

and depends on the number of minimal repairs  before time . By applying the results 

in Sheu (1990), the EWC for FRW with warranty period  can be given by 

                                                             2.9  

where . The special cases of (2.9) when the minimal repair cost 

is a deterministic function of time, i.e. , 1,2, … (Boland, 1982), and 

a constant value, i.e. , are given separately as 

                                                        2.10  
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Λ                                                                        2.11  

where Λ  represents the cumulative hazard function. 

For renewable warranties, the most commonly used ones are renewing free-

replacement warranties (RFRW) and renewing pro-rata warranties (RPRW). It is 

important to notice that almost all cost models for renewable warranties are derived 

under the assumption that replacements or repairs rectify the failed product to AGAN. 

Based on such assumption, the number of replacements  until the expiration of 

warranty simply follows a geometric distribution with parameter . Therefore, we 

verify that / 1 , and the EWCs per item sold under RFPW and 

RPRW with rebate function as (2.2) are given separately by 

1                                                                            2.12  

1                 2.13  

Equation (2.13) is obtained by assuming that the buyer will continue purchasing the 

product when it fails within warranty. On the other hand, if the buyer will purchase the 

product whenever it fails (with discounted price within warranty), then it is better to 

measure the warranty cost based on an infinite planning horizon. Mamer (1982) 

conducted such study for both FRW and PRW under linear rebate functions. We 

modify their result under proportional linear rebate functions and present it as 

1 1
                          2.14  
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On the other hand, combination warranties (CMW), which contain a free replacement 

period  followed by a pro-rata period , are also studied by several researchers as a 

trade-off between FRW and PRW. Although such policies are considered more general 

than FRW ( 0) and PRW ( 0), the costing procedures are essentially the same 

as previous discussions. We refer to Blischke (1990) and Nguyen and Murthy (1984) 

for detailed studies. 

Warranty Cost Analysis for Multi-Component Systems 

As mentioned before, most researchers models the warranty cost for (complex) 

systems via a “black-box” approach. However, for multi-component systems, system 

structure is the key maintenance cost factor to be incorporated and ignoring this may 

compromise the accuracy of warranty cost estimation. 

Warranty cost modeling for multi-component systems is not a new topic, but until now, 

only limited studies have been contributed to this area. Balachandran et al. (1981) 

proposed a Markovian approach for modeling warranty cost for a three-component 

system. Chukova and Dimitrov (1996) analyzed the warranty cost for several series 

systems and parallel systems under FRW. Hussain and Murthy (1998) estimated the 

warranty cost for newly-launched parallel systems with uncertain quality. Monga and 

Zuo (1998) and Lin et al. (2000) focused on the design aspect of the series-parallel 

systems by incorporating the warranty and PM cost estimation.  

More recently, Bai and Pham (2004) derived some distribution properties of the 

expected discounted warranty cost (EDWC) for minimally repaired series systems 

under both FRW and PRW warranties. Their results were used to support the decisions 

on the optimal warranty reserve level and the optimal warranty durations for lot sales. 

Consider a series system that consists of  stochastically independent components and 
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is sold under FRW. Let .  be the failure rate function of the ith component and  be 

its minimal repair cost. The expectation and variance of the warranty cost under a 

general discounted function .  are given by 

                                                             2.15  

                                                          2.16  

Using the Gaussian approximation, the minimal warranty reserve level per sale can be 

determined by  

                                                            2.17  

where  is the 1  quantile of the standard Gaussian distribution and  represents 

the probability that the actual warranty cost per sale is over the budget level . 

Duchesne and Marri (2009) also discussed several risk adjusted (discounted) warranty 

cost (RAWC) models for minimally repaired systems. Their discussion was more 

general than Bai and Pham (2004) in the sense that the system structure was not 

limited to series systems but can be any complex systems subject to competing failure 

risks. On the other hand, by focusing on the expected warranty costs (EWC), Bai and 

Pham (2006) further investigated the distribution properties for series, parallel, series-

parallel, and parallel-series systems.  

Sometimes, component failures may not be stochastically independent. Therefore, it 

seems necessary to consider failure dependence when modeling the warranty cost for 

multi-component systems. However, comprehensive studies on this topic are rare 

under the warranty context (refer to Chukova and Dimitrov (1996) for some simple 



30 
 

case studies) whereas majority of the literature are confined to pure maintenance 

modeling without warranty incorporation. The interested readers are referred to 

Murthy and Nguyen (1985a, b), Zequeira and Berenguer (2005), and Lai (2007, 2008), 

Sun et al. (2009) for some further discussion. 

Warranty Revenue Analysis for Multiple Sales 

So far we have focused on the warranty cost modeling per unit sale without 

incorporating the revenue of selling the product. When dealing with a population of 

products, warranty costs are usually investigated as part of revenue structure and 

modeled together with the selling price and product demand. Modeling the total 

warranty costs alone is meaningless because the number of sales is generally 

determined by the selling price which has to be incorporated into the decision models.  

In addition to price, the product demand is also influenced by the seller’s warranty 

strategies. As indicated before, consumers usually view the quality of a product based 

on its warranty and therefore, a satisfactory warranty policy will certainly enhance 

their purchase willingness (Menezes and Currim, 1992; Padmanabhan, 1993). On the 

other hand, a lower price or longer warranty coverage tends to enhance the sales but 

may lead to a decrease in the unit profit. In this sense, the joint determination of selling 

price and warranty length is of special importance to the seller in order to maximize his 

total profit (rate). 

Glickman and Berger (1976) presented an early important work of modeling product 

demand in a static market in which the demand decreases exponentially with respect to 

price and increases exponentially with warranty length. The objective is to optimally 

determine the price and warranty length that maximizes a manufacturer’s profit. 

Denote  and  as the price and warranty length of product, respectively. The 
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demand function, , , in Glickman and Berger’s model, is a displaced log-linear 

function with an exponential form as follows: 

, , 1,0 1, 0, 0           2.18  

where  0  is a constant amplitude factor, and  0  is an additive factor 

that allows for a non-zero demand when 0 . Parameter   1  is the price 

elasticity, and   0 1  is the displaced warranty length elasticity. Applications 

of this demand function can be widely found in the literature. For example, Mitra and 

Jayprakash (1990) presented a multi-objective model for warranty estimation based on 

this demand function; Blischke and Murthy (1992) used this demand function in 

product warranty management; Mitra and Jayprakash (1997) also applied this demand 

function to develop a market-share model.  

On the other hand, Glickman and Berger’s model did not consider the diffusion effect 

for which the product demand at time  could count on the number of buyers before . 

Bass’ growth model (Bass, 1969; Robinson and Lakhani, 1975) is an epidemic model 

that applies to initial purchases. It assumed that the buyers are generally divided into 

innovators and imitators where the innovators make the purchase decisions 

independently whereas the decisions of imitators are influenced by that of other 

individuals in a social system. Teng and Thompson (1996) conducted a further study 

by applying the maximum principle in analyzing the optimal price and quality policies 

for introducing a new product. They assumed that the unit cost declines along the 

learning curve and investigated the dynamics between price and quality, and diffusion 

process. Lin and Shue (2005) and Wu et al. (2006) modified the Teng-Thompson 

price-quality model into a price-warranty decision model similar as Glickman and 

Berger (1976) in which the warranty length represents the quality level. Wu et al. 
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(2006) derived the marketing strategy for a normal life time distributed product 

whereas Lin and Shue (2005) investigated numerous basic life time distributions. 

Recent studies of this area usually involve the consideration of many other factors. For 

example, Huang et al. (2007) incorporated the product reliability modeling into the 

design phase of the product marketing strategy, Matis et al. (2008) and Huang and 

Fang (2008) considered variants of standard warranties, Wu et al. (2009) and Lin et al. 

(2009) dealt with the production and inventory problem for a static demand market, 

Zhou et al. (2009) incorporated the heterogeneous risk attitudes of customers into their 

decision models, and Fang and Huang (2010) focused on the marketing design for 

products with uncertain life time distributions due to the scarcity of historical failure 

data. However, in contrast to the warranty study on a unit sale, the factor of 

maintenance policies is seldom included in the seller’s revenue models. Generally 

speaking, different maintenance policies lead to different maintenance expenditure, 

and this will have impact on the seller’s profit margin. Ignoring such factor may result 

in sub-optimal designs of the product marketing strategies. 

2.3  Preventive Maintenance Policies 

Numerous maintenance policies have been proposed within last few decades in order 

to model and resolve the maintenance and replacement problems of deteriorating 

systems. This section reviews both time-based and condition-based PM policies 

without warranty consideration. In particular, for the time-based PM policies, we focus 

on two most popular policies: the age-dependent PM policy and periodic PM policy. 

For the systematic studies of other maintenance policies, we refer to Valdez-Flores and 

Feldman (1989), Cho and Parlar (1991), Dekker et al. (1997), Wang (2002). 
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2.3.1  Age-Dependent PM Policy 

The most common and popular time-based PM policy is the age-dependent PM policy. 

Under this policy, a product is preventively maintained at some predetermined age , 

or repaired at failure, until a perfect maintenance, preventive or corrective, is received 

(Wang, 2002). The earliest age-dependent PM policies always assume perfect PM 

activity, and therefore, the product age is reset to zero whenever a maintenance activity 

(either CM or PM) is carried out. Such policy is also referred as the age-replacement 

policy in Barlow and Hunter (1960), for which a product is replaced at age  or failure, 

whichever occurs first.  

The age-replacement policy (and age-dependent policies in general) is developed 

under infinite planning horizons and therefore the maintenance costs should be 

evaluated on a unit time basis. Suppose that the life time of a product follows failure 

distribution . . Let  be the preventive replacement cost at time  and  be the 

corrective replacement cost if the product fails before . The long-run average 

maintenance cost rate  is given by 

                                                                   2.19  

where 1  represents the survival function of the product at time . The 

optimal PM policy then equals to finding the optimal replacement age  so that 

 is minimized. To be specific, we set the first derivative of  equal to zero. 

 should satisfy the following optimal condition: 

                                                    2.20  
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where .  represents the hazard rate function of the product. Obviously, the existence 

of the optimal solution is influenced by the cost structure  and , and the ageing 

mechanism of the product. If there is no solution (or ∞), then the product should 

only be correctively replaced. 

Unlike the classic age-replacement policies, many newer policies assume imperfect 

PM, meaning that the PM operation does not necessarily imply renewal. Nakagawa 

(1979) conducted a pioneer work by adopting imperfect maintenance in the modeling 

of age-dependent PM policies. He considered three types of PM models, imperfect, 

perfect or minimal repair at failure, and analyzed the optimal maintenance policies in 

terms of PM interval time . Nakagawa (1984) presented an age-dependent PM policy 

where the system is replaced at age  or at the th failure, whichever occurs first. Any 

failures before that are minimally repaired. The age and the number of failures are 

reset to zero after the system is replaced. Note that if   1, the policy is reduced to 

the classical age-replacement policy.  

Two other extended policies were proposed in Sheu et al. (1993, 1995) by following 

the ,  rule. In Sheu et al (1993), if a product fails at age , it is subject to a 

perfect repair with probability , or undergoes a minimal repair with probability 

1 . Otherwise, the product is replaced when the first failure after  

occurs or the total operating time reaches age  (0 ), whichever occurs first. 

The objective is to find the optimal  and  so that the maintenance cost rate is 

minimized. Sheu et al. (1995) considered another extension to the age-replacement 

policy. They assumed that a system is subject to two types of failures and is replaced at 

the th Type 1 failure or first Type 2 failure or at age , whichever occurs first. Type 1 

failure occurs with probability  and is rectified by minimal repair. In contrast, 
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Type 2 failure occurs with probability 1  and is rectified by perfect 

repair (replacement). The decision variables for this policy are  and . Both policies 

have been further extended recently by considering different IM models (refer to 

Section 2.1) and more complex system structure and ageing mechanism. For interested 

readers, we refer to Sheu (1996), Wang and Pham (1999), Frickenstein and Whitaker 

(2003), Sheu and Chang (2001), and Heidergott and Yuan (2010). 

2.3.2  Periodic PM Policy 

Another commonly studied time-based PM policy is the periodic PM policy. Under 

this policy, the system is preventively maintained at fixed time intervals  (

1,2, …), and repaired at intervening failures where  is a constant. This policy is easy 

to implement because it requires no record keeping of the system history. If both PM 

and CM are perfect, this policy is better known as a block replacement PM policy, for 

which the product is replaced at per-arranged times  ( 1,2, …) and at its failures. 

Boland and Proschan (1982) analyzed such a policy by finding the optimal  in order 

to minimize the expected cost (rate) over both finite and infinite planning horizons. On 

the other hand, if PM is perfect but CM is minimal, then this policy is referred as the 

“periodic replacement with minimal repair at failures” policy in Barlow and Hunter 

(1960), where the product is replaced at per-arranged times  ( 1,2, … ) and 

minimally repaired at its failures. It is typically suitable for the large or complex 

systems where minimal repair is plausible at failures. If the failed product remains 

failed until the next scheduled PM, then the policy is referred as “no failure 

replacement” policy (Nakagawa, 1980). Such policy can be applied to those 

maintenance settings where a system is not continuously monitored and its failure is 

not self-announcing. 
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Similar as the age-dependent policy, the periodic PM policies can be generalized by 

considering imperfect PMs. Kijima et al. (1988) developed a block replacement model 

with general repair at failures. The general repair is modeled by the virtual age method 

(refer to Section 2.1). Nakagawa (1986) made an extension to the “periodic 

replacement with minimal repair at failures” policy by considering a constraint on the 

total PM times. In his model, the imperfect PM operation is performed at times 

, 1,2, … , 1 with minimal repair at failures. Each PM is imperfect in the 

sense that it increases the hazard rate of the system, and the system is replaced right 

before the th PM (or at age ). Liu et al. (1995) developed a policy similar to that 

in Nakagawa (1986). For both policies,  and  are the two decision variables to be 

optimized under an infinite planning horizon. Another policy was developed in Sheu et 

al. (2005) by considering the ,  PM model. In other words, after the th PM, the 

system is AGAN with probability  and ABAO with probability 1 .  is 

assumed to be a function of the number of previous ABAO PM operations.  

So far, the most complicated periodic PM policies might be those combining with age-

replacement policies. Recently, Sheu and Chang (2009) developed such a hybrid 

policy for a system with age-dependent failure type. Similar to Sheu et al. (1995), they 

considered two types of failures: Type-I failure (minor) and Type-II failure 

(catastrophic), which is rectified by minimal repair and a major overhaul (equals to a 

PM) respectively. Unlike previous policies, they assumed that the PM is implemented 

following a Type-II failure, or at age , whichever occurs first; and the system is 

replaced at the th PM. They modeled the imperfect maintenance by utilizing the 

hybrid PM model proposed by Lin et al. (2001) (refer to Section 2.1). The policy 

turned out to be a generalized form of many existing policies, with the classic age-

replacement policy and “periodic replacement with minimal repair at failures” policy 
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as the special cases. Similar studies can also be found in Sheu and Chang (2010) and 

Sheu et al. (2010).  

2.3.3  Condition-Based PM Policy 

Condition-based maintenance (CBM) policies are based on observing and collecting 

information concerning the condition of system (i.e. system state) to determine 

maintenance actions and prevent system failures. As mentioned in Section 1.2.2, if a 

system is subject to failure only if its state deteriorates beyond a given threshold level, 

then CBM should be more cost-efficient than time-based (preventive) maintenance 

(TBM) policies which are based solely on the system age and the knowledge of the 

statistical information on its life time. 

Modeling the degradation path of a system is of special importance to the development 

of CBM policies. In particular, based on the type of system state space, existing CBM 

policies can be grouped into two major streams: continuous-state CBM policies and 

discrete-state CBM policies.  

The first stream of policies focuses on a system that deteriorates gradually and 

stochastically, for which it is better to model the degradation path as a continuous-state 

wear process. The objective is to find the optimal inspection schedule and/or the 

optimal preventive replacement threshold so that the expected maintenance cost (rate) 

is minimized. Grall et al. (2002b) and Dieulle et al. (2003) modeled the continuous-

state wear process as a gamma process (van Noortwijk, 2009) and studied the 

inspection-maintenance strategy for a single-component system, where the effect of 

maintenance operations was assumed to be perfect. Castanier et al. (2003) considered 

imperfect maintenance for a repairable system monitored by sequential non-periodic 

inspections. Li and Pham (2005), Liao et al. (2006) and Tai and Chan (2010) 
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developed the optimal CBM policies for continuously degraded system by maximizing 

the system average availability. Berenguer et al. (2000) and Castanier et al. (2005) on 

the other hand investigated the optimal CBM policies for multi-component systems.  

The continuous-state models are precise in describing the overall system ageing but are 

computational demanding. As an approximation, the second stream of CBM policies 

focuses on the multi-state systems (MSS) and describes the system deterioration as a 

continuous-time discrete-state (semi-)Markov process. The critical set of states for 

which the PM is to be carried out is optimally determined such that expected 

maintenance cost is minimized. Hosseini et al. (2000) and Makis and Jiang (2003) 

modeled the system deterioration as a continuous-time Markov chain. Hosseini et al. 

(2000) studied a MSS subject to two types of failures, Poisson failure and degradation 

failures. Optimal inter-inspection times were derived in order to maximize the system 

throughput. Makis and Jiang (2003) developed a mathematical framework for the 

CBM optimization for MSS subject to only degradation failures. Chen and Trivedi 

(2005), Black et al. (2005) and Moustafa et al. (2004) investigated the CBM policies 

for MSS with semi-Markov decision process. As a special case, the CBM policies for a 

two-stage degradation model (i.e. a 3-sate semi-Markov process), also called as the 

delay time model (DTM), were studied by Okumura et al. (1996), Wang (2007) and 

Ferreira et al. (2009). Recently, Ghasemi et al. (2007) and Wu and Ryan (2010) 

developed the optimal inspection-replacement policies for MSS by utilizing the 

proportional hazards model (Cox, 1972).  

So far condition-based PM policies are mainly developed for pure maintenance 

situations from the user’s perspective. Utilizing the CBM concept for enhancing the 

warranty service design from the manufacturer’s perspective is still rare in the 

literature. 
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2.4  Literature Review Linking Warranty and Preventive 

Maintenance 

Warranty and preventive maintenance (PM) have been separately studied by 

researchers from many different ways. However, studies combining these two research 

areas are still insufficient in the literature. In this section, we present a thorough review 

of nearly 30 papers that link warranty and PM modeling within the last two decades. 

The reviews of existing models are carried out for both the manufacturer and the buyer. 

2.4.1  Warranty Service Design Incorporating Preventive Maintenance 

For the manufacturer, designing a good maintenance program under warranty is an 

important issue. Existing studies focus on the planning of PM actions over the 

warranty period as a means of reducing the total warranty service cost. 

Chun (1992) first incorporated preventive maintenance actions in designing a product 

warranty. He considered the case when PM actions are carried out periodically during 

the warranty period. The number of PM actions  was obtained and minimized over a 

finite horizon. The model was later generalized by Jack and Dagpunar (1994) by 

assuming non-periodic PM actions. 

Dagpunar and Jack (1994) dealt with a similar model as in Jack and Dagpunar (1994). 

The difference was that they considered the cost of each PM as a non-decreasing 

function of the operating age and the effective amount of age reduction. The optimal 

number of PM actions , operating age , and age reduction factor  are obtained 

jointly so that the manufacturers' expected warranty cost is minimized. 

Yeh and Lo (2001) proposed a general “preventive maintenance warranty” (PMW) 

policy under which the cost of each PM was only related to the degree of age-reduction 
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factor . An efficient algorithm was provided to search for the optimal number of PM 

actions , and the optimal degree of each PM . Their results showed that the 

system is renewed at each PM.  

Wang (2006) presented four warranty cost models all assuming imperfect repair. 

Among these models, Models B and D consider preventive maintenance during the 

warranty period. Model B assumes that the item is preventively maintained at times 

  1,2,… ,  with warranty period 0 . The imperfect PM follows 

,  rule, i.e., upon PM the item is AGAN with probability  and is restored to 

ABAO with probability 1  (Nakagawa, 1979). The warranty cost model is 

developed based on an infinite horizon and the approximate optimal PM interval  is 

obtained such that the warranty cost is minimized. Model D considers a k-out-of-n:G 

(Kuo et al., 2001) system under warranty, and the imperfect PM during the warranty 

follows quasi-renewal processes (Pham and Wang, 1996). Minimal repairs are 

performed on failed items before a fixed time . CM on the failed items together with 

PM on all unfailed but deteriorating ones is performed once exactly  items fail 

between τ and warranty period w. The optimization on ,  is presented such that 

expected warranty cost is minimized.  

Wu and Li (2007) considered periodic PMs under warranty for repairable products 

with both dormant and operating states. They assumed that the product deteriorates 

slower under the dormant state compared to the operating state. They used the PM 

model proposed in Canfield (1986) and conducted warranty cost analysis under a wide 

range of model parameters. Preventive replacement policies for non-repairable 

products with dormant states were further discussed in Wu and Xie (2008).  
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Huang and Yen (2009) provided an approach for modeling two-dimensional warranty 

policies with both the age and usage limits under periodic PM operations. They 

assumed PMs are conducted by the buyer and in exchange, the manufacturer offers the 

buyer an extended age limit (warranty time limit). They derived the new warranty limit 

under the condition that the total warranty cost remains unchanged and subsequently 

used the result to maximize the manufacturer’s profit.  

On the other hand, it seems necessary to differentiate the above PM policies with the 

well-known repair-replacement policies under warranty. Both of them attempt to 

minimize the total warranty cost. However, the repair-replacement policy is part of 

corrective maintenance (CM) policies in the sense that the decision of repairing (either 

minimal or imperfect) or replacing the product is only made upon failure; and the 

products maintained under such policy may be subject to high downtime costs. As a 

simple example of such policy, a warranted product with warranty length  may be 

replaced if it fails before  and repaired if it fails between , , where  ( ) is 

the decision variable to be optimized (Nguyen and Murthy, 1989). For some detailed 

studies, we refer to Jack and Van der Duyn Schouten (2000), Jack and Murthy (2001) 

and Jiang et al. (2006) for the case of one-dimensional warranties, Iskandar and 

Murthy (2003), Iskandar et al. (2005) and Jack et al. (2009) for the case of two-

dimensional warranties, and Zuo et al. (2000) and Pan and Thomas (2010) for the case 

of multi-state products.  

2.4.2  Life-Cycle Maintenance Service Design under Warranty Context 

Product life cycle is defined as the time span since the product is purchased until the 

time when it is disposed, and usually includes both warranty and post-warranty period. 
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Different from the foregoing studies, warranty and PM modeling is conducted from the 

buyer’s perspective under the life-cycle context.  

Chun and Lee (1992) first proposed a periodic PM model for a system with an 

increasing failure rate (IFR) and subjected to periodic PM actions during warranty 

period and post-warranty period. They used the age-reduction method to model 

imperfect PM actions. The cost model was developed from the buyer’s perspective 

under the life-cycle context, which consists of portion of the maintenance cost during 

the warranty, and all the maintenance cost after the warranty. The optimal PM interval 

and product life cycle were obtained by minimizing the buyer's expected long-run cost 

rate.  

Jung et al. (2000, 2003) considered periodic PM policies after the warranty is expired. 

They assumed that each PM is modeled by the Canfield’s model (Canfield, 1986). Two 

types of warranty policies, the renewing pro-rata warranty (RPRW) and renewing free-

replacement warranty (RFRW), were considered for the model formulation. The 

optimal number of PMs and the corresponding PM interval were determined jointly 

such that the expected long-run maintenance cost rate is minimized. 

Djamaludin et al. (2001) presented a review of the studies linking warranty and PM 

modeling and proposed a new continuous PM model for items sold under non-

renewing warranties. They considered three maintenance options under a pre-specified 

warranty period  and product life cycle . Option A assumes no PM action over the 

life of the item; Option B assumes continuous maintenance over 0, ; and Option C 

assume no preventive maintenance over the warranty period and continuous preventive 

maintenance over , . Cost models for both the manufacturer and buyer were 

formulated, based on which the optimal maintenance option was further selected such 
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that the buyer’s life-cycle cost is minimized. Kim et al. (2004) further extended the 

study under the periodic PM operations with discrete and finite number of PM levels.   

Pascual and Ortega (2006) described a situation that the system undergoes periodical 

PM with interval  and is replaced by a new system at time  after 1 

overhauls (PM). Failures between overhauls are rectified by minimal repair. They 

assumed that the PM cost during the warranty is borne by the buyer so that the buyer 

has the option to negotiate an extended warranty period under which the seller’s 

warranty cost remains unchanged. The optimal number of overhauls, their interval , 

and the negotiated warranty period  were obtained to minimize the expected 

maintenance cost rate over an infinite horizon. 

Chen and Chien (2007) considered a repairable system under renewing free-

replacement warranty (RFRW) with the failure modes following the (p,q) rule as 

presented in Sheu et al. (1995). In other words, the system is subject to two types of 

failures, minor failure (with probability p) and catastrophic failure (with probability 1-

p), and is rectified by minimal repair and a major overhaul respectively. They 

conducted cost analysis under a similar framework as Djamaludin et al. (2001) by 

assuming continuous maintenance operation. An additional penalty cost was 

considered for each unplanned catastrophic failure out of warranty.  

The above studies mainly dealt with continuous or periodic PM services under the 

warranty context. On the other hand, the age-replacement policies for warranted 

products have also been investigated by some researchers. 

Ritchken and Fuh (1986) first investigated the age-replacement policy for a non-

repairable product under the warranty context. The scheduled replacement was 

conducted only after the warranty is expired. Sahin and Polatoglu (1996) studied two 
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replacement policies following the expiration of warranty: 1) replace the item at a pre-

scheduled time  ( 0); and 2) replace it at first failure after . For each 

policy, the optimal replacement age  (measured since the expiration of warranty) 

was derived under both renewing and non-renewing warranties so that the long-run 

average maintenance cost to the buyer is minimized.  

Yeh et al. (2005) analyzed the effects of a renewing free-replacement warranty (RFRW) 

on the age-replacement policy for a non-repairable product with IFR. Unlike Ritchken 

and Fuh (1986) and Sahin and Polatoglu (1996), they considered downtime cost to the 

buyer upon any unplanned failure, and therefore the replacement age could fall into 

warranty period. They developed cost models for products both with and without 

warranties, and analytically derived corresponding optimal replacement ages so that 

the long-run average cost rates are minimized. Their results showed that the optimal 

replacement age for a warranted product is closer to the end of the warranty period 

than for a non-warranted product ( 0). Extensions of this study have been made 

recently by considering different degrees of maintenance (Yeh et al, 2007; Chien, 2008) 

and variants of warranty policies (Chien, 2010a,b). Yeo and Yuan (2009) further 

studied age-replacement policies for warranted repairable products where the first 

failure within warranty is imperfectly repaired with the cost borne by the manufacturer. 
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CHAPTER 3 WARRANTY COST ANALYSIS FOR 

COMPLEX SYSTEMS WITH FAILURE INTERACTION 

 

3.1  Introduction 

One of the primary goals of warranty study is to analyze the cost of a warranty 

program. In a multi-component system, the assumption of failure independence among 

components is seldom valid, especially for those complex systems with complicated 

failure mechanism. For such systems, warranty cost is subject to all the factors 

including system structure, quality of each component and the extent of failure 

dependence among components. In this chapter, we present warranty cost analysis for 

warranted multi-component systems subject to dependent failure modes. Whenever a 

component (subsystem) fails, it can induce a failure of one or more of the remaining 

components (subsystems) of the system. Opportunistic PMs are carried out upon 

system failures in order to improve the system reliability and reduce the chance of 

future failure. Results of this chapter can help decision makers better evaluate system 

reliability and improve the accuracy of warranty cost estimation for complex systems. 

Traditionally, warranty costs for complex systems are modeled via a “black-box” 

approach (Blischke and Murthy, 1996). The disadvantage of such approach lies in the 

fact that it does not utilize the available information of system structure, and may 

subsequently compromise the accuracy of warranty cost estimation. Recently, some 

researchers analyze the warranty costs for multi-component systems by explicitly 

considering the system structure (refer to Section 2.2). However, none of these studies 
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have incorporated failure dependence as a factor in the warranty cost modeling (Cho 

and Parlar, 1991).  

Murthy and Nguyen (1985a) formulated three types (Type I-III) of failure dependence 

models for a two-component system. They referred them as failure interaction models. 

Type I failure interaction assumes that whenever a component fails, it can induce a 

simultaneous failure of one or more of the remaining components of the system. They 

defined this simultaneous failure of the remaining components as “induced failure”, 

compared with so called “natural failure” described by components’ life time 

distribution without failure interaction. The extension work to multi-component system 

under Type I failure interaction can be further found in Murthy and Nguyen (1985b) 

which described a special N-component system where one component fails naturally 

but induces a failure of the remaining ( 1) components with certain probability. 

Type II failure interaction is known as failure rate interaction, which assumes a 

modification on the component’s failure rate when another component fails. It was 

discussed in Murthy and Casey (1987), Zequeira and Berenguer (2005), and Lai and 

Chen (2008). A combination of Type I and Type II is referred as Type III failure 

interaction. So far, failure interactions were mainly discussed in pure maintenance 

context. Warranty cost models under failure interaction are seldom explored. 

In this chapter, we present warranty cost analysis for both series and parallel systems 

subject to Type I failure interaction under renewing free-replacement warranty (RFRW) 

policies. Significance of this research can be justified from three aspects. First, instead 

of assuming independent failures among components, we derive the EWCs 

incorporating the factor of failure interaction. Second, we generalize the model in 

Murthy and Nguyen (1985b) by considering failure interaction between each two 

components instead of that between one component and the whole remaining system. 
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Third, the study of warranty costs for basic series and parallel systems provides a 

foundation for the future study of even more complex system configurations, such as 

parallel-series, series-parallel, hierarchical, and k-out-of-n (Kuo et al., 2001). 

The rest of this chapter is organized as follows. Section 3.2 presents the model 

assumptions on failure interaction, maintenance strategy and warranty policy. Sections 

3.3 and 3.4 formulate the warranty cost models under series and parallel system 

configurations. Section 3.5 provides a numerical example for a 3-component parallel 

system satisfying memoryless property with failure interaction. Conclusions and 

potential extensions are made in Section 3.6. 

3.2 General Model and Assumptions  

This section provides consideration of general model and preliminary assumptions for 

RFRW and failure interaction.  

3.2.1 Renewing Free-Replacement Warranty (RFRW) 

We follow the same assumptions for RFRW as presented in Bai and Pham (2006). Let 

 represent the length of warranty period and ∑  represent the total time 

under warranty (i.e. warranty cycle), where     is the system life time between 

two consecutive failures within warranty.  

Assumptions on RFRW for multi-component systems: 

1. Failed components upon each system failure within  are fully replaced. 

Simultaneously, warranty terms are renewed by manufacturers. 

2. In addition to replacement service, system maintenance is to be conducted 

in order to reduce the chances of future failures. We assume perfect 
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maintenance (Pham and Wang, 1996) operation, so that after each warranty 

service, the restored system is AGAN. 

3. Warranty service cost per system failure is decomposed into two parts: the 

replacement cost for the failed components and the system maintenance 

cost. The replacement cost per failure is random and depends on the 

component-level replacement cost and the system failure mechanism. 

4. In order to reduce the complexity of the cost model, system maintenance 

cost per failure is assumed constant (Wang, 2002). It aggregates the cost for 

maintenance set up, diagnosis, labor, and possible preventive maintenance 

efforts (only for components subject to IFRs), and averages them 

throughout all the system failures within warranty cycle  . 

5. Both replacement and maintenance efforts are free of charge to customers. 

 

3.2.2 Failure Interaction  

We consider Type I failure interaction model (Murthy and Nguyen, 1985a,b) as in the 

following: 

1. Denote Ω 1,2, … , . Consider an n-component system with either 

series or parallel structure. For each component, there are two types of 

failures - natural and induced. The natural failure of component  is 

governed by the life time distribution function Ω , whereas the 

induced failure is described by the failure interaction mechanism. 

2. Type I failure interaction assumes that a natural failure of component  can 

cause the induced failure of component   with probability  , and can have 

no effect on the operating condition of component  with probability 
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1 , , Ω. Apparently, 1, 0, and the failure interaction 

information is integrated into two matrixes: 

Failure dependence probability matrix (FDPM) with ,

0,1 , , Ω, 

          1     
   1

, ,
, ,

                
        

        
        

         , ,
         , ,

  1 ,
  , 1

 

and Failure independence probability matrix (FIPM) with 

1 , 0,1 , , Ω.   

 

Remarks: Failure interactions among components are either due to system ageing 

mechanisms or design problems. It would decrease the system reliability and increase 

both the maintenance and warranty cost, neither of which is expected by the 

manufacturers under RFRW terms. Usually for a well-designed system, FDPM is a 

sparse matrix and with a small non-zero value for each entry. Throughout this chapter, 

only Type I failure interaction is considered. The extended study of Type II and III 

failure interaction is left for future work. 

3.2.3 Definition of Ns(w), pi(w) and αi(w) 

Finally, the following definitions are required.   

1. Define  as the number of warranty renewals within warranty cycle  . 

Let  and    represent the probability density function (pdf) and the 

cumulative distribution function (cdf) of the system life times respectively. 

1  is the system reliability function, and   is the 
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system hazard rate function. Similarly, , , ,  is defined as the 

pdf, cdf, reliability function, and hazard rate function of component , Ω. 

2. Under perfect maintenance assumption, the system is AGAN after each 

warranty service. As such the number of warranty renewals simply follows 

geometric distribution with 

        , 0,1,2, … 

and the warranty expires only when the first time the system lifetime exceeds  .  

3. Let Ω  be the time to nature failure of component    and 

min , Ω,  be the shortest life time of the remaining components. 

For series system structure, define Pr  ,  and 

.  can be interpreted as the probability that a natural failure of 

component  occurs within . Given a system failure before  ,   describes 

the probability that it is caused by a natural failure of component . The exact 

expressions of  and  are presented in Lemma 3.1.  

 

Lemma 3.1. For an n-component series system with failure interaction, following the 

foregoing definitions of ,  ,  and , we have 

d  

1
d  

,            1 
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where    and  represent the component and system hazard rate function, 

respectively.  

Proof: See the Appendix A for the proof.  

Remarks: The analytic expressions of , ,  depend on the system 

structure and the degree of failure interaction among components. It is intuitive to say 

that system reliability will decrease when failure interaction intensifies (series system 

is an exception as illustrated in Lemma 3.1). Referring to the definition of 

 and   , as long as the exact expression of  is available,  and 

 can be obtained numerically. Specifically if the life time of each component 

satisfies exponential distribution, i.e. ~exp  , we have  and 

∑ . 

3.3 RFRW for Series Systems under Failure Interaction 

In this section, we follow the definition of , , , , ,  in 

Section 3.2.3 and derive the warranty cost models for n-component series systems 

under failure interaction. Apparently, we have  

1 1 1                                        3.1  

We further define Ω  as the number of natural failures of component  within 

warranty cycle  , and  ( ) as the number of induced failures of component  

caused by the natural failures of component  per cycle. For consistency of notation, 

we let , Ω. 
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3.3.1 Distribution of Nij  

First of all, we identify the independence relationship among several random variables: 

(1) |  and |  are independent, , , , , Ω; 

(2)  and  are dependent; | ~ , ; , Ω; 

|  can be interpreted as the number of induced failures of component  caused by 

the natural failures of component  when  is known. The conditional distribution of 

|  depends on the failure interaction probability   and the number of  . As  

is assumed constant, each natural failure of component  can be treated as a Bernoulli 

experiment of which |  satisfies Binomial Distribution. Besides, although |  

and |  are independent,  and  are dependent. They all depend on the number 

of system failures .  

Using the above results, the distribution of  can be obtained as follow.  

Lemma 3.2. For any , Ω, , the probability mass function (pmf) of  follows 

a geometric distribution with parameter  and 

Pr ,     0,1,2, …    3.2  

                                                                   3.3  

Typically, when , the number of nature failures of component  satisfies  

Pr ,     0,1,2, …                     3.4  

with the expected number of natural failures within  given by 
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                                                                         3.5  

Proof. The proof is based on Lemma 3.1 and the exact expression of Pr | . We 

refer to Appendix B for the detailed proof.  

3.3.2 Warranty Cost Analysis 

According to the assumptions for RFRW in Section 3.2.1, the warranty cost (CW) can 

be divided into two parts: component-level replacement cost and system maintenance 

cost. We define  as the replacement cost of component Ω  and  as the 

perfect system maintenance cost. Then 

, Ω , Ω Ω

          3.6  

, Ω Ω ΩΩ

ΩΩ

                                                       3.7  

According to Lemma 3.2, the EWC can be easily obtained. 

Corollary 3.1. Under the RFRW policy, the EWC for an n-component series system 

with failure interaction is given by 

ΩΩ

                                        3.8  

Proof. The deviation of  is straightforward. Substituting (3.3) and (3.5) into 

(3.7), the results then follow. 
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Remarks: Under series structure, failure interaction only affects the total warranty 

cost CW, but has no impact on the system failure time distribution . Each time a 

natural failure happens, the system will fail despite of the presence of induced failures. 

In the following we further derive the warranty cost functions for parallel systems. 

Since all the components need to failure before the entire system fails,  is 

expected to depend on the degree of failure interaction. 

3.4 RFRW for Parallel Systems under Failure Interaction  

Under parallel structure, a system is failed given that all components in it are failed. 

According to the assumptions for RFRW, the joint replacement and system 

maintenance cost per failure is constant and given by ∑ . System 

maintenance cost here can purely refer to the cost for maintenance set up and labor, 

whereas the maintenance cost for series systems may further include the preventive 

maintenance cost for the survived components in order to restore their operating 

conditions to AGAN. 

On the other hand, the number of warranty renewals  satisfies geometric 

distribution with parameter , which is the value of system reliability at time . 

Then the EWC for an n-component parallel system is straightforward. 

Corollary 3.2. Under the RFRW policy, the EWC for an n-component parallel system 

with failure interaction is given by 

                                                      3.9  

Proof. Simply referring to the property of geometrical distribution, the results then 

follow. 
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In order to calculate the total warranty cost for a parallel system, we need to calculate 

either  or , which may resort to numerical procedures if the number of 

components is large or if the failure time distribution is arbitrary. In the following we 

present a simple recursive algorithm for calculating and approximating . The 

availability of analytical expression of  is illustrated when each component has 

an exponentially distributed life time. 

3.4.1 Recursive Algorithms for the Calculation of FS(w)  

Let Ω  represent the n-component parallel system with Ω 1,2,… , , and  

represent the subsystem of Ω with Ω. For each subsystem , let ,  denote 

the cdf of failure time distribution before  conditioned on that “no component fails 

before time   ”. It is easy to verify that, for , , 0, , , 1 and 

, 0, . 

We assume that two or more natural failures at one time are not allowed (or with zero 

probability). Then the failure of Ω  within  can be divided into   conditions, 

depending on which component fails first. Recall that   is the time to natural failure of 

component   , and min , Ω, . Define  as the system failure time 

given that component  fails first. Then we have Pr ∑ Pr ,Ω

, , and thus 

Ω , Ω ,
∏ , Ω

∏ ΩΩ

             3.10  

where  is the cdf of failure time distribution of component  , and 
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Ω , Pr no induced failure happens Ω ,

Pr only   happens Ω , ,
Ω

Pr only  ,  happens Ω , , ,
, Ω

Pr all but   happen ,
Ω

Pr  happens for any  Ω ,  

 is defined as the event that component  is failed induced by the natural failure of 

component , , Ω. Following the assumption of Type I failure interaction, we 

have 

Ω ,

Ω
Ω ,

Ω ,
Ω , ,

Ω

Ω , ,
Ω , , ,

, Ω

Ω ,

,
Ω Ω

                        3.11  

Specifically,  can be interpreted as the cdf of failure time distribution before  

conditioned on that “no component fails before time 0”. Therefore Ω 0, , 

and we have  

Pr  ,
Ω

Ω ,
, ΩΩ

 

3.12  
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Analytical expression for (3.10) (and (3.12)) is not available in general. However, a 

simple numerical procedure can help approximate the result. The basic idea is to 

discretize the integral operator in (3.10). Let 0 . Note 

that , 0, Ω, . For any 0,1,2,… 1, we have 

Ω , Ω ,
∏ , Ω

∏ ΩΩ

Ω ,
∏ , Ω

∏ ΩΩ

 

3.13  

where Ω ,  is a linear combination of ,  for all the subsystems 

, and the initial condition of the numerical procedure satisfies ,

 for any Ω and 0,1,2,… 1.  

Remarks: According to the recursive formula presented in (3.10)–(3.13), we need to 

calculate the values of ,  for 0,1,2, … , 1 and Ω in order to obtain 

Ω 0,  ( ), and the number of these specific value points is 2 1 . 

Apparently, it becomes computational demanding when    is large. However, the 

occurrence of either of the following conditions would significantly simplify the 

calculation process: (i) identical life time distribution for all the components, which 

means that the number of subsets is reduced from 2 1 to 1, or (ii) exponential 

life time distribution for each component. In particularly, for condition (ii), the 

expression of  can be analytically derived. To demonstrate this, we present an 

illustrative example as below. 
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3.4.2 Illustration Example for Memoryless System  

Exponential distribution has been widely adopted in the literature for the system 

reliability and maintenance modeling. It can also be used to approximate some of the 

most commonly used distributions, such as Weibll distribution (Xie et al., 2000). 

First of all, we show the memoryless property of the parallel system with failure 

interaction when the life time of each component is exponentially distributed.   

Lemma 3.3. For an n-component parallel system Ω  with failure interaction, if 

~exp   for any Ω, we have 

Ω , Ω , ,   0                             3.14  

Proof: The proof is presented in Appendix C by applying the Mathematical Induction 

(MI). 

Specifically, if , we have  

Ω 0, Ω ,                                                                     3.15  

In the following we let Ω 0, Ω  for simplicity. 

Remarks: Lemma 3.3 is an exhibition of memoryless property generalized from the 

component level to system level under parallel structure. It indicates that at any time  , 

the system is considered as a new one as long as no components fail before  .  

Given the above results, Ω 0,  can be calculated by resorting to Laplace transform 

(LST) technique. Note that ~exp , Ω. Taking the LST of (3.12), we have 



59 
 

Ω 0, Ω ,
, ΩΩ

Ω , 0 ∑

Ω

Ω , 0 ∑
Ω

                                            3.16  

where Ω , 0  is expressed as 

Ω , 0

Ω
Ω 0,

Ω ,
Ω , 0,

Ω

Ω , ,
Ω , , 0,

, Ω

Ω ,

0,
1

Ω Ω

              3.17  

In the following we use a 3-component parallel system as an example to explain the 

calculation procedure.  

3.5 Numerical Example and Sensitivity Analysis 

Consider a 3-component parallel system shown in Figure 3.1(a) under the RFRW 

policy. Suppose that system maintenance cost per failure is $220 and the length 

of warranty period is 3  time units. Each time unit is 6 months. All other 
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parameters needed for the warranty cost analysis are given in Table 3.1. The 

parameters of components’ failure times were chosen such that 0.80  for 

10  time units (5 years). Here we assume that the failure times of all the 

components follow exponential distribution, which is a special case of Weibull 

distribution with shape parameter 1 and also implies that the component has a 

constant failure rate. For the comparison purpose, the series system composed of the 

same components is presented in Figure 3.1(b). Note that for both parallel and series 

structures, system maintenance cost does not involve any preventive maintenance cost 

because it is generally unnecessary for memoryless system (Barlow and Proschan, 

1965). 

 
Figure 3.1 Description for three-component systems 

 

Table 3.1 Cost and reliability parameters for system components 

1 2 3 
 $200 $230 $180 
 /  /  /  

 

The failure dependence probability matrix (FDPM)   , Ω  is given as: 

 
1 0.1 0.05

0.07 1 0.2
0.17 0.13 1

 

where Ω 1,2,3  and 1 , , Ω. 

component 2 

(a) 

component 1 

component 3 

component 2 component 1 component 3 

(b) 
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The applicability of the recursive algorithm presented in (3.16) and (3.17) can be 

demonstrated as follow.   

Recursive Algorithm:  

Step 1: single component sub-system 

Subsystem : 
/

 

Subsystem : 
/

 

Subsystem : 
/

 

Step 2: two-component sub-system 

Subsystem , , , , , : 

,
1

1

1 1 1
1

1

1
0.93

1
1/50 0.9

1
1/60 0.83

1
11/300 

,
1

0.83
1
1/50 0.95

1
1/40 0.78

1
9/200 

,
1

0.87
1
1/60 0.8

1
1/40 0.67

1
5/120 

Step 3: 3-component parallel system , ,  
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, , ,

1

,

1

,

1

1 0.789
1/50

0.794
1/40

0.772
1/60

0.599
9/200

0.580
11/300

0.573
5/120

0.398
37/600                                                                    3.18  

Step 4: Inverse LST 

, , 1 0.789 / 0.794 / 0.772 / 0.599 /

0.580 / 0.573 / 0.398 /           3.19  

Results: 

Table 3.2 gives a basic comparison of warranty costs between parallel (Figure 3.1(a)) 

and series (Figure 3.1(b)) structures with and without failure interaction under 6 

(3 years). 

Table 3.2 Cost comparison for 3-component systems with w=6 

System Structure Failure interaction  Expected warranty cost 

1 series No 0.3093 $188.0 

2 series Yes 0.3093 $210.3 

3 parallel No 0.0015 $1.246 

4 parallel Yes 0.0129 $10.89 
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From Table 3.2, we can see that the EWC is obviously higher under series structure 

(Systems 1 and 2) than parallel structure (Systems 3 and 4). It is due to that, under the 

series structure, the failure of any component (subsystem) will cause the system failure. 

Consequently, under the series structure, the improvement of reliability for each 

component (subsystem) is essential; failure interaction is only a minor factor 

(accounting for . .
.

100% 10% of the total warranty cost). 

For the parallel system, however, warranty cost is much more sensitive to the existence 

of failure interaction. Given the same case, failure interaction substantially increases 

the EWC, which is nearly  . .
.

8 times more than the cost for systems without 

failure interaction. In practice, it is necessary for engineers to examine potential failure 

interaction in the system and either combine this factor into the warranty cost 

estimation or design it out from the system in the early stage. 

Furthermore, as shown in Table 3.2, for series system, failure interaction only affects 

the EWC but has no effect on the system failure time distribution; under the parallel 

structure, however, the system may face severe reliability problems due to failure 

interaction. 

Sensitivity analysis: 

Figure 3.2 shows how warranty length  affects the EWC per system. We also 

illustrate the impact of structure and failure interaction to the total warranty cost. 
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Figure 3.2 Impact of warranty length w on the EWC for 3-component systems 

Figure 3.3 illustrates how the elements of failure dependence probability matrix 

(FDPM) (take 1,2  for example) affect the expected warranty cost of the system in 

Figure 3.1(a): 

 
1 0.05

0.07 1 0.2
0.17 0.13 1

 

It is intuitive to say that the EWC increases while any element of FDPM increases. 

When 1, , 1,2, … , , the parallel system transforms to the series structure 

and the failure time distribution equals to that of an n-component series system. 

However, the EWC is different as when 1, , 1,2,… , , the failure of one 

component will cause other components to fail, which incurs extra cost. 
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Figure 3.3 Impact of p12 on the EWC for 3-component parallel system 

3.6 Conclusion 

In this chapter, a study of the cost model under RFRW for multi-component systems 

considering prefect maintenance is presented. Unlike the previous works for complex 

systems which assume that failure events between components are independent, a new 

factor of failure interaction is incorporated into the cost modeling. RFRW here 

assumes free replacements for the failed components and perfect maintenance for the 

remaining system. Based on these assumptions, we derive the analytical expression of 

warranty cost functions for both series and parallel structures and propose the recursive 

algorithm for calculating and approximating the system reliability for parallel system 

configuration. Specifically, we present the memoryless property of the parallel system 

with failure interaction when all the components’ life times are exponentially 

distributed. The numerical results reveal that, compared with series systems, failure 

interaction incurs higher planning uncertainty (risk) of warranty costs for systems with 

parallel structure. Decision makers are highly recommended to allocate extra warranty 
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budget to compensate the cost induced by failure interaction. It is also recommended 

for the engineers to improve product design in order to eliminate the failure interaction 

among components (subsystems) in the early stage. 

Several additional remarks for our models are summarized. First, rather than simply in 

series or parallel connection among the components, the systems in practice exhibit 

much more complex structures (Kuo et al., 2001), such as series-parallel, parallel-

series, hierarchical series-parallel and k-out-of-n. Although it is hard to fully apply the 

methodology derived in this chapter to complex systems, basic studies for series and 

parallel configurations provide general views of the significance of failure interaction 

to the system reliability and warranty cost, and show possible ways for evaluating 

system reliability under complex structure. Secondly, both the assumptions of perfect 

maintenance and constant maintenance cost in RFRW might be untenable in practice 

although it is widely adopted in the literature. More practical assumptions such as 

minimal and imperfect maintenance (Pham and Wang, 1996) and random maintenance 

cost (Sheu and Liou, 1992) can be adopted in future study. Third, numerical 

illustration in Section 3.5 is confined to multi-component systems satisfying 

memoryless property. However, by applying the numerical procedure proposed in 

(3.13) of Section 3.4.1, the application can be well extended to any arbitrary system. 

Finally, the parameter estimation for the elements in FDPM is excluded in this 

research. The reader is referred to the work in Murthy and Wilson (1994) for both 

Type I and Type II failure interaction.  
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CHAPTER 4 CONDITION-BASED WARRANTY 

SERVICE DESIGN 

 

4.1 Introduction 

Warranty costs constitute a significant portion of the post-sale servicing cost, typically 

ranging from 2% to as much as 15% of the net sales (McGuire, 1980). Designing an 

effective maintenance program under warranty is thereby of special importance to the 

manufacturer.  

It is well acknowledged that the likelihood of a product failure can be reduced by 

scheduled preventive maintenance (PM) services. From the manufacturer’s perspective, 

providing extra PMs during the warranty not only reduces the corrective maintenance 

cost of the product but also improves the service level of the company and helps attract 

more buyers. Two major PM approaches are identified in the literature, namely, time-

based maintenance (TBM) and condition-based maintenance (CBM) (Legat et al., 

1996). TBM arranges the PM services at pre-determined age or time intervals, while 

CBM relies on the actual state information of the product for executing the 

maintenance decisions. Although CBM is widely considered as a superior approach to 

TBM, a review of the existing literature identifies the unanimous preference of 

utilizing the TBM approach in warranty-related applications. For example, from the 

manufacturer’s perspective, the age-based PM optimization models during the 

warranty period are given in: Jack and Dagpunar (1994), Yeh and Lo (2001), Wang 

(2006), Yun et al. (2008), Huang and Yen (2009) and Jack et al. (2009). From the 

customer’s perspective, the optimal PM strategies under the life-cycle context have 
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been studied by works such as Chun and Lee (1992), Jung and Park (2003), Kim et al. 

(2004) and Pascual and Ortega (2006). 

The CBM approach, on the other hand, is extensively studied under circumstances that 

do not include warranty considerations. In particular, two major streams of CBM 

models are identified in the literature. The first describes the product deterioration as a 

continuous wear process. Preventive maintenance is carried out when the degree of 

wear exceeds a threshold value (Grall et al., 2002b; Li and Pham, 2005; Liao et al., 

2006; van Noortwijk, 2009). The second stream of work considers the deterioration as 

a continuous-time (semi-)Markov process. The critical set of states for which the PM is 

to be carried out is optimally determined such that expected maintenance cost is 

minimized (Makis and Jiang, 2003; Black et al., 2005; Wu and Ryan, 2010; Zhao et al., 

2010). The inspection interval is either pre-determined or to be optimized for both 

cases. Moreover, as a special case of the (semi-)Markov model, the 3-state semi-

Markov system has been extensively studied under the delay-time modeling (DTM) 

framework (Baker and Christer, 1994). The DTM technique embraces the concept of 

CBM by assuming that the product with such three states – good, defective and failed, 

should be preventively replaced only if the product is defective upon inspection. 

Applications of the DTM technique can be found in Christer et al. (1998), Pillay et al. 

(2001), Zhao et al. (2007), Scarf et al. (2009) and Wang (2010). 

One of the main reasons why the CBM approach is seldom applied to the warranty 

context is because most of the warranty theories assume binary systems (i.e. either 

functioning or failed), and do not consider the intermediate states which continuous 

monitoring or inspection could take place. Although binary state assumption allows 

technical convenience for the modeling, it does realistically describe the underlying 

behavior of the deterioration process.  An exception is Zuo et al. (2000), who studied 
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warranty servicing strategies for a multi-state product and proposed condition-based 

repair-replacement policies in order to minimize the expected warranty cost. Their 

work was further extended in Pan and Thomas (2010) lately by considering a larger 

and more general Markov state space. However, both works assume continuous 

monitoring (instead of periodic monitoring) on the product condition which may not be 

technically available or cost-efficient in practical situations. Furthermore, a survey of 

maintenance literature reveals that most of the CBM modeling approaches, or the PM 

modeling in general, assume infinite planning horizon (Nakagawa and Mizutani, 2009), 

while warranty cost optimization is essentially a finite-horizon maintenance problem. 

This chapter considers a realistic scenario that inspection or periodic monitoring is the 

only option available to the manufacturer. We study a novel warranty servicing 

strategy that integrates the basic warranty policies with extra CBM services. For 

inspection to be viable, we assume that a defect may arise prior to failure, and that 

these defects are only detectable at inspection. Thus, the product deterioration can be 

modeled as a two-stage process, namely, from nominal (defect-free) to defective, and 

from defective (if left unattended) to failure. Preventive maintenance is only 

implemented when the product is found to be in the defective state. We focus on the 

inspection scheduling problem for products under both renewing and non-renewing 

warranty policies. We first consider a simple case that only one inspection service is 

provided during the warranty period. The objective is to find the optimal inspection 

time so that the expected warranty cost is minimized. We then extend the simple case 

to periodic inspection within the warranty and aim at optimally determining the 

inspection interval. Since many of the warranty servicing plans need to deal with a 

population of products instead of a single product of interest, we argue that the 

proposed condition-based servicing strategies can be well applied in the context when 
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the targeted market of the product is relatively small and the individual selling can be 

traced. Typical examples include those high-priced commercial and industrial products 

such as large-scale mechanical facilities, specialized medical devices, IT servicing 

systems, etc. In contrast, in the context of high sales quantities (typically for consumer 

products), the manufacturer may instead provide the inspection services as free options 

to the customer with execution period(s) pre-specified in the warranty contract. Also, 

the manufacturer may further utilize these additional inspection services to enhance his 

product marketing strategy for promoting the sales in the marketplace.  

The rest of the chapter is organized as follows. Section 4.2 presents the problem and 

assumptions, and proposes various condition-based warranty servicing policies. 

Section 4.3 derives warranty cost models under the renewing warranty setting. The 

cost functions under the non-renewing warranty setting are further discussed in Section 

4.4. Section 4.5 provides the numerical illustrations for the proposed models. 

Conclusion is made in Section 4.6. 

4.2 Problem Description 

4.2.1 Assumption 

1) The product is sold under a free-replacement warranty. Within warranty period 

, all the repair and inspection cost is borne by the manufacturer. 

2) Product can have such three states: good, defective and failed. At any time, 

there is at most one (dominant) defect present in the product. 

3) Let  represent the time to defective arrival and  represent the delay time 

between the defect arrival and the subsequent failure. We assume that  is 

independent of . 
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4) Product is preventively replaced if a defect is detected upon inspection. 

Inspection is perfect in the sense that any defect present will be identified. 

5) For the renewing warranty, preventive replacement of the product will not 

renew the warranty. The warranty is renewed only when a failure is incurred 

during the warranty. 

6) Let  represent the cost for inspection,  represent the cost for preventive 

replacement and  represent the failure or corrective replacement cost; we 

assume that . 

7) Either corrective or preventive replacement restores the product to AGAN. 

8) Let  represent the time to failure without PM intervention, i.e. . We 

also let . , . , .  and . , . , .  represent the cdf and pdf of 

,  and . 

 

4.2.2 Condition-based Warranty Servicing Policies 

The following condition-based warranty servicing policies are studied in this chapter. 

Under both renewing and non-renewing warranty settings, two types of inspection 

policies are further considered: one-time inspection and periodic inspection. 

Policy A: The product is sold under a renewing free-replacement warranty. 

1) Additional inspection service is to be implemented by the manufacturer at pre-

specified time  ( ). The inspection service is renewed upon failure 

within warranty. 

2) Additional inspection services are to be implemented by the manufacturer 

periodically at time intervals , 2 , … ,  with / 1. The inspection 

services are renewed upon failure within warranty. 



72 
 

For the case of non-renewing warranty, we first consider the following inspection 

policies which are dependent on the failure history of the product. 

Policy B: The product is sold under a non-renewing free-replacement warranty.  

1) Additional inspection service is to be implemented by the manufacturer at pre-

specified time  ( ) given that no failure is incurred before . Otherwise, 

no inspection is made at time . 

2) Additional inspection services are to be implemented by the manufacturer at 

pre-specified times  for 1 / 1  given that no failure is 

incurred within 1 , . Otherwise, no subsequent inspections are 

made.  

For comparison, we also consider the “block-type” inspection policies which are 

independent of the failure history of the product. 

Policy C: The product is sold under a non-renewing free-replacement warranty.  

1) Additional inspection service is to be implemented by the manufacturer at pre-

specified time  ( ) irrespective of the failure history before time . 

2) Additional inspection services are to be implemented by the manufacturer at 

constant time intervals , 2 , … ,  with / 1  irrespective of the 

failure history between inspections. 

Remarks:  

a) A wide range of product types can be covered under the proposed warranty 

servicing policies. For example, periodic inspection policy is mostly suitable for those 

high-priced products with relatively long warranty coverage (typically for commercial 

and industrial products sold under a non-renewing warranty). Failure replacements of 
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these products may often be costly to the manufacturer. In contrast, for products sold 

with short warranty coverage or covered by a renewing warranty policy, one-time 

inspection policy may be appropriate in order to avoid the corrective replacement 

or/and warranty renewal. Note that not many high-priced products are sold under a 

renewing warranty. Therefore, periodic inspection Policy A2 could be less applicable 

compared to other policies.  

b) Sometimes failure is also costly to the consumers in terms of the downtime cost per 

failure. In this sense Policy B can be treated as a “defensive” warranty strategy where 

the inspection as claimed is only provided for the customer given that no failure 

replacement has incurred. This requires certain maintenance efforts from the customer 

and therefore partially protects the benefits of the manufacturer. In contrast, Policy C is 

more “offensive” or aggressive in the sense that all the inspections are provided 

irrespective of the failure history of the product. It may be potentially useful for 

promoting new products in the marketplace with heavy marketing purposes.  

c) Note that for Policy A1, B1 and C1, the one-time inspection may be conducted 

during the early stage of the warranty (e.g. /2). Therefore, Policy A1 (B1, C1) 

is not necessarily a special case of Policy A2 (B2, C2) when 1. This requires 

further comparisons between the one-time inspection and periodic inspection policies 

in order to obtain the global optimal policy. 

4.3 Cost Modeling for Renewing Warranty 

In this section, the warranty cost functions are derived incorporating inspection 

services under the renewing warranty setting. An example is shown later to illustrate 

the application of the model. 
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We first present some preliminary results for the cost derivation in this section.  

4.3.1 Preliminary Results 

Consider a product that is sold under a renewing warranty and is subject to CBM 

service(s) at appropriate time(s) during the warranty period. Let  be the time to 

product failure since the last warranty renewal and 1 represent the number of 

replacements until the product survives the warranty. Clearly the random variable  

satisfies the following geometric distribution 

Pr Pr Pr ,    1,2, …                  4.1  

with a finite expectation 1/ Pr .  

Further let i.i.d. , , …  represent the sequence copies of  and , , …  

represent the corresponding cycle cost. The total warranty cost  can be described 

by ∑  where  is the stopping time of the sequence , , … . Applying 

the Wald’s Equation (Ross, 1970), the expected warranty cost (EWC) can be given as 

Pr                        4.2  

Therefore, for the renewing warranty, the problem is simplified to that of evaluating 

the expected cycle cost  and the survival function Pr  respectively. 

As a special case, if no inspection or PM are conducted during the warranty,  reduces 

to  where Pr . In this case the expected cycle 

cost per item is , and the EWC is further given by 

                                                                                 4.3  
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4.3.2 Warranty Cost Model for Policy A1 

Here we derive the warranty cost function for Policy A1. Suppose an additional one-

time inspection service is conducted at time   . In order to derive the expected 

cycle cost , two cases are considered here:  and . 

•  

We first consider three scenarios depending on the time to the defect arrival  and time 

to the failure  (without PM intervention). 

1) If , the product is correctly replaced with total cost . 

2) If  and , the product is preventively replaced at time  with cost 

; the product fails within ,  thereafter and the total cost is 

.  

3) If  and , the product is inspected at cost  but no PM is 

carried out; the product fails within ,  thereafter and the total cost is 

. 

 

•  

Again, we consider the following three scenarios. 

1) If  and , the product is preventively replaced at time  with total 

cost ; the product does not fail within , . 

2) If  and , the product is inspected at cost  but no PM is 

carried out; the product does not fail within ,  and the total cost is . 

3) If , the product is inspected at cost ; the product does not fail 

within ,  and the total cost is . 
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Based on the above scenarios, the expected cycle cost can be derived as  

                                                   4.4  

The survival function Pr  is given by 

Pr  

   4.5  

Referring to (4.2), the EWC as a function of  can be verified as 

1

                                                         4.6  

4.3.3 Warranty Cost Model for Policy A2 

Here we further consider the periodic inspection policy for renewing warranty settings. 

Suppose that the product is inspected at times , 2 , … ,  and the number of 

inspections  is given as / 1 . We let  represent the residual 

warranty period since the Nth inspection. Note that  is a constant once  is determined. 
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As in Policy A1, in the following we derive the expression for  and Pr  

respectively. The results can be characterized conveniently in a recursive form 

presented as follows.  

Given inspection at each  time units, define ,  as the expected cycle cost for a 

new system when its warranty length is  and ,  as its corresponding 

survive function over this warranty period. The problem then resolves into the 

evaluation of the expression for ,  and Pr , . 

Depending on when the product is preventively replaced upon inspection, the 

following recursive equations on ,  and ,  can be derived. 

, 1 , 1

∞

1

 

which is further simplified as 

, 1 , 1

1

                                                          4.7  
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where ,  and similarly,  

, , 1

∞

, 1

                                              4.8  

where , . 

Given (4.2), (4.7) and (4.8), the EWC as a function of  can be expressed as  

,
,

                                                                      4.9  

Remarks: For both Policies A1 and A2, the optimal inspection policy  can be 

obtained numerically by searching over the domain of 0,  so that the respective 

warranty cost is minimized. For the case of periodic inspection, it is important to 

obtain a lower bound of  as when  decreases, the number of inspections will 

increase significantly. To derive this lower bound value, we notice that a meaningful 

inspection policy  should incur a total cost less than the cost without any inspection 

(i.e. / ). According to (4.7)–(4.9), we also verify that 

, . Therefore it is clear that ,
,

,

 and the optimal inspection interval  can then be searched within ,  

where .  
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4.4 Cost Modeling for Non-Renewing Warranty 

In this section, warranty cost functions are derived under non-renewing warranty 

setting. We first consider the case when the inspection service is dependent on the 

failure history of the product (Policy B). For comparison, the “block-type” inspection 

policy (Policy C) is subsequently analyzed by considering additional assumption. An 

example is shown later to illustrate the application of the model. 

We first define the renewal functions for two counting processes that will be met in the 

following model derivation. Let  and  represent the number of renewals 

for the ordinary renewal process , , … and the delayed renewal process , , , … 

over the time period  respectively. According to the classical renewal theory (Ross, 

1970), the expressions of  and  can be given by 

                                         4.10  

                                         4.11  

In particular, for the case of no inspection or PM over warranty, the EWC is simply 

given as . 

Unfortunately, analytical expressions of renewal functions are not available in general 

which is the key to our problem of interest. But certain numerical methods (e.g. RS-

integration; Xie, 1989) have been able to provide both robust and accurate results for 

the approximation. We will illustrate this in the numerical session. 
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4.4.1 Warranty Cost Model for Policy B1 

Here we derive the warranty cost function for Policy B1 with one-time inspection at 

time . Depending on whether a failure occurred before , we consider the following 

four scenarios. 

1) If , the product is correctly replaced with cost  and no inspection is 

conducted at time ; the total warranty cost is . 

2) If  and , the product is preventively replaced at time  with cost 

; the total warranty cost is . 

3) If , the product is inspected at cost  but no PM is carried out; the 

total warranty cost is . 

4) If , the product is inspected at cost  but no PM is carried out; the total 

warranty cost is . 

Based on the above scenarios, the EWC as a function of  is given by  

1

1

       4.12  

As a special case, when the time to defect arrival is exponentially distributed, we have  
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     4.13  

and therefore (4.12) can be simplified as 

1             4.14  

4.4.2 Warranty Cost Model for Policy B2 

Here we consider the case of periodic inspection under non-renewing warranty. 

Suppose that the product is inspected at times , 2 , … ,  with / 1 and 

. Note that once the product fails during warranty, the subsequent planned 

inspections will not be made. 

Similar as Policy A2, we let ,  represent the EWC for a new system when 

the warranty length is ε. The following recursive function is applied. 

, 1

1

1 ,

1                                                      4.15  



82 
 

where , .  

The EWC as a function of  is therefore given by 

,                                                                    4.16  

Again, a meaningful inspection interval should incur a total warranty cost less than 

. A relatively less stringent lower bound of  is to be given by  where  

can be derived from , .  

As a special case, when the time to defect arrival satisfies exponential distribution, 

each inspection point becomes the renewal point for the product. Therefore (4.15) can 

be simplified as  

, 1

,                                                                4.17  

where , . 

Further solve (4.17) iteratively and let . We have 

,
1

1

                                                                                  4.18  

Remarks: In the foregoing analysis, we have derived the warranty cost functions for 

Policy B which is dependent on the product failure history. For comparison, in the 
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following we further consider a “block-type” inspection policy for the product with 

delayed failures. However, without further assumptions, it is technically difficult to 

formulate the cost model. As a result, for Policy C we assume that the time to defect 

arrival follows exponential distribution. Under this assumption, the product is renewed 

at each inspection point during the warranty. 

4.4.3 Warranty Cost Model for Policy C1 

Suppose that the inspection is to be made at time  irrespective of the failure history of 

the product. Let  be the probability that the product is in the defective state at 

time . Then the EWC as a function of  can be presented as 

                4.19  

In order to derive , we define  as the distribution function of 

∑ ∑ , with 1 and . Then  can be 

expressed as 

Pr
∞

                      4.20  

Since ∑ Pr , we have  

Pr Pr

                                           4.21  

By further taking the LST of , we have  
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∞

1 1
∞

1 1         4.22  

According to the renewal theory, . Therefore we have 

1                             4.23  

The corresponding warranty cost function is further given by 

1       4.24  

4.4.4 Warranty Cost Model for Policy C2 

For Policy C2, suppose that the inspections are to be made at times , 2 , … ,  with 

/ 1 and . Again, by assuming that the time to defect arrival is 

exponentially distributed, each inspection point becomes the renewal point for the 

product. Therefore, the EWC can be easily generalized from the results of Policy C1. 

We present it below without proof. 

1  

4.25  

The inspection interval can be searched within ,  where  is derived from 

/ . 
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Alternatively, if the time to defect follows a non-exponential distribution, we may need 

some simulation methods (e.g. Monte Carlo) for approximating the EWC. However, 

such treatment is typically time-consuming and less accurate. In the following we will 

compare Policy B and Policy C using numerical illustrations and investigate the 

possibility of approximating the cost of Policy C using the results from Policy B.  

4.5 Numerical Examples 

In this section, numerical examples are proposed separately under the renewing and 

non-renewing warranty settings in order to demonstrate the effect of inspection and 

PM services on the total warranty cost minimization.  

Weibull models have been widely applied in the reliability engineering and 

applications (Murthy et al., 2003). Consider the case in the following that X .  and 

.  satisfy Weibull distributions with scale parameter ,  and shape parameter 

,  respectively, where 

1 ,    1 ,      4.26  

and ,  and ,  represent the mean and variance of  and  respectively. 

For non-renewing warranty, we approximate .  by utilizing the RS-integration 

method (Xie, 1989). In the following warranty length  is partitioned into  intervals 

where 0 . The following recursive equation can be used  

.

1 .
, 1               4.27  

with 0 0 and 
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. , 2                    4.28  

where . 0.5 . 

Similarly,  can be approximated using the following: 

1 0.5 , 1  

4.29  

Without loss of generality, we assume that the warranty coverage is 1 time unit 

and the preventive replacement cost is 1 . Optimal inspection policies are 

obtained separately under the renewing and non-renewing warranty settings over a 

wide range of model parameters. Note that for the one-time inspection policy,  is 

equivalent to the optimal inspection time, while for periodic inspection, it is the 

optimal the inspection interval. In addition, for comparisons between Policy B and 

Policy C to be viable, we assume that the time to defect arrival is exponential 

distributed for non-renewing warranty setting although Policy B can be generally 

applied with any arbitrary distribution. Table 4.1 and Table 4.2 below show respective 

optimal inspection policies (in shaded background) under renewing and non-renewing 

warranty settings. Here  represent the mean life time of the product and 

CR% represents the percentage of cost reductions by applying the optimal inspection 

policies in contrast to no inspection within warranty. 

Based on these computational results, the following observations and insights are made. 

 



 
 

Table 4.1 Optimal inspection scheduling for renewing warranty 

No.           
Policy A1 Policy A2 

CR%     
1 1 1 1 1 2 0.5 1 2 1.89 0.49 0.34 1.02 0.5 1.05 - 
2 1 1 1 2 2 0.5 1 2 1.44 1.41 0.53 1.45 0.53 1.45 - 
3 1 2 1 2 2 0.5 1 2 0.94 3.49 0.55 2.37 0.55 2.37 32% 
4 1 2 2 2 2 0.5 1 2 0.89 3.85 0.58 2.14 0.58 2.14 44% 
5 1 2 3 2 2 0.5 1 2 0.89 4.06 0.59 2.01 0.59 2.01 50% 
6 1 2 2 1 2 0.5 1 4 1.33 1.59 0.50 1.60 0.50 1.60 - 
7 1 2 2 2 2 0.5 1 4 0.89 7.69 0.58 2.93 0.58 2.93 62% 
8 1 2 2 3 2 0.5 1 4 0.74 19.06 0.59 5.16 0.25 4.11 78% 
9 1 2 2 2 1 0.1 1 4 0.94 6.98 0.59 3.97 0.17 3.18 54% 

10 1 2 2 2 3 0.1 1 4 0.89 8.12 0.56 1.87 0.34 1.60 80% 
11 1 2 2 2 4 0.1 1 4 0.90 8.23 0.55 1.56 0.34 1.40 83% 
12 1 2 2 2 2 0.1 1 4 0.89 7.69 0.57 2.47 0.25 1.99 74% 
13 1 1 2 2 2 0.1 1 4 1.33 1.60 0.59 0.96 0.34 0.92 43% 
14 1 3 2 2 2 0.1 1 4 0.74 19.06 0.54 3.83 0.25 2.84 85% 
15 1 3 2.5 2 2 0.1 1 4 0.74 20.59 0.54 3.52 0.25 2.81 86% 
16 1 3 3 2 2 0.1 1 4 0.74 21.38 0.53 3.28 0.25 2.78 87% 
17 1 2 2 2 2 0.05 1 4 0.89 7.69 0.57 2.41 0.20 1.82 76% 
18 1 2 2 2 3 0.05 1 4 0.89 8.12 0.56 1.81 0.25 1.48 82% 
19 1 2 2 2 4 0.05 1 4 0.90 8.23 0.55 1.50 0.34 1.29 84% 
20 1 2 2 2 2 0.05 1 8 0.89 15.38 0.57 3.99 0.17 2.12 86% 

 

 

 

 



 
 

Table 4.2 Optimal inspection scheduling for non-renewing warranty 

No.           
Policy B1 Policy B2 Policy C1 Policy C2 

CR% 
        

1 1 1 1 1.5 3 0.5 1 2 1.60 0.65 0.44 1.00 0.50 1.00 0.40 1.01 0.50 1.03 - 
2 1 1 1 2 3 0.5 1 2 1.45 0.87 0.53 1.12 0.53 1.12 0.47 1.16 0.50 1.16 - 
3 1 2 1 2 2 0.5 1 2 0.94 1.46 0.59 1.67 0.59 1.67 0.47 1.78 0.50 1.78 - 
4 1 1 1 1 3 0.5 1 4 1.89 0.63 0.35 0.94 0.50 0.98 0.35 0.95 0.50 0.99 - 
5 1 1 1 1.5 3 0.5 1 4 1.60 1.30 0.48 1.15 0.50 1.19 0.46 1.20 0.50 1.20 12% 
6 1 1 1 2 3 0.5 1 4 1.44 1.75 0.50 1.48 0.50 1.48 0.49 1.52 0.50 1.52 15% 
7 1 1 1 2.5 3 0.5 1 4 1.36 2.05 0.52 1.83 0.52 1.83 0.50 1.87 0.50 1.87 11% 
8 1 2 1 2.5 3 0.5 1 4 0.86 3.39 0.50 2.88 0.34 2.69 0.51 2.90 0.34 2.73 21% 
9 1 1 1 2 3 0.25 1 4 1.44 1.75 0.49 1.23 0.50 1.23 0.49 1.29 0.50 1.29 30% 

10 1 1.5 1 2 3 0.25 1 4 1.11 2.36 0.49 1.66 0.34 1.60 0.50 1.67 0.34 1.65 32% 
11 1 2 1 2 3 0.25 1 4 0.95 2.86 0.49 2.02 0.25 1.88 0.50 2.01 0.25 1.91 34% 
12 1 2.5 1 2 3 0.25 1 4 0.85 3.27 0.49 2.34 0.25 2.16 0.50 2.32 0.25 2.14 35% 
13 1 2 1 2.5 3 0.25 1 4 0.86 3.39 0.47 2.69 0.25 2.28 0.51 2.66 0.25 2.27 33% 
14 1 2 1 2 3 0.10 1 4 0.95 2.86 0.49 1.89 0.25 1.62 0.50 1.85 0.25 1.59 44% 
15 1 2 1 3 2 0.10 1 4 0.80 3.89 0.40 3.26 0.20 2.43 0.51 3.19 0.20 2.36 39% 
16 1 2 1 4 2 0.10 1 4 0.72 4.56 0.31 4.01 0.13 2.84 0.61 3.96 0.17 2.75 40% 
17 1 2 1 3 2 0.05 1 4 0.80 3.90 0.39 3.22 0.17 2.22 0.51 3.13 0.17 2.15 45% 
18 1 2 1 3 3 0.05 1 4 0.80 3.83 0.36 3.08 0.20 1.88 0.60 3.02 0.20 1.83 52% 
19 1 2 1 3 4 0.05 1 4 0.80 3.78 0.34 2.97 0.20 1.70 0.64 2.92 0.20 1.67 56% 
20 1 2 1 3 3 0.05 1 8 0.80 7.67 0.35 5.74 0.13 2.18 0.60 5.62 0.13 2.12 72% 
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Discussion of computational results: 

1) No inspection is necessary when the inspection cost  is relatively expensive 

compared to both the preventive replacement cost  and corrective 

replacement cost . It can be observed in Table 4.1 and Table 4.2 when 

/ 0.5 and / 0.25. 

2) Given a fixed , the frequency of inspection increases when either  

decreases or  increases. For our case, the one-time inspection is preferred 

typically when / 0.5  and / 0.125 . When the inspection cost 

further decreases, multiple inspections become economically viable. In 

particular, results reveal that periodic inspection should be arranged evenly 

during the warranty period with / 1. In other words, given a fixed 

number of inspections, it is always better to implement the inspections with the 

shortest intervals. In this sense we may instead search over the domain of 

  1,2, …  rather than   0,  in order to reduce the computational 

complexity. 

3) Given a fixed cost structure, the frequency of inspection increases (or non-

decreasing) with the scale parameters  and . In other words, when the 

mean life time  decreases ( ,  increase), the product 

deterioration accelerates and consequently more inspections are required in 

order to identify hidden defects and prevent failures. Note that the results may 

also be interpreted from the opposite perspective namely longer warranty 

(given fixed ) should require more frequent inspections.   

4) Given a fixed cost structure, the frequency of inspection decreases (or non-

increasing) with the shape parameters ,  when , 1 . It may be 

partially explained by the characteristics of Weibull distribution. Take the delay 
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time  for example:  decreases significantly when  increases from 1 while 

 only changes slightly within 0.89 , . In other words, the chance of 

short delay time (in terms of its mean delay time) becomes much lower when 

 increases and therefore less inspection efforts are required. 

5) A cost comparison between Policy B and Policy C is further made based on the 

observations from Table 4.2. Policy B is better than Policy C typically when 

the number of inspection is small, which is mainly due to a high inspection cost 

or a relatively large mean life time. The situation reverses when the inspection 

becomes relatively cheaper or the product is more prone to failure. For both 

cases, Policy B shows to be a good approximation of Policy C which does not 

have an analytical expression for non-exponentially distributed random 

variable . Such conclusion may still hold when 1 due to the fact that  

does not vary significantly as  increases.  

6) Parameter impacts on the optimal inspection policies  shows relatively 

consistent results between renewing warranty and non-renewing warranty 

settings. In particular, substantial cost reductions (CR%) can been achieved 

under low inspection cost or a relatively short . 

 

4.6 Conclusion 

This chapter presents a framework for applying condition-based maintenance in 

minimizing warranty costs under various warranty schemes from the manufacturer’s 

perspective. For condition monitoring or inspection to be viable, we assumed that 

product deterioration follows a basic delay time model and can have such three states: 

good, defective and failed. Preventive maintenance is implemented only when the 



91 
 

product is in the defective state upon inspection. In this work we focused on the 

inspection scheduling problem for products under both renewing and non-renewing 

warranty policies. In particular, for non-renewing warranty, we considered two types 

of inspections. The first type is dependent on the failure history of the product and the 

inspection service is suspended once a failure is incurred during the warranty. In 

contrast, the inspection under the second type is conducted at pre-specified time(s) 

which is irrespective of the product failure history. For each of the above policies, we 

further considered one-time inspection and periodic inspection within the warranty 

period in order to cover a wide range of product types and applications. Numerical 

approximations are then used to demonstrate the applicability of the proposed models. 

Results reveal that the implementation of inspections within warranty can be cost-

efficient for the manufacturer when either the inspection cost is relatively low or the 

product has a relatively short mean life time. 
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CHAPTER 5 PERIODIC PM SERVICE DESIGN 

INCORPORATING VALUE OF MAINTENANCE 

 

5.1 Introduction  

In Chapters 3 and 4, we have investigated two important issues in warranty cost 

modeling from the manufacturer’s perspective, where preventive maintenance is used 

to either enhance the warranty servicing or reduce the warranty cost. In this chapter, 

we further investigate the life-cycle maintenance service design from the buyer’s 

perspective and analyze warranty as a factor in influencing the buyer’s periodic PM 

decisions. 

Optimization of PM strategies under warranty context has received considerable 

attention in the literature. From the seller’s perspective, (periodic) preventive 

maintenance is mainly designed to minimize the EWC over the warranty period. 

References of this area can be found in Chun (1992), Jack and Dagpunar (1994), Yeh 

and Lo (2001), Wang (2006), and Huang and Yen (2009). In comparison, from the 

buyer’s perspective, PM efforts during both the warranty and/or the post-warranty 

period can have significant impacts on the maintenance cost after the warranty is 

expired and that will have to be borne by the buyer. As a result, the optimal PM 

strategy for the buyer should be determined under the life-cycle context. Early studies 

on the life-time PM modeling can be found in Chun and Lee (1992), Jung et al. (2000), 

Djamaludin et al. (2001), and Jung and Park (2003). Recently, Kim et al. (2004) 

developed a framework for the cost analysis linking warranty and preventive 

maintenance (PM) under the life-cycle context. Different PM options were proposed 
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and the optimal strategies were further selected such that the buyer’s life-cycle 

maintenance cost was minimized. Pascual and Ortega (2006) described a periodic PM 

policy by allowing the buyer’s negotiation on the length of warranty period. Jain and 

Maheshwari (2006) developed a discounted PM cost model after the expiration of 

renewing pro-rata warranty (RPRW). Chen and Chien (2007) considered continuous 

PM for a repairable system under renewing free-replacement warranty (RFRW) with 

two failure modes: a minor failure and a catastrophic failure. Jung et al. (2008) 

investigated optimal preventive replacement policies following the expiration of both 

renewing and non-renewing warranty.  

Some other research in PM modeling related to our problem of interest are also 

mentioned as follows. These works however do not include warranty consideration. 

Pongpech and Murthy (2006) studied a periodic PM policy for the leased products. 

Sheu et al. (2006) studied an optimal periodic PM policy by maximizing the system 

availability. El-Ferik and Ben-Daya (2008) proposed a new age-based PM strategy 

where the system underwent PM actions either at failure or after a pre-specified time 

interval whichever of them occurred first. Jackson and Pascual (2008) focused on the 

maintenance service negotiation between the agents and clients. More recently, Castro 

(2009) studied an optimal PM strategy for systems under two types of failure modes: 

maintainable and non-maintainable. Zhou et al. (2009) considered a multi-unit series 

system and investigated an opportunistic PM strategy using dynamic programming. Jin 

et al. (2009) described an option-based PM model under stochastic demand. Nakagawa 

and Mizutani (2009) presented a summary of various PM models over a finite horizon. 

A common assumption for the periodic PM modeling in the literature is that the 

calendar time of the first PM action is pre-specified. To illustrate this, denote  as the 

warranty period,  as the length of the system life cycle ( ),  as the constant 
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interval between consecutive PMs, and  as the calendar time for the first PM action. 

It is typically assumed that  either equals to  or . The first case describes the 

situation that PMs are planned throughout the system life time; in contrast the second 

case implies that the PMs are only carried out during the post-warranty period. While 

such arrangements are easy to be implemented in practice, they do not necessarily lead 

to the minimization of the life-time cost. Hence a potential improvement of the model 

is to consider  as a decision variable to be optimized under the life-cycle context. 

Another common assumption for the (periodic) PM modeling is that PM strategies are 

only analyzed from the aspect of maintenance cost while the benefits of PMs are 

seldom explicitly elaborated in the model optimization. Dekker (1996) highlighted the 

reason by stating that the maintenance output, in terms of contribution to company 

profits, is very difficult to quantify. While it is easy to measure the cost of maintenance, 

it is difficult to measure its benefits. Most recently, Marais and Saleh (2009) developed 

a framework for capturing and quantifying the value of maintenance activities on 

revenue-generating facilities. They argued that existing cost-centric maintenance 

models ignored the value of maintenance, and may lead to sub-optimal maintenance 

strategies. However, their valuation mechanism only applied to perfect maintenance. 

For the valuation of (imperfect) preventive maintenance, new methodologies should be 

proposed.  

In this chapter, we study a general periodic preventive maintenance policy for the 

buyer considering both maintenance cost and the value of maintenance. The first part 

of the cost model includes the preventive maintenance (PM) cost and the minimal 

repair cost upon system failures. We assume that PMs are carried out periodically 

starting from a certain time instant until the end of the system life cycle. The time to 

the first PM action is a decision variable chosen by the buyer. The second part of the 
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cost model – the value of maintenance, is quantified through the reduction of ageing 

losses, which is defined as the total revenue losses caused by the system deterioration 

over its life cycle. We argue that preventive maintenance, which slows system 

deterioration, reduces ageing losses and therefore reflects its value. The optimal PM 

strategies for the buyer, which consider both the maintenance cost and the value of 

maintenance, are determined jointly by the calendar time of the first PM action and its 

corresponding maintenance level.  

The rest of this chapter is organized as follows. Section 5.2 presents the proposed 

periodic preventive maintenance model in more details. Section 5.3 derives the total 

life-cycle cost model under both the warranty contracts and ageing losses. A numerical 

case is given in Section 5.4, and sensitivity analysis is carried out over various model 

parameters. Conclusion is made in Section 5.5. 

5.2 Periodic Preventive Maintenance Model 

Let  represent the system life cycle and  represent the pre-specified PM interval. In 

the model, preventive maintenance (PM) is conducted at discrete time instants 

, ,…,  with , 1  for 1  and . 

Here the integer  represents the number of PMs during the system life cycle. We 

assume that  has no pre-specified value (i.e.  or  ) and is a decision 

variable to be optimized. We further assume that the cost for performing PM actions is 

borne by the buyer while the warranty servicing cost is covered by the manufacturer.  

For the sake of generality, we assume that the effect of each PM is imperfect (Pham 

and Wang, 1996) and is modeled using the virtual age method (Kijima, 1989). It 

defines that each PM reduces the system age by a certain amount, and therefore the 



96 
 

system effective age or virtual age is less than its calendar age. Kim et al. (2004) 

modified Kijima’s model by considering discrete PM levels. Such treatment was 

further adopted by Huang and Yen (2009) in two-dimensional warranty cost modeling 

under preventive maintenance. Here we further modify Kim’s model by considering  

as a decision variable, and the system effective age right after performing the ith PM 

action is therefore given by  

, ,                                  5.1  

where  is the calendar age of the system when the ith PM action is performed (with 

),   is the age-reduction factor and   0,1, … s represent all the 

discrete PM levels. Note that  is a decreasing function of , i.e. a larger  

corresponds to greater maintenance efforts and therefore a smaller . In particular, 

we let 0 1 to represent the case of no preventive maintenance. In our model, in 

addition to ,  is another decision variable to be selected and optimized by the buyer.  

Under both  and , the virtual age of the system at calendar time , i.e. | , , is 

given by  

| , , , , 2,3, … , 1        5.2  

It is important to investigate the effect of the first PM action on the system effective 

age. Here we assume that for each PM level 0, there is a limit  on the 

reduction of system effective age, which describes the capacity of improvement under 

that PM level. As a result, the amount of age reduction by the first PM is simply the 

value of 1  or , whichever is smaller. For a general discussion, we let 

0. The system effective age right after the first PM action is therefore given 

by 
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, min 1 ,                                 5.3  

Such arrangement is reasonable in the practical situation as under a fixed maintenance 

level, the effect of the maintenance action increases with the time span since last 

maintenance; however, due to the presence of physical and technical constraints, it 

should not exceed some finite upper limit. To further simplify the problem, we assume 

that 1  for any PM level 0, or min , ,…, , 

implying that for the safety issue, the maintenance of system should not be lower than 

certain frequency. As a result, the amount of age reduction by the subsequent PMs will 

not exceed the control limit.  

The modified virtual age model is summarized in the following Proposition.  

Proposition 5.1: For a repairable system subject to periodic preventive maintenance 

(PM), the modified virtual age | ,  at calendar age  under both the PM level  

and the calendar time of the first PM action  is given by 

| ,
,    0                                                                                             
min 1 ,                                                                          

       1 2 ,    , 2,3, … , 1           5.4
 

Proof: When =  , no PM is carried out; therefore we have | , .  

When  ( 2), the virtual age | ,  is derived as 

| , , ,

min 1 ,

min 1 , 1

min 1 , 1 2 , 

, 2,3, … , 1                                                    5.5  
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The result is then straightforward.  

Figure 5.1 shows a comparison of the system effective age with ( 0) and without 

( 0) preventive maintenance using the modified virtual age method. The new 

method proposed here has two features: two decision variables (both  and  rather 

than merely ), and a control limit  to the first PM action. 

 
Figure 5.1 System effective age with and without PM 

The buyer’s life-cycle maintenance cost, which includes both the periodic PM cost 

throughout the life cycle and minimal repair cost during the post-warranty period, is 

therefore presented as follows. 

Denote .  as the system failure rate function without PM,  as the one-time 

PM cost under level  , and  as the minimal repair cost. Define ,  as the total 

maintenance cost under  and . We have 

, | ,                               5.6  

 

min 1‐φ m ,K  m  

               2 3 … 0 t

0 

1‐φ m  

0 

| ,  
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Note that the three maintenance options studied in Kim et al. (2004) (Options A, B, C) 

correspond to the special cases of our model when  (or 0),  and 

 respectively. 

5.3 Life-Cycle Cost Model Incorporating Ageing Losses 

In Section 5.2, we have investigated the cost aspect of maintenance based on the 

modified virtual age method. In this section, we further investigate the value aspect of 

maintenance by introducing the ageing losses for a revenue-generating system. We 

first establish the total life-cycle cost model incorporating ageing losses. Then the 

method for quantifying the ageing losses is explained in detail. 

5.3.1 Total Life-Cycle Cost Model 

We first assume that the productivity of a revenue-generating system always depends 

on its effective system age instead of calendar age. Denote  as the revenue 

generated per unit time when the system works under effective age . We further 

assume that  is a non-increasing function of , implying that the system becomes 

less productive (or equally productive at best) when it grows old. As a result, the 

system achieves its maximum productivity when it is new, i.e. 0 . We 

ignore the learning process by both the workers and machines which could result in 

0 .  

 is defined as the ageing losses per unit time (or loss rate) and is simply the 

difference between 0  and  . It is given by 

0 , 0                                                         5.7  
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Note that  is non-decreasing in   0 . In order to show the dependence of  

with respect to the system calendar age , the PM level  and the time to the first PM 

action , we rewrite (5.7) as follow: 

| , 0 | , ,     0 , , 0,1,2, … ,         5.8  

Combining (5.6) and (5.8), the total life-cycle cost model for the buyer is presented as 

follow.  

Proposition 5.2: For a repairable system subject to periodic preventive maintenance 

(PM) and ageing losses, the total life-cycle cost for the buyer under both the PM level 

 and the calendar time of the first PM action  is given by 

, | , | ,         5.9  

5.3.2 Modeling of Ageing Losses 

A piece-wise function is proposed here in (5.10) to describe the relationship between 

ageing loss rate  and the system effective age  (or | , ).  

| ,

0, | ,
| ,

, | ,

, | ,

      5.10  

System productivity is assumed to experience three phases before approaching to the 

end of life cycle. During Phase I, the system effective age  is less than  and ageing 

loss rate remains at its minimum value (assumed to be zero here). When , 

the system enters into Phase II with its ageing loss rate increasing linearly with respect 

to . After , the loss rate reaches its maximum value at  ( 0) and 

remains unchanged during the rest of the time.  
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Figure 5.2 presents a view of ageing loss rate functions under the system calendar age 

. As described below, the ageing structure in (5.10) is flexible enough to model 

several special cases that can arise from different practical situations. 

Without preventive maintenance (i.e. 0), system effective age | ,  equals 

to its calendar age , and | , . Equation (5.10) is therefore described 

by Curve O. Curves A, B, C provide the special cases of (5.10) when 0,  

and , 0  respecitvely. Curve A describes a system with initially fast 

decreasing productivity, while Curve B suits for the situation when the ageing loss rate 

hasn’t reach its maximum before the end of life cycle; Curve C shows the features of 

both. 

However, when 0, | , . The ageing loss rate functions are distorted 

and transformed to ′, ′, ′, ′ under calendar age. The areas between those function-

pairs ( ′, ′, ′, ′ ) are simply the ageing losses that have been 

successfully reduced by preventive maintenance. 

 

 | ,

   0 t 

Phase I                                 Phase II                                   
 

Figure 5.2 Ageing loss rate as functions of system calendar age with and without PM 
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5.3.3 Discussion on Optimal PM Strategies 

The optimal solutions  and  for (5.9) can be obtained numerically by searching 

over the domains of  ( 0,1,2, … , ) and   ( 0, ) respectively such that 

,  is minimized. It is described as 

, arg min , , ,…, , , ,                                5.11  

Although the analytical forms of the optimal solutions are not available in general, 

some simple observations of the cost structure can help reduce the complexity of the 

optimization problem in (5.11). We first note that the cost function ,  is not 

continuous in  (as  is not continous in ). In the following, define ,

 and , | , | , . In other 

words, , , , . We summarize some properties of the 

optimal solutions as below.  

Proposition 5.3: If ′ . 0 and  is non-decreasing in  ( 0), then for any 

given PM level 0, we have 

i) ,  is increasing in  if / 1 . 

ii) For any given 0 , let arg min , , . If 

/ 1 , then  must be obtained at the values where 

/  is an integer.  

Proof:  

i) When / 1 , min 1 ,  in (5.4) reduces to 

. In other words, the PM action under PM level  reaches its maximum 

capacity. A further study of (5.4) reveals that | ,  is non-decreasing in  
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(strictly increasing for some intervals of ). This verifies the monotonicity of 

,  with respect to  in the interval / 1 , . 

Figure 5.3 illustrates the non-decreasing property of | ,  with respect to 

 when / 1 . 

ii) Note that for any given , ,  remains unchanged when 

, 1  for 1,2, … , / . Combined with the conclusion in 

i), ,  is strictly increasing in  during the intervals ,

1  for any integer  that satisfies / 1 .  

Therefore, ,  should be minimized at one of the lower bounds of these 

intervals (i.e. ). In other words, /  must be an integer. 

 

 

Based on Proposition 5.3ii), the optimization problem in (5.11) can be considerably 

simplified. To illustrate this, let the integer / . We can 

rewrite (5.11) as below: 

 
| ,  

 

| ,

| ,  

Figure 5.3 Illustration of Proposition 5.3i): u(t|m,t0″)≥u(t|m,t0′) when t0″>t0′>K(m)/[1-φ(m)]  

 

1   0 t
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, argmin
, , ,…, , , , , ,…,

,   5.12  

Here we enforce |  in order to incorporate the case of no preventive 

maintenance. In addition, we let  replace  in order to show the dependence of 

the domain of  with respect to the PM level . 

5.4 Numerical Example 

In this section, numerical examples are given to show the applicability of the proposed 

model. It is demonstrated below that, by implementing the proposed framework (i.e. 

considering both maintenance cost and ageing cost), the cost efficiency of maintenance 

is improved by at least 4% (see Table 5.2). Parameter effect of the model is further 

analyzed through extensive sensitivity analysis.  

Assume that the failure time distribution of the system satisfies Weibull distribution 

with shape parameter  and scale parameter . The failure rate function is therefore 

given by . We assume that 2 and 0.5, which describes a 

mean system life time of 1.8 years. Let 1  for 0,1,2, … ,5 and 

let the corresponding PM cost 0 0 , 1 10 , 2 30 , 3 60 , 

4 100, 5 160, which is consistent with Kim et al. (2004). The control 

limit factor for the first PM is given by 1  for 1. A larger  

implies a higher capacity of system improvement right after the first PM. 

Let 8, 2, 0.33, 3 /2 and 3. Table 5.1 shows the total 

life-cycle cost and the corresponding PM strategies for the buyer given that 

20~400, 2,3 and 0, 100, 200.  

 



105 
 

Numerical Results:  

The optimal solutions are highlighted by shaded background. From Table 5.1, the 

following results are observed: 

(1) A deeper degree of PM action is required when minimal repair cost  

increases. Typically, the PM levels can vary from 0  ( 0 1 ) to 

4 ( 4 0.09) under different value combinations of ,  and .  

(2) A larger  requires a deeper level of preventive maintenance, given that a fixed 

 is applied. It is not surprising since the system deteriorates at a faster speed 

when  is larger, with both the post-warranty repair cost and ageing losses 

increasing more rapidly.  

(3) The increase of  has similar effect on the optimal PM level as . However, 

the effects of  become almost invisible when  is large (  is large 

consequently). For such cases, the system effective age does not exceed  due 

to heavy preventive maintenance and therefore incurs no ageing losses.  

(4) The changes on  show a clear pattern following the changes on . In other 

words,  is a relatively more dominating factor in determining the optimal 

PM strategies. To be specific, when  remains unchanged, the value of  

either remains unchanged or decreases (given that any of , ,  increases). 

The value of  increases only when  jumps from lower level to higher level, 

implying that an early PM action is not that necessary given that a deeper PM 

action is conducted.  

(5) For those cases when / 1 0.99, by applying the results 

in Proposition 5.3, we obtain 1.07 where /  is an integer. 



 
 

Table 5.1 Optimal PM strategies when β = 2,3, Smax = 0,100,200, and cr = 20~400  

 2 3 
 0 1 2 3 4 5  0 1 2 3 4 5  

 0 0 
20 300.0 309.2 328.1 357.5 397.1 457.0 - 1260.0 914.0 865.7 1258.9 1328.1 1386.4 1.07 
50 750.0 757.9 775.3 803.7 842.8 902.4 - 3150.0 1961.4 1219.1 1434.3 2087.3 3044.7 1.07 
80 1200.0 1108.5 1152.3 1249.9 1288.5 1347.8 1.07 5040.0 3006.2 1564.3 1539.0 2179.4 3233.4 1.07 
110 1650.0 1445.5 1348.2 1653.7 1734.2 1793.3 1.07 6930.0 4051.0 1903.3 1643.6 2223.3 3327.7 1.07 
140 2100.0 1782.4 1544.1 1761.1 2179.9 2238.7 1.07 8820.0 5095.8 2242.4 1748.2 2256.9 3384.0 1.07 
170 2550.0 2118.3 1739.9 1868.4 2447.7 2684.2 1.07 10710.0 6140.6 2581.5 1852.8 2290.6 3423.4 1.07 
200 3000.0 2453.3 1935.8 1975.8 2509.0 3129.6 1.07 12600.0 7185.5 2920.6 1947.8 2324.2 3452.7 0.93 
230 3450.0 2788.2 2127.9 2083.2 2570.4 3575.0 1.07 14490.0 8230.3 3259.7 2042.0 2357.8 3466.6 0.93 
260 3900.0 3123.2 2319.3 2190.6 2631.7 3702.1 1.07 16380.0 9275.1 3598.8 2136.1 2391.5 3480.5 0.93 
290 4350.0 3458.2 2510.8 2297.9 2693.1 3741.5 1.07 18270.0 10320.0 3937.9 2230.3 2425.1 3494.4 0.93 
320 4800.0 3793.2 2702.3 2401.9 2754.4 3781.0 0.99 20160.0 11365.0 4277.0 2324.5 2458.7 3508.3 0.93 
350 5250.0 4128.2 2893.7 2503.3 2815.8 3820.5 0.99 22050.0 12410.0 4616.1 2418.6 2492.4 3522.3 0.93 
380 5700.0 4463.2 3085.2 2604.7 2877.1 3859.9 0.99 23940.0 13454.0 4955.2 2512.8 2526.0 3536.2 0.93 
400 6000.0 4686.5 3212.8 2672.4 2918.0 3886.2 0.99 25200.0 14151.0 5181.3 2575.6 2548.4 3545.4 1.07 

 100 100 
20 833.3 842.5 861.5 890.8 930.5 990.3 - 1793.3 1360.0 1062.0 1350.1 1861.4 1919.7 1.07 
50 1283.3 1217.9 1152.8 1337.0 1376.1 1435.7 1.07 3683.3 2404.9 1412.3 1454.8 2103.3 3128.7 0.93 
80 1733.3 1554.9 1348.7 1566.7 1821.8 1881.2 1.07 5573.3 3449.7 1751.4 1559.4 2179.6 3252.2 1.07 
110 2183.3 1891.8 1544.6 1674.1 2267.5 2326.6 1.07 7463.3 4494.5 2090.5 1664.0 2223.3 3330.7 1.07 
140 2633.3 2226.8 1740.4 1781.5 2386.3 2772.1 1.07 9353.3 5539.3 2429.6 1768.6 2256.9 3384.1 1.07 
170 3083.3 2561.8 1932.2 1888.8 2447.7 3217.5 1.07 11243.0 6584.1 2768.7 1868.5 2290.6 3423.5 0.93 
200 3533.3 2896.7 2123.6 1996.2 2509.0 3623.1 1.07 13133.0 7628.9 3107.8 1962.7 2324.2 3452.7 0.93 
230 3983.3 3231.7 2315.1 2103.6 2570.4 3662.6 1.07 15023.0 8673.8 3446.9 2056.8 2357.8 3466.6 0.93 
260 4433.3 3566.7 2506.6 2211.0 2631.7 3702.1 1.07 16913.0 9718.6 3786.0 2151.0 2391.5 3480.5 0.93 
290 4883.3 3901.7 2698.0 2315.4 2693.1 3741.5 0.99 18803.0 10763.0 4125.0 2245.2 2425.1 3494.4 0.93 
320 5333.3 4236.7 2889.5 2416.9 2754.4 3781.0 0.99 20693.0 11808.0 4464.1 2339.3 2458.7 3508.3 0.93 
350 5783.3 4571.7 3080.9 2518.3 2815.8 3820.5 0.99 22583.0 12853.0 4803.2 2433.5 2492.4 3522.3 0.93 
380 6233.3 4906.7 3272.4 2619.7 2877.1 3859.9 0.99 24473.0 13898.0 5142.3 2527.7 2526.0 3536.2 1.07 
400 6533.3 5130.0 3400.0 2687.3 2918.0 3886.2 0.99 25733.0 14594.0 5368.4 2590.5 2548.4 3545.4 1.07 



 
 

 200 200 
20 1366.7 1327.4 1153.3 1372.4 1463.8 1523.6 1.07 2326.7 1803.5 1258.4 1370.5 2005.0 2453.1 1.07 
50 1816.7 1664.3 1349.2 1479.8 1909.5 1969.1 1.07 4216.7 2848.3 1599.4 1475.2 2112.6 3156.6 1.07 
80 2266.7 2000.3 1544.9 1587.1 2236.0 2414.5 0.93 6106.7 3893.2 1938.5 1579.8 2179.9 3255.2 1.07 
110 2716.7 2335.3 1736.4 1694.5 2324.3 2859.9 1.07 7996.7 4938.0 2277.6 1684.4 2223.3 3333.7 1.07 
140 3166.7 2670.3 1927.9 1801.9 2386.3 3305.4 1.07 9886.7 5982.8 2616.7 1789.0 2256.9 3384.1 1.07 
170 3616.7 3005.2 2119.4 1909.3 2447.7 3583.6 1.07 11777.0 7027.6 2955.8 1883.4 2290.6 3423.6 0.93 
200 4066.7 3340.2 2310.8 2016.6 2509.0 3623.1 1.07 13667.0 8072.4 3294.9 1977.6 2324.2 3452.7 0.93 
230 4516.7 3675.2 2502.3 2124.0 2570.4 3662.6 1.07 15557.0 9117.3 3634.0 2071.7 2357.8 3466.6 0.93 
260 4966.7 4010.2 2693.8 2229.0 2631.7 3702.1 0.99 17447.0 10162.0 3973.1 2165.9 2391.5 3480.5 0.93 
290 5416.7 4345.2 2885.2 2330.4 2693.1 3741.5 0.99 19337.0 11207.0 4312.2 2260.1 2425.1 3494.4 0.93 
320 5866.7 4680.2 3076.7 2431.9 2754.4 3781.0 0.99 21227.0 12252.0 4651.3 2354.2 2458.7 3508.3 0.93 
350 6316.7 5015.2 3268.2 2533.3 2815.8 3820.5 0.99 23117.0 13297.0 4990.4 2448.4 2492.4 3522.3 0.93 
380 6766.7 5350.2 3459.6 2634.7 2877.1 3859.9 0.99 25007.0 14341.0 5329.5 2542.6 2526.0 3536.2 1.07 
400 7066.7 5573.5 3587.3 2702.3 2918.0 3886.2 0.99 26267.0 15038.0 5555.5 2605.3 2548.4 3545.4 1.07 

Table 5.2 Cost comparison among different PM strategies given β = 3 and Smax = 100 

  Minimum Life-cycle Cost under ( , )
Strategy A (  or 0) Strategy B ( ) Strategy C ( ) 

Life-cycle Cost Cost Increase (%) Life-cycle Cost Cost Increase (%) Life-cycle Cost Cost Increase (%) 
20 1062.0 1793.3 68.9% 1133.3 6.7% 1320.6 24.4% 
50 1412.3 3683.3 160.8% 1472.5 4.3% 1861.0 31.8% 
80 1559.4 5573.3 257.4% 1706.2 9.4% 2203.7 41.3% 
110 1664.0 7463.3 348.5% 1800.4 8.2% 2546.3 53.0% 
140 1768.6 9353.3 428.9% 1894.6 7.1% 2889.0 63.3% 
170 1868.5 11243.0 501.7% 1988.8 6.4% 3231.7 73.0% 
200 1962.7 13133.0 569.1% 2083.0 6.1% 3493.4 78.0% 
230 2056.8 15023.0 630.4% 2177.2 5.9% 3728.5 81.3% 
260 2151.0 16913.0 686.3% 2271.5 5.6% 3963.6 84.3% 
290 2245.2 18803.0 737.5% 2365.7 5.4% 4198.7 87.0% 
320 2339.3 20693.0 784.6% 2459.9 5.2% 4433.8 89.5% 
350 2433.5 22583.0 828.0% 2554.1 5.0% 4668.9 91.9% 
380 2526.0 24473.0 868.8% 2648.3 4.8% 4904.0 94.1% 
400 2548.4 25733.0 909.8% 2711.1 6.4% 5060.8 98.6% 
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Table 5.2 gives a cost comparison of our proposed (optimal) strategy with other 

maintenance strategies (A, B, C) that have been widely adopted in the literature. Let 

3, 100 and  vary. Strategy A assumes no PM action during the life 

cycle; Strategy B considers periodic PMs throughout the life cycle; and Strategy C 

requires PMs only after the warranty is expired. We observe that, Strategy B is always 

better than Strategy A and C in total cost minimization. However, compared to the 

optimal strategy in our model, the cost of Strategy B still turns out to be 4.3%~9.4% 

higher, depending on the specific values of  ( 3). 

Sensitivity analysis: 

So far, we have investigated the effect of ,  and  on the optimal solutions. In 

the following part, sensitivity analysis is further conducted over a range of other 

parameters including , , , ,  and . By varying one or two parameters each 

time, it is assumed that the remaining parameters are set at their nominal values (refer 

to Table 5.3). 

Table 5.3 Nominal values of model parameters for sensitivity analysis 

,          .  

(0.5, 2) 8 2 0.33 50 100 3 1
2  

1
6  {0, 10, 30, 60, 100, 160} 

 

• When , , and  vary 

Here we investigate the effect of   6,8,10 ,   0.25,0.33,0.5  and    0,2,4  

on the optimal PM strategies separately. Let  vary from 20 to 400. The rest 

parameters are set at their nominal values. 
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Figure 5.4 Optimal PM strategies under different values of (a) L, (b) τ and (c) w 
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Results in Figure 5.4(a) show that given a fixed , the system with longer life cycles 

should require deeper levels (or at least the same levels) of preventive maintenance. 

However, the impact of  on  diminishes when  further increases. Typically, if 

220, PM action with level 3 should be implemented and the results are not 

affected by the changing values of .  

Results in Figure 5.4(b) show that the more frequently the system is maintained (i.e. a 

smaller ), the less effort is required for each PM, but the higher life-cycle cost is 

incurred to the buyer. In comparison, a large  always requires a deeper PM each time. 

Typically, when 0.5, the PMs reach level 4 given 340. Such strategy can 

fully utilize the capacity of each PM given the same PM cost for the same PM level. 

However, system safety (and consequently a large downtime cost) is often the issue 

that will require the frequency of PMs above certain level (see Chareonsuk et al., 

1997).  

Results in Figure 5.4(c) show that more maintenance efforts should be invested when 

the length of warranty coverage is shorter. On the other hand, the total life-cycle cost is 

higher to the buyer under shorter warranty coverage since the post-warranty cost is 

higher.  

It is also verified in Figure 5.4 that the changes on  is mainly dominated by the 

changes on  rather than directly follows the changes on , , and .   

• When  and  vary 

Two extreme cases are considered in order to investigate the effect of  and  on 

the optimal PM solutions: 1) 0, 0~ , and 2) , 0~ . It is 
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noticed that Case 1) and Case 2) correspond to Curves A and B in Figure 5.2 

respectively.  is set at its nominal value 50.  

The results are given in Figure 5.5. For Case 1), we notice that the optimal PM level 

first increases to level 2 when  increases, and then decreases to level 1 as  

approaches to .  The interpretation is that deeper PM actions are not effective in 

reducing life-cycle cost when  approaches to either 0 or . When  is small, 

ageing loss rate increases rapidly and it is hard to be slowed down by conducting 

deeper levels of PM actions. On the other hand, when  reaches above certain level 

( 6 for instance), ageing losses are no longer a main contribution of total cost and 

therefore deeper levels of PM actions become unnecessary. For Case 2), optimal PMs 

remains at level 1 when 7.6  and no PM is needed when ωB  reaches . 

Correspondingly,  increases sharply when  approaches to  and finally increases 

to  (i.e. 0). 

 
Figure 5.5 Optimal PM strategies following the changes on ωA and ωB 
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• When  varies 

Here we investigate the effect of control limit factor ( 1 ) on the 

optimal solutions. Let  vary from 2 to 40 and other parameters set at their nominal 

values. 

 
Figure 5.6 Optimal PM strategies following the changes on k 

Results in Figure 5.6 show that the total life-cycle cost decreases when  increases 

given 10 and remains at the same value given 10. When 4, a deeper 

level of PM is applied implying that a larger capacity of PMs is allowed under a higher 

control limit. However, the effect of  diminishes after it reaches above certain level 

(i.e. 10 here).   

5.5 Conclusion 

In this chapter, a general periodic preventive maintenance (PM) policy is studied for a 

single buyer under the consideration of warranty contracts and ageing losses. Ageing 

losses are defined as the total revenue losses due to the decreasing productivity during 

the system ageing process. Therefore, by slowing down the speed of system 

deterioration, the implementation of preventive maintenance here has two types of 

value: 1) the reduction of the life-time maintenance cost, and 2) the reduction of 

ageing losses. Total life-cycle cost model is developed for the buyer including both the 

maintenance cost and ageing losses. The proposed model here has two decision 

variables. The first one is the calendar time of the first PM action. Different from 
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previous studies, we assume that it is not pre-specified but has to be optimized. The 

following PM actions are then carried out periodically until the end of the system life 

cycle. The second decision variable is the degree of each PM action. We follow the 

treatment in Kim et al. (2004) by assuming that the PM levels are discrete in nature. In 

order to minimize the buyer’s life-cycle cost, we derive some analytical insights of the 

optimal solutions and then apply the results to simplify the model optimization. A 

numerical case is presented to demonstrate the applicability of the model, and 

sensitivity analyses are further conducted to investigate the effect of model parameters 

on the optimal PM strategies. 

  



114 
 

CHAPTER 6 MSS MAINTENANCE SERVICE DESIGN 

 

6.1 Introduction 

In Chapter 5, we focused on the life-cycle maintenance service design for a binary 

system whose ageing process is described by a continuous and deterministic function 

of time (e.g. failure rate function). However, this might not be realistic for some 

systems of which the ageing processes depend not only on the elapsed operational time, 

but also on the system status, such as vibration level, efficiency, number of random 

shocks on the system, etc., any of which causes performance degradation. In this 

chapter, we further investigate the life-cycle maintenance service design for multi-state 

systems (MSS) from the buyer’s perspective. Maintenance cost models with and 

without warranty incorporation are derived. The basic concepts of multi-stage 

degradation models can be found in Barlow and Wu (1978), El-Neweihi et al. (1978) 

and Ross (1979), which defined the system structure function and its properties. The 

corresponding performance analysis (e.g. reliability, availability, mean time-to-failure, 

redundancy etc.) were addressed by Xue and Yang (1995), Pham and Misra (1997), 

Wu (2005), Zuo and Tian (2006), Tian et al. (2008a, b) and Tai and Chan (2010).  

Optimization of maintenance policies for multi-state systems (MSS) is a natural 

extension of the maintenance studies for the binary systems which utilize many results 

from the reliability modelling of MSS. The majority of the current literatures assume 

that maintenance actions for MSS are planned based on an infinite operating horizon 

and after any replacement or restoration, the system is renewed and the same process is 

assumed to repeat indefinitely. Characteristics of a system, such as the current state, 
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the age and the elapsed operating time during each state, are often selected as the 

optimality criterions and used to minimize the long-run average maintenance cost rate 

function. Reviews of work in this area can be found in Kao (1973), Sim and Endrenyi 

(1993), Yeh (1996), Levitin and Lisnianski (2000), Grall et al. (2002a), Moustafa et al. 

(2004) and Kim and Makis (2009). 

In practice, however, the useful life cycle of most systems are finite in nature. For 

instance, in military applications, a missile launching system is only required to be 

functioning within the designated mission time. Different from an infinite-horizon 

maintenance problem, residual life cycle for such system, which is measured from the 

present time to the end of the mission, is typically finite and decreases over time. 

When the mission is close to end, replacement of a functioning system becomes less 

necessary and traditional maintenance strategies, such as those merely relying on the 

information of the current system state, could turn out to be very costly to the 

stakeholders. Considering the improper planning horizon, though bringing technical 

convenience, may not be realistic under these circumstances (Nakagawa and Mizutani, 

2009). On the other hand, compared to the vast amount of literature in infinite-horizon 

maintenance planning, existing works showed very limited options for maintaining 

MSS with finite life cycles. Su and Chang (2000) proposed a periodic maintenance 

policy for MSS and derived the optimal number of maintenance activities that 

minimized the total life-cycle cost. Zuo et al. (2000) investigated the optimal 

replacement policy for multi-state products under warranty such that the 

manufacturer’s warranty cost was minimized. Ivy and Pollock (2005) and Maillart and 

Zheltova (2007) analyzed maintenance and inspection policies for a discrete-time 

Markov system over a finite horizon given that perfect observations of systems states 

were not available. Ding et al. (2009) studied the optimal corrective maintenance 
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planning for the MSS subject to availability constraints. Among these studies, very few 

further considered maintenance optimization with multiple optimality criterions. 

In this chapter, we assume that the ageing process of the system is modelled as a 

continuous-time Markov process that is subject to both degradation and Poisson 

failures. We assume that the system can fail randomly from any of the operational 

states (Poisson failures) and can be rectified by minimal repair which returns the 

system to its previous working state. Any unexpected (Poisson) failure is assumed to 

result in an extra downtime cost that is borne by the customer. We propose two MSS 

maintenance policies for controlling the customer’s expected discounted maintenance 

cost (EDMC) over a finite system life cycle. The first policy conducts preventive 

system replacement, i.e. a system may be replaced while still operational. In contrast 

the second policy allows only corrective replacements, i.e. system replacements are 

only made when the system suffers a random failure. For both policies, the EDMC is 

derived as a function of two control parameters, namely, a threshold level on the 

current state of the system, and a threshold level on the residual life cycle (measured 

from present time to the end of life cycle). We further propose two different 

methodologies for the optimization of maintenance thresholds. The first method 

utilizes the LST and inverse LST techniques, while the second method directly 

approximates the EDMC and optimizes the maintenance thresholds on the time domain. 

The applications of both methods are illustrated using a numerical case, and the impact 

of warranty incorporation is also discussed. Through computational examples, we 

demonstrate that preventive replacement outperforms corrective replacement when the 

downtime cost per failure is relatively high compared to the repair cost. Unlike past 

works, this research incorporates many realistic factors, i.e. multiple system states, 

discounted economic values, finite planning horizon, warranty coverage, and easy-to-
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implement maintenance policies. As such, it should be of interest to both theoreticians 

and practitioners. 

The rest of this chapter is organized as follows. In Section 6.2, we present the system 

descriptions and propose the maintenance policies for the MSS. Section 6.3 derives the 

EDMC for the customer under both Policy A and B with and without warranty 

incorporation. Methodologies for analyzing the optimal maintenance policies are 

further proposed in Section 6.4. Section 6.5 demonstrates the applicability of the 

foregoing analysis with numerical examples. Conclusion is made in Section 6.6. 

6.2 Model Formulation 

6.2.1 System Description 

Consider a multi-state system (MSS) that initially works under a perfect condition. The 

system can have N stages of degradation before reaching a complete failure and let 

Ω 1,2,3, … ,  represent the set of all these stages. We define three disjoint sets of 

the states which fully characterize the MSS – the operational states 2 1,

Ω , the (Poisson) failure states 2 , Ω  and the complete failure state 2

1 . State 1 represents the perfect functioning state and the degree of deterioration 

increases with each subsequent operational state. In particular, once the system 

degrades to State 2 1 , it is considered as completely failed and can only be 

rectified by a replacement. Here the ith stage degradation is defined as the transition 

period from State 2 1  to 2 1  ( Ω ) and is characterized by a degradation 

rate  . In addition to the degradation process, the system is also subject to random 

(Poisson) failure process from any operational state 2 1 (i.e. 2 1 2 , Ω) 

and can be rectified by repair. The failure from operational state 2 1 ( Ω) to 

failure state 2  is characterized by a failure rate . 
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Let   Ω  represent the replacement cost for the system when the system is either 

operating in State 2 1 or failed from State 2 1, and let   Ω  represent the 

corresponding minimal repair cost during this stage. For each (unexpected) Poisson 

failure, we assume that there is an additional downtime cost  associated with  

which is borne by the customer. Also, let  and  represent the replacement and 

downtime cost for the system when it reaches a complete failure (i.e. State 2 1). 

A graphical description of the above system is given in Figure 6.1(a). In order to 

complete our model formulation, the following assumptions are made. 

1) The system is replaced with a new one once it degrades to the complete failure 

state (2N+1). 

2) The system is minimally repaired after Poisson failures. The repair returns the 

system to the operational state right before the failure. 

3) All the transition rates s and s ( Ω) are constant but state-dependent. In 

particular, we assume  to describe the ageing of the 

system.  

4) The average repair and replacement time is very small compared to mean time 

between failures and therefore is negligible. 

5) The system becomes more costly to repair and replace when it ages, i.e. 

 and . 

6) No downtime cost is incurred or associated with preventive replacement when 

the system is still functioning.  

7) The current state of the system is always known (observed) for certain by 

continuous monitoring.  
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6.2.2 System Replacement Policies 

We denote  as the finite planning horizon, or the system life cycle, and  as the 

continuous discounted factor over the cycle. It is important to notice that maintenance 

cost is not incurred at the stage of maintenance planning but rather spent in future and 

allocated over the system life cycle. Therefore, incorporating  in the cost forecasting 

will have practical meanings, in particular for those managerial circumstances such as 

budget allocation and balance-sheet reporting where the accuracy of cost estimation is 

crucial to the decision makers. As an endeavour to minimize the EDMC for the 

customer, we propose the following two maintenance policies (A and B), both of 

which rely on two threshold parameters , , where 1  and 0 .  

Policy A (Preventive Replacement): If the system operates in State 2 1  Ω  and 

the residual life cycle is  (0 ), it is then replaced by a new one if and only if 

1  and ; otherwise, no replacement is made.  

Policy B (Corrective Replacement): If the system fails from State 2 1  Ω  and 

the residual life cycle is  (0 ), it is then replaced by a new one if and only if 

1  and ; otherwise, it is minimally repaired.  

Both policies utilize the information of the current system state and the residual life 

cycle. The system is replaced only when its deterioration level is heavier than the 

threshold parameter  and the residual life cycle is longer than . Such policies can 

avoid expensive replacements when the system is still relatively healthy or when the 

system is close to retirement. Policy A requires preventive replacement for the system 

when it is still functioning. On the other hand, Policy B implements corrective 

replacement for the system only upon (Poisson) failures. 



120 
 

For comparison purpose, the base case of no corrective or preventive replacement is 

also defined (i.e. Policy O). Note that when , both Policy A and B reduce to 

Policy O. 

Policy O: No corrective or preventive replacement.  

 
Figure 6.1 Description for (a) an N-stage degradation MSS, (b) an isolated 3-state MSS 

 

6.3 Model Development  

In this section, we derive the close-to-explicit forms of the EDMC for the customer 

under Policies O, A and B. The discounted cost models are presented in recursive 

forms and solved iteratively.  

We present some preliminary results for a 1-stage degradation system before 

proceeding to the analysis of N-stage degradation system. 

6.3.1 Preliminary Results 

Consider a 3-state Markov system ( Ω) in Figure 6.1(b) that is isolated from Figure 

6.1(a). In contrast to Figure 6.1(a), we assume that both State 2  and 2 1  are 

absorbing states. The objective is to derive the system state transition (degradation) 

and time-to-failure distributions that are useful in subsequent analysis. 

 3 5  2N+1  

  

 
  2i+1 2i-1 

 

 

 

(b) 

 
 2 4 6 

Complete Failure

2N-1 

2N 2i 

 

1  

 

(a) 



121 
 

Let  represent the system state after an elapsed life time  . We assume that the 

system initially operates at State 2 1 , i.e. 0 2 1 . Define 

Pr  2 1| 0 2 1 , Pr  2 | 0 2 1  and 

Pr  2 1| 0 2 1 . Also, define /  and 

/  as the corresponding probability densities of system failure and 

degradation at time . The Chapman-Kolmogorov equations for such a simple Markov 

system can be written as 

                

                

                                                                6.1  

with the initial conditions satisfying 0 1 , 0 0  and 0 0  Ω . 

Solutions for (6.1) are explicitly given as , 1

/    and 1 / . Therefore, 

 and . 

6.3.2 The EDMC Model for Policy O 

Here we investigate the EDMC for the N-stage degradation system under Policy O.  

Let  represent the EDMC under Policy O when the system is in State 2

1  Ω  and the residual life cycle is . The objective is therefore to obtain . 

Note that without preventive or corrective replacement, the system is automatically 

replaced by a new unit when it degrades to State 2 1, until the end of its life cycle. 

Using the expressions for  and  and incorporating the discounted factor , 

the recursive form of the cost model is presented as follow: 



122 
 

                                                        

                    

   for  1,2, … , 1                        

                                                               

                                                                6.2

 

The analytical form of  can be obtained by solving (6.2) iteratively using LST 

technique. We present the results in the following proposition. Define 1, and 

                                                 for  1,2, … 1
       for                                        6.3  

Proposition 6.1: For an N-stage degradation system that initially works under a perfect 

condition, the close-to-explicit form of the EDMC for Policy O is given as 

∑ ∏ ∏
∏ ∏

            6.4  

Proof: Define  as the LST of   Ω . We then have 

    for  1,2, … , 1

                                         
   6.5  

After simplification,  

∑ ∏ ∏
∏ ∏

                                  6.6  
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From (6.6), Proposition 6.1 is easily obtained. 

Remarks: Equation (6.6) is considered as close-to-explicit because obtaining the 

inverse transform for  requires a numerical solver (e.g. Matlab) except for some 

simple cases. The application of such inversion techniques for the maintenance 

optimization will be illustrated shortly. Note that when  is obtained, we can 

further obtain  for a system starting at any degraded state (i.e. 1) using the 

following: 

1
  for   2,3, … ,       6.7  

6.3.3 The EDMC Model for Policy A 

In this section, we investigate the EDMC model for Policy A when the maintenance 

thresholds ,  are given. We assume that when the system is preventively replaced, 

no downtime cost is incurred. One of the justifications for this is that a warm-standby 

may be initiated before shutting down the old unit for replacement. Let | ,  

represent the EDMC under ,  when the system is working in State 2 1  Ω  

and the residual life cycle is . Again,  and . 

Two cases are further analyzed:  and .  

• When  

In this case, no preventive replacement is required under Policy A. | ,  is 

calculated in the same way as Policy O, i.e. 

| , ,      , Ω                                                         6.8  
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• When  

Note that for this case, the deterioration of the system is no heavier than 2 1  1

; otherwise, the system should have been preventively replaced under Policy A. 

Consequently, we have 

| , | ,                 

   | ,    for  1,2… , 1

| , | ,                

                              | ,                                            6.9

 

Since , the analytical form of | ,  is determined by (6.4) and (6.9). We 

present the results in the following Proposition.  

Proposition 6.2: For an N-stage degradation system that initially works under a perfect 

condition, the close-to-explicit form of the EDMC for Policy A under maintenance 

thresholds ,  is given as 

| ,

∑ ∏ ∏

∏

∏ ∏
  

                                    6.10  

Proof: Let   0  and define | , | ,  for any . 

Equation (6.9) can be rewritten as 
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| , | ,         

                 | ,    for  1,2… , 1       

| , | ,                    

                                | ,                                        6.11

 

Define | , | ,  as the LST of | , . We then have 

| , | ,    for  1,2, … , 1

| , | ,                         
  6.12  

After some simplification, | ,  is given as 

| ,

∑ ∏ ∏

∏

∏ ∏
             6.13  

Since | , | , , from (6.13), Proposition 6.2 is thus obtained. 

6.3.4 The EDMC Model for Policy B 

In this section, we investigate the EDMC model for the customer under Policy B, i.e. 

corrective replacements. Similarly, let | ,  represent the EDMC under ,  

when the system is working in State 2 1  Ω  and the residual life cycle is . 

Again, two cases are further considered:  and . 
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• When  

For this case, no corrective replacement is conducted. We simply have 

| , ,       , Ω                                                 6.14  

• When  

Under Policy B, the system may deteriorate to any of the operational states. Therefore 

we have 

| , | ,                 

| ,    for  1,2, . . ,      

| , | ,                  

                    | ,    for  1, 2, … , 1

| , | ,             

                              | ,                       6.15

 

To further derive the analytical form of | , , we follow similar procedures as 

Proposition 6.2.  

Proposition 6.3: For an N-stage degradation system that initially works under a perfect 

condition, the close-to-explicit form of the EDMC for Policy B under maintenance 

threshold ,  is given as 
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| ,
| ,
| ,                                                        6.16  

where ,  Ω  and 

| ,

                6.17  

| ,

                6.18  

Proof: Let   0  and define | , | ,  for any . 

The remaining procedure is identical to (6.11)–(6.13) in Proposition 6.2. 

6.3.5 The EDMC Model with Warranty Incorporation  

We further consider the case when the system is released under warranty. Note that the 

extent of warranty protection depends on the detailed terms specified in the warranty 

contracts and is usually determined by the price of the product or the price of the 

warranty if it can be detached. Here we make a realistic assumption that all the system 

breakdowns (Poisson failures) within the warranty are rectified by the manufacturer (or 

vendor, seller, third party, etc) for free, while the remaining costs are afforded by the 

customer. Note that the degradation failure is not a breakdown of the system but 
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indicates an inferior level of performance which is unacceptable to the customer. 

Therefore it is not covered under warranty. 

Let  represent the length of the post-warranty period and let 0  if 

. For Policy O, the EDMC needs to be derived separately for  and . 

In contrast, for Policy A and B, the EDMC as a function of  varies when  and 

. The procedure of the cost derivation for Policies O, A and B can be easily 

modified from the case without warranty incorporation. We therefore present the 

results below without proof. 

For Policy O: 

1) When , the EDMC is given by (6.2). 

2) When , the EDMC is modified from (6.2) by deducting the minimal repair 

cost and is given as below: 

                                

     for  1,2, … , 1            

              

                                                          6.19

 

For Policy A: 

1)  

• When , the EDMC is given by (6.8). 

• When , the EDMC is given by (6.9). 
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• When , the EDMC is modified from (6.9) and is given below: 

| , | ,                    

| ,    for  1,2… , 1

| , | ,                   

                             | ,                                         6.20

 

2) When  

• When , the EDMC is given by (6.8). 

• When , the EDMC is given by (6.20). 

For Policy B: 

1) When  

• When , the EDMC is given by (6.14). 

• When , the EDMC is given by (6.15). 

• When , the EDMC is modified from (6.15) and is given below: 
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| , | ,                    

| ,    for  1,2, . . ,        

| , | ,              

                  | ,    for  1, 2, … , 1

| , | ,        

                            | ,                        6.21

 

2) When  

• When , the EDMC is given by (6.14). 

• When , the EDMC is given by (6.21). 

Remarks: For Policy O, the inverse LST of the EDMC under warranty can be easily 

derived by following similar procedures as the derivations for Policies A and B 

without warranty incorporation. However, it becomes complicated when dealing with 

Polices A and B under warranty since it requires three-stage derivations for the cases 

,  and  respectively which, to our opinion, is workable but turns 

out to be very cumbersome. Therefore we do not consider inverse LST when warranty 

is incorporated; instead, we resort to numerical procedures for analyzing EDMC and 

optimizing the maintenance thresholds.   
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6.4 Optimization of the Maintenance Thresholds 

In the foregoing analysis, we have derived the close-to-explicit forms of the EDMC for 

Policy A and B when the maintenance thresholds ,  are given without warranty 

incorporation. Here we further consider the methodologies for optimizing ,  under 

each of the policies. 

6.4.1 Method 1: Optimizing (J,τ) Using Inverse LST 

A straightforward way for optimize ,  is to obtain the time-domain functions of the 

EDMC using the inverse LST technique and repeat the same process over the domain 

of  and . Note that the frequency-domain functions in the brackets of (6.4), (6.10) 

and (6.16) have a simple form that both the numerator and the denominator are rational 

polynomial functions of  and the degree of the numerator (in terms of ) is smaller 

than that of the denominator. For such functions, the fundamental theory for 

conducting the inversion is to apply the Heaviside’s expansion theorem. Details of the 

theorem can be found in any textbook of complex analysis. Note that manually 

implementing the expansion technique is often cumbersome. Alternatively, scientific 

computing software, such as Matlab, has the embedded function for implementing 

such technique and is very easy to use. On the other hand, as we will see in the 

following numerical session, the number of inversions for each policy is entirely 

determined by the domain of  (i.e. 1,2, … , 1) ( , Ω are considered 

as symbolic values during the inversion). In other words, both Policy A and B requires 

merely 1  times of inversion. By further optimizing these 1  time-domain 

functions for each of the policy, optimal maintenance thresholds ,  can be easily 

obtained. 
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Note that nowadays almost all types of the numerical solvers are able to conduct 

calculations for any pre-specified number of significant digits required. Consequently, 

the advantage of the above method is that it provides the de facto “analytical” form of 

the EDMC in a very efficient way, which subsequently guarantees the accuracy of the 

optimization process. On the other hand, however, the issue of numerical stability 

associated with existing (Laplace) inversion techniques (Kwok and Barthez, 1989) 

may surface when the probability of the root-overlapping in the frequency-domain 

function becomes significantly high, which for our case may only be observed in the 

MSS with large number of states (reflected by the degree of  in the denominator). 

Theoretically, such issue can still be addressed by increasing the computational efforts. 

But clearly this will compromise the efficiency of the numerical inversion. In addition, 

for systems that are released under initial warranty coverage, formulating the EDMC in 

the form of inverse LST turns out to be cumbersome (although still workable). 

Therefore, in the following we consider an alternative method that can approximate the 

EDMC and optimize ,  directly on the time domain. 

6.4.2 Method 2: Optimizing (J,τ) Using Discretization in the Time Domain 

The following methodology applies to the general case when 0 . We first 

discretize the integral operator in (6.2), (6.9), (6.15) and (6.19)–(6.21) before 

approximating the EDMC in the time domain.  

Set   0,1,2, … , ,  and  where  is the 

minimal step of the approximation. Further set   0,1, … , /  as the 

threshold of the residual life cycle. Note that  may not necessarily equal to . It 

could be multiples of  and depend on the accuracy requirements of the optimization. 
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Let , | ,  and | ,  represent the numerical approximations of 

, | ,  and | ,  respectively. 

For Policy O: 

For 0,1,2,… , , we have 

 

                  for  1,2, … , 1

                          6.22

 

To further reduce the computational complexity, Equation (6.22) is rewritten in such a 

linear form that the EDMC with residual time  only relies on the EDMC at 

: 

1  for  1,2,… , 1

1                         6.23
 

For 1, 2, … , , similarly we have 

1                       
for  1,2, … , 1
1    6.24

 

For Policy A: 

• When  

For 0,1,2,… , /  and any Ω, we have  
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| ,                                                                        6.25  

For / 1, / 2,… , , we have 

| , | , 1 | ,                      
for  1,2, … , 1

| , | , 1 | ,  
                                                                                                                                                6.26

 

For 1, 2, … , , we have 

| , | , 1 | ,               
for  1,2, … , 1

| ,
| , 1 | ,

                6.27
 

• When  

For 0,1,2,… , /  and any Ω, we have  

| ,                                                                        6.28  

For / 1, / 2,… , , the cost approximation follows (6.27). 

For Policy B: 

• When  

For 0,1,2,… , /  and any Ω 

| ,                                                                        6.29  

For / 1, / 2,… , , we have 
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| , | , 1 | ,                   
for  1,2, … ,                          

| , | , 1 | ,       
for  1, 2, … , 1

| , | , | ,      
                                                                                                                                                6.30

 

For 1, 2, … , , we have 

| , | , 1 | ,               
for  1,2, … ,                         

| , | , 1 | ,       
for  1, 2, … , 1

| , | , | ,      
                                                                                                                                                6.31

 

• When  

For 0,1,2,… , /  and any Ω, we have  

| ,                                                                       6.32  

For / 1, / 2,… , , the cost approximation follows (6.31). 

An algorithm for optimizing ,  

Step 1: Select  and let . Set 0 0 for any Ω. 

Step 2: Calculate  for 1,2, … ,  and Ω following (6.23) and (6.24). 

Select . For each   0,1, … , /    and 1,2,… , 1 

Step 3: Set | , | ,  for 0,1,… , /  and Ω. 
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Step 4: If , for any Ω , calculate | ,  and | ,  for 

              / 1, / 2, … ,  following (6.26) and (6.30) respectively, and for   

 1, 2, … ,  following (6.27) and (6.31) respectively. 

Step 5: If , calculate | ,  and | ,  for / 1, /

             2, … ,  and Ω following (6.27) and (6.31) respectively. 

Step 6: Repeat Steps 3–5. 

Step 7: Select the optimal ,  that minimize min | , , | , . 

Remarks: (1) The main advantage of the above method is that it is stable and can deal 

with a wide range of system configurations, which can be subsequently used for the 

sensitive analysis of the maintenance optimization. In addition, it can be directly 

applied (without any change) for maintaining a MSS that is not perfect functioning 

initially since both | ,  and | ,  ( 1) are automatically calculated in 

the algorithm. Furthermore, the impact of warranty incorporation can be easily 

analyzed using the above algorithm. (2) The main drawback of the method is that the 

optimization process is relatively time-consuming and less accurate. Reducing , 

though enhancing the accuracy of the optimization, will further increase the 

computational efforts significantly. Therefore,  needs to be properly selected to 

balance the accuracy and efficiency of the algorithm. (3) The EDMC is approximated 

at the lower limit of the integration and therefore is always smaller than the exact result. 
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6.5 Numerical Example 

In this section we illustrate the optimization process with an example using both 

methods. In order to compare these two methods, we first consider the case when 

0. The case of warranty incorporation ( 0) is presented subsequently.  

Consider the following parameters for a MSS with 4-stage degradation ( 4). Let 

5 year and 0.05/year. The transition rates for degradation are 0.9/year, 

0.8/year , 0.9/year  and 1.1/year . The Poisson failure rates are 

0.4/year , 0.6/year , 1.0/year  and 1.2/year . The replacement 

costs are 200 , 240 , 360 , 520  and 720 . To further 

investigate the impact of different cost structures on the optimal policies, we consider 

the following 3 scenarios. 

Scenario 1 / 4  1,2,3,4  and 20  1,2,3,4,5 , i.e. low repair 

and downtime cost.  

Scenario 2 / 4  1,2,3,4  and 80  1,2,3,4,5 , i.e. low repair 

cost and high downtime cost. 

Scenario 3 /   2  1,2,3,4  and 80  1,2,3,4,5 , i.e. high repair 

and downtime cost. 

Results: 

• When  

First of all, the de facto “analytical” forms of the EDMC as functions of ,  are 

derived and listed in the Appendix D using inverse LST techniques (Method 1). Note 

that we only show the results for Scenario 1 because it is sufficient for the 
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demonstration purpose. Here   Ω  are treated as symbolic values during the 

inversion for Policy A and B and the number of inversions under each of the policies is 

simply 3 ( 1 ). For Method 2, we first select a proper minimal interval  to 

guarantee the accuracy of the approximation. Table 6.1 illustrates that 0.001 is 

potentially a good choice since the error between  (using Method 2) and 

 (using Method 1) is less than 1%. From the efficiency point of view, further 

reducing , say, from 0.001  to 0.0001, barely improves the accuracy of the 

approximation; for our case, it will increase the system run time from 10 minutes to 

hours. Therefore, 0.001 is considered cost-effective here and is applied thereafter.  

Table 6.1 Selecting a proper minimal interval h 

Scenario   
0.1 0.01 0.001 
err% err%  err% 

1 4 20 799.5 429.6 46.3% 747.7 6.5% 794.1 0.7% 
2 4 80 1023.2 566.3 44.7% 959.5 6.2% 1016.7 0.6% 
3 2 80 1279.6 720.6 43.7% 1202.0 6.1% 1271.7 0.6% 

 

Without warranty incorporation, optimal maintenance thresholds ,  using both 

methods are presented in Figures 6.2–6.4 under different values of the cost parameters. 

It is not surprising that the results given by Method 2 when 0.001 almost overlap 

with those using Method 1, which always appear to be slightly higher. Based on the 

results using the inverse LST (Method 1), the following observations are made. 

For Scenario 1, Policy B is a better choice for the customer and the minimum EDMC 

over the 5 years is 655.9 under 2 and 0.9 year. In other words, the system is 

always correctively replaced when it fails during the 3rd stage degradation and the 

residual life cycle is longer than 0.9 year. For Scenario 2, Policy A (or preventive 

replacement) should be enforced and the minimum EDMC over the 5 years is 804.8 

under 2 and 1.2 year. The optimal choice for Scenario 3 is Policy B and the 
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minimum EDMC over the interval is 909.1 under 1 and 0.6 year. From the 

above results, we conclude that Policy A outperforms Policy B typically when the 

downtime cost is considerably high compared to the minimal repair cost. In addition, 

the optimal  under Policy A is larger than the value under Policy B. The 

interpretation is that for Policy A, more stringent requirements on  are necessary as a 

balance for more aggressive replacement strategies – preventive replacement, when 

compared with the corrective replacement strategies under Policy B. Furthermore, the 

results in Scenario 3 also indicate that when both repair and downtime cost are high, 

the system should be correctively replaced upon failure even when it is working under 

a relatively good condition (e.g. the 2nd degradation stage for Scenario 3). Finally, we 

use Method 2 for the sensitivity analysis of another cost parameter – the discounted 

factor . Results do not show a substantial impact on ,  (we therefore do not list 

the results here). Alternatively, it could be important in more practical situations, say, 

when the cost estimation is also crucial to the decision makers (Note that for the 

current case, the minimum cost is 10–20% higher if 0).  

 

Figure 6.2 The EDMC as a function of (J,τ) for Scenario 1 with w=0 
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Figure 6.3 The EDMC as a function of (J,τ) for Scenario 2 with w=0 

 

Figure 6.4 The EDMC as a function of (J,τ) for Scenario 3 with w=0 

• When   

Here we further investigate the impact of warranty incorporation on the optimal values 

of maintenance thresholds. The comparison is made between 0 and 2.5, 5 by 

considering Scenarios 1–3 for both Policies A and B. The optimal solutions are 

highlighted with shaded background. 
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Table 6.2 Optimal maintenance thresholds (J*,τ* ) with warranty incorporation 

Scenario 
0 2.5 5 

, ,  , , , , , , , ,  , ,

1 (2,1.4,658.7) (2,0.9,652.4) (2,1.4,596.7) (2,0.9,599.1) (3,1.2,494.0) (2,1.8,517.6) 

2 (2,1.2,801.5) (2,0.7,827.9) (2,1.2,739.5) (2,0.7,774.6) (2,1.6,658.9) (2,1.4,701.4) 

3 (2,1.0,936.4) (1,0.6,904.8) (2,1.0,812.4) (2,0.4,833.1) (2,1.6,658.9) (2,1.4,701.4) 

 

From Table 6.2, we can see that when warranty is incorporated, Policy A becomes a 

better option for the customer than Policy B. It is not surprising because corrective 

replacement policy (i.e. Policy B) fails to take advantage of the warranty coverage for 

which the failed system could have already been repaired by the manufacturer for free. 

For such case, it is reasonable for the customer to negotiate better warranty terms 

under which, say, the manufacturer shares part of the replacement cost upon (Poisson) 

failures within warranty. 

On the other hand, for both Policies A and B, when  increases,  either remains 

unchanged or increases. In particular, when  remains unchanged,  increases as  

increases. This indicates that the system would be less likely to be replaced before 

degradation failures;  may decrease only when  increases. 
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Figure 6.5 The EDMC as a function of (J,τ) for Scenario 1 when w=0,2.5,5 

From Table 6.2, we can also estimate the value of warranty perceived by the customer. 

This is particularly useful when the warranty is sold independently with the product 

(such as extended warranties). Take Scenario 1 for example. The difference of 

minimum life-cycle maintenance cost between 2.5  and 0  is 652.4

596.7 55.7. This implies that the price of 2.5 years warranty the customer is willing 

to pay should not be higher than 55.7. Again, if the product is sold with 2.5 years 

embedded warranty (non-detachable), and the customer has the option to purchase 

another 2.5 years extended warranty, then the price of 2.5 years extended warranty 

should not be higher than 596.7 494.0 102.7. A graphic view of the EDMC as a 

function of ,  for Scenario 1 is given in Figure 6.5. 
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6.6 Conclusion 

In this chapter, we considered a finite life-cycle MSS that is subject to both 

degradation and Poisson failures. We study two classes of maintenance policies, that of 

preventive replacements and corrective replacements. For both policies, the EDMC is 

derived as a function of two control parameters – a threshold level on the current state 

of the system, and a threshold level on the residual life cycle both with and without 

warranty incorporation. In order to obtain the optimal maintenance thresholds to 

minimize the EDMC, two different methodologies are proposed which utilize (inverse) 

LST techniques and time-domain numerical approximation respectively. The 

applications of both methods are illustrated using a numerical case. Through 

computational examples, we demonstrate that preventive replacements outperform 

corrective replacements typically when the downtime cost of each failure is relatively 

high compared to the repair cost. The two proposed replacement policies can 

effectively detect necessary replacements for the condition when the system has 

already experienced heavy deterioration and the remaining service time is still long, 

but can also avoid the excessive replacements for the condition when the system has 

only experienced minor deterioration. 
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CHAPTER 7 WARRANTY REVENUE ANALYSIS 

INTEGRATING USER'S MAINTENANCE DECISIONS 

 

In the warranty and maintenance literature, post-sale decisions for the buyer and the 

seller are usually considered separately. We followed such logic in the previous 

discussions: in Chapters 3–4, we presented warranty cost modeling and service design 

from the seller’s perspective, while in Chapters 5–6, we focused on the life-cycle 

maintenance service design from the buyer’s perspective. So far we have yet discussed 

the feasibility of unifying these two perspectives of decision processes for which 

knowing the decision of one perspective could help enhance that of the other. 

In what follows, we conduct a novel study on the post-sale revenue analysis by jointly 

considering the seller’s product marketing design and the buyer’s PM decisions. 

7.1 Introduction 

The success of launching a new product in the current marketplace requires attractive 

and efficient product marketing strategies. Recent development in product warranty 

management has provided managers with very useful instruments in achieving this 

goal. Better warranty terms are an indicator of higher product quality and manufacturer 

confidence, and this can have a positive influence on purchasing decisions of 

consumers. However, offering a competitive warranty such as (renewing) free-

replacement warranty (FRW) can be very expensive and risky for the manufacturer 

and is thus not always an economically attractive option. A middle-ground approach is 

the cost-sharing warranty, which charges the consumer a pre-specified portion (either 

fixed or pro-rata) of the cost for each replacement (repair) during warranty. In 
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application, cost-sharing warranty has become a popular warranty design for both 

high-priced products such as plant facilities and large-scale machines (Huang et al., 

2008), and relatively low-priced products (but with high sales volume) such as tires 

and batteries (Blischke and Murthy, 1992). It includes the free-replacement warranty 

(FRW) as a special case and therefore introduces flexibility in promoting different 

types of products. 

Optimizing the seller’s marketing strategy by incorporating warranty design is an area 

of considerable managerial interest. The majority of the literature has focused on the 

joint determination of selling price and warranty length that maximizes the seller’s 

profit (rate). Glickman and Berger (1976) proposed a demand model to optimally 

determine the price and warranty length that maximizes a manufacturer’s profit. 

Applications of this demand function can be found in Mitra and Jayprakash (1990, 

1997), Lin and Shue (2005), and Wu et al. (2006). Recent studies of this area often 

considered many other factors. For example, Huang et al. (2007) incorporated the 

product reliability into the design phase of the product marketing strategy, Matis et al. 

(2008) and Huang and Fang (2008) considered variants of standard warranties, Wu et 

al. (2009) dealt with the production and inventory problem for a static demand market, 

and Lin et al. (2009) and Zhou et al. (2009) incorporated the market dynamics in their 

decision models. 

Though the above studies have considered a wide range of factors that affect the 

marketing strategies, such as product demand, reliability, production rate, warranty 

policies, etc, the buyer’s maintenance decisions are seldom incorporated into the 

design phase of the marketing strategy. In practice, a preventive maintenance (PM) 

effort carried out by the buyer is a critical factor that affects product failures and 

consequently the seller’s servicing cost during the post-sale period. One of the main 
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incentives for the buyer to implement PMs is to reduce the potential downtime cost 

that results from unexpected failures as the product ages. Yeh et al. (2005, 2007), 

Chien (2008) and Yeo and Yuan (2009) have conducted extensive analysis on the 

optimal age-replacement (PM) strategy for the buyer under the warranty context. In 

their models, the downtime cost and replacement cost were integrated and minimized 

on a unit time basis. On the other hand, the necessity of incorporating the buyer’s PM 

actions into the product design was highlighted by Pascual and Ortega (2006) and 

Huang and Yen (2009). Both of them revealed the impact of the buyer’s PM actions on 

the warranty design (as part of the marketing strategies), and demonstrated that the 

buyer’s PM efforts during warranty enabled the seller to provide a longer warranty 

coverage for the product while maintain the total warranty cost unchanged. 

In this chapter, a model for the integrated analysis of the seller’s product marketing 

strategy and the buyer’s maintenance decisions is proposed under a cost-sharing 

warranty scheme. The motivation of this study is to highlight the buyer’s replacement 

decision as a factor in affecting the seller’s marketing decision, which is neglected by 

most of the previous studies. Part of the existing literature that jointly consider the 

seller’s and buyer’s decision making processes under warranty and maintenance 

context can be found in Singpurwalla and Wilson (1993), Murthy and Ashgarizadeh 

(1999), DeCroix (1999), Rinsaka and Sandoh (2006), Jack and Murthy (2007) and 

Jackson and Pascual (2008). Among these studies, the Stackelberg game is a popular 

approach used to describe the relationship between the seller (“leader”) and buyer 

(“follower”). Similarly, the proposed model in this chapter follows such logic. Given 

any product price and warranty length, the buyer chooses the optimal age-replacement 

policy that minimizes his long-run average maintenance cost rate. The seller then 

derives the buyer’s optimal replacement time as a parametric function of product price 
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and warranty length – both of which are his own design variables, and consequently 

use that to maximize his long-run average profit rate. The sales model in this chapter 

uses an extension of the demand function in Glickman and Berger (1976) and is 

subject to not only product price and warranty length, but also the buyer’s age-

replacement decision and warranty cost-sharing ratio. Illustrative examples are given 

to demonstrate the applicability of such game-theoretic model formulation. The 

feasibility of incorporating the warranty cost-sharing ratio as part of the marketing 

strategy is further discussed.  

The outline of the rest of this chapter is as follows. In Section 7.2, the details of model 

formulations are presented, including a proposed sales model, and also the buyer’s and 

seller’s decision problems. The main results of the buyer’s and seller’s optimal 

strategies are presented in Section 7.3, and a special case of the design problem is 

discussed in Section 7.4. In Section 7.5, two numerical examples are given to 

demonstrate the applicability of the models and to obtain some insights to the optimal 

product marketing designs. Conclusions are made in Section 7.6. 

7.2 Model Formulation 

7.2.1 Product Warranty and Age Replacement 

Suppose that a seller adopts a renewing cost-sharing warranty policy to promote a 

relatively high-priced non-repairable product. The product is offered at price  per 

item and the length of warranty coverage is . The warranty cost-sharing ratio  ( 1) 

is fixed and pre-specified in the warranty contract. In other words, for given product 

failure during warranty, the seller charges a discounted price  for the replacement 

and an identical new product (with a new warranty) is provided thereafter. Furthermore, 

pre-market testing indicates that the product has an increasing failure rate (IFR) and its 
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performance always deteriorates with time. Therefore, the buyer implements an age-

replacement strategy to reduce his long-run average maintenance cost per unit time. 

Let  be the buyer’s designed replacement time and  be the buyer’s downtime cost. 

We assume that the buyer always conduct the age-replacements for products that 

survive to time . If the failure happens before , a downtime cost  is incurred to the 

buyer and the replacement is carried out immediately. In either case, a purchasing cost 

is incurred to the buyer with the amount depending on the time the product fails: that is 

 for failures during warranty and  for failures out of warranty. Such a 

replacement strategy generates a renewal process and the time span between each two 

consecutive replacements forms a renewal cycle. 

7.2.2 Sales Model 

The seller models the sales volume of the new product using a demand function that 

appropriately accounts for the influence of product price, warranty policy and useful 

product life. One of the earliest models was proposed in Glickman and Berger (1976), 

which was given by (2.18) in Section 2.2.  

In order to model the product sales under the cost-sharing warranty scheme, we 

propose a modified demand model based on (2.18). 1  is defined as a discount 

factor of the demand due to the application of cost-sharing warranty instead of free-

replacement warranty (FRW). Specifically,  is a non-increasing function of , 

with 0 1 (a FRW case), and 1 0 (no warranty coverage case). In addition, 

we argue that the marketing power of a warranty should not persist without limit when 

the useful life of the product (from the buyer’s perspective) is limited, which is 

typically characterized in this chapter by the replacement time of the product. Such 

proposition mirrors the argument that any warranty coverage beyond the pre-specified 
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replacement age  brings no extra positive utility to the buyer, and thus cannot 

influence the buyer’s purchasing decision. Taking the above two considerations into 

account, we propose the following generalized demand model: 

, min  , , 1, 1, 0, 0, 1   7.1  

Glickman and Berger’s demand model in (2.18) therefore coincides with a special case 

of (7.1) in the case of a free-replacement warranty ( 0) and with the buyer’s 

maintenance action being ignored ( ∞). Note that 1 0 must hold when 1 

because the buyer bears the full replacement cost under this case and consequently  

is redundant in the demand model. 

7.2.3 The Buyer’s Cost Model and His Decision Problem 

Upon the purchase of the product, the buyer needs to decide a replacement age  that 

takes into account the product failure characteristic, price  and warranty length . 

The objective is to minimize his long-run average maintenance cost per unit time. 

Let  be the life time of the product and , , 1 ,  be 

its p.d.f, c.d.f, survivor function and failure rate function respectively. In particular, 

′ 0 always holds to describe the IFR property of the product. 

To derive the cost models for the buyer, two cases must be considered:  and 

, conditioned on the seller’s decisions of  and .  

 When  

Let random variable  be the cost to the buyer during a renewal cycle and  be the 

product failure time. If , the buyer’s cost during a cycle includes both warranty 

renewal cost  and downtime cost , i.e. . If , a full 



150 
 

purchasing cost  instead of  is incurred to the buyer and . After 

time  , as no downtime cost is incurred we have . The expected one-cycle cost 

to the buyer is then 

. Define the random variable  as the length 

of the replacement cycle. Note that min  , . Thus we have 

. 

According to renewal theory, the long-run average cost rate in this case is given as  

                            7.2  

 When  

In this case let random variable  be the cost to the buyer during a renewal cycle. If 

, the buyer’s cost during a cycle includes both warranty renewal cost  and 

downtime cost , i.e. . Otherwise, no downtime cost is incurred and 

thus we have . The expected one-cycle cost to the buyer is then 

. Let random variable  be 

the length of the cycle. Again, we have . 

The long-run average cost rate in this case is given as  

                               7.3  

The buyer’s decision process is determined by first locating the optimal replacement 

ages  when  and  for the case when  so that  and  are 

minimized respectively, and then looking into the global optimal  that minimizes 
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 and  . Denote min  , . The global optimal 

replacement age   is then determined by arg  where 

      
                                                                   7.4  

7.2.4 The Seller’s Profit Model and His Decision Problem 

The seller’s decision problem is to locate the optimal  and  to maximize his long-

run profit rate for all the products sold taking into account the buyer’s replacement age 

. Let  be the manufacturing cost of the product. Similar to the buyers, the 

derivation of the seller’s profit rate function per item also requires the analysis of two 

cases, i.e.  and . 

 When  

Let random variable  be the profit to the seller during a renewal cycle and  be the 

product failure time. If , the seller’s charges  to the buyer on the warranty 

renewal and pays  for the replacement, which results in a profit that equals to 

. If , a full purchasing cost  instead of  is charged to the 

buyer and . The expected cycle profit to the seller is thus 

. In addition, the 

expected length of the cycle is .  

The long-run average profit rate with respect to product price  and warranty length 

 given  is then 

, |                7.5  



152 
 

 When  

Let random variable  be the profit to the seller during a renewal cycle. If , the 

seller charges  to the buyer on the warranty renewal which results in a profit that 

equals to . If , we have . The expected profit 

 and the cycle length  are thus  and  

respectively.  

The long-run average profit rate in this case is  

, |                   7.6  

By incorporating the sales volume in (7.1), the total profit rate function for the seller is 

given as 

, |

,     

,          
         7.7  

7.3 Integrating the Buyer’s and Seller’s Optimal Strategies 

In this section we discuss the buyer’s and seller’s optimal strategies in an integrated 

way. As stated in the previous section, the buyer selects the optimal replacement age  

to minimize his long-run average cost rate based on the price  and warranty length . 

Given the buyer’s strategy the seller seeks to influence the age-replacement decision of 

the buyer in order to maximize his long-run profits rate. This can be achieved by 

establishing the relationship between the optimal ,  and  (i.e. , ). 

The number of the buyers involved in the game is governed by the sales model 
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proposed in (7.1) with respect to both the buyer’s age-replacement strategy and the 

product marking strategy. In this sense the buyer-seller relationship is equivalent to a 

Stackelberg game where the seller is the leader of the game and the buyers are 

followers. To complete our analysis, the following assumptions are made. 

1) The product has an IFR function, i.e. ′ . 0. It is not desirable to implement 

preventive replacement for products without an IFR property.  

2) The seller is the price maker and warranty designer, and is the leader in the 

game. The buyers are followers and accept both the price and warranty terms of 

the product but choose freely the replacement strategy for the product. 

3) Both the seller and buyers are rational, risk-neutral and interested in 

maximizing (minimizing) their own benefits (losses). The buyers know the 

product failure time distribution and always carry out the age replacements at 

the time that minimizes the long-run maintenance cost rate. The seller has the 

proprietary knowledge of the buyers downtime cost and thus can foresee the 

buyers’ action in response to his own marketing strategy. 

4) All the buyers bear the same cost structure and thus act unanimously to the 

seller’s decision. Such assumption is typically suitable for a single buyer with a 

large amount of purchases at once. For multiple buyers, an estimation of the 

average downtime cost across all the buyers is required from the seller’s 

perspective to represent the single downtime cost mentioned in our model. 

7.3.1 The Buyer’s Optimal Strategy 

We first derive the optimal replacement age of the product as a function of price and 

warranty length, following the results presented in (7.2)–(7.4). Consider two cases 

when  and  respectively. 
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Denote . The first derivatives of  and  

with respect to replacement age  are 

                                          7.8  

1
                                      7.9  

Note that since ′ 0 , we have / ′ 0  and hence 

 is a non-negative and increasing function in . Denote ∞  as the 

mean life time of a product. It is obvious that 0 0 and lim ∞ ∞

lim ∞ 1 if lim ∞  exists. Moreover, the inverse function  is 

also a non-negative and increasing.  

In the following development we also define the critical replacement ages 

, , and . Theorem 

7.1 below presents the optimal age-replacement strategy for the buyer under a cost-

sharing warranty. The proof is given in Appendix E. 

Theorem 7.1: Under a renewing cost-sharing warranty policy, given that  is an 

increasing function in  for a non-repairable product with price , warranty length , 

and a fixed cost-sharing ratio  (0 1) for each warranty renewal, the following 

results hold for the optimal replacement age  : 

1) For / 1 ,  

 If ∞ , then ∞ ;  
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 If ∞ , then ; 

 If , then . 

2) For / 1 ,  

 If ∞ , then ∞ ;  

 If ∞ , then ; 

 If , then ; 

 If , then . 

where . 

Remarks:  

(a) From Theorem 7.1, with a little reflection we can view  and  as typical values 

of warranty length that demarcate the different regions of the buyer’s optimal 

replacement-age policy (see Figure 7.1). We also note that by definition,  and  are 

functions of  but independent of . In contrast,  is a function of both  or .  

(b) The specific characterization of  can determine the boundedness of . , i.e. 

whether or not ∞  grows without bound, and also the boundedness of . For 

instance, with the Weibull distribution, 0 implies that lim ∞ ∞ and 

thus lim ∞ ∞ ∞. Under this case, ∞  always holds 

and  never goes to infinite (unless 0). For some other failure processes, such as 

Gamma distribution with order  (  as an integer), lim ∞ ∞ and ∞
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1 ∞. ∞ holds for those cases when 1. We will further 

illustrate this with case studies in Section 7.5.  

 
Figure 7.1 Impact of price Cp and warranty length w on optimal replacement age t* 

A graphic view of the buyer’s optimal age-replacement strategy with respect to  and 

 is given in Figure 7.1.  

For each given , when , the optimal replacement age is greater 

than , specifically ; when , the product is always 

replaced by the buyer at the end of warranty period (i.e. ); when 

/ 1 , if , the optimal  is smaller than  and is given at 

; otherwise, the product is replaced at . On the other hand, for any given 

, by assuming ∞, similar conclusions are obtained. 

Note that the above analysis for Figure 7.1 does not included the scenario when 

∞. However, by defining ,  and  to be ∞ when there is no real number 

solutions for ,  and 

 respectively, Figure 7.1 can fully describe Theorem 7.1. 

 

      Region III       
 

 
 

          Region I 

 

/ 1

 

 Region II 
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7.3.2 The Seller’s Optimal Strategy 

To derive the seller’s optimal marketing strategy, we assume that all the buyers carry 

out the optimal age-replacements as represented in Theorem 7.1. Note that for 

practically meaningful designs we must have 0  and  (a necessary 

condition that (7.7) never goes to negative). Using (7.7) in conjunction with the results 

given in Theorem 7.1, the seller’s total profit rate function is thus summarized in 

Theorem 7.2. 

Theorem 7.2: Under a renewing cost-sharing warranty policy, given  as an 

increasing function of  and  as the fixed cost-sharing ratio for each warranty renewal, 

the seller’s long-run average profit rate ,  as a function of price , ∞  

and warranty length 0,∞  is as follows: 

1) For 1  

,

,

,
    7.10  

2) For 1  

,

,                  

,

,                  

     7.11  
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where , , 

 and . 

Proof: Following the rules in Theorem 7.1, Equations (7.10) and (7.11) can be verified. 

Again, , and  go to infinity if there are no real number solutions respectively for 

,  and .  

Unfortunately, investigating the first-order derivative conditions of the profit rate 

function above is extremely cumbersome and does not offer much analytical insight. 

Since the seller’s decision problem involves only two parameters, it is justifiable to use 

commercially available global search methods to locate the optimal  and . 

However, as shown below, it is only necessary to search for the marketing strategy 

,  within the range when ,  (Region I and II in Figure 7.1). 

Proposition 7.1: Given any product marketing strategy ,  that satisfies 

,  (Region III in Figure 7.1), a corresponding strategy 

,  that belongs to Region II results in the same long-run average profit rate 

for the seller, i.e. , , . 

Proof: Note that given , , ,  and thus 

, Region II. Refer to the Theorem 7.2. The results simply follow. 

Proposition 7.1 indicates that any marketing strategy that falls into Region III should 

never be the unique optimal one to the seller (a corresponding strategy exists in Region 

II). On the other hand, the numerical tests in Section 7.5 show that no optimal strategy 

falls into Region III. 
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7.4 Special Case: Cd → 0 or r(t) ≡ r(0) 

The optimization of the seller’s marketing strategy is substantially simplified when 

either 0, i.e. insignificant downtime cost or 0  , i.e. constant failure rate 

holds. As what is inferred in Theorem 7.1, if the product downtime cost 0, 

∞  always holds. As a result, ∞ for any , ∞  and 

0,∞ . The same conclusion can be made when the failure rate of the product is 

constant. Under this case, 0  and 0  and 0  always hold as 

represented in (7.8) and (7.9). Thus, ∞ . This validates the intuition that no 

preventive replacement is required when the product has a constant failure rate.  

To derive the optimal  and  when ∞, let ∞  be the mean life 

time of the product, and then (7.10) and (7.11) are reduced to the equation below: 

,          7.12  

7.4.1 Stationary Point for π0(w,Cp ) 

It is important to investigate the first partial derivative equations of ,  with 

respect to  and  to obtain the necessary conditions that yield maximum profit. Such 

two equations are presented below: 

,
1 7.13  

,

1                                                           7.14  
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Both equations are set to zero and solved simultaneously to find the necessary 

conditions for relative maxima. 

1
                                                           7.15  

1                                         7.16  

7.4.2 Second-order Conditions 

There may be more than one solution to (7.16) or equivalently (7.13)–(7.14) that 

satisfy the first-order conditions. In view of this, we further look into the second-order 

conditions. Let , , , , ,  and 

. Their values at ( , ) are given as follows: 

1           7.17  

1

1 ′                                         7.18  

1 1                            7.19  

1 1   

1 ′                                        7.20  
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It is easy to verify that 0 always holds for any 0. A necessary condition 

for ( , ) to be the relative maxima is 0 , 0  and 0 . Or 

equivalently that 1 ′ 0  and 1

′ 0 must hold. Note that the latter implies the former and hence it 

suffices to have 1 ′ 0 . In all of our numerical 

examples, ,  that falls into the region of , ∞  and 0,∞  also turns 

out to be the global maxima. 

7.5 Illustrative Examples 

In this section, two practical cases are devised to illustrate the applicability of the 

proposed decision models in this chapter. Sensitivity analysis are then conducted to 

help managers investigate the impact of the buyer’s age-replacement decisions and 

warranty cost-sharing ratio  on the optimal design of the product marketing strategy.  

Suppose that two types of large-scale mechanic facilities are developed and planned 

for release to the market. Cost-sharing warranties are provided to protect consumers 

against early product failures and balance the high post-sale cost for the manufacturers 

simultaneously. The in-house testing indicates that the failure rate functions of both 

products increase with time but follow the Gamma and Weibull distribution 

respectively. To obtain the optimal product marketing strategies for both products, the 

seller conducts the following analysis.  

7.5.1 Gamma Distribution: When Y(∞) < ∞ 

The first type of product is assumed to have a life time  that satisfies Gamma 

distribution of order two: 
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1 1 , , 1               7.21  

.  is therefore bounded by the value of 1 ∞ lim ∞
∞ 1

1 , which indicates that under some cases, the optimal replacement age may go to 

infinity (i.e. ∞). Besides,  is always an increasing function of .  

The warranty contract specifies the warranty cost-sharing ratio 0.3. The market 

survey and analysis done by the marketing department provides the following 

parameters of the demand function – 10 , 1 (time unit), 2, 0.7 and 

0.7. The manufacturing cost per item is 50. In addition, engineering 

department estimates the mean life time of the product to be 20 time units, i.e. 0.1.  

Table 7.1 and Table 7.2 present the seller’s optimal marketing strategy and the 

corresponding buyer’s strategy when 0 and 100, 200, 500 respectively. In 

Table 7.1, given a zero downtime cost, 9.74 is solved iteratively using (7.16) 

and 121.71  is derived from (7.15). The second-order conditions at 

121.71,9.74  satisfy 0, 0, and 0 . In Table 7.2 we notice that 

when 100 , the age-replacement factor  decreases with  and becomes 

substantial in the design of , . As  increases to 500, the age-replacement 

(perceived by the seller) will be carried out as soon as the warranty is expired ( ). 

Figure 7.2 further illustrates the impact of  (and ) on the seller’s optimal strategy 

in a graphic view. We notice that when  increases from 100 to 450, the shortening of 

the buyer’s purchasing cycle enables the seller to decrease price  to attract more 

buyers; when  increases from 450, the further decrease of  reduces the effect of a 

long warranty on the product demand and we therefore see  decrease together with 

 (typically that ). Furthermore, when  ( 0,100 ) is small,  goes to 
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infinity and (7.15)–(7.16) provides a fast approximation of the optimal strategy for the 

seller. 

Table 7.1 Seller’s optimal marketing strategy when Cd =0, ρ=0.3 and ϕ(ρ)=0.7 

,  ,     ,   
(121.71,9.74) 712.13 -0.10 -6.91 0.53 ∞ 5.00 

 

Table 7.2 Seller’s optimal marketing strategy when Cd =100,200,500, ρ=0.3 and ϕ(ρ)=0.7 

 ,  ,  ,    
100 (121.71,9.74) 712.13 ∞ 10.00 ∞ 
200 (98.04,9.74) 883.40 21.55 13.66 19.19 
500 (96.13,9.01) 1631.71 9.01( ) 23.70 9.01( ) 

 

 

Figure 7.2 Optimal marketing strategies under Gamma distribution given Cd ∈[0,550]: (a) (Cp
*,w*) 

vs. Cd and (b) π1(Cp
*,w*) vs. Cd 

 

7.5.2 Weibull Distribution: When Y(∞) = ∞ 

For the second type of product, the life time  is governed by a Weibull distribution 

with shape parameter  ( 1) and scale parameter : 

1 , ,         7.22  
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Typically for the Weibull distribution, ′ 0  implies lim ∞ ∞  (given 

1). Therefore we have ∞ ∞, and ∞. 

 

Figure 7.3 Optimal marketing strategies under Weibull distribution given Cd ∈[0,550]: (a) (Cp
*,w*) 

vs. Cd and (b) π1(Cp
*,w*) vs. Cd 

 

Warranty cost-sharing ratio is designed at 0.4 . The data from the marketing 

department supports the following parameters of the demand function: 10 , 

0.5 (time unit), 2, 0.7 and 0.7. The manufacturing cost per unit 

is 50. Furthermore, the in-house testing done by the engineering department 

indicates that the Weibull failure time distribution has a shape parameter 2 and a 

scale parameter 0.1, which yields a mean life time of about 9 time units.  

Table 7.3 and Table 7.4 present the seller’s optimal marketing strategy and its 

corresponding buyer’s strategy when 0 and 50, 100, 400 respectively. The 

optimal strategy ,  under a zero downtime cost is 117.96, 5.41 . Again, the 

impact of  and  on the design of ,  are illustrated in Figure 7.3. The changes 

of  and  in response to  show similar pattern to the previous Gamma case. 

However we notice that under the Weibull case, any small increase of  can result in 
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a decrease of  and a subsequent change on , . Such observation verifies the 

different boundedness properties of .  between these two distributions.  

Table 7.3 Seller’s optimal marketing strategy when Cd =0, ρ=0.4 and ϕ(ρ)=0.7 

,  ,     ,   
(117.96,5.41) 1123.24 -0.16 -45.48 6.16 ∞ 11.28 

 

Table 7.4 Seller’s optimal marketing strategy when Cd =50,100,400, ρ=0.4 and ϕ(ρ)=0.7 

 ,  ,  ,    
50 (113.20,5.41) 1144.41 16.42 16.42 12.23 

100 (105.16,5.41) 1300.63 10.20 20.40 8.92 
400 (97.65,4.72) 2187.10 4.72( ) 37.76 4.72( ) 

 

7.5.3 Impact of Warranty Cost-sharing Ratio ρ on (Cp
*,w*) and π1(Cp

*,w*) 

Conducting a further sensitivity analysis on  can help the manager select a better 

warranty cost-sharing ratio that improves his profit margin. But it relies on more 

proprietary knowledge about  that is typically done by the marketing department. 

In the following we study two types of discount factors  for 0,0.5  that 

reflects different sensitivity of demand to  (described by ∆
∆

 and ∆
∆

). As 

presented in Table 7.5 and Figure 7.4,  is more sensitive to  than  when  

is small, and the situation reverses when  is large.  

Table 7.5 Two types of discounted factor ϕ(ρ) for ρ∈[0,0.5] 

  
∆
∆   

∆
∆  

0 1 --- 1 --- 
0.05 0.985 0.3 0.95 1 
0.1 0.965 0.4 0.9 1 

0.15 0.94 0.5 0.85 1 
0.2 0.91 0.6 0.8 1 

0.25 0.87 0.8 0.75 1 
0.3 0.82 1 0.7 1 

0.35 0.77 1 0.65 1 
0.4 0.7 1.4 0.6 1 

0.45 0.61 1.8 0.55 1 
0.5 0.50 2.2 0.5 1 
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Figure 7.4 Two types of discount factor ϕ(ρ) for ρ∈[0,0.5] 

By applying  and , the impacts of  on ,  and ,  are 

illustrated in Figure 7.5 and Figure 7.6 for Gamma and Weibull distribution 

respectively. We highlight the following results.  

First, the increase of  reduces the attractiveness of the warranty program for both 

products and therefore requires a compensation from the seller’s side by increasing the 

length of the warranty. Second, different discount factor . s tend to yield different 

optimal warranty cost-sharing ratios that maximize the seller’s profit rate. In our 

examples, when , 0.25 is the optimal choice for the Gamma case (Figure 

7.5), and 0.2 is the optimal choice for the Weibull case (Figure 7.6). However, 

when , 0 or a free-replacement warranty (FRW) turns out to be the best 

choice for both cases. 
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Figure 7.5 (a) (Cp
*,w*) vs. ρ and (b) π1(Cp

*,w*) vs. ρ, given ϕ1(ρ), ϕ2(ρ) and ρ∈[0,0.5] for Gamma 
distribution 

 

Figure 7.6 (a) (Cp
*,w*) vs. ρ and (b) π1(Cp

*,w*) vs. ρ, given ϕ1(ρ), ϕ2(ρ) and ρ∈[0,0.5] for Weibull 
distribution 

7.6 Conclusion 

This chapter introduces a model for analyzing optimal product marketing strategy on 

product price and warranty length that maximizes the seller’s long-run average profit 

rate. The model formulation follows a Stackelberg game where the seller is the leader 

in the game and the buyer is the follower. In other words, the buyer implements age-

replacement for the product to minimize his long-run average maintenance cost rate; 

the seller derives the buyer’s optimal replacement time as a function of product price 
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and warranty length, and optimally selects these two decision variables to maximize 

his profit rate function. The sales model in this chapter generalizes the demand 

function in Glickman and Berger (1976) and is subject to not only product price and 

warranty length, but also the buyer’s age-replacement decision and warranty cost-

sharing ratio. A special case without preventive age-replacement is further presented 

with the optimal seller’s strategy being derived and analyzed. Through two illustrative 

examples, the applicability of the model is demonstrated, and sensitivity analysis are 

further conducted to investigate the impact of the buyer’s age-replacement decisions 

and warranty cost-sharing ratio on the optimal product marketing strategy. 

Based on the computational results done for the two types of products in this chapter, 

the following insights are provided, which may acquire certain managerial attention. 

Practically, the buyers always conduct age-replacements in a relatively early period 

when their downtime cost is high. The shortening of the purchasing cycle helps 

increase the profit for the seller and therefore enables him to reduce the price of the 

product to attract more buyers. When the pre-specified purchasing cycle decreases to a 

certain level, a longer warranty may not be able to increase the demand for the product 

and as a result, a strategy of reducing the warranty coverage should be appropriate. 

The seller may further manipulate the warranty cost-sharing ratio to improve his profit 

margin. The feasibility of this relies on further efforts done by the marketing 

department in estimating the negative impact of increasing warranty cost-sharing ratio 

on the product sales. In general, the increase of the ratio may reduce the attractiveness 

of the warranty program to the buyers and therefore requires certain compensative 

approach from the seller’s side such as providing longer warranty coverage.    
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CHAPTER 8 CONCLUSION AND FUTURE WORK 

 

This thesis addressed several important issues in the post-sale cost modeling and 

optimization from both the manufacturer’s (seller) and the consumer’s (buyer) point of 

view. Warranty and preventive maintenance (PM) were modeled jointly as a means of 

either enhancing the seller’s warranty service strategy or reducing the buyer’s life-

cycle maintenance cost. 

One of the primary goals of warranty research is to analyze the cost of a warranty 

program. Chapter 3 conducted warranty cost analysis for multi-component systems 

under renewing free-replacement warranty (RFRW) policy. Unlike previous works that 

assumed failure independence among system components, a type of failure dependence 

models, failure interaction (Murthy and Nguyen, 1985a), was incorporated into the 

cost modeling. With the presence of failure interaction, the system faces more severe 

reliability problem during its ageing process. As a result, upon system failures within 

warranty, opportunistic PMs were carried out for the survived components in order to 

reduce the chance of future failures. Warranty cost functions for both series and 

parallel system configurations were derived, followed by a numerical example with 

sensitivity analysis. The consideration of failure interaction here can help decision 

makers better evaluate complex system reliability and improve the accuracy of 

warranty cost estimation.  

Designing a good maintenance program under warranty is of great importance to the 

manufacturer in terms of improving the service quality and reducing the total warranty 

cost. Chapter 4 applied condition-based maintenance (CBM) in enhancing the existing 

warranty service design. The implementation of CBM relies on the product state 
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information, and is typically effective when the product is subject to failures only after 

it degrades to certain state level. Correspondingly, in this research, we assumed that 

the deterioration of a product follows a two-stage process, i.e. from nominal to 

defective and from defective to failed, and PM service is conducted only when the 

product is defective upon inspection. We derived warranty cost functions under both 

renewing and non-renewing warranty settings, based on which the optimal scheduling 

of inspection services was further analyzed. Results revealed that a CBM program 

within warranty can be cost-efficient to the manufacturer when either the inspection 

cost is relatively low or the product has a relatively short mean life time. 

Chapters 5 and 6 focused on the design of finite life-cycle maintenance policies for the 

buyer. Chapter 5 studied a general periodic PM policy for warranted revenue-

generating systems by integrating both the cost and value aspects of maintenance. We 

defined ageing losses as the total revenue losses due to the decreasing productivity 

during the system ageing process. We argued that preventive maintenance, which 

slows system deterioration, reduces ageing losses and therefore reflects its value. The 

total life-cycle cost model was developed for the buyer including both the 

maintenance cost and ageing losses. The optimal PM strategy was further derived as a 

function of two decision variables, the calendar time of the first PM action and its 

corresponding maintenance level. In order to investigate the effect of warranty as well 

as many other model parameters on the buyer’s optimal PM decisions, a 

comprehensive sensitivity analysis was conducted through a numerical case. 

Chapter 6 analyzed the repair-replacement policies for multi-state systems (MSS) that 

operate under finite life cycles. We investigated two classes of policies, that of 

preventive replacements and corrective replacements. For both policies, the expected 

discounted maintenance cost (EDMC) was derived as a function of two control 
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parameters – a threshold level on the current system state, and a threshold level on the 

residual life cycle, and the cost formulation took into account both the value of time 

and initial warranty coverage. In order to obtain the optimal maintenance thresholds 

that minimize the EDMC, two types of optimization methods were proposed. Through 

computational examples, we demonstrated that preventive replacement policy 

outperforms corrective replacement policy when either warranty period is long or the 

downtime cost of each failure is relatively high compared to the repair cost. 

Warranty as an efficient marketing instrument for enhancing the sales revenue has 

been investigated by several researchers. Chapter 7 introduced a model for analyzing 

optimal marketing decisions on product price and warranty length that maximizes the 

seller’s long-run average profit rate. The decision process was formulated as a 

Stackelberg game where the seller is the leader in the game and the buyer is the 

follower. In other words, the buyer implements age-replacement for the product to 

minimize his long-run average maintenance cost rate; the seller derives the buyer’s 

optimal replacement time as a function of product price and warranty length, and 

optimally selects these two decision variables to maximize his profit rate function. We 

proposed a novel sales model that generalizes the demand function in Glickman and 

Berger (1976) and is subject to not only product price and warranty length, but also the 

buyer’s age-replacement decision and warranty cost-sharing ratio. Two applications 

were presented to illustrate the applicability of the proposed model and sensitivity 

analysis was further conducted in order to investigate the impact of warranty and age-

dependent PM policy on the optimal product marketing strategy. 

As mentioned previously, post-sale cost modeling and optimization linking warranty 

and PM is an important research area, but has not received enough attention in the 
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literature. Although we have successfully addressed several issues in this area, there 

are some other opportunities for future study. Following is a list of potential topics: 

• To conduct warranty cost analysis for complex systems with more general 

system configurations, such as series-parallel, parallel-series, k-out-of-n, etc 

(Kuo et al., 2001); to study PM strategy for multi-component systems which is 

implemented before the entire system fails.  

• To design a proper CBM program for products subject to continuous-state 

degradation processes (e.g. Gamma process); to investigate the CBM policies 

with imperfect inspections concerning the product condition.  

• To develop continuous-time maintenance models (Djamaludin et al., 2001) 

instead of periodic PM for safety-critical systems. 

• To devise repair-replacement policies for MSS subject to semi-Markov 

degradation processes and imperfect maintenance operations (Soro et al., 2010).  

• To study warranty and maintenance policies with non-negligible repair times. 

• To formulate the post-sale decisions between the buyer and the seller as a non-

cooperative game (Jackson and Pascual, 2008); to involve the customer’s 

negotiation scheme into the seller’s post-sale service design. 
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APPENDIX A. Proof of Lemma 3.1 

 

To prove Lemma 3.1, we have 

Pr , | d

Pr d                       (  and  are independent )

Pr
Ω,

d           (  and  are independent )

Ω,

d    (since 
Ω

 and 

) d  

The definition of  is straightforward. 

As under series structure, Pr Pr  ,Ω ∑ Pr Ω

, , we have 
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APPENDIX B. Proof of Lemma 3.2 

 

The proof of (3.4) is presented first. Define  , . According to the 

discussion in Section 3.1, the number of natural failures are independent with each 

other even failure interaction is considered. Using the definition in Lemma 3.1, the 

probability that the system failure is caused by component   is simply  . We have 

| ~Binomial , , Ω, and thus 

Pr Pr |
∞

  see Section 3.2

1
∞

∞

  

The last two steps utilize the result ∑∞ 1 . Equation (3.2) can 

be proved in a similar way, based on which (3.3) and (3.5) simply follow. 

Pr Pr | Pr
∞

   (using the results in 3.4 )                 

1
∞
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APPENDIX C. Proof of Lemma 3.3 

 

For any Ω 0,1,2,… , , let | |  denote the number of elements (i.e. 

components) in . 

Using the method of Mathematical Induction (MI): 

1. Prove that the result holds for any single-component system, i.e. | | 1 

, 1 1  

, 1 , Ω 

Then for any subsystem with | | 1, the result holds. 

2. Assume that (3.14) is true for any subsystem with | | . Then according to 

the expression of   ,  , it is easily verified that, for any 

subsystem with | | 1, 

, ,  

According to the definition of , , we have 

, , ∑

, ∑

, ∑

,  

which exactly means that (3.14) is true for all subsystems of Ω. 
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APPENDIX D. Expressions of the EDMC for Scenario 1 

 

The de facto “analytical” form of the EDMC under Policies O, A and B for Scenario 1 

without warranty incorporation is given as: 

Policy O 

5098.8 . 100.0 . 226.5 0.91 201.6 0.91 . 4772.3  

5098.8 . 105.6 . 198.2 0.91 235.2 0.91 . 5006.3  

5098.8 . 138.7 . 299.1 0.91 189.4 0.91 . 5259.2  

5098.8 . 146.6 . 183.8 0.91 308.4 0.91 . 5429.1  

Policy A 

|1, 4880.0 . 4880.0  

|2, 0.47 0.53 3821.2 . 0.53

0.53 93.2 . 3728.0  

|3, 0.32 0.36 0.32 4224 .

0.68 0.36 0.32 196.2 0.75
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0.02 0.58 0.56 109.2 0.75 .

4027.8  

Policy B 

|1, 0.50 0.32 0.13 0.05

3822.8 . 0.13 0.08 0.07 0.12

52.2 . 0.38 0.24 0.20 0.06

78.7 1.00 0.15 0.24 0.18 0.21

135.8 1.00 . 3691.8  

|2, 0.36 0.40 0.17 0.07

3828.8 . 0.10 0.05 0.05 0.10

47.6 . 0.23 0.20 0.21 0.22

158.4 1.02 0.54 0.36 0.22

0.04 118.2 1.02 . 3663.0  

|3, 0.28 0.32 0.28 0.11

4346.0 . 0.11 0.06 0.03 0.08

45.2 . 0.60 0.26 0.31 0.03

192.9 0.96 0.09 0.47 0.30

0.26 169.8 0.96 . 4107.9  

  



203 
 

APPENDIX E. Proof of Theorem 7.1  

 

Denote  and  as the optimal replacement ages for  and  respetively. 

1) / 1  

From the assumption, we know that 0 0 and  is an increasing function of . 

Given   1 , it is easy to verify that ′ 0  for . Thus, the 

optimal replacement age for  is obtained at .  

To derive the optimal replacement age for , we discuss the following cases. 

 When ∞  

Given ′ 0, we have ∞ . Thus ′ 0  for any 

 and this results in ∞. Comparing ∞ and , we have 

. Consequently, ∞ .  

 When ∞  

For , there is a finite replacement age  such that ′ 0 and  

is minimized.  is thus obtained from  and ∞. 

Again, comparing  and  ( ), it is easy to verify that , and 

thus .  

On the other hand, let . Since  is an increasing 

function of  and  is a decreasing function of , we simply have ′ 0. 
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Furthermore, 0  and ∞ ∞ ∞ 0 . 

There is a unique solution , ∞  that satisfies 0 , i.e. 

. Combining the definition of , we have 

. Consequently, . Note 

that  provides a lower bound for  that is tight when , i.e. lim . 

 When  

Note that ′ 0  for any , and . Hence, the optimal solution is 

achieved at . 

2) / 1   

 When ∞  

 is minimized at ∞ , which follows the same logic as 1). Since 

 for  and , we have 

 for . Thus ′ 0  and . Again, . 

Hence, ∞ . 

 When ∞  

 is minimized at  and , which follows the same logic as 1). 

Again, ′ 0  and . Comparing  and , it is easy to verify that 

, and . 

 When  
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We have ′ 0 for  and ′ 0 for .  Thus . 

 When  

Note that . Thus, 0  for  and 

. On the other hand, 0  when  and thus 

. Comparing  and , we have , and 

. 
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