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Summary 

In this thesis we first make a brief literature review on the research area of 

“Maintenance”.  We classify the recent papers on maintenance into different 

categories and discuss them for each category; especially, we emphasize on the papers 

whose subjects are about the age-dependent maintenance, imperfect maintenance and 

the multi-unit systems maintenance, which are all involved in the system that we 

study.   

Then we study a special kind of the multi-unit systems, the so-called 

Supply-Buffer-Demand production system, in which there is an inventory buffer 

between the supplying production unit and the demanding unit.  We propose our 

maintenance model for this system, which is a more general model compared to the 

model presented by Chelbi and Rezg (2006) on a similar system.  In the system we 

study, the supplying unit undergoes a maintenance action as soon as its age increasing 

by “T” or at its failure, whichever occurs first.  Corrective maintenance is assumed to 

be perfect; while preventive maintenance is assumed to be imperfect in that it is 

perfect with probability “p” and minimal with probability “q”.  In every “N” 

maintenance actions, the system undergoes an enhanced preventive maintenance 

which is a perfect maintenance action, so that the system would definitely return to its 

initial state (age zero).  There are stocks built up in the buffer whose capacity is “h”, 

which are used to supply the demanding unit when the supplying unit undergoes 

maintenance.   

We take the joint consideration of both the age-dependent maintenance planning 
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and the buffer inventory control in formulating the model.  We minimize the 

expected total cost per unit of time for the system, under constraints of minimum 

required stationary availability level, minimum required reliability level, and 

maximum required inventory shortage rate level.  We also propose numerical 

algorithms to obtain the optimal solutions for the decision variables of the model: the 

preventive maintenance age increment “T”, the number of periods within a cycle “N”, 

and the capacity of the buffer “h”.  The optimal maintenance and inventory policies 

for the system would then be determined.   
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A MAINTENANCE MODEL FOR THE 

SUPPLY-BUFFER-DEMAND PRODUCTION SYSTEM 

 

Chapter 1 

Introduction to Maintenance 

Maintenance, is repairing any kind of an engineering system (e.g. a mechanical 

or an electrical system) when it fails to perform normally, as well as taking actions to 

keep the system in good operating status and to prevent the deterioration.  The 

European Federation of National Maintenance Societies defines maintenance as: “all 

actions which have as an objective to retain an item in or restore it to, a state in which 

it can perform the required function.  The actions include the combination of all 

technical and corresponding administrative, managerial and supervision actions”.   

As deterioration process is prevalent in the engineering systems, maintenance 

measures are becoming necessary and crucial in ensuring the performances of the 

systems during their lives.  More and more interest has been attracted into the area of 

maintenance during the past few years, and there are more papers published on this 

area.   

In this thesis, we will study the problem of designing a maintenance scheme on 

the Supply-Buffer-Demand production system.  The model we propose is an 

extensive study following previous works by Chelbi and Rezg (2006).  The model 
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extends the previous assumption on preventive maintenance from perfect maintenance 

to imperfect, and considers additional availability, reliability and inventory shortage 

requirements for the system.  Numerical algorithms and examples to solve our model 

are also provided.   

The organization of the thesis is as follows: In Chapter 1, we briefly introduce 

the research area of Maintenance and four mostly used methods to classify papers in 

this area; In Chapter 2 we review the existing literature on the classification method of 

maintenance topics, and all the topics we mention are closely related to or used in our 

model, so that the content of thesis can be self-contained; In Chapter 3, we define the 

problem and provide the assumptions assumed for the general system; In Chapter 4, 

we analyze the general system and derive the analytical results for the objective and 

constraint functions for our model; In Chapter 5 we define the mathematical 

optimization model and provide the algorithm to solve the model, and also examples 

for the algorithm are presented and analyzed. 

We continue Chapter 1 with introducing the methods to classify papers in the 

research area of Maintenance.  Papers in this area can be categorized into groups 

according to different classification standards, e.g. topics and areas, maintenance 

policies, complexity of the system, types of maintenance actions, source of 

publications etc.  In the following there are some of the major classification 

standards.   
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1.1 Industrial standards classification 

Generally speaking, a maintenance action can be technically classified into two 

major types: preventive maintenance (PM) and corrective maintenance (CM).  

According to Japanese Industrial Standards Z 8115-2000, preventive maintenance can 

be seen to consist of three subcategories: Hard Time Scheduled Maintenance (HTSM), 

On-Condition Maintenance (OCM) and Condition Monitoring Maintenance (CMM).  

On the other hand, corrective maintenance includes two subcategories: Emergency 

Maintenance and Normal Corrective Maintenance.  This kind of classification is 

important for industrial concerns, as it involves the purchase and installation of 

hardware devices.  For example, if CMM is chosen to prevent the potential fire 

hazards, usually detectors for smoke and temperature should be purchased to be 

installed at proper places to monitor the environmental conditions.   

 

1.2 Optimization modeling classification 

In the quantitative and modeling researches on the area of maintenance, the 

papers aim to compare the system performances under different circumstances to 

determine the optimal policy and its decision parameters.  Wang (2002) summarized 

four objectives which an ordinary maintenance optimization problem would consider: 

minimizing maintenance cost rate of the system; maximizing the system reliability 

measures; minimizing maintenance cost rate while keeping the system reliability 

above a certain level; maximizing the system reliability measure while the cost for the 

maintenance is within some constraints.  Beside these four optimization criteria 
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which are used to formulate the objective functions for optimization modeling, Wang 

(2002) raised other factors which may characterize an optimal maintenance objective 

or serve as “constraints” in the optimization: maintenance policies, system 

configurations, shut-off rules, maintenance degree, maintenance cost, modeling tools, 

planning horizon, dependence, and system information are all factors describing 

certain aspects of the system that is studied.   

 

1.3 Maintenance policies classification 

Many different maintenance policies have been developed for different 

circumstances or requirements of the system which is studied.  Generally, a system 

can be either a single-unit system or a multi-unit system.  The study of single-unit 

systems is the foundation of studying the multi-unit systems.  Therefore, most of the 

effort has been put into the studies of single-unit systems, and the corresponding 

maintenance policies have been discussed.  Wang (2002) summarized six major 

policies for the single-unit systems: Age-dependent PM (preventive maintenance) 

policy, Periodic PM policy, Failure limit policy, Sequential PM policy, Repair limit 

policy, and Repair number counting and reference time policy.   

Among all these policies, the most popular and common one is the 

Age-dependent PM policy, under which usually a unit is preventively maintained 

when its age reaches a predetermined value or it is repaired when it fails.  Various 

circumstances have been investigated under this policy: many researchers have 

developed the extensive policies, such as age replacement policy, repair replacement 
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policy, mixed age PM policy, or random age-dependent maintenance policy, etc; 

others would like to focus on discussing different maintenance properties, e.g. 

different types of PM (minimal, imperfect, perfect) or different cost structures; 

besides, other researchers have introduced additional decision variables and auxiliary 

parameters, including reference time, repair counting number, and probabilities for 

different failure types.   

In addition to the Age-dependent PM policy, many other policies have been 

introduced by researchers, too.  In the Periodic PM policy, a unit takes on preventive 

maintenance at fixed time kT (k=1, 2, …) or is repaired at failures, regardless of the 

age of the unit.  Block replacement policy and “Periodic replacement with minimal 

repair at failures” policy are two basic policies in the category of periodic PM policy.  

In Failure limit policy, a unit is preventively maintained when its failure rate reaches a 

predetermined value or the unit is repaired when it fails.  Under the Sequential PM 

policy, PM is conducted at unequal time intervals, and after each PM the next PM 

interval is specified to minimize the expected costs during the residual life.  Repair 

limit policy consists of Repair cost limit policy and Repair time limit policy: in the 

former policy, PM is performed if the estimated cost is less than a threshold, 

otherwise a replacement action will be taken; while in the latter policy, researchers 

introduced a threshold called “repair time limit”, which is used to decide whether to 

perform a repair or a replacement for the unit studied.  The principle for Repair 

number counting policy is that the unit is minimally repaired at failures but replaced 

every fixed number of failures (e.g. every k failures, where k is a constant).  The 
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Reference time policy, instead of using the number of failures (k) as a criterion, uses 

time (T) as a reference: before time T, the unit is minimally repaired upon failure; 

after time T, it will be replaced once it fails.  

 

1.4 Maintenance topics or focuses classification 

Besides the classifications stated above, there should be other classification 

standards: since the maintenance area spans over a wide range and has plenty of 

contents, the research papers on maintenance cannot be always covered by those 

purely mathematical models or model based policies.  For example, some papers 

have investigated the qualitative aspects of maintenance field, such as papers focusing 

on maintenance management; other papers are discussing case studies of maintenance, 

illustrating how the knowledge of maintenance interacts with the practical situations.  

For these reasons, it will be a good classification to group the papers according to 

their maintenance-related topics or focuses.  One way to group these papers is to 

classify them into the following topics: Preventive Maintenance; Condition-based 

Maintenance; Imperfect Maintenance; Maintenance Planning and Production Joint 

Models; Maintenance Management; Maintenance Application and practical Examples; 

and Techniques associated to Maintenance.   
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Chapter 2 

Review on Maintenance Topics or Focuses  

In this chapter, we will group the papers we have reviewed into different 

categories according to their Maintenance Topics or Focuses.  Though there are 

many topics for this classification, here we only present the topics which are related to 

the system we are going to study later.   

 

2.1 Preventive maintenance 

Papers categorized into this section deals with normal or fundamental models 

and strategies on preventive maintenance.  However, papers with specific focuses 

(e.g. imperfect maintenance) are categorized into other topics, although those papers 

may also be concern with preventive maintenance.  Due to its prevalence and 

fundamental position in the maintenance research area, this topic has the most prolific 

papers and it has been investigated extensively almost since the very early period, at 

which time maintenance started to become an academic issue.  Most of the 

maintenance policies stated in the subsection 1.3 constitute the majority part of this 

topic, and optimization methods discussed in the subsection 1.2 are greatly involved 

in the models on this topic.  Up to now it is still a hot topic, as papers on further 

advancements for this topic still take a large percentage of recent papers on 

maintenance.   
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Examples of recent papers on this topic cover various aspects.  Pascual et al 

(2008) proposed a model for a production system which takes into account stock piles, 

line and equipment redundancy, and the use of other production methods.  Lu and 

Jiang (2007) compared the performance of corrective maintenance, preventive 

maintenance, and predictive maintenance for standby k-out-of-n systems; and found 

out that the corrective maintenance is more preferable when the system deteriorates 

slowly and the preventive maintenance does best when the failure rate is high.   

Coolen-Schrijner and Coolen (2007) used costs per unit of time over a single cycle to 

study adaptive strategies for age-replacement policy, when the system sends out some 

kind of feedback about its process information.  Wang and Zhang (2006) determined 

an optimal bivariate replacement policy for the system, in which the successive 

operating times form a stochastically decreasing geometric process and the 

consecutive preventive repair times form a stochastically increasing geometric process.  

Chen (2008) minimized the make-span for a single-unit system which receives 

periodic maintenance, and he discussed the situation where a maintenance job cannot 

be completed within the given time for maintenance.   

 

2.2 Imperfect maintenance 

Imperfect Maintenance, which cannot bring the system to “as good as new” state, 

is in contrast with the simple perfect maintenance.  It is necessary to clarify some 

terms which are frequently used in imperfect maintenance area: according to the 

literature review of Pham and Wang (1996), maintenance can be classified, based on 
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the degree to which the operating condition of an item would be restored through 

maintenance actions, in the following way:  

a. Perfect repair or perfect maintenance: a maintenance action which restores the 

system operating condition to be “as good as new”.  That is, upon perfect 

maintenance, a system has the same lifetime distribution and failure rate function 

as a brand new one.   

b. Minimal repair or minimal maintenance: a maintenance action which restores the 

system to the failure rate it had when it failed.  Minimal repair is first studied by 

Barlow and Proschan (1965).  After the minimal repair, the system operating 

state is often called “as bad as old”.   

c. Imperfect repair or imperfect maintenance: a maintenance action does not make a 

system be like as good as new, but younger.  Usually, it is assumed that imperfect 

maintenance restores the system operating state to somewhere between as good as 

new and as bad as old.  Thus, imperfect maintenance (repair) is a general 

maintenance (repair) which can include two extreme cases: minimal maintenance 

(repair) and perfect maintenance (repair).   

d. Worse repair or maintenance: a maintenance action which makes the system 

failure rate or actual age increases but the system does not break down.  Thus, 

upon worse repair, the system’s operating condition becomes worse than that just 

prior to its maintenance.   

e. Worst repair or maintenance: a maintenance action which does not deliberately 

make the system failed or broken down.   
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We synthesize possible causes and circumstances, which Brown and Proschan 

(1983), Nakagawa and Yasui (1987) provided, for imperfect, worse or worst 

maintenance to happen: 

a. Repair the wrong part; 

b. Only partially repair the faulty part; 

c. Repair (partially or completely) the faulty part but damage adjacent parts; 

d. Incorrectly assess the condition of the unit inspected; 

e. Perform the maintenance action not when called for but at his convenience (the 

timing for maintenance is off the schedule); 

f. Hidden faults and failures which are not detected during maintenance; 

g. Human errors such as wrong adjustments and further damage done during 

maintenance; 

h. Replacement with faulty parts. 

 

Imperfect maintenance has been studied ever since the early stage that the area of 

maintenance arose as an academic field, so the large number of accumulated papers 

on this topic could justify it to be an almost independent topic from the normal 

maintenance in subsection 2.1.  Aven and Castro (2008) studied a system with two 

types of failures: the system is minimally maintained for type 1 failure; while for type 

2 failure, the system is minimally maintained with probability p and perfectly 

maintained with probability 1-p.  El-Ferik (2008), Sheu et al. (2004a), Ben-Daya 
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(2002), and Sheu et al. (2004b) dealt with “lot-sizing problem” with imperfect 

maintenance and production.  Yun et al. (2004) tried to deal with parameter 

estimation by the method of maximum likelihood under the “proportional age 

reduction” models.  Pascual and Ortega (2006) proposed a novel model to determine 

optimal life-cycle duration and intervals between overhauls by minimizing global 

maintenance costs, and also discussed the impact of a better warranty contract by 

offering an improved preventive maintenance program for the equipment.       

 

2.3 Maintenance planning and production  

The overall objective of maintenance planning is to study the interactions 

between normal maintenance actions and production/logistic processes, as well as 

make working schedules for the whole system so that various objectives could be 

satisfied.  The driving force of this topic is that production/logistic processes 

scheduling and preventive maintenance planning decisions are interdependent in 

real-world situations, e.g. maintenance actions can affect available production time 

and conversely the elapsed production time affects the probability of system failure.  

However, this interdependency had been overlooked in early literature.  Until 

recently some researchers just started to consider this interdependency in their works.   

Diallo et al (2008) studied a system in which both preventive maintenance and 

spare parts inventory control policies are considered, and spare parts inventory control 

policy is a (s, Q) control policy.  Cassady and Kutanoglu (2003) proposed an 

integrated model that simultaneously determines production scheduling and 
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preventive maintenance planning decisions, so that the total weighted tardiness of jobs 

is minimized, which is something of filling the gap of research and worthy to be 

investigated further.  Chelbi and Rezg (2006) considered a production and inventory 

joint model, in which there is a buffer stock “h” to make sure the continuous supply 

when the production system undergoes maintenance.  

 

2.4 Maintenance for multi-unit systems 

According to the complexity of the system that we study, we can classify a 

system into one of the two categories: a single-unit system or a multi-unit system.  In 

the subsection “1.3 Maintenance Policies Classification”, we have summarized the 

maintenance policies for single-unit systems.  A multi-unit system, of course, can be 

seen as the combination of several single-unit systems.   

Previous researchers have done literature reviews specifically on multi-unit 

systems: Cho and Parlar (1991) did a literature review specifically on the papers, 

which are related to optimal maintenance and replacement models for multi-unit 

systems, between the year 1976 and 1991.  In this review, they classified the models 

in the surveyed articles into five categories: machine interference/repair models, 

group/block/cannibalization/opportunistic models, inventory/maintenance models, 

other maintenance/replacement models and inspection/maintenance models.  When 

they introduced and discussed each category, they put much emphasis on the 

inventory/maintenance models, in which there are inventory spare stocks for 

repairable production units in the systems.  Dekker et al (1997) did a literature 
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review following Cho and Parlar (1991), which covers the articles between 1991 and 

1997 on the same subject.  This review distinguishes between stationary models, 

where a long-term stable situation is assumed, and dynamic models, which take into 

account the information that becomes available only on the short term.  The 

stationary models are discussed in details according to the different categories: 

grouping corrective maintenance, grouping preventive maintenance, and opportunistic 

maintenance.   

In the recent papers on multi-unit systems, Wang and Pham (2006) studied 

availability, maintenance cost, and optimal maintenance policies of the series system.  

The system has n constituting components and each component is assumed to be 

subject to correlated failure and repair, imperfect repair, shut-off rule, and arbitrary 

distributions of times to failure and repair.  They modeled the system with quasi 

renewal processes, using system maintenance cost rates and system availability as the 

criteria.  De Smidt-Destombes et al (2006) considered a k-out-of-N system with 

identical, repairable components.  They studied relationship between the system 

availability and its controlling variables: maintenance policy, the spare part inventory 

level, the repair capacity, and repair job priority setting.  Vaughan (2005) studied the 

inventory policy of spare parts for a system, which contains n identical components.  

He developed a stochastic dynamic programming model to solve the problem, and 

obtained the optimal policy (s(k),S(k)), in which k is the number of periods until the 

next scheduled preventive maintenance.   
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2.5 Maintenance on the Supply–Buffer-Demand system 

For the research done on multi-unit systems maintenance, there has been an 

increasing interest on the joint production systems, and many papers have been 

published on this subject.  Usually, a production system with consideration of 

maintenance has single or multiple production units which need to be maintained.  A 

“joint” production system, however, not only consists of one production unit which 

needs to be maintained sometimes due to failure, but also it has one inventory buffer.  

In this way, the demand for products could be satisfied from the stocks in the 

inventory buffer when the production unit undergoes preventive maintenance or 

corrective maintenance.  This joint production system combines the maintenance and 

the inventory problem into one system, so the maintenance optimization policies for 

such systems would turn into a joint consideration of both maintenance and inventory 

influences.   

This joint production system can be roughly depicted as the following graph: 

 

This Supply-Buffer-Demand production system consists of two production units 

M1 and M2, and M1 supplies raw materials to M2 so that the need of M2 is satisfied.  

 

 

M1 Buffer 

 

 

M2 

Figure 2.1 A two-machine serial production system with a buffer 

Supply Demand 
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M1 is unreliable and so it encounters random failures.  Therefore, a buffer B 

between M1 and M2 is needed, to supply the need of M2 when M1 breaks down or 

undergoes maintenance.   

As stated in the papers done by Meller and Kim (1996) and Kyriakidis and 

Dimitrakos (2006), a typical application area of such a system lies in automobile 

general assembly where M2 represents the assembly line and M1 represents one of the 

many parallel operations that directly supply the line.  Another application is in seat 

assembly, where M2 represents the seat assembly line and M1 is the machine that 

produces seat covers and sends them to a large buffer that feeds the seat assembly line.  

Besides, an example of this production system could be an offshore oil exploration 

platform, which provides the crude oil to onshore refineries. The crude oil is 

transported by pipelines from the platform to storage tanks, from which it is further 

transported to the refinery.  In this case the crude oil, the exploration platform, the 

refineries, and the storage tanks are the raw materials, M1, M2 and the buffer, 

respectively.  

In recent years, many researchers have studied this Supply-Buffer-Demand 

production system and obtained their results for maintenance policies (and buffer 

size). 

 Van der Duyn Schouten and Vanneste (1995) studied such a system with 

capacitated buffer size, and they derived a preventive maintenance policy (n, N, k), 

which used both the age of the unit M1 and the content of the buffer as parameters of 

their policy.  In their research, preventive maintenance is assumed to be perfect.  In 
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addition, both the lifetime distribution of M1 and buffer content distribution are 

assumed to be discrete, so that they could use embedding technique from Markov 

decision theory.   

Meller and Kim (1996) derived a cost model for this system which includes the 

costs for preventive maintenance, unscheduled repairs, starving the second production 

unit M2, and the inventory.  In this paper, the frequency for carrying out preventive 

maintenance is determined by the buffer content level, i.e. when the buffer level 

reaches the optimal buffer level b* the unit M1 would be preventively maintained.  

They assumed the buffer level states as discrete states, and they used embedded 

stochastic process for Markov chain to compute this optimal buffer level b*.   

Cheung and Hausman (1997) based their work on three assumptions for the 

system:  the constant time requirement for a preventive maintenance operation is 

short when compared with the mean time between failures (MTBF); sufficient 

capacity is present to allow rapid accumulation of safety stocks in the beginning of 

each machine life cycle; the time to accomplish buildup and depletion of safety stocks 

is small relative to the MTBF.  Under these assumptions, they used perfect periodic 

preventive maintenance to formulate an analytical model for the cost rate of the 

system, then they minimized this cost rate to find out the optimal preventive 

maintenance scheduling and safety stocks level simultaneously.   

Ben-Daya (2002) studied a preventive maintenance policy on this system: after 

preventive maintenance, the age of the system is reduced proportional to the 

preventive maintenance level; the system would return to be “as good as new” after 
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replacement or m preventive maintenance actions, whichever occurs first.  He also 

assumed that there are no shortages in this model, and the time for preventive 

maintenance and inspection is negligible.  He finally derived the model for the 

expected total cost per unit of time, involving the setup cost, inspection cost, 

inventory holding cost, quality related costs, and preventive maintenance cost.   

Sheu and Chen (2004) further developed the model by Ben-Daya (2002).  They 

just extended the original model to classify the out-of-control state of the system into 

two categories: type I and type II.  Minimal repair would be undertaken if it is in the 

type I state; otherwise the production is stopped and the system is restored for the type 

II state.   

Kenne et al (2007) developed the analytical model for the total costs for 

maintenance, inventory and lost sale of the system.  They used the age-dependent 

policy for preventive maintenance, and used a new inventory policy in consideration 

of reducing the holding cost, which is called “multiple threshold levels hedging point 

policy”.  Both preventive maintenance and corrective maintenance are assumed to be 

perfect in their model, and also the preventive maintenance duration is assumed to be 

shorter than MTTF.   
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Chapter 3 

Problem Definition 

In this chapter, we propose our study on the Supply-Buffer-Demand system.  

First, a previous model on the Supply-Buffer-Demand system by Chelbi and Rezg 

(2006) is introduced and its extensions are discussed.  In the next, a more general 

maintenance model (compared to that of Chelbi and Rezg (2006)) on the 

Supply-Buffer-Demand system is raised, which involves “preventive maintenance”, 

“imperfect maintenance”, “maintenance planning and production”, and “maintenance 

on multi-unit systems”.   

 

3.1 An existing model on the Supply–Buffer-Demand system 

and its extension 

Chelbi and Rezg (2006) developed a model for the Supply-Buffer-Demand 

system based on the age-dependent maintenance policy on M1.  They derived the 

expected total costs per unit of time for the system, which include maintenance cost, 

holding cost and shortage cost.  In order to obtain the optimal maintenance time T 

and the buffer level h simultaneously in their model, the total cost rate is minimized 

while a minimum required stationary availability is satisfied as a constraint.  

Therefore, the optimal policy not only considers the cost rate but also takes into 

account the availability of the system.  Maintenance is assumed to be perfect in their 
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model, and the failures are assumed to be excluded during the buildup of the stocks in 

the buffer.   

The model we develop is an extension for the model presented by Chelbi and 

Rezg (2006).  In our model, the age-dependent preventive maintenance is not as 

perfect as assumed by Chelbi and Rezg (2006) or in other papers on 

Supply-Buffer-Demand systems.  Instead, preventive maintenance is assumed to be 

imperfect which follows the (p, q) rule in our model, i.e. each preventive maintenance 

action is perfect with probability p and is imperfect with probability q.  Therefore, in 

our model, an “enhanced” preventive maintenance is carried out every N maintenance 

actions (preventive or corrective), so that the state of the system can be totally 

restored to the perfect state (“as good as new”).  Such an enhanced preventive 

maintenance action is assumed to be perfect, but it would cost more money than a 

normal preventive maintenance.  The expected total cost rate would be formulated as 

the objective function, and the minimum required stationary availability should be 

satisfied as a constraint.  In addition, as normal preventive maintenance is imperfect, 

the minimum reliability requirement should also be considered to be a constraint, to 

prevent the system from falling into a terribly unreliable state.  Finally, we also 

consider the circumstances where the average quantity of shortage of the buffer 

should not exceed a certain limit.  Beyond that limit some customers may be lost 

forever, as it may be impossible for M2 to backlog from external resources any more 

(instead from the buffer, which is the internal resource).  The aim of the model is to 

determine the optimal decision variables T (age-dependent preventive maintenance 
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increment age), N (enhanced preventive maintenance decision variable), and h (buffer 

capacity) simultaneously, since they interactively decide the cost rate and other 

constraints of the system.  Our model, compared to the model given by Chelbi and 

Rezg (2006), considers more conditions for the system, and so it is a more general 

model to describe the Supply-Buffer-Demand system.   

 

3.2 A general model for the Supply-Buffer-Demand system 

The manufacturing system that we consider, as depicted in Figure 2.1, consists of 

a production unit M1 which produces raw materials and supplies them to the 

subsequent production unit M2.  The system has the following characteristics:  

1. M1 is an unreliable unit and it is subject to random failures.  Maintenance 

actions are taken on M1 as soon as its age increases by T or at failure, whichever 

occurs first.  Corrective maintenance is perfectly performed at M1’s failure and 

restores M1’s virtual age to zero.  Preventive maintenance is imperfectly 

performed: the virtual age of M1 may return to zero after preventive maintenance 

with certain probability p, or the age does not change with probability 1-p.  There 

is an “enhanced” preventive maintenance action for every N (N is a fixed number) 

maintenance actions (either corrective or preventive), which could restore M1 to 

be as good as new.   

2. M2 is a reliable unit with no random failures, and its demand for raw materials is 

fixed to a constant rate.   

3. A buffer stock, which is between the sequential units M1 and M2, is built up to 
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supply M2 with raw materials when M1 undergoes corrective maintenance or 

planned preventive maintenance.  The buffer has a finite capacity h.  As long as 

the buffer capacity is not reached, M1 operates at its maximum production rate 

Umax.  Umax is bigger than the demand rate of M2, so the excess output is 

stored in the buffer.  When the buffer is full, the production rate of M1 is lowered 

down to the demand rate of M2.   

4. A period is defined as the time interval, which starts right after the completion of a 

maintenance action (or time zero) and ends until the completion of the next 

maintenance action.  From this definition, we know that right after the end of 

each period, the production unit M1 may return to the state “as good as new” and 

its virtual age returns to zero (if it undergoes corrective maintenance or undergoes 

perfect preventive maintenance with probability p); otherwise it remains “as bad 

as old” and its virtual age does not change (if it undergoes minimal preventive 

maintenance with probability q).  In a word, M1’s virtual age increases by T or 

returns to zero for each period.   

5. A cycle consists of N periods, which is defined as the time interval starting right 

after the completion of an “enhanced” preventive maintenance action (or time zero) 

and ending just until the completion of the next enhanced preventive maintenance 

action.  According to this definition, the unit M1’s virtual age returns to zero 

right after the end of each cycle.  Therefore, there is a renewal process associated 

with the cycles of the system.   

6. An enhanced preventive maintenance is a normal preventive maintenance getting 
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enhanced: either the cost of a preventive maintenance action, or the duration of an 

action, or both the cost and the duration are increased (such as costing more 

money to assign more personal to the maintenance action or taking more time to 

examine and maintain), in order to make sure that the enhanced preventive 

maintenance would become a perfect action.  This contrasts with the normal 

preventive maintenance for the system, which is an imperfect action.   

 

We formulate our mathematical model on this system.  In our model, a 

minimum stationary availability level for M1 is required.  A minimum reliability 

requirement for M1 should also be satisfied.  For certain circumstances, the expected 

quantity for the average shortage of raw materials supplied to M2 is considered (i.e. 

neither M1 nor the buffer could supply M2), which should not exceed a maximum 

level.  Our objective is to determine the age increment T, the size of the buffer 

capacity h, and the number of periods in a cycle N, so that the total cost per unit of 

time is minimized while requirements are simultaneously met.   

The following assumptions are considered:   

1. Lifetime probability distribution of M1 is known.   

2. Maintenance duration is known and constant.   

3. All costs, which are related to maintenance and inventory, are assumed to be 

known and constant.   

4. Failures are detected instantaneously.   

5. All the resources needed to perform the maintenance actions are available at the 
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right time.   

6. Corrective maintenance and enhanced preventive maintenance actions are 

perfectly performed.  Each action restores the supplying production unit M1 to 

be as good as new.   

7. Preventive maintenance action is imperfect following the (p, q) rule: each action 

may be a perfect action with probability p, which restores the system to be as good 

as new; or it may be a minimal maintenance action with probability q=1-p, which 

does not change the age of the system, so that the system remains “as bad as old” 

state.   

8. An “enhanced” preventive maintenance action only costs more money than a 

normal preventive maintenance action, while the time for its maintenance action is 

the same as a normal preventive maintenance action.   

9. A corrective maintenance action costs more time and money than a preventive 

maintenance action.   

10. The stocks in the buffer are imperishable with time.   

11. The failure rate of M1 is an increasing failure rate.   

12. The system initial state is time zero.   

 

Relationship between “period” and “cycle” can be depicted in a figure:  
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According to the definitions of “period” and “cycle”, we get to know that each 

period incurs the maintenance cost and causes the corresponding inventory costs due 

to the maintenance, so it is obvious that the total costs within a “cycle” would be 

computed on a period to period basis.  As for each cycle, the system’s state would 

return to the initial state (time zero) at the end of the cycle after the enhanced 

preventive maintenance, so the system is actually renewed after each cycle.  The 

renewal theory could be used here to compute the total average cost per unit of time.   

Similar to what has been raised in the works by Wang and Pham (1999) and by 

Chelbi and Rezg (2006), from the classical renewal reward theory we have the 

following conclusion: the total average cost per unit of time on an infinite horizon S(N, 

T, h) is equivalent to the expected total average cost per unit of time within a renewal 

cycle.  In this thesis, the times between consecutive enhanced preventive 

maintenance actions constitute renewal cycles.  Therefore, in order to formulate the 

objective function S(N, T, h), we only need to obtain both the expected total costs 

within a cycle and the expected total time within a cycle, and derive the quotient.   

 

 

1
st
 period 2

nd
 period 

N
th

 period 

A cycle 

Figure 3.1 Relationship between “period” and “cycle” 
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Chapter 4 

Analysis and Theoretical Development 

In this chapter, we analyze our general system and formulate the model.  We 

derive the analytical results for the objective function and constraint functions for our 

model.   

In Section 4.1 we develop the objective function for our model.  First we 

analyze the cost and time for the maintenance policy and derive the corresponding 

analytical results in Section 4.1.1.  Then we study and derive the analytical form of 

the cost for the inventory policy in Section 4.1.2.  Finally based on the results in 

Sections 4.1.1 and 4.1.2, we obtain the total cost rate (including both maintenance 

cost and inventory cost) of the system in Section 4.1.3, and this cost rate is what we 

are going to minimize.   

In Section 4.2 we develop the constraint functions for our model of the system.  

We analyze the requirements of our system, so that we derive the corresponding 

analytical forms of constraints for our model: availability constraint, reliability 

constraint, and shortage rate constraint.  We first develop the stationary availability 

of the system in Section 4.2.1, and the constraint function for satisfying minimum 

availability is derived.  We then develop the constraint function for satisfying 

minimum reliability requirement of the system in Section 4.2.2.  Finally we study 

and develop the shortage rate of the system in Section 4.2.3, and the constraint 

function for satisfying maximum shortage rate is also derived.  
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4.1 Derivation of the total cost rate of the system 

4.1.1 Derivation of cost and time for the age dependent maintenance 

policy 

First we consider the age dependent preventive maintenance policy, as well as its 

related costs and time within a cycle.  We define two symbols related to periods:  

Definition 4.1 

An (T): the expected maintenance costs (including the preventive and corrective 

maintenance) for the n
th

 period since the last perfect maintenance action (either 

corrective maintenance, enhanced preventive maintenance, or preventive maintenance 

which is perfectly performed with probability p);  

Bn (T): the expected time duration (including the operating time and maintenance time) 

for the n
th

 period since the last perfect maintenance action.  

 

Proposition 4.1 The expected maintenance costs and the expected time for the n
th

 

period since the last perfect maintenance action are 

 

( ) ( ) [( 1) ]
( )

[( 1) ] [( 1) ]
n p c

R nT F nT F n T
A T M M

R n T R n T

 
 

  ;                        (4.1) 
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Proof.  For the n
th

 period since the last perfect maintenance action, the production 

unit M1 would have undergone (n-1) minimal preventive maintenance actions during 

the last (n-1) periods (as there has been no failure or perfect preventive maintenance 

on M1), so the virtual age of M1 is (n-1)T at the beginning of the n
th

 period.  

Therefore, probability distribution function for M1’s lifetime X in the n
th

 period is the 

conditional probability given that M1 has survived for time (n-1)T, i.e. the conditional 

probability distribution function is  

 

[ ( 1) | ( 1) ] { [( 1) ] [( 1) ]}/ [( 1) ]P X n T t X n T F n T t F n T R n T           .   (4.3) 

 

Therefore the conditional reliability function for M1 in the n
th

 period is  

 

1 { [( 1) ] [( 1) ]}/ [( 1) ] [( 1) ]/ [( 1) ]F n T t F n T R n T R n T t R n T          ,      (4.4) 

 

and the expected lifetime in the n
th

 period is 

 

0 ( 1)

[( 1) ]/ [( 1) ] [ ( ) ] / [( 1) ]

T nT

n T

R n T x R n T dx R x dx R n T


      .                 (4.5) 

 

Thus, it is obvious that formulas (4.1) and (4.2) are correct from the results of 

formulas (4.3), (4.4), and (4.5).                                           □ 

 

Continuing to define the other symbols:  

Definition 4.2  

ECn (T): the expected total maintenance costs (corrective and preventive maintenance) 

for the first n periods within a cycle;  



28 
 

ETn (T): the expected total time duration (operating time and maintenance time) for 

the first n periods within a cycle;   

ΔECn (T): the expected maintenance costs for the n
th

 period within a cycle;  

ΔETn (T): the expected time duration for the n
th

 period within a cycle.  

 

According to the definition, we have  

 

1( ) ( ) ( )n n nEC T EC T EC T   ; 1( ) ( ) ( )n n nET T ET T ET T   ;             (4.6) 
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      , n≥1;            (4.8) 

 

Therefore, to obtain the formulas ECn (T) and ETn (T), we only need to get the 

expressions for ΔECn (T) and ΔETn (T).   

 

Proposition 4.2 ΔECn (T) and ΔETn (T) can be obtained through 
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Proof.  If there is no perfect maintenance action (either corrective or preventive) in 

the first (i-1) periods within a cycle, the production unit M1 would have undergone 
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(i-1) minimal preventive maintenance actions since the beginning of a cycle.  Thus, 

the probability for such circumstance is q
i-1

R[(i-1)T] and the maintenance costs for the 

i
th

 period within a cycle is Ai (T).   

Otherwise, there is at least one perfect maintenance action in the first (i-1) 

periods within a cycle.  If the first of these perfect maintenance actions happens at 

the j
th

 period, M1 would have undergone (j-1) minimal preventive maintenance 

actions in the first (j-1) periods and a perfect maintenance action (corrective or 

preventive) in the j
th

 period, so the probability for this circumstance is 

1 ( )
[( 1) ]{1 }

[( 1) ]

j R jT
q R j T q

R j T

  


.  On the other hand, since the prefect maintenance 

action reduces the virtual age of M1 to zero at the j
th

 period, the state of the system at 

the beginning of (j+1)
th

 period of a cycle would be as if what it were at the beginning 

of a cycle.  Thus, the state of the system at the beginning of i
th

 period of a cycle 

would be as if what it were at the beginning of the (i-j)
th

 period of a cycle.  Therefore, 

the expected maintenance costs of the i
th

 period within a cycle is mathematically 

equivalent to the expected maintenance costs for the (i-j)
th

 period within a cycle, 

which is ΔECi-j (T) according to the definition.   

Thus, the formula (4.9) has been proved.  Similarly we can derive the formula 

(4.10).                                                              □ 

 

Since we have proposition 4.2 and we know that 1 1 1( ) ( ) ( )EC T EC T A T    

and 1 1 1( ) ( ) ( )ET T ET T B T   , we could compute ΔECn (T) and ΔETn (T) with 

recursion method.  Thus, we can obtain ECn (T) and ETn (T) through formulas (4.7) 
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and (4.8). 

 

4.1.2 Derivation of cost for the inventory control policy 

Inventory control policy that we consider helps to smooth the supply to the unit 

M2.  When the production unit M1 is undergoing maintenance, the supply from M1 

will be ceased.  To ensure that the demand of M2 is satisfied, the stocks from the 

buffer would be used as a temporary supply.  However, depending upon the content 

in the buffer, the demand of M2 during M1’s maintenance may or may not be fully 

covered by the stocks in the buffer.  In some cases, the content in the buffer is rich 

enough and it can supply M2 during the whole process of maintenance; in other cases, 

however, the content in the buffer can only supply M2 for part of the process of 

maintenance, so in the remaining process of maintenance there will be a shortage cost 

Cs for each product which the buffer is unable to supply to M2.  This represents the 

cost for additional efforts to supply M2 from external resources in the short run.   

The evolution of buffer stock level in a period consists of three phases: in Phase I, 

the production unit M1 produces at its maximum production rate Umax, in order to 

build up the buffer stock h; and then in Phase II, M1 produces at the production rate 

of d, which is the demand rate of M2;
1
 in Phase III, due to M1’s failure or its virtual 

age increasing by T, the production of M1 stops for maintenance and the buffer stock 

supplies the demand of M2 instead.  In Phase III, the maximum depletion time of the 
                                                        
1 For example, in a production process including stamping and press punching in the 

automotive industry and die casting, when all three shifts of operation are utilized, the 

production unit can run at its maximum output rate Umax; when only one shift is 

utilized, it runs at a normal rate d. 
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buffer stock is h/d.  This evolution process can be depicted as in Figure 4.1 and 4.2.  

Figure 4.1 characterizes the case where maintenance time exceeds h/d, so that the 

shortage and its related costs are incurred; while in Figure 4.2 a period without 

shortage is depicted.   

 

Phase I Phase II Phase III Phase I 

Figure 4.1 The buffer stock level in a period with shortage 
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The mathematical model for this inventory control policy is based on two 

assumptions:  

1. The shortage cost rate Cs is much bigger than the holding cost rate Ch (Cs >>Ch).   

2. Failures are excluded in Phase I of a period, i.e. there is no failure in the buffer 

stock buildup stage.   

Previous papers have introduced the second assumption for modeling the 

inventory buffer of the system: Cheung and Hausman (1997) assumed that the time to 

accomplish the buildup of a safety stock is small, compared to the mean time to 

failures; Chelbi and Alt-Kadi (2004) made the same assumption as Cheung and 

Hausman (1997); Chelbi and Rezg (2006) assumed that failures are excluded in the 

phase of reconstitution of the buffer stock.   

Obviously, to make the idealistic assumption “failures are excluded in Phase I” 

(the second assumption) be valid in some extent, it needs certain minimum 

Phase I Phase II Phase III Phase I 

Figure 4.2 The buffer stock level in a period without shortage 
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requirements for the reliability of the unit M1, so that the risk of failure in Phase I 

would be relatively small enough.  We will discuss the reliability requirements later 

in the subsection “4.2.2 Derivation of reliability and its minimum requirement”.   

Next we will formulate the expression for the expected total holding and 

shortage costs within a period.  According to different range for h/d, which is the 

depletion time of full buffer stock, two forms of expressions under two different 

conditions are formulated respectively.  It is noted that h/d should not be bigger than 

μc, i.e. there should be h≤μcd.  This is because in our model the longest time that the 

unit M1 ceases to work (which is also the longest time that the buffer works 

continuously) is μc (under corrective maintenance due to failure), after that M1 

resumes working at least until the buffer stock is restored to h (according to the 

second assumption).  Therefore, any product stored beyond μcd would just incur 

additional holding cost and it is not beneficial to the system at all.   

We will then split the possible area h/d≤μc into two ranges, and each range 

corresponds to a condition for the inventory control policy:  

Condition 1: p c

h

d
   ; i.e. full stocks in the buffer will be depleted during 

corrective maintenance, but will not be depleted after preventive maintenance;  

Condition 2: p

h

d
 ; i.e. full stocks in the buffer will be depleted during preventive 

maintenance. 

   

Definition 4.3 

G1n (T, h): the expected total inventory costs (holding cost and shortage cost) for the 
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n
th

 period since the last perfect maintenance action, under Condition 1 of the 

inventory control policy;  

G2n (T, h): the expected total inventory costs (holding cost and shortage cost) for the 

n
th

 period since the last perfect maintenance action, under Condition 2 of the 

inventory control policy.  

 

From the proof of proposition 4.1, we know that: for the n
th

 period since the last 

perfect maintenance action, the probability that unit M1 undergoes corrective 

maintenance is 
( ) [( 1) ]

[( 1) ]

F nT F n T

R n T

 


, and the probability that M1 undergoes 

preventive maintenance is 
( )

[( 1) ]

R nT

R n T
.   

 

For Condition 1 p c

h

d
   :  

a. If the unit M1 undergoes corrective maintenance, there will be a shortage incurred, 

so we should compute the inventory costs according to Figure 4.3.   
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The total holding cost for the n
th

 period since the last perfect maintenance action 

is the product of holding cost rate Ch multiplying the surface delimited by OCDEBA 

in Figure 4.3, which is  

 

2 2

max max( 1)

1 1 1
[ ( ( ) ) ]
2 [( 1) ] 2

nT

h

n T

h h h
C h R t dt

U d R n T U d d


  
   ;              (4.11) 

 

while the total shortage cost for the n
th

 period since the last perfect maintenance action 

is the product of shortage cost rate Cs multiplying the surface delimited by EFG in 

Figure 4.3, which is 

 

2 1
[( ) ]

2
s c

h
C d

d
  .                                                 (4.12) 
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Figure 4.3 The buffer stock level in a period with shortage 
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Therefore, the total inventory costs for the n
th

 period since the last perfect 

maintenance action is (when M1 undergoes corrective maintenance) 

 

2 2
2

max max( 1)

1 1 1 1
[ ( ( ) ) ] ( )
2 [( 1) ] 2 2

nT

h s c

n T

h h h h
C h R t dt C d

U d R n T U d d d




    
   ; (4.13) 

 

b. If the unit M1 undergoes preventive maintenance, there will be no shortage, so we 

should compute the inventory costs according to Figure 4.4.   

 

The total holding cost for the n
th

 period since the last perfect maintenance action 

is the product of holding cost rate Ch multiplying the surface delimited by OCDGEBA 

in Figure 4.4,
2
 which is  

 

22
2

max max

( )1 1 1
[ ( ) ]
2 2 2

p

h p p

h dh h
C h T h d

U d U d d


 


    

 
;             (4.14) 

                                                        
2 The surface delimited by EFG is reserved to be calculated in the next period, i.e. it is 

calculated in the (n+1)
th

 period since the last perfect maintenance action. 
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Therefore, the total inventory costs for the n
th

 period since the last perfect 

maintenance is (when M1 undergoes preventive maintenance)  

 

22
2

max max

( )1 1 1
[ ( ) ]
2 2 2

p

h p p

h dh h
C h T h d

U d U d d


 


    

 
.             (4.15) 

 

Hence, for Condition 1, formulas (4.13) and (4.15) imply that: for the n
th

 period 

since the last perfect maintenance action, the expected total inventory costs are  
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max max

2 2
2

max max( 1)
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h s c

n T

h dR nT h h
G T h C h T h d

R n T U d U d d

F nT F n T h h h h
C h R t dt C d

R n T U d R n T U d d d


 





     

  

 
     

   

 

                                                                (4.16) 

 

For Condition 2 p

h

d
 : 

a. If the unit M1 undergoes corrective maintenance, there will be a shortage incurred.  

Similar to the derivation for Condition 1, the total holding cost for the n
th

 period 

since the last perfect maintenance action is the product of holding cost rate Ch 

multiplying the surface delimited by OCDEBA in Figure 4.3, which is  

 

2 2

max max( 1)

1 1 1
[ ( ( ) ) ]
2 [( 1) ] 2

nT

h

n T

h h h
C h R t dt

U d R n T U d d


  
   ;              (4.17) 

 

while the total shortage cost for the n
th

 period since the last perfect maintenance action 

is the product of shortage cost rate Cs multiplying the surface delimited by EFG in 

Figure 4.3, which is 
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2 1
[( ) ]

2
s c

h
C d

d
  .                                                 (4.18) 

 

Therefore, the total inventory costs for the n
th

 period since the last perfect 

maintenance action is (when M1 undergoes corrective maintenance)  

 

2 2
2

max max( 1)

1 1 1 1
[ ( ( ) ) ] ( )
2 [( 1) ] 2 2

nT

h s c

n T

h h h h
C h R t dt C d

U d R n T U d d d




    
   ; (4.19) 

 

b. If the unit M1 undergoes preventive maintenance, there will be a shortage incurred.  

Similar to the derivation for Condition 1, the total holding cost for the n
th

 period 

since the last perfect maintenance action is the product of holding cost rate Ch 

multiplying the surface delimited by OCDEBA in Figure 4.3, which is 

 

2 2

max max

1 1
[ ( ) ]
2 2

h

h h h
C h T

U d U d d
  

 
;                               (4.20) 

 

while the total shortage cost for the n
th

 period since the last perfect maintenance action 

is the product of shortage cost rate Cs multiplying the surface delimited by EFG in 

Figure 4.3, which is 

 

2 1
[( ) ]

2
s p

h
C d

d
  ;                                                 (4.21) 

 

Therefore, the total inventory costs for the n
th

 period since the last perfect 

maintenance action is (when M1 undergoes preventive maintenance) 

 

2 2
2

max max

1 1 1
[ ( ) ] ( )
2 2 2

h s p

h h h h
C h T C d

U d U d d d
    

 
;                 (4.22) 



39 
 

 

Hence, for Condition 2, formulas (4.19) and (4.22) imply that: for the n
th

 period 

since the last perfect maintenance, the expected total inventory costs are  

 

2 2
2

max max

2 2
2

max max( 1)

( ) 1 1 1
2 ( , ) { [ ( ) ] ( ) }
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R n T U d R n T U d d d






     
  

 
     

   
 

                                                                (4.23) 

 

In previous formulas, we have seen the form “
max

h
T

U d



”.  Since we have 

made the assumption that “failures are excluded in Phase I”, the interval for 

consecutive preventive maintenance actions should not be smaller than the 

reconstitution time of the buffer, i.e. there should be  

 

max

h
T

U d



.                                                   (4.24) 

 

 

4.1.3 Derivation of total cost and time for the system 

The Supply-Buffer-Demand system that we consider is a serial system, i.e. the 

unit M1 is in the upper stream of the system while the buffer and the unit M2 are in 

the lower stream of system, so the activities in the buffer could not influence the 

maintenance actions of M1.  Therefore, the inventory control policy that the buffer 

adopts has no direct impact on the age dependent preventive maintenance policy of 

M1.  This means that once the maintenance policy of M1 is fixed, the expected 

maintenance costs and time duration for a period would be fixed, and they could not 
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be changed by different inventory policies.  Thus, we get to know the following two 

points in the combination of two policies:  

1. The inventory control policy has exactly the same period and the cycle as the 

preventive maintenance policy, and both the period and the cycle are solely 

determined by the preventive maintenance policy; 

2. The expected total costs of both maintenance and inventory control in a period 

would be just the summation of maintenance costs and inventory costs. 

 

From the results in previous two subsections 4.1.1 and 4.1.2, we have already 

obtained the formulas for the expected maintenance costs and the expected inventory 

costs for the n
th

 period since the last perfect maintenance, so we can derive the 

expected total costs (including both maintenance and inventory costs) for the first n 

periods within a cycle with the similar formulas as those in proposition 4.2.  We 

also know that the expected total time duration for the first n periods within a cycle is 

the same for either preventive maintenance policy or inventory policy, and this 

duration is solely determined by preventive maintenance policy.   

To derive the total cost rate (including maintenance and inventory costs) of the 

system, we first define the following symbols (“maintenance cost” in these definitions 

do not include the enhanced preventive maintenance cost): 

Definition 4.4 

ΔEC1n (T, h):  the expected total costs (including both the maintenance cost and 

inventory cost) for the n
th

 period within a cycle, under Condition 1 of the inventory 
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control policy;  

ΔEC2n (T, h): the expected total costs (including both the maintenance cost and 

inventory cost) for the n
th

 period within a cycle, under Condition 2 of the inventory 

control policy;  

EC1n (T, h): the expected total costs (including both the maintenance cost and 

inventory cost) for the first n periods within a cycle, under Condition 1 of the 

inventory control policy;  

EC2n (T, h): the expected total costs (including both the maintenance cost and 

inventory cost) for the first n periods within a cycle, under Condition 2 of the 

inventory control policy.   

 

Similar to proposition 4.2, we have  

Proposition 4.3 ΔEC1n (T, h) and ΔEC2n (T, h) can be obtained from 
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1 1
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                                                                (4.25) 
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, 

                                                                (4.26) 

 

Proof.  Since we know that “the inventory control policy has exactly the same period 

and the cycle as the preventive maintenance policy”, the expected total costs 

(including both the maintenance cost and inventory cost) for the i
th

 period since the 
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last perfect maintenance action is Ai(T)+G1i(T, h) under Condition 1 of inventory 

control policy.  Therefore, using the same deduction as that in proposition 4.2, we 

can derive the formula (4.25).  Similarly, under Condition 2 of inventory control 

policy, we can obtain the formula (4.26).                                  □ 

 

Under the help of proposition 4.3, we can obtain EC1n (T, h) and EC2n (T, h) 

from:  

 

1

1 1

1 ( , ) [ 1 ( , ) 1 ( , )] 1 ( , )
n n

n n n i

i i

EC T h EC T h EC T h EC T h

 

     ,              (4.27) 

 

1

1 1

2 ( , ) [ 2 ( , ) 2 ( , )] 2 ( , )
n n

n n n i

i i

EC T h EC T h EC T h EC T h

 

     ,             (4.28) 

 

1 1 11 ( , ) 1 ( , ) ( ) 1 ( , )nEC T h EC T h A T G T h    ,                           (4.29) 

 

1 1 12 ( , ) 2 ( , ) ( ) 2 ( , )nEC T h EC T h A T G T h    .                          (4.30) 

 

In summary, when temporarily not considering the enhanced preventive 

maintenance cost, we have obtained the expected total cost per unit of time within a 

cycle:  

 

1 ( , )
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N

EC T h

ET T
, if p c
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d
   ; 

2 ( , )
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N

EC T h

ET T
, if p

h

d
 .                  (4.31) 
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4.2 Optimal strategy meeting system requirements 

4.2.1 Derivation of availability and its minimum requirement 

In this subsection we will formulate the expected availability of the production 

unit M1 within a cycle.  The joint consideration of total cost rate and stationary 

availability has significant engineering meanings in the applications.  In fact, for an 

extreme example, where preventive maintenance cost is too small compared to 

corrective maintenance cost, the optimal maintenance strategy without consideration 

of availability could be: preventive maintenance is carried out constantly, without any 

operation of the production system, in order that the cost for corrective maintenance 

would never be incurred.  Obviously, the system in this extreme situation would be 

nothing but a futile system.  Thus, we know that the availability requirement is a 

must in formulating the models.   

Previous papers have implemented this joint consideration into their models.  

Wang and Pham (1999) stated the importance of joint consideration of cost measures 

and availability measures, raising examples which may be needed in practice: 

“policies which minimize the maintenance cost rate while some availability 

requirements are satisfied, or policies that maximize the system availability while 

maintenance cost rate is less than some predetermined value”.  They also applied the 

former strategy into their maintenance model for a single production unit.  Chelbi 

and Rezg (2006) required a minimum stationary availability level for their 

optimization model of a Supply-Buffer-Demand system, too.   
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Definition 4.5 

AVn (T): the expected available time of the unit M1 for the n
th

 period since the last 

perfect maintenance;  

ΔEAVn (T): the expected available time of the unit M1 for the n
th

 period within a 

cycle;  

EAVn (T): the expected total available time duration of the unit M1 for the first n 

periods within a cycle;  

SAVN (T): the expected stationary availability of the production unit M1 within a cycle 

(N periods).  

 

From the formula (4.2), we have  

 

( 1)

( )

( )
[( 1) ]

nT

n T

n

R u du

AV T
R n T







;                                             (4.32) 

 

Similar as proposition 4.2, we can prove that ΔEAVn (T) can be obtained from:  

Proposition 4.4  
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 . (4.33) 

 

With the conclusion of proposition 4.4, we can get EAVn (T) through  
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1 1
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     .                     (4.34) 
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Therefore, we obtain the expected stationary availability  

 

( )
( )

( )

N
N

N

EAV T
SAV T

ET T
 .                                              (4.35) 

 

We know that our system starts at the age of zero at the beginning of each cycle.  

Thus, according to the definition of SAVN (T), it is obvious that for any N>1, there is  

 

1( ) ( )NSAV T SAV T ,                                               (4.36)  

 

i.e. if all the other parameters and the decision variable T are fixed, the expected 

stationary availability of a cycle which consists of two or more periods is smaller than 

the expected stationary availability of a cycle which consists of only one period.  

In our optimization model of the system, there is a minimum requirement level 

for this expected stationary availability, i.e. there is a form of inequality  

 

( )NSAV T Fa                                                     (4.37)  

 

as one of the constraints (Fa is a constant), when we minimize the expected total cost 

rate of the system.   

As for the property of this availability function, Chelbi and Rezg (2006) had 

proved that for N=1 (i.e. when preventive maintenance is always perfect) the 

stationary availability function is concave in T for any system with an increasing 

failure rate.  But for N>1, whether our availability function is also concave in T is 

uncertain.  The following figure (Figure 4.5) describes a numerical example for the 

situation when N=5 (assuming failure distribution to be Rayleigh distribution):  
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                 Figure 4.5 Availability vs. T when N=5 

 

The availability function in the example of Figure 4.5 seems to be concave in T: 

the function increases sharply when T is increasing from very small values, and after 

the function reaches its maximum value it starts to decrease with a relatively small 

slope.   

The trend in Figure 4.5 conforms our understanding about the relationship 

between availability and preventive maintenance age increment T: to maximize the 

availability, the age increment T must not be too small or too big.  This is because if 

T is too small, the time interval between maintenance actions (either corrective or 

preventive) would be too small, so that most of the time within a cycle would be 

occupied by maintenance actions; on the other hand, if T is too big, the probability of 

system failure would become very high and the system would undergo corrective 

maintenance, which costs much more time than a preventive maintenance action.   
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4.2.2 Derivation of reliability and its minimum requirement 

In this subsection, we will discuss the reliability and its minimum requirements 

for the unit M1 of our system.  As it is known, we have introduced the imperfect 

preventive maintenance into the original model given by Chelbi and Rezg (2006).  In 

other words we have brought in an uncertainty for the reliability status into our model: 

after each preventive maintenance action we are not sure of the exact state of the 

system any more, as we do not know whether the virtual age has been restored to zero 

(with probability p) or the virtual age has remained the same (with probability q).   

Thus, the reliability of the system decreases and hazards accumulate with time 

advancing, raising the probability of system failure and the corresponding corrective 

maintenance.  Therefore, the enhanced preventive maintenance is needed to ensure 

that: for every N periods the system could return to its initial state, i.e. the virtual age 

of the system becomes zero again.  In this way, we will also have a fixed length of a 

renewal cycle (N periods).   

Maintaining a minimum level for the reliability is also very important to make 

sure that our assumption is valid.  In the subsection “4.1.2 Derivation of cost for the 

inventory control policy”, we made the similar assumption as that in Cheung and 

Hausman (1997), Chelbi and Alt-Kadi (2004), and Chelbi and Rezg (2006): failures of 

the unit M1 are excluded in Phase I of a period, i.e. there is no failure in the buffer 

stock buildup stage.  Moreover, in their models, preventive and corrective 

maintenance have been assumed to be perfect, i.e. immediately after the end of each 

period (in other words, at the beginning of the Phase I of each period) the unit M1 
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would start at virtual age of zero and its reliability is R(0)=1.  Thus, for N 

consecutive periods in their models, the probability that the system is reliable at the 

beginning of the Phase I of all N consecutive periods, would be R
N
(0)=1.  Therefore, 

the probability that there is a failure in the Phase I of a period, would be small enough, 

so that the probability could be assumed to be neglected as in their models.   

On the other hand, preventive maintenance has been assumed to be imperfect in 

our model, so immediately after each maintenance action the unit M1 would start at 

the virtual age of kT, where k=0, 1, 2, …; while according to different virtual ages of 

M1, the probability that the unit M1 is reliable would be R(kT)≤1, k=0, 1, 2, ….  

Therefore, at the beginning of the Phase I of each period, the reliability would be  

 

1

( ) (the virtual age of M1 is ) 1
k

R R kT P kT




  .                         (4.38) 

 

Thus, the probability, that the system is reliable at the beginning of the Phase I of 

all N consecutive periods (i.e. for every period of a cycle), would be the product of N 

real positives whose values are all smaller than one, e.g. 0.9
N
.  Since such numbers 

as 0.9
10

=0.3487, 0.9
20

=0.1215, 0.9
30

=0.0424 are all smaller than one and are 

decreasing as N increases, there should be an upper limit for N.  This upper limit 

could ensure that the probability such as 0.9
N
 is not small (e.g. at least bigger than 

0.8000).  We implement the reliability constraint into the model, just to make sure 

the probability, that there is a failure in Phase I of a period within a cycle, to be small 

enough, so that this probability could be neglected and our assumption about “no 

failure in Phase I” could be valid.  To obtain the related reliabilities, first we define:  
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Definition 4.6 

Yk (T): the probability that the system's virtual age restores to zero after the k
th

 period 

within a cycle;  

Rbn (T): the probability that the system is reliable right before the maintenance action 

in the n
th

 period (i.e. it has survived a time T in the n
th

 period) within a cycle;  

Ran (T): the probability that the system is reliable immediately after the maintenance 

action in the n
th

 period within a cycle, i.e. the probability that the system is reliable 

immediately after the beginning of Phase I of the (n+1)
th

 period within a cycle.   

 

Since the system that we study initiates at the age of zero and the preventive 

maintenance is imperfect, we could easily derive from the definitions:  

 

0 0 0( ) 1,  ( ) 1,  ( ) 1;Y T Ra T Rb T                                        (4.39) 

 

1 1( ) ( ), ( ) ( ),   1.n nRa T Ra T Rb T Rb T n                                 (4.40) 

 

To derive a general form for Yk (T), we have the following results:  

Proposition 4.5 Yk (T) can be obtained through the following recursion  

 

1

0

( ) 1 [( ) ] ( )
k

k m

k m

m

Y T q R k m T Y T






   .                                 (4.41) 

 

Proof.  According to the definition of Yk (T), we know that Yk (T) is equivalent to  

“1-P (the system's virtual age does not restore to zero after the k
th

 period)”.  Then it 

is left for us to compute the probability that the system does not return to perfect state 
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after the k
th

 period within a cycle.  As we have analyzed before, if the system does 

not return to perfect state after the k
th

 period within a cycle, the possible virtual age of 

the system would be T, 2T, 3T, …, kT after the k
th

 period within a cycle.   

On the other hand, if the virtual age of the system is (k-m)T after the k
th

 period 

within a cycle, two requirements must be satisfied: 1. the system’s virtual age must 

return to zero after the m
th

 period; 2. after the m
th

 period, the system must undergo 

(k-m) consecutive minimal preventive maintenance actions in the subsequent (k-m) 

periods.  According to the definition, the probability that corresponds to the first 

requirement is Ym (T), while the probability for the second requirement to happen is  
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 .                                 (4.42)  

 

Therefore, we will obtain  

 

1
th

0

(the system's virtual age doesn't restore to zero after the  periods) [( ) ]
k

k m

m

P k q R k m T






   

                                                              (4.43) □ 

 

With the results of proposition 4.5, we can obtain Rbn (T) and Ran (T) from 

Proposition 4.6  
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  ;                                  (4.44)  

 

( ) ( ) (1 ( )) ( )n n n nRa T Y T Y T Rb T   .                                   (4.45)  

 

Proof.  We prove the formula (4.45) first.  When Rbn(T) is known, it is easy to 
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derive Ran(T): according to the definition, the n
th

 maintenance action within a cycle 

either restores the system virtual age to zero with probability Yn(T) or does not change 

the system age with probability 1-Yn(T).  The former occasion would turn the 

reliability of the unit M1 to R(0)=1; while the latter occasion would keep the 

reliability of the unit M1 just as it was before the maintenance, i.e. the reliability 

remains to be Rbn(T).  Thus, we have proved the formula (4.45).   

If the system is reliable right before the maintenance action in the n
th

 period 

within a cycle, the virtual age of the unit M1 at that time would possibly be T, 2T, 

3T, …, nT.  If the virtual age of the system is (n-k)T right before the maintenance 

action in the n
th

 period, the system must satisfy two requirements: 1. the system’s 

virtual age must return to zero immediately after the k
th

 period; 2. after the k
th

 period, 

the system must undergo (n-k-1) consecutive minimal preventive maintenance actions 

in the subsequent (n-k-1) periods, and then survived for time T in the next period.  

According to the definition, the probability that the system satisfies the first 

requirement is Yk(T); while the probability that the system satisfies the second 

requirement is 
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   .                     (4.46)   

 

Therefore, the formula (4.44) is proved.                                 □ 

 

With the help of proposition 4.6, we can have some numerical examples for Rbn 

(T) and Ran (T).  The definition for the reliability Rbn(T) implies that: with time 
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advancing, the reliability of the unit M1 is decreasing if without any preventive 

maintenance or corrective maintenance.  Therefore, although Rbn(T) may not be 

rigorously decreasing in T, at least it seems to have a tendency of decreasing with T.   

The following figure shows an example that Rbn (T) is decreasing when T increases, 

in which n=10:  
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               Figure 4.6 Reliability Rbn (T) vs. T when n=10  

   

On the other hand, we have numerical results for Ran(T): the following figure 

depicts a case where n=10 (although we are not sure of the convexity of Ran(T), it 

seems to be convex with T in this example):  
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               Figure 4.7 Reliability Ran (T) vs. T when n=10 

 

An illustration to this phenomenon is: when T is relatively small, the reliability is 

decreasing when T increases (time advancing); however, when T is relatively big, the 

reliability becomes too small that there is a high probability of failure, so that the 

reliability increases as a result of undergoing corrective maintenance due to the failure 

of the unit M1.   

Moreover, with the help of results from proposition 4.6, we can derive the 

reliabilities we have discussed previously in this subsection.  The probability that the 

system is reliable at the beginning of the Phase I of every period of a cycle (i.e. for N 

consecutive periods within a cycle), is  

 

1 1 1

0
0 1 1

( ) ( ) ( ) ( )
N N N

j j j
j j j

Ra T Ra T Ra T Ra T
  

  

    ,                             (4.47)  

 

in which Ra0(T)=1 according to the formula (4.37).  Apparently given the fixed 

value of T, this N-period joint reliability 
1

1

( )
N

j
j

Ra T



  is a decreasing function of N.  
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In addition, from the formula (4.38) we have  

 

1
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N

j
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Ra T Ra T






 ,                                            (4.48)  

 

in which only when N=1 or 2 does the inequality sign become an equal sign.   

As we have discussed before, this probability should have a lower bound as a 

constraint of our model, so that the reliability of the unit M1 remains high and our 

assumption that “there is no failure in the buffer stock buildup stage” could be close to 

the reality.  In summary, we should have the constraint  

 

1

1

( )
N

j
j

Ra T Fr




 ,                                                   (4.49)  

 

where Fr is a constant, representing the predetermined minimum reliability 

requirement for N consecutive periods (a cycle).   

 

A numerical example of 
1

1

( )
N

j
j

Ra T



  is depicted in the figure below (although the 

convexity of 
1

1

( )
N

j
j

Ra T



  is uncertain, it seems to be convex in T in this case):  
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Figure 4.8 N-period joint reliability 
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  vs. T when n=10  

 

Finally, we should know that Rbn(T) is very important in determining whether an 

additional cost Me is incurred for an enhanced preventive maintenance action in every 

N periods: if the maintenance action is a preventive maintenance action for the N
th

 

period, an additional cost Me is needed to ensure this preventive maintenance to be 

perfect, so that the system would be definitely renewed in every N periods; on the 

contrary, if the maintenance action is a corrective maintenance action for the N
th

 

period, there is no need to pay this additional cost Me at all because the corrective 

maintenance is already perfect.  Therefore, according to the definition of Rbn(T) and 

our analysis, the expected cost for the enhanced preventive maintenance action in a 

cycle would be  

 

( ) [1 ( )] 0 ( )N e N N eRb T M Rb T Rb T M    .                              (4.50) 
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4.2.3 Derivation of shortage rate and its maximum requirement 

In our Supply-Buffer-Demand system, the inventories in the buffer are used to 

supply the demanding unit M2 when the supplying unit M1 is undergoing corrective 

or preventive maintenance.  Since the capacity of the buffer is finite, there will be 

two possibilities when the buffer supplies the unit M2: 1. there are enough inventories 

in the buffer, so that all the demand of M2 during M1’s maintenance is met by the 

inventories; 2. there are not enough inventories in the buffer, so that there will be 

shortage incurred (i.e. some demand of M2 during M1’s maintenance can’t be met by 

the buffer).  For every unit of product that the buffer fails to supply to M2, there will 

be a shortage cost Cs incurred, which is associated with the additional effort to 

provide M2 with the unavailable product in the short run.  In other words, if the 

inventory in the buffer is not enough and so a shortage is caused, the system would 

turn to help from an external resource temporarily, so that the demand of the unit M2 

is satisfied.  This could be illustrated in the following graph:  
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Therefore, another problem may arise for the external resource: whether the 

external resource is sufficient to supply the demand of M2 when there is a shortage in 

the buffer.  Although Cs represents the additional effort to provide M2 with the 

unavailable product in the short run, it is not guaranteed that all the shortage could be 

covered by the external resource.  Sometimes the external resource is so plentiful 

that it can be seen as an infinite resource: in this case, there will be no further 

consideration for the external resource at all, because every unit of demand of M2 that 

is shortage could be supplied from the outside.  In the opposite case, however, the 

external resource is finite: in such a case, there will be an upper limit that the system 

could “import” from the external resource when the system’s buffer is in shortage.  

In this case, we should require that the shortage in the buffer should be satisfied by the 

external resource; otherwise other serious consequences maybe arise as a result of the 

unsatisfied shortage of the buffer, e.g. some customers may be lost forever if they 

External 

Resource 

Figure 4.9 A Supply-Buffer-Demand system with shortage  

 

 

M1 Buffer 

 

 

M2 

Supply Demand 
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could not get the products from the system.   

In summary, we have analyzed that there are two cases that we should consider 

when we formulate the optimization model: 1. Infinite external resource; 2. Finite 

external resource.  For the case of the finite external resource, there should be an 

upper limit for the shortage of the buffer, so that all the shortage could be covered by 

the external resource.   

In the system that we study, we assume that the upper limit of the shortage is 

measured by the expected total number of shortage per unit of time within a cycle, i.e. 

the stationary shortage quantity rate within a cycle, which is equivalent to the 

stationary shortage rate.  In this subsection, we will develop the formulas for the 

stationary shortage quantity rate.   

 

Definition 4.7 

Short1n (T, h): the expected number of shortage of the buffer for the n
th

 period since 

the last perfect maintenance action, under Condition 1 of the inventory control 

policy;   

Short2n (T, h): the expected number of shortage of the buffer for the n
th

 period since 

the last perfect maintenance action, under Condition 2 of the inventory control 

policy;   

ΔEShort1n (T, h): the expected number of shortage of the buffer for the n
th

 period 

within a cycle, under Condition 1 of the inventory control policy; 

ΔEShort2n (T, h): the expected number of shortage of the buffer for the n
th

 period 
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within a cycle, under Condition 2 of the inventory control policy; 

EShort1n (T, h): the expected total number of shortage of the buffer for the first n 

periods within a cycle, under Condition 1 of the inventory control policy;  

EShort2n (T, h): the expected total number of shortage of the buffer for the first n 

periods within a cycle, under Condition 2 of the inventory control policy;  

SShort1N (T, h): the expected total number of shortage of the buffer per unit of time 

within a cycle (N periods), under Condition 1 of the inventory control policy;  

SShort2N (T, h): the expected total number of shortage of the buffer per unit of time 

within a cycle (N periods), under Condition 2 of the inventory control policy.  

 

From the proof of proposition 4.1, we already know that: for the n
th

 period since 

the last perfect maintenance action, the probability that the unit M1 undergoes 

corrective maintenance is 
( ) [( 1) ]

[( 1) ]

F nT F n T

R n T

 


, and the probability that M1 

undergoes preventive maintenance is 
( )

[( 1) ]

R nT

R n T
.  With the same analysis as that in 

the subsection 4.1.2 for Condition 1 and Condition 2, we can develop the formulas 

for Short1n (T, h) and Short2n (T, h).   

 

For Condition 1 p c

h

d
   :  

a. If the unit M1 undergoes corrective maintenance, there will be shortage incurred 

and it is 2 1
( )

2
c

h
d

d
  , which is according to the formula (4.12).   

b. If the unit M1 undergoes preventive maintenance, there will be no shortage.   
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In summary, Short1n (T, h) can be obtained:  

 

2( ) [( 1) ] 1
1 ( , ) ( )

[( 1) ] 2
n c

F nT F n T h
Short T h d

R n T d


 
 


.                        (4.51) 

 

For Condition 2 p

h

d
 : 

a. If the unit M1 undergoes corrective maintenance, there will be shortage incurred 

and it is 2 1
( )

2
c

h
d

d
  , which is according to the formula (4.18).   

b. If the unit M1 undergoes preventive maintenance, there will be shortage incurred 

and it is 2 1
( )

2
p

h
d

d
  , which is according to the formula (4.21).   

In summary, Short2n (T, h) can be obtained: 

 

2 2( ) [( 1) ] 1 ( ) 1
2 ( , ) ( ) ( )

[( 1) ] 2 [( 1) ] 2
n c p

F nT F n T h R nT h
Short T h d d

R n T d R n T d
 

 
   

 
. (4.52) 

 

Similar as proposition 4.2, we can prove the following proposition:  

Proposition 4.7 ΔEShort1n (T, h) and ΔEShort2n (T, h) can be obtained through  

 

1
1 1

1

1 ( , )

( )
[( 1) ] 1 ( , ) [( 1) ]{1 } 1 ( , )

[( 1) ]

i

i
i j

i i j

j

EShort T h

R jT
q R i T Short T h q R j T q EShort T h

R j T


 







     



; (4.53) 

 

1
1 1

1

2 ( , )

( )
[( 1) ] 2 ( , ) [( 1) ]{1 } 2 ( , )

[( 1) ]

i

i
i j

i i j

j

EShort T h

R jT
q R i T Short T h q R j T q EShort T h

R j T


 







     



. (4.54) 

 

With the conclusion from proposition 4.7, we can derive the formulas for 

EShort1n (T, h) and EShort2n (T, h) according to their definitions:  
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1

1 1

1 ( , ) [ 1 ( , ) 1 ( , )] 1 ( , )
n n

n n n i

i i

EShort T h EShort T h EShort T h EShort T h

 

     ;  (4.55) 

 

1

1 1

2 ( , ) [ 2 ( , ) 2 ( , )] 2 ( , )
n n

n n n i

i i

EShort T h EShort T h EShort T h EShort T h

 

     . (4.56) 

 

Furthermore, according to the definitions, SShort1N (T, h) and SShort2N (T, h) are  

 

1 ( , )
1 ( , )

( )

N
N

N

EShort T h
SShort T h

ET T
 ;                                     (4.57) 

 

2 ( , )
2 ( , )

( )

N
N

N

EShort T h
SShort T h

ET T
 .                                    (4.58) 

 

For the case of the “finite external resource”, as we have discussed before, there 

should be an upper limit for the expected total number of shortage per unit of time 

within a cycle, so that all the shortage of the buffer could be satisfied by the external 

resource.  In other words, we should have a constraint for our model, which is  

 

1 ( , )NSShort T h Fs , if p c

h

d
   ;                                 (4.59) 

 

2 ( , )NSShort T h Fs , if p

h

d
 ;                                     (4.60) 

 

where Fs is a constant, representing the predetermined maximum stationary shortage 

quantity rate requirement level for a cycle.   

With the conclusion from formulas (4.57) and (4.58), we could have some 

numerical discussions for SShort1N (T, h) and SShort2N (T, h).  Our numerical results 

show that for fixed T and N, SShort1N (T, h) and SShort2N (T, h) are decreasing 
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functions of h (note that the domains for the variable h of these two functions are [dμp, 

dμc] and [0, dμp] respectively).  The following figure shows a numerical example 

about this relationship:  
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Figure 4.10 SShort1N (T, h) and SShort2N (T, h) vs. h when N=10   

 

In this numerical example the variable N=10, and the domains for the variable h 

of SShort1N (T, h) and SShort2N (T, h) are [5, 25], [0, 5] respectively.  In the Figure 

4.10, the graph between h=0 and h=5 is the figure for SShort2N (T, h); the graph 

between h=5 and h=25 is the figure for SShort1N (T, h); when h=5, SShort1N (T, h) and 

SShort2N (T, h) are equivalent.  The reason that the shortage quantity rate is the 

decreasing function of h is quite obvious: if h is bigger, there will be more inventories 

in the buffer to hedge against the risk of shortage, so there will be less shortage in a 

given time.    

Our numerical results also show that: given fixed h and N, SShort1N (T, h) is the 
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increasing function of T; when h is close to dμp in the domain [0, dμp], SShort2N (T, h) 

is the increasing function of T; when h is close to 0 in the domain [0, dμp], SShort2N (T, 

h) is decreasing with T when T is relatively small, and it is increasing with T when T 

is relatively big.  Here are three figures showing the relationships between the 

shortage quantity rate and T under different circumstances (In the following three 

numerical examples the variable N=10, and the definition domains of the variable h of 

SShort1N (T, h) and SShort2N (T, h) are [5, 25], [0, 5] separately, i.e. dμc=25, dμp=5):  
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Figure 4.11 SShort1N (T, h) is an increasing function of T when h=18   

 

According to the definitions for μp, μc and d, we know that dμp is the amount of 

products that are demanded by the unit M2 during preventive maintenance, while dμc 

is the amount of products demanded by the unit M2 during corrective maintenance.  

If h belongs to [dμp, dμc], the failure of the unit M1 and the subsequent corrective 

maintenance is the only source of shortage.  Therefore, a bigger T would increase the 

probability of failure and thus increase the shortage quantity rate.   
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Figure 4.12 SShort2N (T, h) is an increasing function of T when h=4   

 

If h belongs to [0, dμp] but is close to dμp, the failure and the subsequent 

corrective maintenance of the system is the primary source of shortage, while the 

shortage caused by the preventive maintenance would be just a minor.   
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Figure 4.13 SShort2N (T, h) vs. T when h=2   

 

The preventive maintenance would cause more shortage if h belongs to [0, dμp] 
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but is close to 0.  We know that T represents the frequency of the preventive 

maintenance; therefore, if T is getting too small it would increase the shortage rate.   

These three figures have demonstrated that the shortage quantity rate SShort1N (T, 

h) and SShort2N (T, h) are increasing functions of T in general.  Even for the case as 

in Figure 4.13, T should be small enough to impose an effect onto this “increasing” 

trend.  On the other hand, however, as we have discussed in the subsection “4.2.1 

Derivation of availability and its minimum requirement” before, T should not be “too 

small” since there is a minimum availability requirement for the system, which 

requires that T should be “big enough” to maintain the availability of the system.  

Therefore, when we develop our numerical algorithms later, we can treat SShort1N (T, 

h) and SShort2N (T, h) as increasing functions of T, without considering the special 

cases where T is too small.   
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Chapter 5 

Methods and Results 

In this chapter, we present the methods and processes to obtain the optimal 

policies (maintenance and inventory policies) for the system.  First, we formulate the 

optimization models based on the theoretical results in Chapter 4.  Next, we propose 

the numerical algorithms for solving the models.  Finally, numerical examples for 

the algorithms are raised and discussed.   

 

5.1 Optimization models 

According to the two different assumptions for the External Resource which has 

been discussed in the subsection 4.2.3, we can formulate two optimization models: 1. 

Infinite external resource; 2. Finite external resource.   

If the external resource is assumed to be infinite, we should formulate the 

comprehensive optimization model according to the analysis in the previous 

subsections and the formulas (4.24), (4.31), (4.37), (4.49), (4.50).   

 

Optimization Model I  

 

1 ( , ) ( )
, if 

( )
Min ( , , )

2 ( , ) ( )
, if         

( )

N N e
p c

N

N N e
p

N

EC T h Rb T M h

ET T d
S N T h

EC T h Rb T M h

ET T d
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1

1

( )

( )

subject to

max

, , 0

 and  are integers

N

N

j

j

SAV T Fa

Ra T Fr

h
T

U d

N T h

N h







 















,  

 

We have formulated this Optimization Model I which minimizes the expected 

total cost (including preventive maintenance cost, corrective maintenance cost, 

inventory cost and enhanced preventive maintenance cost) per unit of time of the 

system, as well as take into consideration of the supplying unit M1’s minimum 

stationary availability, and the minimum N-period joint reliability.   

When N=1, the enhanced preventive maintenance will be carried out every 

period, i.e. there will be no imperfect preventive maintenance because they all become 

perfect preventive maintenance after being “enhanced”.  This will be the situation 

that is presented and discussed by Chelbi and Rezg (2006).  Therefore, when N=1, 

the Optimization Model I would be reduced to the model presented by Chelbi and 

Rezg (2006).   

If the external resource is assumed to be finite, we should formulate the 

comprehensive optimization model through formulas (4.24), (4.31), (4.37), (4.49), 

(4.50), (4.59), (4.60).   

 

Optimization Model II 

 



68 
 

1 ( , ) ( )
, if 

( )
Min ( , , )

2 ( , ) ( )
, if         

( )

N N e
p c

N

N N e
p

N

EC T h Rb T M h

ET T d
S N T h

EC T h Rb T M h

ET T d

 




 


 

 


 

 

1

1

( )

( )

1 ( , ) ,  if 

subject to
2 ( , ) ,  if 

max

, , 0

 and  are integers

N

N

j

j

N p c

N p

SAV T Fa

Ra T Fr

h
SShort T h Fs

d

h
SShort T h Fs

d

h
T

U d

N T h

N h

 









 


   




 

 
 







,  

 

We have formulated this Optimization Model II which minimizes the expected 

total cost (including preventive maintenance cost, corrective maintenance cost, 

inventory cost and enhanced preventive maintenance cost) per unit of time of the 

system, as well as take into consideration of the supplying unit M1’s minimum 

stationary availability, the minimum N-period joint reliability, and the maximum 

expected number of total shortage per unit of time.   

The objective functions of the Optimization Model I and II are the same:  

 

1 ( , ) ( )
, if 

( )
( , , )

2 ( , ) ( )
, if         

( )

N N e
p c

N

N N e
p

N

EC T h Rb T M h

ET T d
S N T h

EC T h Rb T M h

ET T d

 




 


 

 


.                    (5.1) 

 

We will analyze the function S(N, T, h) and its variables.  When T and N are 

both fixed, h will be a tradeoff between inventory holding cost and shortage cost: a 
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bigger h is increasing the holding cost but reducing the shortage cost; while a smaller 

h is increasing the shortage cost but reducing the holding cost.  When h and N are 

both fixed, T will be a tradeoff between preventive maintenance cost and the sum of 

corrective maintenance cost and shortage cost: a bigger T is increasing the probability 

of failure, so that the corrective maintenance cost and shortage cost are both 

increasing; while a smaller T is increasing the frequency of preventive maintenance so 

that the preventive maintenance cost is rising.  Although generally the enhanced 

preventive maintenance cost only plays a minor role in the total cost, especially when 

N is large, it is still needed to note that: when T is increasing, the reliability RbN (T) 

will decrease and ETN (T) will increase, so a bigger T can reduce the enhanced 

preventive maintenance cost rate.   

Here are two examples of figures for the objective function (5.1).  Although it is 

uncertain whether the total cost rate is convex in T or h, it seems to be convex with T 

and h in these two figures respectively.   
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         Figure 5.1 Total cost rate S(N, T, h) vs. T when N=10 and h=18   
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         Figure 5.2 Total cost rate S(N, T, h) vs. h when N=10 and T=30 

 

Figure 5.1 depicts that the expected total cost rate function S(N, T, h) is generally 

convex with T on the whole and gets its minimal value around T=10.  Specifically, 

S(N, T, h) is convex with T when T is not too big; when T is getting too big, around 

more than T=80, the function comes into a generally steady state in which it is 

decreasing very slowly, i.e. the absolute value of its slope is very small.   

Figure 5.2 depicts that the expected total cost rate function S(N, T, h) is convex 

in h and it gets its minimal value at around h=20.   

 

5.2 Numerical algorithms to solve the models 

To solve the optimization models, the first step is determining the possible values 

or domains for the decision variables from the constraints of the model.  Then we 

enumerate all the possible values of the variables to calculate the total cost rate.  

Finally we compare all the results of the total cost rate, in order to find out the optimal 

values for the decision variables which minimize the total cost rate.   
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First, we know that the Optimization Model I and II both have the same 

availability requirement which is given by formula (4.37).  From the formulas (4.36) 

and (4.37), we know that to meet the needs of the availability constraint of the model, 

T should satisfy  

 

1( ) ( )NSAV T SAV T Fa  .                                            (5.2)  

 

Because Chelbi and Rezg (2006) had proved that for N=1 the stationary 

availability function is concave in T for any system with an increasing failure rate (i.e. 

SAV1(T) is concave in T), there should be just two values Ta, Tb (Ta<Tb) for T which 

are the solutions for equation  

 

1( )SAV T Fa ,                                                     (5.3) 

 

under appropriate assignment of the availability requirement Fa.  (If there is only 

one solution for this equation (5.3), then this only solution is the only value for T 

which satisfies the availability requirement of the model, so it will be the only 

possible solution for T of the optimization model; if there is no solution for the 

equation (5.3), there will be no solution for the optimization model.)  

Due to the concavity of the function SAV1(T), there should be  

 

1( ) , [ , ]a bSAV T Fa T T T   ;                                          (5.4) 

 

1( ) ,   a bSAV T Fa T T or T T     ;                                    (5.5) 

 

The results of the formulas (5.2) and (5.5) imply that for any N, there is  
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1( ) ( ) ,   N a bSAV T SAV T Fa T T or T T      .                           (5.6)  

 

Therefore, we know that the possible field for T which satisfies the availability 

requirement in formula (5.2) is [Ta, Tb].   

Secondly, we can determine the possible integers for N according to the N-period 

reliability requirement which is given by formula (4.49).  From the formulas (4.48) 

and (4.49), we know that to meet the needs of the reliability constraint of the model, T 

and N should satisfy  

 

1
1

1
1

[ ( )] ( )
N

N

j
j

Ra T Ra T Fr






  .                                         (5.7) 

 

If N=1, formula (5.7) is valid for any T.  If N>1, from formula (5.7) we derive  

 

1

1log[ ( )] logNRa T Fr  .                                             (5.8)  

 

Before we proceed, we derive the exact form and property of Ra1(T) first.  We 

have the following proposition:  

Proposition 5.1 Ra1(T) is convex with respect to R(T).  

Proof.  According to the formula (4.39), we have  

 

0 0 0( ) ( ) ( ) 1Y T Ra T Rb T   .                                    (5.9)  

 

Then according to the formulas (4.41), (4.44) and (5.9), we have  

 

0
1

1 0

0

( ) 1 ( ) ( ) 1 ( )
m

Y T q R T Y T qR T


    .                           (5.10)  
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0
0

1 0

0

( ) [ ( ) ( )] ( )
k

Rb T Y T q R T R T


  .                               (5.11)  

 

Finally, according to the formulas (4.45), (5.10) and (5.11), we have  

 

2

1 1 1 1( ) ( ) (1 ( )) ( ) ( ) ( ) 1Ra T Y T Y T Rb T qR T qR T      .             (5.12) 

 

Then it is obvious that Ra1(T) is convex with respect to R(T).              □ 

 

Previously in the first step we have known that: to satisfy the availability 

requirement, T should be in the interval [Ta, Tb].  Since R(T) is a decreasing function 

in T according to its definition, the argument that “T is in the interval [Ta, Tb]” is 

equivalent to the argument that “R(T) is in the interval [R(Ta), R(Tb)]”.  Then 

according to Proposition 5.1 that Ra1(T) is convex in R(T), we could get the range for 

Ra1(T) on the interval [Ta, Tb], and its maximal value on the interval [Ta, Tb] is  

 

1 1 1
[ , ]

max ( ) max( ( ), ( )) 1
a b

a b
T T T

Ra T Ra T Ra T


  .                              (5.13) 

 

Since Ra1(T) and Fr are both between 0 and 1, from the formula (5.8) we have  

 

1 1
[ , ]

log log
1 1

log[ ( )] log[ max ( )]
a bT T T

Fr Fr
N

Ra T Ra T


    .                            (5.14)  

 

Therefore, the possible integer values of N are 1, 2, 3, ..., 
1

[ , ]

log
[ 1]
log[ max ( )]

a bT T T

Fr

Ra T


 .   

Next, we will obtain the constraints of the model for every possible integer value 

of N.  For a given possible value of N, we can derive the exact forms of the 
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availability and reliability constraints, ( )NSAV T Fa  and 
1

1

( )
N

j
j

Ra T Fr




 , only 

with T as the variable.  On the other hand, according to the formula (5.8), we know 

that given N there should be  

 

1

1[ ( )]NRa T Fr  .                                             (5.15) 

 

Since we know that Ra1(T) is convex in R(T), there must exist R(Tc)<R(Td) which are 

the two solutions for the equation  

 

1

1[ ( )]NRa T Fr  .                                             (5.16) 

 

in which Ra1(T) is seen as the function of R(T), and only if R(T)≤R(Tc) or R(T)≥R(Td) 

that the formula (5.15) satisfies.  Since we also know that R(T) is a decreasing 

function of T, the previous conclusion is equivalent to: there exist Tc >Td which are 

two solutions for the formula (5.16) (in which Ra1(T) is seen as the function of T) and 

only if T≤Td or T≥Tc that the formula (5.15) satisfies.  Let W denote the field that 

satisfies both the formulas (5.4) and (5.15), i.e.  

 

W=[Ta, Tb]∩([0, Td]U[Tc,+∞)).                                       (5.17)   

 

Finally, we will consider the possible values for the integer h.  The original 

possible interval for h is [0, dμc], so the integer h may get the values of 1, 2, 3, … , 

[dμc], where [dμc] represents the gauss function of dμc (the maximum integer that is no 

bigger than dμc).  For the Optimization Model II, we should consider an additional 

constraint: the shortage quantity rate constraint.  Given a value for h, we can solve 
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the possible field for T which satisfies the shortage rate constraints formulas (4.59) 

and (4.60) ( 1 ( , )NSShort T h Fs , 2 ( , )NSShort T h Fs ), as these two formulas are 

either increasing or convex functions of T.  Then we combine the result field with 

the field W which we obtained previously.  There is one thing to be noted: we have 

known that the shortage quantity rate SShort1N (T, h) (or SShort2N (T, h)) is a 

decreasing function of h.  Therefore, if there is no solution of T for formulas (4.59) 

and (4.60) when h=j (1≤j≤[dμc]), there will be no solution of T for formulas (4.59) and 

(4.60) for any h<j.   

Following the previous steps, we could obtain the possible field for T given the 

fixed values of N and h.  Then the optimal value of T which minimizes the expected 

total cost rate could be computed.  Varying the fixed values of N and h within their 

possible fields, we can get the corresponding optimal values T* and variable sets (N, 

T*, h).  After comparing the different variable sets, the optimal set (N*, T*, h*) 

which minimizes the expected total cost rate is finally determined.   

Figure 5.3 describes the proposed procedure:  
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         Figure 5.3 Numerical algorithms to find the optimal solution for Model I  
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 .  Let Wx=[Txa, Txb]∩([0, Txd]U[Txc,+∞));  

hy=[dμc]+1-y; (y=1, 2, 3, … , [dμc], [dμc]+1).  

Wxy=[h/(Umax-d),+∞)∩Wx;  
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There are three points to be noted for Figure 5.3:  

1. When Nx=1, there will be Txe=0, Txf=+∞;   

2. Pc represents the precision criterion for the solution; 

3. The range for m here is m=0, 1, 2, 3, … , n=[(Txymax-Txymin)/Pc], in which 

[(Txymax-Txymin)/Pc] is the gauss function of (Txymax - Txymin)/Pc).   

 

Optimization Model II has almost the same numerical algorithms as 

Optimization Model I, except that:  

After determining the value of h=hy, we should find solutions for 

1 ( , )NSShort T h Fs  (if dμp≤hy) or 2 ( , )NSShort T h Fs  (if hy <dμp).  If there is 

only one solution Typ, then Wy=[0, Typ]; if there are two solutions Typ < Tyq, then 

Wy=[0,Typ]U[Tyq,+∞).  Wxy should change to be Wxy=[h/(Umax-d),+∞)∩Wx∩Wy.   

 

5.3 Numerical examples for solving models and discussions 

To illustrate our approach to find the optimal solution to our models, the 

following input data were used:  

 

● Costs (in monetary units): Mp=10, Mc=70, Me=5, Ch=0.1, Cs =10.   

● Demand: d=5 unit/time unit.   

● Supply: Umax=20 unit/time unit 

● Supplying unit time to failure distribution F(•): Weibull distribution with shape 

parameter 2 and the scale parameter 50, leading to an average lifetime MTTF=44.3 
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time units.  We have an increasing failure rate in this case.   

● Maintenance time: μp=1 time unit, μc=5 time units.   

● Preventive maintenance imperfect probability: q=0.2, p=1-q=0.8.   

● Minimum required availability level: Fa=91%.   

● Minimum required reliability level: Fr=90%.   

● Maximum required shortage rate level: Fs=0.03.    

● Precision level for the solution: Pc=0.01.   

 

Using the procedure described in Figure 5.3 (and the additional procedure for 

Optimization Model II), we obtain the following results (Table 5.1): according to 

these results, the optimal solution for Optimization Model I which minimizes the 

expected total cost per unit of time of the system, while satisfying the constraints of a 

91% minimum stationary availability and a 90% minimum N-period joint reliability, 

consists in performing preventive maintenance after 14.91 time units of operation 

without failure, performing an enhanced preventive maintenance action (perfect) 

every 3 periods, and forming a buffer stock of 19 units after the completion of each 

maintenance action.  By doing so, it would cost 3.083387 monetary units per unit of 

time to operate the system according to the proposed policies.  The optimal solution 

in Table 5.1 for Optimization Model II which satisfies an additional constraint 

(compared to Optimization Model I) of a 0.03 maximum expected number of total 

shortage per unit of time, consists of the same performing actions as those of 

Optimization Model I and it costs the same too.   
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Tables 5.2, 5.3 and 5.4 are the sensitivity analysis for specific parameters, when 

all the other parameters stay constant as the values assigned in the basic case.   

Table 5.2 compares the results for different values of the maximum allowed 

expected shortage rate Fs.  These results indicate that: if the optimal solution for 

Optimization Model I generates an expected shortage rate smaller than the maximum 

required shortage rate level, the optimal solution of Optimization Model II would be 

the same as that of Optimization Model I; and any increase in the maximum required 

shortage rate level does not change the optimal solution for Optimization Model II.  

However, if we decrease the maximum required shortage rate level, i.e. with tighter 

shortage rate requirement, the optimal solution for Model II may change and h* may 

increase, so that more stocks could be stored in the buffer to reduce the expected total 

shortage per unit of time.   

Tables 5.3 and 5.4 compare the results for different values of the additional cost 

Me for the enhanced preventive maintenance.  The results for Model I and Model II 

show that: the optimal number of periods in a cycle N* will increase if the additional 

cost Me is increased; while if the additional cost is decreased, N* will decrease.  The 

reason for this is that the enhanced preventive maintenance is carried out every N 

periods, so a bigger additional cost Me would require a bigger N to reduce the 

additional cost per unit of time.  From Table 5.1, we know that the maximum 

possible value for N, which satisfies all the constraints of the Model I and II, is 5.  

Tables 5.3 and 5.4 show that if the additional cost Me is as high as 10, N should take 

its maximum possible value 5, so that the additional cost per unit of time Me can be 
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reduced.  While if Me is as low as 1.5, N* should take the value of 1, as in this case 

Me is so low that it is economy to turn every preventive maintenance into perfect 

maintenance.  

 

Table 5.1 The optimal solution for the Optimization Model I and II 

 Max{N} N* T* h* S(N*,T*,h*) ΠRaj SAVN SShort1N 

Model I 5 3 14.91 19 3.083387 0.9648 0.9100  

Model II 5 3 14.91 19 3.083387 0.9648 0.9100 0.023820 

 

Table 5.2 Comparative analysis for different required shortage rate level of Model II 

 Fs N* T* h* S(N*,T*,h*) ΠRaj SAVN SShort1N 

 0.04 3 14.91 19 3.083387 0.9648 0.9100 0.023820 

Basic case 0.03 3 14.91 19 3.083387 0.9648 0.9100 0.023820 

 0.02 4 15.28 20 3.086509 0.9430 0.9100 0.017373 

 0.01 2 14.27 21 3.119921 0.9856 0.9100 0.009605 

 

Table 5.3 Comparative analysis for different enhanced maintenance costs of Model I 

 Me N* T* h* S(N*,T*,h*) ΠRaj SAVN 

 10.0 5 15.53 19 3.140217 0.9212 0.9100 

Basic case 5.0 3 14.91 19 3.083387 0.9648 0.9100 

 1.5 1 13.08 17 2.920753 1.0000 0.9100 
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Table 5.4 Comparative analysis for different enhanced maintenance costs of Model II 

 Me N* T* h* S(N*,T*,h*) ΠRaj SAVN SShort1N 

 10.0 5 15.53 19 3.140217 0.9212 0.9100 0.025778 

Basic case 5.0 3 14.91 19 3.083387 0.9648 0.9100 0.023820 

 1.5 1 13.08 18 2.926467 1.0000 0.9100 0.023065 
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Chapter 6 

Conclusions 

In this thesis we first did a literature review on the research area of Maintenance, 

according to the different categories of previous papers on this subject.  Though 

there are many topics or focuses for the area of maintenance, we only reviewed papers 

on four major topics: “Preventive Maintenance”, “Imperfect Maintenance”, 

“Maintenance Planning and Production”, and “Maintenance for Multi-unit Systems”.  

The system we study is associated with all these four topics.   

Then we proposed our model which is a more general model based on the work 

of Chelbi and Rezg (2006), in order to study a special kind of the multi-unit systems.  

The system we study is a so-called Supply-Buffer-Demand production system, in 

which there is an inventory buffer between the supplying production unit and the 

demanding unit.  In such a system the supplying unit receives preventive or 

corrective maintenance due to its random failures, so there are stocks stored in the 

buffer which are used to supply the demanding unit when the supplying unit 

undergoes maintenance.   

We took into account the joint consideration of both the age dependent 

maintenance planning and the buffer inventory control in formulating the model.  We 

developed the expressions for the expected total cost per unit of time, minimum 

required stationary availability, minimum required reliability, and maximum required 

shortage rate.  Our strategy is to minimize the expected total cost per unit of time, 
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while satisfying the constraints of minimum required stationary availability level, 

minimum required reliability level, and maximum required shortage rate level.   

According to two different assumptions of the system, we formulated two 

analytical optimization models, in order to solve the optimal solutions for “preventive 

maintenance age increment”, “number of periods in a cycle”, and “the capacity of the 

buffer”.  These optimal solutions of the models determine the optimal maintenance 

and inventory policies for the system.  We developed corresponding numerical 

algorithms to solve the optimal solutions.  Numerical examples were raised to test 

the algorithms that we provided, and comparative analyses of the numerical examples 

were made to show how the optimal solutions are influenced by the variations of the 

input parameters.   

Further research may challenge the idealistic assumptions that we made when 

formulating our model, so that a more general model could be obtained.  Also, since 

our model applied the age dependent preventive maintenance into the system, further 

investigations could be applying other preventive maintenance strategies to the 

system.   
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