114 research outputs found

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology

    Get PDF
    This work deals with the numerical solution of the monodomain and bidomain models of electrical activity of myocardial tissue. The bidomain model is a system consisting of a possibly degenerate parabolic PDE coupled with an elliptic PDE for the transmembrane and extracellular potentials, respectively. This system of two scalar PDEs is supplemented by a time-dependent ODE modeling the evolution of the so-called gating variable. In the simpler sub-case of the monodomain model, the elliptic PDE reduces to an algebraic equation. Two simple models for the membrane and ionic currents are considered, the Mitchell-Schaeffer model and the simpler FitzHugh-Nagumo model. Since typical solutions of the bidomain and monodomain models exhibit wavefronts with steep gradients, we propose a finite volume scheme enriched by a fully adaptive multiresolution method, whose basic purpose is to concentrate computational effort on zones of strong variation of the solution. Time adaptivity is achieved by two alternative devices, namely locally varying time stepping and a Runge-Kutta-Fehlberg-type adaptive time integration. A series of numerical examples demonstrates thatthese methods are efficient and sufficiently accurate to simulate the electrical activity in myocardial tissue with affordable effort. In addition, an optimalthreshold for discarding non-significant information in the multiresolution representation of the solution is derived, and the numerical efficiency and accuracy of the method is measured in terms of CPU time speed-up, memory compression, and errors in different norms.Comment: 25 pages, 41 figure

    A parallel solver for reaction-diffusion systems in computational electrocardiology

    Get PDF
    In this work, a parallel three-dimensional solver for numerical simulations in computational electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain %(AB) cardiac model, consisting of a system of two degenerate parabolic reaction-diffusion equations describing the intra and extracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. %In case of equal anisotropy ratio, this system reduces to The solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction-diffusion equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations that can vary from the simple FitzHugh-Nagumo (FHN) model to the more complex phase-I Luo-Rudy model (LR1). The solver employs structured isoparametric Q1Q_1 finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library. Large-scale computations with up to O(107)O(10^7) unknowns have been run on parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains

    An introduction to mathematical and numerical modeling in heart electrophysiology

    Get PDF
    The electrical activation of the heart is the biological process that regulates the contraction of the cardiac muscle, allowing it to pump blood to the whole body. In physiological conditions, the pacemaker cells of the sinoatrial node generate an action potential (a sudden variation of the cell transmembrane potential) which, following preferential conduction pathways, propagates throughout the heart walls and triggers the contraction of the heart chambers. The action potential propagation can be mathematically described by coupling a model for the ionic currents, flowing through the membrane of a single cell, with a macroscopical model that describes the propagation of the electrical signal in the cardiac tissue. The most accurate model available in the literature for the description of the macroscopic propagation in the muscle is the Bidomain model, a degenerate parabolic system composed of two non-linear partial differential equations for the intracellular and extracellular potential. In this paper, we present an introduction to the fundamental aspects of mathematical modeling and numerical simulation in cardiac electrophysiology

    Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology

    Get PDF
    Approximating the fast dynamics of depolarization waves in the human heart described by the monodomain model is numerically challenging. Splitting methods for the PDE-ODE coupling enable the computation with very fine space and time discretizations. Here, we compare different splitting approaches regarding convergence, accuracy and efficiency. Simulations were performed for a benchmark configuration with the Beeler–Reuter cell model on a truncated ellipsoid approximating the left ventricle including a localized stimulation. For this benchmark configuration, we provide a reference solution for the transmembrane potential. We found a semi-implicit approach with state variable interpolation to be the most efficient scheme. The results are transferred to a more physiological setup using a bi-ventricular domain with a complex external stimulation pattern to evaluate the accuracy of the activation time for different resolutions in space and time

    Optimized schwarz methods for the bidomain system in electrocardiology

    Get PDF
    The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in accelerating the convergence of such algorithms. The latter are based on interface matching conditions more efficient than the classical Dirichlet or Neumann ones. In this paper we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain problem. We assess the convergence of the iterative method by means of Fourier analysis, and we investigate the parameter optimization in the interface conditions. Numerical results in 2D and 3D are given to show the effectiveness of the method

    Numerical methods for simulation of electrical activity in the myocardial tissue

    Get PDF
    Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations. We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances

    Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements

    Get PDF

    Towards New High-Order Operator Splitting Time-Integration Methods

    Get PDF
    Operator splitting (OS) methods represent a powerful strategy to solve an extensive range of mathematical models in the form of differential equations. They have a long and celebrated history, having been successfully used for well over half a century to provide efficient numerical solutions to challenging problems. In fact, OS methods are often the only viable way to solve many problems in practice. The simplest, and perhaps, most well-known OS methods are Lie--Trotter--Godunov and the Strang--Marchuk methods. They compute a numerical solution that is first-, and second-order accurate in time, respectively. OS methods can be derived by imposing order conditions using the Campbell--Baker--Hausdorff formula. It follows that, by setting the appropriate order conditions, it is possible to derive OS methods of any desired order. An important observation regarding OS methods with order higher than two is that, according to the Sheng--Suzuki theorem, at least one of their defining coefficients must be negative. Therefore, the time integration with OS methods of order higher than two has not been considered suitable to solve deterministic parabolic problems, because the necessary backward time integration would cause instabilities. Throughout this thesis, we focus our attention on high-order (i.e., order higher than two) OS methods. We successfully assess the convergence properties of some higher-order OS methods on diffusion-reaction problems describing cardiac electrophysiology and on an advection-diffusion-reaction problem describing chemical combustion. Furthermore, we compare the efficiency performance of higher-order methods to second-order methods. For all the cases considered, we confirm an improved efficiency performance compared to methods of lower order. Next, we observe how, when using OS and Runge--Kutta type methods to advance the time integration, we can construct a unique extended Butcher tableau with a similar structure to the ones describing Generalized Additive Runge--Kutta (GARK) methods. We define a combination of methods to be OS-GARK methods. We apply linear stability analysis to OS-GARK methods; this allows us to conveniently analyze the stability properties of any combination of OS and Runge--Kutta methods. Doing so, we are able to perform an eigenvalue analysis to understand and improve numerically unstable solutions
    • …
    corecore