
An introduction to mathematical and numerical
modeling of heart electrophysiology

Luca Gerardo-Giorda

Abstract The electrical activation of the heart is the biological process that regulates
the contraction of the cardiac muscle, allowing it to pump blood to the whole body.
In physiological conditions, the pacemaker cells of the sinoatrial node generate an
action potential (a sudden variation of the cell transmembrane potential) which, fol-
lowing preferential conduction pathways, propagates throughout the heart walls and
triggers the contraction of the heart chambers.
The action potential propagation can be mathematically described by coupling a
model for the ionic currents, flowing through the membrane of a single cell, with
a macroscopical model that describes the propagation of the electrical signal in the
cardiac tissue. The most accurate model available in the literature for the description
of the macroscopic propagation in the muscle is the Bidomain model, a degenerate
parabolic system composed of two non-linear partial differential equations for the
intracellular and extracellular potential. In this paper, we present an introduction
to the fundamental aspects of mathematical modeling and numerical simulation in
cardiac electrophysiology.

1 Introduction

Cardiac-specific diseases account for 700,000 deaths each year in Europe, half of
this mortality being due to heart failure (ineffective contraction, principally due to
ventricular dyssynchrony). The other half of cardiac mortality occurs suddenly, es-
sentially due to ventricular tachyarrhythmias. Although the vast majority of these
cases is associated with chronic cardiac disease, sudden cardiac death can also oc-
cur in seemingly healthy and sometimes very young people. Knowledge about the
underlying causes and options for diagnosis and prevention is still very limited. Still,
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with 6 million individuals suffering from atrial fibrillation, 9 million people affected
by heart failure, and 350,000 sudden deaths every year, the human and economic
burden of cardiac electrical diseases skyrocketed in Europe. The estimated annual
direct costs for the health care system in Europe is topping 1100 billion Euros.

The contraction of the heart is orchestrated by a complex mechanism of elec-
trical activation. As a consequence, an important part of heart failure occurrencies
is caused or aggravated by electrical dysfunctions, and heart electrophysiology has
become in the recent years the subject of a vast interdisciplinary literature, from
medical sciences through bio-engineering, physiology, chemistry and physics.

The electrical activity of the heart as a whole is characterized by a complex multi-
scale structure, ranging from the microscopic activity of ion channels in the cellular
membrane to the macroscopic properties of the anisotropic propagation of the ex-
citation and recovery fronts in the whole heart. Cardiac arrhythmias are complex
disruptions of this organisation.

Cardiac cells, called myocytes, are a particular type of excitable cells. At resting
condition, they feature a negative transmembrane potential, resulting from the dif-
ference between internal and external concentrations of charged ions ([Na]+, [K]+,
[Ca]++). A small change of the cell’s environment from its rest state produces a
very fast depolarization, followed by a slower repolarization process towards the
resting state. This cellular activity is called Action Potential (AP), and is mathemat-
ically described by an ionic ODE model which is the basis of dynamic behaviour in
the model. Modern detailed ionic models take into account transmembrane current
flows, intracellular calcium handling, and can include energetics and force produc-
tion [15, 41]

Higher levels of complexity govern the propagation of the electrical impulse for
optimal contraction at the tissue and organ levels. The global activation sequence
of the heart follows from the physical organization of a special conduction network
that is essential for the synchronization of the whole heart. In healthy conditions,
atria and ventricles are electrically insulated from each other and are connected
only through the atrioventricular node (AV). The AP originates in the sinoatrial
node (SA), propagates in the atria through Bachmann’s bundle, it is modulated in
frequency by the AV, and proceeds to the ventricles, where the His-Purkinje system
(PS) provides a preferencial pathway for the AP to propagate through the lower
chambers.

The difficulty in having access to direct measures on real patients fueled the inter-
est in mathematical modeling and numerical simulations, which have been support-
ing cardiovascular science for more than 20 years. In this respect, cardiac modeling
in medicine has significantly evolved in the recent decades, providing the best and
highly detailed mathematical description of any organ system in the body. Many
fundamental insights have been gained from in-silico experiments [65], even ahead
of experimental evidence [55]. Numerical models and fast dedicated solvers already
exist and allow in-silico exploration of the mechanisms underlying these pathologies
at the cost of large-scale simulations.

If on the one hand, modern imaging techniques, such as high-resolution mag-
netic resonance imaging (MRI), allows high level of accuracy in the description of
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both the microstructure of the tissue and the global anatomy of the organ, current
mathematical models are based on a formalism (the Bidomain equations, [38, 14])
whose derivation is based on a very simplified geometry with respect to the nowa-
days available structural data. The heart is, in fact, a collection of interconnected
excitable tissues, each of which has specific modelling requirements.

Each of these tissues is a complex network of cardiomyocytes connected to each
other by gap-junctions, together with other types of cells (fibroblasts) and collagen.
APs propagate from cell to cell, resulting in AP waves at the macroscopic tissue
scale. From a mathematical standpoint, a multiscale technique allows to model the
tissue, at the macroscopic level, as a continuum wher the intra- and extra-cellular
media are superimposed and the corresponding potentials are the solutions to a sys-
tem of degenerate partial differential equation of reaction-diffusion type coupled
over space with the system of ODEs (the ionic model). Such model is known as the
Bidomain system of equations. In this model, the anisotropies of the intra- and extra-
cellular conductivities differ. In case of an insulated tissue and under the so-called
equal anisotropy ratio assumption, the system reduces to a single reaction-diffusion
equation: the Monodomain equation. The Monodomain equation is no longer de-
generate, thus far cheaper to solve numerically [34].

The numerical approximation of the Bidomain model is often based on a finite
element discretization in space and on implicit-explicit time advancing schemes
(IMEX): the ionic variables are advanced to the current time step, and inserted in
the nonlinear term, while the latter one is then linearized around the value of the
membrane potential at the previous time step. The degenerate parabolic nature of
the Bidomain system, however, entails a very ill conditioning for the linear system
associated to its discretization. From the mathematical and numerical standpoint,
many efforts have been devoted in the recent years to set up efficient solvers and
preconditioners to reduce the high computational costs associated to its numerical
solution [63, 44, 62, 5, 10, 47]. Many proposed preconditioning strategies have been
based on multigrid approaches [45, 64, 54] or suitable approximations of the equa-
tions [23, 22]. Among these works, most are based on a proper decomposition of
the computational domain in order to set up parallel preconditioners, or on suitable
multigrid schemes still coupled with parallel architectures [42, 60]. In particular, a
Classical Schwarz Method coupled with a multigrid approach has been proposed in
[43], while an Optimized Schwarz method has been introduced in [25]. The stiff-
ness of the problem, due to the presence of a steep propagation front, led to the
introduction of adaptive schemes, in both time [46], and time and space [7]. An-
other approach has been aiming at a simplification of the original problem, by using
a somehow optimized Monodomain model [39], and by developing model adaptive
techniques, where the costly Bidomain model is replaced by the Monodomain one
(or an extended version of it) far from the depolarization front and the recovery tail
of the action potential [26, 25, 24]. In the rest of the paper we provide a general
survey of the mathematical and numerical aspects of the cardiac electrophysiology
modeling. Section 2 is devoted to the modeling of an excitable myocardial cell,
and some ionic models are presented: a phenomelogical one, a model for atrial my-
ocytes and a model for ventricular ones. In Section 3 we present a derivation of the
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macroscopic Bidomain model for propagation and its simplified version, the Mon-
odomain. Section 4 provides an introduction to the numerical approximation of both
Bidomain and Monodomain models.

2 Mathematical modeling of an excitable myocardial cell

The basic property of neural cells to produce signals is called Action Potential (AP).
It consists of a sudden variation in the transmembrane potential, called upstroke, fol-
lowed by a recovering of the resting condition. It shows different shapes and ampli-
tudes according to the different kind of excitable media to which the cells belong to,
and in the large muscle cells makes it possible the simultaneous contraction of the
whole cell. An action potential propagates keeping the same shape and amplitude all
along an entire neural or muscular fiber. The Action Potential propagates across the
heart in an heterogeneous way. The pulse moves from the Sinoatrial Nodus (SA),
and propagates through the ordinary myocardic fibers of the right atrium, while the
Buchmann’s bundle drives the pulse towards the left atrium. Some action potentials
propagate downwards and reach the Atrioventricular Nodus (AV), which is, under
normal conditions, the only gate for the pulse to propagate from atria to ventricles,
where the conduction is quicker (4 ms−1 versus 1 ms−1).
Cardiac cells are characterized by a transmembrane potential that is negative at rest,
owing to the fact that the concentration of potassium ions [K+]i inside the cardiac
cell is remarkably higher than the outside concentration [K+]e, and show two kinds
of action potentials: the quick and the slow response.
The quick response is typical in the myocardium fibers (both atrial and ventricu-
lar) and in the Purkinje fibers, which are fibers specialized in the conduction. The
quick response cells are characterized by a negative transmembrane potential at rest
(around -90mV), and by a rapid depolarization (positive overshoot), where the po-
tential difference changes sign and the internal potential overtakes the external one
of around 20mV: such phase is called Phase 0. Immediately after that (Phase 1) a
short period of partial repolarization takes place, followed by a plateau (Phase 2)
which lasts for around 0.2 seconds. The potential gets progressively more negative
(Phase 3) until it reaches again the resting value. The repolarization procedure is far
slower than the depolarization one, and the interval between the end of the repolar-
ization and the next action potential is called Phase 4.
The slow response is the one taking place in the Sinoatrial Nodus (SA), the natural
pacemaker of the heart, and in the Atrioventricular Nodus (AV), the tissue meant to
transfer the pulse from atria to ventricles. The slow response cells are characterized
by a resting potential less negative (around -50mV), by a smaller slope and ampli-
tude in the overshoot of the action potential, by the absence of the Phase 1, and by
a relative refractory period that continues during Phase 4.
From the modeling standpoint, the electrical activity in myocites is characterised by
transmembrane ionic currents and voltage changes, whose temporal dynamics are
governed by the presence of various players at the molecular level (ion channels,
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pumps, concentrations), as well as many different proteins (such as transporters) that
are spatially organized at the cellular scale to generate action potentials (AP). The
cell membrane is modeled as a capacitor separating the intra- and extra-cellular me-
dia, two ionic solutions. In the framework of Hodgkin-Huxley (HH) formalism [28],
state variables are associated with the membrane potential, ionic concentrations, and
molecular actors such as gating variables, which handle opening and closing of ionic
channels. The system dynamics is thus described by a set of differential equations
which depend on time, voltage, ion concentrations and the gating variables. Some
recent models include additional differential equations to describe calcium regu-
lation within the cell and possibly mitochondrial activity or force generation. Ionic
models consist generally of 10-50 ODEs ([57]), but if molecular actors are modelled
by Markov processes, such number can grow up to 100 ODEs, [29]. These systems
are highly non-linear and extremely stiff because of the large range of time-scales
necessary to represent the various phenomena involved (from 100 ms to 1µs).

The earliest model for AP appeared in the work on nerve action potential by
Hodgkin and Huxley ([28]), which earned them the Nobel prize in Medicine in
1963. Models of this type have successively been developed for the cardiac action
potential, where the variation in time of the membrane potential u (under the as-
sumption of an equipotential cell) is given by

Cm
du
dt

=−Iion(u,w)+ Ist , (1)

where Iion and Ist are the total ionic current and stimulus current across the mem-
brane, respectively, and Cm is the total membrane capacitance. In (1) the ionic cur-
rent through the channels in the membrane depends on the transmembrane potential
u and on M gating and concentration variables w ∈ RM:

Iion(u,w) =
N

∑
k=1

Gk(u)
M

∏
j=1

w
p jk
j (u−Ek(w)),

Gk(u) being the membrane conductance, Ek being the reversal potential for the k-th
current and p jk being integers, and where the dynamics of the gating and concen-
tration variables is described by a system of ODE’s

dw
dt

= R(u,w), w(x,0) = w0(x). (2)

In such models, if w j is a gating variable, the right hand side R j(u,w) has a special
structure and the corresponding ODE is given by

dw j

dt
= R j(u,w) = R j(u,w j) = α j(u)(1−w j)−β j(u)w j, (3)

with α j(u),β j(u)> 0, 0<w j < 1. Within this formalism, the temporal variation of a
gating variable y equals the difference between the opening rate of closed gates and
the closing rate of open gates, with rates that are voltage-dependent. If we introduce
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the steady state of the gating variable with the cell at rest, y∞, and the time constant
associated with the gating variable τy, defined as

y∞ = αy(u)τy(u) τy(u) =
1

αy(u)+βy(u)
,

we observe that the generic gating variable y satisfies the equivalent ordinary differ-
ential equation

dy
dt

=
y∞− y

τy
. (4)

Concerning the modeling of ventricular cells, the fitting of improved experimen-
tal data with more complex models led to the developement of many refinements
of the original Hodgkin-Huxley model: among them, we recall the model by Beeler
and Reuter (1977, with 4 ionic currents and 7 gating and concentrations variables),
and the phase-I Luo-Rudy (1991, with N = 6 and M = 7). In this direction, the most
used model of mammalian ventricular cells is the phase-II Luo-Rudy (1994, [35]),
which is based on measurements from guinea pig. Simpler models of reduced com-
plexity have also been proposed, where only 1 or 2 gating variables are considered.
In the remainder of this section we present, as an example three ionic models: a 2
variables, phenomenological, model, a detailed model for atrial cells, and a detailed
model for ventricular cells.

2.1 The FitzHugh-Nagumo cell model and its Rogers-McCulloch
variant

The simplest ionic model for an excitable cell is the phenomenological FitzHugh-
Nagumo (FHN, [20]) model, consisting of 1 ionic current and 1 gating variable. The
latter is a simplified version of the Hodgkin-Huxley model. Assuming the potential
v to be zero at rest, the ionic current uses only one recovery variable:

Iion(u,w) = u− u3

3
−w+ I,

where I is a stimulus current, and w satisfies

∂w
∂ t

= u+a−bw,

with a,b > 0.
If the stimulus current I exceeds a given threshold, the system exhibits a spike

and recovery dynamics. In Figure 1 (left) we plot the temporal evolution of the
membrane potential u (solid) and the recovery variable w (dashed).

An improvement of this model is given by the variant introduced in [49] by
Rogers and McCulloch, where the ionic current and the recovery variable w dy-
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Fig. 1 Time evolution of the membrane potential u (solid line) and the recovery variable w (dashed
line) in the FHN model (left) and its Rogers-McCulloch variant (right).

namics are given by

Iion(u,w) = Gu
(

1− u
uth

)(
1− u

up

)
+η1uw,

and
∂w
∂ t

= η2

(
u
up
−η3w

)
,

where G,η1,η2,η3 are positive coefficients, uth is a threshold potential, and up is
the peak potential. If the membrane potential does not exceed the threshold uth, the
AP is not triggered and the system gets back to the resting state. In Figure 1 (right)
we report the time evolution of the potential u (solid line) and of the gating variable
w (dashed line) for the Rogers-McCulloch variant of the FHN model.

The recovery variable w ensures that, once an AP is triggered, the system cannot
be excited again, unless a refractory period has passed. When a stimulus is intro-
duced, the response of the system depends on the elapsed time since its spiking: if
the recovery variable is small enough (or, equivalently, enough time has elapsed)
another AP is created, with the same shape and amplitude of the first one. If the
elapsed time does not outlast the refractory period, the generated AP can be shorter
in duration, and smaller in amplitude, or just not being triggered, in the case too
little time since spiking has elapsed.

Other all-or-nothing response models have been introduced in the literature,
among which we recall the one proposed by Panfilov, Ten-Tusscher, and collabo-
rators in [57]. The great simplicity of such model, and yet its ability in capturing
significant aspects of the electrocardiac dynamics, is behind its wide use in litera-
ture. However, if on the one hand, such model is well suited to describe the positive
overshoot in the quick depolarization phase, on the other hand it provides only a
coarse approximation in the plateau and repolarization phases of the action poten-
tial, and behaves too poorly when accuracy in the description of the action potential
is needed.
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2.2 The Courtemanche, Ramirez and Nattel atrial cell model

One of the most accurate models for atrial cells is the one proposed by Courte-
manche, Ramirez and Nattel, (CRN, [18]). The total ionic current for the CRN
model is given by the sum

Iion = INa + IK + ICa + Ib + Ip. (5)

The above expression takes into account several aspects of the action potential gen-
eration. In (5), INa is the fast depolarizing Na+ current, while the quantity IK is the
total rectifier K+ current, given by

IK = IK1 + Ito + IKur + IKr + IKs,

where IK1 is the inward rectifier K+ current, playing a major role in the late re-
polarization phase of the AP and in determining resting membrane potential and
resistance, Ito is the transient outward K+ current, IKur, IKr, and IKs are the ultrara-
pid, rapid, and slow rectifier currents. The quantity ICa = ICa,L is the L-type Ca2+

current, while Ib is the the background current for sodium Na+ and calcium Ca2+

Ib = Ib,Na + Ib,Ca.

Finally, Ip collects the actions of pumps and ion exchangers, designed to put back
into balance the ion concentrations at rest:

Ip = INaCa + INaK + Ip,Ca,

where INaCa is the sodium-calcium pump, INaK is the sodium-potassium pump, and
Ip,Ca is the calcium exchanger.
The model handles the intracellular concentrations [Na+]i, [K+]i, and [Ca2+]i. The
intracellular calcium buffering by the sarcoplasmic reticulum system (SR) is de-
scribed by the calcium concentrations in the uptake (NSR), and release (JSR) com-
partments of the sarcoplasmic reticulum, denoted by [Ca2+]up and [Ca2+]rel respec-
tively.
In the model, no extracellular cleft space is included, the membrane capacitance is
cm = 100pF, the lenght and diameter of the cells are set to 100 and 16 µm, respec-
tively, and the cell compartment volumes are the same ones used in the phase-II
Luo-Rudy model (LR2, [35]). Denoting by EX the equilibrium potential for ion X ,
and with gX its maximal conductance, from Nerst equation, EX is given by

EX =
RT
zF

log
[X ]e
[X ]i

,

where R is the gas constant, T is the absolute temperature, F is the Faraday constant,
z = 1 for Na+ and K+, z = 2 for Ca2+, and [X ]e and [X ]i denote the external and
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internal concentration of ion X .

Fig. 2 CRN model: time evolution of the membrane potential and the concentration variables.

The dynamics of the concentration variables is governed by the following equa-
tions

d[Na+]i
dt

=
−3INaK−3INaCa− Ib,Na− INa

FVi
(6)

d[K+]i
dt

=
2INaK− IK1− Ito− IKur− IKr− IKs

FVi
(7)

d[Ca2+]i
dt

=

[
2INaCa− Ip,Ca− ICa,L− Ib,Ca

2FVi
+

Vup(Iup,leak− Iup)+ IrelVrel

Vi

]
×

×
[

1+
αiβi

([Ca2+]i +βi)2
+

γiδi

([Ca2+]i +δi)2

]−1 (8)

d[Ca2+]up

dt
= Iup− Iup,leak− Itr

Vrel

Vup
(9)

d[Ca2+]rel

dt
= (Itr− Irel)

[
1+

αrelβrel

([Ca2+]rel +βrel)2

]−1

, (10)

where Vi is the intracellular volume, Vup and Vrel are the volumes of the uptake
(NSR) and release (JSR) compartments of the sarcoplasmic reticulum, αi, γi, and
αrel depend on the total concentrations of troponin and calmodulin in myoplasm,
and of calsequestrin in JSR, while βi, δi, and βrel depend on their half saturation
constants, respectively. All these three proteins are responsible of the contraction of
the cell.
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In (8) and (9), Iup,leak is the Ca2+ leak current by the JSR, Iup is the Ca2+ uptake
current by the JSR, while Irel is the Ca2+ release current from the JSR. Finally, in
(9) and (10), Itr is the transfer current from NSR to JSR.
The model consists globally of 5 concentration variables and 15 gating variables.
In Figure 2 and 3 we plot the time evolution of the potential and of the gating and
concentration variables. For a more detailed description of the model we refer the
interested reader to the original paper by Courtemanche et al. [18]. Among other
popular human atrial models, we recall the ones proposed by Earm and Noble in
[19], and the one proposed by Nygren and his collaborators in [40]

Fig. 3 CRN model: time evolution of the gating variables.

2.3 The Luo-Rudy 1 ventricular cell model

The Luo-Rudy Phase 1 model is among the most popular ionic model used in litera-
ture to model ventricular myocites. It consists of 6 ionic currents, 7 gating variables,
and one concentration variable for the intracellular calcium, whose dynamics plays
a pivotal role in the heart contraction. The total current is given by

Iion = INa + Isi + IK + IK1 + IK p + Ib, (11)

where the ionic currents are given by

INa = gNa m3 h j(u−ENa) Isi = gsi d f (u−Esi)

IK = gK([K]e)ξ ξi (u−EK) IK1 = fK1([K]e,u)(u−EK1)

IK p = fKp(u)Kp(u−EK p) Ib = b1(u+b2).

(12)

The calcium concentration satisfies the differential equation
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d[Ca]i
dt

=−c3Isi + c2 (c3− [Ca]i) , (13)

while the gating variables are described, within the HH formalism, as

dw
dt

= αw(1−w)−βww, with w ∈ {m,h, j,d, f ,ξ ,ξi}. (14)

In (12)-(14), IKp is the plateau current, Ib is the background current, fK1 and fKp

are rational exponentials of the membrane potential, gK([K]e) is a function of the
extracellular potassium concentration [K]e, Esi is linearly dependent on the natural
logarithm of the intracellular calcium concentration [Ca]i, while gNa, gsi, b1, b2, c2,
and c3 are constants determined by fitting with experimental data. In the LR1 model,
αh, βh, α j, β j, ξ , and ξi depend on the membrane potential u through functions
that show different behavior with respect to a threshold. In Figure 4 we plot the
temporal dynamics of the membrane potential, the calcium concentration, and the
gating variables for the LR1 model.

Fig. 4 Time evolution of the membrane potential, the gating variables and the [Ca]i concentration
in the LR1 model.

The LR1 model was extended, in 1994, to the Luo-Rudy phase 2 model, that
includes 6 ionic currents, and 5 ionic concentrations, which allow (as in the CRN
model for atrial cells) the calcium handling by the sarcoplasmic reticulum in the
interior of the cell. The LR2 model was further extended by Winslow in 1999, by
including experimental data from a canine heart and a more detailed modeling of the
calcium dynamics, to a model featuring 25 ionic currents and 6 ionic concentrations.
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3 The macroscopic Bidomain model for electrophysiological
propagation

The Bidomain model is commonly considered one of the most complete and accu-
rate models to describe the propagation of the electrical potential in the myocardium
tissue (see e.g. [52], [50], [27]). Such model has been derived, by an homogeniza-
tion technique, starting from a periodic assembling of elongated cells surrounded
by extracellular space and connected by end-to-end or side-to-side junctions (for
the mathematical details we refer to [32, 14]). The mathematical problem in natu-
rally set in a bounded region Ω ⊂R3, which represents a portion of the heart tissue.

3.1 Tissue and conductivities modeling

The Bidomain model relies on representing the cardiac tissue as the superposition
of two media which are both continuous and anisotropic. The intra-cellular and the
extra-cellular media coexist at each point x ∈ Ω and are separated by a cell mem-
brane. In a natural manner, the intracellular and extracellular potential are denoted
by ui and ue, respectively, while their difference u = ui−ue expresses the membrane
potential.
The conductivity of the cardiac cells depends upon their orientation, featuring pref-
erential pathway along gap junctions (see Figure 5, left), and in the most general
case the conductivity tensor is anisotropic. The structure of the cardiac cells can be
modeled, following Le Grice et al. ([33]) as a sequence of muscular layers going
from endocardium to epicardium (see also [56]). Anatomical studies show that the
fibers direction rotates counterclockwise from epicardium to endocardium and that
they are arranged in sheets, running across the myocardial wall ([4, 52]). In any point
x it is then possible to identify an orthonormal triplet of directions, al(x) along the
fiber, at(x) orthogonal to the fiber direction and in the fiber sheet and an(x) orthog-
onal to the sheet (see Figure 5, right, for a schematic representation). The intra and
extracellular media present different conductivity values in each direction. At point
x∈Ω , we denote by σ l

τ(x), σn
τ (x), and σ t

τ(x) with τ = i,e the intra and extracellular
conductivities in the al(x), at(x) and an(x) direction, respectively.

The intra and extracellular local anisotropic conductivity tensors read, for τ = i,e,

Dτ(x) = σ
l
τ(x)al(x)aT

l (x)+σ
t
τ(x)at(x)aT

t (x)+σ
n
τ (x)an(x)aT

n (x) (15)

We assume that Dτ fulfills in Ω a uniform elliptic condition.
A common practical hypothesis, followed by many authors (see, e.g. [13]) is

axial isotropy: the myocardium tissue is assumed to feature the same conductivity
in both the tangential and normal direction (σ t

i,e = σn
i,e). Under this hypotesis, the

conductivity tensors, for τ = i,e, simplify in

Dτ(x) = σ
t
τ I+(σ l

τ −σ
t
τ)al(x)aT

l (x. (16)
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Fig. 5 Left: schematic representation of the fibers structure. Right: the cell reference frame

3.2 Quasi-static electromagnetic field

The propagation of an action potential across the myocardium generates, at the
macroscopic level, an electrical signal that can be measured, and whose temporal
dynamics is described by Maxwell’s equations.
In a conducting body, the electrical current density is governed by Ohm’s Law,

J = DE, (17)

where D is the conductivity of the medium, and E is the electrical field.
Faraday’s law relates the time derivative of the magnetic field with the rotational of
the electrical field:

∂B
∂ t

+∇×E = 0.

Given the temporal scale of the AP and the spatial scale of the heart, variations of
the magnetic field can be neglected, leading to the quasi-static assumption

∂B
∂ t
∼ 0 =⇒ ∇×E = 0. (18)

Since the electric field E can be assumed irrotational, there exists some potential u
such that E = ∇u, and the current in the conducting medium can then be expressed
in terms of such potential, as

J = D∇u.

3.3 The Bidomain model

The assumption of coexistence of intra- and extracellular media entails that in each
point of the domain x ∈Ω , two currents exist and are given by
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Ji = Di∇ui and Je = De∇ue, (19)

where Di and De represent the conductivities of the intra- and extra-cellular medium,
respectively. For any given small volume V , the charge conservation principle en-
tails that the total current entering the volume must equal the total current leaving
it. Within our framework, this principle amounts to balance the current flowing be-
tween the intracellular and extracellular space, as∫

∂V
n · (Ji +Je) ds = 0. (20)

By a straightforward application of the divergence theorem, we have, for any given
small volume V , that

∇ · (Ji +Je) = 0, (21)

and, from (19), the current balance is given by

∇ · (Di∇ui)+∇ · (Die∇ue) = 0. (22)

The current flowing from one domain to the other must equal the cell membrane
current, that is given in (1). We thus obtain

∇ · (Di∇ui) =−∇ · (De∇ue) = χ

(
Cm

∂u
∂ t

+ Iion

)
(23)

where χ is the surface to volume ratio of the cell.
Depending on the way the three terms in system (23) are grouped, two different
formulation of the Bidomain model emerge.

Parabolic-Parabolic formulation of the Bidomain model

By equaling the first and second terms to the third one in (23), the Bidomain model
results in a system of two nonlinear parabolic reaction-diffusion equations:

χCm
∂u
∂ t
−∇ · (Di∇ui)+χIion = 0

− χCm
∂u
∂ t
−∇ · (De∇ue)−χIion = 0

(24)

This formulation is known in literature as Parabolic-Parabolic (PP). The problem is
completed by suitable initial conditions, and by homogeneous Neumann boundary
conditions on ∂Ω , modeling an insulated myocardium.

The complete PP formulation of the Bidomain model reads:
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χCm
∂u
∂ t
−∇ · (Di∇ui)+χIion = Iapp

i in Ω × (0,T )

−χCm
∂u
∂ t
−∇ · (De∇ue)−χIion = Iapp

e in Ω × (0,T )

u = ui−ue in Ω × (0,T )

∂w
∂ t

= R(u,w) in Ω × (0,T )

nT Di∇ui = 0, nT De∇ue = 0 on ∂Ω × (0,T )

ui(x,0) = ui,0, ue(x,0) = ue,0, w(x,0) = w0 in Ω .

(25)

In (25), n is the unit normal outward-pointing vector on the surface. As a conse-
quence of the Gauss theorem, the applied external stimuli must fulfill the compati-
bility condition ∫

Ω

Iapp
i dx =

∫
Ω

Iapp
e dx. (26)

System (24) consists of two parabolic reaction diffusion equations for ui and ue
where the vector of time derivatives is multiplied by a singular matrix. The system
is thus said to be degenerate. The transmembrane potential u is uniquely determined,
while the intra and extracellular potentials ui and ue are determined up to the same
function of time, whose value is usually obtained by imposing that the extracellular
potential ue has zero mean on Ω (

∫
Ω

ue dx = 0).
The PP formulation has been commonly used by several scientists. In partic-

ular, this formulation has been particularly popular in theoretical studies for well-
posedeness analysis of the problem. Little is known on degenerate reaction-diffusion
systems such as the Bidomain model. We refer the reader to [14] for existence,
uniqueness and regularity results, both at the continuous and the semi-discrete level,
and to [53] for a convergence analysis of finite elements approximations. Both pa-
pers deal with the FitzHugh-Nagumo (FHN) model of the gating system. For well-
posedeness analysis of the Bidomain problem associated with different ionic models
see [2], [3], and [61].
More results are known on the related eikonal approximation describing the propa-
gation of excitation front (see for instance [8, 9, 31]), and a mathematical analysis
of the Bidomain model using Γ -convergence theory can be found in [1].

Parabolic-Elliptic formulation of the Bidomain model

By equaling the first term to both the second and the third one in (23), and using
the fact that ui = u+ ue, the Bidomain model results in a system of one nonlinear
parabolic reaction-diffusion equation, and a linear elliptic equation:
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χCm
∂u
∂ t
−∇ · (Di∇ui)−∇ · (Di∇ue)+χIion = 0

∇ · (Di∇u)+∇ · ((Di +De)∇ue) = 0

(27)

This formulation is known in literature as Parabolic-Elliptic (PE). As for the PP
formulation, the problem is completed by suitable initial and boundary conditions,
and the complete PE formulation of the Bidomain model reads:



χCm
∂u
∂ t
−∇ · (Di∇ui)+χIion = Iapp

i in Ω × (0,T )

∇ · (Di∇u)+∇ · ((Di +De)∇ue) = 0 in Ω

∂w
∂ t

= R(u,w) in Ω × (0,T )

nT Di∇ui = 0, nT De∇ue = 0 on ∂Ω × (0,T )

ui(x,0) = ui,0, ue(x,0) = ue,0, w(x,0) = w0 in Ω .

(28)

Differently from the PP formulation, system (27) does not consist of two parabolic
equations for ui and ue where the vector of time derivatives is multiplied by a singu-
lar matrix. Nevertheless, also system (27) is degenerate, since the elliptic equation
in (27) is in practice a Laplacian with homogeneous Neumann boundary condi-
tions, whose solution is known only up to a constant. Also in this formulation, thus,
the transmembrane potential u is uniquely determined, while the intra and extracel-
lular potentials ui and ue are determined up to the same function of time, whose
value is again obtained by imposing zero mean to the extracellular potential on Ω

(
∫

Ω
ue dx = 0).

By letting λm = min
{

σ l
e/σ l

i , σ t
e/σ t

i
}

and λM = max
{

σ l
e/σ l

i , σ t
e/σ t

i
}

, an alter-
native PE formulation can be obtained by linear combinations of the equations in
(24), with coefficients

(
λ

1+λ
,− 1

1+λ

)
, λm ≤ λ ≤ λM , and (1,1):

χCm
∂u
∂ t
−∇ ·

[
λDi

1+λ
∇u
]
−∇ ·

[
λDi−De

1+λ
∇ue

]
+χIion(u) = Iapp

−∇ · [Di∇u+(Di +De)∇ue] = Ĩapp,

(29)

where we have set Iapp =
λ Iapp

i +Iapp
e

1+λ
and Ĩapp = Iapp

i − Iapp
e .

The (PE) formulation of the Bidomain problem has been widely used for numer-
ical simulations, in particular among the Bioengineering community, serving as the
basis for the development of efficient preconditioners.
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3.4 A simplified model: the Monodomain

If we assume the anisotropy ratio to be the same in the two media, the Bidomain
model reduces to a simpler one, called Monodomain. Its derivation can be ob-
tained in different ways, the common underlying hypothesis being a proportional-
ity assumption between the intracellular and the extracellular conductivity tensors,
namely De = λDi, where λ is a constant to be properly chosen. For instance, under
assumption (16), λ can be devised through a minimization procedure, as

λ = argminJ(λ ), J(λ ) =
(

σ l
e−λσ l

i
1+λ

)2

+2
(

σ t
e−λσ t

i
1+λ

)2

for given values of the conductivities. A time dependent choice of the parameter λ

has been proposed in [39].
After defining D := Di +De and DM := De D−1 Di, the first equation in (29) can be
rearranged as

χCm
∂u
∂ t
−∇ ·DM∇u+∇ ·

[(
DeD−1− λ

1+λ
I
)
(Di∇u+D∇ue)

]
+χIion(u,w)= Iapp

(30)
and, since the proportionality assumption De = λDi entails DeD−1− λ

1+λ
I = 0, a

formulation of the Monodomain model (see [6, 30]) is then obtained from (30) as

χCm
∂u
∂ t
−∇ ·DM∇u+χIion(u,w) = Iapp. (31)

The problem is completed by suitable initial conditions, and by homogeneous
Neumann boundary conditions on ∂Ω , and reads:

cm
∂u
∂ t
−div(DM∇u)+ Iion(u,w) = Iapp in Ω × (0,T )

∂w
∂ t −R(u,w) = 0 in Ω × (0,T )

nT D∇u = 0 in ∂Ω × (0,T )

u(x,0) = u0(x), w(x,0) = w0(x), in Ω ,

(32)

Such model consists of a single parabolic reaction-diffusion equation for the
transmembrane potential u coupled with and ODE system for the gating and con-
centration variables. Differently from the Bidomain, several theoretical results on
reaction-diffusion equations can be applied to the Monodomain model, which fea-
tures a unique solution (u,w), resulting in a much easier to solve problem after
numerical discretization. In many applications the Monodomain model is accurate
enough to capture the desired dynamics and effects of the action potential propaga-
tion. In [47], Potse and his collaborators compare the action potential propagation
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velocities using Monodomain and Bidomain, observing that the Monodomain solu-
tion propagates a bit slower (2%) than the Bidomain one, and conclude that “in ab-
sence of applied currents, propagating of action potentials on the scale of a human
heart can be studied with a Monodomain model”. However, the Bidomain model
becomes necessary when current stimuli are applied in the extracellular space. As
a consequence, the Monodomain has been long considered inadequate to simulate
defibrillation [59]. In recent works by Y. Coudiere and his collaborators, [16, 17],
a proper generalisation of the boundary conditions has been introduced, that allows
an external stimuli to be applied directly at the Monodomain model.

In Figure 6 we plot the difference in the propagation between Bidomain and
Monodomain on a slab with the principal fibers axis oriented horizontally from left
to right. The difference in the propagation speed between the two models can be
clearly appreciated. In addition, it is evident that the Monodomain error, although
globally significant, is minimal in both directions along and across the fibers. An ac-
curate knowledge of the fibers arrangements would strongly reduce the error when
the Monodomain model is used for patient-specific simulation. Still, such arrange-
ment, although having common features, is highly individual, and, unfortunately, a
definitive knowledge of the fibers distribution is not available yet. Modern advanced
medical imaging techniques, such as DTI (Diffusion Tensor Imaging) allow an accu-
rate mapping of the fibers direction, making the Monodomain a viable and cheaper
alternative to heavy Bidomain simulations.

Fig. 6 Difference in the propagation of the membrane potential between Bidomain and Mon-
odomain simulation with fibers oriented along the x axis (from [26]).

4 Numerical approximation

We give here a brief introduction to the numerical approximation of the models
presented in the previous Section. In what follows we do not rely on a specific choice
for the ionic model describing the cell membrane currents. Thus, from now on, we
will simply denote by Iion(u,w) the ionic current. For more detailed description, we
refer the interested reader to [10, 11, 63].



An introduction to mathematical and numerical modeling of heart electrophysiology 19

4.1 Time marching scheme

For the sake of simplicity in presentation, we consider a fixed time step ∆ t, even
if effective time adaptive scheme have been developed in the literature (see e.g. [7,
46]), and we denote with superscript n the variables computed at time tn = n∆ t. The
Bidomain and Monodomain systems can be advanced in time by an implicit-explicit
(IMEX) scheme: moving from time step tn to tn+1, the gating and concentration
variables w are updated first, and used to compute the new values for the electric
potentials.

Let the ionic variables vector w ∈ Rm be arranged as w = (g,c)T , where g ∈ Rp

represent the gating variables, while c ∈ Rq represent the concentration variables
(p+ q = m). Owing to the Hodgkin-Huxley formalism (3)-(4), the components of
g are first integrated exactly in time on (0,∆ t), upon an appropriate linearisation
around the membrane potential at the previous time step

gn+1
j = g j∞(un)+(gn

j −g j∞(un))exp

(
− ∆ t

τg j(un)

)
,

then the concentration variables c are integrated by a backward Euler scheme, taking
into account the updated values gn+1,

cn+1− cn

∆ t
= Rc(un,gn+1,cn),

where Rc are the rows in (2) associated with c. The time step is selected to guarantee
stability to the time advancing scheme.

The electric potentials are then updated by solving on Ω a semi-implicit prob-
lem, where the linear diffusion term is discretized implicitely, while the nonlinear
reaction term (the ionic current Iion(u,w)) is treated explicitely with respect to the
membrane potential u. While taking into account the updated values of the gating
and concentration variables wn+1, this allows to skip the computationally expensive
solution of nonlinear systems.

Within this framework, the semi-discrete version of the Bidomain PP formulation
(24), solves for 0 < n≤ N = T/∆ t,

χCm
un+1−un

∆ t
−∇ ·

(
Di∇un+1

i
)
= Iapp

i −χIion(un,wn+1)

−χCm
un+1−un

∆ t
−∇ ·

(
De∇un+1

e
)
= Iapp

e +χIion(un,wn+1)

u0
i (x) = ui,0(x) u0

e(x) = ue,0(x)

nT Di∇un+1|∂Ω = 0 nT De∇un+1
e |∂Ω = 0.

(33)

Similarly, the semi-discrete version of PE formulation, solves for (27)



20 Luca Gerardo-Giorda

χCm
un+1−un

∆ t
−∇ ·

(
Di∇un+1 +De∇un+1

e
)
= Iapp−χIion(un,wn+1)

−∇ ·
[
Di∇un+1 +(Di +De)∇un+1

e
]
= Ĩapp

u0(x) = u0(x) u0
e(x) = ue,0(x)

nT Di(∇un+1 +∇un+1
e )|∂Ω = 0 nT De∇un+1

e |∂Ω = 0.

(34)

and, for (29)

χCm
un+1−un

∆ t
−∇ ·

(
λDi

1+λ
∇un+1 +

λDi−De

1+λ
∇un+1

e

)
= Iapp−χIion(un,wn+1)

−∇ ·
[
Di∇un+1 +(Di +De)∇un+1

e
]
= Ĩapp

u0(x) = u0(x) u0
e(x) = ue,0(x)

nT Di(∇un+1 +∇un+1
e )|∂Ω = 0 nT De∇un+1

e |∂Ω = 0.
(35)

In a similar manner, the semi-discrete formulation of the Monodomain model
updates the membrane potential by solving, at each time step:

χCm
un+1−un

∆ t
−∇ ·DM∇un+1 = Iapp−χIion(un,wn+1)

u0(x) = u0(x)

nT DM∇un+1|∂Ω = 0.

(36)

4.2 Spatial discretization

The most common approach in the literature is to look for approximate solutions to
the Bidomain and Monodomain models in a finite element space. The computational
domain Ω ⊂ R3 is discretized in space with a regular triangulation Th, namely
Ω =

⋃N
j=1 Tj, where each Tj ∈Th is obtained through an invertible affine map from

a reference element E, a simplex (namely the thetrahedron with vertices (0,0,0),
(1,0,0), (0,1,0), and (0,0,1)) or the unit cube [0,1]3. The associated finite element
spaces Xh and Yh (see e.g. [48] for an introduction to finite element methods) are
defined as

Xh =
{

ϕh ∈C0(Ω) |ϕh|Tj
∈ Pk(Tj)

}
, Yh =

{
ϕh ∈C0(Ω) |ϕh|Tj

∈Qk(Tj)
}
,
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where Pk(Tj) is the space of polynomials of degree at most k on Tj, whereas Qk(Tj)
is the space of polynomials of degree at most k with respect to each variable on Tj.
A fully discrete problem for (33) - (36) is then obtained by applying a Galerkin
procedure on their variational formulations, using as finite dimensional space Vh =

Xh or Vh = Yh, and choosing a basis for Vh. Let then Φ = {ϕ j}Nh
j=1 be a basis for Vh.

We denote by M the mass matrix, and and by Kτ (τ = i,e,M) the stiffness matrices
with entries

Mi j =
N

∑
p=1

∫
Tp

ϕiϕ j dx, Ki j
τ =

N

∑
p=1

∫
Tp

(∇ϕ j)
T Dτ(x)∇ϕi dx.

Numerical evaluation of such integrals is obtained by means of suitable quadrature
rules.

4.3 Algebraic formulation

The unknowns of the fully discrete problem are represented by vectors u, ui, ue, and
w, storing the nodal values of u, ui, ue, and w, respectively.

Advancing the potentials from time tn to tn+1 amount eventually to solve, at each
step, a linear system. Since the Bidomain system is degenerate, the matrix associ-
ated to its discrete formulation is singular, with a one dimensional kernel spanned by
(1,1)T , independently from its formulation. As a consequence, the transmembrane
potential un+1 is uniquely determined, as in the continuous model, while un+1

i and
un+1

e are determined up to the same additive time-dependent constant with respect
to a reference potential. Such constant can be determined by imposing the condition
1T Mun+1

e = 0. On the other hand, the matrix associated with the full discrete ver-
sion of the Monodomain system is positive definite, due to the uniform ellipticity
assumption on the conductivity tensors. As a consequence, the transmembrane po-
tential un+1 is uniquely determined for the discrete Monodomain system.

Parabolic-Parabolic Bidomain formulation
The full discretization of the PP Bidomain system (24) reads: χCm

∆ t M+Ki − χCm
∆ t M

− χCm
∆ t M χCm

∆ t M+Ki

 ui

ue

n+1

=

χCm

∆ t

 M −M

−M M

 ui

ue

n

+

 χM Ih
ion(un,wn+1)+M Iapp

i

−χM Ih
ion(un,wn+1)+M Iapp

e


The above linear system features a symmetric positive semidefinite matrix, Due

to its symmetry, the system can be solved by a Preconditioned Conjugate Gradient
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algorithm (PCG, see e.g. [51]), using as initial guess the solution at the previous
time step.

Parabolic-Elliptic Bidomain formulation.
The full discretization of the PE Bidomain system (28) reads: χCm

∆ t M+Ki Ki

Ki Ki +Ke

 u

ue

n+1

=

 χCm
∆ t M un + χM Ih

ion(un,wn+1)+M Iapp
i

M Iapp
i −M Iapp

e

 ,
while the full discretization of the (29) reads: χCm

∆ t M+ λ

1+λ
Ki

λ

1+λ
Ki− 1

1+λ
Ke

Ki Ki +Ke

 u

ue

n+1

= (37)

 χCm
∆ t M un + χM Ih

ion(un,wn+1)+ λ

1+λ
M Iapp

i + 1
1+λ

M Iapp
e

M Iapp
i −M Iapp

e


While the fully discrete formulation of (28) is symmetric, and can be solved

by PCG, the fully discrete formulation of (29) system results naturally in a non-
symmetric matrix at the discrete level. The resulting linear system can then be solved
with an iterative method such GMRES or Bi-CGSTAB (see [51]), using as initial
guess the solution at the previous time step.

Monodomain
The full discretization of the Monodomain system (32) reads:[

χCm

∆ t
M+Km

] [
u
]n+1

=
[

f
]n+1

The associated matrix is naturally symmetric, and the linear system can be solved
by a PCG, using as initial guess the solution at the previous time step.

4.3.1 Computational aspects

The numerical solution of the Bidomain system is an expensive computational task.
if, on the one hand, the IMEX approach describe above allows to avoid the costly
solution of nonlinear systems, the degenerate nature of the Bidomain itself entails
a very ill conditioning for the linear system associated to its full discretization. To
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cope with such computational complexity, several scientists have developed in the
recent years effective preconditioning strategies to reduce the high computational
costs associated to its numerical solution ([10], [43], [37], [63], [44], [45], [62],
[54]). Among these works, most are based on a proper decomposition of the com-
putational domain in order to set up parallel preconditioners, or on suitable multigrid
schemes still coupled with parallel architectures. The PE formulation is a popular
choice in the Bioengineering community, as it is computationally more stable and
allows for decoupled approaches in the solution. In fact, performing the space dis-
cretization first, results in a Differential-Algebraic system in time. It can then be
natural to decouple the differential part from the algebraic one, and use the elliptic
equation of the PE formulation as a corrector step in a two-level scheme (see, e.g.
[12]). An efficient serial preconditioner for the PE formulation has been proposed in
[23, 22] stemming from a suitable extension of the Monodomain model, and result-
ing in a lower block-triangular preconditioner for (29). Adaptive techniques have
been proposed as well, to better capture the front propagation of the electrical ex-
citation. An efficient adaptive strategy, reshaping the computational grid according
to some suitable a posteriori error estimate has been introduced for instance in [7].
However, since the problem is time dependent, such approach requires to frequently
recompute the mesh and interpolate between the old and the new grid, a feature that
can become a serious bottleneck when simulating reentrant waves or fibrillation.
Stemming from the observation that the Monodomain provides an accurate approx-
imation of the potential in most of the region of interest, a model adaptive strategy
has been proposed as well, which aims at reducing computational costs and to main-
tain the accuracy by solving the Bidomain problem only in (hopefully) small, critical
(in physiopathological terms) regions of the domain, while the Monodomain equa-
tion is solved in the remaining regions, where the potential propagation dynamics
does not require the most sophisticated model. A first version of this approach was
presented in [36], where a suitable a posteriori model estimator was introduced, and
an hybrid model called Hybridomain was advocated. The latter assembles the block
(1,2) in (37) only in correspondence with the nodes identified as Bidomain ones
by the model estimator, while the second equation stays untouched, and a problem
the same size of the original Bidomain model has to be solved. If the constant λ

in (29) is properly chosen, the block (1,1) of (37) is actually the discretization of
the Monodomain model. Following this consideration, an improved version of the
model adaptive strategy has been introduced in [24], where only the block (1,1) of
(37) is solved in the Monodomain regions. The coupling between regions was based
on Optimized Schwarz Methods [26, 25], a popular technique in the field of Domain
Decomposition algorithms (see e.g. [21, 58]), which relies on Robin transmission
conditions on the interface between subdomains.
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