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OPTIMIZED SCHWARZ METHODS FOR THE BIDOMAIN SYSTEM

IN ELECTROCARDIOLOGY

Luca Gerardo-Giorda1 and Mauro Perego2

Abstract. The propagation of the action potential in the heart chambers is accurately
described by the Bidomain model, which is commonly accepted and used in the special-
istic literature. However, its mathematical structure of a degenerate parabolic system
entails high computational costs in the numerical solution of the associated linear system.
Domain decomposition methods are a natural way to reduce computational costs, and
Optimized Schwarz Methods have proven in the recent years their effectiveness in accel-
erating the convergence of such algorithms. The latter are based on interface matching
conditions more efficient than the classical Dirichlet or Neumann ones. In this paper
we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain
problem. We assess the convergence of the iterative method by means of Fourier analy-
sis, and we investigate the parameter optimization in the interface conditions. Numerical
results in 2D and 3D are given to show the effectiveness of the method.
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1. Introduction

Schwarz algorithms have become increasingly popular over the last decades, due to a widespread
availability of more and more powerful distributed computers. The classical Schwarz method
was applied to a wide range of partial differential equations, from linear elasticity [17, 18] to
time harmionc Maxwell’s equations [52] and convergence results can be found in several books,
see [44, 49, 53], and authoritative reviews, see [4, 58, 59]. The convergence rate of the classical
Schwarz method, however, is rather slow and very much dependent on the size of the overlap.
Moreover, in general the classical Schwarz method is not convergent in the absence of overlap. To
overcome these drawbacks, a new class of Schwarz methods was developed in recent years, namely
the optimized Schwarz methods. These methods are based on more effective transmission condi-
tions than the classical Dirichlet conditions at the interfaces between subdomains. Originally, P.L.
Lions proposed Robin conditions to obtain convergence without overlap, see [31], while in a short
note on non-linear problems [28] Hagstrom et al. suggested nonlocal operators for best performance.
In [5], these optimal, non-local transmission conditions were developed for advection-diffusion prob-
lems, with local approximations for small viscosity, and low order frequency approximations were
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proposed in [12, 35]. Optimized transmission conditions for the best performance in a given class
of local transmission conditions were introduced for advection diffusion problems in [30], for the
Helmholtz equation in [6, 21], for Laplace’s equation in [16] and for Maxwell’s equation [3]. For
complete results and attainable performance for symmetric, positive definite problems, see [22], and
for time dependant problems, see [19,20]. The Optimized Schwarz methods were also extended to
systems of partial differential equations, such as the compressible Euler equations [13] and the full
Maxwell system [14]. Recently, Optimized Schwarz strategies have been proposed for the coupling
of heterogeneous models, such as in Fluid-Structure Interaction problem [26] and in the coupling
of Bidomain and Monodomain models in electrocardiology [27].
The Bidomain model is commonly considered one of the most complete and accurate models to
describe the propagation of the electrical potential in the myocardium tissue, see e.g. [29,42,45,46].
It consists of a system of nonlinear unsteady partial differential equations including the dynamics
of intra and extracellular potentials. The discretization of the Bidomain model is often based
on a finite element approximation in space and on implicit-explicit time advancing schemes, that
allow to skip the expensive solution of nonlinear systems. The degenerate parabolic nature of
this system, however, entails a very ill conditioning for the linear system associated to the Bido-
main discretization. In the recent years many efforts have been devoted to the set up of efficient
solvers and preconditioners to reduce the high computational costs associated to its numerical
solution [8, 9, 37, 55, 56], possibly based on multigrid approaches [36, 39, 47, 57] or suitable approx-
imations of the equations [25]. Among these works, most are based on a proper decomposition
of the computational domain in order to set up parallel preconditioners, or on suitable multigrid
schemes still coupled with parallel architectures. In particular, a Classical Schwarz Method cou-
pled with a multigrid approach has been proposed in [36].
In this paper we introduce and analyze an Optimized Schwarz approach to the numerical solu-
tion of the Bidomain system in non-symmetric formulation. We rely on Fourier analysis to assess
the convergence of the algorithm and to identify the optimal parameters that can be used in the
Robin-type interface coupling between the subdomains.
The paper is organized as follow. In Section 2 the Bidomain system and its numerical approxima-
tion are introduced. In Section 3 the Classical Schwarz Method applied to the Bidomain system
is described and its convergence properties are enlightened by means of Fourier analysis. In Sec-
tion 4 the Optimized Schwarz Method for the Bidomain system is introduced and its convergence
properties are analyzed, introducing different possible choices for the Robin interface conditions.
In Section 5 the use of the Optimized Schwarz Method as a preconditioner for a Krylov solution to
the interface problem is introduced. Finally, Section 6 contains numerical tests in two and three
dimensions illustrating the convergence properties of the method, and enlightening the parameters
combination that provide interface conditions which are robust at once with respect to mesh size
and fibers directions.

2. The Bidomain system and its numerical approximation

The cardiac tissue can be represented as a superposition of intra and extracellular media con-
nected by a cell membrane dislocated in the domain. The Bidomain model should take into account
the direction of the cardiac fibers. Anatomical studies show that the fibers direction rotates coun-
terclockwise from epicardium to endocardium and that they are arranged in sheets, running across
the myocardial wall (see e.g. [46]). We set the problem in a bounded region Ω ⊂ R3, and we assume
that the cardiac tissue is characterized at each point by three directions: al along the fiber, at
orthogonal to the fiber direction and in the fiber sheet and an orthogonal to the sheet. The intra
and extracellular media present different conductivity values in each direction. We denote by σli(x)
(resp. σle(x)) the intracellular (resp. extracellular) conductivity in al(x) direction at point x ∈ Ω,
and similarly by σti(x) (σte(x)) and σni (x) (σne (x)) the conductivities along at(x) and an(x). We
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will use throughout the paper the notation σlτ (x), σnτ (x), σtτ (x) with τ = i, e for indicating intra
and extracellular conductivity in a compact form.

The intra and extracellular local anisotropic conductivity tensors read therefore, for τ = i, e,

Dτ (x) = σlτ (x)al(x)aTl (x) + σtτ (x)at(x)aTt (x) + σnτ (x)an(x)aTn (x). (1)

Let ui and ue be the intra and extracellular potentials respectively and u = ui − ue be the
transmembrane potential. The density current in each domain can be computed as Jτ = −Dτ∇uτ ,
τ = i, e. The net current flux between the intra and the extracellular domain is assumed to be
zero as a consequence of the charge conservation in an arbitrary portion of tissue. Denoting by Im
the ingoing membrane current flow and by χ the ratio of membrane area per tissue volume, we get
∇· (Di∇ui) = χIm = −∇· (De∇ue), where Im = Cmdu/dt+ Iion(u,w) being Cm a capacitance
and Iion the ionic current, depending on the potential u and on suitable ionic variables that we
denote with w. The complete Bidomain model reads

χCm∂tu−∇ ·Di∇ui + χIion(u,w) = Iapp
i

−χCm∂tu−∇ ·De∇ue − χIion(u,w) = −Iapp
e ,

(2)

where Iion(u,w) is a nonlinear function of the transmembrane potential u, specified by a ionic
model, and where Iapp

i,e are applied external stimuli. The problem is completed by initial conditions,

ui(x, 0) = ui,0, ue(x, 0) = ue,0, u(x, 0) = ui,0 − ue,0 and by homogeneous Neumann boundary
conditions on ∂Ω, modeling an insulated myocardium,

nTDi∇ui(x, t) = 0 and nTDe∇ue(x, t) = 0, on ∂Ω× (0, T ), (3)

where n is the unit normal outward-pointing vector on the surface. As a consequence of the Gauss
theorem, the applied external stimuli must fulfill the compatibility condition∫

Ω

Iapp
i dx =

∫
Ω

Iapp
e dx. (4)

System (2) consists of two parabolic reaction diffusion equations for ui and ue where the vector of
time derivatives is multiplied by a singular matrix. The system is thus said to be degenerate. The
transmembrane potential u is uniquely determined, while the intra and extracellular potentials
ui and ue are determined up to the same function of time, whose value is usually obtained by
imposing that ue has zero mean on Ω. For well-posedeness analysis of the Bidomain problem
see [10] (FitzHugh-Nagumo model) and [54] (Luo-Rudy I model).

In what follows we will rely on a non-symmetric formulation of (2) (see e.g. [25]). By linear

combinations of the two equations in (2), with coefficients
(

σl
e

σl
i+σ

l
e
,− σl

i

σl
i+σ

l
e

)
, and (1, 1), Bidomain

system can be reformulated in terms of the transmembrane and the extracellular potentials u and
ue. We let u = (u, ue)

T , and defining

D =

[
σl
e

σl
i+σ

l
e
Di

σl
e

σl
i+σ

l
e
Di − σl

i

σl
i+σ

l
e
De

Di Di + De

]
, DB =

[
Di Di

0 De

]
, E1 =

[
1 0
0 0

]
, e1 =

[
1
0

]
,

the non-symmetric Bidomain reads χCm E1 ∂tu−∇ ·D∇u+ χ Iion(u) e1 = Iapp

u0(x) = u0(x) nT DB ∇un+1|∂Ω = 0,
(5)
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where we have Iapp =
(
σl
eI

app
i +σl

iI
app
e

σl
i+σ

l
e

, Iapp
i − Iapp

e

)T
.

2.1. Numerical approximation

We give a quick glance to the numerical approximation of the Bidomain model. Since this is a
well established subject, we do not dwell much on this topic, but for a more detailed description
we refer the interested reader to e.g. [9, 43,56].

2.1.1. Time integration

Let us assume to use a fixed time step ∆t, even if time adaptive schemes have been considered as
well (see e.g. [9,40]). We denote with superscript n the variables computed at time tn = n∆t. The
Bidomain equations (5) can be advanced in time by a semi-implicit scheme, where the nonlinear
term (the ionic current) is evaluated at the previous time steps. More precisely, for 0 < n ≤ N =
T/∆t, moving from tn to tn+1, we solve in Ω


χCm E1

un+1 − un

∆t
−∇ ·D∇un+1 = Iapp − χ Iion(un) e1

u0(x) = u0(x) nT DB ∇un+1|∂Ω = 0.

(6)

In the sequel we let

f =
χCm
∆t

E1u
n + Iapp − χ Iion(un) e1,

and we drop any index referring to time discretization as long as the context is clear.

2.1.2. Space discretization

We discretize in space the domain with a regular triangulation Th and we consider a finite el-
ement space Vh, in which we will look for the approximate solutions, that we denote by uh and
uhe . For the numerical tests in Section 6, we chose Vh as the space of piecewise linear continuous
functions on Th, but we claim that other finite element spaces can be used [9, 56].

We denote by Φ = {ϕj}Nh
j=1 a basis for Vh, by Kτ (τ = i, e) the stiffness matrices with Kijτ =∑

K∈Th(Dτ∇ϕj ,∇ϕi)|K , and by M the mass matrix with entries Mij =
∑
K∈Th(ϕj , ϕi)|K ,

ϕi, ϕj ∈ Φ. The unknowns of the fully discrete problem are represented by vectors u and ue,
storing the nodal values of uh and uhe , respectively, and we let f denote the discretization of the
forcing term f .
At step tn+1 the discrete Bidomain model solves

BUn+1 = f , B =


χCm
∆t
M+

σleKi
σli + σle

σleKi
σli + σle

− σliKe
σli + σle

Ki Ki +Ke

 , U =

[
u
ue

]
. (7)

Since the Bidomain system (2) is degenerate, the matrix B in its discrete formulation is singular,
with a kernel spanned by the constants. We thus solve (7) with an iterative method (GMRES, due
to its lack of symmetry) and we force a zero mean value on the extracellular potential by imposing
1TMue = 0.
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3. Classical Schwarz Method

In order to present the classical Schwarz Algorithm, we decompose the computational domain
into two overlapping subdomains as illustrated in Figure 1. We choose to describe the formu-
lation in a two-domain settings for sake of simplicity in presentation, but the extension of the
algorithm formulation to an arbitrary number of subdomains does not present any conceptual dif-
ficulties. We denote with ui,l, ue,l, and ul = ui,l−ue,l (l = 1, 2) the intracellular, extracellular and

Figure 1. Overlapping domain decomposition

transmembrane potentials in Ω1 and Ω2, respectively. The unknowns are collected in the vectors
ul = (ul, ue,l)

T (l = 1, 2). At each time step, the classical alternating Schwarz algorithm enforces
Dirichlet continuities on the interfaces and reads as follows.

Given u0
2 on Γ12, solve for p ≥ 0 until convergence

χCm
∆t

E1 u
p+1
1 −∇ ·D∇up+1

1 = f1 in Ω1

nT1 DB ∇up+1
1 = 0 on ∂Ω1 ∩ ∂Ω

up+1
1 = up2 on Γ12

χCm
∆t

E1 u
p+1
2 −∇ ·D∇up+1

2 = f2 in Ω2

nT2 DB ∇up+1
1 = 0 on ∂Ω2 ∩ ∂Ω

up+1
2 = up+1

1 on Γ21.

(8)

The Classical Schwarz Algorithm above can be easily parallelized by choosing up1 instead of up+1
1

on Γ21. In such case also an initial value u0
1 has to be provided on Γ21.

3.1. Convergence analysis

We analyze here the convergence properties of the classical Schwarz algorithm via Fourier analy-
sis, and to this aim we consider throughout this section the problem on the infinite domain Ω = R3,
decomposed into

Ω1 = (−∞, L)× R2, Ω2 = (0,∞)× R2, (9)

where the interfaces are Γ12 = {L} × R2 and Γ21 = {0} × R2, and the overlap size is L ≥ 0. We
disregard here the boundary conditions and require the solutions to be bounded at infinity. Notice
that the asymptotic requirements for the Fourier transformability of the extracellular potential
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automatically fix the arbitrary function of time. We assume axial symmetry of the fibers, and the
longitudinal axis of the fibers (the principal direction of the action potential propagation) to be
orthogonal to the interface Γ, so that the diffusion tensors are given by

Di =

[
σli

σti I2

]
De =

[
σle

σte I2

]
being I2 the 2×2 identity matrix.
We apply a Fourier transform in the y and z directions, which is defined, for any w(x, y, z) ∈ L2(R3),
as

F : w(x, y, z) 7→ ŵ(x, ky, kz) =

∫ ∫
R2

e−i(kyy+kzz)w(x, y, z) dydz,

where we denote by ky and kz the dual variables. We note in the sequel k2 = k2
y + k2

z , and we can
quantify in the frequency space, without loss of generality, the error on the interface Γ12 at the
p-th iteration as εp = ûp2(L,k) − û2(L,k) . This allows us to define the reduction factor of the
Schwarz algorithm at the (p+1)-th iteration as the spectral radius of the iteration matrix mapping
εp into εp+1. Since the time discretized problem is linear, it is enough to analyze the convergence
to the zero solution in the absence of forcing terms (i.e. for f1 = f2 = 0).
In the Fourier space, the Bidomain equation within Ωj (j = 1, 2) is given by (see also [27]) σliσ

l
e

σli + σle
0

σli σli + σle

 ∂xx
 ûj

ûe,j

 =

 χCm
∆t

+
σle

σli + σle
σtik

2 σleσ
t
i − σteσli
σli + σle

k2

σtik
2 (σti + σte)k

2

  ûj

ûe,j

 ,
and a simple algebra yields

∂xxûj = A(k) ûj A(k) =

 χCm

∆t

(
1
σl
i

+ 1
σl
e

)
+

σt
i

σl
i

k2
(
σt
i

σl
i

− σt
e

σl
e

)
k2

−χCm

∆t
1
σl
e

σt
e

σl
e
k2

 . (10)

Proposition 3.1. For L > 0 the Classical Schwarz Algorithm (8) converges for every initial guess
and for every Fourier mode k > 0. Moreover, its reduction factor is independent of the iteration
and is given by

ρClau (k, L) = e−2
√
η+(k)L, (11)

for the error in u, and by

ρClaue
(k, L) = e−2

√
η−(k)L, (12)

for the error in ue, where η±(k) are the eigenvalues of the 2× 2 matrix A(k) defined in (10).

Proof. Given ûp2 on {k ∈ R, x ≥ 0}, the (p + 1)-th iteration of the classical Schwarz Algorithm
solves in the Fourier space

∂xxû
p+1
1 = A(k) ûp+1

1 k ∈ R, x < L

ûp+1
1 = ûp2 k ∈ R, x = L

∂xxû
p+1
2 = A(k) ûp+1

2 k ∈ R, x > 0

ûp+1
2 = ûp+1

1 k ∈ R, x = 0.
(13)

In both subdomains, we solve Bidomain system by diagonalizing the matrixA(k) = W (k) H(k)W−1(k)

and introducing the characteristic variables ẑp+1 = W−1(k) ûp+1, namely{
∂xx ẑ

p+1 = H ẑp+1

ûp+1 = W (k) ẑp+1 , H(k) =

[
η+(k) 0

0 η−(k)

]
, W (k) =

[
w+(k) w−(k)

]
. (14)
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The eigenvalues of A(k) are

η±(k) =
1

2

[
1

σli

(
χCm
∆t

+ σtik
2

)
+

1

σle

(
χCm
∆t

+ σtek
2

)]

± 1

2

√[
1

σli

(
χCm
∆t

+ σtik
2

)
− 1

σle

(
χCm
∆t

+ σtek
2

)]2

+
4

σliσ
l
e

[
χCm
∆t

]2

,

(15)

while the corresponding eigenvectors are

w+(k) =

[
A12(k)

η+(k)−A11(k)

]
w−(k) =

[
A12(k)

η−(k)−A11(k)

]
.

Since detA(k) > 0 and [trA(k)]
2 − 4 detA(k) > 0, both eigenvalues η±(k) are real positive. The

condition at infinity excludes growing solutions as x→ ±∞, thus the general solution in Ω1 at the
(p+ 1)-th iteration is given by

ûp+1
1 (x,k) = βp+1

1 w+(k) e
√
η+(k) (x−L) + βp+1

2 w−(k) e
√
η−(k) (x−L), (16)

while the general solution in Ω2 at the (p+ 1)-th iteration is given by

ûp+1
2 (x,k) = γp+1

1 w+(k) e−
√
η+(k) x + γp+1

2 w−(k) e−
√
η−(k) x. (17)

The vectors βp+1 = (βp+1
1 , βp+1

2 ) and γp+1 = (γp+1
1 , γp+1

2 ) are then uniquely determined by the
boundary conditions on the interfaces {x = 0} and {x = L}.
Owing to (13), we get

βp+1
1 w+(k) + βp+1

2 w−(k) = γp1 w
+(k) e−

√
η+(k)L + γp2 w

−(k) e−
√
η−(k)L

and

γp+1
1 w+(k) + γp+1

2 w−(k) = βp+1
1 w+(k) e−

√
η+(k)L + βp+1

2 w−(k) e−
√
η−(k)L,

that, by defining,

Λ(k, L) =

[
e−
√
η+(k)L 0

0 e−
√
η−(k)L

]
, (18)

can be rewritten in matrix form as

W (k)βp+1 = W (k) Λ(k, L)γp W (k)γp+1 = W (k) Λ(k, L)βp+1.

Since W (k) is invertible for k > 0, we get γp+1 = Λ2(k, L)γp−1, and, given γ0,

γ2p = Λ2p(k, L)γ0.

The global reduction factor of the Classical Schwarz Algorithm is thus given by the spectral radius
of the matrix Λ2(k, L)

ρCla(k, L) = max

(
e−2
√
η+(k)L, e−2

√
η−(k)L

)
= e−2

√
η−(k)L
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Owing to (15), the last equality follows. The diagonal form of the matrix Λ(k, L), however, allows
us to identify a reduction factor for the error in the u variable and one for the ue variable. In
particular we have

ρClau (k, L) = e−2
√
η+(k)L ρClaue

(k, L) = e−2
√
η−(k)L,

which concludes the proof. �

Remark 3.2. The definition of the reduction factors for the classical Schwarz algorithm (11) and
(12) entails that overlap is mandatory for convergence for all Fourier mode k > 0. Moreover,
since η−(0) = 0, ρClaue

(0, L) = 1 regardless of the overlap size, and the iterative form of the
classical Schwarz algorithm does not converge in the extracellular potential for the frequency k = 0,
corresponding to constant solutions along the interface. This is a consequence of the degenerate
nature of the Bidomain system: its kernel in the non-symmetric formulation is spanned by the
vector [0,1] and the vaule of ue is known only up to a constant. This problem can be dealt with by
forcing at each iteration a zero mean on the extracellular potentials ue,l (l = 1, 2), which fixes the
arbitrary constant in the solution. Also, another option is to use the classical Schwarz algorithm as
a preconditioner for a Krylov method, which can handle isolated problems in the spectrum. This
last approach is actually the most popular in the literature.

We plot in Figure 2 the reduction factors ρClau (k, L) and ρClaue
(k, L) as a function of k, for a mesh

size of order h = 1/64 (reasonable in applications [7]), and a minimal overlap of size L = h: the
values of στi and στe (τ = l, t) are the ones proposed in [9]. Notice the different scale in the figures:
we expect the algorithm to converge much faster on u than on ue. Such theoretical conclusion will
be supported by numerical evidence in Section 6.
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Figure 2. Reduction factors ρClau (k, L) (left) and ρClaue
(k, L) (right) as a function

of the frequency k for the Classical Schwarz Algorithm with minimal overlapping
decompositions (L = h). Notice the different scales used.

4. Optimized Schwarz Method

We introduce here a modification of the classical Dirichlet interface conditions, which lead to
Optimized Schwarz Methods. Such methods have become very popular in the last decade [14,22,24],
and are a generalization of the non-overlapping Robin-Robin algorithm proposed by P.L. Lions
in [31], that ensures convergence also without relaxation.
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We first derive suitable coupling conditions at the interfaces. We focus on Γ12, but the adaptation
to Γ21 is straightforward. Let again ui,l, ue,l, and ul = ui,l−ue,l (l = 1, 2) denote the intracellular,
extracellular and transmembrane potential in Ω1 and Ω2, respectively.
Optimized Schwarz Methods are based upon interface continuity requirements on traces and fluxes
of Robin type. In this case, the coupling of intracellular and extracellular potentials and fluxes
along Γ12 is given by

nT1 Di∇ui,1 + αui,1 = nT1 Di∇ui,2 + αui,2, nT1 De∇ue,1 + βue,1 = nT1 De∇ue,2 + βue,2, (19)

for α, β > 0. The same linear combinations yielding to the non-symmetric formulation (5), applied
to (19) provide the following equivalent coupling conditions on Γ12,

nT1
σleDi

σli + σle
(∇u1 +∇ue,1)− nT1

σliDe

σli + σle
∇ue,1 +

σle α

σli + σle
u1 +

σle α− σli β
σli + σle

ue,1 =

= nT1
σleDi

σli + σle
(∇u2 +∇ue,2)− nT1

σliDe

σli + σle
∇ue,2 +

σle α

σli + σle
u2 +

σle α− σli β
σli + σle

ue,2,

(20)

nT1 Di(∇u1 +∇ue,1)+nT1 De∇ue,1 + αu1 + (α+ β)ue,1 =

= nT1 Di(∇u2 +∇ue,2) + nT1 De∇ue,2 + αu2 + (α+ β)ue,2.
(21)

For sake of simplicity we take β as a function of α, in order to have only one parameter to handle

on each interface. In what follows we choose β =
σl
e

σl
i

α. Such choice ensures positivity in the

trace component of the interface condition and simplifies the extracellular potential in the first
condition as well. Besides, this is a key ingredient in a model adaptive procedure based on the
Bidomain-Monodomain coupling, that is currently under investigation and will be the subject of
a forthcoming paper.

Remark 4.1. Since the linear combinations providing (20) and (21) are the same that provide
the non-symmetric formulation, the flux terms in the interface conditions (20) and (21) naturally
appear as boundary terms in the variational formulation, ensuring well-posedeness for the local
subproblems in the coupling.

We define

Π =

 σl
e

σl
i+σ

l
e

0

1
σl
i+σ

l
e

σl
i

 ,
and a similar argument along Γ21 leads us to introduce the Optimized Schwarz Algorithm (OSA)
as follows.

Given u0
2 and nT1 D∇u0

2 on Γ12, solve for p ≥ 0 until convergence

χCm
∆t

E1 u
p+1
1 −∇ ·D∇up+1

1 = f1 in Ω1

nT1 DB ∇up+1
1 = 0 on ∂Ω1 ∩ ∂Ω

nT1 D∇up+1
1 + α1 Πup+1

1 = nT1 D∇up2 + α1 Πup2 on Γ12

χCm
∆t

E1 u
p+1
2 −∇ ·D∇up+1

2 = f2 in Ω2

nT2 DB ∇up+1
1 = 0 on ∂Ω2 ∩ ∂Ω

nT2 D∇up+1
2 + α2 Πup+1

2 = nT2 D∇up+1
1 + α2 Πup+1

1 on Γ21.

(22)
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In the present form the Optimized Schwarz Algorithm is sequential, however it can be easily
parallelized by choosing up1 in the right hand side of the last equation in (22). In this case, an
initial set of data u0

1 and nT2 D∇u0
1 needs to be assigned as well on Γ21.

4.1. Convergence analysis

We analyze also the convergence properties of the Optimized Schwarz Algorithm via Fourier
analysis, and to this aim we consider again the problem on the infinite domain Ω = R3, decomposed
into Ω1 = (−∞, L) × R2, and Ω2 = (0,∞) × R2, where the interfaces are Γ12 = {L} × R2 and
Γ21 = {0} × R2, and the overlap size is L ≥ 0. We set ourselves in the conditions described in
Section 3.1. Once again, it is enough to prove convergence to the zero solution in the absence of
forcing terms (f1 = f2 = 0).

Proposition 4.2. For α1, α2 ≥ 0 and L > 0, the Optimized Schwarz Algorithm (22) converges
for every initial guess and for every Fourier mode k > 0. Its reduction factor is independent of
the iteration and is given by

ρOSAu (k, α1, α2, L) =

∣∣∣∣∣α1 − σli
√
η+(k)

α1 + σli
√
η+(k)

∣∣∣∣∣ ·
∣∣∣∣∣α2 − σli

√
η+(k)

α2 + σli
√
η+(k)

∣∣∣∣∣ e−2
√
η+(k)L, (23)

for the error in u, and by

ρOSAue
(k, α1, α2, L) =

∣∣∣∣∣α1 − σli
√
η−(k)

α1 + σli
√
η−(k)

∣∣∣∣∣ ·
∣∣∣∣∣α2 − σli

√
η−(k)

α2 + σli
√
η−(k)

∣∣∣∣∣ e−2
√
η−(k)L, (24)

for the error in ue, where η±(k) are the eigenvalues of the 2× 2 matrix A(k) defined in (10).
For L = 0 the Optimized Schwarz Algorithm (22) converges for every initial guess provided α1, α2 ≥
0, at least one of them strictly positive, and for every Fourier mode k > 0. The reduction factors
are independent of the iteration and are given by ρOSAu (k, α1, α2, 0) and ρOSAue

(k, α1, α2, 0).

Proof. Given ûp2 on {k ∈ R, x ≥ 0}, defining

Σ =

[
σli 0
σli σli + σle

]
,

the (p+ 1)-th iteration of the OSA solves in the Fourier space

∂xxû
p+1
1 = A(k) ûp+1

1 k ∈ R, x < L

Σ ∂x û
p+1
1 + α1

1
σl
i

Σ ûp+1
1 = Σ ∂x û

p
2 + α1

1
σl
i

Σ ûp2 k ∈ R, x = L

∂xxû
p+1
2 = A(k) ûp+1

2 k ∈ R, x > 0

−Σ ∂xû
p+1
2 + α2

1
σl
i

Σ ûp+1
2 = −Σ ∂x û

p+1
1 + α2

1
σl
i

Σ ûp+1
1 k ∈ R, x = 0.

(25)

The general solutions in Ω1 and Ω2 at the (p + 1)-th iteration are given again by (16) and (17),

where the values of βp+1 = (βp+1
1 , βp+1

2 ) and γp+1 = (γp+1
1 , γp+1

2 ) are uniquely determined by the
boundary conditions on the interfaces {x = 0} and {x = L}.
Since Σ is invertible, it can be simplified in both interface conditions. Multiplying both sides of
the interface conditions by σli, we get from (25), (16), and (17)

W (k)
[
α1I2 + σli H1/2(k)

]
βp+1 = W (k)

[
α1I2 − σli H1/2(k)

]
Λ(k, L)γp

W (k)
[
α2I2 + σli H1/2(k)

]
γp+1 = W (k)

[
α2I2 − σli H1/2(k)

]
Λ(k, L)βp+1,

(26)
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where W (k) and H(k) are defined in (14), while Λ(k, L) has been defined in (18).
For k > 0 the matrices W (k) and H1/2(k) are invertible. Moreover, since both H1/2(k) and Λ(k, L)
are diagonal, we have from (26)

γp+1 =
[
α2I2 + σli H1/2(k)

]−1 [
α2I2 − σli H1/2(k)

] [
α1I2 + σli H1/2(k)

]−1 [
α1I2 − σli H1/2(k)

]
Λ2(k, L)γp

= S(k, α1, α2) Λ2(k)γp(k),

so that, given γ0(k),

γp(k) = [S(k, α1, α2)]
p

Λ2p(k, L)γ0(k).

The reduction factor of the Schwarz Algorithm is then given by the spectral radius of the matrix
product S(k, α1, α2) Λ2(k, L), and it is thus independent of the iteration p. Moreover, since for
any Fourier mode k > 0,

S(k, α1, α2) =

 α1−σl
i

√
η+(k)

α1+σl
i

√
η+(k)

· α2−σl
i

√
η+(k)

α2+σl
i

√
η+(k)

0

0
α1−σl

i

√
η−(k)

α1+σl
i

√
η−(k)

· α2−σl
i

√
η−(k)

α2+σl
i

√
η−(k)

 , (27)

the reduction factors of the Optimized Schwarz algorithm are given by (23) and (24).
To conclude the proof, observe that for L = 0, Λ(k, 0) = I2, the iteration matrix reduces to
S(k, α1, α2) and, for any α1, α2 ≥ 0 we have∣∣∣∣∣α1 − σli

√
η+(k)

α1 + σli
√
η+(k)

∣∣∣∣∣ ·
∣∣∣∣∣α2 − σli

√
η+(k)

α2 + σli
√
η+(k)

∣∣∣∣∣ < 1

∣∣∣∣∣α1 − σli
√
η−(k)

α1 + σli
√
η−(k)

∣∣∣∣∣ ·
∣∣∣∣∣α2 − σli

√
η−(k)

α2 + σli
√
η−(k)

∣∣∣∣∣ < 1, (28)

for k > 0, provided at least one among α1 and α2 is strictly positive. �

Owing to (28), the following corollary holds.

Corollary 4.1. For any α1, α2 ≥ 0, at least one of which strictly positive, we have for all k > 0,

ρOSAu (k, α1, α2, L) < ρClau (k, L) ρOSAue
(k, α1, α2, L) < ρClaue

(k, L).

We point out that starting the algorithm by solving within Ω2 first would provide the same result,
since again one gets βp+1 = S(k, α1, α2) Λ2(k, L)βp.

Remark 4.3. Differently from the classical Schwarz Algorithm, the Optimized Schwarz con-
verges also in the absence of overlap for all Fourier mode k > 0. Again, since η−(0) = 0,
ρOSAue

(0, α1, α2, L) = 1 regardless of the overlap size L and the parameters α1 and α2, thus the
Optimized Schwarz algorithm does not converge in its iterative form for the frequency k = 0.
This problem can be accounted for in the same way outlined in the case of the Classical Schwarz
algorithm.

In the next sections we focus on the choice of the parameters αl (l = 1, 2) in the Robin interface
conditions. Since Λ(k, L) does not depend on neither α1 nor α2, the optimal parameters can be
sought in the nonoverlapping case L = 0. Ideally, the optimal parameters force the convergence
factors ρOSAu (k, α1, α2, L) and ρOSAue

(k, α1, α2, L) to be identically zero, so that convergence is
attained in a number of iterations equal to the number of subdomains (two, in the case at hand).
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4.2. One-sided Robin interface conditions

The classical and simplest approach in the Optimized Schwarz literature consists in choosing
the same Robin parameter on both sides of the interface [31]. Such conditions are referred to as
one-sided Robin interface conditions.
If we choose α1 = α2 = α, the iteration matrix is given by

S(k, α) =

([
αI2 + σli H1/2(k)

]−1 [
αI2 − σli H1/2(k)

])2

=


∣∣∣∣α−σl

i

√
η+(k)

α+σl
i

√
η+(k)

∣∣∣∣2 0

0

∣∣∣∣α−σl
i

√
η−(k)

α+σl
i

√
η−(k)

∣∣∣∣2
 ,

thus we have

ρOSAu (k, α) =

∣∣∣∣∣α− σli
√
η+(k)

α+ σli
√
η+(k)

∣∣∣∣∣
2

, ρOSAue
(k, α) =

∣∣∣∣∣α− σli
√
η−(k)

α+ σli
√
η−(k)

∣∣∣∣∣
2

. (29)

In [27] the iterative mapping is scalar and the optimal parameter can be easily identified. Here
the iterative mapping is a matrix: it is diagonal but, differently from what happens, for instance,
for Maxwell’s equations (see [3]), it is not a multiple of the identity, thus it is not possible to
devise a single parameter (even depending on the tangential frequency k) that both ρOSAu (k, α)
and ρOSAue

(k, α) vanish identically. Indeed, only one of the two eigenvalues can be annihilated at a
given time.
The standard approach in Optimized Schwarz literature consists in optimizing the parameter α by
minimizing the convergence rate over all the relevant frequencies of the problem: such approach
amounts to solve the min-max problem

min
α∈R+

max
k∈[kmin,kmax]

(
ρOSAu (k, α), ρOSAue

(k, α)
)
, (30)

where kmin is the smallest frequency relevant to the problem and kmax is the largest frequency
supported by the numerical grid, which is of the order π/h, being h the mesh size. By an equioscil-
lation principle, one is led to seek for the solution of the min-max problem as αopt such that
ρ(kmin, α

opt) = ρ(kmax, α
opt), namely

αopt = σli
(
η−(kmin) η+(kmax)

)1/4
. (31)

Unfortunately, although effective to optimize the interface Robin parameter in several situa-
tions (see, e.g. [3, 15, 22, 24]) this would not be a good choice in the case at hand. Infact,
limk→∞ ρOSAu (k, α) = 1, and since ρOSAue

(0, α) = 1 for all α, also ρOSAue
(kmin, α) ∼ 1, the overall

convergence rate would be very close to 1. We thus consider different possible choiches of the pa-
rameter α, based on zero-th order Taylor expansions of η+(k) and η−(k) around differents values
of the frequency k, that will be used in the numerical tests of Section 6.

• O1: α = σli
√
η+(0).

The interface condition is based on the Taylor expansion of
√
η+(k) around 0. It damps

the zero frequency in ρOSAu (k, α), while no frequency is damped in in ρOSAue
(k, α).

• O2: α = σli
√
η−(hkmax).

The interface condition is based on the Taylor expansion of
√
η−(k) around hkmax,

which can be regarded as an approximation of kmin. It damps the frequency hkmax
in ρOSAue

(k, α), while no frequency is damped in in ρOSAu (k, α).
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• O3: α = σli
√
η−(kmax/2).

The interface condition is based on the Taylor expansion of
√
η−(k) around kmax/2. It

damps the frequency kmax/2 in ρOSAue
(k, α), while no frequency is damped in in ρOSAu (k, α).

• O4: α = σli
√
η−(kmax).

The interface condition is based on the Taylor expansion of
√
η−(k) around the maximal

frequency kmax. It damps the frequency kmax in ρOSAue
(k, α), while no frequency is damped

in in ρOSAu (k, α).

We plot in Figure 3 the convergence rates, as a function of the frequency variable k, of the one-
sided Robin condition: the solid line refers to the convergence rate ρOSAu , the dashed line to the
convergence rate ρOSAue

. From Figure 3, we expect in general a faster convergence of the u variable
with respect to the ue variable, except in the case of the interface condition O2. Moreover,
we expect the interface condition O2 to behave very poorly in the case of a non-overlapping
decomposition.

Figure 3. Reduction factors ρOSAu and ρOSAue
as a function of the frequency k

with non-overlapping decompositions: one-sided conditions.

4.3. Two-sided Robin interface conditions

An improvement can be obtained by the use of two-sided interface conditions (using different
parameters on the two sides of the interface, see [22] and [23] for an application to Helmholtz
problem), which proved to enhance the convergence rate of the Optimized Schwarz Algorithm. In
this case the iteration matrix is M(k, α1, α2, L) = S(k, α1, α2) Λ2(k, L), where S(k, α1, α2) is the
one in (27), and the optimal parameters are given by

αexact1 (k) = σli
√
η+(k) αexact2 (k) = σli

√
η−(k). (32)

In fact, αexact1 (k) and αexact2 (k) are actually the symbols of two linear, pseudodifferential, operators
acting along the interface. These expressions are not viable since their back transform in the space
of physical variables is a nonlocal operator. We resort therefore to a different, even suboptimal,
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choice, and we approximate αexact1 (k) and αexact2 (k) with constants, by means of their zero-th
order Taylor expansion as done in the previous section. We obtain the following two-sided interface
conditions, that will be used in the numerical tests of Section 6.

Figure 4. Reduction factors ρOSAu and ρOSAue
as a function of the frequency k

with non-overlapping decompositions: two-sided conditions.

• T1: α1 = σli
√
η+(0), α2 = σli

√
η−(hkmax)

The interface condition is based on the Taylor expansion of
√
η+(k) around 0 and of√

η−(k) around hkmax. It damps the zero frequency in ρOSAu (k, α1, α2), and the frequency
hkmax in ρOSAue

(k, α1, α2).

• T2: α1 = σli
√
η+(0), α2 = σli

√
η−(kmax/2)

The interface condition is based on the Taylor expansion of
√
η+(k) around 0 and of√

η−(k) around kmax/2. It damps the zero frequency in ρOSAu (k, α1, α2), and the frequency
kmax/2 in ρOSAue

(k, α1, α2).

• T3: α1 = σli
√
η+(0), α2 = σli

√
η−(kmax)

The interface condition is based on the Taylor expansion of
√
η+(k) around 0 and of√

η−(k) around kmax. It damps the zero frequency in ρOSAu (k, α1, α2), and the frequency
kmax in ρOSAue

(k, α1, α2).

• T4: α1 = σli
√
η−(hkmax), α2 = σli

√
η−(kmax/2)

The interface condition is based on the Taylor expansion of
√
η−(k) around hkmax and

kmax/2. It damps the frequencies hkmax and kmax/2 in ρOSAue
(k, α1, α2), while no fre-

quency is damped in ρOSAu (k, α1, α2).
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• T5: α1 = σli
√
η−(hkmax), α2 = σli

√
η−(kmax)

The interface condition is based on the Taylor expansion of
√
η−(k) around hkmax and

kmax. It damps the frequencies hkmax and kmax in ρOSAue
(k, α1, α2), while no frequency

is damped in ρOSAu (k, α1, α2).

• T6: α1 = σli
√
η−(kmax/2), α2 = σli

√
η−(kmax)

The interface condition is based on the Taylor expansion of
√
η−(k) around kmax/2 and

kmax. It damps the frequencies kmax/2 and kmax in ρOSAue
(k, α1, α2), while no frequency

is damped in ρOSAu (k, α1, α2).

We plot in Figure 4 the convergence rates, as a function of the frequency variable k, of the two-
sided Robin conditions: the solid line refers to the convergence rate ρOSAu , the dashed line to the
convergence rate ρOSAue

. From Figure 4, we expect in general a faster convergence of the u variable
with respect to the ue variable.

5. Optimized Schwarz Method as a preconditioner

In this section we focus on the discrete version of the Optimized Schwarz Algorithms. We con-
sider the case in which the subdomains Ω1 and Ω2 are obtained from a nonoverlapping partitioning
of a regular triangulation of the whole computational domain Ω, in order to have matching meshes
on the interface. We let Bl denote the matrix defined in (7) when computed on a triangulation of
Ωl (l = 1, 2). We denote by Rl,Γ (l = 1, 2) the restriction matrices from Ωl to Γ, respectively, and
we let

Rl,Γ =

[
Rl,Γ 0
0 Rl,Γ

]
be its extension to pairs ul = (ul, ue,l)

T .
By introducing, at the space continuous level, the interface variables on Γ

λp1 = nT1 D∇up2 + α1 Πup2 λp2 = nT2 D∇up1 + α2 Πup1,

the parallel version of the Optimized Schwarz Algorithm reads
χCm
∆t

E1 u
p+1
1 −∇ ·D∇up+1

1 = f1 in Ω1

nT1 DB ∇up+1
1 = 0 on ∂Ω1 ∩ ∂Ω

nT1 D∇up+1
1 + α1 Πup+1

1 = λp1 on Γ
χCm
∆t

E1 u
p+1
2 −∇ ·D∇up+1

2 = f2 in Ω2

nT2 DB ∇up+1
1 = 0 on ∂Ω2 ∩ ∂Ω

nT2 D∇up+1
2 + α2 Πup+1

2 = λp2 on Γ

λp+1
2 = nT2 D∇up+1

1 + α2 Πup+1
1 on Γ

λp+1
1 = nT1 D∇up+1

2 + α1 Πup+1
2 on Γ.

(33)

With a little abuse of notation, we denote by upl , λ
p
l , and f l (l = 1, 2) the discrete version of the

unknowns and the forcing terms. We denote by MΓ the mass matrix on the interface Γ, and we
set

R1 = RT1,ΓMΓR1,Γ R2 = RT2,ΓMΓR2,Γ.

We let, for l = 1, 2,
Al = Bl + α∗lΠl, (34)
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where

Π1 =

 σl
e

σl
i+σ

l
e
R1 0

R1
σl
i+σ

l
e

σl
i

R1

 Π2 =

 σl
e

σl
i+σ

l
e
R2 0

R2
σl
i+σ

l
e

σl
i

R2

 .
With these positions, the discrete version of (33) reads

A1u
p+1
1 = f1 + RT

1,Γλ
p
1 A2u

p+1
2 = f2 + RT

2,Γλ
p
2

λp+1
1 = R2,Γ(f2 −B2u2) + α∗1R2,ΓΠ2u2

λp+1
2 = R1,Γ(f1 −B1u1) + α∗2R1,ΓΠ1u1,

(35)

which, owing to (34), becomes

λp+1
1 = −λp2 + (α∗1 + α∗2)R2,ΓΠ2

(
A−1

2 f2 + A−1
2 RT

2,Γλ
p
2

)
λp+1

2 = −λp1 + (α∗1 + α∗2)R1,ΓΠ1

(
A−1

1 f1 + A−1
1 RT

1,Γλ
p
1

)
.

(36)

The above scheme is a fixed point iteration procedure to solve system[
I I− (α∗1 + α∗2)Σ2

I− (α∗1 + α∗2)Σ1 I

] [
λ1

λ2

]
= (α∗1 + α∗2)

[
R2,ΓΠ2A

−1
2 f2

R1,ΓΠ1A
−1
1 f1

]
, (37)

where

Σ1 = R1,ΓΠ1 A−1
1 RT

1,Γ Σ2 = R2,ΓΠ2 A−1
2 RT

2,Γ.

We solve systems (37) above with a Krylov subspace method. This corresponds to using the
Optimized Schwarz methods as preconditioners.

6. Numerical Results

Numerical tests presented in this section have two different goals. On the one hand we test the
effectiveness and the robustness of the Optimized Schwarz Algorithm (in both iterative and Krylov
accelerated form) for the different interface conditions introduced in Section 4, with respect to mesh
and subdomain sizes as well as the fiber orientation. On the other hand, to test the accuracy of
the method we consider the propagation of an action potential during a whole heart cycle and
we compare the solution of a global Bidomain solution with the solution obtained performing
only a small number of iterations in the OSA. We consider different geometries: a rectangle, a two
dimensional circular slab and a simplified ventricular geometry constituted by a truncated ellipsoid
(see [9]).
The system is advanced in time by the semi-implicit scheme described in Section 3.1, that linearizes
the ionic current around the previous time step. In order to focus only on the performance of the
Optimized Schwarz Algorithm, in all the simulations presented in this Section we use a fixed time
step ∆t = 0.05ms, which is small enough to capture the abrupt variations in the transmembrane
potential during the action potential. The ionic gating variables are integrated exactly in time
after linearization, while the concentration variables are advanced in time with a Forward Euler
scheme. The series of test is run with LifeV [1], a C++ Finite Element Library using the Trilinos
package AZTECOO [2].
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6.1. Influence of the mesh size

In this first series of tests the computational domain is the rectangle Ω = [0, 2]×[0, 1] decomposed
in the two subdomains Ω1 = [0, 1 + L] × [0, 1] and Ω2 = [1, 2] × [0, 1]. The fibers are parallel to
the reference axes, with the longitudinal direction set orthogonal to the interface. Both domains
are discretized by a uniform triangular grid (we denote with h the mesh size), associated with P1

finite elements. Since at each time step the problems to be solved are linear, we analyze here the
convergence to the zero solution starting from a random value on the interface and in the absence
of forcing terms.

Overlapping (L = h) Non-overlapping (L = 0)
h 1/48 1/64 1/96 1/128 1/48 1/64 1/96 1/128

u ue u ue u ue u ue u ue u ue u ue u ue

CS 27 71 33 92 44 132 54 170 - - - - - - - -
O1 11 41 12 47 13 56 14 61 18 88 18 88 18 88 18 88
O2 5 9 5 10 6 11 7 12 177 63 163 59 152 56 149 55
O3 8 26 9 32 11 42 12 48 12 37 12 46 14 57 14 63
O4 10 34 11 39 12 47 13 52 14 57 14 63 15 67 15 68
T1 6 13 7 14 7 15 8 16 10 20 10 20 10 20 10 20
T2 9 32 11 38 12 48 13 54 13 51 14 60 15 69 16 73
T3 10 37 11 43 13 51 13 56 15 69 16 73 16 76 16 77
T4 7 11 6 12 7 14 7 15 19 14 14 15 10 17 9 17
T5 7 12 7 13 7 14 7 15 12 17 10 17 9 18 9 18
T6 9 29 10 35 12 44 12 50 12 45 13 53 14 62 15 66

Table 1. Iterative Schwarz algorithm: iteration counts to achieve convergence in
u and ue for various mesh sizes and different interface conditions. Left: minimal
overlapping (L = h). Right: non-overlapping decomposition (L = 0).

We consider both a decomposition without overlap (L = 0) and with a minimal overlap of

one element (L = h). The iterative algorithm stops when the maximum value between ‖λp+1
1,1 −

λp1,1‖l2(Γ) and ‖λp+1
1,2 −λ

p
1,2‖l2(Γ) drops below a given tolerance ε =1.e-6. We report in Table 1 the

iteration counts for the various interface conditions described in Sections 4.2 and 4.3, as well as for
the Classical Schwarz Algorithm (CS). We report the results for different mesh sizes: columns 2
through 9 refer to overlapping decomposition, while columns 10 through 17 refer to non-overlapping
decomposition. Within each mesh size, the left column refers to the convergence of the u variable,
while the right column refers to the convergence of the ue variable. The most effective interface
conditions appear to be the two-sided T1, T4 and T5. We observe that even a minimal overlap
is enough to significantly improve the convergence of the algorithm, and this is particularly visible
for the interface conditions with less effective performance in the non-overlapping case. In general,
the convergence of the u variable is significantly faster than the convergence of the ue variable,
with one exception. Infact, the interface condition O2 behaves, as expected, very poorly in a
non-overlapping settings, where the u variable converges much slower than the ue one. Besides,
in the overlapping case the interface condition O2 is the most effective. The Classical Schwarz
Algorithm is convergent only in the presence of overlap, but appears to be very sensitive to the
mesh size, while the Optimized Schwarz Algorithm appears to be more robust with respect to the
mesh size, especially with the two-sided conditions T1, T4 and T5.
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6.2. Krylov acceleration

In this section we consider the use of the Optimized Schwarz Algorithm as a preconditioner to
accelerate the convergence of a Krylov method. The computational domain is again the rectangle
Ω = [0, 2] × [0, 1] decomposed in the two nonoverlapping subdomains Ω1 = [0, 1] × [0, 1] and
ΩM = [1, 2]× [0, 1]. As in the previous section, we test the convergence to the null solution starting
from a random value on the interface. System (37) is solved by GMRES, where the matrix-
vector product amounts to solve a subproblem in each subdomain. The algorithm stops when the
normalized residual drops below 1.e-5. We report in Table 2 the iteration counts for the various
interface conditions described in Sections 4.2 and 4.3. The Krylov method appears to be very
robust in terms of both the mesh size and the interface conditions. Still, the two-sided conditions
T1, T4 and T5 appear to be the most effective ones.

h O1 O2 O3 O4 T1 T2 T3 T4 T5 T6
1/48 20 22 13 16 11 16 18 13 11 15
1/64 20 22 15 17 11 16 18 11 11 16
1/96 20 21 17 18 10 18 19 11 11 17
1/128 20 20 17 18 10 18 19 11 11 18

Table 2. Krylov acceleration: iteration counts for various mesh sizes and different
algorithms for a nonoverlapping decomposition (L = 0)

Iteration counts ‖λp+1
1,1 − λ

p
1,1‖l2(Γ) ‖λp+1

1,2 − λ
p
1,2‖l2(Γ)

h = 1/96 Krylov Iterative Krylov Iterative Krylov Iterative
O1 20 88 1.1847e-07 3.1015e-10 2.3234e-07 9.4846e-07
O2 21 152 8.6393e-06 9.9918e-07 2.7666e-06 2.7231e-09
O3 17 57 1.9402e-08 3.1094e-10 7.3750e-08 9.5069e-07
O4 18 67 5.5186e-08 3.0551e-10 2.0568e-07 9.3419e-07
T1 10 20 9.3953e-07 3.1597e-09 1.9769e-07 6.8538e-07
T2 18 69 8.0154e-08 3.1085e-10 2.0789e-07 9.5061e-07
T3 19 76 1.3719e-08 3.0742e-10 1.3286e-07 9.4012e-07
T4 11 17 9.8231e-08 3.1062e-09 1.3248e-07 6.0135e-07
T5 11 18 8.5966e-08 2.6865e-09 1.6897e-07 6.5841e-07
T6 17 62 2.5537e-08 2.8719e-10 1.3134e-07 8.7807e-07

Table 3. Krylov acceleration in a nonoverlapping decomposition (L = 0): itera-
tion counts and relative error at convergence

We then investigate the convergence in u and ue by comparing the errors at convergence between
two successive iterates ‖λp+1

1,1 −λ
p
1,1‖l2(Γ) and ‖λp+1

1,2 −λ
p
1,2‖l2(Γ), where λ1 has been introduced in

Section 5. The mesh size is h = 1/96. We can see from Table 3 that the Krylov method, besides a
significant speed-up, ensures a more balanced convergence to u and ue, with respect to the iterative
version of the Optimized Schwarz Method, where the convergence of the u variable is in general
much faster than the convergence of ue.
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6.3. Influence of the position of the interface

In this series of tests we investigate the dependence on the interface position. The computational
domain Ω = [0, 2]× [0, 1] is decomposed in the two non overlapping subdomains Ω1 = [0, α]× [0, 1]
and Ω2 = [α, 2] × [0, 1], where we choose α = 0.5, 0.75, 1. The mesh size is h = 1/96. Since the
Classical Schwarz algorithm is not convergent in the absence of overlap, we consider here only the
Optimized Schwarz Algorithms with the interface conditions described in Sections 4.2 and 4.3.

Ω1 = [0, α]× [0, 1] α = 0.5 α = 0.75 α = 1

Iterative Krylov Iterative Krylov Iterative Krylov
h = 1/96 u ue u ue u ue
O1 18 90 20 18 88 20 18 88 20
O2 152 56 21 152 56 21 152 56 21
O3 14 59 17 14 57 17 14 57 17
O4 15 69 18 15 67 18 15 67 18
T1 10 20 10 10 20 10 10 20 10
T2 15 71 18 15 69 18 15 69 18
T3 16 78 19 16 76 19 16 73 19
T4 10 17 11 10 17 11 10 17 11
T5 9 18 11 9 18 11 9 18 11
T6 14 63 17 14 62 17 14 62 18
Table 4. Iteration counts for different interface positions in a nonoverlapping
decomposition (L = 0)

We can infer from Table 4 that the Optimized Schwarz Algorithm is very stable with respect to
the position of the interface, both in its iterative form and when used as a preconditioner for the
a Krylov method to solve system (37).

6.4. Influence of the fibers direction

In this series of tests we investigate the dependence upon the fibers direction. In order to consider
all the possible incidence angles between the fibers and the interface, the computational domain
is the unit circle centered in (1,1), Ω = {(x, y) ∈ R2 | (x− 1)2 + (y − 1)2 ≤ 1}, and is decomposed
in the two non overlapping subdomains Ω1 = {(x, y) ∈ R2 | (x − 0.75)2 + (y − 0.8)2 ≤ 0.25} and
Ω2 = Ω\Ω1 (see Figure 5). The fibers are oriented to form an angle θ = π/4 with the cartesian
x-axis and the computational domain is discretized by an unstructured triangular grid, that is
conform on the interface Γ, and features a mesh size h = 1.8e-2. Again, we test the convergence
to the null solution, and since the Classical Schwarz algorithm is not convergent in the absence
of overlap, we consider here only the Optimized Schwarz Algorithms with the different interface
conditions described in Sections 4.2 and 4.3.
From Table 5 we can observe that the iteration counts increase significantly for both the iterative
version and the Krylov acceleration for all the interface conditions except for the two-sided condi-
tions T1, T4 and T5, whose effectiveness is confirmed also in this more complex case. In particular,
the T1 interface condition appears to be the most effective in this more general framework.

6.5. Accuracy

We now test the accuracy of the Optimized Schwarz Algorithm during the propagation of an
action potential in the computational domain used in the previous test of Section 6.4 (Figure 5,
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Figure 5. Left: the computational domain Ω = {(x, y) ∈ R2 | (x−1)2+(y−1)2 ≤
1}, and the two subdomains Ω1 (white) and Ω2 (light grey). Right: time evolution
of the action potential in the Luo-Rudy Phase I model.

O1 O2 O3 O4 T1 T2 T3 T4 T5 T6
Iterative u 60 192 48 50 13 52 54 16 16 50

ue 288 167 220 231 20 249 256 18 18 225
Krylov 52 46 47 47 17 48 49 21 21 47

Table 5. Iteration counts: Γ = {(x− 0.75)2 + (y− 0.8)2 = 0.25}, while the fibers
direction forms an angle θ = π/4 with the cartesian x-axis.

left). We apply a stimulation of 50mA in x0 = (0.6, 0.7) for 1ms. The ionic model used in the
simulation is the Luo-Rudy I [32] (see Figure 5, right, for the time evolution of the action potential
in the Luo-Rudy I model). We use a fixed time step ∆t = 0.05ms to focus only on the coupling
provided by the Optimized Schwarz Method: time adaptive schemes can be considered as well [40].

We report in Figure 6 (top row) the solution at different time levels (t = 7, 13, 19, 25, during which
the front is propagating in Ω) obtained from a Bidomain simulation over the whole Ω (that we
denote with uBido), and in the following rows the error between uBido and the solution obtained
after 2 iterations of the Optimized Schwarz Method coupled with the two-sided T1 interface
condition (that we denote with uOS). We plot the 1% and 5% error regions. From Figure 6 we
can clearly see that the error is concentrated in the neighborhood of the propagation front, and
is confined within a 5% of the Bidomain solution uBido. Thus, there is basically no dissipation
due to the Optimized Schwarz Method, and the propagation front is very well captured with a
barely appreciable delay even if only 2 iterations of the algorithm are performed. This is very
promising in view of a model adaptive strategy: the computational domain can be split into
several subdomains, each of which is associated with the Bidomain or the Monodomain model
accordingly to an a posteriori estimator such as the one proposed in [33]. The latter is a single
parabolic reaction-diffusion equation for the membrane potential u, based on a quite unphysical
proportionality assumption between the intracellular and extracellular conductivity tensors (Di =
λDe, see e.g. [9]), that is not able to capture peculiar patterns in the action potential propagation.
However, in many applications the Monodomain model is accurate enough to capture the desired
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Figure 6. Action potential propagation in a Bidomain simulation uBido and error
uBido − uOS along time (left to right, t = 7, 13, 19, 25): uOS is computed with 2
iterations of the Optimized Schwarz algorithm. Top to bottom: action potential,
1% and 5% error regions

dynamics. Potse et al. [41] stated that “in absence of applied currents, propagating of action
potentials on the scale of a human heart can be studied with a monodomain model”. The coupling
of the Monodomain model with the Bidomain model in non-symmetric form (5) is based on the
coupling of the transmembrane potential u [27]. Thus, in such a framework, Figure 6 suggests that
running only 2 iterations of the Optimized Schwarz Method, possibly coupled with a time adaptive
strategy in the presence of the depolarization front can be a reasonable trade-off between accuracy
and efficiency.

6.6. Action potential propagation in a simplified ventricular geometry

We conclude our analysis by simulating the action potential propagation in a simplified ventricu-
lar geometry, constituted by a truncated ellipsoid [9], with the analytical fibers mapping described
therein. As usual we denote with Ω the computational domain, that we split in the two subdo-
mains Ω1 and Ω2 (Figure 7). We discretize the computational domain with a tetrahedral mesh,
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whose average element diameter is 0.6mm. We use a fixed time step ∆t = 0.05ms and we run a
simulation for 450ms. The ionic model used in the simulation is the Luo-Rudy I [32].
We report in Figure 8 (first column) the membrane potential at different times ( t = 7ms in the

Figure 7. Frontal and transversal views of the computational domain decom-
posed in two domains. The red spot is indicates the stimulus region

first row and t = 25ms in the second row) computed with the Krylov accelerated version of the
Optimized Schwarz algorithm and interface condition T1, and in the second column the error with
respect to a global Bidomain simulation. We choose a coarse tolerance ε = 1e − 3 for the Krylov
method. We also plot the errors between the global Bidomain solution and the solution obtained
with the iterative form of the Optimized Schwarz Algorithm. In the third column the OSA is
run until convergence, setting again the coarse tolerance ε = 1e − 3, while in the fourth column
only 4 iterations of the OSA are performed. Once again, the error is well concentrated around
the propagation front. A tolerance ε = 1e − 3 is enough to confine the error within a 5% of the
Bidomain solution uBido, while the error is greater when only four iterations are performed (fourth
column). In any case, the shift between the full domain solution and the Domain Decomposition
solution is moderate.

7. Conclusions

We analyzed Schwarz methods applied to the Bidomain system in electrocardiology. The Clas-
sical Schwarz requires overlap to converge, while the Optimized Schwarz Algorithm introduced
here ensure convergence also in the absence of overlap. Moreover, in the presence of overlap the
Optimized Schwarz Algorithm performs better than the classical Schwarz one. We analyzed and
tested one-sided and two-sided Robin interface conditions. Two-sided conditions appear to be in
general more effective, and we empirically devised a parameters combination that is robust with
respect to both the mesh size and the fibers directions.
Despite the higher accuracy allowed by the reduced size of the problem, each iteration of the
Optimized Schwarz Algorithm (both in iterative form and in preconditioner form for a Krylov
method) requires the solution of two (N in the framework of a more general decomposition in
N subdomains) costly Bidomain subproblems, even if effective preconditioning strategies are used
within the subdomains. A further improvement relies in a model adaptive strategy, where the
computational domain is split into several subdomains and the Bidomain model is solved only in
regions where its accuracy is really required, while the cheaper Monodomain model is employed in
the rest of the domain. The latter is a simpler, albeit less accurate, model relying on an unrealistic
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Figure 8. Action potential propagation in a Bidomain simulation uBido (first
column) and errors uBido − uOS for different algorithms and stopping criteria to
compute uOS (second column: Krylov, T1, ε = 1e−3; third column: T1, ε = 1e−3;
fourth column: T1, 4 iterations). Top: t = 7ms, bottom: t = 25ms.

proportionality assumption between the intracellular and extracellular conductivities and featur-
ing a single parabolic equation for the transmembrane potential, see e.g. [9]. The subdomains are
coupled through the Optimized Schwarz Method along the interfaces (the one introduced in [27]
for a Bidomain/Monodomain coupling, the one proposed in this paper for a Bidomain/Bidomain
coupling). The model adaptive approach is currently under investigation and will be the subject
of a forthcoming paper.
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