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Abstract. In this work, a parallel three-dimensional solver for numerical simulations in computational
electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain cardiac model,
consisting of a system of two degenerate parabolic reaction-diffusion equations describing the intra and ex-
tracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic
conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. The
solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction-diffusion
equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a
system of ordinary differential equations that can vary from the simple FitzHugh-Nagumo (FHN) model to
the more complex phase-I Luo-Rudy model (LR1). The solver employs structured isoparametric Q1 finite
elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based
on the PETSc parallel library. Large-scale computations with up to O(107) unknowns have been run on
parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains.
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1. Introduction. The bioelectric activity of the heart is the subject of a vast interdis-
ciplinary literature in medicine, bioengineering, mathematical biology, physiology, chemistry
and physics; see the reference books by Zipes and Jalife [66, Part V and VII], Panfilov and
Holden [38], Keener and Sneyd [30] and the references therein. Computational studies and
numerical simulations have played an important role in electrocardiology. Due to the diffi-
culty of direct measurements, many experimental studies have been coupled with numerical
investigations, even in medical and bioengineering works.

Particularly intense has been the computational study of reentry phenomena and their
relationships with myocardial arrhythmias; see e.g. the recent journal special issues [1, 2, 3]
and the references therein.

The most complete model of cardiac electrical activity is the Bidomain model, see eg.
[49, 23]. It consists of a system of two degenerate parabolic reaction-diffusion equations
describing the intra and extracellular potential in the cardiac muscle, coupled with a system
of ordinary differential equations describing the ionic currents flowing through the cellular
membrane. This model is computationally expensive because of the involvement of different
space and time scales. In fact, meaningful portions of cardiac tissue have sizes on the order
of centimeters, while the steep potential gradient is localized in a thin layer about one
millimiter thick, requiring discretizations on the order of a tenth of millimiter. Moreover, a
normal heartbeat can last on the order of one second, while the time constants of the rapid
kinetics involved range from 0.1 to 500 milliseconds, requiring in some phases time steps on
the order of the hundredths of milliseconds (or less when currents or shocks are applied).
Therefore, in realistic three-dimensional models it is possible to have discrete problems with
more than O(107) unknowns at every time step and simulations have to be run for many
thousands of time steps.

A simplified cardiac tissue model is the anisotropic Monodomain system, i.e. a parabolic
reaction-diffusion equation describing the evolution of the transmembrane potential coupled
with an ionic model. This model has been widely used for three-dimensional simulations
considering ionic models ranging from simple FitzHugh-Nagumo (FHN) variants (Winfree
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[62, 63], Rogers and McCulloch [47], Panfilov [37]) to the more complex phase-I Luo-Rudy
(LR1) model [32], see e.g. Efimov et al. [19], Rappel [46], Garfinkel et al. [21].

Previous Bidomain computations, mainly focusing on the excitation phase, were per-
formed on medium scale problems by Colli-Franzone [12], Roth [48], Hooke et al. [26],
Henriquez et al. [23, 24], Muzikant et al. [34]. These Bidomain studies of the excitation
phase, were able to reproduce the qualitative patterns and morphologies of the experimen-
tally observed extracellular potential maps and electrograms (see e.g. Taccardi et al. [56],
Colli-Franzone et al. [14, 15], Henriquez et al. [24], Muzikant et al. [34]).

A further reduction of the computational complexity of the simulation of the excitation
phase has been achieved by solving simplified kinematic models, called eikonal equations,
describing the motion of the excitation wave fronts, see e.g. Colli-Franzone et al. [12],
Keener [28] and Bellettini et al. [8]. On the other hand, simplified approaches derived from
reaction-diffusion models are not available at present for the description of all the phases of
an entire heartbeat.

Large-scale simulations of the whole heartbeat using Bidomain and Monodomain models
require adaptive and parallel tools in order to reduce their high computational cost. While
both tools can in principle be applied to both space and time, we have chosen to use adaptive
methods in time and parallel solvers in space, since the other alternatives are still the subject
of current research even for simpler model problems in two dimensions (Cherry et al. [11],
Quan et al. [44], Moore [33], Yu [65, 64], Pennacchio [39]). Therefore in this paper, we
introduce and study a parallel solver for the Bidomain system, employing an adaptive time-
stepping strategy that efficiently deals with the three main phases (depolarization, plateau,
repolarization) of a complete heartbeat. In order to change the time-step size in these
different phases without stability constraints associated with the space discretization of
the diffusive part of the system, we must treat the latter implicitly. Therefore, we use
a semi-implicit method in time, where the reaction terms are treated explicitly and the
diffusion terms implicitly. The space discretization is based on structured isoparametric
Q1 finite elements. Parallelization and portability are based on the PETSc parallel library
[6, 7] and on using a preconditioned conjugate gradient solver at each time step. We apply
the parallel solver in order to simulate a full heartbeat in a model of cardiac tissue which
includes intramural fiber rotation and anisotropic conductivity coefficients of the intra and
extracellular media, than can be fully orthotropic or axially symmetric around the fiber
direction.

The rest of the paper is organized as follows. In Sections 2 and 3, we briefly review
the anisotropic Bidomain and Monodomain models respectively. In Section 4, we introduce
the basic elements of the membrane models describing the ionic currents. In Section 5, the
Bidomain and Monodomain models are written in variational form and some references to the
available mathematical analysis are given. In Section 6, we discretize in space the continuous
models by isoparametric finite elements, while an adaptive semi-implicit discretization in
time is given in Section 7. In Section 8, we describe our parallel implementation based on
the PETSc parallel library. In Section 9, several results of numerical experiments with our
parallel solver are presented, varying both the cardiac tissue model (from Monodomain to
Bidomain) and the ionic model (from FHN variants to the LR1 model), on cartesian slabs
and ellipsoidal domains. Finally, some concluding remarks are presented in Section 10.

2. The macroscopic Bidomain model. At the microscopic level, the cellular struc-
ture of the cardiac tissue consists of elongated cardiac cells surrounded by extracellular space
(including collagene matrix and blood vessel network) and connected by end-to-end and/or
side-to-side junctions. Starting from a microscopic model of this discrete cellular structure,
it is possible to derive, by a homogenization process, a macroscopic model for a periodic
assembling; see Neu and Krassowska [35], Keener and Sneyd [30], Colli-Franzone and Savaré
[17] for a formal derivation and modeling details. The resulting macroscopic Bidomain model
is a representation of the cardiac tissue as the superposition of two anisotropic continuous
media, the intra (i) and extra (e) cellular media, coexisting at every point of the tissue and
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Fig. 2.1. Fiber direction on epicardium (A), a mid-wall layer (B), endocardium (C), a meridian section
(D) and a transverse section (E)

connected by a distributed continuous cellular membrane. This macroscopic model describes
the averaged intra and extracellular electric potentials and currents by a reaction-diffusion
system of degenerate parabolic type.

Let Ω ⊂ R3 be the bounded physical region occupied by the cardiac tissue. In the
macroscopic Bidomain representation of the cardiac tissue, the anisotropic structure of the
two averaged continuous media, the intra and the extracellular medium, are characterized
by the conductivity tensors Di and De. The anisotropic conductivity is related to the
arrangement of the cardiac fibers, whose direction rotates counterclockwise from the epi-
cardium (outer heart surface) to the endocardium (inner surface); see Figure 2.1. We refer
to Streeter [54] and Peskin [41] for an experimental and mathematical study of this fiber
structure. Recently Le Grice et al. [31] have shown that the ventricular myocardium may
be conceived as a set of muscle sheets running radially from epicardium to endocardium. In
this laminar organization, it is possible to identify three distinct principal axes at any point
x. Let al(x), at(x), an(x) be a triplet of orthonormal vectors related to the structure of
the myocardium at a point x, with al parallel to the local fiber direction and an normal
to the muscle sheet. This triplet may depend on the position x in the myocardium. Let
σi,e

l , σi,e
t , σi,e

n be the conductivity coefficients measured along the corresponding directions.
In general, these coefficients may depend on x, but in the following we assume that they are
constant, i.e. homogeneous anisotropy. Then the conductivity tensors Di and De, generally
dependent on the position x, are given by:

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x).(2.1)

If σi,e
n = σi,e

t , we recover the axially isotropic case

Di,e(x) = σt
i,eI + (σl

i,e − σt
i,e)al(x)aT

l (x).

The biolelectric activity of cardiac cells is due to the flow Iion (per unit area of the membrane
surface) of various ionic currents (the most important being sodium, potassium and calcium)
through the cellular membrane. Since the membrane behaves as a capacitor, then the total
membrane current per unit volume is given by

Im = χ(Cm

∂v

∂t
+ Iion),
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where v = ui−ue is the transmembrane potential, the coefficient χ is the ratio of membrane
area per tissue volume, Cm is the surface capacitance of the membrane, and Iion(v, w) is
the ionic current described later and depending on the membrane model employed.

Imposing the conservation of currents, i.e. the interchange between the two media
must balance the membrane current flow per unit volume, we have divJi = −divJe = Im,
where Ji,e = −Di,e∇ui,e are the intra and extracellular current densities. Therefore, in the
Bidomain model, the intra and extracellular potentials ui, ue are modeled by the following
reaction-diffusion system of PDEs, coupled with a system of ODEs for M gating variables
and ion concentrations modeling the ionic currents, described later. Given an applied current
per unit volume I i,e

app : Ω×(0, T ) −→ R, initial conditions v0 : Ω −→ R, w0 : Ω −→ RM , find
the intra and extracellular potentials ui, ue : Ω× (0, T ) −→ R, the transmembrane potential
v = ui − ue and the gating and concentration variables w : Ω× (0, T ) −→ RM such that







































χCm

∂v

∂t
− div(Di∇ui) + χIion(v, w) = Ii

app in Ω× (0, T )

−χCm

∂v

∂t
− div(De∇ue)− χIion(v, w) = −Ie

app in Ω× (0, T )

∂w

∂t
−R(v, w) = 0, v(x, t) = ui(x, t)− ue(x, t) in Ω× (0, T ).

(2.2)

In the following, we assume that the cardiac tissue is insulated, therefore homogeneous
Neumann boundary conditions are assigned on ∂Ω× (0, T )

nTDi∇ui = 0, nTDe∇ue = 0.

Initial conditions (degenerate for ui and ue) are assigned in Ω for t = 0

v(x, 0) = ui(x, 0)− ue(x, 0) = v0(x), w(x, 0) = w0(x).(2.3)

Adding the two equations of the system, we have −divDi∇ui−divDe∇ue = Ii
app−I

e
app. Inte-

grating on Ω and applying the divergence theorem, from the Neumann boundary conditions,
we then have the following compatibility condition for the system (2.2) to be solvable:

∫

Ω

Ii
app dx =

∫

Ω

Ie
app dx.(2.4)

We recall that electric potentials in bounded domains are defined up to an additive constant;
in our case ui and ue are determined up to the same additive time-dependent constant,
while v is uniquely determined. This common constant is related to the choice of a reference
potential. A usual choice consists in selecting this constant so that ue has zero average on
Ω, i.e.

∫

Ω

ue dx = 0.(2.5)

3. The simplified Monodomain model. Assuming equal anisotropy ratio of the two

media, i.e. Di = λDe with λ constant, and setting D =
λDi

1 + λ
and Iapp =

λIi
app

1 + λ
+

Ie
app

1 + λ
,

then the Bidomain system reduces to the anisotropic Monodomain model consisting in a
parabolic reaction-diffusion equation for the transmembrane potential v only



















χCm

∂v

∂t
− div(D(x)∇v) + χIion(v, w) = Iapp, in Ω× (0, T )

∂w

∂t
−R(v, w) = 0 in Ω× (0, T ),

(3.1)
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with Neumann boundary conditions for v and initial conditions for v and w. The conduc-
tivity tensor in the axial symmetric case is given by

D(x) = σl al(x)aT
l (x) + σt at(x)aT

t (x) + σn an(x)aT
n (x) with σl,t,n =

λ

1 + λ
σi

l,t,n.

This model has been vastly used in computational electrocardiology because it requires sub-
stantially less computational and memory resources than the Bidomain model. Nevertheless,
it is not an adequate cardiac model since it is unable to reproduce some patterns and mor-
phology of the experimentally observed extracellular potential maps and electrograms; see
Colli-Franzone et al. [14], Henriquez et al. [24], Muzikant et al. [34]. Therefore, unequal
anisotropy ratio of the intra and extracellular media cannot be neglected.

4. Membrane models and ionic currents. The first membrane model for ionic
currents was given in the celebrated work on nerve action potential by Hodgkin and Huxley
[25], work that earned them the Nobel prize in Medicine in 1963. Models of Hodgkin-Huxley
type have been later developed for the cardiac action potential. In these models, the ionic
current through channels of the membrane, due to the transmembrane potential v and M
gating and ionic concentration variables w := (w1, . . . , wM ), is given by

Iion(v, w) =
N

∑

k=1

Gk(v)
M
∏

j=1

w
pjk

j (v − vk(w)),

where Gk(v) is the membrane conductance, vk is the reversal potential for the k-th current
and pjk

are integers. The dynamics of the gating and concentration variables is described
by the system of ODE’s

∂w

∂t
= R(v, w), w(x, 0) = w0(x).

If wj is a gating variable, then the associated right-hand side has a special structure, i.e.
R(v, w) = Rj(v, wj) = αj(v)(1 − wj) − βj(v)(wj), αj , βj > 0, 0 ≤ wj ≤ 1. Many
refinements of the original Hodgkin-Huxley model have been proposed by fitting improved
experimental data with more complex models. We recall here the models by Beeler-Reuter
(1977, N = 4, M = 7), phase-I Luo-Rudy (1991, N = 6, M = 7), phase-II Luo-Rudy (1994,
N = 10, M = 7). In this paper, we will consider the phase-I Luo-Rudy (LR1) model (see
[32]), consisting of six gating variables w1, · · · , w6 and one calcium ionic concentration w7.
The action potential generated with this model is shown in the right panel of Figure 4.1 for
both the original model (continuous line) and a variant where the slow inward current Isi of
the model is scaled by a factor 2/3 (dashed line); see the original paper by Luo and Rudy
[32, p. 1503, Table 1] for a complete description of the LR1 model. Figure 4.2 shows the
time evolution of the LR1 variables at a given point, over a period of 400 msec.

We remark that during a heartbeat, the time course of the transmembrane potential
v(x, t) at each point of the ventricular tissue, also called action potential, displays mainly
three phases having different time scales. The first is related to the excitation phase, also
called depolarization, where v undergoes an abrupt temporal change lasting about 2 msec,
followed by a fast exponential decay toward a plateau value. The second is the plateau
phase, lasting from 40-50 msec to about 400 msec, according to the ionic model used and
the type of propagating front considered. In this phase, v varies very little and slowly in
comparison with the previous depolarization phase and the cardiac tissue is refractory, i.e.
any applied stimulus does not elicit another action potential. The last is the recovery phase,
also called repolarization, where v returns to the rest value during a period lasting 20-50
msec, after which the tissue becomes excitable again.

Simplified models of lower complexity (with 1 or 2 gating variables) have been proposed
too. The simplest and most used is the FitzHugh-Nagumo (FHN) model (N = 1, M = 1).
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Fig. 4.2. LR1 membrane model: action potential v, gating variables w1, · · · , w6, calcium concentration
w7 at a given point as a function of time

Assuming that at rest the potential v is zero, in this model the ionic current is described
using only one recovery variable w

Iion(v, w) = g(v) + βw,

where β > 0, g is a cubic-like function and w satisfies

R(v, w) = ηv − γw,
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with η, γ > 0. The FHN gating model yields only a coarse approximation of a typical
cardiac action potential, particularly in the plateau and repolarization phases. A better
approximation is given by the following variant by Rogers and McCulloch [47]

Iion(v, w) = Gv

(

1−
v

vth

)(

1−
v

vp

)

+ η1vw,

∂w

∂t
= η2

(

v

vp

− η3w

)

,

where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential and vp the peak
potential. We will consider this variant as our simplest gating model. The action poten-
tial generated with this model is plotted in the left panel of Figure 4.1 (continuous line),
together with the recovery variable w magnified by a factor 100 (dash-dotted line). A more
recent simplified ionic model with three currents and two gating variables was extensively
investigated by Fenton and Karma [20].

5. Variational formulation and mathematical analysis. In this section, we briefly
describe the variational formulation of both the Monodomain and the Bidomain model,
providing some references to their theoretical analysis.

Let V be the Sobolev space H1(Ω)/R and define by

(ϕ,ψ) =

∫

Ω

ϕψ dx, ∀ϕ,ψ ∈ L2(Ω)

ai,e(ϕ,ψ) =

∫

Ω

(∇ϕ)TDi,e(x)∇ψ dx, a(ϕ,ψ) =

∫

Ω

(∇ϕ)TD(x)∇ψ dx ∀ϕ,ψ ∈ H1(Ω)

the usual L2−inner product and elliptic bilinear forms. The variational formulation of the
Monodomain model (3.1) reads as follows. Given v0, w0 ∈ L2(Ω), Iapp ∈ L2(Ω × (0, T )),
find v ∈W 1,1(0, T ;V ) and w ∈W 1,1(0, T ;L2(Ω)M ) such that ∀t ∈ (0, T )



















χCm

∂

∂t
(v(t), ϕ) + a(v(t), ϕ) + χ(Iion(v, w), ϕ) = (Iapp, ϕ) ∀ϕ ∈ V

∂

∂t
(w(t), ψ) = (R(v(t), w(t)), ψ) ∀ψ ∈ L2(Ω)M ,

(5.1)

with appropriate initial conditions (2.3) on v, w.
Analogously, the variational formulation of the Bidomain model (2.2) reads as fol-

lows. Given v0, w0 ∈ L2(Ω), Ii,e
app ∈ L2(Ω × (0, T )), find ui,e ∈ L2(0, T ;V ) and w ∈

L2(0, T ;L2(Ω)M ) such that ∂v
∂t
∈ L2(0, T ;V ), ∂w

∂t
∈ L2(0, T ;L2(Ω)M ), and ∀t ∈ (0, T )







































χCm

∂

∂t
(v(t), ûi) + ai(ui(t), ûi) + χ(Iion(v, w), ûi) = (Ii

app, ûi) ∀ûi ∈ V

−χCm

∂

∂t
(v(t), ûe) + ae(ue(t), ûe)− χ(Iion(v, w), ûe) = −(Ie

app, ûe) ∀ûe ∈ V

∂

∂t
(w(t), ŵ) = (R(v(t), w(t)), ŵ), v(x, t) = ui(x, t)− ue(x, t) ∀ŵ ∈ L2(Ω)M ,

(5.2)
with initial conditions (2.3) on v, w and the compatibility condition (2.4) on I i,e

app .
Many well-known theoretical results available for reaction-diffusion equations (see e.g.

Britton [9] and Smoller [53]) can be applied to the Monodomain model. Less is known on
degenerate reaction-diffusion systems such as the Bidomain model. For the Bidomain system
with the FHN model, we refer to Colli-Franzone and Savaré [17] for existence, uniqueness
and regularity results, both at the continuous and at the semidiscrete level, and to Sanfelici
[51] for a convergence analysis of finite element approximations. A recent mathematical
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analysis of the Bidomain model with more general gating systems can be found in Veneroni
[59].

More results are known on the related eikonal approximation describing the propagation
of the excitation front; we refer to Colli-Franzone et al. [12, 13], Keener [28] and Bellettini
et al. [8]. A mathematical analysis of the Bidomain model using Γ-convergence theory can
be found in Ambrosio et al. [4].

6. Finite element discretization in space. We will use hexahedral isoparametric
Q1 finite elements in space; see e.g. Quarteroni and Valli [45] for a general introduction to
the finite element method. Our domain Ω representing the left ventricle is modeled by a
family of truncated ellipsoids described by the parametric equations







x = a(r) cos θ cosφ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sinφ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1,

(6.1)

where a(r) = a1+r(a2−a1), b(r) = b1+r(b2−b1), c(r) = c1+r(c2−c1), and ai, bi, ci, i = 1, 2
are given coefficients determining the main axes of the ellipsoid. As in [13], the fibers rotate
intramurally linearly with the depth for a total amount of 120o proceeding counterclock-
wise from epicardium to endocardium; see Figure 2.1. More precisely, in a local ellipsoidal
reference system (eφ, eθ, er), the fiber direction al(x) at a point x is given by

al(x) = eφ cosα(r) + eθ sinα(r), with α(r) =
2

3
π(1− r)−

π

4
, 0 ≤ r ≤ 1.

To take into account the obliqueness of al with respect to the ellipsoidal surfaces, we in-
troduce, beside α(r), the “oblique” angle β (known as imbrication angle) which describes
the deviation of al from the tangent position. For more details about the imbrication angle
and the fiber pathways, see [13]. We also consider three-dimensional slabs of cardiac tissue,
described in the usual cartesian coordinate system by







x = a(r)
y = b(r)
z = c(r)

with

{

al(x) = ex cosα(r) + ey sinα(r),
α(r) = α0π(1− r)− π

4
, 0 ≤ r ≤ 1.

(6.2)

The domain Ω is discretized by introducing a structured quasi-uniform grid of hexahedral
isoparametric Q1 elements obtained by a uniform subdivision of the intervals [φmin, φmax],
[θmin, θmax], [0, 1] into (nφ, nθ, nr) subintervals. Using the same symbol Ω for the domain

and its FEM approximation, we have Ω =
⋃

E∈Th
E, where E = TE(Ê), with Ê = [−1, 1]3

and TE a trilinear map. The associated finite element space is given by

Vh =
{

ϕh ∈ V : ϕh is continuous in Ω : ϕh|E ◦ TE ∈ Q1(Ê), ∀E ∈ Th

}

,

where Q1(Ê) is the space of the trilinear functions on Ê. A semidiscrete problem is obtained
by applying a standard Galerkin procedure and choosing a finite element basis {φi} for Vh.
Let M = (mrs), A = (ars) and Ai,e = (ai,e

rs ) be the symmetric mass and stiffness matrices
defined by

mrs =
∑

E

∫

E

ϕr ϕsdx,

ars =
∑

E

∫

E

(∇ϕr)
TD(x)∇ϕsdx, ai,e

rs =
∑

E

∫

E

(∇ϕr)
TDi,e(x)∇ϕsdx.

Numerical quadrature with a simple trapezoidal rule in three dimensions is used in order
to compute these integrals. Let Ihion, I

h
app, I

i,h
app, I

e,h
app be the finite element interpolants of
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Iion, Iapp, I
i
app, I

e
app, respectively. In the following, we will denote by the same letters finite

element functions and the vectors of their nodal values. In the Monodomain model, the
finite element approximation vh of the transmembrane potential is the solution of

χCmM
∂vh

∂t
+ Avh + χMIhion(vh,wh) = MIhapp,(6.3)

while in the Bidomain model, the finite element approximations ui,h,ue,h of the intra ed
extracellular potentials are the solutions of the system



















χCmM
∂vh

∂t
+ Aiui,h + χMIhion(vh,wh) = MIi,happ

−χCmM
∂vh

∂t
+ Aeue,h − χMIhion(vh,wh) = −MIe,h

app,

(6.4)

where vh = ui,h − ue,h. In both cases, these equations are coupled with the semidiscrete
approximations of the gating and concentration system

∂wh

∂t
= R(vh,wh).

The Bidomain system can be written in compact form as

χCmM
∂

∂t

(

ui,h

ue,h

)

+A

(

ui,h

ue,h

)

+ χ

(

MIhion(vh,wh)
−MIhion(vh,wh)

)

=

(

MIi,happ

−MIe,h
app

)

,(6.5)

where

M =

[

M −M
−M M

]

, A =

[

Ai 0
0 Ae

]

.

The Bidomain system (6.4) can alternatively be written in terms of vh,ue,h by adding the
two equations and substituting ui,h = vh + ue,h into the first equation, obtaining











χCmM
∂vh

∂t
+ Aivh + Aiue,h + χMIhion(vh,wh) = MIi,happ

Aivh + (Ae + Ai)ue,h = M(Ii,happ − Ie,h
app).

(6.6)

In the language of Differential-Algebraic equations (DAE), this formulation separates the
differential variable (vh) from the algebraic variable (ue,h); it was first used in [48, 12] and
subsequently by many others, e.g. [26, 27, 10, 24, 29, 34, 55, 58]. Finally, another numerical
approach [43, 21] has been recently applied to the Monodomain model using a splitting of
the diffusion and reaction operators.

7. Semi-implicit time discretization. From the point of view of the time discretiza-
tion, a main structural difference between the Bidomain and Monodomain model is that the
mass matrix M of the latter is nonsingular, while the mass matrix M of the former is sin-
gular. This fact prevents the construction of any fully explicit method for the Bidomain
model. One of our main goals is the simulation of a full normal heartbeat, consisting in
three distinct spatio-temporal phases. First, in the excitation phase, a small time step ∆t
is required to accurately approximate the upstroke of the action potential. Subsequently, a
larger ∆t is allowed in the plateau phase and finally an intermediate ∆t is needed for the
smooth downstroke of the action potential. The use of an implicit treatment of the diffusion
terms in (6.3) and (6.4) is needed in order to avoid a stability constraint on ∆t induced
by the fine mesh size h. This allows to adaptively change the time step according to the
stiffness of the reaction term related to the main three phases of the heartbeat.
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Therefore, we consider a semi-implicit method where the diffusion term is discretized
by the implicit Euler method, while the nonlinear reaction term Iion is treated explicitly;
see Ascher et al. [5]. More expensive fully implicit methods are possible, see Hooke [26],
Pormann [42]. The mass matrix M is approximated by a standard lumping technique in
order to reduce it to diagonal form. The ODE system for the gating and concentration
variables is discretized by the semi-implicit Euler method. In this way we decouple the
ODE system by solving for the gating and concentration variables first (given the potential
vn at the previous time step)

wn+1 −wn

∆t
= R(vn,wn+1)

and then solving for vn+1 in the Monodomain case

χCmM
vn+1 − vn

∆t
+ Avn+1 + χMIhion(vn,wn+1) = MIhapp,(7.1)

or for un+1
i ,un+1

e in the Bidomain case



















χCmM
vn+1 − vn

∆t
+ Aiu

n+1
i + χMIhion(vn,wn+1) = MIi,happ

−χCmM
vn+1 − vn

∆t
+ Aeu

n+1
e − χMIhion(vn,wn+1) = −MIe,h

app,

(7.2)

where vn = un
i −un

e . Alternatively, one could solve for the potentials first (given the gating
and concentration variables at the previous time step) and then solve for the new gating and
concentration variables. The resulting semi-implicit iterative method in the Monodomain
case (7.1) is

(

χCm

∆t
M + A

)

vn+1 =
χCm

∆t
Mvn − χMIhion(vn,wn+1) + MIhapp,(7.3)

while the Bidomain case (7.2) can be written, in terms of the iteration matrix, i.e. the
weighted sum of mass and stiffness matrices, as

(

χCm

∆t

[

M −M
−M M

]

+

[

Ai 0
0 Ae

])(

un+1
i

un+1
e

)

=(7.4)

χCm

∆t

[

M −M
−M M

](

un
i

un
e

)

− χ

(

MIhion(vn,wn+1)
−MIhion(vn,wn+1)

)

+

(

MIi,happ

−MIe,h
app

)

.

We assign the initial conditions u0
i = −84 mV and u0

e = 0 mV, so that v0 = −84 mV.
As in the continuous model, vn is uniquely determined by the given initial and boundary
conditions, while un

i and un
e are determined only up to the same additive time-dependent

constant related to a reference potential. Since we consider bounded domains, we can
determine this constant by imposing the condition Mun

e = 0.
We remark that this semi-implicit treatment leads to a linear system at each time step

in (7.3) with a symmetric positive definite iteration matrix, while the linear system in (7.4)
involves a symmetric positive semidefinite iteration matrix, with a one-dimensional kernel
spanned by (1,1)T . These systems are solved iteratively by the preconditioned conjugate
gradient (PCG) method, using as initial guess the solution at the previous time step. More
details on the parallel linear solver are given in the next section. On the contrary, for
the DAE formulation (6.4) in the v,ue variables, the implicit treatment of all the linear
terms would yield a nonsymmetric iteration matrix; hence a more expensive Krylov space
method such as GMRES should be used for solving the associated linear system at each
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time step. Moreover, the extension of the recent Monodomain operator splitting techniques
[43, 21] to the Bidomain model would lead to a linear parabolic system χCmM

∂u

∂t
+Au = 0,

with u = (ui,h,ue,h)T . The iteration matrix arising from the implicit discretization of this
system coincides with the iteration matrix in (7.4) and therefore we would have the same
computational complexity at each time step.

The adaptive time-stepping strategy employed is based on controlling the transmem-
brane potential variation ∆v = max(vn+1 − vn) at each time step; see Victorri et al. [60],
Luo and Rudy [32], Hooke [26], Otani [36]. In short, the adaptive strategy is the following:

if ∆v < ∆vmin = 0.05 then ∆tnew =
∆vmax

∆v
∆told (if ∆tnew < ∆tmax = 6 msec);

if ∆v > ∆vmax = 0.5 then ∆tnew =
∆vmin

∆v
∆told (if ∆tnew > ∆tmin = 0.005 msec).

Due to the linearity of the gating equation for wj , in the Hodgkin-Huxley formalism
the equations can be written as















∂wj

∂t
=

wj∞ −wj

τwj

, on(0,∆t) ,with wj(x, 0) = wn
j (x)

wj∞(vn) = αj(v
n) ∗ τwj

(vn), τwj
(vn) =

1

αj(vn) + βj(vn)
.

In order to also guarantee a control on the variation of the gating variables wj , they are
integrated exactly given v (see Victorri et el. [60]), i.e.

wn+1
j = wj∞(vn) + (wn

j −wj∞(vn)) ∗ exp(−∆t/τwj
(vn)).

In particular, in the LR1 ionic model, the update of the gating variables w1, · · · , w6 are
based on the previous explicit formula; using these values the calcium concentration w7 is
then updated applying the implicit Euler method.

8. Parallel implementation and computational costs. In order to reduce the high
computational cost of large-scale simulations of the whole heartbeat solving (7.3) and (7.4)
at each time step, we have chosen to use adaptive methods in time, described before, and
parallel solvers in space. Among other works using parallel tools in cardiac simulations,
see Saleheen et al. [50], Quan et al. [44], Pormann [42], Garfinkel et al. [21], Vigmon et
al. [61]. Our strategy for building an efficient parallel solver is based on using the parallel
library PETSc from Argonne National Laboratory; see [7, 6]. This library, built on the MPI
standard, offers advanced data structures and routines for the parallel solution of partial
differential equations, from basic vector and matrix operations to more complex linear and
nonlinear equation solvers. In our FORTRAN code, the necessary vectors and matrices are
built and subassembled in parallel on each processor and then the solution is advanced in
time on each processor in a synchronous manner. In order to minimize the bandwidth of the
stiffness matrix (as in [40, 26]) and to improve data locality in PETSc, we have reordered
the unknowns writing for every node the ui and ue components consecutively. This allows
us to take full advantage of the parallel objects in the PETSc library, such as the Distributed
Arrays (DA) objects, where the couple ui, ue is associated with each node of the structured
mesh. At each time step, the main computational costs are associated with

a) updating the gating and concentration variables;
b) evaluating the reaction terms (and possibly auxiliary quantities such as the depolar-

ization and repolarization times defined below);
c) solving a linear system, related to the implicit treatment of the anisotropic diffusion

terms, with coefficient matrix given in (7.3) for the Monodomain model or in (7.4) for the
Bidomain model. As it is shown by the numerical experiments described in the next section,
the iterative solution of this linear system is much harder for the Bidomain model than
for the Monodomain model. This fact seems due to the more severe ill-conditioning of the
Bidomain matrix related to its degenerate structure rather than just to the size doubling of
the unknowns. The addition to the stiffness matrix A and A (related to elliptic operators
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Fig. 8.1. Nonzero eigenvalues of the stiffness matrices A and A related to elliptic operators with
homogeneous Neumann boundary conditions (left panel) and of the iteration matrices in (7.3) and (7.4)
(right panel). Monodomain eigenvalues, denoted by dots (·), are related to 15× 15× 8 = 1800 meshpoints.
Bidomain eigenvalues, denoted by circles (o), are related to 15× 15× 4 meshpoints.

with Neumann boundary conditions) of a zero-order term with the mass matrix, stemming
from the time stepping scheme, greatly improves the spectrum of the Monodomain iteration
matrix χCm

∆t
M + A in (7.3), but not of the Bidomain iteration matrix χCm

∆t
M+A in (7.4);

see Figure 8.1 for a plot of the spectra of these matrices on a small 15×15×8 mesh in the
Monodomain case and 15×15×4 in the Bidomain case (we chose these meshes in order to
have iteration matrices of the same size).

Since the resulting matrices are symmetric positive definite (in the Monodomain case) or
positive semidefinite (in the Bidomain case), we used the preconditioned conjugate gradient
methods (PCG); see Demmel et al. [18]. In the Bidomain case, the constraint (2.5) related
to the chosen reference potential, is enforced at each time step by shifting the PCG solution
so that 1T Mun

e = 0. The iteration is stopped when the l2-norm of the residual is less
than 10−4. We used a block Jacobi preconditioner with ILU(0) solver on each block. The
blocks are associated with a decomposition of the domain Ω into subdomains and each one
is assigned to one processor. This one-level preconditioner is not optimal, since from the
theory developed for linear elliptic problems we known that the number of iterations of
the resulting solver will depend on the number of subdomains. A two-level preconditioner,
with an additional coarse solver associated with the coarse subdomain mesh, would produce
an optimal preconditioner, but it would also increase the cost of each iteration; see Smith
et al. [52]. Our numerical results show that for the Monodomain model the number of
iterations of the one-level preconditioner is quite satisfactory, while for the Bidomain model
the number of iterations increases considerably with the number of subdomains. Therefore
more research is needed in order to build a more scalable Bidomain solver. We are currently
working on the implementation of a two-level preconditioner.

9. Numerical results. We have conducted several numerical experiments in three
dimensions on distributed memory parallel architectures, with both the Monodomain and
the Bidomain model and different membrane models. The parallel machines employed are an
IBM SP RS/6000 Power4 of the Cineca Consortium (www.cineca.it) and an HP SuperDome
64000 of the Cilea Consortium (www.cilea.it). The IBM SP machine has 512 processors
Power 4 - 1300 MHz, grouped into 16 nodes of 32 processors and 64 GB RAM each. Its
peak performance is declared at 2.7 Tflops, but we could not get more than 128 processors
due to contention with other users. The HP SuperDome machine has 64 processors PA8700
- 750 MHz and 64 GB RAM.

In order to describe the macroscopic features of the excitation and subsequent repolar-
ization process, we extract from the spatio-temporal transmembrane potential the sequence
of the propagating excitation and repolarization wave fronts. During the excitation phase
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Table 9.1

Parameters calibration for numerical tests

ellipsoidal a1 = b1 = 1.5 cm, a2 = b2 = 2.7 cm, c1 = 4.4, c2 = 5 cm
geometry φmin = 0, φmax = 2π, θmin = −3π/8, θmax = π/8

χ = 103 cm−1, Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1, σt = 2.5562 · 10−4 Ω−1cm−1

parameters G = 1.5 Ω−1cm−2, vth = 13 mV, vp = 100 mV
η1 = 4.4 Ω−1cm−2, η2 = 0.012, η3 = 1
σe

l = 2 · 10−3 Ω−1cm−1, σi
l = 3 · 10−3 Ω−1cm−1

Bidomain σe
t = 1.3514 · 10−3 Ω−1cm−1, σi

t = 3.1525 · 10−4 Ω−1cm−1

parameters σe
n = σe

t /µ1, σi
n = σi

t/µ2

µ1 = µ2 = 1 axial isotropic case, µ1 = 2, µ2 = 10 orthotropic case

v(·, t) increases monotonically from the resting value vr, see Figure 4.1, hence choosing a
threshold v? > vr and lower than the plateau value, there is a unique time instant te(x)
when v(x, te(x)) = v?. Analogously, during the repolarization phase there is a unique time
instant tr(x) when v(x, tr(x)) = v?. In the following, we call te and tr depolarization and
repolarization times, respectively and their level surfaces (isochrones) define the excitation
and repolarization wave fronts. We have chosen v? = 56.5 mV when using variants of FHN
gating and v? = −60 mV when using LR1 gating. We remark that during the cardiac ex-
citation phase a moving internal layer about 1 mm thick, associated to a fast variation of
the transmembrane potential distribution v, sweeps the entire tissue. Therefore the compu-
tation on a fixed mesh requires a quasi uniform spatial resolution of the order of 0.1 mm in
order to produce simulations free of numerical artifacts and sufficiently accurate.

9.1. Test 1: Monodomain model with a variant of FHN gating. We start with
our simplest model, the Monodomain model with FHN gating; the details of the parameter
calibration are given in Table 9.1 and the computing platform is the IBM SP4. The left
ventricle geometry is modeled by a closed truncated ellipsoid, subdivided from 4 to 32
subdomains. The number of mesh points in each subdomain is kept fixed at 132×70×41
nodes, hence the global mesh (see Sect. 6) varies from 264×141×41 nodes in the smaller
case with 4 subdomains (1.526.184 unknowns) to 1056×281×41 nodes in the larger case with
32 subdomains (12.166.176 unknowns). We simulated the depolarization of the ventricular
volume after four stimuli of 250 mA/cm3 have been applied for 1 msec on small areas (5
mesh points in each direction) of the epicardium. The model is run for 400 time steps of 0.2
msec each. At each time step, we compute the potential v, the recovery variable w and the
depolarization time of the activated nodes.

In Figure 9.1, we plotted the isochrone lines of the depolarization time on three por-
tions of the epicardial surface (anterior, lateral and posterior), showing the propagation and
merging of the excitation fronts originating at each of the four stimulation sites, and on two
transversal sections showing the intramural propagation of the fronts. The timings results
reported in Table 9.2 show that the assembling times for the stiffness and mass matrices
(fourth column) are reasonably small. The average number of PCG iterations per time step
(fifth column) and the average timing per time step (last column) show the lack of scalabil-
ity of the one-level block-Jacobi preconditioner, but for these numbers of processors these
values are quite reasonable.

9.2. Test 2: Monodomain-LR1 model. We consider next the Monodomain equa-
tion with LR1 ionic model, simulating now the initial depolarization of some ellipsoidal
blocks after one stimulus of 250 mA/cm3 has been applied for 1 msec on a small area (5
mesh points in each direction) of the epicardium. The blocks are chosen in increasing sizes
so as to keep constant the number of mesh points per subdomain (processor). As shown in
Figure 9.2, the domain varies from the smaller block with 8 subdomains to half ventricle
with 128 subdomains. We fixed the local mesh in each subdomain to be of 75×75×50 nodes
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Fig. 9.1. Test 1: Isochrones of the depolarization time drawn every 2 msec; anterior (top left), lateral
(top center), posterior (top right) epicardial view, meridian section (bottom left), transverse section (bottom
right). Colorbar values are in msec

Table 9.2

Test 1: Monodomain with a variant of FHN model. Depolarization of full ventricle: 4 stimuli applied
to the epicardial surface, 400 time steps of 0.2 msec each, computation of v,w and isochrones tA = assembly
timing, it = average number of PCG iterations at each time step, time = average CPU timing of each time
step

# proc. mesh unknowns tA it. time
(nodes)

4 = 2·2·1 264×141×41 1.526.184 10 s 10 3.5 s
9 = 3·3·1 396×211×41 3.425.796 11.2 s 12 5.9 s

16 = 4·4·1 528×281×41 6.083.088 11.1 s 14 8.6 s
32 = 8·4·1 1056×281×41 12.166.176 12.1 s 21 15 s

(281.750 unknowns), hence varying the global number of unknowns of the linear system from
2.25·106 in the smaller case with 8 subdomains on a global mesh of 150×150×100 nodes to
3.6·107 in the larger case with 128 subdomains on a global mesh of 600×600×100 nodes.
The model is run for 30 time steps of 0.05 msec each. At each time step, we compute the
potential v, the gating and concentration variables w1, · · · , w7 and the depolarization time.
The computing platform is the IBM SP4.

The results are reported in Table 9.3. The assembling time, average number of PCG
iterations per time step and the average timing per time step (last three columns) are
reasonably small and actually smaller than the results of Test 1, due to the smaller problem
size per processor and time-step size. Up to 64 processors, the algorithm seems practically
scalable, and even for 128 processors, the number of PCG iterations grows to just 8.
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Fig. 9.2. Domains for Tests 2 and 3: ellipsoidal blocks of increasing sizes decomposed into 8, 16, 32,
64 and 128 subdomains. Ellipsoidal geometry defined by (6.1) with parameters of Table 1. Axis thickmarks
of the boxes are in centimeters

Table 9.3

Test 2: Monodomain with LR1 model. Initial depolarization of an ellipsoidal block: 1 stimulus on
epicardial surface, 30 time steps of 0.05 msec each, computation of v, w1, · · · , w7 and isochrones. tA =
assembly timing, it = average number of PCG iterations at each time step, time = average CPU timing of
each time step

# proc. mesh unknowns tA it. time
(nodes)

8 = 2·2·2 150×150×100 2.250.000 7.7 s 4 2.7 s
16 = 4·2·2 300×150×100 4.500.000 8.5 s 4 3 s
32 = 4·4·2 300×300×100 9.000.000 9.1 s 5 3.6 s
64 = 8·4·2 600×300×100 18.000.000 9.2 s 5 3.6 s

128 = 8·8·2 600×600×100 36.000.000 10.6 s 8 5.1 s

The time spent by the solver in the LR1 membrane routine is about 1.4 sec. per time
step and is independent on the global mesh size, since this routine is completely parallel (it
depends of course on the local mesh size, here kept fixed). Therefore, its relative importance
decreases as the problem size (and processor count) increases.

9.3. Test 3: Bidomain-LR1 model. We then consider the Bidomain system with
LR1 ionic model, in the same setting (initial stimulus and domain decomposition) of the
previous case. Due to the larger memory requirements of the Bidomain model, we used a
smaller mesh of 50×50×35 nodes in each subdomain (processor), hence varying the global
number of unknowns of the linear system from 1.4·106 in the smaller case with 8 subdomains
on a global mesh of 100×100×70 to 2.24·107 unknowns in the larger case with 128 subdo-
mains on a gloabl mesh of 400×400×70 nodes. As before, the model is run for 30 time steps
of 0.05 msec each. At each time step, we now compute the potentials ui, ue, the gating and
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Table 9.4

Test 3: Bidomain with LR1 model. Initial depolarization of an ellipsoidal block: 1 stimulus on epi-
cardial surface, 30 time steps of 0.05 msec each, computation of ui, ue, w1, · · · , w7 and isochrones. tA =
assembly timing, it = average number of PCG iterations at each time step, time = average CPU timing of
each time step

# proc. mesh unknowns tA it. time
(2× nodes)

8 = 2·2·2 100×100×70 1.400.000 12.9 s 98 40.2 s
16 = 4·2·2 200×100×70 2.800.000 13.3 s 127 55.5 s
32 = 4·4·2 200×200×70 5.600.600 15.7 s 148 72 s
64 = 8·4·2 400×200×70 11.200.000 16.2 s 176 91.9 s

128 = 8·8·2 400×400×70 22.400.000 18.4 s 244 129.7 s
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Fig. 9.3. Test 4: Full cardiac cycle with Bidomain model and LR1 gating. Time-step size in msec. on
a semilogarithmic scale (left), PCG iterations at each time step (right), both as a function of time

concentration variables w1, · · · , w7 and the depolarization time. The computing platform is
the IBM SP4.

The results are reported in Table 9.4. While the assembling time remains reasonable
(under 20 sec.), the average number of PCG iterations per time step and the average timing
per time step are now much larger, clearly showing the limits of the one-level preconditioner
and the effects of the severe ill-conditioning of the Bidomain iteration matrix. As shown
in Figure 8.1, this iteration matrix displays a decay of the smallest eigenvalues similar to
the stiffness matrix related to the elliptic operator with homogeneous Neumann boundary
conditions. Therefore, we have applied the same solver to the linear system associated with
the elliptic Neumann problem related to the tensor Di +De, appearing as the algebraic part
in the DAE formulation (6.6). The results show that the iteration counts are of the same
order as those of Table 9.4. Hence, the loss of efficiency of our Bidomain solver is not due
to the doubling of the unknown size and is also present in the DAE formulation where the
algebraic system is half the size of the Bidomain system.

The time spent by the solver in the LR1 membrane routine is about 0.45 sec. per time
step, independently of the global mesh size; the reduction with respect to the Monodomain
case is due to the reduced local problem size.

9.4. Test 4: Full cardiac cycle with Bidomain-LR1 model. Knowledge of the
rules that govern the full cardiac cycle, including excitation and repolarization processes, is a
necessary prerequisite for understanding and interpreting abnormal sequences that occur in
conduction disturbances, such as cardiac arrhythmias. However, while the excitation phase
has been studied extensively, both experimentally and numerically, the repolarization phase
remains incompletely understood; see Gotoh et al. [22], Cates and Pollard [10]. We now
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Fig. 9.4. Test 4: Isochrones of the depolarization time (top row), repolarization time (center row)
drawn every 2 msec and action potential duration (bottom row) drawn every 1 msec; front planes correspond
to i = 1, j = 1, k = 51 (left), back planes correspond to i = 201, j = 201, k = 1 (right). Colorbar values are
in msec.
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Fig. 9.5. Test 4: plot in time of the extracellular potential ue at the 4 × 4 = 16 points of the domain
upper plane (k = 51) marked in the bottom panel.

turn our attention to the simulation of the full cardiac cycle in a slab of cardiac tissue of
size 2·2·0.5 cm3, discretized with a fine mesh of 201×201×51 nodes. We use the Bidomain-
LR1 model. The fibers rotate intramurally linearly with depth for a total amount of 90o,
i.e. α0 = 0.5 in (6.2). In this simulation, we assume a full orthotropic anisotropy with
conductivity coefficients given in Table 9.1, an(x) = ex sinα(r) − ey cosα(r) and at = ez.
The excitation process is started by applying a stimulus of 250 mA/cm3 for 1 msec on a
small area (3 mesh points in each direction) at a vertex of the slab.

Studies of the full cardiac cycle require much longer simulation time intervals, estimated
by adding to the action potential duration (APD), which in the original LR1 model is more
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Fig. 9.6. Test 4: isopotential lines of ui (left) drawn every 3 mV and of ue (right) drawn every 2 mV;
time is 32 msec after stimulation. Colorbar values are in mV

than 400 msec, the total excitation time related to the size of the cardiac volume. We scaled
the slow inward current Isi of the LR1 model by a factor 2/3, thereby reducing the action
potential duration to about 280 msec. Since the excitation of the entire slab in this test
requires about 80 msec, the time interval for simulating the cardiac cycle is on the order of
400 msec. The adaptive time-stepping algorithm automatically adapts the time-step size in
the different phases of the simulation. As shown in Figure 9.3, left panel, the initial small
time step of 0.05 msec, needed while the steep depolarization front propagates throughout
the domain, is increased to about 0.62 msec in the plateau phase, then decreased to 0.31 and
0.15 msec in the repolarization phase, and finally increased to the maximum size allowed of
6 msec when most of the tissue has returned to rest. Corresponding to these phases, the
number of PCG iterations of the linear solver change considerably (right panel of Figure 9.3),
increasing to a a maximum of about 250 iterations in the depolarization phase, decreasing
to about 170 in the plateau phase, increasing again above 200 in the repolarization phase
and finally decreasing below 160 when the tissue has returned to rest. This indicates that
our preconditioner and/or initial guess are not yet satisfactory. This simulation of a full
cardiac cycle of about 400 msec took about 6.4 days on the HP SuperDome machine with
25 processors.

The depolarization time te(x), repolarization time tr(x) and action potential duration
tr(x) − te(x) (APD) are displayed in Figure 9.4. The propagation of the excitation and
repolarization wave fronts is strongly affected by the anisotropic conduction and by the
intramural fiber rotation. The third row of Figure 9.4 displays the dispersion of the APD.
This large-scale computation is a first step toward a better understanding of how anisotropy
affects the APD, contributing to its spatial heterogeneity; see e.g. the experimental studies
by Gotoh et al. [22] and Taccardi et al. [57]. .

The waveforms of ue, ui and v are plotted in Figure 9.5 at the points indicated in the
bottom right panel. The ue waveforms (top left panel) display how the morphology of
the QRS waves (related to the excitation phase) and of the T-wave (related to the recovery
phase) changes as we move away from the stimulation site. We remark that the time adaptive
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strategy efficiently computes these waveshapes without numerical artifacts such as spurious
oscillations. Figure 9.6 displays the intra and extracellular potential distributions 32 msec
after starting the stimulation, showing the very thin excitation layer, sweeping the domain
and requiring a very small mesh size.

10. Conclusions. We have developed a portable parallel code for numerical simula-
tions in computational electrocardiology in three dimensions. The code is based on the
anisotropic Bidomain and Monodomain models describing the bioelectric process in the
cardiac tissue. This model incorporates the main structural and functional features of the
myocardium at a macroscopic level, i.e. the bidomain structure of the cardiac cellular aggre-
gate, the anisotropic conductivity related to fibers assembling, the fiber rotation through the
ventricular wall thickness, the laminar structure of the fiber architecture and the LR1 cellu-
lar membrane model, one of the most used in the literature. The FORTRAN code is based
on structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method
in time. Parallelization and portability are based on the PETSc parallel library. Large-scale
simulations with up to O(107) unknowns have been run on IBM SP4 and HP SuperDome
parallel computers. We expect to be able to run simulations with O(108) unknowns on ma-
chines with O(103) processors. These simulations have shown that our numerical methods
have a good performance when applied to the Monodomain model, even for a full left ven-
tricular domain, while they need improvement in the Bidomain case, where a full heartbeat
could be simulated only in a relatively small 3D block of tissue. The loss of efficiency in
the Bidomain case is mostly related to the solution of the linear system at each time step
and is shared by both the ui,ue and the v,ue formulations. This is not only due to the
doubling of the unknowns but can be attributed to the worst conditioning of the iteration
matrix and to our preconditioning technique. On the other hand, it is well established by
the agreement between experimental and simulated data that the bidomain structure cannot
be neglected in modern simulation studies. Therefore, work is under way to develop more
efficient elliptic solvers based on two-level domain decomposition methods and more efficient
time advancement methods.
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