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I. INTRODUCTION

A. Scope

The obvious difficulty of direct measurements in electrocardiology early motivated interest in
the numerical simulation of cardiac models. In 1952, Hodgkin and Huxley [1] introduced the
first mathematical model of wave propagation in squid nerve, which was modified later on to
describe several phenomena in biology, including the first physiological model of cardiac tis-
sue (see [2]). Among these models, the bidomain model, first introduced by Tung [3], is one
of the most accurate and complete models for the theoretical and numerical study of the elec-
tric activity in cardiac tissue. The bidomain equations result from the principle of conservation
of current between the intra- and extracellular domains, followed by a homogenization process
(see e.g. [2, 4, 5]) derived from a scaled version of a cellular model on a periodic structure of
cardiac tissue. Mathematically, the bidomain model is a system consisting of a scalar, possibly
degenerate parabolic PDE coupled with a scalar elliptic PDE for the transmembrane potential and
the extracellular potential, respectively. These equations are supplemented by a time-dependent
ODE for the gating variable, which is defined at every point of the spatial computational domain.
The term “bidomain” reflects that, in general, the intra- and extracellular tissues have different
longitudinal and transversal (with respect to the fiber) conductivities; if these are equal, then the
model is termed monodomain model, and the elliptic PDE reduces to an algebraic equation. The
degenerate nature of the bidomain model is essentially due to the differences between the intra-
and extracellular anisotropy of the cardiac tissue [4, 6].

The bidomain model is a challenge for computation since the width of an excitation front is
roughly two orders of magnitude smaller than the long axis of a human-size right ventricle. This
feature of localization, along with strongly varying time scales in the reaction terms, produces
solutions with sharp propagating wave fronts in the potential field, which almost precludes simu-
lations with uniform grids. Clearly, cardiac simulations should be based on space- (and also time-)
adaptive methods.

It is the purpose of this article to advance a fully adaptive multiresolution (MR) scheme with
locally varying space-time stepping (LTS) and adaptive time step control by means of a Runge-
Kutta-Fehlberg (RKF) method for the numerical solution of the bidomain and monodomain
models. The LTS and RKF strategies are of different nature, but may be combined to obtain
a potentially more powerful method (as suggested, e.g., in [7]; however, herein we do not pursue
this). We furthermore deduce an optimal threshold value for discarding nonsignificant data, which
permits to achieve significant data compression. This deduction motivated by the rigorous analy-
sis performed in [8] for scalar conservation laws in one space dimension and in [9] for strictly
parabolic PDEs. Experience with degenerate parabolic equations and reaction–diffusion systems
[9–12] suggests that the MR method should provide an efficient tool for solving the bidomain
equations. Consequently, we herein extend this method to the novel application of the bidomain
and monodomain models.

The efficiency of the MR method is a consequence of the fact that, at each time step, the solu-
tion is encoded with respect to a MR basis corresponding to a hierarchy of nested grids. The size
of the details determines the level of refinement needed to obtain an accurate local representation
of the solution. Therefore, an adaptive mesh is evolved in time by refining and coarsening in a
suitable way, by means of a strategy based on the prediction of the displacement and creation of
steep gradients and similar singularities in the solution.

We apply the MR approach to an explicit finite volume (FV) method in each time step. Even
though implicit methods allow larger time steps, we need to iteratively solve a nonlinear sys-
tem in each time step, using e.g., Newton-Raphson method. The number of iterations is usually
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controlled by measuring the residual error and cannot be controlled a priori. Thus, it appears
difficult to assess the true benefits of a time-stepping strategy if the basic time discretization is an
implicit one, the latter being less efficient than explicit ones, especially when the overall number
of time steps is large (see e.g., [13]).

B. Related Work

We first mention that standard theory for coupled parabolic–elliptic systems (see e.g., [14]) does
not apply naturally to the bidomain equations, since the anisotropies of the intra- and extracel-
lular media differ and the resulting system is of degenerate parabolic type. Colli Franzone and
Savaré [6] present a weak formulation for the bidomain model and show that it has a structure suit-
able for applying the theory of evolution variational inequalities in Hilbert spaces. Bendahmane
and Karlsen [4] prove existence and uniqueness for the bidomain equations using the Faedo-
Galerkin method and compactness theory for the existence part, and Bourgault et al. [15] prove
existence and uniqueness for the bidomain equations by first reformulating the problem as a single
parabolic PDE and then applying a semigroup approach.

From a computational point of view, substantial contributions have been made in adaptivity for
cardiac models. However, our treatment differs to the best of our knowledge from other adaptive
approaches in the literature, which include adaptive mesh refinement (AMR) (e.g., [13]), adap-
tive finite element methods using a posteriori error techniques (see e.g., [5]) or multigrid methods
applied to finite elements. Furthermore, Quan et al. [16] present a domain decomposition approach
using an alternating direction implicit (ADI) method. Sundnes et al. [17] introduce an operator
splitting method to solve a fully coupled discretization of three PDEs modelling the interaction
between the myocardium and the torso surrounding the heart. With respect to time adaptivity,
Skouibine et al. [18] present a predictor–corrector time stepping strategy to accelerate a given
finite difference scheme for the bidomain equations using active membrane kinetics (Luo-Rudy
phase II). Cherry et al. [13] use local time stepping, similar to the method introduced by Berger
and Oliger [19], to accelerate a reference scheme. Parallelized versions of part of the methods
mentioned earlier are presented, for example, by Colli Franzone and Pavarino [20] and Saleheen
and Ng [21].

MR schemes for hyperbolic partial differential equations were first proposed by Harten [22].
We refer to Müller [23] for a survey on MR methods, see also Chiavassa et al. [24], and Cohen
et al. [8] and Dahmen et al. [25] for the application of classical MR methods to hyperbolic partial
differential equations.

The aim of the MR method is to accelerate a given reference discretization scheme while con-
trolling the error. In the context of fully adaptive MR methods [8], the mathematical analysis is
complete only in the case of a scalar conservation law, but in practice, these techniques have been
used by several groups (see e.g., [7, 9, 10, 23, 26]) to successfully solve a wide class of problems,
including applications to multidimensional systems. These results illustrate that the MR method
has turned out to be a useful device for a series of problems with a similar structure to cardiac
problems. Thus, our motivation is to point out that this versatile method also provides an efficient
tool for the simulation of electrical activity in cardiac tissue.

C. Outline of the Article

The remainder of this article is organized as follows. In Section II, the bidomain and monodomain
models of cardiac tissue are outlined. Section III deals with the construction of an appropriate FV
method for the solution of both the parabolic–elliptic system and the reaction–diffusion equation
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arising from the bidomain and monodomain models, respectively. Next, in Section IV, we develop
the MR analysis used to endow the reference FV schemes with space adaptivity. More precisely, in
Section IVA, we introduce the wavelet basis underlying the MR representation with the pertinent
projection operator. In Section IVB, the prediction operator, the detail coefficients and the thresh-
olding procedure are introduced. In Section IVC, we recall the graded tree data structure used for
storage of the numerical solution, and which is introduced for ease of navigation. In Section IVD,
we first recall the results of the rigorous error analyses of Cohen et al. [8] and Roussel et al. [9]
referring to conservation laws and strictly parabolic equations, respectively, and then show how
this analysis motivates the choice of a reference tolerance εR for the bidomain and monodomain
models in a fashion similar to the treatment of scalar degenerate parabolic equations [11, 12].
The quantity εR determines the comparison values εl used for the thresholding operation at each
level l of resolution. Overall, the basic goal is to choose the threshold values in such a way that
the resulting MR scheme has the same order of accuracy as the usual FV scheme.

In Section V, we address two strategies for the adaptive evolution in time of the space-adaptive
MR scheme, namely the locally varying time stepping (LTS, Section VA) and a variant of
the well-known Runge-Kutta-Fehlberg (RKF, Section VB) method. Finally, in Section VI, we
present numerical examples putting into evidence the efficiency of the underlying methods. Some
conclusions of the article are given in Section VII.

II. THE MACROSCOPIC BIDOMAIN AND MONODOMAIN MODELS

We consider a bounded open subset � ⊂ R
2 with a piecewise smooth boundary ∂�. The domain

� represents a slice of the cardiac muscle regarded as two interpenetrating and superimposed
(anisotropic) continuous media, namely the intracellular (i) and extracellular (e) tissues. These
tissues occupy the same two-dimensional area, and are separated from each other (and connected
at each point) by the cardiac cellular membrane. The quantities of interest are intracellular and
extracellular electric potentials, ui = ui(x, t) and ue = ue(x, t), at (x, t) ∈ �T := � × (0, T ).
Their difference v = v(x, t) := ui − ue is the transmembrane potential. The conductivity of the
tissue is represented by scaled tensors Mi(x) and Me(x) given by

Mk(x) = σ t
kI + (

σ l
k − σ t

k

)
al(x)aT

l (x), k ∈ {e, i},
where σ l

k = σ l
k(x) ∈ C1(R2) and σ t

k = σ t
k(x) ∈ C1(R2), k ∈ {e, i}, are the intra- and extracellular

conductivities along and transversal to the direction of the fiber (parallel to the unitary direction
vector denoted by al(x)), respectively, and aT

l (x) is the transpose of al(x). For fibers aligned with
the axis, Mi(x) and Me(x) are diagonal matrices: Mi(x) = diag(σ l

i , σ t
i ) and Me(x) = diag(σ l

e , σ t
e).

When the anisotropy ratios σ l
i /σ

t
i and σ l

e/σ
t
e are equal, we are in the case of equal anisotropy, and

the case where the conductivities in the longitudinal direction l are higher than those across the
fiber (transversal direction t) is called strong anisotropy of electrical conductivity. When the fibers
rotate from bottom to top, this type of anisotropy is often referred to as rotational anisotropy.

The bidomain model is given by the following coupled reaction–diffusion system (see
e.g., [27]):

βcm∂tv − ∇ · (
Mi(x)∇ui

) + βIion(v, w) = 0, (2.1a)

βcm∂tv + ∇ · (
Me(x)∇ue

) + βIion(v, w) = Iapp, (2.1b)

∂tw − H(v, w) = 0, (x, t) ∈ �T . (2.1c)
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Here, cm > 0 is the surface capacitance of the membrane, β is the surface-to-volume ratio, and
w(x, t) is the gating or recovery variable. The stimulation currents applied to the extracellular
space are represented by the function Iapp = Iapp(x, t). The functions H(v, w) and Iion(v, w)

correspond to the fairly simple Mitchell-Schaeffer membrane model [28] for the membrane and
ionic currents:

H(v, w) = w∞(v/vp) − w

Rmcmη∞(v/vp)
, Iion(v, w) = vp

Rm

(
v

vpη2
− v2(1 − v/vp)w

v2
pη1

)
, (2.2)

where η∞(s) = η3 + (η4 −η3)H(s −η5) and w∞(s) = H(s −η5), where H denotes the Heaviside
function, Rm is the surface resistivity of the membrane, and vp and η1, . . . , η5 are given parame-
ters. A simpler choice for the membrane kinetics is the well-known FitzHugh-Nagumo model
(see [2]), which is specified by

H(v, w) = av − bw, Iion(v, w) = −λ
(
w − v(1 − v)(v − θ)

)
, (2.3)

where a, b, λ, and θ are given parameters.
We rewrite (2.1) as the strongly coupled parabolic–elliptic PDE-ODE system (see e.g., [27])

βcm∂tv + ∇ · (
Me(x)∇ue

) + βIion(v, w) = Iapp, (2.4a)

∇ · (
(Mi(x) + Me(x))∇ue

) + ∇ · (
Mi(x)∇v

) = Iapp, (2.4b)

∂tw − H(v, w) = 0, (x, t) ∈ �T . (2.4c)

We utilize zero flux boundary conditions corresponding to an isolated piece of cardiac tissue,

(
Mk(x)∇uk

) · n = 0 on 	T := ∂� × (0, T ), k ∈ {e, i}, (2.5)

and impose initial conditions (which are degenerate for the transmembrane potential v):

v(0, x) = v0(x), w(0, x) = w0(x), x ∈ �. (2.6)

We require the initial datum v0 to be compatible with (2.5) in the following sense. If we fix both
uk(0, x), k ∈ {e, i} as initial data, the problem may become unsolvable, since the time derivative
involves only v = ui − ue (this is also referred as degeneracy in time). Thus, we impose the
compatibility condition ∫

�

ue(x, t) dx = 0 for a.e. t ∈ (0, T ). (2.7)

In the case that Mi ≡ µMe for some constant µ ∈ R, the system (2.1) is equivalent to a scalar
parabolic equation for v, coupled to an ODE for w. This parabolic equation is obtained by multi-
plying (2.1a) by 1/(1 + µ), (2.1b) by µ/(1 + µ), and adding the results. The final monodomain
model can be stated as follows:

βcm∂tv − ∇ ·
(

Mi

1 + µ
∇v

)
+ βIion(v, w) = µ

1 + µ
Iapp,

∂tw − H(v, w) = 0, (x, t) ∈ �T . (2.8)
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This simpler model requires less computational effort than (2.4), and even though the assumption
of equal anisotropy ratios is very strong and generally unrealistic, (2.8) is adequate for a qualita-
tive investigation of repolarization sequences and the distribution of patterns of durations of the
action potential [29].

We assume that the functions Me, Mi, Iion, and H are sufficiently smooth so that the follow-
ing definitions of weak solutions make sense. Furthermore, we assume that Iapp ∈ L2(�T ) and
Mk ∈ L∞(�) and Mkξ · ξ ≥ CM |ξ |2 for a.e. x ∈ �, for all ξ ∈ R

2, k ∈ {e, i}, and a constant
CM > 0. For the sake of completeness, we state the definitions of a weak solution for the bidomain
and the monodomain model, respectively.

Definition 2.1. A triple u = (v, ue, w) of functions is a weak solution of the bidomain model
(2.4)–(2.6) if v, ue ∈ L2(0, T ; H 1(�)), w ∈ C([0, T ], L2(�)), (2.7) is satisfied, and the following
identities hold for all test functions ϕ, ψ , ξ ∈ D([0, T ) × �̄):

βcm

∫
�

v0(x)ϕ(0, x) dx +
∫∫

�T

{
βcmv∂tϕ − Me(x)∇ue · ∇ϕ + βIionϕ

}
dx dt

=
∫∫

�T

Iappϕ dx dt ,

∫∫
�T

{
−(

Mi(x) + Me(x)
)∇ue · ∇ψ − Mi(x)∇v · ∇ψ

}
dx dt =

∫∫
�T

Iappϕ dx dt ,

−
∫

�

w0(x)ξ(0, x) dx −
∫∫

�T

w∂tξ dx dt =
∫∫

�T

Hξ dx dt .

Definition 2.2. A pair u = (v, w) of functions is a weak solution of the monodomain model
(2.8) if v ∈ L2(0, T ; H 1(�)), w ∈ C([0, T ], L2(�)), and the following identities hold for all test
functions ϕ, ξ ∈ D([0, T ) × �̄):

βcm

∫
�

v0(x)ϕ(0, x) dx +
∫∫

�T

{
βcmv∂tϕ + βIionϕ − 1

1 + µ
Mi∇v · ∇ϕ

}
dx dt

= µ

1 + µ

∫∫
�T

Iappϕ dx dt ,

−
∫

�

w0(x)ξ(0, x) dx −
∫∫

�T

w∂tξ dx dt =
∫∫

�T

Hξ dx dt .

III. THE REFERENCE FINITE VOLUME SCHEME

To approximate solutions to the bidomain equations (2.4), we employ a standard FV scheme,
which is described here for a uniform grid. The square spatial domain � ⊂ R

2 is partitioned into
control volumes (�ij )1≤i,j≤N , where we define

�ij := [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2]
and h := xi+1/2 − xi−1/2 = yj+1/2 − yj−1/2 for all 1 ≤ i, j ≤ N . We also choose a time step size

t > 0 and set tn := n
t for n ∈ {0, . . . , N ′}, where N ′ > 0 is the smallest integer such that
N ′
t ≥ T . The cell average of a quantity q over �ij at time tn is defined by
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qn
ij := 1

h2

∫∫
�ij

q(x, tn) dx dt .

We define the unknowns

Hn
ij := H

(
vn

ij , wn
ij

)
, I n

ion,(i,j) := Iion

(
vn

ij , wn
ij

)
, (3.1)

and the cell averages of the given function Iapp at time tn:

I n
app,(i,j) := 1

h2

∫∫
�ij

Iapp(x, tn) dx dt .

Denoting by θ the angle of alignment of the fibers, we may recast Mk(x) explicitly in the form
(see e.g. [30])

Mk =
[

σ t
k + (σ l

k − σ t
k) sin2(θ) (σ l

k − σ t
k) sin(θ) cos(θ)

(σ l
k − σ t

k) sin(θ) cos(θ) σ t
k + (σ l

k − σ t
k) cos2(θ)

]
for k ∈ {e, i}.

Therefore, defining the difference operators δs
xVij := Vi+s,j − Vij and δs

yVij := Vi,j+s − Vij , we
define the numerical fluxes (we only provide those corresponding to the flux (i + 1, j) → (i, j))

F
u,e
(i+1,j)→(i,j) := 1

h
M11

e δ1
xue,(i,j),

F
u,i,e
(i+1,j)→(i,j) := 1

h

(
M11

e + M11
i

)
δ1
xue,(i,j),

F
v,i
(i+1,j)→(i,j) := 1

h
M11

i δ1
xvij ,

and following e.g., [21], the corresponding anisotropic diffusive term may be approximated by

∇ · (Mk∇u)i,j ≈ Dh(Mk , uij ) := 1

h2

∑
s∈{−1,1}

M11
k δs

xuij + M12
k ui+s,j+s + M21

k ui+s,j−s + M22
k δs

yuij

for all 1 ≤ i, j ≤ N and k ∈ {e, i}. We now describe the finite volume scheme employed to
advance the numerical solution from tn to tn+1, which is based on a simple explicit Euler time
discretization. The computation starts from the initial cell averages

v0
ij = 1

h2

∫
�ij

v0(x) dx, w0
ij = 1

h2

∫
�ij

w0(x) dx. (3.2)

Now, we first integrate the corresponding equations, average over �ij and discretize.
Then, assuming that at t = tn the quantities un

k,(i,j), k ∈ {e, i}, vn
ij and wn

ij are known for all �ij ,
we compute their new values at t = tn+1, un+1

k,(i,j), k ∈ {e, i}, vn+1
ij and wn+1

ij , from

βcm

vn+1
ij − vn

ij


t
+ Dh

(
Me, u

n
e,(i,j)

) + βIn
ion,(i,j) = I n

app,(i,j), (3.3)

Dh

(
(Me + Mi), u

n+1
e,(i,j)

) + Dh

(
Mi, v

n+1
ij

) = I n
app,(i,j), (3.4)

wn+1
ij − wn

ij


t
− Hn

ij = 0. (3.5)
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The boundary condition (2.5) is taken into account by imposing zero fluxes on the external
edges (which we only show here for the right boundary of a square domain):

F
u,e
(i,N)→(i,N−1) ≡ 1

h
M11

e δ1
xue,(i,N−1) = 0,

F
u,i,e
(i,N)→(i,N−1) ≡ 1

h

(
M11

e + M11
i

)
δ1
xue,(i,N−1) = 0

for 1 ≤ i ≤ N − 1, and the compatibility condition (2.7) is discretized via

N∑
i,j=1

h2un
e,(i,j) = 0, n = 0, 1, 2, . . . .

Analogously, a FV method for the monodomain model (2.8) is given by (3.2) and the following
formulas to advance the solution over one time step:

βcm

vn+1
ij − vn

ij


t
+ Dh

(
1

1 + µ
Mi, v

n
ij

)
+ βIn

ion,(i,j) = µ

1 + µ
In

app,(i,j),

wn+1
ij − wn

ij


t
− Hn

ij = 0.

A FV method on arbitrary meshes for a different version of the bidomain equations is analyzed
in [31]. In that article, the authors prove existence and uniqueness of solutions to an implicit FV
scheme, and provide convergence results. On the other hand, following [31,32], we prove in [33]
existence and uniqueness of approximate solutions (that is, well-definedness of the scheme) for
an implicit FV method on rectangular meshes, and show that it converges to the corresponding
weak solution for the monodomain problem, and also for the bidomain equations in the special
case when Mi and Me are diagonal tensors.

Moreover, as in [10], we may deduce that the explicit version of the FV method used herein,
(3.2)–(3.5), is stable under the CFL condition


t ≤ h

(
2 max

1≤i,j≤N

(∣∣I n
ion,(i,j)

∣∣ + ∣∣I n
app,(i,j)

∣∣) + 4h−1 max
1≤i,j≤N

(∣∣Mi,(i,j)

∣∣ + ∣∣Me,(i,j)

∣∣))−1

. (3.6)

Note that the values of I n
ion,(i,j) and I n

app,(i,j) depend on time. Since Iapp is a given control function,
max1≤i,j≤N |I n

app,(i,j)| can assumed to be bounded, but I n
ion,(i,j) is not bounded a priori for arbitrarily

large times. Consequently, in our computations, we evaluate the right-hand side of (3.6) after each
iteration at t = tn, and use (3.6) to define the time step size 
t to advance the solution from tn to
tn+1 = tn + 
t .

The following algorithm shows how the solution un+1 = (v, ue, w)n+1 is obtained in each time
step

Algorithm 3.1 Time discretization.

1. Assume that un
i , un

e , vn and wn are known (at time tn).
2. Compute wn+1 using

wn+1 − wn


t
− H(vn, wn) = 0.
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3. Calculate vn+1 by solving

βcm
vn+1 − vn


t
+ Dh

(
Me, u

n
e

) + βIion(v
n, wn) = I n

app.

4. Calculate un+1
e from the linear system

Dh

(
(Me + Mi), u

n+1
e

) + Dh

(
Mi, v

n+1
) = I n

app.

This algorithm structure is usually preferred for systems involving parabolic and elliptic
equations, since it explicitly isolates the solution of the elliptic problem from the rest of the
computations [34].

IV. MULTIRESOLUTION AND WAVELETS

A. Wavelet Basis

Consider a rectangle which after a change of variables can be regarded as � = [0, 1]2. We deter-
mine a nested mesh hierarchy �0 ⊂ · · · ⊂ �L, using a uniform dyadic partition of �. Here each
grid �l := {V(i,j),l}(i,j), with (i, j) to be defined, is formed by the control volumes on each level

V(i,j),l := [
2−l i, 2−l(i + 1)

] × [
2−lj , 2−l(j + 1)

]
,

i, j ∈ Il = {0, . . . , 2l − 1}, l = 0, . . . , L.

where l = 0 corresponds to the coarsest and l = L to the finest level, which is fixed and chosen
large enough at the beginning of the process. The nestedness of the grid hierarchy is made precise
by the refinement sets M(i,j),l = {2(i, j) + e}, e ∈ E := {0, 1}2, which satisfy #M(i,j),l = 4. For
x = (x1, x2) ∈ V(i,j),l the scale box function is defined as

ϕ̃(i,j),l(x) := 1

|V(i,j),l|χV(i,j),l (x) = 22lχ[0,1]2(2
lx1 − i, 2lx2 − j),

and the average of any function u(·, t) ∈ L1(�) for the cell V(i,j),l may be expressed as the inner
product

u(i,j),l := 〈
u, ϕ̃(i,j),l

〉
L1(�)

.

We are now ready to define the following two-level relation for cell averages and box functions:

ϕ̃(i,j),l =
∑

r∈M(i,j),l

|Vr,l+1|
|V(i,j),l| ϕ̃r,l+1 = 1

4

∑
(p,q)∈E

ϕ̃(2i+p,2j+q),l+1,

u(i,j),l =
∑

r∈M(i,j),l

|Vr,l+1|
|V(i,j),l|ur,l+1 = 1

4

∑
(p,q)∈E

u(2i+p,2j+q),l+1, (4.1)

which defines a projection operator, which allows us to move from finer to coarser levels. For
x ∈ V2(i,j)+a,l+1 with a ∈ E, we define the wavelet function depending on the box functions on a
finer level

ψ̃(i,j),e,l :=
∑
a∈E

2−2(−1)a·eϕ̃2(i,j)+a,l+1 =
∑

r∈M(i,j),l

|Vr=2(i,j)+a,l+1|
|V(i,j),l| (−1)a·eϕ̃r,l+1.
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The number of related wavelets is #M(i,j),l − 1 = 3. Since r · e ∈ {0, 1, 2} for r, e ∈ E, we
have for instance that

ψ̃(i,j),(1,0),l = 1

4

(
ϕ̃2(i,j),l+1 + ϕ̃2(i,j)+(0,1),l+1 − ϕ̃2(i,j)+(1,0),l+1 − ϕ̃2(i,j)+(1,1),l+1

)
.

Doing this for all e ∈ E∗ := E \ {(0, 0)} yields an inverse two-level relation (see [23]), namely

ϕ̃2(i,j)+a,l+1 =
∑
e∈E

(−1)a·eψ̃(i,j),e,l , a ∈ E.

This equation is related to the concept of stable completions [23]. Roughly speaking, the L∞-
counterparts of the wavelet functions {ψ̃(i,j),l}i,j∈Il

form a completion of the L∞-counterpart of
the basis system {ϕ̃(i,j),l}i,j∈Il

, and this determines the existence of a biorthogonal system.

B. Detail Coefficients

For e ∈ E∗, we introduce the details, which will be crucial to detect zones with steep gradients:

d(i,j),e,l := 〈
u, ψ̃(i,j),e,l

〉
.

These detail coefficients also satisfy a two-level relation, namely

d(i,j),e,l = 1

4

∑
2(i,j)+a∈M(i,j),l

(−1)a·eu2(i,j)+a,l+1. (4.2)

An appealing feature is that we can determine a transformation between the cell averages on level
L and the cell averages on level zero plus a series of details. This can be achieved by applying
recursively the two-level relations (4.1) and (4.2); but, we also require this transformation to be
reversible:

ũ(i,j),l+1 =
∑

r∈S̄l
(i,j)

gl
(i,j),rur,l , S̄l

(i,j) := {
V([i/2]+r1,[j/2]+r2),l

}
r1,r2∈{−s,...,0,...,s}, (4.3)

where S̄l
(i,j) is the stencil of interpolation or coarsening set, gl

(i,j),r are coefficients, and the tilde
over u in the left-hand side of (4.3) means that this quantity corresponds to a predicted value.

Relation (4.3) defines the so-called prediction operator, which allows us to move from coarser
to finer resolution levels. In contrast to the projection, the prediction operator is not unique, but
we will impose two constraints: to be consistent with the projection, in the sense that the predic-
tion operator is the right inverse of the projection operator, and to be local, in the sense that the
predicted value depends only on S̄l

(i,j). For the sake of notation, in our case we may write (4.3) as

ũ(2i+e1,2j+e2),l+1 = u(i,j),l − (−1)e1Qx − (−1)e2Qy + (−1)e1e2Qxy ,

where e1, e2 ∈ {0, 1} and

Qx :=
s∑

n=1

γ̃n

(
u(i+n,j),l − u(i−n,j),l

)
, Qy :=

s∑
p=1

γ̃p

(
u(i,j+p),l − u(i,j−p),l

)
,

Qxy :=
s∑

n=1

γ̃n

s∑
p=1

γ̃p

(
u(i+n,j+p),l − u(i+n,j−p),l − u(i−n,j+p),l + u(i−n,j−p),l

)
.
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Here the corresponding coefficients are γ̃1 = − 22
128 and γ̃2 = 3

128 (see [9]).
From [25], we know that details are related to the regularity of a given function: if u is

sufficiently smooth, then its detail coefficients decrease when going from coarser to finer levels:∣∣du
(i,j),l

∣∣ ≤ C2−2lr
∥∥∇(r)u

∥∥
L∞(V(i,j),l )

,

where r = 2s + 1 is the number of vanishing moments of the wavelets. This means that the more
regular u is over V(i,j),l , the smaller is the corresponding detail coefficient, so it is natural to attempt
to compress data by discarding the information corresponding to small details. This thresholding
procedure basically consists in discarding all control volumes corresponding to details that are
smaller in absolute value than a level-dependent tolerance εl ,∣∣du

(i,j),l

∣∣ < εl , l = 0, . . . , L.

Given a reference tolerance εR, whose choice is motivated in Section D, we determine εl by

εl = 22(l−L)εR, l = 0, . . . , L. (4.4)

For multicomponent solutions, there are many possible definitions for a scalar detail d(i,j),l that
is calculated from the details of the components (see a brief discussion in [11]). To guarantee that
the refinement and coarsening procedures are always on the safe side, in the sense that we always
prefer to keep a node with a detail triple containing at least one component above the threshold
(4.4), we will use

du
(i,j),l = min

{∣∣dv
(i,j),l

∣∣, ∣∣due
(i,j),l

∣∣, ∣∣dw
(i,j),l

∣∣}
and

du
(i,j),l = max

{∣∣dv
(i,j),l

∣∣, ∣∣due
(i,j),l

∣∣, ∣∣dw
(i,j),l

∣∣}
for the refinement and coarsening procedures, respectively. In practice, these details are computed
simply as the differences between the “exact” and the predicted value:

du
(i,j),l := u(i,j),l − û(i,j),l .

C. Graded Tree Data Structure

We organize the cell averages and corresponding details at different levels in a dynamic graded
tree (see Fig. 1): whenever a node is included in the tree, all other nodes corresponding to the
same spatial region in coarser resolution levels are also included, and neighboring cells will differ
by at most one refinement level. This choice guarantees the stability of the multilevel operations
[8]. We denote by root the basis of the tree. In two space dimensions, a parent node has four
sons, and the sons of the same parent are called brothers. A node without sons is called a leaf.
A given node has s ′ = 2 nearest neighbors in each spatial direction, needed for the computation
of the fluxes of leaves; if these nearest neighbors do not exist, we create them as virtual leaves.
Brothers are also considered nearest cousins. The leaves of the tree are the control volumes from
which we form the adaptive mesh. Here, the property of the tree being graded means that grid
refinement and coarsening is governed by that two neighboring control volumes cannot differ by
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FIG. 1. A graded tree of two resolution levels. On the fine level: leaves (gray) and virtual leaves (dashed
lines). On the coarse level: a parent node with its neighbors (dotted lines).

more than one level in the tree. This is equivalent to the concept of the “one-irregular” rule (see
e.g., [35]). We denote by � the set of all nodes of the tree and by L(�) the restriction of � to
the leaves. We apply this MR representation to the spatial part of the function u = (v, ue, w),
which corresponds to the numerical solution of the underlying problem for each time step, so we
need to update the tree structure for the proper representation of the solution during the evolution.
To this end, we apply a thresholding strategy, but always keep the graded tree structure of the
data. Once the thresholding is performed, we add to the tree a safety zone, so the new tree may
contain the adaptive mesh for the next time step. The safety zone is generated by adding one finer
level to the tree in all possible nodes without violating the graded tree data structure. This device,
first proposed by Harten [22], ensures that the graded tree adequately represents the solution in
the next time step, and its effectiveness depends strongly on the assumption of finite propagation
speed of sharp fronts.

Let us now suppose that the tree has only two levels l and l + 1. (The reasoning based on this
assumption is straightforwardly extensible to an arbitrarily larger tree.) To ensure conservativity
of the scheme, we compute only the fluxes at level l + 1 and we set the ingoing flux on the leaf at
level l equal to the sum of the outgoing fluxes on the leaves of level l + 1 sharing the same edge

F(i+1,j),l→(i,j),l = F(2i+1,2j),l+1→(2i+2,2j),l+1 + F(2i+1,2j+1),l+1→(2i+2,2j+1),l+1. (4.5)

It is known that this choice decreases the number of costly flux evaluations without loosing the
conservativity in the flux computation, and this represents a real advantage when using a graded
tree structure, see e.g., [9] for more details. This advantage is lost for a non-graded tree structure,
for which fluxes for leaves on an immediately finer level are not always available.

The data compression rate [11, 12] η := N /(2−2LN + #L(�)) measures the improvement in
data compression. Here, N is the number of control volumes in the full finest grid at level L, and
#L(�) is the number of leaves. The speed-up V between the CPU time of the numerical solution
obtained by the FV method and the CPU time of the numerical solution obtained by the MR
method is defined by V := CPU timeFV/CPU timeMR.
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D. Selection of the Threshold Parameter

Error Analysis for Conservation Laws and Strictly Parabolic Equations. Let us recall
the main results of the error analysis conducted in [8] and [9] for scalar, one-dimensional conser-
vation laws and strictly parabolic equations, respectively. These results rely on certain properties
of the respective (explicit) reference FV schemes, such as the CFL stability condition, the contrac-
tion property in L1 norm and an order of convergence. We decompose the global error between
the cell average values of the exact solution vector at the level L, denoted here by uL

ex, and those
of the MR computation with a maximal level L, denoted by uL

MR, into two errors:∥∥uL
ex − uL

MR

∥∥ ≤ ∥∥uL
ex − uL

FV

∥∥ + ∥∥uL
FV − uL

MR

∥∥. (4.6)

The first term on the right-hand side, called discretization error, refers to the FV scheme on a uni-
form grid at the finest level L. For both a scalar, one-dimensional conservation law and a strictly
parabolic equation, the order of convergence, denoted by α̃, of the corresponding reference FV
scheme is known (α̃ = 1/2 and α̃ = 2, respectively), which permits to obtain the estimate∥∥uL

ex − uL
FV

∥∥ ≤ C12−α̃L (4.7)

for a constant C1 > 0. For the second term in the right-hand side of (4.6), called perturbation
error, Cohen et al. [8] assume that the details on a level l are deleted when they are smaller than a
prescribed tolerance εl . Then they show that if the discrete time evolution operator is contractive
in the chosen norm, and if εl is given by (4.4), then the perturbation error accumulates in time
and satisfies ‖uL

FV − uL
MR‖ ≤ C2nε, where C2 > 0 and n denotes the number of time steps. At a

fixed time T = n
t , this gives

∥∥uL
FV − uL

MR

∥∥ ≤ C2
T


t
ε, C2 > 0. (4.8)

For the equations considered in [8, 9], the reference FV scheme converges under the CFL-type
condition


t ≤ h2

ph + q
, (4.9)

where the constants p and q depend on the coefficients of the equation under consideration, and
h is the meshwidth of the finest grid, i.e., h = C̃(�)2−L, where C̃ depends on the dimension and
shape of the computational domain. Consequently, if 
t denotes the largest time step possible,
then this quantity can be expressed in terms of 2−L if we consider equality in (4.9), i.e.,


t = [C̃(�)]22−2L

C̃(�)2−Lp + q
. (4.10)

It is desirable to choose the level-dependent thresholds in such a way that the total error, i.e.,
the error between the exact solution and the adaptive solution that is projected to the reference fine
mesh, remains of the same order as the discretization error. For this purpose, one has to balance
the discretization error and the perturbation error, which means that these two errors should be of
the same order as h, or equivalently L varies. To derive an expression for ε from this requirement,
we observe that the right-hand sides of (4.7) and (4.8) must be proportional, or equivalently,

ε ∝ 2−α̃L
t . (4.11)
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In light of (4.9), this yields a proportionality of the type

ε = Ĉ2−α̃L [C̃(�)]22−2L

C̃(�)2−Lp + q
, (4.12)

from which one may deduce a value of the reference tolerance εR = ε, provided that the factor
of proportionality Ĉ can be determined, for example from suitable experiments, as is done in [9].

Reference Tolerance for the Bidomain System. The previous derivation of the reference
tolerance is supported by a rigorous analysis only in those cases where the order of conver-
gence α̃ is known, and the discrete time evolution operator is contractive in the chosen norm.
These properties hold for a scalar, one-dimensional first-order conservation law and a second-
order parabolic equation studied in the references given above. For finite volume discretizations
of the bidomain and monodomain models, however, an exact rate of convergence has not yet been
derived. Nevertheless, in [10–12] we demonstrate that also for degenerate parabolic equations
and reaction-diffusion systems, an equation of the type (4.12) may be employed to determine εR.
We apply the same methodology to determine a reference tolerance for the problem at hand.
On the basis of preliminary numerical experiments (obtained in a similar fashion as in [11]), for
our examples, we obtained the approximate value α̃ = 1.09, which stands for the experimental
accuracy order of the FV reference scheme. Using this, the global CFL condition of the reference
FV scheme (3.6), the fact that h = |�|1/22−L, and the requirement that the proportionality (4.11)
should hold, we obtain the following analog of (4.10):

εR = C2−(α̃+2)L

(
|�| max

(i,j ,l)∈L(�)

(∣∣Iion,(i,j)

∣∣ + 2
∣∣Iapp,(i,j)

∣∣)

+ |�|3/222+L max
(i,j ,l)∈L(�)

(∣∣Mi,(i,j ,l)

∣∣ + ∣∣Me,(i,j ,l)

∣∣))−1

, (4.13)

which will give the so-called reference tolerance to be used for the numerical examples in
Section VI. To determine an acceptable value for the factor C, a series of computations with
different tolerances are needed in each case, prior to final computations. Essentially, we select
the largest available candidate value for C such that the same order of accuracy (same slopes
for the error computation) as that of the reference FV scheme is maintained. In [7], the authors
prove for scalar, one-dimensional nonlinear conservation laws, that the threshold error is stable
in the sense that the constant C is uniformly bounded and, in particular, does not depend on the
threshold value εR, the number of refinement levels L and the number of time steps n. In our
case, even when a rigorous proof is still missing for the system considered in the present work,
from the previous deduction and our numerical experiments (see Fig. 2 in Section VI) we see a
similar behaviour for C. As in previous works [8,10–12], here the reference tolerance εR remains
fixed for all times. It is certainly possible to recompute εR at each time step, but this will usually
mean that one has to perform additional computations to determine the value of C, and it seems
unlikely that this procedure makes the scheme more efficient.

To measure errors between a reference solution u and an approximate solution uMR obtained
using MR, we will use Lp-errors: ep = ‖un − un

MR‖p, p = 1, 2, ∞, where

e∞ = max
1≤i,j≤N

∣∣un
i,j − un

MR i,j ,L

∣∣; ep =
(

1

N 2

N∑
i,j=1

∣∣un
i,j − un

MR i,j ,L

∣∣p)1/p

, p = 1, 2.
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FIG. 2. Example 2 (bidomain model): data compression rate η (left), speed-up factor V (middle) and
L1-errors for different levels L and values of εR (right), at t = 2.0 ms.

where un
MR i,j ,L is the value on the finest level L obtained by prediction from the corresponding

leaf, and N is the number of control volumes in the finest mesh at level L in the x and y−direction,
i.e., N 2 = N .

V. TIME-STEP ACCELERATING METHODS

A. Local Time Stepping

We use a version of the locally varying time stepping strategy introduced by Müller and Stiriba
[26] and summarize here its principles. The basic idea is to enforce a local CFL condition by
using the same CFL number for all levels, and evolving all leaves on level l using the local time
step size


tl = 2L−l
t , l = L − 1, . . . , 0,

where 
t = 
tL corresponds to the time step size on the finest level L. This strategy allows to
increase the time step for the major part of the adaptive mesh without violating the CFL stability
condition. The synchronization of the time stepping for the portions of the solution lying on differ-
ent resolution levels will be automatically achieved after 2l time steps using 
tl . To additionally
save computational effort, the tree is updated only each odd intermediate time step 1, 3, . . . , 2L−1,
and furthermore, the projection and prediction operators are performed only on levels occupied
by the leaves of the current tree. For the rest of the intermediate time steps, we use the current
(old) tree structure. For the sake of synchronization and conservativity of the flux computation,
for coarse levels (levels without leaves), we use the same diffusive fluxes and sources computed
in the previous intermediate time step, because the cell averages on these levels are the same as
in the previous intermediate time step. Only for levels containing leaves, we compute fluxes in
the following way: if there is a leaf at the corresponding edge and at the same resolution level l,
we simply perform a flux computation using the brother leaves, and the virtual leaves at the same
level if necessary; and if there is a leaf at the corresponding cell edge but on a finer resolution level
l + 1 (i.e., this edge is an interface edge), the flux will be determined as in (4.5), i.e., we compute
the fluxes at a level l + 1 on the same edge, and we set the ingoing flux on the corresponding
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edge at level l equal to the sum of the outgoing fluxes on the sons cells of level l + 1 (for the
same edge). We recall that the graded tree structure ensures that two neighboring control volumes
of the adaptive mesh do not differ by more than one resolution level, which is equivalent to the
satisfaction of the one-irregular rule.

To always have at hand the computed fluxes as in (4.5), we need to perform the locally varying
time stepping recursively from fine to coarse levels.

B. A Runge-Kutta-Fehlberg Method

To upgrade the FV scheme described in Section III to at least second order so that second-order
accuracy both in space and time is effective, we use an RKF method, which, apart from providing
the necessary accuracy, also allows an adaptive control of the time step. For our models, we con-
sider a vector-valued RKF method, i.e., u = (v, ue, w) and its time- discretized form at step m,
denoted by um. For ease of discussion, we assume that the problem is written as ∂tu = A(t , u).

We use two Runge-Kutta methods of orders p = 3 and p − 1 = 2

ûm+1 = um + b̂1κ̄1 + b̂2κ̄2 + b̂3κ̄3, ǔm+1 = um + b̌1κ̄1 + b̌2κ̄2 + b̌3κ̄3,

where

κ̄1 := 
tA(tm, um), κ̄2 := 
tA(tm + c2
t , um + a21κ̄1),

κ̄3 := 
tA(tm + c3
t , um + a31κ̄1 + a32κ̄2), (5.1)

and the coefficients of the RK3(2) method are c2 = a21 = 1, c3 = 1
2 , a31 = a32 = 1

4 , b̂1 = b̂2 = 1
6 ,

b̂3 = 2
3 , b̌1 = b̌2 = 1

2 , and b̌3 = 0. These values yield an optimal pair of embedded TVD-RK
methods of orders two and three. The truncation error between the two approximations for um+1

is estimated by

δ̄old := ûm+1 − ǔm+1 =
p∑

i=1

(b̂i − b̌i)κ̄i ∼ (
t)p, δold := ‖δ̄old‖∞. (5.2)

Then we can adjust the step size to achieve a prescribed accuracy δdesired in time. The new time step
is determined by 
tnew = 
told|δdesired/δold|1/p with p = 3. To avoid excessively large time steps,
we use a limiter function S(t) := (S0 − Smin) exp(−t/
t) + Smin, where we choose S0 = 0.1
and Smin = 0.01. The new time step 
tnew is then defined as


tnew =
{


told|δdesired/δold|1/p if |(
tnew − 
told)/
told| ≤ 1
2S(t , 
told),

1
2S(t , 
told)
told + 
told otherwise.

(5.3)

Notice that 
tnew is the time step size for computing um+2. More details on the RKF scheme
and its implementation can be found in [7, 11].

VI. NUMERICAL EXAMPLES

We present three test cases showing the efficiency of the previously described methods in capturing
the dynamical evolution of electro-physiological waves for both the monodomain and bidomain
models. We are dealing with multicomponent solutions, but use a single mesh to represent the
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TABLE I. Parameters chosen in the simulations.

Example 1 Example 2 Example 3
(monodomain model) (bidomain model) (bidomain model)

Kinetics FitzHugh-Nagumo Mitchell-Schaeffer Mitchell-Schaeffer

a = 0.16875
b = 1.0
λ = −100
θ = 0.25

η1 = 0.005
η2 = 0.1
η3 = 1.5
η4 = 7.5
η5 = 0.1
vp = 100 mV

η1 = 0.005
η2 = 0.1
η3 = 1.5
η4 = 7.5
η5 = 0.1
vp = 100 mV

Model parameters
β [cm−1] 1.0 2000 2000
γ 0.01 – –
� [0, 1 cm]2 [0, 0.5 cm]2 [0, 0.5 cm]2

cm [mF/cm2] 1.0 1.0 1.0
σ l

i [Ohm−1cm−1] – 6.0 6.0
σ t

i [Ohm−1cm−1] – 0.6 0.6
σ l

e [Ohm−1cm−1] – 24.0 24.0
σ t

e [Ohm−1cm−1] – 12.0 12.0
Rm [Ohm cm2] – 2.0 × 104 2.0 × 104

MR parameters
L 10 9 9
N 262144 65536 65536
r 3 5 5
εR 1.0 × 10−3 5.0 × 10−4 2.5 × 10−3

RKF/LTS parameters
δdesired – 1.0 × 10−4 1.0 × 10−3

S0 0.1 0.1
Smin – 0.01 0.01

CFLl –
CFLl=0 = CFLt=0 = 0.5,

CFLl = 2lCFLl=0
–

The model parameters have been chosen according to [18].

vector of relevant variables. In the bidomain model, the anisotropies, mesh structures, and the size
of the problem cause the sparse linear system corresponding to (3.4) to be ill-conditioned. The
system matrix is symmetric, positive definite and sparse. The system is solved in each time step,
which is done directly by a Cholesky factorization. All the parameters used in our computations
are listed in Table I.

A. Example 1

In this example, we consider the monodomain model (2.8) with homogeneous Neumann boundary
conditions. We consider in (2.8) (1 + µ)−1Mi := diag(γ , γ ) and the initial data

v0(x, y) =
(

1 − 1

1 + exp(−50(x2 + y2)1/2 − 0.1)

)
mV, w0 = 0 mV.

After 4 ms, an instantaneous stimulus is applied in (x0, y0) = (0.5 cm, 0.5 cm) to the membrane
potential v

µ

1 + µ
Iapp :=

{
1 mV if (x − x0)

2 + (y − y0)
2 < 0.04 cm2,

0 mV otherwise.
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FIG. 3. Example 1 (monodomain model): Numerical solution for v (measured in mV) (left) and leaves of
the corresponding tree (right) at t = 1.5 ms (top) and t = 3.5 ms (bottom). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

We compute normalized errors by comparison with a reference solution obtained with a fine mesh
calculation with 10242 = 1,048,576 control volumes. The time evolution is made using a first-
order explicit Euler scheme. Plots of the numerical solution with the corresponding adaptively
refined meshes at different times are shown in Figures 3 and 4.

Table II shows that the normalized errors are controlled to be of the same order of εR. Moreover,
the MR algorithm is effective, since we have high rates of memory compression and speed-up.

B. Example 2

In Examples 2 and 3, we present numerical results for the bidomain model where the fibers form
an angle of π/4 with the x-axis.

In Example 2, the initial datum is given by a stimulus applied on the extracellular potential ue

in the center of the domain, while both v and the gating variable w are initially set to zero (see
Fig. 5). The units for v, ue and w are mV.

We show in Figures 6 and 7 a sequence of snapshots after an initial stimulus applied to the
center of the domain, corresponding to transmembrane potential v, extracellular potential ue and
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FIG. 4. Example 1 (monodomain model): Numerical solution for v (measured in mV) (left) and leaves of
the corresponding tree (right) at t = 4.5 ms (top) and t = 5.5 ms (bottom). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

adaptive mesh. The width of the fronts exhibited can be clearly seen in the one-dimensional plot
of the section y = 2.5 of the solution for ue given in Figure 8.

Table III illustrates the efficiency and accuracy of the base MR method in terms of CPU ratio V ,
the compression rate η, and normalized errors. By using MR, we obtain an average data compres-
sion rate of 17 and an increasing speed-up rate up to 26.09. Moreover, the errors in three different

TABLE II. Example 1 (monodomain model): Corresponding simulated time, CPU ratio V , compression
rate η and normalized errors for v, using an MR method.

Time t (ms) V η L1−error L2−error L∞−error

0.0 170.22 3.99 × 10−4 2.47 × 10−4 4.31 × 10−4

1.5 27.81 37.56 4.63 × 10−4 1.96 × 10−4 4.97 × 10−4

3.5 26.47 29.89 4.82 × 10−4 4.05 × 10−4 5.23 × 10−4

4.5 31.41 28.12 5.31 × 10−4 4.29 × 10−4 7.48 × 10−4

5.5 30.62 24.70 6.79 × 10−4 6.20 × 10−4 1.04 × 10−3
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FIG. 5. Example 2 (bidomain model, one stimulus): Initial condition for the extracellular potential ue (left)
and leaves of the corresponding tree data structure (right). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

norms remain of the order of εR. Here we have computed normalized errors using a reference FV
solution on a grid with 10242 = 1,048,576 control volumes.

We select this example to compare the performances of the FV and MR methods with a global
time step, the MR method with RKF adaptive global time stepping (MR-RKF), and the MR
method with local time stepping (MR-LTS). The evolution of V and η for the MR versions and
of the normalized L1 and L∞ errors for all these methods are displayed in Figure 9. These plots
indicate that with RKF and LTS, η is of the same order during the time evolution, which means
that the adaptive meshes for both methods should be roughly the same. Also, a substantial addi-
tional gain is obtained in the speed-up when comparing with an MR calculation using global time
stepping: The MR-LTS method provides an additional speed-up factor of about 2, while with the
RKF alternative we obtain an additional speed-up of about 4. This effect could be explained in
part by the lack of necessity of a synchronization procedure for the RKF computations, and the
fact that the CFL condition (3.6) is not imposed during the time evolution with the MR-RKF
method, allowing larger time steps. (Although condition (3.6) guarantees numerical stability of
the solutions, in practice this is observed to be a fairly conservative estimate, and moderately
larger time steps may be used.) We also conclude that the errors of the MR-LTS computations are
kept of the same order as the errors obtained with global time stepping, while the errors incurred
by using the MR-RKF method are larger during the whole time evolution. A potential explanation
of this observation seems to be that while the η versus t plot of Figure 9 indicates that the spatial
representation of the solution with the three MR variants seems to be roughly the same, the V

versus t plot shows that MR with RKF is significantly faster than the two other variants, i.e.,
our MR-RKF strategy allows for larger time steps, even though within the MR-RKF framework
the solution is evolved globally with the same, potentially small time step. Consequently, the
MR-RKF method produces larger errors here than the MR-LTS method, as is visible from the
L1/L∞-error versus t plots of Figure 9. It seems, however, that this phenomenon is basically due
to our adhoc choice of the RKF parameters δdesired, S0, and Smin.

Finally, we select this example for a brief discussion of the CPU time required for one iteration.
Of course, this quantity will strongly depend on the particular time instant considered. Basically, if
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FIG. 6. Example 2 (bidomain model, one stimulus): Numerical solution for v (top) and ue (middle) (in
mV), and leaves of the corresponding tree data structure (bottom) at t = 0.1 ms (left) and t = 0.5 ms (right).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

high levels of resolution are needed in a considerable part of the domain, then the most expensive
step of the algorithm (which is always the flux computation) will represent a larger percentage
of CPU time. For Example 2, at t = 5.0 ms, we have the following distribution of CPU time
consumption (we include initial and final steps, not needed for every iteration): initialization of
parameters and creation of the initial tree structure: 15%; determination of the leaves and sets
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FIG. 7. Example 2 (bidomain model, one stimulus): Numerical solution for v (top) and ue (middle) (in
mV), and leaves of the corresponding tree data structure (bottom) at t = 2.0 ms (left) and t = 3.5 ms (right).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

of virtual leaves: 10%; computation of the discretized divergence operator for all leaves: 30%;
solution of a linear system (the one which is solved via Cholesky factorization): 20%; updating
the tree structure: 15%; saving meshes, leaves and cell averages; and rest of the computations:
10%. Overall, arithmetic operations related to the actual computation of the numerical solution
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FIG. 8. Example 2 (bidomain model, one stimulus): Profile of the numerical solution for ue at y = 2.5
(left), and leaves of the corresponding tree data structure (right) at t = 5.0 ms.

consume roughly 50% of CPU time; the remainder goes into the “overhead” of the administration
of the multiresolution representation and the graded tree.

C. Example 3

We now consider an initial stimulus at the center of �, later at t = 0.2 ms, we apply another
instantaneous stimulus to the northwest corner of �, and at t = 1.0 ms we apply a third stimulus
of the same magnitude to the northeast and southwest corners. The system is evolved and we show
snapshots of the numerical solution for v and ue and the adaptive mesh. The numerical results
shown in Figures 10 and 11 clearly indicate the anisotropic orientation of the fibers.

VII. CONCLUSIONS

We address the application of a MR method for FV schemes combined with LTS and RKF adap-
tive time stepping for solving the bidomain equations. The numerical experiments illustrate that
these methods are efficient and accurate enough to simulate the electrical activity in myocardial
tissue with affordable effort. This is a real advantage in comparison with more involved methods

TABLE III. Example 2 (bidomain model, one stimulus): Corresponding simulated time, CPU ratio V ,
compression rate η, and normalized errors.

Time t (ms) V η Potential L1−error L2−error L∞−error

0.1 13.74 19.39 v 3.68 × 10−4 8.79 × 10−5 6.51 × 10−4

ue 2.01 × 10−4 6.54 × 10−5 5.22 × 10−4

0.5 21.40 17.63 v 4.06 × 10−4 9.26 × 10−5 6.83 × 10−4

ue 2.79 × 10−4 8.72 × 10−5 5.49 × 10−4

2.0 25.23 17.74 v 4.37 × 10−4 1.25 × 10−4 6.88 × 10−4

ue 3.48 × 10−4 9.44 × 10−5 6.11 × 10−4

5.0 26.09 16.35 v 5.29 × 10−4 1.94 × 10−4 7.20 × 10−4

ue 4.15 × 10−4 1.06 × 10−4 6.32 × 10−4
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FIG. 9. Example 2 (bidomain model, one stimulus): Time evolution for data compression rate η (top left),
speed-up rate V (top right), and normalized L1 errors (bottom left) and L∞ errors (bottom right) for different
methods: MR scheme with global time step, MR with locally varying time stepping and MR with RKF time
stepping.

that require large scale computations on clusters. We here contribute to the recent work done
by several groups in testing whether the combination of MR, LTS, and RKF strategies is indeed
effective for a relevant class of problems.

Concerning the orders of the schemes involved, we mention that at least in the case of hyper-
bolic equations, it is known that when using MR schemes of high order, and even if the reference
FV method is only of first order, the global scheme maintains the order of the MR reconstruction.
In the case of the bidomain equations, we experimentally see the same behavior. This motivates
our choice of the reference tolerance in such a way that the discretization and perturbation errors
are of the same order (see Section IVD), and furthermore the order of the MR reconstruction is set
to one, with r = 3 (as the order of the reference FV scheme), in Example 1. For Examples 2 and 3,
we use a higher order reconstruction (of order 2, with r = 5), and this high order is inherited by
the global method. This is why we choose an RKF method of order (3)2.

From a numerical point of view, the plateau-like structures, associated with very steep gradi-
ents, of typical solutions motivate the use of a locally refined adaptive mesh, since we require high
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FIG. 10. Example 3 (bidomain model, three stimuli): Numerical solution for v (top) and ue (middle) (in
mV), and leaves of the corresponding tree data structure (bottom) at t = 0.1 ms (left) and t = 0.5 ms (right).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

resolution near these steep gradients only. These areas of strong variation occupy a very reduced
part of the entire domain only, especially in the case of sharp fronts. Consequently, our gain will
be less significant in the presence of chaotic electrical activity or when multiple waves interact in
the considered tissue.
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FIG. 11. Example 3 (bidomain model, three stimuli): Numerical solution for transmembrane potential v
(top) and extracellular potential ue (middle) (in mV), and leaves of the corresponding tree data structure
(bottom) at t = 2.0 ms (left) and t = 5.0 ms (right). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

On the basis of our numerical examples, we conclude that using an LTS strategy, we obtain a
substantial gain in CPU time speed-up of a factor of about 2 for finer levels while the errors between
the MR-LTS solution and a reference solution are of the same order as those of the MR solution.
On the other hand, using an MR-RKF strategy, we obtain an additional speed-up factor of about
4, but at the price of larger errors. However, in assessing our findings, it is important to recognize
limitations. The high rates of compression obtained with our methods are problem-dependent and
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they may depend on the proper adjustment of parameters. We have only considered here very
simple geometries, because all computations are concentrated on adaptivity and performance.
Simulations on more complex and realistic geometries are part of possible future work.

Finally, we remark that the FV method given in Section III as well the MR framework detailed
in Section IV are both straightforwardly extensible to the 3D case.
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