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In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local per-
turbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic
bidomain model that is based on a generalization of Ohm’s law with a Cattaneo-type model for the fluxes.
Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular con-
ductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model
is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes
are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible,
but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully
nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models,
an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A sim-
ilar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model
along with a low-order finite element spatial discretization, we numerically analyze differences between the
standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show
that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect
to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations.
Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single
cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an
anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular
inductances on the virtual electrode phenomenon.
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Since its introduction by Hodgkin and Huxley 37 ,
the cable equation and its higher-dimensional
generalizations83 have been common models of
electrical impulse propagation in excitable me-
dia, including neurons and muscle. The effects
of inductances in these systems are considered
to be relatively small, and so they are neglected
in classical versions of these models. By omit-
ting such terms, the standard equations of car-
diac electrophysiology become parabolic, but, as
in all parabolic equations, local perturbations
can propagate at infinite speed. This unreal-
istic property has been addressed in models of
neurons by Lieberstein and Mahrous 53 , and hy-
perbolic models including inductances have been
proposed by Engelbrecht 21 , Lieberstein 52 , and
Engelbrecht et al. 22 . These models are also sup-
ported by the fact that neurons, skeletal mus-
cle cells, and cardiomyocytes show the typical
resonance effects due to inductances, as demon-
strated by the studies of Clapham and Defelice 15

and Koch 46 . The common conclusion that induc-
tances are negligible, which is based on the lin-
ear analyses for neurons by Scott74,75 and the nu-
merical results of Kaplan and Trujillo 41 , may not
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be valid in the complex arrangement of cardiac
tissue, where the inhomogeneities together with
highly nonlinear reactions can lead to reentrant
waves and chaotic behavior. We thus derive a hy-
perbolic model for cardiac electrophysiology, and
we compare the solutions with parabolic models
in several cases, including simple excitation pat-
terns as well as for spiral waves, atrial fibrillation,
and the virtual electrode phenomenon.

The heart is a complex organ with a highly heteroge-
neous structure. Muscle cell are embedded in an extracel-
lular compartment that includes many components, in-
cluding capillaries, connective tissue, and collagen. The
structural arrangement of the tissue is known to influ-
ence electrical impulse propagation12,78,84. The stan-
dard models of electrophysiology neglect all these com-
plexities, and the resulting equations have the unrealistic
feature that local perturbations can propagate infinitely
fast. These models are fundamentally based on the ca-
ble equation. The works of Lieberstein 52 and Lieberstein
and Mahrous 53 were the first to suggest that the cable
model for neurons should contain inductances because of
the three-dimensional nature of the axon. Several au-
thors, including Kaplan and Trujillo 41 , Scott 74 , and En-
gelbrecht 21 , have investigated this hypothesis for nerves.
Their conclusions were that inductances in neurons are
of the order of few µH and therefore are negligible, fol-
lowing a linear analysis of a one-dimensional nerve dis-
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cussed by Scott 75 . Several years later, further studies by
Clapham and Defelice 15 , DeHaan and DeFelice 20 , and
Koch 46 showed that the cell membranes of excitable tis-
sue exhibit self-inductance. In particular, Clapham and
Defelice 15 showed that the impedance of the embryonic
heart cell membrane resonates at a frequency around 1
Hz, thereby enhancing homogeneity of the voltage. To
our knowledge, there has been no experimental study
that addresses the role of inductances for reentrant waves.
In this chaotic scenario, inductances may have an impor-
tant role in the system dynamics.

Excitable tissues have a characteristic speed of trans-
mission that limits the velocity at which signals can prop-
agate. Any signal, including action potential wavefronts,
cannot propagate faster than this characteristic speed.
On the other hand, it is important to notice that propa-
gation of the action potential is related to the nonlinear
dynamics of the system, and not to the wave-like behavior
that may be induced by inductances. One way to trans-
form the cable equation into a hyperbolic equation is to
simply add an “inertial” term proportional to the persis-
tence time of the diffusive process, as done by Zemskov
et al. 87 Unfortunately, this type of model cannot be de-
rived from reasonable physical assumptions. However, as
we show here, it is possible to perform a phenomenologi-
cal derivation of a hyperbolic reaction-diffusion model by
using the Cattaneo model for the fluxes. This formula-
tion was originally introduced by Cattaneo 14 to elim-
inate the anomalies found using Fourier’s law in the
heat equation, and this model has subsequently been
used in a wide range of applications, including forest fire
models57, chemical systems29,51, thermal combustion26,
and the spread of viral infections27. Cattaneo-type mod-
els for the fluxes have been derived in several ways, rang-
ing from phenomenological and thermodynamical deriva-
tions to isotropic and anisotropic random walks with
reactions40,56. The use of Cattaneo-type fluxes in a mon-
odomain model of cardiac electrophysiology leads to two
additional terms in the equations proportional to the
characteristic relaxation time of the medium: the sec-
ond derivative in time of the potential, which is associ-
ated with “inertia”, and the time derivative of the ionic
currents. Even if the relaxation time is small, the rapid
variation of the ionic currents can impart a contribution
that may not be negligible. This is particularly relevant
near the front of the wave, where fast currents give rise
to the upstroke of the action potential.

Verification and validation remain major challenges
in computational electrophysiology. Krishnamoorthi
et al. 48 propose that the “wave speed should not be sen-
sitive to choices of numerical solution protocol, such as
mesh density, numerical integration scheme, etc.” Al-
though this is a fundamentally desirable criterion, it is
also nearly impossible to achieve in practice. What does
seem reasonable is to require that that the error in the
wave speed be “small”, but how small the error must
be taken clearly depends on the case under considera-
tion. For example, for a single heart beat, an error of

5% might represent a reasonable approximation. On the
other hand, models of cardiac fibrillation may require a
much smaller error. In fact, in this case, a 5% error in
the conduction velocity can determine whether reentrant
waves form, or when and how they break up. Although
this problem has been discussed in detail in prior work66,
the common belief within the field seems to be that spa-
tial discretizations on the order of 200 µm are sufficient
to capture the conduction velocities of the propagating
fronts. This estimate seems to hold for isotropic propaga-
tion at normal coupling strengths, but in many important
cases, the most relevant propagation of the electrical sig-
nal is transverse to the alignment of the cardiac cells,
where the conductivities are typically 8 times smaller
than in the longitudinal direction33. As shown by Quar-
teroni et al. 68 , the mesh sizes needed to resolve trans-
verse propagation are actually closer to 25 µm. Such a
small mesh spacing requires the use of large-scale simula-
tions and highly efficient codes. Further, the need to use
such high spatial resolutions challenges the fundamen-
tal idea of using a continuum model for the description
of cardiac electrophysiology, and multiscale models have
been proposed32. This paper shows that the transverse
conduction velocities are sensitive to the grid size and
to the mesh orientation for both regular and hyperbolic
versions of the model, and that the hyperbolic model has
similar mesh size requirements as the standard model.

I. PHENOMENOLOGICAL DERIVATION OF THE
HYPERBOLIC BIDOMAIN EQUATIONS

In the 1970’s, Tung 83 formulated a bidomain model
of the propagation of the action potential in cardiac
muscle. This tissue-scale model considers the my-
ocardium to be composed of continuous intracellular
and extracellular compartments, coupled via a contin-
uous cellular membrane. The bidomain equations can
be derived from a model that accounts for the tis-
sue microarchitecture33,42,60, but the bidomain model is
a fundamentally homogenized description of excitation
propagation that neglects the details of this microarchi-
tecture. Instead, the bidomain equations describe the
dynamics of a local average of the voltages in the intra-
cellular and extracellular compartments over a control
volume. One of the assumptions required by the homog-
enization procedure is that the control volume is large
compared to the scale of the cellular microarchitecture
but small compared to any other important spatial scale
of the system, such as the width of the action potential
wavefront. Although the validity of this model has been
questioned, for example by Bueno-Orovio et al. 13 , this
approach has been extremely successful, and at present,
most simulations of cardiac electrophysiology use such
models. For a detailed review of the bidomain model and
other models of electrophysiology, we refer to Griffith and
Peskin 31 . Here, we assume that the homogenization as-
sumptions hold, and we derive the hyperbolic bidomain
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Figure 1. Schematic diagram of a discretized cable including inductance effects, with isopotential circuit elements of length
∆x. The inductances in the cable give a Cattaneo-type model of the fluxes of the form (1) and (2).

model phenomenologically, starting from charge conser-
vation in quasistatic conditions.

In the hyperbolic bidomain model, as in the stan-
dard bidomain model, the extracellular and intracellu-
lar compartments are characterized by the anisotropic
conductivity tensors, respectively σe and σi. Intro-
ducing a local orthonormal basis, {f0, s0,n0}, we as-
sume the conductivity tensors can be written as σj =
σfjf0 ⊗ f0 + σsjs0 ⊗ s0 + σnjn0 ⊗n0, for j = e, i. Typical
values of the conductivity coefficients range from 10−2

mS/cm in the cross-fiber direction to 1 mS/cm in the
fiber direction (for example, Colli Franzone et al. 17 use
σf = 1.2 mS/cm, σs = 0.346 mS/cm, and σn = 0.0435
mS/cm). We model the current density fluxes using a
Cattaneo-type equation, so that

τe
∂Je

∂t
+ Je = −σe∇Ve, (1)

τi
∂J i

∂t
+ J i = −σi∇Vi, (2)

where Vi (Ve), J i (Je), and τi (τe) are the intracellu-
lar (extracellular) potential, the intracellular (extracellu-
lar) flux, and the intracellular (extracellular) relaxation
time, respectively. As shown by Jou et al. 40 , relations
(1) and (2) can be also derived from the simplest model
of ionic conduction in a dilute system. The derivation of
these evolution laws for the fluxes from the generalized
Gibbs equation28,40 shows that they are consistent with
the theory of extended irreversible thermodynamics. Al-
ternatively, equations (1) and (2) can be interpreted as
arising from a circuit model that includes inductances,
such as the one depicted in Fig. 1. The derivation of
the cable equation for the circuit model shown in Fig. 1
is performed in Appendix A. In particular, we show in
equation (A15) the relationship between inductance and
the relaxation time.

To derive the higher-dimensional model equations, we
begin by taking the divergence of the fluxes (1) and (2),

so that

τe
∂

∂t
∇ · Je +∇ · Je = −∇ · σe∇Ve, (3)

τi
∂

∂t
∇ · J i +∇ · J i = −∇ · σi∇Vi. (4)

As in similar derivations of the bidomain model, we im-
pose a quasistatic form of charge conservation72, yielding

∇ · (J i + Je) = 0. (5)

Additionally, the current leaving each compartment
needs to enter the other, so that

−∇ · J i = It = ∇ · Je, (6)

where It = χ

(
Cm

∂V

∂t
+ Iion

)
is the usual transmem-

brane current density, with χ the membrane area per unit
volume of tissue, Cm the membrane capacitance, and Iion
the transmembrane ionic current. Using equation (6) in
(3) and (4), we obtain the system of equations,

τe
∂It
∂t

+ It = −∇ · σe∇Ve, (7)

−τi
∂It
∂t
− It = −∇ · σi∇Vi. (8)

Defining the transmembrane potential V = Vi − Ve to
eliminate Vi from the equations yields

τe
∂It
∂t

+ It = −∇ · σe∇Ve, (9)

τi
∂It
∂t

+ It = ∇ · σi∇V +∇ · σi∇Ve. (10)

Expanding the transmembrane currents, we finally ob-
tain the hyperbolic bidomain model,

τeCm
∂2V

∂t2
+ Cm

∂V

∂t
+∇ ·De∇Ve =

−Iion − τe
∂Iion
∂t

, (11)

τiCm
∂2V

∂t2
+ Cm

∂V

∂t
−∇ ·Di∇V −∇ ·Di∇Ve =

−Iion − τi
∂Iion
∂t

, (12)
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where we set Di = σi/χ and De = σe/χ. Alternatively,
the model equations can be written as

τiCm
∂2V

∂t2
+ Cm

∂V

∂t
−∇ ·Di∇V −∇ ·Di∇Ve =

−Iion − τi
∂Iion
∂t

, (13)

(τe − τi)Cm
∂2V

∂t2

+∇ ·Di∇V +∇ · (De +Di)∇Ve =

(τi − τe)
∂Iion
∂t

. (14)

Notice that if τi = τe = τ , then these equations re-
duce to a hyperbolic-elliptic system that is similar to the
parabolic-elliptic form of the standard bidomain model,

τCm
∂2V

∂t2
+ Cm

∂V

∂t

−∇ ·Di∇V −∇ ·Di∇Ve = −Iion − τ
∂Iion
∂t

,(15)

∇ ·Di∇V +∇ · (De +Di)∇Ve = 0. (16)

If we further take τ = 0, we retrieve the usual bidomain
model in its parabolic-elliptic form,

Cm
∂V

∂t
−∇ ·Di∇V −∇ ·Di∇Ve = −Iion, (17)

∇ ·Di∇V +∇ · (De +Di)∇Ve = 0. (18)

II. REDUCTION TO THE HYPERBOLIC MONODOMAIN

The hyperbolic bidomain model can be simplified by
assuming the extracellular and intracellular compart-
ments have the same anisotropy ratios, so that D =
De = λDi. If we make this assumption, we obtain from
(14)

−∇ ·D∇Ve =
1

λ+ 1
∇ ·D∇V

+
λ

λ+ 1
(τe − τi)Cm

∂2V

∂t2
− λ

λ+ 1
(τi − τe)

∂Iion
∂t

, (19)

Substituting in (13), we find[
τi +

λ

λ+ 1
(τe − τi)

]
Cm

∂2V

∂t2

+Cm
∂V

∂t
− λ

λ+ 1
∇ ·D∇V = −Iion

−
[
τi +

λ

λ+ 1
(τe − τi)

]
∂Iion
∂t

. (20)

Defining τ = τi + λ (τe − τi) / (λ+ 1), we obtain the hy-
perbolic monodomain model,

τCm
∂2V

∂t2
+ Cm

∂V

∂t
−∇ ·D∇V = −Iion − τ

∂Iion
∂t

, (21)

Cm σf σs = σn χ k b µ1 µ2 ε
1 1 0.125 1 8 0.1 0.12 0.3 0.01

Table I. Parameters for the Aliev-Panfilov ionic model (26).

where here we have absorbed the term λ/ (λ+ 1) into
D. The relaxation time τ of the monodomain model is
always positive, and it is zero only if both τi and τe are
zero. In fact, if τe = 0, then τ = τi/ (λ+ 1), and if
τi = 0, then τ = λτe/ (λ+ 1). However, if τi = τe, then
τ = τi = τe.

Introducing a new variable Q =
∂V

∂t
, we transform

the hyperbolic monodomain equations into the first-order
system,

∂V

∂t
= Q, (22)

τCm
∂Q

∂t
+ CmQ−∇ ·D∇V = −Iion − τ

∂Iion
∂t

. (23)

Equations (22)–(23) are usually supplemented with insu-
lation boundary conditions, such that

∇V ·N = 0 (24)

on the boundary of the domain, where the vector N is
the normal to the boundary.

Following Stan et al. 80 , we say that a solution of the
hyperbolic monodomain equations has a finite propaga-
tion speed if, given compactly supported initial condi-
tions for V at time t = 0, V (·, t) is also compactly sup-
ported for any t > 0. The compact support is taken with
respect to the resting potential V0. By contrast, a so-
lution has infinite propagation speed if the initial data
are compactly supported, but for any t > 0 and any
R > 0, the set MR,t = {x : ||x||2 ≥ R, V (x, t) > V0} has
positive measure. For any relaxation time τ 6= 0, (21)
is hyperbolic, and it thereby has the property of finite
propagation speed. Setting τ = 0, the equations become
parabolic and have solutions with infinite propagation
speeds. Specifically, in the standard parabolic model, lo-
cal perturbations in V , even those that do not generate
a propagating front, will travel at infinite speed.

III. IONIC MODELS

Transmembrane ionic fluxes through ion channels,
pumps, and exchangers are responsible for the cardiac ac-
tion potential. The action potential is initiated by a fast
inward sodium current that depolarizes the cellular mem-
brane. After depolarization phase, slow inward currents
(primarily calcium currents) and slow outward currents
(primarily potassium currents) approximately balance
each other, prolonging the action potential and creating
a plateau phase. Ultimately, the slow outward currents
bring the transmembrane potential difference back to its
resting value of approximately −80 mV. The bidomain
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Cm σf σs = σn χ τ+v τ−v1 τ−v2 τ+w τ−w τd τ0 τr τsi k V si
c Vc Vv

parameter set 3 1 0.1 0.0125 1 3.33 19.6 1250 870 41 0.25 12.5 33.33 29.0 10 0.85 0.13 0.04
parameter set 4 1 0.1 0.0125 1 3.33 15.6 5 350 80 0.407 9.0 34.0 26.5 15 0.45 0.15 0.04
parameter set 5 1 0.1 0.0125 1 3.33 12.0 2 1000 100 0.362 5.0 33.33 29.0 15 0.7 0.13 0.04
parameter set 6 1 0.1 0.0125 1 3.33 9.0 8 250 60 0.395 9.0 33.33 29.0 15 0.5 0.13 0.04

Table II. Sets of parameters for the Fenton-Karma ionic model (27)–(31) as stated by Fenton et al. 24 .

and monodomain models must be completed by specify-
ing the form of Iion, which accounts for these transmem-
brane currents. The states of the transmembrane ion
channels are described by a collection of variables, w, as-
sociated with the ionic model, so that Iion = Iion(V,w).
Typically, the state variable dynamics are determined by
a spatially decoupled system of nonlinear ordinary differ-
ential equations,

∂w

∂t
= g (V,w) , (25)

where the form of g depends on the details of the partic-
ular ionic model. We consider the simplified piecewise-
linear model of McKean 55 , the two-variable model of
Aliev and Panfilov 3 , the three-variable model of Fenton
and Karma 25 , and the biophysically detailed models of
ten Tusscher and Panfilov 81 for the ventricles (20 vari-
ables) and of Grandi et al. 30 for the atria (57 variables).

In the two-variable model of Aliev and Panfilov 3 , w =
{r}, with

∂r

∂t
=

(
ε+

µ1r

µ2 + V

)
(−r − kV (V − b− 1)) , (26)

and the ionic current is Iion = kV (V − α) (V − 1) + rV .
The parameters used in this case are shown in Table I. In
the three-variable model of Fenton and Karma 25 , w =
{v, w}, with

∂v

∂t
=

1

τ−v (V )
(1− p) (1− v)− 1

τ+
v
pv, (27)

∂w

∂t
=

1

τ−w
(1− p) (1− w)− 1

τ+
w
pw, (28)

where τ−v (V ) = (1− q) τ−v1 + qτ−v2, p = H (V − Vc), q =
H (V − Vv), and H (·) is the Heaviside function. The
total ionic current is the sum of three currents, Iion =
−Ifi (V, v)− Iso (V )− Isi (V,w), with

Ifi (V, v) = − 1

τd
vp (V − Vc) (1− V ) , (29)

Iso (V ) =
1

τ0
V (1− p) +

1

τr
p, (30)

Isi (V,w) = − 1

2τsi
w
(
1 + tanh

(
k
(
V − V si

c
)))

. (31)

The sets of parameters used in this paper for this model
are shown in Table II. We refer to the original papers30,81
for the statements of the equations and parameters of the
biophysically detailed ionic models.

IV. NUMERICAL RESULTS

The hyperbolic monodomain and bidomain models are
discretized using a low-order finite element scheme de-
scribed in Appendix C that is implemented in the open-
source parallel C++ code BeatIt (available at http:
//github.com/rossisimone/beatit), which is based on
the libMesh finite element library44 and relies on lin-
ear solvers provided by PETSc6–8. All the code used
for the following tests is contained in the online reposi-
tory, and all tests can be replicated directly from those
codes. The only exception is the atrial fibrillation test,
which uses a patient-specific mesh that is not contained
in the repository. One- and two-dimensional simulations
were run using a Linux workstation with two Intel Xeon
E5-2650 v3 processors (up to 40 threads) and 32 GB of
memory. Three-dimensional simulations were run on the
KillDevil Linux cluster at the University of North Car-
olina at Chapel Hill. We used Matlab54 to visualize the
one-dimensional results and Paraview2 for the two- and
three-dimensional simulations.

A. Comparison with an exact solution

We start by considering a simple piecewise-linear
bistable model for the ionic currents, with

Iion (V ) = kV

− k [V2H(V − V1) + V0 (1−H(V − V1))] , (32)

where V0 is the resting potential, V1 is the threshold po-
tential, V2 is the depolarization potential, and H (·) is
the Heaviside function. This model (32) reduces to the
piecewise-linear model of McKean 55 after a simple di-
mensional analysis, after which the nondimensional ionic
currents take the form

Îion

(
V̂
)

= V̂ −H
(
V̂ − α

)
. (33)

The nondimensional potential V̂ is related to the dimen-
sional potential by V = (V2 − V0) V̂ + V0. In this model,
α = (V1 − V0) / (V2 − V0) describes the excitability of the
tissue. As we show in Appendix B, using model (33),
it is possible to find the analytic solution of a propagat-
ing front for the nondimensional hyperbolic monodomain
problem. In particular, we find that the front propaga-
tion speed in an unbounded domain is

c =
(1− 2α)√

µ+ (α− α2) (µ− 1)
2
<

√
1

µ
= cs. (34)

http://github.com/rossisimone/beatit
http://github.com/rossisimone/beatit
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Figure 2. Conduction velocities for the piecewise-linear reaction model (33). Left) comparison between the numerical and the
exact wave speed (34). The black curve represent the characteristic propagation speed of the system, i.e. the limit speed at
which local perturbations can travel. If the relaxation time τ = 0, then local perturbations can propagate at infinite speed.
Center) Propagating front for different relaxation times at t = 10. Right) time derivative of the nondimensional potential for
different relaxation times at t = 10. All simulations were run using a mesh size h = 0.03125 and a time step size ∆t = 0.003653.

The speed cs =
√

1/µ =
√
Cm/τk represents the maxi-

mum speed at which a perturbation can travel in the sys-
tem. When the relaxation time τ goes to zero, the local
perturbations can travel at infinite speed. The parame-
ter µ = τk/Cm is a nondimensional number representing
the ratio between the relaxation time and the character-
istic time of the reactions and characterizing the effects
of the inductances in the system (see Appendix B). The
corresponding dimensional speed is

v =

√
σk

χC2
m

(1− 2α)√
µ+ (α− α2) (µ− 1)

2
<

√
σ

χτCm
. (35)

As a verification test, we consider the spatial interval
Ω = [0, 50]. An initial stimulus of amplitude 1 is ap-
plied at x ∈ [24.5, 25.5] for the interval t ∈ [0.03, 1.03].
The system of equations is solved using a mesh size
h = 0.03125 and a time step size ∆t = 0.003653. We
show the nondimensional solutions V̂ and Q̂ at t = 10
in Fig. 2(center and right). We register the activation
time at a particular spatial location whenever V̂ crosses
a threshold of 0.9. The conduction velocities are mea-
sured by picking the distance between two points x1 and
x2 ∈ Ω and dividing it by the time interval between the
activation times at these two locations. Because (34)
is obtained by assuming that Ω is the entire real line,
we need to measure conduction velocities far from the
boundaries. For this reason, we choose x1 = 30 and
x2 = 32. The comparison between the exact conduction
velocities defined by equation (34) and those obtained by
the simulations is shown in Fig. 2(left).

We also examine the effect of the relaxation time on
the conduction velocities for three values of the excitabil-
ity parameter, α ∈ {0.1, 0.2, 0.3}. With this simple ionic
model, the larger the relaxation time, the slower the wave
speed. The limit speed cs at which local perturbations
can travel is also shown in Fig. 2(left). Thus, in this
piecewise-linear model, the effect of inductances is to slow
down the propagation of the front. By contrast, the fol-

lowing tests will show that with fully nonlinear models,
inductances can also enhance propagation.

Using the analytic solution derived in Appendix B, we
also perform a space-time convergence study. We con-
sider the spatial interval Ω = [−25, 25] and set the initial
conditions according to (B9) and (B10), assuming the
front at time t = 0 is at x = 0 and α = 0.1. The system is
discretized in time using implicit-explicit (IMEX) Runge-
Kutta (RK) time integrators5,10. In particular, we use
the forward/backward Euler schemes for the first-order
time integrator and the Heun/Crank-Nicholson schemes
for the second-order time integrators. For more details
on the time integrator, see Appendix C. To ensure the
validity of the solutions (B9) and (B10) in the consid-
ered bounded domain, we run the simulation from t = 0
to t = 1, so that the front is still far from the boundaries.
The time step size ∆t is taken to be linearly proportional
to the mesh size h, with a value of ∆t = 0.05 in the coars-
est cases. The time step size was chosen to guarantee a
large enough number of time iterations and while satisfy-
ing the CFL condition (see Appendix C). Fig. 3 shows the
errors for the potential V and its time derivative Q using
the first-order (Fig. 3 left) and second-order (Fig. 3 cen-
ter) time stepping schemes. Because the ionic currents
and their derivative in this case are not smooth func-
tions, we do not expect to obtain full second-order con-
vergence. On the other hand, whereas the convergence
rates for the parabolic monodomain model are always
first order in both V and Q, the hyperbolic monodomain
model with the second-order time stepping scheme con-
verges quadratically in V and linearly only in Q. The
simulations were run with and without regularization of
the Heaviside and Dirac-δ functions. The errors reported
in Fig. 3 correspond to the more accurate simulations.
We show in Fig. 3(right) that the slow convergence re-
sults from the non-smoothness of the ionic currents: we
compare the convergence of the piecewise-linear reaction
model with the monodomain model with the cubic reac-



7

10
-3

10
-2

10
-1

10
0

h

10
-4

10
-2

10
0

||V
-V

e
x

a
c
t|| L

2

 = 0.6 ms

 = 0.4 ms

 = 0.2 ms

 = 0 ms

h

10
-3

10
-2

10
-1

10
0

h

10
-6

10
-4

10
-2

10
0

||V
-V

e
x

a
c
t|| L

2

 = 0.6 ms

 = 0.4 ms

 = 0.2 ms

 = 0 ms

h

h
2

10
-3

10
-2

10
-1

10
0

h

10
-5

10
0

||V
-V

ex
ac

t|| L
2

piecewise linear = 0 ms

cubic = 0 ms

h

h
2

10
-3

10
-2

10
-1

10
0

h

10
-3

10
-2

10
-1

10
0

||Q
-Q

e
x

a
c
t|| L

2

 = 0.6 ms

 = 0.4 ms

 = 0.2 ms

 = 0 ms

h

10
-3

10
-2

10
-1

10
0

h

10
-4

10
-2

10
0

||Q
-Q

e
x

a
c
t|| L

2

 = 0.6 ms

 = 0.4 ms

 = 0.2 ms

 = 0 ms

h

10
-3

10
-2

10
-1

10
0

h

10
-10

10
-5

10
0

10
5

||Q
-Q

ex
ac

t|| L
2

piecewise linear = 0 ms

cubic = 0 ms

h

h
2

Figure 3. Convergence study for the piecewise-linear reaction model (33) for the variables V and Q. Left) comparison of the rate
of convergence for the hyperbolic and parabolic monodomain models using a first-order implicit-explicit (IMEX) Runge-Kutta
(RK) time integrator. Center) comparison of the rate of convergence for the hyperbolic and parabolic monodomain models using
a second-order IMEX-RK time integrator. Right) comparison of the rate of convergence between the piecewise-linear reaction
model and a cubic reaction model for the parabolic monodomain model using a second-order IMEX-RK time integrator.

tion term

Îion(V̂ ) = V̂ (V̂ − 1)(V̂ − α).

The exact solution for the cubic reaction in the parabolic
monodomain has been determined previously42,66. We
are not aware of the existence of an analytical solution
for the hyperbolic monodomain with a cubic reaction
term. We show in Fig. 3 that the cubic model con-
verges quadratically (using a second-order time stepping
scheme) whereas the piecewise-linear model converges
linearly. To conclude, at least in these tests, the dis-
cretization errors of the parabolic mondomain model are
larger than the discretization errors in the hyperbolic
monodomain model, indicating a better accuracy for the
hyperbolic model.

B. Effect of the relaxation time on the conduction velocity
for different ionic models

We now analyze how the inductance terms influence
the conduction velocities of cardiac action potentials. We
consider four ionic models: the two-variable model of
Aliev and Panfilov 3 , the three-variable model of Fenton
and Karma 25 , the ventricular M-cell model of ten Tuss-
cher and Panfilov 81 (20 variables), and the atrial model
of Grandi et al. 30 (57 variables). For the two-variable
Aliev-Panfilov model, we use the parameters of Nash and

Panfilov 59 , as reported in Table I. We consider two val-
ues for the excitability parameter, α = 0.1 and α = 0.2.
For the three-variable Fenton-Karma model, we consider
parameters sets 3, 4, 5, and 6 given by Fenton et al. 24
and reported in Table II. For the biophysically detailed
ionic model of Ten tusscher et al. and Grandi et al., our
simulations used the C++ implementations of the mod-
els provided by the authors, using Cm = 1 µF/cm2 for
the membrane capacitance in both models.

For all cases, the domain is the interval Ω = [0, 5] cm.
The simulations use a mesh size h = 31.25 µm and a time
step size ∆t = 0.003653 ms. An initial stimulus is applied
at the center of the domain, x ∈ [2.45, 2.55] cm, during
the time interval t ∈ [0.03, 1.03] ms. The conduction
velocities are measured, as in the previous test case, by
dividing the distance between two points x1 and x2 by the
time interval between the activation times at these two
selected locations. The computed conduction velocities
of different ionic models are shown in Fig. 4 for relaxation
times in the range [0, 1] ms. Contrary to the results for
the piecewise-linear ionic model, in this case, small and
moderate values of the relaxation time act to enhance
propagation.

We also compare the computational time required by
the parabolic and hyperbolic monodomain models in two
and three spatial dimensions. Table III shows the number
of iterations taken by the linear solvers (conjugate gra-
dient preconditioned by successive over-relaxation) along
with the relative computational times of the hyperbolic
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Figure 4. Dependence of the conduction velocity on the relaxation time for different ionic models: left) Aliev-Panfilov; center)
Fenton-Karma; right) ventricular Ten tusscher ’06 model and atrial Grandi ’11 model. An external stimulus is applied at the
center of a one-dimensional domain and the activation times are recorded. For all models we used a time step size ∆t = 0.003125
ms and a mesh size h = 31.25 µm over a domain of length 5 cm. Unlike the linear case, the nonlinearities of the time derivative
of the ionic currents increase the wavefront speed for small and moderate values of the relaxation time τ .

monodomain model (with respect to the parabolic model)
for the reaction step and the diffusion step. In the reac-
tion step, we solve the ionic model, and we also evaluate
the ionic currents and their time derivatives. For this rea-
son, we expect this step to take longer in the hyperbolic
monodomain model. In fact, with simple ionic models,
the amount of work required to evaluate the ionic cur-
rents and their time derivatives is almost doubled. This is
natural because, for such simple models, the time deriva-
tive of the ionic currents do not use any quantities al-
ready computed in the evaluation of the ionic currents.
By contrast, for biophysically detailed models, most of
the computation is needed for the evaluation of the ionic
currents, and many quantities can be reused for the eval-
uation of their time derivatives. This is reflected in Table
III by a small increase (less than 7%) in the computa-
tional time of the hyperbolic model for the Ten Tusscher
’06 model. Unexpectedly, the solution of the linear sys-
tem take fewer iterations in the hyperbolic monodomain
model. This is reflected by a speedup of about 20% of
the computational time in the diffusion step, where we
assembled the right hand side, solve the linear system,
and update the variables Q and V .

C. Conduction velocity anisotropy

This section analyzes whether inductances affect the
anisotropy in conduction velocity. We define the
anisotropy ratio as the ratio between the conduction
velocities in the transverse and longitudinal directions,
and to obtain a simple estimate for this ratio, we con-
sider plane-wave solutions propagating in these direc-
tions. We use the Fenton-Karma model with parame-
ter set 3 and consider four values of the conductivity:
σ1 = 0.1 mS/mm, σ2 = 0.05 mS/mm, σ3 = 0.025
mS/mm, and σ4 = 0.0125 mS/mm. Evaluating the wave
speeds v1, v2, v3, and v4 corresponding to the conduc-
tivities σ1, σ2, σ3, and σ4, respectively, we show how the

anisotropy ratio changes with respect to the relaxation
time for several conductivity ratios. In fact, as shown
in Table II, σ1 and σ4 are the typical longitudinal and
transverse conductivities for this model. Considering the
interval Ω = [0, 5] cm, we use a mesh size h = 25 µm and
a time step size ∆t = 0.0025 ms. Fig. 5(left) shows how
the velocities at different σ compare to each other. To
make the comparison more clear, we normalize the results
with respect to the conduction velocities of the parabolic
monodomain model, i.e., corresponding to τ = 0 ms. The
results shown in Fig. 5(left) should be understood as the
percentage difference of the wave speed with respect to
the parabolic case. It is clear that the curves are similar
for the conductivities considered. On the other hand, the
relaxation time at which the conduction velocity of the
hyperbolic monodomain model matches the conduction
velocity of the parabolic monodomain model decreases
with smaller conductivities. Fig. 5(right) shows the re-
laxation time needed to maintain the same conduction
velocity as in the parabolic monodomain model. In par-
ticular, for σ4, we find that the relaxation time needed in
the hyperbolic monodomain model to yield the same ve-
locities as in the parabolic monodomain models is about
τ = 0.38 ms. The differences in the velocities computed
with τ = 0.4 ms and τ = 0.38 ms are smaller than 2%.
This difference is typically smaller than the numerical er-
ror in the simulations. For this reason, in the following
tests, our comparison will only use the value τ = 0.4
ms. Fig. 5(center) shows how the anisotropy ratio is
influenced by the relaxation time. Although the ratio
is not constant, the variation over the relaxation times
considered never exceeds 5%. For the conductivity ra-
tios 8:1 (σ1:σ4), 4:1 (σ1:σ3), and 2:1 (σ1:σ2), we find that
the ratios between the conduction velocities in the trans-
verse and in the longitudinal directions are approximately
1/
√

8 (v4/v1), 1/2 (v3/v1), and 1/
√

2 (v2/v1). This be-
havior is expected because the conduction velocity de-
pends on the square root of the conductivity. We con-
clude that the effect of the inductances on the anisotropy
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2D Max CG Iterations Reaction Step Cost Diffusion Step Cost Overall
100×100 τ = 0 ms τ = 0.4 ms τ = 0.4 ms/τ = 0 ms τ = 0.4 ms/τ = 0 ms τ = 0.4 ms/τ = 0 ms

AP 8 3 -54% 23% -3%
FK 22 15 -62% 22% -2%
TP06 11 5 -7% 15% -3%

3D Max CG Iterations Reaction Step Cost Diffusion Step Cost Overall
10×10×10 τ = 0 ms τ = 0.4 ms τ = 0.4 ms/τ = 0 τ = 0.4 ms/τ = 0 ms τ = 0.4 ms/τ = 0 ms

AP 43 16 -73% 48% 30%
FK 43 16 -49% 47% 25%
TP06 43 16 -6% 46% 15%

Table III. Comparison of the compuational cost for the parabolic (τ = 0 ms) and hyperbolic (τ = 0.4 ms) monodomain models
for two- and three-dimensional problems in a serial computation. Negative values indicate relative slowdown of the hyperbolic
model compared to the parabolic model, whereas positive values represent relative speedup. In the reaction step, we measure
the time needed to solve the ionic model and to evaluate the ionic currents and their time derivatives nodewise for 1000 time
steps. In the diffusion step, we measure the time needed to form the right hand side, solve the linear system and update the
solutions, for 1000 time steps. The hyperbolic monodomain model can be solved using fewer linear solver iterations. This is
reflected by the fact that the diffusion step is about 20% faster than in the parabolic monodomain model. On the other hand,
the solution of the hyperbolic monodomain model requires the additional evaluation of the derivative of the ionic currents. For
this reason, the reaction step is actually slower than in the parabolic monodomain model. Notice, however, the difference in
the computational cost between the hyperbolic and parabolic reaction steps is smaller for the more complex ionic model. AP:
Aliev-Panfilov ionic model; FK: Fenton-Karma ionic model; TP06: TenTusscher et al. ’06 ionic model.
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Figure 5. Variation of the conduction velocity with respect to the conducitivity coefficients using the Fenton-Karma model and
parameter set 3 in Table II. Left) wave speed for different conductivities, normalized with respect to the parabolic conduction
velocity. Center) Ratio between the conduction velocities as a function of the relaxation time. The variations are within 5%
of the mean. Right) Relaxation time at which the hyperbolic conduction velocity matches the parabolic conduction velocity.
Although the relaxation times at which we find the same wave speed for the parabolic and hyperbolic monodomain models are
different for different conductivities, the error in the conduction velocity we commit considering the fixed value τ = 0.4 ms is
smaller than 2% and therefore typically smaller than the spatial error.

ratio is negligible.

D. Discretization error: a simple two-dimensional benchmark

It is important to be aware of the limitations of the
numerical method used in the simulations. For example,
spiral break up can occur easily if the wavefront is not ac-
curately captured. In fact, numerical error can introduce
spatial inhomogeneities that lead both to spiral wave for-
mation and also to spiral break up. This numerical arti-
fact disappears under grid refinement, and on sufficiently
fine computational meshes, spiral wave break up results
only from physical effects, such as conduction block.

To examine the role of spatial discretization on the

system dynamics, we consider a square slab of tissue,
Ω = [0, 12] × [0, 12] cm, and we use the Fenton-Karma
model with the parameter set 3. Reentry is induced by
an S1-S2 protocol. First, an external stimulus of unitary
magnitude is applied in the left bottom corner, Ωstim =
{x ∈ Ω : ‖x‖1 ≤ 1} at t = 0 ms. A second stimulus with
the same amplitude and in the same region is applied
after 300 ms. We consider two cases: 1) the fiber field is
aligned with some of the mesh edges; and 2) the fiber field
is not aligned with any edge in the mesh. Figs. 6(top) and
7(top) demonstrate that this can be easily achieved by
fixing the fiber field and rotating the mesh. Those figures
show the fiber field in green on top of the computational
grid. The red region at the bottom left of the domain is
the stimulus region, Ωstim. In the first test (Fig. 6), the
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τ = 0 ms

h ≈ 234µm

h ≈ 117µm

τ = 0.4 ms

h ≈ 234µm

h ≈ 117µm

Figure 6. Effect of fiber direction and mesh orientation on
propagation. Top) fibers field (green), mesh orientation, and
stimulus region (red); Left) Monodomain model; Right) Hy-
perbolic monodomain model. Domain size is 12x12 cm and
the solution is evaluated at time t = 450 ms.

fibers are set to be orthogonal to the propagating front.
Using 512 elements per side, which is equivalent to a
mesh size h of approximately 234 µm (163 µm in the
direction of wave propagation), the solutions obtained
on the two meshes differ substantially. Large differences
can also be found when we use 1024 elements per side,
which is equivalent to a mesh size h of approximately 117
µm (82.5 µm in the direction of wave propagation). It
is clear from Fig. 6 that whenever the fiber field is not
aligned with the mesh, the conduction velocity is largely
overestimated. The second test is similar to the first one,
but the fibers are now rotated by 90◦; see Fig. 7. It is
clear that the error on the conduction velocity in the fiber
direction is much smaller than the error in the transverse
direction. In fact, the solutions for h ≈ 234 µm and
h ≈ 117 µm show the greatest differences for transverse
propagation.

Although similar results have already been reported in
prior work49,61,66, it is nonetheless generally believed that
a mesh size of the order of 200 µm is usually sufficient for
cardiac computational electrophysiology23,48. This belief
is supported by numerical simulations using a mesh size
of 200 µm that show that the error on the wave speed in
the fiber direction is less than 5%. On the other hand,
the most interesting dynamics of the propagating front
often will occur perpendicular to the fiber direction. For
example, during the normal electrical activation of the
ventricles, the signal spreads from the endocardium to
the epicardium traveling across the ventricular wall, per-
pendicular to the fibers. The reduced conductivity in the
transversal direction, usually taken to be about 8 times
smaller, requires a finer resolution of the grid. As noted
by Quarteroni et al. 68 , the required grid resolution to

τ = 0 ms

h ≈ 234µm

h ≈ 117µm

τ = 0.4 ms

h ≈ 234µm

h ≈ 117µm

Figure 7. Effect of fiber direction and mesh orientation on
propagation. Top) fibers field (green), mesh orientation, and
stimulus region (red); Left) Monodomain model; Right) Hy-
perbolic monodomain model. Domain size is 12x12 cm and
the solution is evaluated at time t = 360 ms.

capture the transverse conduction velocity with an error
smaller than 5% is about 25 µm. These results strongly
indicate that to capture correctly the wave speeds, the
mesh discretization needs to be about the size of a single
cardiomyocyte, as also discussed by Hand and Griffith 32 .

E. Effect of the relaxation time on spiral break up

Our next tests explore the effect of relaxation time on
spiral wave break up. We consider a square slab of tissue,
Ω = [0, 12]× [0, 12] cm. An initial stimulus is applied in
the region y < 0.5 cm for 1 ms at t = 0 ms to generate
a wave propagating in the y-axis. A second stimulus is
then applied in the region {x < 6 cm ∧ y < 7 cm} for 1
ms at time t = 320 ms to initiate a spiral wave. Spiral
break up is easily obtained using the parameter set 3 in
Table II, because of the steep action potential duration
(APD) restitution curve. In this case, the back of the
wave forms scallops, and when the turning spiral tries to
invade these regions, it encounters refractory tissue and
breaks.

Fig. 8 shows the formation of the spiral wave in the
case of isotropy. With τ = 0.4 ms and the Fenton-Karma
model with parameter set 3, the conduction velocity of
the hyperbolic monodomain model is very close to the
conduction velocity of the parabolic monodomain model.
In fact, the evolution of the spiral waves in the two cases
is very similar.

Fig. 9 compares spiral break up obtained using the
monodomain model and the hyperbolic monodomain
model in the anisotropic case, with fibers aligned with
the y-axis. The relaxation time for the hyperbolic mon-
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τ = 0 ms τ = 0.4 ms
V Q V Q

Time: 400 ms

Time: 500 ms

Time: 600 ms

Time: 700 ms

Time: 800 ms

Figure 8. Comparison of the evolution of a spiral wave for
the isotropic monodomain model (left) and the isotropic hy-
perbolic monodomain model (right) using the Fenton-Karma
model with parameter set 3. The wavefronts (red) and the
tails (light blue) represented by the variable Q are shown
next to the transmembrane potential V . The evolution of
the spiral wave is similar in the two cases. The domain is
[0, 12] × [0, 12] cm, the mesh size is h ≈ 100 µm, and the
time step size ∆t = 0.125 ms. The fibers are aligned with the
y-axis.

odomain model is chosen to be τ = 0.4 ms. As explained
in Sec. IVC, although the conduction velocities in the
transverse direction are different in the hyperbolic and
parabolic models for τ = 0.4 ms, the difference is smaller
than 2%. This difference is smaller than the spatial error
and, for this reason, we consider the two cases to yield
essentially the same anisotropy ratio. It is clearly shown
in Fig. 9 that in the initial phase (up to t = 600 ms), the
spirals are almost identical. After the first rotation, how-
ever, the spiral wave starts to break, and the relaxation
time of the hyperbolic monodomain model shows quan-
titative differences in the form of the break up. Fig. 9
shows the dynamics of Q = ∂tV . This variable can be
used to define the fronts (red) and the tails (light blue)
of the waves.

τ = 0 ms τ = 0.4 ms
V Q V Q

Time: 600 ms

Time: 800 ms

Time: 1000 ms

Time: 1250 ms

Time: 1500 ms

Figure 9. Comparison of the evolution of a spiral break up
for the monodomain model (left) and the hyperbolic mon-
odomain model (right) using the Fenton-Karma model with
parameter set 3. The wavefronts (red) and the tails (light
blue) represented by the variable Q are shown next to the
transmembrane potential V . Although the initiation sequence
is the same and the spiral wave at t = 600 ms are similar,
the evolution of the break up is different. The domain is
[0, 12] × [0, 12] cm, the mesh size is h ≈ 200 µm in the fiber
direction, and h ≈ 50 µm in the transverse direction, and the
time step is ∆t = 0.125 ms. The fibers are aligned with the
y-axis.

F. Atrial fibrillation

As a more complex application of the model, we use
the hyperbolic monodomain model to simulate atrial fib-
rillation. Although a rigorous study of atrial fibrillation
requires the use of a bidomain model, similar to the one
proposed in equations (11) and (12), the results given by
the monodomain model can represent a reasonable ap-
proximation to the dynamics of the full bidomain model.
For instance, Potse et al. 67 provide a comparison of the
dynamics of the bidomain and monodomain models.

The anatomical geometry used in these simulations
was based on the human heart model constructed
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Rule-based fiber field τ = 0 [ms] τ = 0.4 [ms]

Figure 10. Left) Reconstructed fiber field of left atria based on the data in . Right) Activation times for the monodomain and
for the hyperbolic monodomain model with τ = 0.4 ms using the Fenton-Karma model with parameter set 3.

τ = 0 [ms]

Time: 190 ms 420 ms 980 ms 1980 ms

τ = 0.4 [ms]

Time: 190 ms 420 ms 980 ms 1980 ms

Figure 11. Comparison of spiral break up in the left atria using a fast pacing S1-S2 stimulation protocol using the Fenton-
Karma model with parameter set 3. On the left we show the solution of the monodomain model, relaxation time τ = 0 ms,
and on the right we show the solution of the hyperbolic monodomain model, relaxation time τ = 0.4 ms. Using the hyperbolic
monodomain model spiral waves form after second stimulus. The parabolic monodomain model requires 3 stimuli before spiral
waves are formed. The top row show the solution for the transmembrane potential, and the bottom row shows the wavefronts
(red) and the tails (light blue) represented by the variable Q.

by Segars et al. 76 using a 4D extended cardiac-torso
(XCAT) phantom. From their data, we extracted and
reconstructed a geometrical representation of the left
atrium using SOLIDWORKS. We then used Trelis to
generate a simplex mesh of the left atrium consisting of
approximately 3.5 million elements. Our simulations use
the Fenton-Karma model with parameter set 3.

A major challenge in modeling the atria is the defi-
nition of the fiber field. In work spanning the past 100
years, several studies have tried to characterize the fiber
architecture of the atria62,63,73, but the structure of the
muscle in the atria is so complex (as can be seen from the
diagrams by Thomas 82) that developing a set of math-
ematical rules to reproduce a realistic fiber field is chal-
lenging. Our strategy for modeling the fiber field is to
use the gradient of a harmonic function that satisfies pre-
scribed boundary conditions. We divided the left atrium
into several regions, and solved three Poisson problems:
one for the left atrial appendage; one for the Bachmann’s
bundle; and one for the remaining parts of the left atrium.
In particular, for the left atrial appendage, we used a
method similar to the one proposed by Rossi et al. 69 In

the other regions, similar to work by Patelli et al. 64 and
Krueger et al. 50 , we used the normalized gradient of the
solution of the Poisson problem to reconstruct a fiber
field similar to the one shown in the studies by Ho et
al.35,36. The approximate fiber field of the left atrium re-
constructed using this strategy is shown in Fig. 10, where
the colors represent the magnitude of the x-component
of the fibers and are used only to highlight changes in
direction.

To initiate atrial fibrillation, we use an S1-S2 stimu-
lation protocol that is applied at the junction with the
inter-atrial band, as described by Colman 19 . The S1
stimulus is applied with a cycle length of 350 ms fol-
lowed by a short S2 stimulus with a cycle length of 160
ms. Fig. 10(right) shows that the initial electrical ac-
tivation times are similar for the monodomain and hy-
perbolic monodomain models. Because this set of pa-
rameters gives a velocity of about 45 cm/s, roughly 35%
slower than the expected conduction velocity34, it takes
longer for the atrium to be fully activated. When the
second stimulus is applied, spiral waves form in the hy-
perbolic monodomain system but not in the parabolic
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τe = 0 ms, τi = 0 ms τe = 0.2 ms, τi = 0 ms τe = 0.4 ms, τi = 0 ms

τe = 0 ms, τi = 0.2 ms τe = 0.2 ms, τi = 0.2 ms τe = 0.4 ms, τi = 0.2 ms

τe = 0 ms, τi = 0.4 ms τe = 0.2 ms, τi = 0.4 ms τe = 0.4 ms, τi = 0.4 ms

Figure 12. Transmembrane potential patterns formed by the hyperbolic bidomain model with the Fenton-Karma model at 2
ms after a unipolar cathode stimulus is supplied in the extracellular compartment. The red regions are areas of depolarization
and blue regions are areas of hyperpolarization. The hyperbolic bidomain model shows a behavior qualitatively similar to the
conventional bidomain model shown in the study by86, but the details of the are influenced by the extracellular and intracellular
relaxation times.

monodomain model; see Fig. 11 at 420 ms. Spiral waves
are generated for τ = 0 ms only after the third stimulus
is applied. Fig. 11 also shows the fronts (red) and tails
(light blue) of the waves, as indicated by Q.

G. Virtual electrodes

The reduction of the bidomain model to the mon-
odomain model is not valid if the extracellular and intra-
cellular compartments have different anisotropy ratios.
As shown in experimental studies45,85, when a current is
supplied by an extracellular electrode, adjacent areas of
depolarization and hyperpolarization are formed in the
case of unequal anisotropy ratios. Applying a stimula-
tion current Ie,stim in the extracellular compartment, the
region of hyperpolarization near a cathode (Ie,stim < 0)
is called a virtual anode, while the region of depolariza-
tion near an anode (Ie,stim > 0) is called a virtal cathode.
The existence of virtual cathodes and anodes is impor-
tant to understand the four mechanisms of cardiac stim-
ulation and to study the mechanisms of defribillation. In
this section, we focus only on a unipolar cathodal stim-
ulation to investigate the cathode formation mechanism
in the hyperbolic bidomain model. We refer the reader
interested in this virtual electrode phenomenon to the
more detailed numerical studies of Wikswo and Roth 86

and Colli Franzone et al. 18 .
Following Sepulveda et al. 77 , we consider the domain

Ω = [−2, 2] cm× [−0.8, 0.8] cm, and consider this to cor-
respond to the epicardial surface. We apply a unipolar
cathodal current in the region Ωstim = [−0.5, 0.5] mm ×
[−0.1, 0.1] mm. We use the Fenton-Karma model with
parameter set 3, and the corresponding nondimension-
alized current stimulus amplitude is −100. We choose
σfe = 1.5448, σse = σne = 1.0438 and σfi = 2.3172,
σsi = σni = 0.2435, with the fibers aligned with the x-
axis.

Fig. 12 shows the pattern formed by the transmem-
brane potential 2 ms after the extracellular stimulus is
applied. Red regions are areas of depolarization, and
blue regions are areas of hyperpolarization. The depo-
larization and hyperpolarization regions are affected by
the choice of the extracellular and intracellular relaxation
times. For this test, we consider the relaxation times τi
and τe to take the values 0, 0.2, and 0.4 ms. Note that
if τi = τe, the hyperbolic bidomain equations (13) and
(14) reduce to the hyperbolic-elliptic system of equations
(15) and (16). Although this test shows the ability of the
hyperbolic bidomain model to reproduce the virtual elec-
trode phenomenon, the influence of the relaxation times
in the stimulation remains unclear and necessitates fur-
ther investigation.
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V. CONCLUSIONS

Local perturbation in the standard bidomain and mon-
odomain models propagate with an infinite speed. To
correct this unrealistic feature, we developed a hyperbolic
version of the bidomain model, and in the case that intra-
cellular and extracellular conductivity tensors have equal
anisotropy ratios, we reduced this model to a hyperbolic
monodomain model. Our derivation relies on a Cattaneo-
type model for the fluxes, described by equations (1) and
(2). The Cattaneo-type fluxes are equivalent to intro-
ducing self-inductance effects, as shown by the schematic
diagram in Fig. 1. As shown in Appendix A, relaxation
times introduced in the Cattaneo fluxes represent the ra-
tio between the inductances and the resistances of the
extracellular and intracellular compartments. Although
the hyperbolic monodomain model reduces to the classi-
cal parabolic model in the case that the relaxation times
of both the intracellular and extracellular compartments
are zero, the models differ if at least one of these relax-
ation times is nonzero.

Although hyperbolic bidomain and monodomain mod-
els do not appear to have been previously discussed in
the literature, the work of Hurtado et al. 39 does address
the problem of propagation with infinite speed. Their
approach uses a nonlinear model for the fluxes based on
porous medium assumptions. Because of the nonlinear
nature of the fluxes, the porous medium approach to car-
diac electrophysiology is difficult to analyze, even for sim-
ple linear reactions. Hurtado et al. 39 use the simplified
ionic model proposed by Aliev and Panfilov 3 . It would be
interesting to see the extension to biophysically detailed
models. Moreover, it is clear that the porous medium
approach is not incompatible with the theory developed
here. In fact, the two models could be combined using a
nonlinear Cattaneo-type model for the fluxes.

As discussed by King et al. 43 , abnormal conduction
velocities may contribute to arrhythmogenesis. We have
studied how the conduction velocities of the propagat-
ing action potential change with respect to the relax-
ation time of the Cattaneo-type fluxes. In the case of the
piecewise-linear model of McKean 55 , it is possible to find
an analytical expression for the conduction velocity of
the hyperbolic monodomain model. (Unfortunately, the
wave speed of this bistable model has been reported in-
correctly in some prior studies1,56.) We have shown that
for the hyperbolic monodomain model, signals cannot
travel faster than the characteristic propagation speed
of the medium. Our numerical results match the theo-
retical predictions for different values of the excitability
parameter. In this simple case, conduction velocity is a
monotone decreasing function of relaxation time. Addi-
tionally, we have shown that, for this linear case, dis-
cretization errors are lower in the hyperbolic model.

Using simple nonlinear ionic models3,25, however, we
found that the relationship between the relaxation time
and the conduction velocity is not always monotone. In
fact, for small and moderate values of the relaxation time,

we found that waves propagate faster than in the stan-
dard monodomain model. With these ionic models, a
maximum conduction velocity is found at an optimal
relaxation time. At small relaxation times, the second
derivative terms are relatively small. Consequently, this
phenomenon likely results from the time derivative of
the ionic currents. For larger values of the relaxation
times, inertial effects dominate, and the conduction ve-
locity monotonically decreases to zero. This implies that
we can find a value of the relaxation time for which the
action potential propagates at the same velocity as in the
standard monodomain model. This fact allowed us to di-
rectly investigate the influence of inductances in the mon-
odomain model. In the biophysically detailed ionic mod-
els for ventricular myocytes81 and atrial myocytes30 con-
sidered here, a similar behavior can be found, although
only for very small values of the relaxation time. For
this reason, we compared the parabolic and hyperbolic
monodomain models in two and three spatial dimensions
using the Fenton-Karma model25.

Changing the type of equation may have important
consequences in terms of the stability of the numerical
approximations. We did not encounter any substantial
numerical difficulties beyond those already present in the
standard parabolic models. On the contrary, we have
shown that the linear system is easier to solve and the
solutions are more accurate when the hyperbolic system
is used. Moreover, we believe that the solution of the
parabolic monodomain and bidomain model already have
many of the numerical difficulties usually associated with
hyperbolic systems: the propagating action potential in
the parabolic models already have sharp fronts which rep-
resent one of the main difficulties in hyperbolic systems.
Additionally, the hyperbolic monodomain and bidomain
models are damped wave equations, where the damping
term is dominant. In conclusion, the introduction of hy-
perbolic terms to the monodomain and bidomain models
do not appear to add substantial numerical difficulties.

We performed several qualitative comparisons between
the parabolic and the hyperbolic monodomain models.
In particular, we considered the case of spiral break up
resulting from conduction block caused by a steep APD
restitution curve. Using parameter set 3 of the Fenton-
Karma model, the back of the wave easily forms a series of
indentations or scallops. When a spiral wave invades this
after turning, it encounters refractory tissue that causes
conduction block, leading to a break up of the wave. This
behavior, already observed for the standard monodomain
model and explained by Fenton et al. 24 , is still present
in the hyperbolic monodomain model. We showed spi-
ral break up in a simple two-dimensional test case and
also in an anatomically realistic three-dimensional model
of the left atrium. We reconstructed on the left atria a
fiber field qualitatively in accordance with the data re-
ported by Ho et al. 35 , Krueger et al. 50 , and Pashakhan-
loo et al. 63 We applied a fast-pacing S1-S2 stimulation
protocol to the left atrium to induce spiral waves and spi-
ral break up. Although the initial activation sequences
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were similar, for the hyperbolic monodomain model, spi-
ral waves appeared already after the second stimulus was
applied, whereas for the parabolic monodomain at least
three stimuli were needed.

We also used a simple two-dimensional benchmark to
investigate how the alignment of the fiber direction with
respect to the elements of the finite element mesh influ-
ences wave propagation. Under mesh refinement, spatial
discretization errors become smaller and smaller, but the
common assumption that a grid resolution of 200 µm is
sufficient to correctly capture the conduction velocity48,49
seems to be overly optimistic. In our tests, we analyzed
the propagation of a simple wave using an anisotropic
conductivity tensor. Fixing the fiber field and rotating
the mesh, we were able to show that using a mesh size
of about 234 µm (163 µm in the direction of wave prop-
agation), the propagation was greatly influenced by the
mesh orientation relative to the fiber alignment. Even on
a finer mesh with a mesh size of about 117 µm (82.5 µm
in the direction of wave propagation), visible differences
between the propagation patterns obtained with the dif-
ferent orientations remained. These tests highlight the
fact that if the transverse conductivity coefficients are
taken to be about 8 times smaller than the longitudi-
nal conductivity, as is typically done in practice9,16,38,70,
the mesh size needs to be much smaller than 200 µm in
order to yield resolved dynamics. Our results are in ac-
cordance with the convergence study by Rossi et al. 69
for propagation in the transverse direction, in which the
authors showed that the mesh size in the transverse di-
rection needs to be about 25 µm. Because such mesh
resolutions require elements only slightly larger than the
actual cardiac cells, it is natural to ask whether the use
of a continuum model is even appropriate: for a similar
computational cost, it could be possible to construct a
discrete model of the heart. Although the difficulties in
representing correctly the conduction velocities are well
documented in the literature49,65 and have been thor-
oughly analyzed by Pezzuto et al. 66 , the focus generally
seems to have been on the conduction in the fiber direc-
tion, as is clear from the choice of the three-dimensional
benchmark test proposed by Niederer et al. 61 Other solu-
tion strategies for the monodomain and bidomain mod-
els using adaptive mesh refinement17,47 and high-order
elements4 have been proposed, but their application so
far appears to be relatively limited.

Finally, we showed that the hyperbolic bidomain model
can capture the virtual electrode phenomenon observed
in the standard model. By stimulating the epicardial sur-
face using a unipolar cathodal current, we have shown
how the pattern of the transmembrane potential is in-
fluenced by the intracellular and extracellular relaxation
times. Nonetheless, a more detailed study on how the
relaxation times affect the virtual electrodes is needed to
fully understand the hyperbolic bidomain model. Com-
paring the stimulation patterns to experimental data
could even serve to calibrate the magnitude of the re-
laxation times in the hyperbolic bidomain model.

Despite significant progress in models of cardiac elec-
trophysiology, the complex effects of nonlinearity and
heterogeneity in the heart are far from being fully un-
derstood. We have shown that the nonlinearities of the
underlying physics can give unexpected results, in con-
tradiction to the linear case. Inductances in tissue prop-
agation could play an important role in cardiac electrical
dynamics, especially close to the wavefronts, where the
fast currents responsible for the initiation of the action
potential can give a small but non-negligible contribu-
tion. The main phenomenon we observed in the hyper-
bolic model is the enhancement of the conduction ve-
locity at small relaxation times because of the presence
of the time derivative of the ionic currents. This phe-
nomenon would allow electric signals to propagate at the
same speed with lower conductance as compared to the
standard models. Future experimental studies are needed
to confirm the importance of these effects.
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Appendix A: Cable equation with inductances

We follow the derivation of the cable equation by
Keener and Sneyd 42 . As shown in Fig. 1, we assume
there exist inductance effects in both the extra- and in-
tracellular axial currents. We have

Ve (x)− Ve (x+ ∆x) = −Le∂tIe∆x−ReIe∆x, (A1)
Vi (x)− Vi (x+ ∆x) = −Li∂tIi∆x−RiIi∆x, (A2)

where Ie and Ii are the extracellular and intracellular
axial currents, respectively. Dividing by ∆x and taking
the limit as ∆x→ 0, we find

∂xVe = −Le∂tIe −ReIe, (A3)
∂xVi = −Li∂tIi −RiIi. (A4)

The minus sign on the right hand sides is a convention
that ensures that positive charges flow from left to right.
Applying Kirchhoff’s current law, we have that

Ie (x)− Ie (x+ ∆x) + It∆x = 0, (A5)
Ii (x)− Ie (x+ ∆x)− It∆x = 0, (A6)

which, in the limit ∆x→ 0, becomes

It = ∂xIe = −∂xIi. (A7)
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Differentiating equations (A3) and (A4) with respect to
x, and equation (A7) with respect to t, we find that for
the extracellular compartment,

∂xxVe = −Le∂xtIe −Re∂xIe, (A8)
∂xtIe = ∂tIt, (A9)

and for the intracellular compartment,

∂xxVi = −Li∂xtIi −Ri∂xIi, (A10)
∂xtIe = −∂tIt. (A11)

Substituting the mixed derivative of the extracellular and
intracellular currents, we find

∂xxVe = −Le∂tIt−ReIt, ∂xxVi = Li∂tIt+RiIt. (A12)

Defining V = Vi − Ve, and taking the difference between
the intracellular and the extracellular equations, we can
write a single equation for V ,

∂xxV = (Li + Le) ∂tIt + (Ri +Re) It. (A13)

Recalling that

It = χ (Cm∂tV + Iion) , (A14)

we finally find the hyperbolic form of the cable equation,

τCm
∂2V

∂t2
+ Cm

∂V

∂t
− ∂

∂x

(
D
∂V

∂x

)
= −Iion − τ

∂Iion
∂t

,

where we define the conductivity as D = 1/χ (Ri +Re)
and the relaxation time by

τ =
Li + Le

Ri +Re
. (A15)

Appendix B: Exact solution for the piecewise-linear bistable
model

Consider the simplified piecewise-linear bistable
model,

Iion (V ) = kV

− k [V2H(V − V1) + V0 (1−H(V − V1))] . (B1)

The nondimensional form of equation (B1) is the simpli-
fied model proposed by McKean 55 ,

Îion

(
V̂
)

= V̂ −H
(
V̂ − α

)
. (B2)

Using (B1) in the hyperbolic monodomain model (21)
and considering only one spatial dimension, we have

µ
∂2V̂

∂t̂2
+ (1 + µ)

∂V̂

∂t̂
− ∂2V̂

∂x̂2
+ V̂ = 0, V̂ < α,

µ
∂2V̂

∂t̂2
+ (1 + µ)

∂V̂

∂t̂
− ∂2V̂

∂x̂2
+ V̂ = 1, V̂ > α,

(B3)

where we have introduced the nondimensional variables

t̂ =
1

T
t̂, x̂ =

1

L
x, V̂ =

V − V0

V2 − V0
.

In particular, we define

T =
Cm

k
, L =

√
σ

kχ
, µ =

τk

Cm
,

where µ is a nondimensional number that characterizes
the effect of the inductances in the system. Specifically, µ
is the ratio between the relaxation time of the system and
the characteristic time of the reactions: the larger µ, the
more important the effects of the inductances become.
Introducing the change of coordinates z = x − ct, such
that U (z) = U (x− ct) = V̂ (x, t), the system (B3) is
transformed into{(

c2µ− 1
)
Uzz − c (1 + µ)Uz + U = 0, z > 0,(

c2µ− 1
)
Uzz − c (1 + µ)Uz + U = 1, z < 0.

(B4)

Consider first the case z > 0. Using γ = c2µ − 1 and
β = −c (1 + µ), this equation reads

γV ′′ + βV ′ + V = 0,

for which the roots of the characteristic polynomial are

λ± =
−β ±

√
β2 − 4γ

2γ
, (B5)

so that the solution is U (z) = A+e
λ+z + A−e

λ−z. It is
easy to verify that the case z < 0 has solution U (z) =
B+e

λ+z +B−e
λ−z + 1. The global solution, therefore, is

U (z) =

{
A+e

λ+z +A−e
λ−z, z > 0,

B+e
λ+z +B−e

λ−z + 1, z < 0.
(B6)

For (B6) to represent a propagating front, it is necessary
that the solution is real and bounded for any value of z.
This implies that either λ− < 0 < λ+ or λ+ < 0 < λ−.
Requiring β2 − 4γ > 0, we find the condition γ < β2/4,
which is always satisfied for the model (B4) because β2−
4γ = c2 (1− µ)

2
+ 4 > 0. If c > 0 then β < 0. Then

λ− > 0 and λ+ < 0 if

c <

√
1

µ
. (B7)

Imposing U (∞) = 0, we find A− = 0, and imposing
U (−∞) = 1, we find B+ = 0, so that

U (z) =

{
A+e

λ+z, z > 0,

B−e
λ−z + 1, z ≤ 0.

(B8)

To ensure the continuity of the solution at z = 0, we fix
U (0) = α, so that A+ = α = 1 +B− and

U (z) =

{
αeλ+z, z > 0,

(α− 1) eλ−z + 1, z ≤ 0.
(B9)
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The first derivative of U is

U ′ (z) =

{
αλ+e

λ+z, z > 0,

(α− 1)λ−e
λ−z, z ≤ 0.

(B10)

Imposing the continuity of U ′ at z = 0, we find αλ+ =
(α− 1)λ− and therefore

γ

β2
=

(
α2 − α

)
(2α− 1)

2 . (B11)

Using the definitions of γ and β in (B11), we finally ob-
tain an expression for the speed c in terms of µ and α,

c =
(1− 2α)√

µ+ (α− α2) (µ− 1)
2
≤
√

1

µ
. (B12)

Notice that the characteristic propagation speed is
bounded from above by

√
1/µ.

Appendix C: Finite Element Discretization

The common practice to solve the coupled nonlinear
system of cardiac electrophysiology is to split the mon-
odomain (or bidomain) model from the ionic model. Mo-
tivated by the work of Munteanu et al. 58 , we will also
decouple the two systems. For brevity, we show the dis-
cretization only for the monodomain model with a first-
order time integrator, because first-order time integrators
are still widely used in the community. The same ap-
proach can be used to discretize the hyperbolic bidomain
model. Given the subinterval [tn, tn+1], with t0 = 0, we
define two separate subproblems, one for the ionic model
and one for the monodomain equation connected by the
initial conditions. In the first step, we solve the ionic
model (25) for wn+1, and we compute the ionic currents
using the updated values of the state variables. The ionic
currents computed in this way are then used to solve the
monodomain system (22)–(23).

As shown in Spiteri and Dean 79 , the most efficient
numerical algorithm to solve the stiff ODEs of the ionic
model strongly depends on the model considered. We use
the forward Euler method for the simplified ionic models
of Aliev-Panfilov and Fenton-Karma. For the ventricular
ionic model of ten Tusscher and Panfilov 81 , we use the
Rush-Larsen method71. The atrial ionic model of Grandi
et al. 30 has a stricter restriction on the time step size.
Consequently, we use the Rush-Larsen method in com-
bination to the backward Euler method for linear equa-
tions. The time step size is defined as ∆t = tn+1 − tn.
To obtain a second-order time discretization scheme, the
ionic model can be solved using the explicit trapezoidal
method (i.e., Heun’s method), which is a second-order ac-
curate strong stability preserving Runge-Kutta method.

Once the solution of the ionic model has been found,
we solve the monodomain model using a low-order finite
element discretization. Because (22) is a simple ordinary

differential equation, the computational costs for solving
(21) or the system (22)–(23) is comparable. Denoting by
(v, w)Ω =

´
Ω
vw the L2 (Ω) inner product and using the

boundary conditions (24), the Galerkin approximation of
equations (22)–(23) is to find V h, Qh ∈ Sh such that(

∂V h

∂t
, ψh

)
Ω

=
(
Qh, ψh

)
Ω
, (C1)(

τCm
∂Qh

∂t
+ CmQ

h, φh
)

Ω

+
(
D∇V,∇φh

)
Ω

=
(
Ihion, φ

h
)

Ω

+

(
τ
∂Ihion
∂t

, φh
)

Ω

, (C2)

for all ψh, φh ∈ Sh, where

Sh =
{
vh ∈ C0

(
Ω̄
)

: vh
∣∣
K
∈ P1 (K) , ∀K ∈ T h

}
.
(C3)

In practice, we look for a continuous solution that is lin-
ear in every simplex element K in the triangulation T h
of Ω. Introducing the basis of nodal shape functions
{NA}MA=1 , with M = dim(Sh), the solution fields are
discretized as

V h =

M∑
A=1

NAVA, Qh =

M∑
A=1

NAQA.

Equations (C1) and (C2) yield the matrix system

V̇ = Q, (C4)

CmM
(
τQ̇ + Q

)
+ KV = F + τL. (C5)

We use the half-lumping scheme proposed by Path-
manathan et al. 65 , so that

F = MI, L = MJ

and

V̇ = Q, (C6)

CmML

(
τQ̇ + Q

)
+ KV = M (I + τJ) , (C7)

where

[MAB ] = (NA, NB)Ω , [KAB ] = (∇NA,D∇NB)Ω ,

I and J are the nodal evaluation of Iion and ∂Iion/∂t, and
ML is the lumped mass matrix obtained by row sum-
mation of the mass matrix. Using a simple first-order
implicit-explicit time integrator, the fully discrete system
of equations reads

Vn+1 = Vn + ∆tQn+1,(C8)
Cm (τ + ∆t)MLQ

n+1 + ∆tKVn+1 = ∆tM (I∗ + τJ∗)

+ τCmMLQ
n, (C9)
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where I∗ and J∗ indicate the values of the ionic currents,
and of their derivatives, evaluated using the updated val-
ues for wn+1 obtained by solving the ionic model. Intro-
ducing (C8) in (C9), we arrive at a single system for
Qn+1,[
Cm (τ + ∆t)ML + ∆t2K

]
Qn+1 =

τCmMLQ
n −∆tKVn + ∆tM (I∗ + τJ∗) . (C10)

The time derivative of the ionic currents, J∗, is approxi-
mated nodally using the chain rule as

∂Iion
∂t

(tn) ≈ ∂Iion
∂V

(
V n,wn+1

)
Qn

+
∂Iion
∂w

(
V n,wn+1

)
· g(V n,wn+1), (C11)

where the function g(V,w) is the right hand side of the
ionic model system defined in equation (25). After solv-
ing (C10), we update the voltage equation (C8).

The scheme used to obtain (C8) and (C9) is the sim-
plest method – ARS(1,1,1) – of a series of implicit-explicit
(IMEX) Runge-Kutta (RK) algorithms that are popular
for hyperbolic systems5,11. For a second-order time in-
tegrator, we use the H-CN(2,2,2) scheme10, which com-
bines Heun’s method for the explicit part and the Crank-
Nicholson method for the implicit part.

We have not experienced any difference in time step
size restriction between the parabolic and hyperbolic
models. In fact, we have used an IMEX-RK method
where only the ionic currents and their time derivatives
are treated explicitly in both parabolic and hyperbolic
models. The time step size restriction is dictated only by
the ionic model. Nonetheless, the time step size should
be chosen to accurately capture the propagation of the
action potential. Denoting with v the conduction veloc-
ity and with hm the smallest element size, we chose our
time step size such that the CFL condition ∆t ≤ hm/v
holds.

From a purely numerical perspective, in the first-order
scheme, the dissipative nature of the backward Euler
method can be used to remove numerical oscillations,
while the second-order Crank-Nicholson method will keep
such oscillations. A dissipative second-order time inte-
grator could be used in place of the Crank-Nicholson
method. In any case, the physical dissipation of the hy-
perbolic monodomain model reduces such artifacts for
first- and second-order schemes.

One of the main difficulties arising from hyperbolic sys-
tems is their tendencies to form discontinuities for which
numerical approximations typically develop spurious os-
cillations. Although the standard monodomain and bido-
main models are parabolic systems, if the wavefront is
not accurately resolved then the upstroke of the action
potential can act as a discontinuity. For this reason,
the numerical methods used for cardiac electrophysiol-
ogy should be already suitable for the hyperbolic systems
considered here.
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