2,395 research outputs found

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Flat systems, equivalence and trajectory generation

    Get PDF
    Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Autonomous space processor for orbital debris

    Get PDF
    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming

    Trajectory planning for industrial robot using genetic algorithms

    Full text link
    En las Ćŗltimas dĆ©cadas, debido la importancia de sus aplicaciones, se han propuesto muchas investigaciones sobre la planificaciĆ³n de caminos y trayectorias para los manipuladores, algunos de los Ć”mbitos en los que pueden encontrarse ejemplos de aplicaciĆ³n son; la robĆ³tica industrial, sistemas autĆ³nomos, creaciĆ³n de prototipos virtuales y diseƱo de fĆ”rmacos asistido por ordenador. Por otro lado, los algoritmos evolutivos se han aplicado en muchos campos, lo que motiva el interĆ©s del autor por investigar sobre su aplicaciĆ³n a la planificaciĆ³n de caminos y trayectorias en robots industriales. En este trabajo se ha llevado a cabo una bĆŗsqueda exhaustiva de la literatura existente relacionada con la tesis, que ha servido para crear una completa base de datos utilizada para realizar un examen detallado de la evoluciĆ³n histĆ³rica desde sus orĆ­genes al estado actual de la tĆ©cnica y las Ćŗltimas tendencias. Esta tesis presenta una nueva metodologĆ­a que utiliza algoritmos genĆ©ticos para desarrollar y evaluar tĆ©cnicas para la planificaciĆ³n de caminos y trayectorias. El conocimiento de problemas especĆ­ficos y el conocimiento heurĆ­stico se incorporan a la codificaciĆ³n, la evaluaciĆ³n y los operadores genĆ©ticos del algoritmo. Esta metodologĆ­a introduce nuevos enfoques con el objetivo de resolver el problema de la planificaciĆ³n de caminos y la planificaciĆ³n de trayectorias para sistemas robĆ³ticos industriales que operan en entornos 3D con obstĆ”culos estĆ”ticos, y que ha llevado a la creaciĆ³n de dos algoritmos (de alguna manera similares, con algunas variaciones), que son capaces de resolver los problemas de planificaciĆ³n mencionados. El modelado de los obstĆ”culos se ha realizado mediante el uso de combinaciones de objetos geomĆ©tricos simples (esferas, cilindros, y los planos), de modo que se obtiene un algoritmo eficiente para la prevenciĆ³n de colisiones. El algoritmo de planificaciĆ³n de caminos se basa en tĆ©cnicas de optimizaciĆ³n globales, usando algoritmos genĆ©ticos para minimizar una funciĆ³n objetivo considerando restricciones para evitar las colisiones con los obstĆ”culos. El camino estĆ” compuesto de configuraciones adyacentes obtenidas mediante una tĆ©cnica de optimizaciĆ³n construida con algoritmos genĆ©ticos, buscando minimizar una funciĆ³n multiobjetivo donde intervienen la distancia entre los puntos significativos de las dos configuraciones adyacentes, asĆ­ como la distancia desde los puntos de la configuraciĆ³n actual a la final. El planteamiento del problema mediante algoritmos genĆ©ticos requiere de una modelizaciĆ³n acorde al procedimiento, definiendo los individuos y operadores capaces de proporcionar soluciones eficientes para el problema.Abu-Dakka, FJM. (2011). Trajectory planning for industrial robot using genetic algorithms [Tesis doctoral no publicada]. Universitat PolitĆØcnica de ValĆØncia. https://doi.org/10.4995/Thesis/10251/10294Palanci

    FATROP : A Fast Constrained Optimal Control Problem Solver for Robot Trajectory Optimization and Control

    Full text link
    Trajectory optimization is a powerful tool for robot motion planning and control. State-of-the-art general-purpose nonlinear programming solvers are versatile, handle constraints in an effective way and provide a high numerical robustness, but they are slow because they do not fully exploit the optimal control problem structure at hand. Existing structure-exploiting solvers are fast but they often lack techniques to deal with nonlinearity or rely on penalty methods to enforce (equality or inequality) path constraints. This works presents FATROP: a trajectory optimization solver that is fast and benefits from the salient features of general-purpose nonlinear optimization solvers. The speed-up is mainly achieved through the use of a specialized linear solver, based on a Riccati recursion that is generalized to also support stagewise equality constraints. To demonstrate the algorithm's potential, it is benchmarked on a set of robot problems that are challenging from a numerical perspective, including problems with a minimum-time objective and no-collision constraints. The solver is shown to solve problems for trajectory generation of a quadrotor, a robot manipulator and a truck-trailer problem in a few tens of milliseconds. The algorithm's C++-code implementation accompanies this work as open source software, released under the GNU Lesser General Public License (LGPL). This software framework may encourage and enable the robotics community to use trajectory optimization in more challenging applications

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nƤchsten Jahrzehnten fĆ¼r viele Aufgaben eingesetzt werden, die entweder zu gefƤhrlich oder zu teuer sind, um sie mit herkƶmmlichen Methoden zu bewƤltigen. In dieser Arbeit wird eine neuartige Lƶsung fĆ¼r die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform fĆ¼r die DurchfĆ¼hrung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewƤhrleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem kĆ¼nstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz fĆ¼r die Drohne erzielt. AuƟerdem wird die MotorsƤttigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. FĆ¼r die Beobachtung der externen KrƤfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundƤre Aufgaben ausfĆ¼hrt. Die Wirksamkeit der vorgestellten Lƶsungen wird durch umfangreiche Tests Ć¼berprĆ¼ft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Empowering Optimal Control with Machine Learning: A Perspective from Model Predictive Control

    Full text link
    Solving complex optimal control problems have confronted computational challenges for a long time. Recent advances in machine learning have provided us with new opportunities to address these challenges. This paper takes model predictive control, a popular optimal control method, as the primary example to survey recent progress that leverages machine learning techniques to empower optimal control solvers. We also discuss some of the main challenges encountered when applying machine learning to develop more robust optimal control algorithms

    Minimum Jerk Trajectory Planning for Trajectory Constrained Redundant Robots

    Get PDF
    In this dissertation, we develop an efficient method of generating minimal jerk trajectories for redundant robots in trajectory following problems. We show that high jerk is a local phenomenon, and therefore focus on optimizing regions of high jerk that occur when using traditional trajectory generation methods. The optimal trajectory is shown to be located on the foliation of self-motion manifolds, and this property is exploited to express the problem as a minimal dimension Bolza optimal control problem. A numerical algorithm based on ideas from pseudo-spectral optimization methods is proposed and applied to two example planar robot structures with two redundant degrees of freedom. When compared with existing trajectory generation methods, the proposed algorithm reduces the integral jerk of the examples by 75% and 13%. Peak jerk is reduced by 98% and 33%. Finally a real time controller is proposed to accurately track the planned trajectory given real-time measurements of the tool-tip\u27s following error

    Constrained Stein Variational Trajectory Optimization

    Full text link
    We present Constrained Stein Variational Trajectory Optimization (CSVTO), an algorithm for performing trajectory optimization with constraints on a set of trajectories in parallel. We frame constrained trajectory optimization as a novel form of constrained functional minimization over trajectory distributions, which avoids treating the constraints as a penalty in the objective and allows us to generate diverse sets of constraint-satisfying trajectories. Our method uses Stein Variational Gradient Descent (SVGD) to find a set of particles that approximates a distribution over low-cost trajectories while obeying constraints. CSVTO is applicable to problems with arbitrary equality and inequality constraints and includes a novel particle resampling step to escape local minima. By explicitly generating diverse sets of trajectories, CSVTO is better able to avoid poor local minima and is more robust to initialization. We demonstrate that CSVTO outperforms baselines in challenging highly-constrained tasks, such as a 7DoF wrench manipulation task, where CSVTO succeeds in 20/20 trials vs 13/20 for the closest baseline. Our results demonstrate that generating diverse constraint-satisfying trajectories improves robustness to disturbances and initialization over baselines.Comment: 14 pages, 7 figure
    • ā€¦
    corecore