1,325 research outputs found

    Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces

    Get PDF
    Wearable human-machine interfaces (HMIs) are an important class of devices that enable human and machine interaction and teaming. Recent advances in electronics, materials, and mechanical designs have offered avenues toward wearable HMI devices. However, existing wearable HMI devices are uncomfortable to use and restrict the human body's motion, show slow response times, or are challenging to realize with multiple functions. Here, we report sol-gel-on-polymer-processed indium zinc oxide semiconductor nanomembrane-based ultrathin stretchable electronics with advantages of multifunctionality, simple manufacturing, imperceptible wearing, and robust interfacing. Multifunctional wearable HMI devices range from resistive random-access memory for data storage to field-effect transistors for interfacing and switching circuits, to various sensors for health and body motion sensing, and to microheaters for temperature delivery. The HMI devices can be not only seamlessly worn by humans but also implemented as prosthetic skin for robotics, which offer intelligent feedback, resulting in a closed-loop HMI system

    Optimal Policy for Sequential Stochastic Resource Allocation

    Get PDF
    A gambler in possession of R chips/coins is allowed N(\u3eR) pulls/trials at a slot machine. Upon pulling the arm, the slot machine realizes a random state i ɛ{1, ..., M} with probability p(i) and the corresponding positive monetary reward g(i) is presented to the gambler. The gambler can accept the reward by inserting a coin in the machine. However, the dilemma facing the gambler is whether to spend the coin or keep it in reserve hoping to pick up a greater reward in the future. We assume that the gambler has full knowledge of the reward distribution function. We are interested in the optimal gambling strategy that results in the maximal cumulative reward. The problem is naturally posed as a Stochastic Dynamic Program whose solution yields the optimal policy and expected cumulative reward. We show that the optimal strategy is a threshold policy, wherein a coin is spent if and only if the number of coins r exceeds a state and stage/trial dependent threshold value. We illustrate the utility of the result on a military operational scenario

    X-Risk Analysis for AI Research

    Full text link
    Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities. Current AI research lacks a systematic discussion of how to manage long-tail risks from AI systems, including speculative long-term risks. Keeping in mind the potential benefits of AI, there is some concern that building ever more intelligent and powerful AI systems could eventually result in systems that are more powerful than us; some say this is like playing with fire and speculate that this could create existential risks (x-risks). To add precision and ground these discussions, we provide a guide for how to analyze AI x-risk, which consists of three parts: First, we review how systems can be made safer today, drawing on time-tested concepts from hazard analysis and systems safety that have been designed to steer large processes in safer directions. Next, we discuss strategies for having long-term impacts on the safety of future systems. Finally, we discuss a crucial concept in making AI systems safer by improving the balance between safety and general capabilities. We hope this document and the presented concepts and tools serve as a useful guide for understanding how to analyze AI x-risk

    Mixed-Initiative Human-Automated Agents Teaming: Towards a Flexible Cooperation Framework

    Get PDF
    The recent progress in robotics and artificial intelligence raises the question of the efficient artificial agents interaction with humans. For instance, artificial intelligence has achieved technical advances in perception and decision making in several domains ranging from games to a variety of operational situations, (e.g. face recognition [51] and firefighting missions [23]). Such advanced automated systems still depend on human operators as far as complex tactical, legal or ethical decisions are concerned. Usually the human is considered as an ideal agent, that is able to take control in case of automated (artificial) agent's limit range of action or even failure (e.g embedded sensor failures or low confidence in identification tasks). However, this approach needs to be revised as revealed by several critical industrial events (e.g. aviation and nuclear power-plant) that were due to conflicts between humans and complex automated system [13]. In this context, this paper reviews some of our previous works related to human-automated agents interaction driving systems. More specifically, a mixed-initiative cooperation framework that considers agents' non-deterministic actions effects and inaccuracies about the human operator state estimation. This framework has demonstrated convincing results being a promising venue for enhancing human-automated agent(s) teaming

    Multimodal Grounding for Embodied AI via Augmented Reality Headsets for Natural Language Driven Task Planning

    Full text link
    Recent advances in generative modeling have spurred a resurgence in the field of Embodied Artificial Intelligence (EAI). EAI systems typically deploy large language models to physical systems capable of interacting with their environment. In our exploration of EAI for industrial domains, we successfully demonstrate the feasibility of co-located, human-robot teaming. Specifically, we construct an experiment where an Augmented Reality (AR) headset mediates information exchange between an EAI agent and human operator for a variety of inspection tasks. To our knowledge the use of an AR headset for multimodal grounding and the application of EAI to industrial tasks are novel contributions within Embodied AI research. In addition, we highlight potential pitfalls in EAI's construction by providing quantitative and qualitative analysis on prompt robustness.Comment: 18 pages, 15 figure

    Operationalized Intent for Improving Coordination in Human-Agent Teams

    Get PDF
    With the increasing capabilities of artificial intelligent agents (AIAs) integrated into multi-agent systems, future concepts include human-agent teams (HATs) in which the members perform fluidly as a coordinated team. Research on coordination mechanisms in HATs is largely focused on AIAs providing information to humans to coordinate better (i.e. coordination from the AIA to the human). We focus on the compliment where AIAs can understand the operator to better synchronize with the operator (i.e. from the human to the AIA). This research focuses specifically on AIA estimation of operator intent. We established the Operationalized Intent framework which captures intent in a manner relevant to operators and AIAs. The core of operationalized intent is a quality goal hierarchy and an execution constraint list. Designing a quality goal hierarchy entails understanding the domain, the operators, and the AIAs. By extending established cognitive systems engineering analyses we developed a method to define the quality goals and capture the situations that influence their prioritization. Through a synthesis of mental model evaluation techniques, we defined and executed a process for designing human studies of intent. This human-in-the-loop study produced a corpus of data which was demonstrated the feasibility of estimating operationalized intent

    Human-Automation Teaming in Track Inspection

    Get PDF
    This report provides a foundational overview of how the rail industry can approach the design of human-automation teams (HATs), with the goal of improving safety and efficiency in the track inspection process. The authors present a general process for designing HATs, then explore how this design process can be applied to track inspection. The report addresses four track inspection tasks (data collection, data analysis, decision making, and action) and presents broadly applicable considerations for HATs for each task. Railroads and manufacturers may use the design process and general considerations in this report to develop requirements specific to a given inspection technology
    corecore