2,369 research outputs found
Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation
Global navigation satellite systems-reflectometry (GNSS-R) is an emerging remote sensing technique that makes use of navigation signals as signals of opportunity in a multistatic radar configuration, with as many transmitters as navigation satellites are in view. GNSS-R sensitivity to soil moisture has already been proven from ground-based and airborne experiments, but studies using space-borne data are still preliminary due to the limited amount of data, collocation, footprint heterogeneity, etc. This study presents a sensitivity study of TechDemoSat-1 GNSS-R data to soil moisture over different types of surfaces (i.e., vegetation covers) and for a wide range of soil moisture and normalized difference vegetation index (NDVI) values. Despite the scattering in the data, which can be largely attributed to the delay-Doppler maps peak variance, the temporal and spatial (footprint size) collocation mismatch with the SMOS soil moisture, and MODIS NDVI vegetation data, and land use data, experimental results for low NDVI values show a large sensitivity to soil moisture and a relatively good Pearson correlation coefficient. As the vegetation cover increases (NDVI increases) the reflectivity, the sensitivity to soil moisture and the Pearson correlation coefficient decreases, but it is still significant.Postprint (author's final draft
Recommended from our members
Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2
The SAMUM-2 experiment took place in the Cape Verde is lands in January–February 2008. The colocated ground-based and airborne instruments allow the study of desert dust optical and microphysical properties in a closure experiment. The Meteorological Institute of the University of Munich deployed one sun-sky photometer and two tropospheric lidar systems. A travelling AERONET-Cimel sun-sky radiometer was also deployed. During the measurement period the aerosol scenario over Cape Verde mostly consisted of a dust layer below 2 km and a smoke-dust layer above 2–4 km a.s.l. The Saharan dust arrived at the site from the NE, whereas the smoke originated in the African equatorial region. This paper describes the main results of the Sun photometer observations, supported by lidar information. An analysis of the variations in the aerosol optical depth (AOD) in the range 340–1550 nm, the Ångström exponent, volume size distributions and single scattering albedo is presented. The aerosol mixtures are analysed by means of the fine mode fraction of the AOD provided by the sun-sky inversion data and the Spectral Deconvolution Algorithm. The mean AOD (500 nm) was 0.31, with associated low ångström exponent of 0.46. Several types of events were detected within the data set, with prevalence of dust or mixtures as characterized by the Ångstr¨om exponents of extinction and absorption and the fine mode fraction. Aerosol properties derived from sunphotometry were compared to in situ measurements of size distribution, effective radius and single scattering albedo
Skylab investigation of the upwelling off the Northwest coast of Africa
The upwelling off the NW coast of Africa in the vicinity of Cape Blanc was studied in February - March 1974 from aircraft and in September 1973 from Skylab. The aircraft study was designed to determine the effectiveness of a differential radiometer in quantifying surface chlorophyll concentrations. Photographic images of the S190A Multispectral Camera and the S190B Earth Terrain Camera from Skylab were used to study distributional patterns of suspended material and to locate ocean color boundaries. The thermal channel of the S192 Multispectral Scanner was used to map sea-surface temperature distributions offshore of Cape Blanc. Correlating ocean color changes with temperature gradients is an effective method of qualitatively estimating biological productivity in the upwelling region off Africa
Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications
The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths.
The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution.
A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2.
At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met
Multispectral Resource Sampler (MPS): Proof of Concept. Literature survey of atmospheric corrections
Work done in combining spectral bands to reduce atmospheric effects on spectral signatures is described. The development of atmospheric models and their use with ground and aerial measurements in correcting spectral signatures is reviewed. An overview of studies of atmospheric effects on the accuracy of scene classification is provided
Evaluation of ocean color remote sensing algorithms for diffuse attenuation coefficients and optical depths with data collected on BGC-Argo floats
The vertical distribution of irradiance in the ocean is a key input to quantify processes spanning from radiative warming, photosynthesis to photo-oxidation. Here we use a novel dataset of thousands local-noon downwelling irradiance at 490 nm (Ed(490) and photosynthetically available radiation (PAR) profiles captured by 103 BGC-Argo floats spanning three years (from October 2012 to January 2016) in the world\u27s ocean, to evaluate several published algorithms and satellite products related to diffuse attenuation coefficient (Kd). Our results show: (1) MODIS-Aqua Kd(490) products derived from a blue-to-green algorithm and two semi-analytical algorithms show good consistency with the float-observed values, but the Chla-based one has overestimation in oligotrophic waters; (2) The Kd(PAR) model based on the Inherent Optical Properties (IOPs) performs well not only at sea-surface but also at depth, except for the oligotrophic waters where Kd(PAR) is underestimated below two penetration depth (2zpd), due to the model\u27s assumption of a homogeneous distribution of IOPs in the water column which is not true in most oligotrophic waters with deep chlorophyll-a maxima; (3) In addition, published algorithms for the 1% euphotic-layer depth and the depth of 0.415 mol photons m-2 d-1 isolume are evaluated. Algorithms based on Chla generally work well while IOPs-based ones exhibit an overestimation issue in stratified and oligotrophic waters, due to the underestimation of Kd(PAR) at depth
Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study
A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified
Marine and Coastal Information Systems for Europe and Africa
Marine Information Systems for Europe (EMIS, http://emis.jrc.ec.europa.eu/) and Africa (AMIS, http://amis.jrc.ec.europa.eu/) have been recently developed at the Joint Research Centre of the European Commission to provide the Users with an appropriate set of bio-physical information, of importance to conduct water quality assessment, resource monitoring and climate change studies in the coastal and marine waters. These systems are simple and easy-to-use mapping tool applications, created for the publication and dissemination of African and European marine information via the web. Both systems rely mostly on Earth Observation data from optical and thermal sensors, processed according to standard (i.e., space agency-related) and in-house peer-reviewed algorithms, as well modeled data, to generate indicators for global diagnostic of the coastal state and analyses of changes in marine ecosystems. In addition, the systems supply the users with basic navigation and interrogation tools with a range of time-series and statistical analysis generated automatically in a format ready for publication / reporting, and enabling decision makers to make full and lasting use of this information.JRC.H.5-Land Resources Managemen
- …