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Abstract 
 
The remote sensing of electromagnetic wave properties is probably the most viable and fascinating 
way to observe and study physical media, comprising our planet and its atmosphere, at the same 
time ensuring a proper continuity in the observations. Applications are manifold and the scientific 
community has been importantly studying and investing on new technologies, which would let us 
widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques 
and corresponding applications in the field of the atmospheric remote sensing and radio-
propagation, at both microwave and optical wavelengths.  
 
The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature 
of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and 
off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature 
of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave 
V and W bands can be estimated by adopting different techniques. Parametric prediction models 
for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are 
tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of 
atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the 
time evolution of the cloud contribution.  
 
A model chain for the prediction of the tropospheric channel for the downlink of interplanetary 
missions operating above Ku band is proposed. On top of a detailed description of the approach, 
the chapter presents the validation results and examples of the model-chain online operation. 
Online operation has already been tested within a feasibility study applied to the BepiColombo 
mission to Mercury operated by the European Space Agency (ESA) and by exploiting the 
Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to 
the ESA cross-support service. A preliminary (and successful) validation of the model-chain has 
been carried out by comparing the simulated signal-to-noise ratio with the one received from 
Hayabusa-2. 
 
At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the 
identification and the possible additional allocation of radio-frequency spectrum to serve the future 
development of systems supporting the fifth generation of cellular mobile communications (5G). 
The potential impact of International Mobile Telecommunications (IMT) deployments is shown in 
terms of received radio frequency interference by ESA’s telecommunication links. Received 
interference can derive from several radio-propagation mechanisms, which strongly depend on 
atmospheric conditions, radio frequency, link availability, distance and path topography; at any 
time a single mechanism, or more than one may be present. Results are shown in terms of required 
separation distances, i.e. the minimum distance between the earth station and the IMT station 
ensuring that the protection criteria for the earth station are met.  
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Finally a novel remote sensing technique applied to optical wavelengths is presented, consisting of 
an anomaly detection and estimation method, using a pixel-based modified version of the Kalman 
temporal filter. In order to detect anomalies of the observed variable, the proposed Kalman-based 
anomaly masking (KAM) algorithm relies on background state models of the expected 
measurement cycle of each pixel in nominal (abnormal) conditions. If the measurement 
significantly deviates from its expected value as predicted by a-priori state, an anomaly is 
identified. The algorithm also provides an a-priori estimate of the nominal scenario, exploiting the 
previous Kalman filter states. The product is an equivalent clear-air observation, expected to be 
measured in absence of anomaly (e.g., in absence of cloud coverage). The KAM algorithm exhibits 
a general applicability, since its estimates are empirically computed from pixel-based models and 
its thresholds can be set independently from the area of interest. An application of the KAM 
algorithm to clear-air nominal scenarios is shown using multispectral imagery from the 
geostationary Spinning Enhanced Visible and Infrared Imager, having 12 visible-infrared channels 
and repeat cycle of 15 minutes, on-board of the Meteosat Second Generation satellite. 
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Chapter 1. Introduction 
 
The remote sensing of electromagnetic wave properties is probably the most viable and fascinating 
way to observe and study physical media, comprising our planet and its atmosphere, ensuring a 
proper continuity in the observations. Applications are manifold and the scientific community has 
been studying and investing on new technologies, which would let us widen our knowledge of 
what surrounds us. 
 
This thesis aims at showing some novel techniques and corresponding applications in the field of 
the atmospheric remote sensing and radio-propagation, at both microwave and optical 
wavelengths. Radiopropagation channel conditions are indeed correlated directly to the remote 
sensed characterization of atmospheric quantities, relationship mainly governed by the so-called 
radiative transfer theory. Furthermore, from a telecommunication point of view, different 
propagation phenomena affect radio waves and understanding the effects of varying conditions 
on radio propagation has many practical applications: from choosing frequencies for international 
shortwave broadcasters, to designing reliable space communication systems, to radio navigation 
and operation of radar systems. 
 
The dissertation is structured as follows:  
 
Chapter 2 provides a collection of key concepts in the field of atmospheric remote sensing and 
radio-propagation, at both microwave and optical frequencies. The section is largely 
complemented by a number of historic and modern literature references.   
 
Chapter 3 is devoted to ground based microwave radiometric applications. In particular, the novel 
Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a 
ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-
the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of 
the Sun disk emission at K and Ka band and in the unexplored millimeter-wave frequency region 
at V and W band can be estimated by adopting different techniques. Using a unique dataset 
collected during 2015 through a Sun-tracking multifrequency radiometer, the Sun brightness 
temperature shows a decreasing behavior with frequency with values from about 9000 K at K band 
down to about 6600 K at W band. In the presence of precipitating clouds the Sun-tracking technique 
can also provide an accurate estimate of the atmospheric extinction up to about 32 dB at W band 
with the current radiometric system. Parametric prediction models for retrieving all-weather 
atmospheric extinction from ground-based microwave radiometers are then tested and their 
accuracy evaluated. Moreover, chapter 3 also addresses the characterization of suspended clouds 
in terms of atmospheric path attenuation. Well-known radiative models are adopted to provide an 
estimate of the equivalent clear-air path attenuation contribution, exploiting surface weather 
measurements and making several assumptions on their vertical stratification over the 
troposphere. However, the attenuation contribution due to non-precipitating clouds cannot be 
easily modelled by only using in-situ measurements, i.e. surface boundaries are not able to provide 
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enough information about the whole atmospheric status for a given instant. A stochastic approach 
is used to model the time evolution of the cloud contribution. Physically-based prediction models 
for all-weather path attenuation estimation at 32 GHz are applied to the measured radiometric 
brightness temperatures. The cloud contribution is then extrapolated and modelled as a log-normal 
stochastic process as a result of a detailed analysis in both amplitude and time domains.  
 
In chapter 4, a model chain for the prediction of the tropospheric channel for the downlink of 
interplanetary missions operating above Ku band is proposed. On top of a description of the 
approach, the chapter contains details on the validation and some examples of online operation of 
the model-chain. The latter has been already tested within a feasibility study applied to the 
BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting 
the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA) thanks 
to the ESA cross-support service. Three main modules compose the model-chain. A weather 
forecast module for the prediction of the atmospheric state expected during the downlink 
transmission. A radiopropagation module to simulate radiopropagation variables generated by the 
predicted atmospheric state. A downlink budget module for the statistical optimization of the 
satellite-to-Earth link. The latter exploits the spatial grid domain and the temporal evolution of the 
predicted radiopropagation variables to compute statistics and uncertainties of the outputs 
operational parameters to use during the transmission. A preliminary (and successful) validation 
of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the 
one received from Hayabusa-2. 
 
Chapter 5 recaps some studies performed in the context of International Telecommunication Union 
(ITU) activities of ESA. In particular, at the next ITU World Radiocommunication Conference 2019, 
Agenda Item 1.13 will address the identification and the possible additional allocation of radio-
frequency spectrum to serve the future development of the International Mobile 
Telecommunications (IMT) for 2020 and beyond, mainly focused on systems supporting the fifth 
generation of cellular mobile communications (5G). The frequency range of interest goes from 24.25 
to 86 GHz, which fully covers all millimeter bands used or planned by the European Space 
Agency’s space missions for high data rate transmissions. The chapter shows the potential impact 
of IMT deployments in terms of received radio frequency interference by ESA’s telecommunication 
links in frequency bands allocated to the Earth Exploration-Satellite Service and to the Space 
Research Service. Received interference can derive from several propagation mechanisms 
including line-of-sight propagation, diffraction, scatter, ducting, reflection/refraction, etc. which 
strongly depend on atmospheric conditions, radio frequency, link availability, distance and path 
topography; at any time a single mechanism or more than one may be present. Particular focus is 
given to the ESA’s tracking network and to the earth stations located in New Norcia (Australia), 
Cebreros (Spain), Malargüe Sur (Argentina) and Kiruna (Sweden). Results are shown in terms of 
required separation distances, i.e. the minimum distance between the earth station and the IMT 
station ensuring that the protection criteria for the earth station are met by the emissions of an IMT 
base station or user equipment.  
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A novel remote sensing technique applied to optical wavelengths is depicted in chapter 6. It 
consists of an anomaly detection and estimation technique, using a pixel-based modified version 
of the Kalman temporal filter. In order to detect anomalies of the observed variable, the proposed 
Kalman-based anomaly masking (KAM) algorithm relies on background state models of the 
expected measurement cycle of each pixel in nominal (abnormal) conditions. If the measurement 
significantly deviates from its expected value as predicted by a-priori state, an anomaly is 
identified. The KAM algorithm also provides an a-priori estimate of the nominal scenario, 
exploiting the previous Kalman filter states. The product is an equivalent clear-air observation, 
expected to be measured in absence of anomaly (e.g., in absence of cloud coverage). The KAM 
algorithm exhibits a general applicability, since its estimates are empirically computed from pixel-
based models and its thresholds can be set independently from the area of interest. An application 
of the KAM algorithm to clear-air nominal scenarios is shown using multispectral imagery from 
the geostationary Spinning Enhanced Visible and Infrared Imager, having 12 visible-infrared 
channels and repeat cycle of 15 minutes, on-board of the Meteosat Second Generation satellite. The 
area of interest covers West Africa for a test period of three months (December 2015 until February 
2016). This results in a massive amount of processed pixels (i.e., 1530x880 pixels for 96 timeslots 
per day). A validation of the clear-air KAM algorithm is presented by inter-comparing the detection 
results with the well-known EUMETSAT cloud mask product. The validation shows constant 
percentages of matching around 90% over the entire period of analysis. 
 
Finally, chapter 7 draws the conclusions plus considerations on future work and possible 
developments.  
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Chapter 2. Atmospheric Remote Sensing 
and Propagation fundamentals 
2.  I. Introduction 

Substantial information on the Earth’s environment is gained from the remotely sensed properties 
of electromagnetic waves that interact with the observed target [1]. The basic quantities involved 
in the information acquisition process are the electromagnetic field vectors, the associated power 
and their statistical parameters. On its side, the target exerts the imprinting on the waves according 
to the electric properties of the constitutive matter, which are therefore key elements to trace the 
physical features of interest from the measured data. The electromagnetic energy always transfers 
through parts of the terrestrial environment. The traversed medium consists of the atmosphere and 
of the layers of other materials that the wave has to cross along the path between source of 
radiation, target under observation, and observing platform. Wave propagation affects the 
performance of the Earth Observation (EO) systems not only because it changes the amplitude of 
the field, but also because it modifies the phase, which carries its own peculiar information.  
 
From a telecommunication point of view, radio waves are also affected by the phenomena of 
reflection, refraction, diffraction, absorption, polarization, and scattering [2]. Understanding the 
effects of varying conditions on radio propagation has many practical applications, from choosing 
frequencies for international shortwave broadcasters, to designing reliable mobile telephone 
systems, to radio navigation, to operation of radar systems. 
 
Generally speaking, the energy emanating from a medium can be measured by a sensor. That 
measurement is used to construct an image of the landscape beneath the platform or retrieve an 
associated product or information (e.g. useful to characterize radio-propagation channel, 
atmospheric quantities, etc.). The energy can be reflected sunlight so that the image recorded is, in 
many ways, similar to the view we would have of the earth’s surface from an airplane, although 
the wavelengths used in remote sensing are often outside the range of human vision. As an 
alternative, the upwelling or downwelling energy can be from the earth (and its atmosphere) itself 
acting as a radiator because of its own temperature. Finally, the energy detected could be scattered 
from the observed medium as the result of some illumination by an artificial energy source such as 
a laser or radar on the platform. 
 
In principle, remote sensing systems could measure emanating energy in any sensible range of 
wavelengths [3]. However, technological considerations, the selective opacity of the earth’s 
atmosphere, scattering from atmospheric particulates and the significance of the data provided 
exclude certain wavelengths. The major ranges utilized for earth resources sensing are between 
about 0.4 and 12 μm (the visible/infrared range) and between about 30 to 300 mm (the microwave 
range). At microwave wavelengths it is more common to use frequency rather than wavelength to 
describe ranges of importance. Thus, the microwave range of 30 to 300 mm corresponds to 
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frequencies between 1 GHz and 10 GHz. For atmospheric remote sensing, frequencies in the range 
20 to 200 GHz are often used. The significance of these different ranges lies in the interaction 
mechanism between the electromagnetic radiation and the materials being examined. In the 
visible/infrared range, the energy measured by a sensor depends upon properties such as the 
pigmentation, moisture content and cellular structure of vegetation, the mineral and moisture 
contents of soils and the level of sedimentation of water. At the thermal end of the infrared range, 
it is heat capacity and other thermal properties of the surface and near subsurface that control the 
strength of radiation detected. In the microwave range, using active imaging systems based upon 
radar techniques, the roughness of the cover type being detected and its electrical properties, 
expressed in terms of complex permittivity (which in turn is strongly influenced by moisture 
content) determine the magnitude of the reflected signal. In the range 20 to 60 GHz, atmospheric 
oxygen, water vapor and liquid water have a strong effect on transmission and thus can be inferred 
by measurements in that range. Thus, each range of wavelength has its own strengths in terms of 
the information it can contribute to the remote sensing process. Consequently, systems are built 
and optimized to operate and provide data captured in specific spectral ranges. 
 
The chapter is structured as follows: section 2.II provides some background on the dielectric 
properties of the air, at both microwave and optical frequencies; section 2.III provides an overview 
on microwave radiometry, from the fundamentals governing phenomena to a description of the 
radiometric systems. Section 2.IV is devoted to the description of terrestrial microwave 
propagation phenomena, often used for the prediction of the potential for interference among 
terrestrial systems; finally section 2.V recaps some concepts on optical remote sensing. All sections 
are well complemented by a large literature survey. 

2.  II. Dielectric behavior of the air 

The time-domain Maxwell’s equations can be expressed in terms of a system of differential 
equations in the space variables alone by assuming quasi-monochromatic fields [4]. Narrow-band 
fields are of particular interest in Earth observation, since they are apt to approximately represent 
both artificial (e.g., radar) signals and the natural radiation passing through radiometric channels, 
which separate the spectral components. It is indeed recognized that, the radiation is the result of 
a mixture of several sinusoidal oscillations generated by the energy conversion process, taking 
place in the source. For this particular reason, the spectrum of the electromagnetic field does not 
consist of a single line, rather it extends over a range of frequencies. The frequency spectra S of the 
electromagnetic radiation considered in practical applications have narrow bands, that is, they 
differ appreciably from zero in a narrow frequency range Δf about a central frequency f0. 
Maxwell’s equations in the frequency domain represented by analytic vectors and scalars become 
as follows 
 

𝛻𝛻 𝑥𝑥 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑯𝑯− 𝑱𝑱𝒎𝒎𝒎𝒎 (2.1) 
 

𝛻𝛻 𝑥𝑥 𝑯𝑯 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑬𝑬+ 𝑔𝑔𝑬𝑬 + 𝑱𝑱𝒔𝒔 (2.2) 
 

𝛻𝛻 ∙ 𝜖𝜖𝑬𝑬 = 𝜌𝜌𝑠𝑠 (2.3) 
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𝛻𝛻 ∙ 𝜇𝜇𝑯𝑯 = 0 (2.4) 

 
Where 𝑬𝑬 and 𝑯𝑯 are the electric and magnetic fields, 𝜌𝜌𝑠𝑠 is the charge density and 𝑱𝑱𝒔𝒔 and 𝑱𝑱𝒎𝒎𝒎𝒎 are the 
electric and magnetic source currents, respectively 
Equations (2.1)–(2.4) interconnect electric and magnetic fields with the sources, taking into account 
the effects of the materials, represented by their dielectric permittivity 𝜖𝜖, electrical conductivity 𝑔𝑔 
and magnetic permeability 𝜇𝜇. The coefficients of the equations depend on these electromagnetic 
parameters, therefore the fields clearly carry the imprinting by the material. 
 
A wide range of values of permittivity and conductivity are encountered in common terrestrial 
materials, while their magnetic permeability is usually quite close to that of vacuum (𝜇𝜇 ≈ 𝜇𝜇0).  
 
The atmosphere is of utmost importance in Earth observation, since: 

• it is a relevant observable component of the Earth’s environment, directly interacting with 
the human activity; 

• it interacts with any incoming or outgoing radiation, and thus it needs to be taken into 
account even when it is not direct subject of observation, e.g. in sensing surface based 
targets from elevated platforms. 

 
The atmosphere essentially consists of nitrogen (78.1%) and oxygen (20.9%), a small amount of 
water vapor and minor quantities of other gases, among which carbon dioxide, methane, and 
ozone. Because of the low polarizability of nitrogen, the permittivity of the air mainly results from 
the dielectric polarization of the other molecular species, of which the water vapor, being polar, is 
particularly active. 
 
Real and imaginary parts of the permittivity are expressed as the superposition of the contributions 
by the 𝑁𝑁𝐻𝐻2𝑂𝑂 individual interaction modes of single 𝐻𝐻2𝑂𝑂 molecules and the 𝑁𝑁𝑂𝑂2 modes of 𝑂𝑂2 
molecules, plus additional contributions [5]-[6]. 

2.  II.A. Microwave behavior 
At microwaves, the main interactive air gases are oxygen and, especially, water vapor, which 
determine the dominant trend with frequency of the real and imaginary parts of the air permittivity 
[8]-[9]-[10]. 
Figure 2-1 shows the trends of the real (𝜖𝜖𝑟̃𝑟) and imaginary (�𝜖𝜖𝑗̃𝑗�) parts of the dielectric permittivity 
for frequencies up to the millimeter-wave range, of the reference atmosphere, assumed at pressure 
1013 hPa (sea level), temperature 20 deg C and relative humidity 70 %. The shapes are mainly 
governed by: 
 

• Oxygen, which has a set of resonant lines resulting in the peak of �𝜖𝜖𝑗̃𝑗� around 61.2 GHz and 
a line at about 118.8 GHz; 

• Water vapor, with lines at 22.2 GHz and 183.3 GHz. 
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Figure 2-1: Real (𝜖𝜖𝑟̃𝑟) and imaginary (�𝜖𝜖𝑗̃𝑗�) parts of relative permittivity of air at standard 

conditions modeled [7] as a function of microwave frequency f (diagram from [1]) 

The diagrams show that the Lorentzian line shapes of the single molecular species are 
superimposed to the pedestal (the continuum) which increases smoothly with frequency. The 
continuously raising trend is attributed to the far wings of broadened resonant lines at higher 
frequencies [11], as well as to clusters of two (dimers) or more water vapor molecules in the air 
[12]-[13]-[14]-[15].  
It is common practice to assume two main contributors to the air relative microwave permittivity: 

• The Dry term accounting for the total amount of all polarizable molecules and linked to the 
total atmospheric pressure; 

• The Wet term, accounting for the density of the highly polarizable water molecules directly 
linked to water vapor partial pressure. 

 
For given total atmospheric and water vapor pressures, the permittivity decreases with the 
temperature, because increasing temperature enhances thermal agitation that hinders the action of 
the field in inducing oriented dipoles. On the other hand, the water vapor density in the air 
increases considerably with temperature, hence an overall growth of permittivity with the increase 
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of temperature actually occurs. To summarize, the dry term is higher, but more stable, whereas the 
wet term has lower values but with high variations, given the considerable dependence of vapor 
density on temperature and on the type of air mass.  
 
It is worth to point out that both real and imaginary parts of the dielectric permittivity change with 
altitude, following pressure variation with height. In fact, the decreasing air density lowers the 
number of molecules per unit volume. The height-decreasing pressure also changes the overall 
shape of the imaginary part of air permittivity in the neighborhood of the 60-GHz oxygen resonant 
complex [16]. Indeed, pressure broadening has the effect of merging single lines into a relatively 
smooth function of frequency, which characterizes �𝜖𝜖𝑗̃𝑗� at low altitudes. As pressure decreases with 
altitude, the individual lines tend to separate. 
 
Figure 2-1 indicates that real and imaginary parts of the air permittivity keep a generally increasing 
trend with increasing frequency beyond the microwave range. The growing trend is caused by the 
superposition of numerous resonant lines of atmospheric constituents located at higher 
frequencies. The high number of resonances of the atmospheric gases has the general effect of 
increasing the imaginary part of air permittivity especially in the infrared. In particular, the water 
molecule keeps contributing strongly to the air susceptibility, given the large number of resonances 
corresponding to rotational and roto-vibrational transitions that fall in the sub-mm wave band and 
in the infrared [17]. 

2.  II.B. Optical behavior 
In the optical domain, i.e., near infrared and visible, the resonances of atmospheric constituents 
rarefy and decrease in intensity, so that at the frequencies corresponding to visible wavelengths 
the air susceptibility is again approximately real. Modeling of permittivity in the visible and near 
infrared spectral range takes account of the main air constituents and water vapor, as well as of 
carbon dioxide [18]. 
 
It can be observed that the water vapor contribution, which is strong at microwaves, is quenched 
in the optical frequency range. Finally, at the high frequency end, that is, in the ultraviolet of 
interest to Earth observation, real and imaginary parts of the air susceptibility keep increasing with 
increasing frequency, given the approaching electronic resonances. It is worth mentioning that an 
additional analysis of the fine effects of the atmospheric constituents and of the physical parameters 
of air is needed when enhanced accuracy of the optical permittivity estimations is required by 
particular applications [19]. 
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2.  III. Microwave radiometry fundamentals 

The microwave spectral range (between 1 and 100 GHz) offers a unique opportunity to derive a 
nearly complete picture of the atmospheric thermodynamical state. Water vapor and several other 
gases as well as water in its liquid form emit microwave radiation making this spectral range 
particularly interesting to provide information on the cloudy atmosphere both from the ground 
and from satellite [20]. Most of the concepts reported in this section are extracted from [20] and 
complemented with a number of literature references. 
 
Ground-based microwave radiometer (MWR) measurements of atmospheric thermal emission are 
useful in a variety of environmental and engineering applications, including meteorological 
observations and forecasting, communications, geodesy and long-baseline interferometry, satellite 
validation, climate, air-sea interaction, and fundamental molecular physics. One reason for the 
utility of these measurements is that with careful design, microwave radiometers can be operated 
in a long-term unattended mode in nearly all weather conditions. An important feature is the 
nearly continuous observational capability on time scales of seconds to minutes [21]-[22]-[23].  
 
The following sections, 2.II.A and 2.II.B, are devoted to provide some background information on 
the radiative transfer theory of the atmosphere, with particular focus on the properties of 
atmospheric gases and hydrometeors, which determine atmospheric brightness temperatures and 
the weighting function at the different microwave frequencies. Section 2.II.C briefly describes 
microwave radiometer systems, together with a small survey on instrument calibration techniques. 

2.  III.A. Fundamentals of Radiative Transfer 
The basic ideas of radiative transfer and thermal emission are described, among others, by [25]-
[26]. Their application to microwave radiometric remote sensing is outlined in [24]-[27]-[28].  

 Emission 
An ideal blackbody absorbs all incident radiation and re-emits all of the absorbed radiation as a 
function of its temperature and frequency. The spectral distribution of a blackbody emission at 
temperature 𝑇𝑇 [K] and frequency 𝜈𝜈 [Hz]. 𝐵𝐵𝜈𝜈(𝑇𝑇) can be calculated from Planck’s law to:  
 

𝐵𝐵𝜈𝜈(𝑇𝑇) =
2ℎ𝜈𝜈3

𝑐𝑐2
 

1

𝑒𝑒
ℎ𝜈𝜈
𝑘𝑘𝑘𝑘 − 1

     [W · sr−1 · m−2 · Hz−1] (2.5) 

 
where ℎ is the Planck’s constant, 𝑘𝑘 is Boltzman’s constant and 𝑐𝑐 is the speed of light. This radiance 
expresses the emitted power per unit projected area, per unit solid angle and per unit frequency. 
Note the higher the temperature, the higher the emitted radiation. Most emitters, however, show 
a lower emission compared to that of a blackbody at the same temperature, i.e. the so-called “grey” 
body. If the fraction of incident energy from a certain direction absorbed by the grey body is 𝑒𝑒𝜈𝜈, 
then the amount emitted is 𝑒𝑒𝜈𝜈𝐵𝐵𝜈𝜈(𝑇𝑇). For a perfectly reflecting or transmitting body 𝑒𝑒𝜈𝜈 is zero and 
incident energy may be redirected or pass through the body without being absorbed. For an 
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upward-looking radiometer viewing a non-scattering medium, the equation that relates the 
actually observed radiance 𝐼𝐼𝜈𝜈 to the atmospheric state is the radiative transfer equation (RTE) [27]: 
 

𝐼𝐼𝜈𝜈 = 𝐵𝐵𝜈𝜈(𝑇𝑇𝑐𝑐)𝑒𝑒−𝜏𝜏𝑣𝑣 + � 𝐵𝐵𝜈𝜈�𝑇𝑇(𝑠𝑠)� 𝛼𝛼𝑣𝑣(𝑠𝑠)  𝑒𝑒−∫ 𝛼𝛼𝑣𝑣�𝑠𝑠′�𝑑𝑑𝑠𝑠′
𝑠𝑠
0   𝑑𝑑𝑑𝑑

∞

0
 (2.6) 

 
where 𝑠𝑠 is path length in m, 𝑇𝑇(𝑠𝑠) is the temperature in K at point s, 𝑇𝑇𝑐𝑐 the cosmic background noise 
of 2.725 K, 𝜏𝜏𝑣𝑣 the opacity or total optical depth:  
 

𝜏𝜏𝑣𝑣 = � 𝛼𝛼𝑣𝑣(𝑠𝑠) 𝑑𝑑𝑑𝑑
∞

0
 (2.7) 

 
where 𝛼𝛼𝑣𝑣(𝑠𝑠) is the absorption coefficient (m-1 or Np/km) at the point 𝑠𝑠. The first term in Eq. (2.6) 
describes the transmitted part of the cosmic background radiation and is mostly much smaller than 
the second term that describes the atmospheric emission. The use of the blackbody source function 
in (2.6) is justified by the assumption of local thermodynamic equilibrium in which the population 
of emitting energy states is determined by molecular collisions and is independent of the incident 
radiation field. For a plane parallel atmosphere, 𝑠𝑠 and the height 𝑧𝑧 are related by 𝑧𝑧 =  𝑠𝑠 ∙ sin𝜃𝜃, 
where 𝜃𝜃 is the elevation angle of the measurement. In order to simplify the unit of measurement, 
Planck's law can be solved for 𝑇𝑇. In case of a "grey" emitter 𝑇𝑇 will not be identical to the physical 
temperature of the emitter. Thus, this temperature is defined as the Planck-equivalent brightness 
temperature 𝑇𝑇𝑏𝑏. If the Rayleigh-Jeans limit holds (ℎ𝜈𝜈 << 𝑘𝑘𝑘𝑘) radiances 𝐼𝐼𝜈𝜈 = 𝐵𝐵𝜈𝜈(𝑇𝑇𝑏𝑏) can easily be 
converted to brightness temperatures via 𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅 = (𝑐𝑐2/2𝜈𝜈2𝑘𝑘) 𝐼𝐼𝜈𝜈  and are identical to the Planck 
equivalent. Using this definition, the RTE becomes:  
 

𝑇𝑇𝐵𝐵𝜈𝜈 = 𝑇𝑇𝑐𝑐𝑒𝑒−𝜏𝜏𝑣𝑣 + � 𝑇𝑇(𝑠𝑠) 𝛼𝛼𝑣𝑣(𝑠𝑠)  𝑒𝑒−∫ 𝛼𝛼𝑣𝑣�𝑠𝑠′�𝑑𝑑𝑠𝑠′
𝑠𝑠
0   𝑑𝑑𝑑𝑑

∞

0
 (2.8) 

 
By introducing the mean atmospheric temperature 𝑇𝑇𝑚𝑚𝑚𝑚, defined as: 
 

𝑇𝑇𝑚𝑚𝑚𝑚 =
∫ 𝑇𝑇(𝑠𝑠) 𝛼𝛼𝑣𝑣(𝑠𝑠)  𝑒𝑒−𝜏𝜏(0,𝑠𝑠)  𝑑𝑑𝑑𝑑∞
0

∫ 𝛼𝛼𝑣𝑣(𝑠𝑠)  𝑒𝑒−𝜏𝜏(0,𝑠𝑠)  𝑑𝑑𝑑𝑑∞
0

 (2.9) 

 
Eq. (2.8) can be simplified as follows: 
 

𝑇𝑇𝐵𝐵 = 𝑇𝑇𝑐𝑐𝑒𝑒−𝜏𝜏 + 𝑇𝑇𝑚𝑚𝑚𝑚(1− 𝑒𝑒−𝜏𝜏) (2.10) 
 
where we have omitted the frequency dependence for convenience. Note, that 𝛼𝛼𝜈𝜈 is a function of 
pressure, temperature, water vapor and cloud liquid. Information on these meteorological 
variables is obtained from measurements of 𝑇𝑇𝐵𝐵 as a function of 𝜈𝜈 and/or 𝜃𝜃. 
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 Scattering 
For frequencies below 100 GHz scattering by small atmospheric particles, i.e. molecules, aerosols 
and cloud droplets can be neglected. However, for larger precipitating particles scattering effects 
need to be taken into account. For an upward-looking microwave radiometer the RTE 
approximation from the former section can be generalized, e.g., [29]-[30]-[31]-[32], to: 
 

𝐼𝐼𝜈𝜈 = 𝐵𝐵𝜈𝜈(𝑇𝑇𝑐𝑐)𝑒𝑒−𝜏𝜏𝑣𝑣 + � 𝐽𝐽(𝑠𝑠) 𝛼𝛼𝑣𝑣(𝑠𝑠)  𝑒𝑒−∫ 𝛼𝛼𝑣𝑣�𝑠𝑠′�𝑑𝑑𝑠𝑠′
𝑠𝑠
0   𝑑𝑑𝑑𝑑

∞

0
 (2.11) 

 
where the pseudo-source function 𝐽𝐽 is given by: 
 

𝐽𝐽(𝑠𝑠) =
𝜔𝜔(𝑠𝑠)

4𝜋𝜋
� 𝑃𝑃(𝑠𝑠,Ω,Ω′) 𝐼𝐼𝜈𝜈(Ω) 𝑑𝑑Ω′ +  �1 −𝜔𝜔(𝑠𝑠)� 𝐵𝐵𝜈𝜈�𝑇𝑇(𝑠𝑠)�
4𝜋𝜋

 (2.12) 

 
with 𝜔𝜔 the single scattering albedo, 𝑃𝑃 the scattering phase function (normalized to 1) and 𝛺𝛺 the 
solid angle. The single scattering albedo is the ratio of scattering to total extinction. i.e. the sum of 
absorption and scattering. In case of a non-precipitating atmosphere scattering is negligible for 
frequencies below 100 GHz and 𝜔𝜔 becomes zero. Under this condition, equations (2.6) and (2.11) 
become equal. For a scattering medium the single scattering properties need to be known to 
compute the brightness temperatures. In case of spherical particles this can be done exactly using 
Mie-theory. Larger rain drops flatten at the bottom due to frictional forces and their scattering 
behavior can be calculated assuming rotational symmetric, e.g., using the T-Matrix method in [33]. 
[34]-[35] show the importance of taking into account the realistic shape of rain drops, and that the 
scattering signature of non-spherical precipitation sized particles can be detected by using dual-
polarized ground-based observations during rain at 19 GHz. Scattering by larger snow particles 
becomes noticeable at 90 GHz. Here, the computation of scattering properties becomes rather 
complicated as shape, density, aspect ratio, orientation and mass-size relation need to be 
considered [36].  
The simulation of 𝑇𝑇𝐵𝐵 (forward modelling) is typically used in inverse problems and parameter 
retrieval applications, in which meteorological and/or propagation information is inferred from 
measurements of 𝑇𝑇𝐵𝐵. For forward modeling the knowledge on the atmospheric absorption 
characteristics is fundamental. In order to evaluate the gas absorption models that provide 𝛼𝛼𝜈𝜈 the 
relevant meteorological variables are measured by radiosondes and the calculated brightness 
temperatures are then compared to measured ones. The simulation of 𝑇𝑇𝐵𝐵 is also useful for 
determining the effects of instrument noise on parameter retrieval or for determining optimal 
measurement configurations, such as 𝜈𝜈 and 𝜃𝜃. 

2.  III.B. Microwave absorption and emission of the troposphere 
The principal sources of atmospheric microwave emission and absorption are water vapor, oxygen, 
and cloud liquid (Figure 2-2). In the frequency region from 20 to 100 GHz, water-vapor absorption 
arises from the weak electric dipole rotational transition at 22.235 GHz, and a much stronger water 
vapor line at 183.31 GHz that is used at dry conditions [47]-[48]. The so-called continuum 
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absorption of water vapor most likely arises from the far wing contributions of higher-frequency 
resonances that extend into the infrared region. Oxygen absorbs due to a series of magnetic dipole 
transitions centered around 60 GHz and the isolated line at 118.75 GHz. Because of pressure 
broadening, i.e. the effect of molecular collisions on radiative transitions, both water vapor and 
oxygen absorption extend outside of the immediate frequency region of their resonant lines. There 
are also resonances by ozone that are important for stratospheric sounding [49]. In addition to 
gaseous absorption, scattering, absorption, and emission also originate from hydrometeors in the 
atmosphere. For liquid water, the emission is roughly proportional to the frequency squared. 

 Gaseous absorption models 
J. H. Van Vleck first published detailed calculations of absorption by water vapor and oxygen in 
[50]-[51]. The quantum mechanical basis of these calculations, including the Van Vleck-Weisskopf 
line shape, together with laboratory measurements, has led to increasingly accurate calculations of 
gaseous absorption. Currently, there are several absorption models that are widely used in the 
propagation and remote-sensing communities. Starting with laboratory measurements that were 
made in the late 1960s and continuing for several years, H. Liebe developed and distributed the 
computer code of his Microwave Propagation Model (MPM). One version of the model [52] is still 
used extensively and many subsequent models are compared with this one. Liebe later made 
changes to both water-vapor and oxygen models, especially to parameters describing the 22.235 
GHz water vapor line and the continuum [53]. 

 
Figure 2-2: Atmospheric opacity for U.S. standard atmosphere with liquid and ice water clouds. 

The ice water contribution is below 0.01 Np throughout the 10-100 GHz range. The spectral range 
of commercially available water vapor (WV; K-band 20-30 GHz) and temperature (V-band 50-60 

GHz) microwave profilers is indicated (figure from [20]).  

Rosenkranz, in [55]-[56], developed an improved absorption model that also is extensively used in 
the microwave propagation community. However, there are many issues in the determination of 
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parameters that enter into water vapor absorption modeling, and a clear discussion of several of 
these issues is given in [54]. Relevant to the discussion is the choice of parameters to calculate the 
pressure-broadened line width, which in the case of water vapor, is due to collisions of H2O with 
other H2O molecules (self-broadening), or from collisions of H2O molecules with those of dry air 
(foreign broadening). In fact, Rosenkranz [55] based his model on Liebe and Layton’s [52] values 
for the foreign-broadened component, and those from [53] for the self-broadened component. The 
most recent version of Rosenkranz’s model [57] is described in [58]. A RTE model that is used 
extensively in the US climate research community is the Line by Line Radiative Transfer Model 
(LBLRTM) by S. Clough and his colleagues [59]-[60]. An extension of the model, called 
MONORTM, is most appropriate for millimeter wave and microwave radiative transfer studies 
[60]. MONORTM has been compared extensively with simultaneous radiation and radiosonde 
observations near 20 and 30 GHz. Important refinements of absorption models have occurred and 
are occurring in the last decade, additional details can be found in [20]. 

 Extinction due to hydrometeors 
For spherical particles, the classical method to calculate scattering and absorption (i.e., extinction) 
is through the Lorenz-Mie Equations [29]-[65]-[66]. When calculating absorption for non-
precipitating clouds the Rayleigh approximation is used, for which the liquid absorption depends 
only on the total liquid amount and does not depend on the drop size distribution and scattering 
is negligible. The Rayleigh approximation is valid when the scattering parameter 𝛽𝛽 =
 | 𝑛𝑛(2𝜋𝜋𝜋𝜋 / 𝜆𝜆 )|  < <  1 [29]. Here, 𝑟𝑟 is the particle radius, 𝜆𝜆 is the wavelength, and 𝑛𝑛 is the complex 
refractive index.  
 
An important physical property for the calculations is the complex dielectric constant of the 
particle. This dielectric constant of liquid water is described by the dielectric relaxation spectra of 
Debye [67]. The strong temperature dependence of the relaxation frequency is linked to the 
temperature dependent viscosity of liquid water. Therefore, the cloud absorption coefficient also 
shows significant temperature sensitivity. Above 0 °C the dielectric constant can be well measured 
in the laboratory and a variety of measurements have been made from 5 to 500 GHz [147]. However 
for super-cooled water below 0 °C, the situation is less certain and models of [68]-[69]-[147] differ 
by 20 to 30% in this region. This is relevant for cloud remote sensing, because measurements of 
super-cooled liquid are important for detection of aircraft icing [70]. A more detailed literature 
survey, also addressing the ice characterization, can be found in [20]. 
 
For rain and other situations for which the 𝛽𝛽 is greater than roughly 0.1, the full Mie equations, 
combined with a modeled (or measured) size distribution, must be used. Generally for a given 
wavelength and particle, the single particle contribution is calculated and the total extinction are 
then obtained by integration over the size distribution of particles. Due to the non-spherical shape 
of ice hydrometeors, the situation is more complicated when scattering plays a role. For larger snow 
particles scattering becomes significant at frequencies above 60 GHz and realistic models of the 
snow particle shape together with techniques like the Discrete Dipole Approximation need to be used 
to calculate the scattering properties [71]. Special situations occur when ice particles start to melt. 
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A very thin skin of liquid water can be sufficient to cause significant absorption and thus emission. 
Usually, these conditions apply to precipitating clouds in the so-called radar "bright band".  

2.  III.C. Radiometric systems 
Today, microwave radiometers measuring downwelling thermal emission at the ground are 
routinely operated in unattended 24h/7days a week mode at many sites worldwide. Commercial 
systems include multi-channel systems for the retrieval of IWV and LWP and temperature and 
humidity profilers (e.g., [37]-[38]-[39]). Elevation scanning is often used for boundary layer 
profiling [40]-[41]. Also, radiometers scanning in both azimuth and elevation are used to observe 
hemispheric variations of water vapor and clouds [42]-[43]. 
The fundamentals of microwave radiometers are clearly discussed in [24]-[44]. Radiometers used 
to observe the atmosphere are comprised of a highly directional antenna, a sensitive receiver, 
followed by a detector unit and a data-acquisition system. To produce meteorologically important 
information, the total system requires calibration. 

 Hardware 
In order to treat the observation as a pencil beam, a highly directional antenna with a beam width, 
commonly defined as Full Width at Half Maximum (FWHM), in the order of a few degrees is 
needed. In the microwave spectral range the diffraction limit causes the antenna size to become 
relatively large. Symmetric beam patterns of Gaussian shape (typically between 1 and 6°) are 
achieved with corrugated feed horns which are sometimes illuminated by a scanning system. 
Because many remote-sensing systems perform scanning in a vertical plane, low side lobes are 
required to minimize contamination from ground emission. Because surface-based antennas are 
deployed in rain and snow, protection from and reduction or elimination of environmental effects 
is of primary concern. This is typically achieved by using hydrophobic radome material covering 
the antenna that is further kept clean by a heated blower. 

 
Figure 2-3: Schematic view of a multi-frequency heterodyne microwave receiver. Low noise 

amplifiers (LNA) are implemented in the radio frequency (RF) and intermediate frequency (IF). 
After the signal splitting band pass filtering, amplification and detection takes place in the 

individual channels. The analogue signals are combined by a multiplexer (MUX) and converted 
by analogue digital converters (ADC) to digital counts (figure from [20]). 
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Because of the low radiances emitted in this spectral range microwave radiometers need to amplify 
the signal received at the antenna by about 80 dB. Throughout the last decade, low noise amplifiers 
(LNA) have become available for frequencies up to 100 GHz. Therefore, several radiometers are 
based on direct detection techniques, while heterodyne receivers are still widely implemented 
(Figure 2-3). In a heterodyne receiver, the radio frequency (RF) from the atmosphere is down-
converted to an intermediate frequency (IF) by a mixer using a frequency stable local oscillator 
(LO). In principle two sidebands with 𝜈𝜈𝑅𝑅𝑅𝑅  =  𝜈𝜈𝐿𝐿𝐿𝐿  ±  𝜈𝜈𝐼𝐼𝐼𝐼 are converted to the IF. This is often 
exploited when observations along a single symmetric absorption line are performed. In this case 
the LO is set to the line centre frequency and contributions from equally distant frequencies on 
both sides of the line are combined into a single channel. Thus, a single LO can be used for several 
frequency channels along the line and respective profiling. This double side band approach 
increases the signal-to-noise ratio by a factor of two. If this technique is used for window channels, 
low IF center frequencies have to be used to realize typical channel bandwidths of a few GHz. If 
only one frequency band shall be received, a single sideband filter, for example of Martin-Puplett 
or Fabry Perot type, has to be implemented.  
Multi-channel microwave radiometers typically split the IF signal into the different channels by 
band pass filters (Figure 2-3). Each channel’s signal is further amplified, detected, and finally 
converted to digital counts. For detection the radiometer use a square law detector, in which the 
output voltage is proportional to the input power; i.e., the voltage 𝑈𝑈 is proportional to the 
brightness temperature 𝑇𝑇𝐵𝐵. 

 Calibration  
For accurate observations of brightness temperatures, the signal calibration is of uttermost 
importance. To convert the radiometer’s output voltages 𝑈𝑈 into brightness temperatures, 𝑇𝑇𝐵𝐵, the 
measurement process can be modelled via:  
 

𝑈𝑈𝑎𝑎 = 𝑔𝑔(𝑃𝑃𝑟𝑟 + 𝑃𝑃𝑎𝑎)𝛼𝛼 (2.13) 
 
Here, 𝑔𝑔 is the gain, 𝛼𝛼 the nonlinearity factor and 𝑃𝑃𝑟𝑟 the noise power of the receiver itself that can 
be related to the receiver temperature 𝑇𝑇𝑟𝑟 via inverting the Planck-formula in (2.5). In the same sense, 
𝑃𝑃𝑎𝑎(𝑇𝑇𝑎𝑎) denotes the power received at the antenna (antenna temperature) either by the atmosphere 
or from an external target. The sum of receiver and antenna temperature gives the system noise 
temperature 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑟𝑟 + 𝑇𝑇𝑎𝑎. A low system noise is desired because 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  together with the integration 
time 𝛥𝛥𝛥𝛥 and the frequency bandwidth 𝛥𝛥𝛥𝛥 determine the minimum detectable brightness 
temperature change: 
 

∆𝑇𝑇𝐵𝐵 =
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

√𝛥𝛥𝛥𝛥 𝛥𝛥𝛥𝛥
 (2.14) 

 
Typical values of ∆𝑇𝑇𝐵𝐵 for state-of-the-art microwave systems reach 0.1 K. 
 
A common simplification in the design of calibration systems for receivers is the assumption of a 
linear radiometer response. In this case 𝛼𝛼 = 1 and only two calibration parameter need to be 
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determined. A seemingly straightforward calibration method is to view two external blackbody 
targets that are kept at two widely separated temperatures [44]. Preferably, the target temperatures 
bracket the range of antenna temperatures emitted from the scene. In addition, it is important to 
construct targets with high emissivity such that reflections from external sources are negligible, 
and to have the targets sufficiently large that at least 1½ to 2 projected antenna diameters are 
captured by the target system. 
 
Targets are frequently constructed with a surface having high thermal conductivity covered with 
a thin layer of very absorbing material. Many times, a corrugated pyramidal surface with 
wavelength-dependent spacing and depth ratios is constructed to reduce reflections and hence to 
increase emissivity, i.e. to realize a blackbody. For calibration, it is important to know the physical 
temperature of the target with high accuracy. Therefore, often measurements of target 
temperatures at several locations within the target are performed [45]. Another approach is to 
cancel thermal gradients across the load by venting of air that is very efficient for ambient 
temperature targets.  
For realizing a calibration point at a lower temperature blackbody targets immersed in cryogenic 
fluids, such as liquid nitrogen (LN2), are commonly used. Hereby, one must carefully considers the 
reflection of the ambient scene as well as the reflection coefficient of the cryogen. The boiling point 
of the liquid nitrogen and thus the physical temperature of the cold load depends on the barometric 
pressure 𝑝𝑝. A practical challenge is to avoid formation of condensed water on the parts of the outer 
calibration setup of the radiometer, through which the received radiation is to be transmitted or by 
which it is reflected.  
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Figure 2-4: Detector response as a function of input noise 𝑇𝑇. 𝑇𝑇𝑐𝑐 is the total noise when the 

radiometer is terminated with a cold load (e.g. liquid nitrogen cooled absorber) and 𝑇𝑇ℎ the 
corresponding noise temperatures for the ambient load, 𝑇𝑇𝑛𝑛 the additionally injected noise. 

Accurate noise injection measurements have shown that the assumption of linear system response 
is not valid in general. Calibration errors of 1-2 K have been observed at brightness temperatures 
in between the two calibration target temperatures. This system nonlinear behavior is mainly 
caused by detector diodes needed for total power detection, and becomes important when low 
noise systems are concerned. The problem is to determine 𝑔𝑔, α and 𝑇𝑇𝑟𝑟 experimentally within a so-
called absolute calibration as three unknowns cannot be calculated from a measurement on two 
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reference targets. A solution is to generate four temperature points by additional noise injection of 
temperature 𝑇𝑇𝑛𝑛, which leads to four independent equations with four unknowns (2.13). 𝑇𝑇𝑛𝑛 is the 
equivalent brightness temperature of a noise diode that is coupled into the input of each receiver 
to inject a reference signal. Noise diodes generate stable white noise with Gaussian characteristics 
and can be switched on and off rapidly. They do not provide an absolute reference and must be 
calibrated against an external reference. Once burnt in, however, they can provide a stable 
secondary standard.  
Calibration experiments with commercially available state-of-the-art radiometer systems have 
shown that LN2 calibrations have an absolute accuracy of approximately 1 K at optically thin 
channels [106]. These results were obtained by successively performing multiple calibrations 
within a time window of hours and by subsequently applying the different sets of calibration 
parameters to one and the same time series of voltages measured during characteristic clear-sky 
situations. The spread in the obtained brightness temperatures lies within +/-1 K for channels in 
the K band and in the optically thin V band underlining the repeatability of the calibration 
procedure. The absolute accuracy decreases to the accuracy of the internal ambient reference target 
when moving towards optically thick frequency channels. In order to obtain this retrieval accuracy, 
the calibration procedure as outlined by the manufacturer must be strictly followed.  
Even if a system is well thermally stabilized, gain fluctuations typically occur on shorter time scales 
than variations in 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠. Therefore, Dicke-type radiometer use magnetically controlled Dicke 
switches to direct the receiver input alternately to the antenna or an internal reference load (see 
Figure 2-3). This reduces the integration time by a factor of two but with a cycling of several Hz 
gain fluctuations can be minimized effectively. Such a relative calibration – though on longer time 
scales (couple of minutes compared to milliseconds) – can also be realized by regularly pointing 
the antenna to an internal ambient temperature target. 
 
In the transmission windows from 20 to 45 GHz or from 70 to 150 GHz, clear-sky brightness 
temperatures can be in the 10 to 50 K range and, hence, operational deployment of targets whose 
temperatures are in this range is difficult. In this low transmission case, the so-called tipping-curve 
calibration method can give a high degree of accuracy [46] and has been commonly used 
throughout the microwave community. In this method, brightness temperatures are measured as 
a function of elevation angle θ, and are then converted to opacity 𝜏𝜏(𝜃𝜃) using the mean radiating 
temperature approximation in (2.9). For each angle θ, an angular-dependent mean radiating 
temperature 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃) is used to derive the optical depth 𝜏𝜏(𝜃𝜃) by 
 

𝜏𝜏(𝜃𝜃) = ln�
𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃) − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃)− 𝑇𝑇𝐵𝐵(𝜃𝜃)� (2.15) 

 
In Equation (2.15), the antenna temperature 𝑇𝑇𝑎𝑎 has been adjusted to 𝑇𝑇𝐵𝐵(𝜃𝜃). If the system is well 
calibrated, then the linear fit of 𝜏𝜏(𝜃𝜃) as a function of (normalized) air mass 𝑚𝑚 = csc(𝜃𝜃), will pass 
through the origin; conversely, if 𝜏𝜏(𝑚𝑚)  =  𝜏𝜏(1)𝑚𝑚 +  𝑏𝑏 does not pass through the origin, then a 
single parameter in the radiometer equation is adjusted until it does. Note, that when the 
calibration is achieved, then the slope of the line is equal to the zenith opacity. Several of the factors 
affecting the accuracy of tipping calibrations were analyzed in [46]. The most serious of these errors 
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are those caused by non-stratified atmospheric conditions and can occur due to clouds and 
horizontal variations in the water vapor field. Various criteria, based on symmetric scans, are 
available to determine the quality of a tipping calibration [46]. Other problems arise from non-
correct levelling of the instrument, and effects of the earth curvature and antenna beamwidth. 
Especially when pointed at low elevation angles, the antenna beamwidth can pose a problem as 
the signals received at the lower and higher angles than the nominal pointing do not cancel out, 
and low side lobes are required to minimize contamination from ground emission. Due to the finite 
antenna beam width, the airmass-angle relationship is no longer correctly given by 𝑚𝑚 = csc(𝜃𝜃), 
which is applicable for a radiometer with an infinitely small beam width. Also, errors increase with 
the increase of airmass [46]. These problems may give rise to absolute uncertainties larger than 1 K 
if not dealt within in a consistent way. 
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2.  IV. Terrestrial microwave propagation for interference 
prediction 

Congestion of the radio-frequency spectrum has made necessary the sharing of many frequency 
bands between different radio services, and between the different operators of similar radio 
services. In order to ensure the satisfactory coexistence of the terrestrial and Earth-space systems 
involved, it is important to be able to predict with reasonable accuracy the interference potential 
between them, using propagation predictions and models which are acceptable to all parties 
concerned, and which have demonstrated accuracy and reliability. 
 
Many types and combinations of interference path may exist between stations on the surface of the 
Earth, and between these stations and stations in space, and prediction methods are required for 
each situation. Interference may arise through a range of propagation mechanisms whose 
individual dominance depends on climate, radio frequency, time percentage of interest, distance 
and path topography. At any one time a single mechanism or more than one may be present. The 
principal interference propagation mechanisms are as follows [61]: 
 

• Line-of-sight (Figure 2-5): The most straightforward interference propagation situation is 
when a line-of-sight transmission path exists under normal (i.e. well-mixed) atmospheric 
conditions. However, an additional complexity can come into play when sub path 
diffraction causes a slight increase in signal level above that normally expected. Also, on all 
but the shortest paths (i.e. paths longer than about 5 km) signal levels can often be 
significantly enhanced for short periods of time by multipath and focusing effects resulting 
from atmospheric stratification (see Figure 2-6). 

 
• Diffraction (Figure 2-5): Beyond line-of-sight (LoS) and under normal conditions, diffraction 

effects generally dominate wherever significant signal levels are to be found. For services 
where anomalous short-term problems are not important, the accuracy to which diffraction 
can be modeled generally determines the density of systems that can be achieved. The 
diffraction prediction capability must have sufficient utility to cover smooth-earth, discrete 
obstacle and irregular (unstructured) terrain situations. 

 
• Tropospheric scatter (Figure 2-5): This mechanism defines the “background” interference 

level for longer paths (e.g. more than 100-150 km) where the diffraction field becomes very 
weak. However, except for a few special cases involving sensitive receivers or very high 
power interferers (e.g. radar systems), interference via troposcatter will be at too low a level 
to be significant. 

 
• Surface ducting (Figure 2-6): This is the most important short-term propagation mechanism 

that can cause interference over water and in flat coastal land areas, and can give rise to 
high signal levels over long distances (more than 500 km over the sea). Such signals can 
exceed the equivalent “free-space” level under certain conditions. 
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• Elevated layer reflection and refraction (Figure 2-6): The treatment of reflection and/or 
refraction from layers at heights up to a few hundred meters is of major importance as these 
mechanisms enable signals to overcome the diffraction loss of the terrain very effectively 
under favorable path geometry situations. Again the impact can be significant over quite 
long distances (up to 250-300 km). 

 
• Hydrometeor scatter (Figure 2-6): Hydrometeor scatter can be a potential source of 

interference between terrestrial link transmitters and earth stations because it may act 
virtually omnidirectionally, and can therefore have an impact off the great-circle 
interference path. However, the interfering signal levels are quite low and do not usually 
represent a significant problem. 

 
A basic problem in interference prediction (which is indeed common to all tropospheric prediction 
procedures) is the difficulty of providing a unified consistent set of practical methods covering a 
wide range of distances and time percentages; i.e. for the real atmosphere in which the statistics of 
dominance by one mechanism merge gradually into another as meteorological and/or path 
conditions change. Especially in these transitional regions, a given level of signal may occur for a 
total time percentage which is the sum of those in different mechanisms.  
In recommendation ITU-R P.452 [61], the clear-air method consists of separate models for 
diffraction, ducting/layer-reflection, and troposcatter. All three are applied for every case, 
irrespective of whether a path is LoS or trans-horizon. The results are then combined into an overall 
prediction using a blending technique that ensures for any given path distance and time percentage 
that the signal enhancement in the equivalent notional line-of-sight model is the highest attainable. 
On the other hand, the hydrometeor-scatter interference prediction is defined in [61] as a 
completely separate method. 
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Figure 2-5: Long-term interference propagation mechanisms (image from [61]) 

 
 

 

Figure 2-6: Anomalous (short-term) interference propagation mechanisms (image from [61]) 
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2.  V. Optical remote sensing  

 
Figure 2-7: Spectral reflectance characteristics of common earth surface materials in the visible 

and near-to-mid infrared range. 1=Water, 2=vegetation, 3=soil. The positions of spectral bands for 
common remote sensing instruments are indicated (image from [3]). 

Figure 2-7 depicts how the three dominant earth surface materials of soil, vegetation and water 
reflect the Sun’s energy in the visible/reflected infrared range of wavelengths [3]. It is seen that 
water reflects about 10% or less in the blue-green range, a smaller percentage in the red and 
certainly no energy in the infrared range. Should the water contain suspended sediments or should 
a clear water body be shallow enough to allow reflection from the bottom then an increase in 
apparent water reflection will occur, including a small but significant amount of energy in the near 
infrared range. This is a result of reflection from the suspension or bottom material. Soils have a 
reflectance that increases approximately monotonically with wavelength, however with dips 
centered at about 1.4 μm, 1.9 μm and 2.7 μm owing to moisture content. These water absorption 
bands are almost unnoticeable in very dry soils and sands. In addition, clay soils also have hydroxyl 
absorption bands at 1.4 μm and 2.2 μm. 
 
The vegetation curve is considerably more complex than the other two. In the middle infrared 
range it is dominated by the water absorption bands at 1.4 μm, 1.9 μm and 2.7 μm. The plateau 
between about 0.7 μm and 1.3 μm is dominated by plant cell structure while in the visible range of 



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Atmospheric Remote Sensing and Propagation fundamentals 

 

 23  
  

wavelengths it is plant pigmentation that is the major determinant. The curve sketched in Figure 
2-7 is for healthy green vegetation. This has chlorophyll absorption bands in the blue and red 
regions leaving only green reflection of any significance. This is why we see chlorophyll pigmented 
plants as green. An excellent review and discussion of the spectral reflectance characteristics of 
vegetation, soils, water, snow and clouds can be found in [62] and [63]. This includes a 
consideration of the physical and biological factors that influence the shapes of the curves, and an 
indication of the appearances of various cover types in images recorded in different wavelength 
ranges. 
 

 
Figure 2-8: Energy from perfect radiators (black bodies) as a function of wavelength (image from 

[3]). 

In wavelength ranges between about 3 and 14 μm, the level of solar energy actually irradiating the 
earth’s surface is small. This is due to both the small amount of energy leaving the sun in this range 
by comparison to the higher levels in the visible and near infrared range (Figure 2-8), and the 
presence of strong atmospheric absorption bands between 2.6 and 3.0 μm, 4.2 and 4.4 μm, and 5 
and 8 μm [64]. Consequently, much remote sensing in these bands is of energy being emitted from 
the earth’s surface or objects on the ground rather than of reflected solar radiation. 
 
Figure 2-8 shows the relative amount of energy radiated from perfect black bodies of different 
temperatures. As seen, the sun at 6000 K radiates maximally in the visible and near infrared regime 
but by comparison generates little radiation in the range around 10 μm. The earth, at a temperature 
of about 300 K has its maximum emission around 10 to 12 μm. Thus, a sensor with sensitivity in 
this range will measure the amount of heat being radiated from the earth itself. Hot bodies on the 
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earth’s surface, such as bushfires, at around 800 K, have a maximum emission in the range of about 
3 to 5 μm. Indeed, to map fires, a sensor operating in that range would be used. Real objects do not 
behave as perfect black body radiators but rather emit energy at a lower level than that shown in 
Figure 2-8. The degree to which an object radiates by comparison to a black body is referred to as 
its emittance. Thermal remote sensing is sensitive therefore to a combination of an object’s 
temperature and emittance, the last being wavelength dependent. 
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Chapter 3. Ground-based microwave 
radiometry for Earth-satellite attenuation 
retrieval 
3.  I. Introduction 

Since the beginning of the wireless telecommunications history, the exploration of new frequency 
regions has been always aimed to find allocation for a plenty of new services (e.g.: radio navigation, 
radio astronomy, remote sensing, telecommunication to cite some examples). Both 
telecommunication and space exploration systems continuously demand increasing uplink and 
downlink capabilities able to satisfy specific requirements and the use of frequencies at K-band and 
above seems to be the only way forward. Such frequency bands offer several performance 
advantages, provided by larger available bandwidth and higher gain for the same antenna size. 
Because of the Shannon–Hartley theorem [82], larger bandwidth is directly proportional to higher 
data transfer rates which is a particular attractive feature for those applications and 
telecommunications protocols that require high data transfer rates (e.g. video, deep space, internet 
of things data streaming, etc.). Additionally, a larger bandwidth enables capabilities like wideband 
spread-spectrum techniques [83] that allow to further reduce for impairments caused, for example, 
by multipath, clutter and radio frequency interferences. In addition, smaller antenna sizes for a 
fixed gain, fostered by the use of higher frequencies, is an appealing characteristic for space born 
applications due to size constrains. For the reasons previously exposed, accompanied by the fact 
that the today’s spectrum use is crowded and it does not permit to allocate additional services, an 
interest to improve spectrum usage gained attention from the research community as well as 
private companies. A particular focus is in the exploitation of extreme high frequency bands or 
millimeter wave bands (wavelength and frequency in the range from 1 mm to 10 mm and from 30 
GHz to 300 GHz, respectively) to meet global radio communication needs [84]. At millimeter wave 
frequencies, wavelengths shrink by an order of magnitude (if compared to centimeter microwave 
frequencies) and became comparable with hydrometeors sizes. Indeed, propagation impairments 
get more severe as the frequency increases, i.e. the impact of radio-meteorological factors 
degrading the link availability gets quite relevant [72]-[73]. Not only the impact of rain significantly 
affects the channel performances [72], but also the contributions of atmospheric gases and non-
precipitating clouds are not negligible [24]-[77]-[78]. This elevates the importance of having 
accurate propagation models. The latter aim at predicting, in statistical terms, the level of the signal 
to noise ratio expected at the receiver station for a given path [87] thus aiding Earth-to-Earth or a 
satellite-to-Earth link budget design as well as to deliver a better quality to remote sensing data. 
By resorting to the Friis transmission equation in presence of path attenuation [76], the signal to 
noise ratio can be described in terms of atmospheric optical thickness / attenuation (A) undergone 
by the transmitted signal during its travel and the brightness temperature (𝑇𝑇𝐵𝐵) that accounts for the 
self-emission of the atmosphere delivered to the receiving antenna in the form of thermal noise 
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[87]. Thus, 𝐴𝐴 and 𝑇𝑇𝐵𝐵 become key quantities in designing a propagation model especially at the 
underexplored millimeter wave bands.  
Beacon campaigns and microwave radiometry are the most interesting techniques used to 
characterize both physical and statistical characteristics of the atmosphere, despite very limited 
and constrained [79]-[80]. If no radio-frequency observations are available for a given antenna 
ground station site, the Earth-space radiocommunication systems design needs to rely on other 
information sources to estimate the propagation conditions. 

3.  II. Sun-Tracking Microwave Radiometry 

The Sun-tracking (ST) microwave (MW) radiometry technique consists in spatially varying the 
observation angle on and off the Sun by means of a ground-based radiometer antenna [81]-[85]. In 
this respect, ST uses the Sun as a signal source of radiation transmitting through the atmosphere 
[81]. The interest of the ST microwave radiometry is typically twofold. First, by properly choosing 
the switching time interval and taking into account the main lobe aperture under clear-sky 
conditions, it is possible to estimate the effective brightness temperature of the Sun, which is a 
valuable data in radio astronomy [86]. Secondly, the ST technique allows the retrieval of the 
atmospheric extinction in all weather conditions with an upper limit depending on the radiometric 
accuracy [80]. 
In radio astronomy, MW observations of the Sun are dominated by large multi-element arrays [89], 
which have the advantage of high spatial resolution, high sensitivity and ability to make maps on 
very short timescales, discriminating the rather weak signal of the quiet Sun from the strong active 
region signals [90]. Indeed, most solar radio observations have focused on active region 
phenomena such as flares and coronal mass ejections, demonstrating powerful diagnostic 
capabilities of large microwave arrays to address open issues regarding the quiet Sun [91], [92]. At 
sub-millimeter frequencies Sun observations have historically been performed with single-dish 
antennas thus showing comparatively a poorer spatial resolution [93]. Solar measurements at 
multiple frequencies are useful as the emitted brightness arises from different layers of the solar 
atmosphere. For instance, the lower chromosphere is typically detected at frequencies of 100–1000 
GHz, the middle chromosphere at 20–100 GHz, and the upper chromosphere at frequencies of 2–
20 GHz. The solar corona is usually measured at frequencies of 2 GHz and below [86].  
The application of a ST microwave radiometry technique for the retrieval of the atmospheric 
properties was envisaged in early works to complement Sun observations with radio telescopes 
[94]. In the seventies Hogg and Chu [95] proposed the ST technique as an independent way to 
measure rain attenuation with a good dynamic range. Shimada et al. [96] proposed a method to 
provide clear-sky absorption statistics. The potential of ground-based MW radiometry in 
radiopropagation and remote sensing applications has been also demonstrated by Marzano et al. 
[80], [97], who proposed to develop and validate retrieval models for estimating the total 
atmospheric extinction due to precipitation and its associated rainfall rate [98]-[100]. However, the 
difficulty to assess the capability of ground-based MW radiometry for atmospheric parameter 
estimation is typically linked to the lack of collocated beacon measurements at the same 
observation frequency [101]. In this respect, ST microwave radiometry is a self-consistent approach 
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where atmospheric path attenuation estimates can be also verified in almost all weather conditions 
and even in the unexplored range of millimeter and sub-millimeter wavelengths. 
 
The Sun-tracking operation mode considers a constant elevation angle (𝜃𝜃 in Figure 3-1) between 
two relatively close TB measurements, which are taken only varying the azimuth angle by first 
pointing the antenna toward the Sun source (𝜑𝜑1 in Figure 3-1) and then measuring the atmospheric 
contribution without the Sun (𝜑𝜑2 in Figure 3-1) [127]. A value at elevation 𝜃𝜃 is retrieved exploiting 
the difference between the brightness temperature toward the Sun and one without the Sun. This 
operation mode allows removing possible brightness temperature biases when atmospheric optical 
thickness is estimated. 
 

 
Figure 3-1: ST-MWR operation: the radiometer tracks the Sun during its motion considering a 
constant elevation angle 𝜃𝜃 between two close measurements taken varying the azimuth from 

toward-the-Sun 𝜑𝜑1 to off-the-Sun 𝜑𝜑2. 

Few operational ST multi-frequency microwave radiometers are currently operational. One of 
these is the system installed in Rome (NY, USA) at Air Force Research Laboratory (AFRL) [117]. 
This AFRL Sun-tracking microwave radiometer (ST-MWR) has four channels with receivers at K 
band (23.8 GHz), Ka (31.4 GHz), V band (72.5 GHz) and W band (82.5 GHz) and is a modified 
version of a commercial water-vapor and cloud-liquid microwave radiometer series, to allow an 
automatic Sun-switching and tracking operation mode. A unique relatively long dataset has been 
collected by the AFRL Sun-tracking MWR in 2015. These data represent an opportunity to test 
ground-based single-antenna ST for both radio astronomy and radiopropagation. Moreover, as an 
additional application, ST microwave radiometry can be used as a system calibration tool to 
determine receiving systems noise temperature [102] as well as antenna boresight pointing errors 
[103]. 
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This chapter has several purposes: i) to summarize the basics of ST microwave radiometry and 
investigate the issues of antenna pattern beam-filling, error sensitivity and expected limitations; ii) 
to illustrate the data processing of the AFRL available measurements in 2015 and the need to apply 
proper radiometric approaches to exploit ST potential; iii) to estimate the brightness temperature 
of the Sun at K, Ka, V and W band using the collected dataset at AFRL in 2015 and comparing with 
available radio astronomical data; iv) to propose the parametric retrieval of the atmospheric 
extinction at K, Ka, V and W band due to precipitating clouds and validating it with ST 
measurements in different weather conditions. 
The sub-chapter is structured as follows. In Section 3.II.A two different techniques, based on 
elevation scanning and surface meteorological data, are rigorously proposed to estimate the Sun 
brightness temperature and the atmospheric extinction from ST-MWR measurements. Section 
3.II.B is devoted to the description, quality control and processing of the available ST-MWR data. 
Section 3.II.C describes the application of the two methodologies for the Sun brightness 
temperature estimate and discusses the results. Section 3.II.D shows the retrieval of atmospheric 
extinction in cloudy and precipitating conditions. Sensitivity and error budget analyses are carried 
out in the Appendix A, with respect to antenna pattern, beam filling, atmospheric attenuation 
uncertainties, and instrument spectral response. 
 
Appendix B shows an application of Sun-Tracking radiometry by inter-comparing measurements 
with several radiative transfer simulation sources. The objective is to characterize the atmospheric 
radiometeorological parameters (optical thickness and brightness temperature) at centimeter and 
millimeter waves. To this aim, we have exploited two radiative transfer models: a 3-dimensional 
model (3D-RTM), driven by numerical weather forecasts, and a stochastic 1-dimensional model 
(1D-RTM), fed by a synthetic clouds dataset. We have compared the radiative transfer simulations 
with measurements from two ground-based microwave radiometers: a profiler and a Sun-tracking 
radiometer. The comparisons between simulations and measurements provide satisfactory results 
that assess the reliability of the 3D-RTM with some biases, in terms of brightness temperature, that 
should be investigated. 3D-RTM turns out to be able to successfully reproduce correlations 
between brightness temperature and optical thickness and correlations among the different 
frequency channels. This confirms the potential of the combined use of weather forecast models 
and physically-based radiative transfer models. On the other hand, 1D-RTM reveals to be able to 
reproduce frequency-channel correlation trends, though additional climatological set-up are 
needed to make the model exploitable for the computation of statistics of atmospheric optical 
thickness. These comparisons also highlight some possible calibration errors in the Sun-tracking 
radiometer that must be fixed. 

3.  II.A. Theoretical background 
Considering ground-based observations, the measured antenna noise temperature 𝑇𝑇𝐴𝐴 along the 
radiometer antenna pointing angle (𝜃𝜃0,𝜑𝜑0) is the convolution between the received sky brightness 
temperature and the normalized antenna power radiation pattern 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑) [24]:  

 

𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0) =
∫ 𝑇𝑇𝐵𝐵(𝜃𝜃,𝜑𝜑)𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑4𝜋𝜋

∫ 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑4𝜋𝜋

 (3.II.1) 
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With 

 

� 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑
4𝜋𝜋

= Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3.II.2) 

 
where Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the antenna radiation-pattern solid angle. All the involved parameters are also 
dependent on frequency, which is neglected in the formulations in favor of geometric 
considerations.  
When pointing out-of-the-Sun (ooS), the sky brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, impinging upon the 
antenna along the zenith angle 𝜃𝜃 and azimuth 𝜑𝜑 [24], can be written as 

 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃,𝜑𝜑) = 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)� + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)   (3.II.3) 

 
where 𝑇𝑇𝑚𝑚𝑚𝑚 is the sky mean radiative temperature (that can be defined in all-weather conditions 
[101], [79]), 𝜏𝜏 is the atmospheric optical thickness (in Neper) and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 is the brightness temperature 
of the cosmic background (equal to about 2.73 K).  
When pointing at the Sun, the toward-the-sun (twS) sky brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is given by 
the sum of two components, the Sun brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, attenuated by the atmosphere, 
and the brightness temperature of the sky  

 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃,𝜑𝜑) = 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑) + 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)� + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑) (3.II.4) 

 
According to (3.II.1), the computation of the antenna noise temperature 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, measured observing 
the Sun, implies that the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is observed by the antenna within the solid angle Ω𝑠𝑠𝑠𝑠𝑠𝑠 subtended 
by the Sun. Therefore, it holds: 

 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0,𝜑𝜑0) =
1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
� �𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑) + 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)�

Ω𝑠𝑠𝑠𝑠𝑠𝑠
+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)� 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑 

+
1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
� �𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)�+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)�

4π−Ω𝑠𝑠𝑠𝑠𝑠𝑠
∙ 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑 

(3.II.5) 

 
which can be rewritten as 

 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0,𝜑𝜑0) =
1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
� 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑) ∙ 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑 

Ω𝑠𝑠𝑠𝑠𝑠𝑠

+
1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
��𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)�+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)� 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑 
4π

 

(3.II.6) 
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It is useful to introduce the beam-filling factor 𝑓𝑓Ω as the ratio between the Sun radiation-pattern 
solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the antenna beamwidth radiation-pattern solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, it holds 

 

𝑓𝑓Ω =
∫ 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑Ω𝑠𝑠𝑠𝑠𝑠𝑠

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
=
Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (3.II.7) 

 
In ground-based radiometry, it is also commonly assumed that the atmospheric contribution is 
constant within the main beam and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is approximated by the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 at (𝜃𝜃0,𝜑𝜑0). If it is assumed 
that the Sun has a uniform brightness temperature within the beam (e.g., Ω𝑠𝑠𝑠𝑠𝑠𝑠 is much smaller than 
the antenna main beam half-power solid angle), then, using (3.II.7), we can approximate (3.II.6) as 

 
𝑇𝑇𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 (𝜃𝜃0,𝜑𝜑0) ≅ 𝑓𝑓Ω𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑0) + 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0,𝜑𝜑0)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑0)�+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑0) (3.II.8) 

 
Analogously, for the ooS mode, we can simplify  

 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0,𝜑𝜑1) =
1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
��𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃,𝜑𝜑)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)�+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃,𝜑𝜑)� 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑1,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑 
4π

≅ 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0,𝜑𝜑1)�1 − 𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑1)�+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑1) 

(3.II.9) 

 
In the ST technique, the radiometer antenna is pointing alternatively on and off the Sun, and 
between these two measurements, the elevation angle 𝜃𝜃0 is kept constant, while the azimuth angle 
is switched from 𝜑𝜑0 (twS) to 𝜑𝜑1 (ooS). Then, after a few observations, the elevation angle is varied, 
in accordance with the Sun movement along its diurnal ecliptic. 
The ST antenna noise temperature difference for each pointing angle can then be expressed by: 

 
Δ𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0,𝜑𝜑1) = 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0,𝜑𝜑0)− 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0,𝜑𝜑1) (3.II.10) 

 
If the switching between ooS and twS observation modes is fast enough and the azimuth distance 
is chosen so that the Sun is just outside the field of view of the instrument, it can be assumed that 
the mean radiative temperature and optical thickness do not change between the two observation 
modes (i.e. 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0,𝜑𝜑0) ≅ 𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0,𝜑𝜑1) and 𝜏𝜏(𝜃𝜃0,𝜑𝜑0) ≅ 𝜏𝜏(𝜃𝜃0,𝜑𝜑1)). Substituting (3.II.8) and (3.II.9) into 
(3.II.10) we obtain: 

 
Δ𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0) ≅ 𝑓𝑓Ω𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒−𝜏𝜏(𝜃𝜃0,𝜑𝜑0) (3.II.11) 

 
The previous equation gives the basis for estimating 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and the atmosphere path attenuation, 
as described in the following subsections.  

 Estimation of Sun brightness temperature in clear sky 
During clear-sky conditions, the ST technique can be used to estimate the brightness temperature 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 emitted by the Sun. Two different approaches can be applied: i) the Langley elevation-based 
self-consistent method and ii) the Tmr-based meteorologically-oriented method. Both methods are 
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able to provide reliable results with the availability of radiometric measurements in clear air 
conditions, when 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 estimates are less affected by the atmosphere variability. In both methods, 
a plane-parallel horizontally stratified and azimuthally homogeneous atmosphere is assumed and 
the “secant law” is applied to describe the elevation angle dependence of the optical thickness. 
The Langley technique is commonly used in sun-photometry for determining the Sun radiance at 
the top of the atmosphere with ground-based instruments [81], [85]. It exploits the antenna noise 
temperature difference in (3.II.11) according to: 

 
𝑙𝑙𝑙𝑙[Δ𝑇𝑇𝐴𝐴(𝜃𝜃0)] = ln[𝑓𝑓Ω𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵]− 𝜏𝜏(𝜃𝜃0) = ln[𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ ] − 𝜏𝜏𝑧𝑧 𝑚𝑚(𝜃𝜃0) (3.II.12) 

 
where 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  is the brightness temperature of the Sun weighted by the filling factor 𝑓𝑓Ω  and 𝑚𝑚(𝜃𝜃0) 
stands for atmospheric air mass, equal to 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃0). Under the plane-parallel atmosphere 
assumption, it holds that 𝑙𝑙𝑙𝑙[Δ𝑇𝑇𝐴𝐴(𝜃𝜃0)] is linearly dependent on the air mass 𝑚𝑚(𝜃𝜃0) and we can 
estimate 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  through the exponential of the intercept of the linear best-fitting curve. Finally, 
exploiting the beam-filling factor 𝑓𝑓Ω, as given in (3.II.7), the sun brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is 
computed: 

 

𝑙𝑙𝑙𝑙[Δ𝑇𝑇𝐴𝐴(𝜃𝜃0)] = 𝑎𝑎 + 𝑏𝑏𝑚𝑚(𝜃𝜃0)  →    𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗

𝑓𝑓Ω
=

exp(𝑎𝑎)
𝑓𝑓Ω

 (3.II.13) 

 
The meteorological technique is based on the radiometer equation (3.II.9) in clear air [81], [117]. In 
a horizontally-stratified clear air, we can obtain the atmospheric extinction 𝜏𝜏(𝜃𝜃0) according to: 

 

𝜏𝜏(𝜃𝜃0) = ln �
𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0)− 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0) − 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃0)� (3.II.14) 

 
In (3.II.14), the mean radiating temperature 𝑇𝑇𝑚𝑚𝑚𝑚 of the atmosphere is needed. It can be interpolated 
from concurrent radiosonde observation (RaOb) or estimated directly from surface temperature 𝑇𝑇𝑠𝑠, 
pressure 𝑝𝑝𝑠𝑠 and relative humidity 𝑅𝑅𝑅𝑅𝑠𝑠 in clear air [104]-[105]. Details on the computation of the 𝑇𝑇𝑚𝑚𝑚𝑚 
are given later in this section. From (3.II.11), using the ST measurements, the Sun brightness 
temperature is computed according to: 

 

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗

𝑓𝑓Ω
=

1
𝑓𝑓Ω
�Δ𝑇𝑇𝐴𝐴(𝜃𝜃0) ∙ 𝑒𝑒𝜏𝜏(𝜃𝜃0)� (3.II.15) 

 
Note that, with respect to the Langley technique, which provides one estimate from the fitted 
regression line, the meteorological technique provides a time series of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.  
In order to compute 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, the filling factor 𝑓𝑓Ω in (3.II.7) must be evaluated. Note that the Sun 
radiation-pattern solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can be computed according to (3.II.7): 

 

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = � 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑
Ω𝑠𝑠𝑠𝑠𝑠𝑠

 (3.II.16) 
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A typical assumption is that 𝐹𝐹𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑) ≅ 1 over Ω𝑠𝑠𝑠𝑠𝑠𝑠, so that the effect of the radiometer 
antenna pattern can be neglected. In this case the filling factor is given by 𝑓𝑓Ω ≅ Ω𝑠𝑠𝑠𝑠𝑠𝑠/Ω𝑎𝑎𝑎𝑎𝑎𝑎 being 
Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≅ Ω𝑠𝑠𝑠𝑠𝑠𝑠. The Sun solid angle Ω𝑠𝑠𝑠𝑠𝑠𝑠 can be then obtained from: 

 

Ω𝑠𝑠𝑠𝑠𝑠𝑠 ≅
𝜋𝜋
4
Θ𝑠𝑠𝑠𝑠𝑠𝑠2 ≅

𝜋𝜋𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠2

𝑅𝑅𝐸𝐸𝐸𝐸2
 (3.II.17) 

 
where 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 is the radius of the Sun, approximated as a circular disk, and 𝑅𝑅𝐸𝐸𝐸𝐸 is the Earth-Sun 
average distance, and Θ𝑠𝑠𝑠𝑠𝑠𝑠 is the zenithal-plane angle subtended by the Sun. The last right-hand 
side term of (3.II.17) is obtained by approximating the solid angle as the ratio between the object 
cross area and its square distance. 
However, if the antenna beamwidth cross-section is comparable with the diameter of the Sun, such 
assumption is no longer valid. To account for it, a Gaussian shape has been used to model the 
radiometer antenna normalized pattern 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 main beam, as suggested by the radiometer 
manufacturer [106]. Thus, we can express 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 as [111]: 

 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜑𝜑) = 𝑒𝑒−ln(2) �2 𝜃𝜃
ΘML

�
2

    (3.II.18) 

 
where ΘML is the half-power beamwidth of the antenna main beam. Then, assuming 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≅ 𝜃𝜃: 

 

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = � � 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜑𝜑) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
Θ𝑠𝑠𝑠𝑠𝑠𝑠
2

0

2𝜋𝜋

0

 ≅
𝜋𝜋

4 ln(2)ΘML
2 �1 − 𝑒𝑒−ln(2) �Θ𝑠𝑠𝑠𝑠𝑠𝑠ΘML

�
2

� (3.II.19) 

 
The antenna radiation-pattern solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can be obtained from (3.II.2) by considering the 
antenna main beam efficiency 𝜂𝜂𝑀𝑀𝑀𝑀 and calculating the antenna main lobe radiation-pattern solid 
angle Ω𝑃𝑃𝑃𝑃𝑃𝑃 for the Gaussian-shape beam in (3.II.18): 

 

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
Ω𝑃𝑃𝑃𝑃𝑃𝑃
𝜂𝜂𝑀𝑀𝑀𝑀

=
∫ 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜑𝜑)𝑑𝑑𝑑𝑑4π

𝜂𝜂𝑀𝑀𝑀𝑀
≅

1
𝜂𝜂𝑀𝑀𝑀𝑀

𝜋𝜋
4 ln(2)ΘML

2 �1 − 𝑒𝑒−ln(2) � 2𝜋𝜋ΘML
�
2

�

≅
1
𝜂𝜂𝑀𝑀𝑀𝑀

𝜋𝜋
4 ln(2)ΘML

2  
(3.II.20) 

 
where 𝜂𝜂𝑀𝑀𝑀𝑀 is defined as the ratio between the main lobe radiation solid angle and the antenna one. 
It is possible to neglect the exponential term for ΘML values up to 20°.  
Summarizing, the expression of the filling factor 𝑓𝑓Ω is obtained from the following expression: 

 

𝑓𝑓Ω = 𝜂𝜂𝑀𝑀𝑀𝑀 �1 − 𝑒𝑒−ln(2) �Θ𝑠𝑠𝑠𝑠𝑠𝑠ΘML
�
2

� (3.II.21) 

 
using (3.II.19) and (3.II.20). The possible effects of antenna pattern side lobes are modeled and 
discussed in the Appendix A. 
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 Atmospheric extinction in precipitating clouds 
Starting from (3.II.11), provided that estimates of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  are available for instance from ST 
measurements obtained during clear sky, the extinction 𝐴𝐴𝑆𝑆𝑆𝑆 (in dB) in all weather conditions can 
be retrieved from the Δ𝑇𝑇𝐴𝐴 differences between ooS and twS measurements, according to 

 

𝐴𝐴𝑆𝑆𝑆𝑆(𝜃𝜃0,𝜑𝜑0) = 4.343 𝜏𝜏(𝜃𝜃0,𝜑𝜑0) = 4.343 ln �
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ (𝜃𝜃0,𝜑𝜑0)
Δ𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0) � (3.II.22) 

 
In the presence of clouds or precipitation, as the atmospheric extinction significantly increases, the 
Sun signal is also increasingly attenuated, and therefore the antenna noise temperature difference 
between the two measurement modes ooS and twS decreases. For heavy precipitation, the 
contribution of the Sun is completely masked by the rain attenuation and the Δ𝑇𝑇𝐴𝐴 differences are 
only dependent on the radiometer noise and the atmosphere variability, providing an upper limit 
to the application of the technique for the retrieval of rain attenuation [80]. 

3.  II.B. Measurement Dataset 
The available dataset consists of 163 days of measurements collected by the ground-based AFRL 
ST-MW radiometer from May to October 2015 in Rome, NY, USA (43.2°N, 75.4°W) at angles 
between 20° and 70°. The AFRL ST-MWR has four channels with receivers at 23.8, 31.4, 72.5 and 
82.5 GHz and is a modified version of the RPG LPW-U72-82 water-vapor and cloud-liquid 
microwave radiometer [106], [112]. It is provided with an azimuth positioner allowing a scan step 
of 0.15° in elevation and 0.1° in azimuth. The track of the Sun along the ecliptic is based on input 
data (latitude, longitude, time) and it is performed in a Sun-switching operation mode, keeping the 
elevation angle 𝜃𝜃0 constant, and varying the azimuth angle from 𝜑𝜑0 (twS) to 𝜑𝜑1 (ooS) according to 
(3.II.10). The integration time of each measurement is set to 1 second and the azimuth positioner 
switches every 6 seconds in order to perform the integration with fixed antenna position. The 
worst-case root-mean-square noise of 0.15 K is to be expected for a scene temperature of 300 K, 
assuming the overall bandwidth of 230 MHz and 1 second integration time. Therefore, 1-second 
integration time is enough for our purposes. One could theoretically integrate for up to 5-6 seconds 
(elevation and azimuth angles are constant for about 6 seconds), however it is not recommended 
since the Sun's position could vary within the mentioned interval. The processing and quality-
control procedures applied to the radiometer data are described in the following. 

 Clear-air data discrimination 
Both Langley and meteorological techniques need measurements in clear-sky to estimate 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 
The discrimination has been carried out through a scalar quantity named Status Sky Indicator (SSI), 
purely based on the measured brightness temperatures. The method has been successfully applied 
in several applications with ground-based radiometers [113],[114]. SSI is defined as 
 

𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃0) =
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(31.4 𝐺𝐺𝐺𝐺𝐺𝐺)(𝜃𝜃0)–  𝑐𝑐(𝜃𝜃0) 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(23.8 𝐺𝐺𝐺𝐺𝐺𝐺)(𝜃𝜃0)  (3.II.23) 
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with 
 

𝑐𝑐(𝜃𝜃0) = −0.13 𝑚𝑚2  +  6.3 𝑚𝑚 +  2.1 (3.II.24) 
 

where c is a parameter dependent on air mass 𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃0) and 𝜃𝜃0 is the elevation angle. A clear 
air condition is assumed if SSI is less than a given threshold 𝑆𝑆𝑆𝑆𝐼𝐼𝑡𝑡ℎ given by 
 

𝑆𝑆𝑆𝑆𝐼𝐼𝑡𝑡ℎ(𝜃𝜃0) = −0.00012 𝑚𝑚2  +  0.0066 𝑚𝑚 +  0.31 (3.II.25) 
 
A clear-sky day is assumed if the number of measurements for which the SSI value is below the 
threshold is larger than the 98% of available samples (neglecting the non-clear-air samples in the 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 estimation). 
Table 3-1 details the available measurement dataset providing a monthly classification in terms of 
clear, cloudy and rainy days. The clear-air days have been identified by using the SSI criterion as 
described before, whereas the discrimination of rainy days has been carried out by looking at the 
rain flag directly provided by the radiometer. 
 

TABLE 3-1: MONTHLY CLASSIFICATION OF CLEAR, CLOUDY AND RAINY DAYS DURING AFRL ST-MWR 
AVAILABLE MEASUREMENTS 

MONTH CLEAR CLOUDY RAINY TOTAL 
May 2016 5 13 4 22 
June 2016 0 19 10 29 
July 2016 2 22 7 31 

August 2016 0 21 6 27 
September 2016 1 21 8 30 

October 2016 7 12 5 24 

 Radiosounding dataset 
SSI parameterization in (3.II.23) has been set up by performing radiative transfer simulations of 
brightness temperatures at 23. 8 and 31.4 GHz at several elevation angles applied to a long-term 
available radiosonde observation (RaOb) dataset. The closest RaOb site to Rome, NY, is located at 
Albany County Airport, NY, USA (WMO station ID code 72518, WBAN ID code 14735), about 140 
km from the radiometer. RaOb data belonging to the period 1994-2012 have been collected for this 
study. Downwelling brightness temperatures have been generated using a plane parallel radiative 
transfer equation (RTE) scheme [115] with an updated version of Rosenkranz [56] for gas 
absorption and a cloud model as given in [116].  
The RaOb dataset has been also used to generate corresponding mean radiating temperatures 𝑇𝑇𝑚𝑚𝑚𝑚 
at the same frequencies and angles. Monthly regression coefficients for each frequency and angle 
were computed to relate 𝑇𝑇𝑚𝑚𝑚𝑚 values to the surface temperature 𝑇𝑇𝑠𝑠, pressure 𝑝𝑝𝑠𝑠 and relative humidity 
𝑅𝑅𝑅𝑅𝑠𝑠 provided by the radiosondes: 
 

𝑇𝑇𝑚𝑚𝑚𝑚(𝜃𝜃0) = 𝑎𝑎0(𝜃𝜃0) + 𝑎𝑎1(𝜃𝜃0)𝑇𝑇𝑠𝑠 + 𝑎𝑎2(𝜃𝜃0)𝑝𝑝𝑠𝑠 + 𝑎𝑎3(𝜃𝜃0)𝑅𝑅𝑅𝑅𝑠𝑠 (3.II.26) 
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where the regression coefficients 𝑎𝑎𝑖𝑖 are dependent on the elevation angle 𝜃𝜃0 (one set for each 
considered frequency). Finally, the regression coefficients have been fitted with respect to air mass 
m to provide the final coefficients 𝑎𝑎𝑖𝑖. Those coefficients were then applied to the concurrent surface 
measurements from the meteorological sensors that are part of the radiometer equipment. 

 Filtering toward-the-Sun observations in clear air 
The maximum 𝑇𝑇𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 values were held on for each elevation angle to compute 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 with both 
Langley and Meteorological technique. AFRL-MWR sun-tracking mode maintains a constant 
elevation for a certain time and the Sun does not remain stationary during that period. The best 
matching observation corresponds to the maximum value, where the Sun disk is centered with 
respect to the antenna beamwidth. Only for the Langley technique, a binning average with respect 
to air mass (steps of 0.1) was performed to achieve an equal distribution of samples with airmass 
and not to influence the linear regression in (3.II.13). 

 Evaluation of antenna beamwidth 
The AFRL MWR antenna is a feed-horn/parabola system shaped to reduce the sidelobes to less 
than -30 dB at K-band and less than -40 dB at V and W band [106]. The antenna radiation pattern 
results approximately Gaussian, following the approximation given in (3.II.18). In order to evaluate 
the filling factor in (3.II.21), both the Sun disk angle Θ𝑠𝑠𝑢𝑢𝑢𝑢 and the half-power beamwidth Θ3dB 
values must be retrieved [117]. Higher accuracy is needed in knowing ΘML exact values with 
respect to the ones provided by RPG LPW-U72-82 technical specifications (3.7°, 3.3°, 1.3° and 1.3°, 
at 23.8, 31.4, 72.5 and 82.5 GHz, respectively). The radiation pattern has been measured by scanning 
the radiometer across the Sun, i.e. letting the Sun drift across the radiometer path. From the known 
ephemeris, it has been possible to determine the relative angular position of the sun assuming a 
uniform disk Θ𝑠𝑠𝑠𝑠𝑠𝑠 of 0.533° arch. Finally, the measured brightness temperatures have been fit to a 
Gaussian profile convolved with the sun to obtain ΘML measurements for each frequency. The 
AFRL full-width half-power beamwidth values are equal to 3.74°, 2.97°, 1.47°, and 1.30° at 23.8, 
31.4, 72.5 and 82.5 GHz, respectively with a main beam efficiency 𝜂𝜂𝑀𝑀𝑀𝑀 of 0.969 at Ka band and 0.979 
at V and W band [108]. In appendix A, detailed theoretical sensitivity analysis and error budget 
have been reported, with particular emphasis on side lobe contributions. 

3.  II.C. Sun brightness temperature estimates 
The analysis of the measured antenna noise temperature time series can give an insight on the ST 
concept and MW radiometric data behavior. Figure 3-2 shows the time series of ST 𝑇𝑇𝐴𝐴 
measurements of both ooS (lower curves) and twS (upper curves) for the case study of October 10, 
2015 at the four AFRL-MWR available frequencies. The trend observed at 23.8 and 31.4 GHz with 
respect to time and so to elevation (Figure 3-2a) is similar for both 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 : at the beginning 
of the daily Sun-tracking, higher 𝑇𝑇𝐴𝐴 values are observed at low elevation due to a larger 
atmospheric contribution, reaching their minimum at the solar noon (i.e. maximum tracking 
elevation).  
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Figure 3-2: Time series of ST-MWR measurements in terms of antenna noise temperatures for a 
case studies referring to a clear air (October 10, 2015) at the 4 AFRL-MWR available frequencies: 

a) 23.8 and 31.4 GHz; b) 72.5 and 85.5 GHz. 

In Figure 3-2b, the time series at 72.5 and 82.5 GHz show an opposite trend with elevation for 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
and 𝑇𝑇𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 , with the latter reaching their maximum values at the solar noon. Such behavior is 
explained by recalling (3.II.8) and the increasing impact of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  contribution at K, Ka and V, W 
band, because of the increasing filling factor 𝑓𝑓Ω. At K and Ka band, the atmospheric contribution 
with air mass still dominates over that one due to the Sun, whereas in V and W band it is the 
reverse. The behavior in the presence of clouds or precipitation is described in Section II.D.  
Figure 3-3 shows the estimate of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  using the Langley technique for each frequency and for the 
case study of October 10, 2015, exploiting the natural logarithm of the antenna noise temperature 
difference versus air mass. The fitted linear regressions are shown as black dashed lines, and R-
squared statistics are also given. As discussed in Section II.A, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  is computed according to 
(3.II.13) from the intercept of the fitted line, while the slope is an estimate of the daily average 
atmospheric zenith extinction. Figure 3-4 shows the estimate of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  for October 10, 2015, by using 
the meteorological technique for each frequency. The average values of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  are also shown as 
black dashed lines.  
 
Daily 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  estimates obtained by the two techniques for all the available clear-sky dataset are 
given in Table 3-2. Then, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values were computed by dividing those estimates by the Sun filling 
factor 𝑓𝑓Ω. The average estimates for both 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  and 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are given in Table 3-3. The values of the 
estimated beam filling factors are also reported; these were computed using AFRL-derived values 
described in Section II.B.  
Table 3-4 reports minimum and maximum deviations with respect to the daily mean of the fifteen 
examined clear-air days for both techniques. A standard deviation over the daily time series has 
been carried out to provide the Meteorological technique deviation. To put deviations on a 
comparable scale, the Langley deviations have been computed supposing a Normal-distributed 
percentile associated to the linear regression in (3.II.13). By evaluating the 68.27% confidence 
intervals we are able to obtain deviation values equivalent to the Meteorological ones. 
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Figure 3-3: Application of the Langley technique to estimate 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  (128 samples equally spaced in 
terms of air mass), as discussed in sect. II.B, for each frequency on October 10, 2015: a) 23.8 

(R2=0.9367) and 31.4 GHz (R2=0.9630); b) 72.5 (R2=0.9984) and 85.5 GHz (R2=0.9909). 

 
 
 

 

Figure 3-4: Estimates of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  using the meteorological technique for each frequency on October 
10, 2015. 
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TABLE 3-2: LANGLEY AND METEOROLOGICAL DAILY ESTIMATES OF 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  

LANGLEY 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ [K] 
 23.8 GHz 31.4 GHz 72.5 GHz 82.5 GHz 

06/05/15 121.70 185.99 590.18 745.83 
08/05/15 120.54 182.17 573.24 716.34 
21/05/15 122.16 184.11 578.43 727.40 
23/05/15 120.71 182.49 563.58 703.72 
24/05/15 117.69 179.05 545.31 681.66 
03/07/15 122.04 181.61 559.67 710.62 
16/07/15 118.18 178.29 566.02 711.41 
26/09/15 122.19 191.52 586.17 729.72 
02/10/15 122.45 189.36 578.12 706.84 
08/10/15 122.59 193.28 586.96 727.22 
10/10/15 119.79 189.91 571.63 702.97 
11/10/15 122.56 193.01 587.58 728.51 
15/10/15 122.70 192.86 587.14 727.15 
23/10/15 120.76 186.50 572.84 698.24 
26/10/15 121.74 188.88 582.65 712.93 

METEOROLOGICAL 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ [K] 
 23.8 GHz 31.4 GHz 72.5 GHz 82.5 GHz 

06/05/15 124.05 189.68 564.22 704.09 
08/05/15 121.64 185.33 570.65 710.55 
21/05/15 119.84 184.21 571.80 709.88 
23/05/15 119.66 184.29 570.71 707.81 
24/05/15 119.62 183.63 567.61 707.61 
03/07/15 120.44 184.48 565.26 705.74 
16/07/15 119.74 184.19 564.30 703.32 
26/09/15 123.86 191.05 589.66 730.19 
02/10/15 124.26 190.89 592.92 723.28 
08/10/15 123.59 191.30 582.63 726.86 
10/10/15 123.47 190.93 585.69 727.18 
11/10/15 124.56 192.41 593.56 734.70 
15/10/15 124.56 191.80 581.76 729.38 
23/10/15 124.17 190.58 602.84 735.99 
26/10/15 123.77 190.03 586.08 726.32 
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When comparing the Langley and the meteorological methods, we note that they provide very 
similar results. Differences exist because of the assumptions underlying their applicability. In the 
Langley technique, the daily attenuation variability affects the slope estimations and in turns the 
intercept (ideally, it should be independent as air mass is extrapolated to zero). As such, only the 
most stable days in clear-sky can be used for the estimate. Conversely, the meteorological technique 
has fewer constraints, with the price that it provides much larger uncertainty to the associated 
average value. The advantage of the Langley technique is that it is a stand-alone method, without 
the need of resorting to RTE models or the need of additional ancillary measurements. 
 

TABLE 3-3: LANGLEY AND METEOROLOGICAL AVERAGE ESTIMATE INTER-COMPARISON 
 Langley Meteorological 

f [GHz] 𝑓𝑓Ω 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ [K] 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ [K] 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 
23.8 0.0136 121.19 8942 122.48 9037 
31.4 0.0214 186.60 8719 188.32 8799 
72.5 0.0853 575.30 6741 579.31 6788 
82.5 0.1078 715.37 6638 718.86 6670 

 
TABLE 3-4: LANGLEY AND METEOROLOGICAL ESTIMATE DEVIATIONS INTER-COMPARISON 

 Langley deviation Meteorological deviation 
f [GHz] Min [K] Max [K] Min [K] Max [K] 

23.8 0.30 0.91 0.48 1.19 
31.4 0.31 0.82 0.70 1.90 
72.5 1.22 5.57 3.05 11.34 
82.5 1.62 8.97 4.34 16.33 

 
The estimated 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values decrease with increasing frequency ranging from about 9000 K down 
to about 6600 K. These values are consistent with those from radiotelescope observations [89], [102], 
and models [118]. 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values at W band agree with a radiation originating from the Sun lower 
chromosphere. In particular, K-band measurements are available in previous researches: i) 
comparing the result at 23.8 GHz in Table 3-3 with respect to the results at 20.7 GHz in [109] and 
[110], we have obtained percentage deviations of 14.2% and 20.9%, respectively; ii) comparing the 
result at 31.4 GHz in Table 3-3 with respect to the results at the same frequency in [109] and [110], 
we have obtained percentage deviations of 4.0% and 11.7%, respectively. It is pointed out here that 
in the ST technique, at frequencies above 10 GHz, the Sun appears as a rather uniform disk [86] 
and the solar activity in our observations has little effect due to a large field of view of the 
radiometer antenna main-beam. Therefore, the Sun can be considered as a constant source in our 
application, apart from multi-year solar cycles. 
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3.  II.D. Extinction estimates in precipitating clouds 
Sun brightness temperatures have been set to fixed values according to Table 3-3, in particular the 
Langley results have been taken into account during the following analysis. 
Figure 3-5 shows the time series of the ST-MWR measurements of both ooS (lower curves) and twS 
(upper curves) antenna noise temperatures for the case study of September 29, 2015 at the four 
AFRL-MWR available frequencies. With respect to the clear-sky case shown in Figure 3-2, it is 
shown how in the presence of clouds or precipitation, the brightness temperature difference 
between the two measurement modes ooS and twS decreases as the atmospheric extinction 
significantly increases, this behavior being more dominant at V and W band than at K and Ka band. 
Indeed, the ooS brightness temperature increases because of the contributing emission from clouds 
and precipitation while correspondingly the Sun signal is attenuated in the twS brightness 
temperature. The decrease in 𝑇𝑇A due to the cloudy/rainy atmosphere is clearly evident at V- and 
W-band, where the Sun provides the larger contribution (also due to the difference in beam filling 
factors, much smaller at V- and W-band). Conversely at K band, where the atmosphere signal is 
also providing a strong contribution, the twS noise temperatures also increases, although with less 
impact. 

 

 

Figure 3-5: Time series of ST-MWR measurements in terms of antenna noise temperatures for a 
case studies in presence of clouds or precipitation (29 September 2015) at the 4 AFRL-MWR 

available frequencies: a) 23.8 and 31.4 GHz; b) 72.5 and 85.5 GHz. 

The ST-MW radiometry technique is able to estimate a valid atmospheric extinction, according to 
(3.II.22), only if consistent antenna noise temperature differences are available. During intense rain 
events Δ𝑇𝑇𝐴𝐴 differences can reach zero or even negative, which limits the application of this 
technique. The maximum atmospheric extinction value 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 depends on both considered 
frequency and standard deviation std(Δ𝑇𝑇𝐴𝐴) and it can be computed from (3.II.22). By considering a 
measurement deviation equal to the MW radiometric brightness temperature absolute accuracy 
(equal to 0.5 K at K-band and 1 K at W-band), we can evaluate the standard deviation (std) of the 
noise temperature difference from (3.II.10) according to: 
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std(Δ𝑇𝑇𝐴𝐴) = �var(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + var(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.II.27) 
 
where “var” stands for the noise variance equal to the square of the absolute accuracy. By properly 
substituting std(Δ𝑇𝑇𝐴𝐴) values (0.7 at K and Ka band and 1.4 at V W band) in (3.II.22), the maximum 
atmospheric extinction values result about 22 dB, 24 dB, 26 dB and 27 dB, at 23.8, 31.4, 72.5 and 82.5 
GHz, respectively. The percentages of Δ𝑇𝑇𝐴𝐴 values lower than its standard deviation result less than 
0.1% at K and Ka band and 0.6% at V and W band, taking into account the entire available dataset 
described in Section II.B. 
As described in [80] and [97], the ST-MW radiometry technique can offer a very interesting 
framework to validate parametric retrieval models, especially at frequency bands above K band 
due to the unavailability of satellite-to-Earth beacon campaigns. Previous works already proposed 
physically-based prediction models (PPM) for estimating atmospheric parameters based on the 
non-linear regression fit of numerical simulations [101], [79]. Sky-noise Eddington radiative 
transfer model (SNEM) has been considered in an absorbing and scattering medium such as 
gaseous, cloudy and rainy atmosphere [120], [115]. The exploitation of the closest RaOb dataset has 
been used to statistically characterize the local meteorology in terms of temperature, pressure and 
humidity average and standard-deviation profiles. The latter statistics is then imposed in the 
Monte Carlo pseudo-random generation of vertical cloud structures where average profiles and 
cross-correlation among hydrometeor concentration are imposed [79]-[120]. 
The PPM general approach has been adapted for Rome (NY, USA) using our available radiosonde 
dataset described in II.B and performing SNEM simulations at 23.8, 31.4, 72.5 and 82.5 GHz and for 
8 elevation angles between 20° and 90° in terms of both brightness temperature and atmospheric 
extinction. 
The multi-frequency PPM-PolDEx model [80] is based on a polynomial regression on SNEM 
dataset, reinforced with a double exponential single-frequency term, able to achieve better results 
in heavier rainy cases. This multi-frequency weighted polynomial approach is able to balance the 
use of two different models depending on the weather conditions. The PPM-PolDEx atmospheric 
extinction estimates are given by: 
 

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) = 𝑚𝑚 ∙ {(1 − 𝑆𝑆𝑆𝑆𝑆𝑆 + ℎ)𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) + (𝑆𝑆𝑆𝑆𝑆𝑆 − ℎ)𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓)} (3.II.28) 
 
where 

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) = �𝑎𝑎𝑖𝑖 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖) +  𝑏𝑏𝑖𝑖 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 (𝑓𝑓𝑖𝑖)
4

𝑖𝑖=1

 (3.II.29) 

 
𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) = �𝑐𝑐1 ∙ e𝑐𝑐2∙𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓) + 𝑑𝑑1 ∙ e𝑑𝑑2∙𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓)� (3.II.30) 

 
where 𝑓𝑓𝑖𝑖=1,2,3,4=23.8,31.4,72.5,82.5 GHz and 𝑓𝑓 is one of 4 available frequencies fi, whereas the 
coefficients are all function of the air mass m. A first comparison is here performed among all-
weather conditions available from the six months of measurements. Table 3-5 quantifies the 
comparison in terms of average error (AvE) and root-mean-square-error (RMSE), with the error 
defined as the difference between attenuation from the PPM model and the ST time series. We can 
clearly note how the PPM-PolDEx parametric model shows solid results at all frequencies and for 
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the entire range of elevation angles. In order to stress the last consideration, the correlation 
coefficient (CC) and the index of agreement (IA) have been also considered to better evaluate the 
percentage accuracy. IA is a standardized measure of the degree of model prediction error and it 
varies between 0 and 1. An agreement index score of 0 suggests no agreement between the PPM 
model and the SNEM dataset, while an agreement score of 1 suggests complete match between the 
model and the dataset [121]. For the PPM-PolDEx model in Table 3-5, IA goes from about 0.99 at 
23.8 GHz to about 0.98 at 72.5 GHz.  
Measurements, described in Section II.B, are available at different elevation angles since the ST 
technique is intrinsically based on a variable antenna pointing in order to follow the Sun movement 
along its ecliptic. Both ST and PPM-PolDEx estimates are able to provide valid results for a wide 
range of elevation angles. In particular, the measurements result equally distributed with about 
33.9% between 70° and 54°, 43.1% between 53° and 38° and 22.5% between 37° and 20° in elevation.  
In order to focus the emphasis on cloudy and rainy conditions, the threshold criterion described in 
Section II.B has been used to define the total percentage of clear-air samples (30.5%), as well as the 
one of cloudy/rainy situations (69.5%). 

 
TABLE 3-5: ATMOSPHERIC EXTINCTION INTER-COMPARISON BETWEEN ST-MWR AND PPM-POLDEX 

MODEL FOR THE AVAILABLE DATASET IN 2015 IN ROME, NY ALL-WEATHER CASES 
f [GHz] AvE[dB] RMSE[dB] CC IA 

23.8 0.0069 0.1721 0.9800 0.9893 
31.4 -0.0500 0.2441 0.9846 0.9860 
72.5 0.0593 0.7061 0.9791 0.9793 
82.5 0.0513 0.6242 0.9808 0.9861 

 
TABLE 3-6: ATMOSPHERIC EXTINCTION INTER-COMPARISON BETWEEN ST-MWR AND PPM-POLDEX 

MODEL FOR THE AVAILABLE DATASET IN 2015 IN ROME, NY CLOUDY AND RAINY CASES 
f [GHz] AvE[dB] RMSE[dB] CC IA 

23.8 0.0093 0.2014 0.9778 0.9881 
31.4 -0.0315 0.2820 0.9848 0.9864 
72.5 0.0933 0.8421 0.9790 0.9780 
82.5 0.0893 0.7425 0.9796 0.9849 
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Figure 3-6: Scatterplot of ST-MWR atmospheric extinction for each frequency versus extinction 
estimates from PPM-PolDEx for all cloudy/rainy conditions. 

Figure 3-6a-d shows the scatterplot of PPM-PolDEx model atmospheric extinction estimates for 
each frequency versus the corresponding ST-MWR ones for all the available dataset for only 
cloudy/rainy situations. A saturation effect is shown in the ST extinction retrieval, especially at V 
and W-band, attesting the limits of the ST technique in terms of the maximum attainable extinction. 
It generally occurs for heavy rain at K-band, but it may occur for light rain at 72.5 and 82.5 GHz. In 
such conditions antenna noise temperature differences ΔTA between twS and ooS are minimal and 
can go below the noise level.  
Table 3-6 quantifies the comparison in terms of average error (AvE) and root-mean-square-error 
(RMSE), correlation coefficient (CC) and the index of agreement (IA). Both scatterplots and 
numerical results confirm that the exclusion of the clear-air samples in the comparison has a 
minimum impact on the comparison and the PolDEx approach shows a good correlation with 
respect to ST data for all frequencies in cloudy/rainy situations. 
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3.  III. Cloud attenuation stochastic characterization and 
Parametric Prediction models at Ka-band 

In this work, well-known radiative models are adopted to provide an estimate of the equivalent 
clear-air path attenuation contribution, exploiting surface weather measurements and making 
several assumptions on their vertical stratification over the troposphere [24]-[107]. However, the 
attenuation contribution due to non-precipitating clouds cannot be easily modelled by only using 
in-situ measurements, i.e. surface boundaries are not able to provide enough information about the 
whole atmospheric status for a given instant. This work aims at characterizing the behavior of 
suspended clouds in terms of atmospheric path attenuation. A stochastic approach is used to model 
the time evolution of the cloud contribution [75]. Both the probability density function and the 
power spectral density are retrieved by exploiting measurements from the RPG-HATPRO 
radiometer installed in Cebreros, Spain at the European Space Agency’s Deep Space Antenna site. 
Physically-based prediction models for all-weather total path attenuation estimation at 32 GHz are 
applied to the measured radiometric brightness temperatures [97]-[127]. The cloud contribution is 
then extrapolated and modelled as a log-normal stochastic process as a result of a detailed analysis 
in both amplitude and time domains. 
 
The section is organized as follow: section III.A describes the available data and defines physically-
based prediction models for all-weather atmospheric path attenuation estimates at 32 GHz; section 
III.B recaps the models used to retrieve the integrated path attenuation starting from the available 
surface data and eventually exposes the cloud attenuation stochastic model characterization. 

3.  III.A. Path Attenuation Retrieval from Microwave Radiometric Data 

 Microwave Radiometer dataset 
The available dataset consists of sparse measurements collected by the ground-based microwave 
radiometer (MWR) from December 2014 to December 2015 at the ESA deep space antenna located 
at Cebreros, Spain (40°27’13’’N, 04°22’04’’W). The ESA-MWR is a RPG-HATPRO profiler (built by 
the German company Radiometer Physics GmbH) and has a total of 14 channels with receivers at 
K-Band (22.24, 23.04, 23.84, 25.44, 26.24, 27.84 and 31.4 GHz) and V-Band (51.26, 52.28, 53.86, 54.94, 
56.66, 57.3 and 58.0 GHz) [106]. Measurements are always taken at zenith. The instrument system 
also includes in-situ measurements of air temperature, relative humidity, pressure, and rain 
intensity. 

 Parametric prediction model for path attenuation retrieval 
The parametric prediction model (PPM) approach is based on non-linear regression fitting of 
numerical simulations, derived from the sky-noise Eddington radiative-transfer model (SNEM) in 
an absorbing and scattering medium such as gaseous, cloudy and rainy atmosphere [120], [114]. 
Radiosounding datasets are used to statistically characterize the local meteorology in terms of 
temperature, pressure and humidity average and standard-deviation profiles. The latter statistics 
is then imposed in the Monte Carlo pseudo-random generation of vertical cloud structures where 
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average profiles and cross-correlation among hydrometeor concentration are imposed [120]-[79]. 
The PPM general approach has been adapted for ESA deep space antenna at Cebreros (Spain) using 
radiosounding profiles obtained at the closest WMO RAOB station at Madrid/Barajas airport 
(about 60 km distance from the radiometer). By extracting the meteorological statistics, SNEM 
simulations have been performed at zenith (90° of elevation angle) in order to compute both 
brightness temperature and path attenuation. The multi-frequency PPM-PolDEx model has been 
already proposed and applied in previous works [80]-[97]-[127] for different antenna sites. It is 
based on a combination between a polynomial term and a double exponential single-frequency 
term, properly tuned by the Sky Status Indicator SSI and a tuning parameter ℎ0. This multi-
frequency weighted approach is able to balance the use of two different models depending on the 
weather conditions: the polynomial during clear-air situations and the double exponential for 
cloudy/rainy cases. The PPM-PolDEx atmospheric attenuation estimates are given by: 
 

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃0) = csc𝜃𝜃0 {(1 − 𝑆𝑆𝑆𝑆𝑆𝑆 + ℎ0)𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 + (𝑆𝑆𝑆𝑆𝑆𝑆 − ℎ0)𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷} (3.III.1) 
 
where 𝜃𝜃0 is the elevation angle of interest and csc is the cosecant. SSI stands for Status Sky Indicator 
(SSI), an atmospheric index purely based on the available radiometric measurements and 
successfully applied in several MWR campaigns [116], [81].  
 

SSI =
𝐵𝐵𝐵𝐵3  −  𝑟𝑟0 

𝐵𝐵𝐵𝐵1
 (3.III.2) 

 

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑎𝑎𝑖𝑖  𝐵𝐵𝐵𝐵𝑖𝑖 +  𝑏𝑏𝑖𝑖 𝐵𝐵𝐵𝐵𝑖𝑖2
4

𝑖𝑖=1

 (3.III.3) 

 
𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 = [𝑐𝑐1 e𝑐𝑐2 𝐵𝐵𝐵𝐵3 + 𝑑𝑑1 e𝑑𝑑2 𝐵𝐵𝐵𝐵3] (3.III.4) 

 
The SSI is defined in (3.III.2), the polynomial term 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 is given in (3.III.3), while (3.III.4) provides 
the expression of the double exponential single-frequency term. 𝐵𝐵𝐵𝐵𝑖𝑖=1,2,3,4 are the zenithal 
brightness temperatures 𝐵𝐵𝐵𝐵23.84𝐺𝐺𝐺𝐺𝐺𝐺, 𝐵𝐵𝐵𝐵26.24𝐺𝐺𝐺𝐺𝐺𝐺, 𝐵𝐵𝐵𝐵31.40𝐺𝐺𝐺𝐺𝐺𝐺, 𝐵𝐵𝐵𝐵51.26𝐺𝐺𝐺𝐺𝐺𝐺. Table 3-7 recaps the PPM 
coefficients to be used to estimate the atmospheric path attenuation at 32 GHz. 
 

TABLE 3-7: PPM-POLDEX MODEL COEFFICIENTS AT 32 GHZ 
𝑎𝑎1 4.582E-03  𝑏𝑏1 -1.229E-04 
𝑎𝑎2 -7.262E-03  𝑏𝑏2 2.412E-04 
𝑎𝑎3 2.198E-02  𝑏𝑏3 -3.060E-05 
𝑎𝑎4 -5.553E-04  𝑏𝑏4 -4.169E-06 
𝑐𝑐1 5.575E-01  𝑐𝑐2 1.303E-02 
𝑑𝑑1 1.110E-11  𝑑𝑑2 9.525E-02 
ℎ0 3.231E-01  𝑟𝑟0 6.768E+00 
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 Cloudy conditions discrimination 
In order to select instants purely representative of cloudy conditions, we consider the following 
two criteria: 

• To exclude rainy conditions, surface measurements of the rain flag provided by the 
radiometric system are considered. We discarded all the measurements taken during rain 
events, i.e. when the rain flag was equal to 1. 

• To filter out clear-air conditions, we implemented a threshold mechanism on the SSI by 
setting a fixed zenithal parameter. If SSI is below the SSIth, a clear air condition is assumed. 
Parameterization has been set up by performing radiative transfer simulations applied to 
long-term available radiosonde observations [116]-[81]. 

3.  III.B. INTEGRATED PATH ATTENUATION DUE TO CLOUDS 
Considering a horizontally stratified atmosphere with the lowest level at 𝑧𝑧 = ℎ𝑠𝑠 (site altitude) and 
the top height at 𝑧𝑧 = 𝐻𝐻, the atmospheric integrated path attenuation 𝐴𝐴 in dB may be computed 
according to: 
 

𝐴𝐴(𝑓𝑓,𝜃𝜃0) =
10

ln 10
� 𝜅𝜅𝑒𝑒(𝑓𝑓, 𝑧𝑧) csc𝜃𝜃0 𝑑𝑑𝑑𝑑
𝐻𝐻

ℎ𝑠𝑠

 (3.III.5) 

 
where 𝑒𝑒 is the Neper number, 𝜃𝜃0 is the elevation angle and 𝜅𝜅𝑒𝑒 is the extinction coefficient at height 
𝑧𝑧 above the surface in Np/km. Starting from (3.III.5), we can consider the extinction coefficient 
defined by 𝜅𝜅𝑒𝑒 = 𝜅𝜅𝑎𝑎 + 𝜅𝜅𝑠𝑠, where 𝜅𝜅𝑎𝑎 and 𝜅𝜅𝑠𝑠 are the absorption and scattering coefficients, 
respectively: 
 

𝐴𝐴(𝑓𝑓,𝜃𝜃0) =
10

ln 10
�[𝜅𝜅𝑎𝑎(𝑓𝑓, 𝑧𝑧) + 𝜅𝜅𝑠𝑠(𝑓𝑓, 𝑧𝑧)] csc𝜃𝜃0 𝑑𝑑𝑑𝑑
𝐻𝐻

ℎ𝑠𝑠

= 𝐴𝐴𝑎𝑎(𝑓𝑓,𝜃𝜃0) + [𝐴𝐴𝐶𝐶(𝑓𝑓) + 𝐴𝐴𝑅𝑅(𝑓𝑓,𝜃𝜃0)] (3.III.6) 

 
In (3.III.6), 𝐴𝐴𝑎𝑎 stands for the clear-air contribution due to absorption and the scattering contribution 
is split into two main attenuation terms: the cloud contribution 𝐴𝐴𝐶𝐶 and the rain contribution 𝐴𝐴𝑅𝑅. In 
this contribution, we do not consider the rain contribution but we only focus on the cloud-specific 
attenuation contribution. 

 Clear-air atmospheric path attenuation retrieval from surface data 
Considering a horizontally stratified atmosphere under clear-air conditions, the atmosphere may 
be considered a non-scattering medium (𝜅𝜅𝑠𝑠 = 0) and the extinction coefficient 𝜅𝜅𝑒𝑒 results equal to 
the absorption coefficient 𝜅𝜅𝑎𝑎. Considering the Earth’s atmosphere in the microwave spectrum, 
water vapor and oxygen result the main constituents with relevant absorption effects [24]. 
Assuming the absorption coefficients be 𝜅𝜅𝑎𝑎(𝐻𝐻2𝑂𝑂) and 𝜅𝜅𝑎𝑎(𝑂𝑂2) in Np/km, the atmospheric integrated 
path attenuation 𝐴𝐴𝑎𝑎 in dB under clear-air conditions can be computed from (3.III.6) by setting 𝜅𝜅𝑎𝑎 
as the sum of the two coefficients above mentioned, water vapor and oxygen respectively. Existing 
literature provides several formulations of the absorption coefficients of interest, which mainly 
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depend on considered frequency, and vertical profiles of meteorological parameters as 
temperature, water vapor density and atmospheric pressure. In particular, we have used models 
contained in [24], exploiting well-known formulations for the water vapor [77] and oxygen 
absorptions [148]-[78]. Eventually, we have considered standard profiles of meteorological 
quantities [107]-[149] as approximation, making use of the surface measurements of temperature, 
relative humidity and pressure available from the weather station.  

 Cloud attenuation stochastic characterization 
A stochastic approach is used to model the time evolution of the cloud additive contribution 𝐴𝐴𝐶𝐶 in 
(3.III.6). Radiometric measurements of cloudy atmosphere are selected by using the criteria defined 
in section 3.III.A and the clear-air contribution is then subtracted using the clear-air attenuation 
estimate described in the previous section. The resulting time series of 𝐴𝐴𝐶𝐶 is used for the analysis. 
 
In order to characterize a stochastic process, we need to define both the probability density function 
and the power spectral density. The time series of 𝐴𝐴𝐶𝐶 can be represented with a reasonable accuracy 
by adopting a log-normal distribution. Therefore, we have considered a probability density 
function 𝜁𝜁𝐴𝐴𝐶𝐶 as follow  
 

𝜁𝜁𝐴𝐴𝐶𝐶{𝐴𝐴𝐶𝐶(𝑓𝑓)| 𝜇𝜇𝐶𝐶(𝑓𝑓),𝜎𝜎𝐶𝐶(𝑓𝑓)} =
exp �

−�ln[𝐴𝐴𝐶𝐶(𝑓𝑓)] − 𝜇𝜇𝐶𝐶(𝑓𝑓)�2

2𝜎𝜎𝐶𝐶2(𝑓𝑓) �

√2𝜋𝜋 𝐴𝐴𝐶𝐶(𝑓𝑓) 𝜎𝜎𝐶𝐶(𝑓𝑓)
 

(3.III.7) 

 
where 𝜇𝜇𝐶𝐶 ,𝜎𝜎𝐶𝐶 are the so-called location parameter and scale parameter of the Log-normal 
distribution [75]. By evaluating the Fourier transform of the autocorrelation function 𝑅𝑅𝐴𝐴𝐴𝐴(𝜏𝜏), and 
assuming a real power signal 𝐴𝐴𝐶𝐶, we have obtained the power spectral density Α𝑐𝑐�(𝑓𝑓), where the 
half-power bandwidth 𝐵𝐵𝐶𝐶 of the stochastic process is given by �Α𝑐𝑐�(𝐵𝐵𝐶𝐶)� ≡ 1/√2 . 
 
Once defined the location parameter and scale parameter of the probability density function and 
the half-power bandwidth 𝐵𝐵𝐶𝐶, we are able to reconstruct the same stochastic process by 
synthetizing samples of cloud attenuation 𝐴𝐴𝐶𝐶. Figure 3-7 shows the inter-comparison between the 
real radiometric measurements (red curve) and the simulated stochastic process (blue curve) in 
terms of both probability density function and cumulative distribution function. We can note as 
the two pairs of curves show a very good agreement. 
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Figure 3-7: Probability density function (PDF) and Cumulative distribution function (CDF), inter-
comparison between real measurements and simulated stochastic process 

On the other hand, Figure 3-8 shows the same comparison in terms of time series, where the red 
curve corresponds to the real radiometric measurements and the blue curve to the simulated ones. 
The time variations of the simulated stochastic process are able to simulate the behavior of a real 
cloud attenuation contribution in a good manner even in time domain. 
 

 

Figure 3-8  Time domain comparison between real measurements and simulated stochastic 
process 
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Chapter 4. Model-based prediction of data 
rate for deep-space satellite missions 
4.  I. Introduction 

Typical frequency bands for space missions range from around 2 GHz (L and S band) to around 8 
GHz (X band). Deep space missions have a satellite-Earth distance larger than 2.0 106 km and are 
aimed at exploring the solar system. The increasing number of deep space missions is making the 
bands allocated for space exploration oversubscribed. Moreover, the necessity of increasing the 
transmission data-rate, connected to the need of a wider channel bandwidth, is pushing deep space 
missions toward higher link frequencies such as 32 GHz (Ka band) [150]. The counterpoint is that 
signals propagating at such frequencies are more affected by atmospheric degrading effects [151]. 
Indeed, in addition to convective rainfall, which is the preponderant meteorological event at 
frequencies lower than 10 GHz, also non-precipitating clouds and moderate precipitation 
produced by stratiform rain events must be considered in the link-budget design [152].  
 
Traditional link budget techniques typically design the link in a conservative way by maximizing 
transmitted data with a fixed percentage of channel availability (e.g., 90%). More recent techniques 
aims at maximizing data return while keeping data losses under a fixed threshold (e.g., 5%) and by 
properly varying the transmission data-rate during the transmission period [153]. Those 
techniques rely on climatological statistics of atmospheric attenuation (on monthly or even yearly 
time-scale) derived from historical measurements collected during several years in the past [153]. 
Such approaches could turn to be too conservative, especially for links operating at Ka-band 
frequencies [153]. A way to overpass this problem is to resort to weather forecast (WF) models that 
allow optimizing the link budget on the basis of the predicted atmospheric channel conditions 
expected during the satellite-to-Earth transmission period [150], [154]. Only few studies can be 
found in literature concerning the use of WF for the link budget design. One of the most important 
is the study proposed in [155] where the presented results were interesting but not enough decisive 
to be operationally adopted for the Ka-band data transfer links in DS missions. In [156] a technique 
for the link budget optimization exploiting WF numerical models coupled with radiopropagation 
models is proposed. WF models provide forecasted meteorological variables that are converted 
into radiopropagation parameters by an accurate radiative transfer model (in contrast to semi-
empirical relations typically adopted by traditional link budget techniques). Such WF-based model 
chain allows designing the link-budget using statistics of the radiopropagation parameters that are 
physically based and dynamically correlated to the evolving weather scenario. The design and 
optimization of the link-budget leads to the computation of the operational parameters used to set-
up the satellite-to-Earth downlink (which determine the predicted transferred data-volume). 
 
Two applications of the weather-forecast based link budget optimization technique are described 
in this chapter:  



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Model-based prediction of data rate for deep-space satellite missions 

 

 50  
  

• A feasibility study of the model-chain proposed in [156] through the simulation of the 
satellite-to-Earth transmission conditions of the BepiColombo mission to Mercury [157] 

• An application to JAXA Hayabusa-2 mission Ka-band data provided by the ESA cross-
support service 

 
BepiColombo is a mission of the European Space Agency (ESA) launched in October 2018. The two 
reference ground stations for the mission are the ESA Deep Space stations in Cebreros (Spain) and 
in Malargüe (Argentina). The test-case scenario that we have simulated in [156] was relative to one 
transmission year operating at Ka-band and considering the receiving ground-station in Cebreros. 
We have performed the link-budget design of the satellite-to-Earth transmission comparing 
different optimization techniques that exploit statistics of atmospheric attenuation derived from 
two different meteorological datasets: weather-forecast and climatological. As previously stated, 
the advantage of using a weather-forecast model relies in the possibility of dynamically adapt the 
satellite link to the evolving meteorological scenario expected during the satellite transmission 
period. On the contrary, climatological archives (used in the classical link-budget design 
techniques) provides static information derived from meteorological measurements collected in 
several years in the past. Results obtained in [156] have highlighted that the proposed WF-based 
approach (which exploits atmospheric statistics derived by a weather forecast coupled with a 
radiopropagation model) can provide a gain of more than 20% in terms of yearly received data-
volume if compared to traditional optimization techniques (which exploits atmospheric statistics 
derived from climatological archives). Although results in [156] were promising, the unavailability 
of meteorological measurements prevented any kind of tuning and validation of numerical models 
and predicted data-volumes. Moreover, those results were relative to a specific transmission year 
and a specific receiving ground station (Cebreros) operating at Ka band (i.e., 32 GHz). 
 
In order to fill the gap in [156], the aim of the present work is to improve and assess the proposed 
WF-based technique. The first strength of this work is the availability of several meteorological 
measurements such as radiosounding observations and microwave radiometric measurements. 
We have exploited these measurements for the fine-tuning, set-up and validation of both WF and 
radiopropagation models (see [158] for details about the WF-model tuning). Once tuned and 
validated the two models of the WF-based chain, to assess and prove the reliability of the results 
in [156], we have enlarged the simulation period from 1 to 4 years of transmission thus analyzing 
4 different yearly meteorological trends that influence the relative yearly transferred data-volume. 
To confirm the general applicability of the proposed WF-based model chain, we have performed 
the transmission simulations for both Cebreros and Malargüe receiving ground stations and for 
transmissions operating at both X and Ka band. The use of the WF-based approach allowed the 
development of a technique for the estimation of the uncertainty associated to the transferred data 
volume. This aspect is crucial from an operative point of view: if predicted data volume with the 
associated uncertainty does not satisfy the mission constraints, in some cases the schedule of the 
downlink transmission can be changed by switching the downlink frequency and/or the receiving 
ground-station. Finally, the availability of radiometric measurements allowed the validation of the 
entire model-chain through the comparison of the transferred data volumes predicted with the WF-
based technique with the ones computed exploiting atmospheric radiometric measurements. 
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Moreover, it is presented a preliminary operational validation of the model chain applied to the 
Hayabusa2 mission to the asteroid 162173 Ryugu (that was launched in 2014 by the Japan aerospace 
exploration agency, JAXA, and reached the asteroid in June 2018). We have run our model-chain 
to operatively provide JAXA with the optimized transmission parameters for the Hayabusa2 
downlink and compared our simulations with measurements provided by JAXA and ESA. The 
results confirm the reliability and the efficiency of our model-chain. 
 
The chapter is organized as follows: section 4.II describes the model chain composition, section 4.III 
briefly summarizes the results of the feasibility study on the BepiColombo mission and finally 
section 4.IV presents the preliminary verification with Hayabusa-2 cross-support data. 

4.  II. Methodology and Weather-Forecast chain description 

The model chain is composed by three modules: weather forecast, radio propagation and down-
link budget module. The weather forecast module produces numerical weather predictions of the 
atmospheric state expected during the satellite transmission. The radiopropagation module 
converts the predicted atmospheric state into radiopropagation variables (i.e., atmospheric path 
attenuation and brightness temperature) by taking into account the gaseous absorption and the 
microphysical properties of cloud droplets and hydrometeors. The last downlink-budget module 
exploits the predicted radiopropagation variables to perform the optimization of the satellite-to-
Earth link with a stochastic approach. The latter provides the optimal prediction of the operational 
parameters of the satellite mission in terms of transmission data-rate and expected transferred 
data-volume or signal-to-noise ratio at the receiving ground-station antenna. The downlink 
optimization is accomplished in a statistical framework: spatial-grid domain of simulated 
radiopropagation variables is exploited to derive statistics and uncertainties of the temporal 
evolution of the predicted signal-to-noise ratio expected when operating with the predicted 
optimized operational parameters. Classical link budget optimizations are realized exploiting 
climatological statistics of radiopropagation variables (e.g., statistics retrieved by meteorological 
measurements collected during several years of measurements in the past) [152]. At frequencies 
above the Ku band such techniques turn out to be too conservative [153]. On the contrary, the 
advantage of the approach proposed in this work, derived by the coupling of weather forecast and 
radiopropagation models, is that the predicted radiopropagation variables are physically-based 
and dynamically correlated to the evolving weather scenario expected during the downlink 
transmission period.  
 
Figure 4-1 shows the model-chain block-scheme deeply described in [87]. The weather forecast 
module (WFM) is a regional scale model (initialized by a global-scale model) that produces 
numerical weather predictions of the atmospheric state. The model runs over two-way nested 
domains (where the inner domain has a finer spatial resolution) centered on the geographical area 
of our interest and for the considered downlink transmission period. The predicted atmospheric 
state is described by the 3-dimensional time-evolution of microphysical variables (e.g., pressure, 
temperature, humidity, wind velocity and orientation) and thermodynamic variables (e.g., 
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atmospheric particle concentration of water clouds and aerosol dispersions). The radiopropagation 
module (RPM) converts the atmospheric state vector computed by the WFM into radiopropagation 
variables. The latter are the atmospheric attenuation and brightness temperature for the considered 
link-frequency and the considered ground-station antenna elevation angle (which, in general, 
changes during the transmission period due to reciprocal motion of satellite and Earth) for each 
pixel of the inner grid-domain generated by the WFM. RPM implements a sky-noise Eddington 
model to solve the radiative transfer problem for the computation of the atmospheric attenuation 
(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎) and brightness temperature (𝑇𝑇𝐵𝐵) along the signal slant-path taking into account the gas 
absorption and the hydrometeors multiple scattering with five hydrometeor distributions (cloud, 
rain, ice, snow, graupel) [120]. Note that, the signal slant-path is determined by the elevation angle 
𝜃𝜃 of the ground station antenna pointing to the satellite. Finally, the downlink budget module 
(DBM) exploits the radiopropagation variables computed by the RPM to optimize the satellite-to-
Earth link. The optimization is done in a statistical framework in order to maximize the received 
data and minimize the losses.  
 

 
Figure 4-1: Model chain: weather forecast (red), radiopropagation (blue) and downlink budget 

(green) modules. Grey blocks are measurements and statistics used for tuning and validating the 
three modules. 

Note that, in this work, we adopt daily forecasts from the WFM. This means that the atmospheric 
state expected during the transmission period is predicted 24 hours before the start of the 
transmission itself. The transmission period is defined by the visibility (line of sight) between 
satellite and receiving ground station. The spatial and temporal resolutions of the whole model 
chain are imposed by the WFM resolutions. Each single model was tuned and validated with 
external data source during the feasibility study [158]. I manly contributed to the radio-propagation 
and link-budget modelling and data analysis, as well supporting the fine tuning and validation of 
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the whole chain. 
 

 
Figure 4-2: Receiving system block-scheme. 

The setup of the three modules must be adapted in function of the space mission specifics and will 
be described in the next sections. In particular, the link-budget optimization technique 
implemented by the DBM, is strictly related to the mission’s objectives and the transmission 
characteristics. We can use the generic scheme of a receiving system in Figure 4-2 for some 
considerations. 
Referring to Figure 4-2, depending on the section of the receiving system, we can define the 
following quantities: 
 

𝑆𝑆
𝑁𝑁

=
𝐸𝐸𝐺𝐺𝑅𝑅

𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃)𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)∆𝑓𝑓
                          [adim] (4.1) 

 
𝐸𝐸𝑠𝑠
𝑁𝑁0

=
𝐸𝐸𝐺𝐺𝑅𝑅

𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃)𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑅𝑅𝑆𝑆𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡ℎ
      [adim] (4.2) 

 
𝐸𝐸𝑏𝑏
𝑁𝑁0

=
𝐸𝐸𝐺𝐺𝑅𝑅

𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃)𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑅𝑅𝑏𝑏𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡ℎ
      [adim] (4.3) 

 
The symbol legend for (4.1)-(4.3) is reported in Table 4-1. 

 
TABLE 4-1  SYMBOL LEGEND 

S Total signal power [W] Tsys System noise temperature [K] 
N Total noise power [W] in the bandwidth Δf Es Energy per symbol [J] 
Δf Frequency bandwidth [Hz] N0 Noise spectral density [W/Hz] 
E Effective isotropic radiative power (EIRP) 

of the spacecraft antenna [W] 
Eb Energy per bit [J] 
Rb Bit rate [bit/s] 

GR Receiving antenna gain [adim] Rs Symbol rate [sym/s] 
LFS Free space loss [adim] Lmod Modulation/demodulation losses 

[adim] 
Latm Atmospheric path attenuation [adim] Ltech Technological loss of the receiver [adim] 
k Boltzmann constant [1.38⋅10-23 J/K] θ Antenna elevation angle [deg] 

 
With respect to Figure 4-2, (4.1) is the downlink signal-to-noise ratio (SNR) received by the antenna 
that is the input of the demodulator. After the demodulator we have the estimation of the energy-
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per-symbol to noise-density ratio derived with (4.2). Finally, we can calculate the energy-per-bit to 
noise-density ratio at the output of the decoder using (4.3). 
Note that, in (4.1)-(4.3), 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is directly related to 𝑇𝑇𝐵𝐵 [K]: 
 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) =  𝑇𝑇𝑛𝑛(𝜃𝜃) + �
1
𝐿𝐿𝑓𝑓𝑓𝑓

� ⋅𝑇𝑇𝐵𝐵(𝜃𝜃) (4.4) 

 
Where 𝑇𝑇𝑛𝑛 [K] includes all noise contributions from passive and active elements of the whole 
antenna system, referenced at Low Noise Amplifier input, including elevation-dependent ground 
noise and 𝐿𝐿𝑓𝑓𝑓𝑓 [adim] represents the feed losses. 
The DBM optimization allows the computation of the operational parameters to setup the 
transmission operations. Such parameters, which are the data-rates (𝑅𝑅𝑏𝑏 or 𝑅𝑅𝑠𝑠) and the best instant 
to start transmitting (within the visibility period), are computed through the maximization of the 
received data that passes through the computations (4.1) - (4.3). 

4.  III. Feasibility study: ESA BepiColombo mission test-case 

The model chain presented in section 4.II was tested within a feasibility study done on the 
BepiColombo mission test case. BepiColombo is Europe’s first mission to Mercury, the smallest 
and least explored terrestrial planet of our Solar System. The satellite was launched by the ESA (in 
collaboration with JAXA) in October 20, 2018 and will arrive at Mercury in 2025. BepiColombo will 
be the first European deep-space mission using the Ka band (32 GHz) for the downlink of telemetry 
data. The downlink transmission will occur once per day with transmission periods of about 7 to 
about 12 hours (depending on the period of the year, i.e., on the reciprocal distance between 
Mercury and Earth) and reference ground stations for the Ka band downlink will be in Cebreros 
(Spain) and Malargüe (Argentina), both from the ESA Deep Space Network. 
 
We have simulated the BepiColombo transmission phase with its operative specifics. The setup of 
the three modules in Figure 4-1 is the following [158]: 
 

• WFM is realized with the Mesoscale Model 5 [159] initialized with analysis data provided 
by the global model of the European Centre for Medium-Range Weather Forecast with 
horizontal resolution of 0.25°. The model is run over two nested-grid domains centered on 
the considered receiving site (Cebreros or Malargüe): the first domain has 57×69 grid points 
and the second domain has 46×52 grid points with spatial resolutions of 18 and 6 km, 
respectively. The vertical structure is composed of 22 vertical pressure levels (with finer 
resolution in the lower levels near the surface). Daily weather forecast are produced with a 
release time of 1 hour. 

 
• RPM is formed by the Satellite Data Simulator Unit [160] that simulates radiopropagation 

variables as measured by meteorological satellites and it has been adapted to ground-based 
view. We have setup microphysical parameterizations of spherical particles using WFM 
outputs per each grid point and considering five hydrometeors distributions: water, ice, 
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rain, snow and graupel. RPM runs are set to produce 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑇𝑇𝐵𝐵 at 32 GHz and at several 
elevation angles (ranging from 10° to 90° with 10° step) in each point of the inner grid-
domain. 

 
• DBM realizes an optimization of the received data volume with statistical techniques. Such 

techniques are applied to daily statistics of 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑇𝑇𝐵𝐵 directly computed from the time 
series produced by the RPM and relative to the specific day in which the transmission will 
occur. The optimization is based on the maximization of the received data while keeping 
the losses under a given threshold [156]. Such threshold is given by the retransmission 
protocol of the satellite transmitter and is set to 5% in our case. Data volume is computed 
in terms of frames, then converted into bits, and is directly derived by the 𝐸𝐸𝑏𝑏/𝑁𝑁0 (4.3) 
through the frame error rate function, which depends on the adopted coding scheme [156]. 
The operational parameters computed by the DBM are: Rb and the minimum elevation 
angle at which start and stop the transmission. 

 
First, we have tuned and validated each module with several meteorological measurements (as 
indicated in Figure 4-1) available from sites near the two receiving ground stations: radiosounding 
observations, weather stations, radiometric measurements. We have also made statistical 
comparisons with yearly statistical models of the radiocommunication sector of the international 
union of telecommunications (ITU-R) and with climatological statistics available from NASA jet 
propulsion laboratory (JPL). These comparisons confirmed the reliability of the model chain [158]. 
 
Then, we have run the optimization model chain over a period of four transmission years (from 
2012 to 2015) on both Cebreros and Malargüe stations. We have compared the optimized data-
volume with the one obtained with two classical link-budget techniques based on monthly 
climatological statistics from JPL (which are the actual adopted techniques) that we have called 
“standard” and “advanced” techniques. The results of this study are in [158]. As an example, Figure 
4-3 from [158] shows the results for the transmission to Cebreros ground station (we have similar 
results for Malargüe). We have demonstrated that the use of our model chain for the link budget 
optimization allows a potential increase of the yearly-received data-volume of 20% to 24% with 
respect to classical link budget techniques without losing additional frames (lost frames percentage 
remains below the 5% threshold). 
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(a)      (b) 
Figure 4-3: Yearly lost (a) and received (b) data volume (DV) in Cebreros at Ka band. Note that 
received data are expressed in percentage with respect to reference advanced technique (from 

[158]). 

A detailed description of the analyses performed (and obtained results) in the framework of the 
BepiColombo feasibility study can be found in [158].  I manly contributed to the radio-propagation 
/ link-budget modelling and data analysis, as well supporting the fine tuning and validation of the 
whole chain. Moreover, I took care of the processing and analysis of all available radiometric 
measurements. 
 

4.  IV. Preliminary validation and online operation with JAXA 
Hayabusa-2 mission support data 

After the feasibility study presented in section 4.III, we are operationally validating the model chain 
with Hayabusa2 mission to the asteroid 162173 Ryugu. Hayabusa2 was launched in 2014 by JAXA 
and reached the asteroid in June 2018. The Ka-band (32 GHz) downlink transmission occur once 
per week: each Saturday, typically from 14:00 to 22:00 (but the transmission window depends on 
the period of the year and on the availability of the receiving ground stations that are shared among 
several missions). The reference ground stations are the same of BepiColombo mission: Cebreros 
and Malargüe. For the model chain validation JAXA, with ESA collaboration, provided us with 
Es/N0 estimated by the Telemetry, Tracking and Command Processor (TTCP) of the receiving 
antenna and the corresponding Rs used during each transmission period. With respect to the 
BepiColombo mission test-case, we have updated the modules in Figure 4-1 with the current state-
of-the-art models: 
 

• for the WFM, the Mesoscale Model 5 was updated with the Weather Research and 
Forecasting model [161] initialized with data from the Global Forecast System model 
produced by the National Centers for Environmental Prediction. The space and time 
resolutions are the same used for the BepiColombo mission. 
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• the Satellite Data Simulator Unit of the RPM was changed with the latest Goddard- Satellite 
Data Simulator Unit [162] that, among several updates, considers the contribution of non-
spherical particles. 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑇𝑇𝐵𝐵 are produced at 32 GHz and at elevation angles ranging 
from 10° to 90° with 10° step in each point of the inner grid-domain. 

 
• Differently from BepiColombo mission, Hayabusa2 does not support any retransmission 

protocol and losses must be avoided at all. Thus, the objective of the DBM statistical 
optimization is to keep the 𝐸𝐸𝑠𝑠/𝑁𝑁0, computed with (4.2), above a given threshold (i.e., 2.06 
dB). In this case, as described in the following, the statistics are derived exploiting the 
spatial grid domain of the forecasted radiopropagation variables. The output of the DBM is 
the optimum Rs to use during the transmission. 

 
Figure 4-4 shows the horizontal surface section of the inner-grid domain of the model chain: each 
point corresponds to a pixel with given latitude and longitude coordinates. WFM model computes 
temporal evolution of the vertical profile of the atmospheric state per each grid-point. RPM 
computes the slant-path values of radiopropagation variables through the slant-integration of the 
atmospheric state in each grid-point (and per each temporal instant). The result is a 2-dimensional 
map (with 6 km spatial resolution) of slant-path radiopropagation variables per each point of the 
grid and per each temporal instant (with 1-hour time sampling). We have realized the statistical 
approach of the DBM through the computation, for a given 𝑅𝑅𝑠𝑠 value, of 𝐸𝐸𝑠𝑠/𝑁𝑁0 ratio (4.2) over a 7x7 
sub-grid centered on the considered ground station (Figure 4-4). This computation is accomplished 
per each temporal instant of the transmission period. The result is, for a given 𝑅𝑅𝑠𝑠 value, a 
distribution of 𝐸𝐸𝑠𝑠/𝑁𝑁0 values (one per each pixel of the 7x7 sub-grid) available per each temporal 
instant. Such distribution can be converted into a probability density function, as shown in Figure 
4-5, from which we can extract a median value with an error-bar determined by its 25th and 75th 
percentile. Note that Figure 4-5 is just an example but, in general, the probability density function 
of 𝐸𝐸𝑠𝑠/𝑁𝑁0 is not symmetrical and the 25th and 75th percentile are not equidistant from the median. 
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Figure 4-4: Inner domain and 7x7 pixels sub-grid (blue rectangle) centered on ground-station 

antenna (indicated with a diamond). 

 
Figure 4-5: Es/N0 probability density function for a given temporal instant and a given Rs value: 

median value (red) with error-bar determined by its 25th (green) and 75th (blue) percentile. 

Using this approach, we have tested the model-chain. The validation case is the transmission of 
August 11, 2018 to Malargüe station: we have compared the Es/N0 measured by the TTCP with the 
one computed with our model chain considering the Rs actually adopted by Hayabusa2 during the 
transmission. The result of the comparison is in Figure 4-6: blue line is the Es/N0 from the TTCP and 
the pink line is the one simulated by the model-chain (with the corresponding error-bar), the red 
line is the 𝐸𝐸𝑠𝑠/𝑁𝑁0 threshold. Note that, for graphical purposes, we have accomplished a linear 
interpolation of the 𝐸𝐸𝑠𝑠/𝑁𝑁0 simulated per each hour. The validation shows an excellent agreement 
between the simulated and measured curves with an average error of about 0.16 dB. Note that the 
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step down occurring about at 14:40 UTC (that can be observed in both measured and simulated 
curve) is due to the switch of the transmission from non-coherent to coherent mode that always 
happen within the first hour of transmission. 
 
For the DBM optimization, we have applied a statistical approach to the Rs computation. Per each 
of the 7x7 sub-grid point and per each temporal instant we have chosen the highest Rs that allows 
Es/N0 higher than the minimum threshold Es/N0|th: 
 

𝑅𝑅𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = max
𝑅𝑅𝑠𝑠

�
𝐸𝐸𝑠𝑠
𝑁𝑁0

>
𝐸𝐸𝑠𝑠
𝑁𝑁0
�
𝑡𝑡ℎ
� (4.5) 

 
Where 𝑅𝑅𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 is chosen among the list of data-rates of Hayabusa2 and Es/N0|th = 2.06 dB. The Es/N0 
in (4.5) is computed with (4.2) following the statistical approach described above and using Latm and 
TB provided by the RPM for the considered pixel and hour. After this computation, we have a 7x7 
grid of Rs optimized values per each hour of transmission. To select the optimum Rs of each hour 
we consider the mode (i.e., the most frequent Rs value occurring in the 7x7 sub-grid) instead of 
considering the single pixel corresponding to the receiving station. This technique, as it will be 
clarified in the following, allows to compensate for the potential double-penalty error of the 
meteorological forecasting model, which consists in the space-time delocalization of a predicted 
meteorological phenomenon. 
 

 
Figure 4-6: Model-chain validation (August 11, 2018, Malargüe) 

We have tested the model-chain in an operative context: the operation case is the transmission of 
November 10, 2018 to Malargüe. On the day before the transmission (i.e., November 9), we have 
run our model-chain with daily forecasts for the day of 10 November and provided the optimized 
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Rs with the corresponding Es/N0 to the JAXA team. The upper panel of Figure 4-7 shows the 
comparison of Rs produced by our optimization and the one actually used by Hayabusa2. For the 
first 2 hours of transmission, Hayabusa2 operated at 8192 symbols per seconds (sps). Since our 
prediction suggested that the data-rate could be increased up to 32768 sps, from the third hour of 
transmission JAXA decided to switch from 8192 to 16348 sps. The lower panel of Figure 4-7 shows 
the Es/N0 measured by the TTCP (operating with the “Rs HYB2” of panel a) and the one that would 
be obtained using our optimized values (“Rs opt.” of panel a). As expected, our predicted Es/N0 is 
lower than the one measured, because it corresponds to higher data-rate (i.e., higher transmitted 
and received data), but is higher than the minimum threshold. This confirms that our optimization 
would allow a more efficient transmission with higher received data and, at the same time, a level 
of Es/N0 above the minimum threshold. Note that in the lower panel of Figure 4-7 there are two 
steps down of the Es/N0. The first one (occurring at about 14:40 UTC) appears on both TTCP and 
Optimization curves and is due to the switch from non-coherent to coherent transmission (as 
previously explained). The second step down occurs at about 15:00 in the TTCP curve and is due 
to the switch of Rs from 8192 to 16348 sps. If Rs had been further switched to 32768 sps, the TTCP 
line would be at the same level of the simulated Optimization line. 
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Figure 4-7: Model-chain operation on November 10, 2018, Malargüe: optimized Rs (Opt., green) vs 
Rs actually adopted by Hayabusa2 (HYB2, blue) 

To conclude, Figure 4-8 shows time series of attenuation computed by the RPM per each of the 7x7 
pixel during the transmission of November 10, 2018. The picture highlights that our model-chain 
“sees” a meteorological event (i.e., a humidity peak probably due to a cloud and causing excess 
attenuation) in the Malargüe pixel at 18:00 UTC and in some surrounding pixels and hours. After 
the transmission we have checked radiometric measurements (available from the ESA zenithal 
pointing radiometer sited in Malargüe) and found that no meteorological events where registered 
on the vertical above Malargüe station during the pass. This means that, probably, the event 
predicted by our WFM actually occurred in a different position (i.e., in a different pixel): this is an 
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example of double-penalty error. If we had designed the link using the Malargüe pixel to select the 
optimal Rs (instead of considering the mode Rs from the 7x7 sub-grid), we would have 
overestimated the attenuation and undersized the link at 18:00 UTC. This suggests that the 
proposed statistical approach for the Rs and Es/N0 optimization would be a powerful solution to 
overpass potential model errors, however further analysis on more passes would be required to 
confirm the findings. 
 
 

 
Figure 4-8: Attenuation time-series in Malargüe for each of the 7x7 pixels of the sub-grid domain 

(10 Nov. 2018). Pixel 1 corresponds to Malargüe. 
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Chapter 5. Microwave interference source 
modelling and terrestrial applications 
5.  I. Introduction 

In the framework of the World Radiocommunication Conference 2019 (WRC-19) of the 
International Telecommunication Union (ITU), Agenda Item 1.13 (AI 1.13) will address the 
identification and the possible additional allocation of radio-frequency spectrum to the mobile 
services on a primary basis. Such identification and allocation are required to serve the future 
development of the International Mobile Telecommunications (IMT) for 2020 and beyond, mainly 
focused on systems supporting the fifth generation (5G) of cellular mobile communications. The 
frequency range of interest goes from 24.25 to 86 GHz, which fully covers all the high-frequency 
bands used or planned by the European Space Agency’s space missions for high data rate 
transmissions.  
 
The use of frequencies at millimeter waves is a key interest of the agency, as these high frequency 
bands are not as congested as the lower bands and provide several performance advantages. 
Hence, the need of ensuring a proper protection from the future IMT systems in terms of received 
radio frequency interference (RFI) has become one of the crucial tasks of the ESA’s frequency 
management office in preparation for the upcoming WRC-19. In addition to data transmission from 
space, it is necessary to ensure the protection of the adjacent frequency bands used by many earth 
observation missions equipped with passive sensors. The impact of high levels of unwanted 
emissions from IMT-2020 devices is a potential threat for such sensitive instruments and could 
compromise the data quality of future missions. 
 
This chapter shows the potential impact of IMT deployments presenting an in-band spectral 
overlap with ESA’s missions using or planning to use frequency bands allocated to the Earth 
Exploration-Satellite Service (EESS) and to the Space Research Service (SRS) as follow: 
• 25.5-27.0 GHz, allocated to EESS (space-to-Earth) and SRS (space-to-Earth) – already used 
by EDRS and planned for use by EUCLID, PLATO, WFIRST, MTG, MetOp-SG and many other 
missions in the near future; 
• 31.8-32.3 GHz, allocated to SRS Deep Space (space-to-Earth) – already used by 
BepiColombo, Hayabusa2 and several NASA missions, and planned for Juice; 
• 37.0-38.0 GHz, allocated to SRS (space-to-Earth) – earmarked for future lunar manned 
missions like the international moon village. 
 
Particular focus is given to the ESA’s tracking network and to the earth station (ES) sites located in 
New Norcia (Australia), Cebreros (Spain), Malargüe Sur (Argentina) and Kiruna (Sweden). The 
high performance of the deep space stations makes them very sensitive to a potential interference 
source on ground. Results are shown in terms of required separation distances, i.e. the minimum 
distance between the earth station and the IMT station ensuring that the protection criteria for the 
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earth station are met by the emissions of an IMT base station (IMT-BS) or user equipment (IMT-
UE). 
 
It is to be noted that transmission media of radiowaves include all possible routes between a radio 
transmitter and a receiver consisting of free space and atmospheric propagation as well as 
electromagnetic interaction with the ground surface and surrounding medium. Received 
interference can derive from several propagation mechanisms including line-of-sight propagation, 
diffraction, scatter, ducting, reflection/refraction, etc. which strongly depend on climate, radio 
frequency, link availability, distance and path topography; at any time any of these mechanisms 
may be present. For this, the ESA analysis adopts the terrestrial propagation modelling of the latest 
version of Recommendation ITU-R P.452 [61] “Prediction procedure for the evaluation of 
interference between stations on the surface of the Earth at frequencies above about 0.1 GHz” as 
the method to assess the interference potential between the IMT terrestrial networks and Earth-to-
space receiving stations, and to ensure a satisfactory coexistence.  
 
The chapter is organized as follows: section 5.II recaps all the assumptions for both the ESA’s earth 
stations and the IMT-2020 terrestrial systems, section 5.III describes the adopted methodology and 
section 5.IV summarizes the compatibility study results. 

5.  II. Assumptions 

5.  II.A. ESA’s earth stations 
To ensure RFI free operations of the receiving earth stations operated by ESA and other space 
agencies, it is necessary that the emissions of IMT-2020 mobile networks as seen by the earth station 
be compliant with the relevant ITU recommended protection criteria for SRS and EESS. The criteria 
mainly depend on the mission type and on the sensitivity of the receiver and are usually expressed 
as maximum permitted interference density level received by the victim for a given probability of 
time. Table 5-1 recaps the ITU-R criteria adopted by ESA in the compatibility studies at 26, 32 and 
37 GHz. 
 
The knowledge of the earth station characteristics is crucial when performing RFI assessment, as 
the results vary depending on the antenna performance. In particular, at least the following 
parameters shall be available when performing this kind of compatibility studies: 
 
1. Maximum antenna gain [dBi] and antenna radiation pattern; 
2. Local horizon profile around the station [deg], referred to the antenna radiation center of phase 

height; 
3. Minimum elevation angle [deg] and minimum separation angle [deg]. The latter is defined as 

the angular difference between the local horizon as seen from the ES and the minimum elevation 
angle to be considered in a certain direction. 
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TABLE 5-1: ITU-R RECOMMENDED PROTECTION CRITERIA FOR SRS AND EESS EARTH STATIONS 
Space-to-Earth 

frequency band and 
service 

ITU-R Rec. Permissible interference 
level Probability 

26 GHz 
(EESS non-

geostationary) 
SA.1027 [163] 

Long-term 
–143 dB(W/10MHz) 

 
Short-term 

–116 dB(W/10MHz) 

Long-term 
20 % 
 
Short-term 
0.005 % 

26 GHz 
(SRS) 

SA.609 [164] -156 dB(W/MHz) 
0.1 % (unmanned missions) 
0.001 % (manned missions) 

32 GHz 
(SRS deep space) 

SA.1157 [165] -217 dB(W/Hz) 0.001 % 

37 GHz 
(SRS) 

SA.1396 [166] -217 dB(W/Hz) 
0.1 % (unmanned missions) 
0.001 % (manned missions) 

  

 
 

 
Figure 5-1: Example of Terrain heights map around the Malargüe Deep Space station in 

Argentina 
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These parameters are necessary to compute the receiving gain towards the horizon in a given 
direction (azimuth cut). Moreover, the ES-related information below is required to predict the 
propagation channel behavior: 
 
4. Absolute antenna radiation center of phase height [m]; 
5. Terrain heights map, covering any possible path between the considered station and any given 

points where IMT deployments are expected. The data collected by the Shuttle Radar 
Topography Mission (SRTM) have been used, in particular the 1-arcsec resolution terrain profile 
data, with a projected ground resolution of about 30 m. Figure 5-1 shows an example of terrain 
heights map around the ESA’s Deep Space Antenna located in Argentina, close to the city of 
Malargüe. 

 
In the compatibility studies, the earth station system is considered as a static element, i.e. the 
antenna is modelled with a fixed static gain towards the local horizon for each considered azimuth 
cut. This assumption is required given the fact that the considered ESs support a wide variety of 
space missions (EESS and SRS). Indeed, the trajectory of a spacecraft varies considerably from one 
mission to another. In particular, all types of missions can be envisaged for SRS (near Earth), 
ranging from low Earth orbits (LEO) to missions around one of the Lagrange points, and including 
geo-synchronous Earth orbits (GEO), highly elliptical orbits (HEO) or lunar missions. Similarly, 
SRS (deep space) missions generally target planets in the ecliptic plane, but can stay for an extended 
period in near earth orbits, or depart from the ecliptic plane when chasing comets, asteroids or 
other bodies. 

5.  II.B. IMT-2020 Base Stations 
Relevant expert groups provided the IMT network specifications, which were then formalized by 
the ITU study groups and universally adopted in compatibility studies. The IMT base stations will 
exploit Massive Multiple-Input & Multiple-Output (MIMO) techniques, able to serve more than 
one user at the same time by adopting beamforming antenna arrays with highly directional 
antennas. Figure 5-2 shows an example of the IMT 5G antenna pattern at 24.25 - 33.40 GHz, when 
assuming zero tilt (both mechanical and electrical). The beamforming antenna array is modelled in 
the recommendation ITU-R M.2101 [167]. It consists of a number of identical radiating elements 
with a fixed separation distance, identical radiation patterns and having maximum directivity 
along the same axis. A weighting function is used to direct the beam in various directions. The total 
antenna gain is the sum (logarithmic scale) of the array gain and the element gain. 
 
The elevation angle θ is defined between “θmin = -90°-θmtilt” (down) and “θmax = 90°-θmtilt” (up), where 
θ = 0° is the horizon and θmtilt is the perpendicular angle to the array antenna aperture, i.e. the 
mechanical tilt. The azimuth angle is denoted as ϕ and it is defined between −180° and 180°.  
 
Network topology and IMT-BS characteristics differ among the following deployment scenarios, 
as defined by the relevant IMT experts [169]:  

• outdoor suburban open space, 
• outdoor suburban, 
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• outdoor urban, 
• indoor. 

 
This study addresses all possible scenarios at the three considered frequency bands (26, 32 and 37 
GHz), except for indoor, which is expected to be the less critical in terms of risk for interference. 
Dynamic aggregated analysis and sensitivity analyses were also considered to assess the impact of 
any possible future deployment. For what concerns interference due to User Equipment (UE) 
emission, analyses have shown that the latter does not contribute much to the aggregate 
interference because of a high clutter loss value and the indoor/outdoor attenuation, which would 
limit the impact of indoor transmitters. 
The following subsections aim at describing the IMT-2020 parameters, split in three different 
categories: static, dynamic and aggregation parameters. 
 

 
Figure 5-2: IMT-2020 5G antenna pattern at zero tilt (24.25 - 33.40 GHz) 

 Static parameters 
Table 5-2 recaps the static parameters considered in the compatibility studies. Basic assumption of 
the study is to consider the IMT-BS antenna panel pointing towards the ES, i.e. having a mechanical 
azimuth-pointing equal to 0 deg. This assumption is crucial to reproduce the worst-case scenario 
in terms of IMT-2020 deployments around the considered ground station. 
  



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Microwave interference source modelling and terrestrial applications 

 

 68  
  

TABLE 5-2: IMT-2020 CHARACTERISTICS – STATIC PARAMETERS (OUTDOOR SUBURBAN/URBAN 
HOTSPOTS [169]) 

Parameter Value Unit 
BS antenna height  
(radiation center) 

hBS 6 or 15 m 

UE antenna height hUE 1.5 m 

Mechanical tilt (in elevation) θmtilt -10.0 or -15.0 deg 

BS maximum coverage angle in azimuth  120 deg 

Antenna pattern ITU-R M.2101 [167] - 

Element gain GE,max 5 dBi 
Horizontal 3 dB beamwidth of single 

element 
φ3dB 65 deg 

Vertical 3 dB beamwidth of single element θ3dB 65 deg 
Horizontal front-to-back ratio Am 30 dB 

Vertical front-to-back ratio SLAv 30 dB 

Horizontal radiating element spacing dH/λ 0.5 m/m 

Vertical radiating element spacing dV/λ 0.5 m/m 

Frequency range 24.25 - 33.40 GHz 
Array configuration  

(rows × columns) 
NV × NH 8 × 8 - 

Power per element PE 10 dBm 

Total array power Parray 28 dBm 

Ohmic losses Larray 3 dB 

Maximum array gain GTX,max 23 dBi 

Maximum EIRP EIRPmax 48 dBm 

Associated bandwidth BW 200 MHz 

Frequency range 37.00 - 43.50 GHz 
Array configuration  

(rows × columns) 
NV × NH 8 × 16 - 

Power per element PE 8 dBm 

Total array power Parray 29 dBm 

Ohmic losses Larray 3 dB 

Maximum array gain GTX,max 26 dBi 

Maximum EIRP EIRPmax 52 dBm 

Associated bandwidth BW 200 MHz 
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 Dynamic parameters 
The nature of the IMT-2020 systems suggests not considering the IMT-BS as a fully static element 
in the studies. It is indeed recognized that the gain (and EIRP) of the IMT-BS varies in time, due to 
the fact the antenna array will not be pointing towards a fixed direction. This implies considering 
dynamic scenarios and simulations, which shall represent a real environment by considering the 
electrical pointing of the IMT-BS antenna, i.e. the movement of the IMT-UE inside the coverage 
area. In this respect, a gain (or EIRP) probability distribution has to be defined to statistically model 
such behavior.  
 
The azimuth electrical beam pointing φescan is assumed normal distributed in azimuth 𝒩𝒩(𝜇𝜇,𝜎𝜎2); 
the elevation tilt θtilt TOT distribution is derived from the distribution in distance of the IMT-UE 
from the IMT-BS, and such distance is assumed to be: 
• Log-normal distributed for an Outdoor Suburban Open Space base station; 
• Rayleigh distributed for an Outdoor Suburban/Urban Open Space base station. 
 
Figure 5-3 explains the definition of the total tilt, as combination of a static mechanical tilt and a 
varying electrical tilt.  
 

 
Figure 5-3: IMT-2020 BS (Suburban hotspot) – Definition of total tilt θtilt TOT 

It is assumed to have only one single UE per BS, without considering the system as multi-
beamforming MIMO. Taking into account a single beam is considered a worst-case assumption, 
due to the fact that in MIMO scenarios the gain would not correspond to the maximum obtainable 
value of the array. 
 
From these assumptions, it is possible to determine the antenna gain distribution towards the 
victim earth station, using the antenna pattern from recommendation ITU-R M.2101 [167]. The 
distribution is assumed the same for each considered azimuth since it has been computed assuming 
a flat terrain, i.e. horizon 0 deg. The latter is a worst-case assumption given that higher horizon 
angles would provide lower antenna gain values (the antenna is mechanically pointing towards 
ground). 
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The IMT-2020 5G networks will be based on a Time Division Duplex (TDD) transmission form. 
TDD refers to duplex communication links where uplink is separated from downlink by the 
allocation of different time slots in the same frequency band. It is a transmission scheme that allows 
asymmetric flow for uplink and downlink data transmission. Users are allocated time slots for 
uplink and downlink transmission. Additionally, a network loading factor (NLF) was considered, 
defined as the ratio of the time between the actual usage time of the network and the total time that 
it could be in use. 
Considering the two aforementioned characteristics, the EIRP probability density function can be 
obtained by convolving the transmit power probability density function with the transmitter gain 
distribution under the assumption of statistical independency among all variables.  

 Aggregation parameters 
Aggregated scenarios are to be considered as examples only, since they have been simulated by 
considering a series of approximations and assumptions. In particular, clutter loss modelling is 
strongly dependent on the deployment location and its surroundings. Proper aggregated analyses 
shall be considered on a case-by-case basis during actual coordination processes.  
 
Taking into account the maximum density of IMT-2020 base stations per km2 for a given 
deployment scenario, the aggregated emission of IMT-BS clusters is computed by adopting a 
Monte-Carlo simulation method and assuming the following: 
 
• One-year simulation time with a 10-sec sampling time; 
• Each IMT-BS is modelled by taking into account static and dynamic parameters above-

mentioned; 
• Dynamic parameters referring to a single simulated IMT-BS are assumed uncorrelated among 

themselves (electrical azimuth pointing, IMT-UE distance from BS, TDD and NLF); 
• Distributions are recomputed from scratch from one IMT-BS to another, assuming full 

uncorrelation among IMT-BSs; 
• The generated random processes are assumed white, i.e. with no correlation among realizations; 
• The final aggregated EIRP distribution is obtained by convolving the individual IMT-BS 

distributions accordingly; 
• The equivalent emission of the cluster is assumed to be compressed in a single point on ground, 

representing the equivalent contribution given by a cluster occupying an area of 1 km2. 

5.  III. Methodology 

The determination of the coordination area is based on the concept of the permissible interference 
power at the antenna terminals of a receiving terrestrial station, i.e. earth station. Hence, the path 
attenuation associated to the terrestrial propagation channel is required to limit the level of 
interference between a transmitting terrestrial station (IMT-2020 system) and a receiving station. 
This is represented by the “minimum required loss” to ensure that the interference power level is 
below the maximum permitted interference density level received by the victim for a given 
probability p% of time. Such required loss can be easily converted into a minimum separation 
distance 𝑑𝑑sep [km], which ensures no risk for interference for the analysed earth stations (EESS or 
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SRS), i.e. the IMT-2020 terrestrial systems being compliant with the relevant ITU-R recommended 
protection criteria. 
 
Instead of exploiting the propagation channel behavior for facilitating the communication, it is 
used to assess the interference potential between the terrestrial and Earth-space systems, predicted 
with reasonable accuracy to ensure the satisfactory coexistence of both. The many propagation 
mechanisms considered by ITU-R P.452 [61] are included in the analysis, since at any time more 
than one may be present. The final combined loss is basically equal to the smallest propagation 
component taken into account. 
 
Dynamic analyses, in which some of the variables are assumed to be variant in time (see section 5.  
II), have been performed following the so-called Time Variant Gain (TVG) methodology as defined 
in Appendix 7, Annex 6.4, ITU Radio Regulations, Appendices, Edition 2016 [168]. The Time-
Variant Gain (TVG) method ideally requires the cumulative distribution of the time-varying 
horizon antenna gain. If compared with the Time-Invariant Gain (TIG) method, the TVG method 
usually produces smaller distances, but requires greater computational effort as well as the 
determination of the horizon gain cumulative distribution for each propagation path to be 
considered. The TVG method closely approximates the convolution of the distribution of the time-
varying quantity of interest with the propagation mode path loss. TVG may however produce 
slightly smaller distances than those obtained by an ideal convolution; and the latter cannot be 
implemented due to the limitations of the current model for propagation channel prediction. The 
TVG method can be applied considering the IMT-2020 5G base station transmitter antenna gain 
(IMT-BS tracking the IMT-UE) with a Time-Variant Gain. The propagation mode required distance, 
at the azimuth under consideration, is taken as the largest distance developed from a set of 
calculations, each of which is based on the following equation: 
 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑣𝑣) = 𝑃𝑃𝑡𝑡 + 𝐺𝐺𝑡𝑡(𝑝𝑝𝑛𝑛) + 𝐺𝐺𝑟𝑟 − 𝐼𝐼(𝑝𝑝) (5.1) 
 
where 
• 𝑃𝑃𝑡𝑡 is maximum available transmitting power level (dBW) in the reference bandwidth at the 

terminals of the antenna of a transmitting terrestrial station, i.e. IMT-BS; 
• 𝐼𝐼(𝑝𝑝) is the permissible interference level (dBW) in the reference bandwidth to be exceeded for 

no more than 𝑝𝑝% of the time at the terminals of the antenna of a receiving earth station that may 
be subject to interference; 

• 𝐺𝐺𝑡𝑡(𝑝𝑝𝑛𝑛) is the horizon gain of the transmitting antenna (dBi) that is exceeded for 𝑝𝑝𝑛𝑛% of the time 
on the azimuth under consideration; 

• 𝐺𝐺𝑟𝑟 is gain towards the physical horizon on a given azimuth (dBi) of the victim earth station 
antenna; 

• 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑣𝑣) is the propagation mode minimum required loss (dB) for 𝑝𝑝𝑣𝑣% of the time; this loss must 
be exceeded by the propagation mode predicted path loss for all possible 𝑝𝑝𝑣𝑣% values retrieved 
from the considered gain complementary cumulative distribution function. 𝑝𝑝𝑣𝑣 is the time 
percentage that approximates the convolution between the variable horizon gain and the 
propagation mode path loss and is given by 
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𝑝𝑝𝑣𝑣 = �
100

𝑝𝑝
𝑝𝑝𝑛𝑛

                     if   𝑝𝑝𝑛𝑛 ≥ 2𝑝𝑝  

50                             if   𝑝𝑝𝑛𝑛 < 2𝑝𝑝 
 (5.2) 

 
The values of the percentages of time, 𝑝𝑝𝑛𝑛, to be used are determined in the context of the 
complementary cumulative distribution of the horizon antenna gain. This distribution needs to be 
developed for a predetermined set of values of horizon antenna gain spanning the range from the 
minimum to the maximum values for the azimuth under consideration. In other words, 𝑝𝑝𝑛𝑛 is the 
percentage of time that the horizon antenna gain exceeds the n-th horizon antenna gain value. For 
each value of 𝑝𝑝𝑛𝑛, 𝐺𝐺𝑟𝑟(𝑝𝑝𝑛𝑛) is used in the equation to determine a propagation mode minimum 
required loss. The propagation mode predicted path loss is to exceed this propagation mode 
required loss for no more than 𝑝𝑝𝑣𝑣% of the time. The propagation mode required distance is then 
the maximum distance in the series of propagation mode distances that are obtained for any value 
of 𝑝𝑝𝑛𝑛. 
 
Alternatively, a modified version of the Time Variable Gain (TVG) methodology given in [168] can 
be used to approximate the convolution of the distributions of the transmitter antenna gain (IMT-
BS tracking the IMT-UE), the transmitting power (TDD and NLF) and the propagation model. 
Equation (5.2) can be rewritten as follow: 
 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑣𝑣) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) + 𝐺𝐺𝑟𝑟 − 𝐼𝐼(𝑝𝑝) (5.3) 
 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) is the EIRP (dBW) in the reference bandwidth at the terminals of the antenna of a 
transmitting terrestrial station that is exceeded for 𝑝𝑝𝑛𝑛% of the time on the path under consideration. 
 
Note that the use of the presented methodology allows to cover all possible orbits from the victim 
receiver point of view and consider, at the same time, the variability in terms of electrical pointing 
of IMT-2020 BS systems. 

5.  IV. Results 

Terrestrial radio-propagation simulations have been run following the methodology described in 
section 5.  III, given the assumptions in section 5.  II and applying ITU-R P.452 [61]. Figure 5-4 
shows a detailed example of a 26-GHz simulation for a sample azimuth cut (339 deg) around the 
Malargüe Deep Space Station in Argentina. The top panel shows the terrain height profile (blue 
curve) taken into account for the computation of the propagation path loss, while the bottom panel 
shows the required path loss (green curve), together with the obtained path loss (red curve). For 
this particular case, the minimum separation distance has to be larger than 91.6 km, as this is the 
last point in distance which obtained propagation loss exceeding the required one. It can be noted 
how the obtained propagation loss does not simply correspond to the free space propagation loss 
(cyan dotted curve) and, under special circumstances, the actual propagation conditions could be 
more advantageous (as evident at ~15 km distance, where the red curve goes below the free space 
baseline). 
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Figure 5-4: Simulation example at 26 GHz for an azimuth cut around the Malargüe Deep Space 

Station in Argentina (Outdoor Suburban IMT deployment, single entry) 

Figure 5-5 shows another simulation example in terms of coordination contour (minimum 
separation distances) around the Malargüe Deep Space Station in Argentina (Outdoor Suburban 
IMT deployment, single entry IMT-BS with variable transmitter gain). Grey circles indicate 
distances from the Malargüe Deep Space Station at 10 km step. IMT-BS stations outside the contour 
would meet the earth station protection criteria. Inside the contour, the figure also shows the 
protection level violations around the station, where the violation is defined as the difference 
between the required and the obtained propagation losses. The map displays colored areas where 
the protection criterion is exceeded, i.e. when the required losses are larger than the obtained ones. 
If the criterion is respected, the areas are displayed in white. IMT-BS stations inside but close to the 
contour may meet the earth station protection criteria for specific azimuth mechanical pointing of 
the BS, while IMT-BS closer to the ES would not meet the criteria in any case, thus defining an 
exclusion zone or contour.  
 
The variability of the obtained separation distances along the considered directions (1-deg step 
azimuth cuts) is mainly due to the following: 

• the specific terrain heights for the considered cut, which lead to different radio-propagation 
loss along the signal path; 
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• the local horizon profile as seen from the antenna radiation center of phase height, which 
impacts the horizon antenna gain to be accounted for in (5.1) and (5.3). 

 
Table 5-3 finally shows the maximum obtained coordination distances for all ESA’s earth stations 
considered in the compatibility studies. As mentioned above, the results highly vary among 
stations, as they strongly depend on the antenna horizon mask and the local terrain profile along 
the considered direction. It is therefore clear that no generic coordination contour can be defined 
for a given ground station type, and ad-hoc studies must be carried out to determine the minimum 
distance required for a specific station to ensure an acceptable risk for interference, i.e. compliance 
with the ITU-R recommended levels in Table 5-1. 

 

 
Figure 5-5: Simulation example at 26 GHz – Separation distances (coordination contour) around 

the Malargüe Deep Space Station in Argentina (Outdoor Suburban IMT deployment, single 
entry) 
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TABLE 5-3: MAXIMUM COORDINATION DISTANCES FOR THE ESA’S EARTH STATIONS CONSIDERED IN THE 
COMPATIBILITY STUDIES 

Space-to-Earth frequency 
band and service 

Maximum coordination distance 

Kiruna, 
Sweden 

New Norcia, 
Australia 

Cebreros, 
Spain 

Malargüe, 
Argentina 

26 GHz 
(EESS non-GEO) 

5 km - - - 

26 GHz 
(SRS) 

40 km 79 km 31 km 92 km 

32 GHz 
(SRS deep space) 

- 51 km 31 km 67 km 

37 GHz 
(SRS) 

- 79 km 31 km 101 km 
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Chapter 6. Clear-Sky dynamical detection 
from geostationary infrared imagery 
6.  I. Introduction 

Hazard and meteorological applications continuously rely on remote sensing techniques and, in 
the past decades, the international scientific research community has recognized the satellites to be 
vital in detecting and monitoring natural and environmental phenomena. In several countries or 
critical situations of emergency, satellite observations are the only economically feasible way to 
detect and track these phenomena and eventually mitigate the repercussions [170].  
Space borne radiometers offer the possibility to sense the environment by exploiting thermal 
infrared and optical channels [173]-[174]. These measurements are obtained from both 
geosynchronous-Earth-orbit (GEO) and low-Earth-orbit (LEO) satellites, thus offering different 
spatial and temporal resolutions [173]-[185]. This translates into having different and 
complementary advantages, and the instrument to be used depends on the considered application 
[180].  
 
For nearly real-time applications, geostationary platforms often are a mandatory choice as they are 
able to observe the same Earth scene with a rapid and continuous sampling rate [171]. However, 
given the large distance from Earth, they have the disadvantage of a low spatial resolution 
(typically larger than a few kilometers). On the other hand, for LEO payloads, the revisit time may 
be even longer than 12 hours but the spatial resolutions vary from several kilometers down to 
meters, depending on the wavelength [173]. 
 
Many operational services require short time resolutions with relatively short data latency in order 
to operate in near real-time. Many works stated the importance of operational meteorological 
satellites for the retrieval of routine products and long-term analyses [170], showing the possibility 
of developing detection algorithms exploiting GEO satellites [170]-[172]-[198]. Most of these 
approaches are designed on spatially-based algorithms, i.e. they consider a set of spatial thresholds 
to be contextually applied in absolute or differential way with respect to the averaged scene around 
the pixel of interest [173]-[174]-[191]. Following a purely spatial contextual algorithm could be 
disadvantageous in certain conditions, as the temporal trend information is not exploited to add 
robustness to the system (especially when a time correlation exists between two consecutive 
observations) [199]-[203]. 
 
This chapter aims at defining a generalized remote sensing technique, which implements a 
modified version of the well-known Kalman filter [177]-[179], [181]. Roughly speaking, the Kalman 
filter is a recursive algorithm able to estimate the true state of a system on the basis of noisy 
measurements and has long been considered the optimal solution to many tracking and data 
prediction tasks [181], providing linear, unbiased estimations of the states of a system. It has been 
used in a large variety of applications, [181]-[179]-[204], and it is still a very popular solution in 



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Clear-Sky dynamical detection from geostationary infrared imagery 

 

 77  
  

several science fields, such as supervisory management systems [175], as well as data fusion [176], 
among the most recent examples. The Kalman filter typically works in a time-based domain and is 
able to take into account multiple representations of the same observed scene (e.g. multispectral 
measurements). In this chapter, we provide a detailed formulation of a Kalman-based anomaly 
masking (KAM) technique, which can suit most of the Earth Observation and remote sensing 
applications characterized by recurrent observations of the same scene in a reasonably short time-
interval [182]-[183]. The possibility of exploiting the time-evolution information of the observations 
is indeed one of the elements of novelty of the presented approach, adding robustness to the 
detection algorithm when persistent anomaly conditions are observed for a relatively large area in 
space (critical condition for spatial–based detection algorithms, e.g. [174]- [191]). 
 
As real example of application, the KAM approach is applied to detect clear-air anomalies, making 
use of visible-infrared (VIS-IR) passive measurements from the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) aboard the GEO Meteosat Second Generation satellite. We follow a 
purely temporally-based approach in order to detect abnormal behaviors of the spectral radiance 
[182]. The clear-air KAM estimate relies on a background model of the daily measurement cycle of 
the considered pixel in pure clear-sky conditions. If the measurement significantly deviates from 
its expected value as predicted by the algorithm (a-priori state), the system identifies the presence 
of an anomaly, which is classified as a non-clear air scenario. The difference between the actual 
scenario and the corresponding a-priori Kalman estimates is therefore the main driver. Practically 
speaking, a clear-air classification only happens if the measurements strictly satisfy several 
multispectral conditions, which refer to the a-priori estimates and the pixel models. The filter 
updates the a-posteriori states depending on the detection outcome: the clear-sky model dominates 
only in presence of an anomaly, otherwise, the filter follows the actual measurements.  
 
An important add-on value of the KAM approach is to be able to provide a-priori estimates of the 
scenario, exploiting the previous Kalman filter states and making use of the pixel models. This 
allows to have an equivalent clear-air radiance which is expected to be measured in absence of 
anomaly (for instance, in absence of cloud coverage). In such a way, the algorithm results globally 
applicable, since the estimates are computed from the pixel models and the thresholds can be set 
independently from the area of interest. 
 
The chapter is structured as follow. Section 6.II presents the mathematical formulation of the 
modified Kalman filtering technique, which can be easily tailored to accommodate several 
applications. Section 6.III describes GEO measurements used to test and validate the approach, 
whereas section 6.IV provides detailed information on the actual filter tailoring for clear-air 
masking. Eventually, section 6.V shows an inter-comparison in terms of clear-air detection with 
respect to a highly assessed Cloud-Mask product using the same input measurements.  
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6.  II. Modified Temporal Kalman Filter 

Hereby we present a modified version of the well-known Kalman filter [181]. Such filter can 
theoretically suit most of the Earth Observation and remote sensing applications characterized by 
recurrent observations of the same scene in a reasonably short time interval. The proposed KAM 
filter works in a time-based domain and is able to take into account multiple representations of the 
same observed scene (e.g., multispectral measurements). 
 
In the following paragraphs we assume time-discrete observations equally spaced by a constant 
time sampling 𝑇𝑇𝑠𝑠. Moreover, a daily cycle 𝑇𝑇𝑐𝑐 is assumed. The index 𝑘𝑘 indicates the considered time 
step 𝑘𝑘 = 1, … , 𝑇𝑇𝑠𝑠/𝑇𝑇𝑐𝑐. The filter can be easily adapted to operational situations in which the time-
sampling is not uniform, as long as the measurements are recurrent, i.e. the correlation between 
two consecutive observations is not null. The Kalman nomenclature and the adopted vector 
notation are summarized in Table 6-1. 

 
TABLE 6-1: MODIFIED TEMPORAL KALMAN FILTER, SUMMARY OF VARIABLES AND THEIR DEFINITIONS 

WITH N THE NUMBER OF AVAILABLE OBSERVATIONS SPANNED BY THE INDEXES I=1,…,N; J=1,…,N 
Variable Definition Dimension 

𝒛𝒛𝑘𝑘 True observation vector (n×1) 

𝒛𝒛�𝑘𝑘 Actual observation vector (known) (n×1) 

𝜺𝜺𝑘𝑘 Associated observational error (n×1) 

𝑹𝑹𝑘𝑘 Observation noise covariance matrix (known) (n×n) 

𝒎𝒎𝑘𝑘 Background model vector (known) (n×1) 

𝝈𝝈𝑘𝑘𝑚𝑚 Background deviation vector (known) (n×1) 

𝑨𝑨𝑘𝑘 State transition matrix (n×n) 

𝑸𝑸𝑘𝑘 Process noise covariance matrix (n×n) 

𝒙𝒙𝑘𝑘− Kalman a-priori state vector (n×1) 

𝒙𝒙𝑘𝑘−1+  Kalman a-posteriori state vector (n×1) 

𝑷𝑷𝑘𝑘− Kalman a-priori error covariance matrix (n×n) 

𝑷𝑷𝑘𝑘−1+  Kalman a-posteriori error covariance matrix (n×n) 

𝑲𝑲𝑘𝑘 Kalman gain matrix (n×n) 

𝒕𝒕𝑘𝑘 Anomaly threshold dynamic vector (n×1) 

𝒕𝒕𝑚𝑚 Maximum threshold vector (n×1) 

𝝈𝝈𝑡𝑡 Anomaly confidence interval vector (n×1) 

 

6.  II.A. Kalman theoretical background 
We consider a number of n representations of the same scenario (e.g., a multispectral 
characterization of the scene with n observations). The actual observation vector 𝒛𝒛�𝑘𝑘 (n×1) is 
composed by the observed values of the scene at the instant k (e.g., measured radiances at n 
different frequencies as measured by the sensors): 
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𝒛𝒛�𝑘𝑘 = 𝒛𝒛𝑘𝑘 + 𝜺𝜺𝑘𝑘 =

⎝

⎜
⎛

 

𝑧𝑧1 + 𝜀𝜀1
𝑧𝑧2 + 𝜀𝜀2
𝑧𝑧3 + 𝜀𝜀3

⋮
𝑧𝑧𝑛𝑛 + 𝜀𝜀𝑛𝑛

 

⎠

⎟
⎞

𝑘𝑘

=

⎝

⎜
⎛

 

𝑧̂𝑧1
𝑧̂𝑧2
𝑧̂𝑧3
⋮
𝑧̂𝑧𝑛𝑛

 

⎠

⎟
⎞

𝑘𝑘

 (6.1) 

 
where 𝒛𝒛𝑘𝑘 (n×1) is the true observation vector, containing the true values of the scene, whereas 𝜺𝜺𝑘𝑘 
represents the observational error associated to each measurement. By definition, the 
measurements 𝒛𝒛�𝑘𝑘 are affected by various error sources (random and/or systematic) and thus 
deviate from their true value 𝒛𝒛𝑘𝑘 with possibly cross-correlated errors [189]. Hence, the need of 
defining the covariances among noise pairs at the timeslot k, forming the observation noise 
covariance matrix 𝑹𝑹𝑘𝑘 (n×n) defined as  
 

𝑹𝑹𝑘𝑘 =

⎝

⎜
⎛

 

𝑅𝑅11 𝑅𝑅12 𝑅𝑅13 ⋯ 𝑅𝑅1𝑛𝑛
𝑅𝑅21 𝑅𝑅22 𝑅𝑅23 ⋯ 𝑅𝑅2𝑛𝑛
𝑅𝑅31 𝑅𝑅32 𝑅𝑅33 ⋯ 𝑅𝑅3𝑛𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑅𝑅𝑛𝑛1 𝑅𝑅𝑛𝑛2 𝑅𝑅𝑛𝑛3 ⋯ 𝑅𝑅𝑛𝑛𝑛𝑛

 

⎠

⎟
⎞

𝑘𝑘

 (6.2) 

 
The covariances among noise pairs, i.e. elements �𝑅𝑅𝑖𝑖𝑖𝑖�𝑘𝑘, are defined as follows: 
 

�𝑅𝑅𝑖𝑖𝑖𝑖�𝑘𝑘 = �𝐸𝐸�(𝑧̂𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖)�𝑧̂𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗���𝑘𝑘 (6.3) 
 
where 𝑧̂𝑧𝑖𝑖,𝑗𝑗 and 𝑧𝑧𝑖𝑖,𝑗𝑗 are elements of the actual and true observation vectors, respectively. The 
operator E is the expected value operator and the indexes 𝑖𝑖 = 1 ÷  𝑛𝑛 and 𝑗𝑗 = 1 ÷  𝑛𝑛 refer to rows 
and columns of the matrix, respectively. In other words, the observation noise covariance matrix 
𝑹𝑹𝑘𝑘 defines possible mutual correlations among mean observational errors, associated to the 
measurements. 
 
The state transition matrix 𝑨𝑨𝑘𝑘 (n×n), also known as fundamental matrix, defines how two 
consecutive states are linked to each other [181]. There are several ways to define and retrieve the 
best fundamental matrix for a given application, often making use of Laplace transforms or Taylor-
series expansions. Once we have the fundamental matrix 𝑨𝑨𝑘𝑘 that fits our application, we can simply 
propagate states forward by matrix multiplication, by properly taking into account the sampling 
time [177]. For polynomial Kalman filters, the state transition matrix is often a function of time, 
computed by applying a polynomial expansion or a best-fitting technique over a consistent set of 
data [178]. For our purposes, dealing with discrete processes, we can compute the state transition 
matrix in a variety of ways, depending on the number of considered channels as well as their 
correlation, i.e. whether considering cross-channel relationships would increase robustness or not. 
Generally speaking, the state transition matrix can be obtained by exploiting a-priori models 
already available or exploiting pixel observation models characterizing the nominal behavior of a 
certain observed scenario. Of course, a mix of the two approaches can also be considered for some 
applications, i.e. physically-based models which need a set of nominal observations to fine-tune 
their trend.  
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In many applications, the fully-empirical approach is the only possible one, especially for global-
scale applications in which a global applicable physical model is a challenging and hazardous 
choice. We can therefore exploit a background model vector of the considered scenario 𝒎𝒎𝑘𝑘 (n×1), 
describing what one would expect if the observed scenario were nominal. The background model 
is to be intended as an independent source of information, which can be generally applicable, as a 
global-scale generic model, or even more accurate, e.g. seasonal pixel models for given 
geographical areas. A nominal scenario is identified as, for instance, a set of measurements 
converging to a well-defined mean value (e.g. radiances in clear air conditions) with as little 
associated noise as possible. In an ideal world, the background model vector corresponds to both 
actual and true observation vectors if the scenario is nominal. 
For the scope of this work, let us suppose a linear relationship between two consecutive states and 
consider the relationship between the representations i of two consecutive states k and (k-1), i.e. 𝑨𝑨𝑘𝑘 
is a diagonal matrix. So doing, the elements of the state transition matrix depend on the background 
model vectors as follows: 
 

�
{𝐴𝐴𝑖𝑖𝑖𝑖}𝑘𝑘 =

{𝑚𝑚𝑖𝑖}𝑘𝑘
{𝑚𝑚𝑖𝑖}𝑘𝑘−1

�𝐴𝐴𝑖𝑖𝑖𝑖�𝑘𝑘 = 0
 (6.4) 

 
with 𝑖𝑖 = 1 ÷ 𝑛𝑛, 𝑗𝑗 = 1 ÷ 𝑛𝑛 and 𝑖𝑖 ≠ 𝑗𝑗. The state transition matrix is therefore strictly dependent on the 
considered timeslot, as it is directly related to the ratio between the background model 𝑚𝑚𝑖𝑖 at a 
given discrete time k and its previous value at (k-1). This approach is considered robust when the 
time resolution of the background model is dense enough to get an advantage in supposing a linear 
relationship among consecutive values. If this is not the case, the state transition matrix shall be 
expressed as a function of time, by adopting a polynomial relationship which best represents the 
model of interest.  
 
The process noise covariance matrix 𝑸𝑸𝑘𝑘 (n×n) is directly linked to the state transition matrix and it 
is a measure of the associated noise to each state transition. If a physical model is used, the matrix 
should be retrieved from its mathematical formulation. If the fully-empirical approach in (6.4) is 
adopted, 𝑸𝑸𝑘𝑘 can be retrieved making use of the noise associated to the background model vector 
by applying the error propagation theory. If the aforementioned assumptions (and therefore (6.4)) 
hold, 𝑸𝑸𝑘𝑘 is also diagonal with �𝑄𝑄𝑖𝑖𝑖𝑖�𝑘𝑘 = 0 and its diagonal elements correspond to the estimated 
system variance, dependent on both background model and its standard deviation as: 
 

�
{𝑄𝑄𝑖𝑖𝑖𝑖}𝑘𝑘 = |{𝐴𝐴𝑖𝑖𝑖𝑖}𝑘𝑘|2 ��

{𝜎𝜎     𝑖𝑖
𝑚𝑚 }𝑘𝑘

|{𝑚𝑚𝑖𝑖}𝑘𝑘|�
2

+ �
{𝜎𝜎     𝑖𝑖

𝑚𝑚 }𝑘𝑘−1
|{𝑚𝑚𝑖𝑖}𝑘𝑘−1|�

2

�

�𝑄𝑄𝑖𝑖𝑖𝑖�𝑘𝑘 = 0
 (6.5) 

 
with 𝑖𝑖 = 1 ÷ 𝑛𝑛, 𝑗𝑗 = 1 ÷ 𝑛𝑛 and 𝑖𝑖 ≠ 𝑗𝑗, whereas the elements of 𝝈𝝈𝑘𝑘𝑚𝑚 are the standard deviation of the 
corresponding elements of 𝒎𝒎𝑘𝑘. The equation above corresponds to the computation of the variance 
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associated to {𝐴𝐴𝑖𝑖𝑖𝑖}𝑘𝑘, retrieved by adopting the uncertainty propagation theory applied to the ratio 
model [190].  

6.  II.B. Kalman a-priori states and residuals 
The Kalman a-priori state vector approximates the observed scenario by only using a-priori 
information available from the previous time-slot. It describes the equivalent nominal expected 
scenario one would observe if no perturbations are present. The Kalman a-priori state vector 𝒙𝒙𝑘𝑘− 
(n×1) at time k is defined as follows [178] 
 

𝒙𝒙𝑘𝑘− = 𝑨𝑨𝑘𝑘  𝒙𝒙𝑘𝑘−1+  (6.6) 
 
where 𝒙𝒙𝑘𝑘−1+  is the Kalman a-posteriori state vector (n×1) of the previous timeslot k-1. Similarly, the 
Kalman a-priori error covariance matrix gives an estimate of the achieved accuracy for a given state 
at time step k by means of [178] 
 

𝑷𝑷𝑘𝑘− =  𝑨𝑨𝑘𝑘  𝑷𝑷𝑘𝑘−1+  𝑨𝑨𝑘𝑘𝑇𝑇 +  𝑸𝑸𝑘𝑘 (6.7) 
 
where 𝑷𝑷𝑘𝑘−1+  is the Kalman a-posteriori covariance matrix of the previous time step k-1. The process 
noise covariance matrix 𝑸𝑸𝑘𝑘, representing the noise associated to the state transition matrix at a 
given timestamp, is added on top to account for the uncertainty introduced by the state 
propagation among consecutive discrete timeslots. It is to be noted that, the a-priori quantities 
described in this section are an important add-on information often not provided by classic spatial-
based remote sensing algorithms. Possible usages of these parameters are described in the 
conclusion. 
 
Once computed the a-priori states, we focus on the computation of the so-called residual quantities. 
These are simply a measure of how large is the discrepancy between the actual observed values 
and the a-priori estimates. In many practical remote sensing applications, having large residual 
quantities does not mean the algorithm is not working correctly, contrary to the classic Kalman 
filtering theory.  
Indeed, when observing a real physical phenomenon, we are actually interested in studying 
situations which go beyond the expected behavior and the presented algorithm aims at detecting 
and studying these phenomena. The residuals associated to the observation and covariance can be 
evaluated as follows 
 

Observation residual:      𝒛𝒛�𝑘𝑘 −  𝒙𝒙𝑘𝑘−

Covariance residual:        𝑷𝑷𝑘𝑘− + 𝑹𝑹𝑘𝑘
 (6.8) 

6.  II.C. Anomaly detection 
We are here introducing the concept of anomaly intended as an observed scenario not complying 

with the nominal behavior of interest. In other words, our goal is to perceive if the actual 
observation vector can be classified as useful information for the filter propagation or it somehow 
deviates in such a way not to be beneficial to the following Kalman state. By only exploiting the a-
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priori estimates and the background model, we consider a condition defining an anomaly-free 
region, which a nominal scenario must satisfy. If the scenario is a non-nominal state, then it is 
classified as an anomaly. A nominal scenario is detected if the following condition on the 
observation 𝒛𝒛�𝑘𝑘 is verified: 

 
𝒛𝒛�𝑘𝑘 ∈ [min(𝒎𝒎𝑘𝑘 ,𝒙𝒙𝑘𝑘−) − 𝒕𝒕𝑘𝑘, max(𝒎𝒎𝑘𝑘 ,𝒙𝒙𝑘𝑘−) + 𝒕𝒕𝑘𝑘  ] (6.9) 

 
the observation must reside within the region delimited by the background model and the Kalman 
a-priori estimate plus or minus a dynamic threshold value, which once again depends on the 
difference between the background model and the a-priori estimate. The single element {𝑡𝑡𝑖𝑖}𝑘𝑘 of the 
threshold vector 𝒕𝒕𝑘𝑘 vector is given by  

 

{𝑡𝑡𝑖𝑖}𝑘𝑘 = 𝑡𝑡𝑚𝑚𝑚𝑚 𝑒𝑒
−
� {𝑥𝑥𝑖𝑖}𝑘𝑘

−−{𝑚𝑚𝑖𝑖}𝑘𝑘 �
2

2 𝜎𝜎𝑖𝑖
𝑡𝑡  

(6.10) 

 
where 𝑡𝑡𝑚𝑚𝑚𝑚 is the maximum threshold assigned to the channel i and 𝜎𝜎𝑖𝑖𝑡𝑡 represents the confidence 
interval in which the a-priori state can still be representative of a nominal situation. Reasonable 
approximation is to consider 𝜎𝜎𝑖𝑖𝑡𝑡 ≅ 𝑡𝑡m𝑖𝑖, as in most of the cases they physically represent the same 
quantity, and cannot exceed the latter by definition.  
 

Figure 6-1 provides a graphical representation of (6.9) and (6.10) in order to clarify the rationale 
behind such formulation. As evident in Figure 6-1, (6.9) defines an anomaly-free region where a 
given observation 𝒛𝒛�𝑘𝑘 can be considered nominal (i.e. not an anomaly). Such a region varies 
dynamically with time and exclusively depends on the a-priori Kalman estimate and the 
background model, at a given timeslot. For instance, the timeslot k=1 in Figure 6-1 refers to a case 
where the a-priori estimate is below the actual pixel model (fixed) at the same timeslot. In this 
particular case, as the difference between the two is relatively large, the dynamic threshold in 
equation (6.10) results being small (value 𝒕𝒕1 in the figure). All new observations falling within the 
anomaly-free region (green area) would therefore be classified as nominal and exploited by the 
filter to update its status. The same considerations hold for the timeslot k=3, where the only 
differences reside in: a) the a-priori state estimate is above the relevant background model value, 
b) the difference between 𝒎𝒎𝑘𝑘 and 𝒙𝒙𝑘𝑘− is smaller and the 𝒕𝒕3 value is indeed larger. The timeslot k=2 
presents a slightly different scenario, as the a-priori Kalman estimate corresponds to the 
background model (ideal situation); hence the value of 𝒕𝒕2 is the maximum possible (𝒕𝒕𝟐𝟐 = 𝒕𝒕𝑚𝑚) and 
defines fully by itself the anomaly-free region. 
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Figure 6-1.  Dynamic threshold function, example. Graphical representation of the equations (6.9) 

and (6.10). The green dots correspond to the observations 𝒛𝒛�𝒌𝒌, the black curve is the a-priori 
estimate 𝒙𝒙𝒌𝒌− and the red curve represents the background model 𝒎𝒎𝒌𝒌. The green area corresponds 

to the anomaly-free region. A detailed description is provided in the text. The lower left figure 
shows an example of equation (6.10), using the values in Table 6-3 for the IR039 channel. 

The Gaussian function in (6.10) is selected to allow smooth transitions among time steps, and to 
guarantee a continuous behavior of the dynamic threshold function (as evident in Figure 6-1). 
Moreover, a Gaussian expression allows the KAM algorithm to be easily tailored for any 
application, as the only necessary pre-defined (input) vector is 𝒕𝒕𝑚𝑚 (e.g. using a triangular function 
would need a re-tuning of the whole threshold function formulation depending on the application, 
other than provoking possible discontinuities in the anomaly-free region trend). Also, it is to be 
noted how the Kalman status would change only when an observation is accepted as anomaly-
free: in the example in Figure 6-1, some measurement examples (close to the timeslot k=1) are 
identified as anomalies. Due to this, the filter does not change its status and continue propagating 
the relevant information maintained from the last useful nominal timeslot (however adding a-
posteriori noise to the error covariance, not visible in this figure). Further details are provided in 
the following paragraphs and in the chapter devoted to the application. The definition of the 
dynamic threshold (and associated anomaly-free region) for anomaly detection is one of the 
elements of novelty of the proposed technique.  
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6.  II.D. Kalman gain computation and a-posteriori state 
The Kalman gain 𝑲𝑲𝑘𝑘 at time step k is then computed depending on the outcome of the anomaly 

detection. Practically speaking, the information provided by the actual observation is taken into 
account only if conditions were nominal. Contrary, the associated a-priori information is 
exclusively propagated to compute a-posteriori estimates, i.e. the boundary conditions for the next 
timeslot. The Kalman gain matrix 𝑲𝑲𝑘𝑘 (n×n) is defined as follows 
 

�𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−(𝑷𝑷𝑘𝑘− + 𝑹𝑹𝑘𝑘)−1    if nominal state  
𝑲𝑲𝑘𝑘 = 0                                if anomaly state   (6.11) 

 
The a-posteriori state vector and covariance matrix are obtained by combining all the considered 

quantities. They provide the initial conditions for the timeslot k+1 by properly weighing the 
available information depending on the associated noise. The a-posteriori state vector 𝒙𝒙𝑘𝑘+ (n×1) and 
the a-posteriori error covariance matrix 𝑷𝑷𝑘𝑘+ (n×n) are computed by means of [178]: 
 

�
𝒙𝒙𝑘𝑘+ = 𝒙𝒙𝑘𝑘− + 𝑲𝑲𝑘𝑘(𝒛𝒛�𝑘𝑘 −  𝒙𝒙𝑘𝑘−)                            
𝑷𝑷𝑘𝑘+ = (𝑰𝑰 − 𝑲𝑲𝑘𝑘)𝑷𝑷𝑘𝑘−(𝑰𝑰 − 𝑲𝑲𝑘𝑘)𝑇𝑇 +𝑲𝑲𝑘𝑘𝑹𝑹𝑘𝑘𝑲𝑲𝑘𝑘

𝑇𝑇 (6.12) 

 
where I is the identity matrix. The 𝑷𝑷𝑘𝑘+ expression is known as the Joseph form of the covariance 
update equation and can be applied with any value of 𝑲𝑲𝑘𝑘. Such formulation comprises other 
simplified forms and provides the best numerical computation properties as well as it helps with 
reducing numerical errors [179]. 

6.  III. Geostationary Multispectral Data Processing 

The proposed KAM algorithm is based on the temporal Kalman filter, used as a detection system, 
with the main goal of developing a nearly real-time operational application. The latter can be 
provided, for instance, by fixed-pointing ground-based multispectral video-cameras or by 
geostationary remote imaging sensors. The latter observation systems can guarantee a proper and 
recurrent time sampling and a fixed spatial characterization of the observed scenario. 
 
In this work we use the geostationary Meteosat Second Generation (MSG) satellite with on-board 
SEVIRI, a 12-channel radiometer [184]. Earth imaging is obtained by a bi-dimensional Earth scan, 
combining the satellite spin and the scan mirror rotation. In this study, the rectified MSG SEVIRI 
image data are used. The SEVIRI Level 1.5 product is the result of a sequence of radiometric 
processing performed on the raw SEVIRI data such as linearization, conversion into radiances, 
calibration and linear scaling [196]-[197]. SEVIRI observes the Earth-atmosphere system with a 
spatial sampling distance of 3 km at the equator. The actual Instantaneous Field of View of the 
channels is about 4.8 km (11 channels) at nadir. The spatial resolution degrades as one moves 
further from the sub-satellite point. In particular for the chosen area of study in Western Africa the 
ground resolution of the SEVIRI’s 12-channel imager range from 3.1 Km to 4 Km in both N-S and 
E-W directions [184]. SEVIRI takes images of the Earth at regular intervals, during a 15-minute 
repeat cycle (12 min 30 sec Earth imaging and up to 2 min 30 sec calibration and retrace phase); 
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thus resulting in a 15-min temporal resolution (corresponding to time interval in between two 
consecutive timeslots of the KAM). 
 
Data are acquired in near real-time under the High Rate Information Transmission (HRIT) format 
which is the standard adopted by EUMETSAT to encode Level 1.5 SEVIRI image data [193]. Such 
HRIT files are ordered via the EUMETSAT Data Centre [200], in a lossless wavelet compressed file 
format. The wavelet decompression is then performed by using the “Public Wavelet Transform 
Decompression software” provided under license by EUMETSAT. Concerning the navigation of 
image data, the conversion of image coordinates into geographical ones is performed through the 
combination of a linear scaling function and a non-linear projection function [192]. Such procedure 
is solved through the creation of a “Navigation” GeoTIFF file starting from the border pixels of the 
MSG SEVIRI Native grid with the use of coefficients for the conversion in GEOS projection [194]. 
In this way the resulting latitude and longitude of a pixel centroid referring to image coordinates 
of the original MSG grid (full-disk) are directly obtained. 
 
Five out of the 12 spectral SEVIRI channels are adopted here, namely the VIS 0.6 𝜇𝜇m and the IRs at 
3.9 𝜇𝜇m, 10.2 𝜇𝜇m, 12.0 𝜇𝜇m and 13.4 𝜇𝜇m. All spectral measurements have been calibrated. For the 
visible channel, the radiance has been converted in [mW m-2 sr-1 (cm-1)-1], while all infrared 
channels have been treated in K. The radiance 𝑅𝑅𝜆𝜆𝑖𝑖 expressed in [mW m-2 sr-1 (cm-1)-1] can be 
converted in radiance 𝑅𝑅𝑚𝑚𝑖𝑖 in [W m-2 sr-1 µm-1] by means of 𝑅𝑅𝑚𝑚𝑖𝑖 = �10 𝜆𝜆𝑖𝑖2⁄ � 𝑅𝑅𝜆𝜆𝑖𝑖. Furthermore, in 
order to mask out the twilight effect in visible channels a dedicated masking procedure has been 
implemented by setting a limit into the solar zenith angle 𝜃𝜃𝑠𝑠. In particular, to filter out reflectance 
anomalies over the day–night transition area of a particular scene, only pixels having sun zenith 
angle 𝜃𝜃𝑠𝑠 lower than 80 degrees are taken as valid by the algorithm [194]. The solar zenith angle 𝜃𝜃𝑠𝑠 
is function of time and location can be estimated by using the following equation: 
 

cos𝜃𝜃𝑠𝑠 = sin𝜙𝜙 sin𝛿𝛿 + cos𝜙𝜙 cos𝛿𝛿 cosℎ𝑎𝑎 (6.13) 
 
in which 𝛿𝛿 is the declination of the Sun, 𝜙𝜙 is the latitude and ℎ𝑎𝑎 is the hour angle. 
 
The period of analysis goes from December 2015 to the end of February 2016. The dataset is 
uniformly sampled every 15 minutes. The algorithm has been applied on the countries of the 
Economic Community of West African States (ECOWAS) plus Mauritania and Chad. The area of 
interest has an upper-left corner of 1.355°N, 24.725°E and lower-right corner of 27.027°N, 20.942°W. 
MSG image segments 5, 6 of MSG full-disk product are processed to cover such area. In order to 
characterize SEVIRI data only over land, a water mask in MSG full disk grid has been derived for 
the entire area of interest using the Cloud Mask (CLM) product provided by EUMETSAT in GRIB2 
format [191]. In particular, the resulting water mask binary GeoTIFF file is derived by extracting 
all pixels classified as “Clear sky over water” from all CLM products available over the same grid 
in the entire period of analysis. Note that the observed scene is kept under the original 
geostationary grid and covers 1530x880 pixels for each considered timeslot, i.e. 1346400 pixels. 
Water pixels constitute the 18.12% (243967 pixels) of the entire scene and are discarded for our 
purposes. The total number of pixels over land is indicated with 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, equal to 1102433 pixels. The 
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number of timeslots per day for the entire period is indicated with 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, where maximum 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑=96. 
Only 5 timeslots have been discarded after a proper data quality assessment due to Sun collinearity 
with the MSG satellite (2016-02-27 12:00, 2016-02-28 12:00, 2016-02-28 12:15, 2016-02-29 12:00, 2016-
02-29 12:15). 

6.  IV. Application of Kalman-based Clear-Air masking 

The KAM approach is here fine-tuned and applied to identify scenarios of clear-air conditions, i.e. 
defining the anomaly as anything that cannot be categorized as clear sky.  

 

 
Figure 6-2. Scheme of the multi-spectral Kalman-based clear-air masking (KAM) filter. Each 

module corresponds to a software component developed for nearly real-time applications of the 
algorithm for clear-air masking. 

Figure 6-2 shows the overall filter architecture going from the available dataset (described in 
Section 6.  III). The clear-air KAM workflow follows the step defined in Section 6.II and provides 
the information whether the observed pixel is in pure clear air condition or an anomaly is detected. 
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This application represents the initial step in many space-borne remote sensing applications. A 
future effort may be devoted in performing a classification of the detected anomaly making use of 
the Kalman states complemented by the information provided by the background model. 
Applications can be manifold, as fire detection, volcanic ash detection or any other phenomenon 
that presents a distinct spectral behavior at the wavelengths of interest.  
The next sections describe the tailoring of the KAM filter for the clear air masking application. 

6.  IV.A. Observations and noise covariances 
As mentioned, the actual observation vector 𝑧̂𝑧𝑘𝑘 (n×1) describes a scenario characterized by several 
representations (multispectral observations). In particular, it is formed by the following MSG-
SEVIRI channels (as described in 6.  III): the VIS 0.6 𝜇𝜇m and the IRs at 3.9 𝜇𝜇m, 10.8 𝜇𝜇m, 12.0 𝜇𝜇m and 
13.4 𝜇𝜇m; i.e. 𝒛𝒛�𝑘𝑘 = �𝑧̂𝑧0.6μm, 𝑧̂𝑧3.9μm, 𝑧̂𝑧10.8μm, 𝑧̂𝑧12.0μm, 𝑧̂𝑧13.4μm�𝑘𝑘

𝑇𝑇. Visible channel measurements are 
expressed in terms of reflectance in [W m-2 sr-1 µm-1], while all infrared channels are converted in K. 
The index k indicates the considered timeslot. 
 
TABLE 6-2: SEVIRI NOISE BUDGETS AS MEASURED AT THE BEGINNING OF LIFE, EXPECTED AT THE END OF 

LIFE AND THE SPECIFICATIONS [184]-[186]. 

Channel 
VIS06 
0.6 μm 

[W m-2 sr-1 µm-1] 

IR039 
3.9 μm 

[K] 

IR108 
10.8 μm 

[K] 

IR120 
12.0 μm 

[K] 

IR134 
13.4 μm 

[K] 
Measured noise at the 

beginning of life 
0.39 0.24 0.13 0.21 0.29 

Expected noise at the 
end of life 

0.59 0.36 0.20 0.32 0.44 

Noise (specification) 0.53 0.35 0.25 0.37 1.80 

 
The co-variances among noise pairs at the timeslot k form the observation noise covariance matrix 
𝑅𝑅𝑘𝑘 (n×n). Practically speaking, the latter matrix describes the correlation among errors associated 
to the various SEVIRI channels, see (6.3). It is common practice in data assimilation to treat 
observation errors as uncorrelated, i.e. inter-channel error correlations can be assumed null (𝑹𝑹𝑘𝑘 
diagonal matrix). This is often an instrument design specification and, in the case of SEVIRI, studies 
have been performed to better characterize this aspect [170]. On the other hand, it is clear that the 
elements on the principal diagonal correspond to the error variance associated to each of the 
SEVIRI channels [185]-[186].  

The variance can be computed as the square of absolute radiometric accuracy, as given by the 
instrument specifications [184]-[186] and reported in Table 6-2. The three rows correspond to the 
SEVIRI measurement uncertainty predicted at the beginning and at end of the mission life, as well 
as the imposed specifications at design level. The specifications were considered as baseline in the 
KAM application (worst-case scenario). 
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6.  IV.B. Background model characterization 
One of the essential steps of the KAM algorithm is the background model characterization for each 
of the employed MSG SEVIRI channel. A good channel-background model of a certain pixel must 
be purely representative of a clear-air situation with as less as possible associated noise, which is 
necessary for an accurate anomaly detection. In this work, we adopted static background models 
only and future studies are foreseen to refine the approach and consider a dynamic update of the 
model (through a combination of static models and a time-based moving average system). 
 
Cloud-free scenes are identified by using the Cloud Mask product [191] projected in MSG full disk 
grid over the period going from December 2015 to the end of March 2016. For each of the 
considered timeslots (96 timeslots in a day) and relevant channel, an image stack was considered 
after filtering out cloudy scenarios. Average and standard deviation (1-sigma) are then computed 
for each stack at pixel level to obtain the background model quantities, {𝑚𝑚𝑖𝑖}𝑘𝑘 and {𝜎𝜎     𝑖𝑖

𝑚𝑚 }𝑘𝑘, 
respectively; one for each of the five SEVIRI channels and for each of the 96 timeslots. It is to be 
noted that the computed background models are completely general and mediated over the period 
and do not represent the specific daily trend to be expected over a certain period (i.e. they do not 
include any short-term effect). The background model vector of the considered scenario 𝒎𝒎𝑘𝑘 (n×1) 
is formed by the mean values of the stacks (one per channel) at a given timeslot k (i.e. 15-min 
sampling). While the associated noise vector 𝝈𝝈     𝑘𝑘

𝒎𝒎  (n×1) is formed by the standard deviations of the 
stacks (one per channel) at a given timeslot k and quantifies the expected variations of the channel 
radiances under clear sky conditions on the long-term. 

6.  IV.C. Kalman-based filter tailoring 
Referring to the KAM filter depicted in section 6.II, the clear-air anomaly detection is the only 
module that needs to get tailored for the adopted instrument. In particular, we would need to 
define the proper elements of the 𝒕𝒕𝑚𝑚 vector (nx1) to be used in (6.10). Generally speaking, the 
smaller the 𝑡𝑡𝑚𝑚𝑚𝑚 values are, the more stringent the anomaly detection algorithm is. Small 𝑡𝑡𝑚𝑚𝑚𝑚 values 
would therefore make the Kalman algorithm very selective in accepting a clear-air condition, which 
would be anyway the preferred option for a filter propagation perspective. If the 𝑡𝑡𝑚𝑚𝑚𝑚 values are too 
large, the filter would wrongly associate an anomaly scenario as clear air, resulting in a propagation 
of the wrong information to the a-posteriori status and therefore to the following timeslot.  
 
The applied solution was to compute the 𝑡𝑡𝑚𝑚𝑚𝑚 values making use of the information provided by the 
background model associated noise, hence becoming the only element needed to run the algorithm. 
In particular, the standard deviations {𝜎𝜎     𝑖𝑖

𝑚𝑚 }𝑘𝑘 associated to the background models were exploited 
to compute the 𝒕𝒕𝑚𝑚 vector (nx1). For each SEVIRI channel i=1,…,n (n=5) , the 𝑡𝑡𝑚𝑚𝑚𝑚 value was computed 
as follow: 
 

𝑡𝑡𝑚𝑚𝑚𝑚 =
1

(𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
� �  �   {𝜎𝜎     𝑖𝑖

𝑚𝑚 }𝑘𝑘

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘=1

 �
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (6.14) 
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where D is the number of timeslots per day (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑=96 in this application) and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the total 
number of pixels over land composing the observed scene. The 𝒕𝒕𝑚𝑚 vector is therefore independent 
of time. Table 6-3 recaps the parameters of interest used in (6.10).  
 

TABLE 6-3: THRESHOLD VALUES FOR ANOMALY DETECTION WHEN USING MSG-SEVIRI. 

Channel 
VIS06 
0.6 μm 

[W m-2 sr-1 µm-1] 

IR039 
3.9 μm 

[K] 

IR108 
10.8 μm 

[K] 

IR120 
12.0 μm 

[K] 

IR134 
13.4 μm 

[K] 

𝑡𝑡𝑚𝑚𝑚𝑚 2.3 4.7 4.5 3.9 3.5 

 
It is worth noting that such thresholds are applied indistinctively over the whole scene, and only 
depends on: 

• the considered wavelength and its sensitivity to the considered anomaly, as well as the a-
priori estimate deviation in clear sky conditions – meaning that the values represent the 
expected maximum interval within which we can still consider the observed scenario being 
in clear-air conditions; 

• the adopted instrument, and therefore its sensitivity to the scene at a given wavelength, 
other than the considered spatial resolution. 

 
The most important asset of the proposed KAM approach is the possibility to define a set of 
thresholds to be independently applied. The pixel-specific information is completely absorbed by 
the a-priori Kalman estimate by exploiting the background model (e.g. no need of having different 
thresholds to be applied in daily or night conditions as in most of the contextual-spatial detection 
algorithms). 

6.  IV.D. Clear-air KAM application 
The algorithm described in the section 6.II has been applied to the available dataset presented in 
section 6.  III over land pixels. The entire computation relies on a chain developed in Python, which 
has been developed by Progressive Systems in the context of the PROBA-V MEP TPS research 
project funded by the European Space Agency (ESA) [202]. I mainly focused on the theoretical 
formulation and the definition of the algorithm, as well as supporting the fine-tuning and the 
validation, so providing inputs for the code implementation. The implementation was together 
with the The processing here presented has been performed in the computer resources offered 
within the RSS Cloud Toolbox service [201] managed by the ESA’s Research and Service Support 
(RSS) [195]. 
 
We report here some examples of temporal trends, with the description of the time evolution of the 
associated key-quantities governing the KAM algorithm. Figure 6-3 shows the KAM filter behavior 
during a clear-air day (December 9, 2015) for a sample pixel in the Senegal area and for all adopted 
MSG-SEVIRI channels. In such example, the measurements (observations 𝒛𝒛�𝑘𝑘, red curves) clearly 
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describe clear-air conditions over the whole day. Hence, the a-priori estimates (𝒙𝒙𝑘𝑘−, black dotted 
lines) tend to follow the measurements by exploiting the state transition matrix computed from the 
background model values (𝒎𝒎𝑘𝑘). Small signal variations of the a-priori estimates can be observed 
and such differences are sequentially corrected when updating the a-posteriori estimates (not 
shown) with the actual measurements so that, at the next state, the most reliable information is 
used to propagate the filter status. This is the best possible situation as the KAM is relying on useful 
measurements to continuously update its status with the minimum possible associated noise 
(basically corresponding to the instrument noise exclusively). We can also observe how, around 
10:00 PM, the presence of a light cloud decreases the brightness temperatures for some of the 
considered channels. The KAM filter is able to detect an anomaly behavior thanks to the 
information provided by the channels at 12 and 13 𝜇𝜇m (most affected), confirming the importance 
of having a multi-spectral anomaly detection module. The a-priori estimate maintains the 
information provided by the a-posteriori one and does not follow the non-clear air observed value, 
i.e. the filter does not exploit the actual measurements but rather propagates the estimates available 
from the previous slot adding a higher associated noise (making use of the process noise co-
variance matrix). 
 
Figure 6-4 better highlights the mentioned behavior, where the daily trend of the same pixel is 
analyzed for the following day (December 10, 2015). The first half of the day is characterized by a 
discontinuous presence of light cloudy conditions, several anomalies are identified and the a-priori 
estimates always provide a consistent clear-air-like trend as they should (by correctly ignoring the 
measurements that do not fall within the multispectral anomaly-free region). When a clear-air 
observation is available (few timeslots during the first part of the day), clear-air scenarios are 
detected and used by the filter to update the a-posteriori estimate accordingly. In the afternoon, all 
considered channels reflect a persistent and heavier cloud coverage, making the information 
coming from the actual observation vector useless for what concerns the filter propagation. 
Nevertheless, the KAM filter continues providing an equivalent clear-air estimate basing the 
calculation on the last available measurements accepted by the filter and by sequentially adding 
the associated noise to the a-posteriori estimate (i.e. taking into account the noise associated to the 
state transition matrix).  
 
As already mentioned, the KAM detection module is applied by looking at all available channels 
simultaneously, making the filter able to sound the atmosphere at different wavelengths and 
account for all possible anomaly scenarios. This allows excluding several false alarms or missed 
detections, since one channel may be less sensitive than others to an anomaly situation (or vice-
versa). The continuous availability of the a-priori estimates 𝒙𝒙𝑘𝑘− of the observed scene (computed 
exploiting the previous Kalman filter states and the pixel models) allows having an equivalent 
clear-air radiance for all channels, expected to be measured in absence of anomaly (could coverage). 
Exploiting this information may be beneficial for retrieval methods of secondary products 
associated to the observed scenario, being therefore able to isolate the contribution of the nominal 
radiance. Future works will specifically address this aspect. 
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Figure 6-3: Example of clear-air day (December 9, 2015) for all considered channels of the MSG-

SEVIRI instrument. The green curves represent the actual observation vector 𝒛𝒛�𝑘𝑘, the black dotted 
curve is the a-priori estimate 𝒙𝒙𝑘𝑘− and the red curve represents the background model 𝒎𝒎𝑘𝑘. A 

detailed description is provided in the text. 
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Figure 6-4.  Example of “anomaly” day (December 10, 2015) for all considered channels of the 

MSG-SEVIRI instrument. The green curves represent the actual observation vector 𝒛𝒛�𝑘𝑘, the black 
dotted curve is the a-priori estimate 𝒙𝒙𝑘𝑘− and the red curve represents the background model 𝒎𝒎𝑘𝑘. 

A detailed description is provided in the text. 
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6.  V. Validation 

In this section we present an inter-comparison of the presented algorithm with respect to the 
EUMETSAT cloud masking product. The latter has been extensively validated and operationally 
used in several real-time applications over the last decade; it therefore provides a solid comparison 
term for the validation [191]. Moreover, the selected comparison allows validating the clear-air 
KAM filter using the same input data (the same MSG SEVIRI geostationary grid is considered) in 
order to minimize any resampling of the product which may cause a loss of useful information. 
There is a fundamental difference between the two datasets: while the KAM approach is entirely 
temporal-based, the EUMETSAT cloud masking algorithm is spatially-based, by setting several 
thresholds and referring them to the “mean” value of a moving spatial average window centered 
at the pixel of interest [191].  
 
The period of analysis goes from December 2015 to the end of February 2016. The dataset is 
uniformly sampled every 15 minutes. The observed scene is kept under the original geostationary 
grid and covers 1530x880 pixels for each considered timeslot, i.e. 1346400 pixels. Water pixels 
constitute the 18.12% of the entire scene and are discarded for our purposes. 96 timeslots per day 
are available for the entire period. For the validation, we define 4 classes: i) blue and cyan dots refer 
to situations of matching in clear-air and anomaly conditions, respectively; ii) yellow dots indicate 
missing detections of clear-air by the KAM filter with respect to the EUMETSAT cloud mask; iii) 
finally, red dots show false alarms of clear-air. 
 
In some conditions, the KAM and EUMETSAT algorithms may lead to different results because the 
Kalman-based technique only exploits image temporal changes and is therefore independent of 
common biases potentially affecting the spatial pixel grid used by EUMETSAT. Moreover, while 
we aim at detecting situations of clear-air conditions (clear-air masking), the EUMETSAT product 
is intended to provide a cloud-masking product. Practically speaking, it is much more important 
for our validation purposes to minimize the missed detections of clear-air conditions, i.e. cases 
when the KAM algorithm indicates clear-air whereas the EUMETSAT one indicates cloud 
presence. False alarms are less critical: as the EUMETSAT product may flag a certain pixel as cloud 
free, but the Kalman-based detection system could classify that particular condition as a scenario 
not purely clear-air representative. It is also important to underline that both algorithms do not 
provide any ground truth and differences may be related to stricter or larger thresholds other than 
limits linked to such approaches. 
 
Figure 6-5 shows an example of comparison for the whole area under analysis and for a single 
timeslot (December 13, 2015 h 12:00). For visual interpretation, Figure 6-6 provides the 
corresponding composite RGB image derived from the visible and near-infrared SEVIRI channels. 
A fairly good agreement is globally reached and yellow/red areas mainly correspond to borderline 
situations. Some mismatches, especially false alarms, are geographically grouped in the lower part 
of Figure 6-5/Figure 6-6. On top of the above mentioned considerations, this particular behavior 
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might be related to a relatively poor characterization of the background pixel models. Exploiting 
longer time series may overcome the issue and improve the final result.  

 

 

 
Figure 6-5: Inter-comparison with respect to EUMETSAT Cloud Mask product for a single 

timeslot (January 19, 2016 h 12:00). Blue and cyan points correspond to pixels for which the two 
algorithms provide the same result (clear-air and anomaly, respectively). Yellow points represent 
missed detections of the KAM algorithm with respect to the EUMETSAT masking product, while 

brown pixels indicate false alarms. 

 
Table 6-4 provides the percentages of matching, missed detection and false alarm over the entire 
test period. The percentages take into account the whole scene, as well as differentiating the 
calculations on clear-air and anomaly scenarios. The table also reports the total number of pixels 
considered for the validation. The missed detections are very limited to about 3 % over the entire 
period and mainly due to mischaracterizations of the background models. False alarms are more 
often registered, however less critical for the reasons explained above.  
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Figure 6-6: Composite RGB image from the MSG-SEVIRI instrument for the considered timeslot 

in Figure 6-5 (January 19, 2016 h 12:00). 

 
TABLE 6-4: INTER-COMPARISON WITH RESPECT TO EUMETSAT CLOUD MASK PRODUCT. 

CLEAR-AIR PIXELS 
(N. SAMPLES = 6.8407E+09) 

CLOUDY/ANOMALY PIXELS 
(N. SAMPLES = 2.7843E+09) 

MATCH MISSED DETECT. MATCH FALSE ALARMS 
95.72 % 4.28 % 74.99 % 25.01 % 

    
ALL PIXELS 

(N. SAMPLES = 9.6250E+09) 
MATCH MISSED DETECTIONS FALSE ALARMS 
89.73 % 3.04 % 7.23 % 

 
Figure 6-7 shows the same comparison in terms of temporal trend of both the percentages and 

number of pixels for each single timeslot. The same color legend is adopted: dark blue refers to 
clear-air situations, light blue to anomaly situations, yellow to missed detections and brown to false 
alarms. It can be seen how the total matching (dark blue plus light blue) is mainly constant over 
the whole period of analysis with a percentage of absolute matching placed around 90%. 
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Figure 6-7: Inter-comparison (temporal trend) between the KAM algorithm and the EUMETSAT 

Cloud Mask product over the whole analyzed period for all pixels composing the scene. Blue and 
cyan points correspond to pixels for which the two algorithms provide the same result (clear-air 

and anomaly, respectively). Yellow points represent missed detections of the KAM algorithm 
with respect to the EUMETSAT masking product, while brown pixels indicate false alarms. 
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Chapter 7. Conclusions 
 
Several techniques and applications in the field of the atmospheric remote sensing and radio-
propagation have been shown, at both microwave and optical wavelengths. 
 
In chapter 3, the Sun-Tracking technique has been introduced to estimate the Sun brightness 
temperature at K, Ka, V and W band. Two methods have been applied, the elevation-scanning 
Langley method and surface meteorological data method. The two techniques showed comparable 
results, but the first one need a careful selection of candidate clear-air days whereas the second one 
is depending on the external weather station data. Both techniques are affected by the daily 
variability of clear air extinction. The use of the two methods allowed us to give an uncertainty 
indication related to different adopted techniques. Since ST measurements are currently still being 
collected, it is intriguing to speculate the possibility of observing solar cycles in the retrieved Sun 
brightness temperature, although such variability is partly masked by the intrinsic accuracy of the 
estimates. Sun-tracking microwave radiometry has been also applied to estimate the atmospheric 
path attenuation in all-weather conditions at K, Ka, V and W band. In the presence of precipitating 
clouds, the technique allowed the estimate of the atmospheric extinction up to about 25 dB at K-
band and up to about 30 dB at V- and W-band. The method has been applied, as a source of 
validation, for estimating the accuracy of the multi-frequency PPM-PolDEx model, showing a very 
good agreement with the ST retrievals in cloudy and rainy conditions, with an rms agreement of 
about 0.2 dB at K-band and 0.7 dB at V-band. With the availability of a larger dataset of 
measurements, the ST-MW radiometry technique will be useful in further developing the 
physically oriented parametric models. In particular, open issues are related to the analysis of 
cloudy and rainy events at low elevation angles, where prediction models generally have large 
errors, as well to the discrimination between heavy clouds and light rain. In case of precipitation, 
ST-MWR can be also used to assess the capability of microwave radiometer to estimate rainfall rate 
and to relate the latter to atmospheric path attenuation. 
In the same chapter, an additional parametric prediction model approach was shown, for the 
retrieval of the atmospheric integrated path attenuation only exploiting channel brightness 
temperatures. Radiometric measurements available from the RPG-HATPRO MWR located at the 
ESA Cebreros deep space antenna premises in Spain were used. By exploiting well-known 
radiative transfer models for retrieving the equivalent clear air attenuation contribution, the cloud 
specific attenuation contribution was modelled with a stochastic process well defined in both 
amplitude and time domains. Such cloud attenuation results being log-normal distributed. Future 
studies will address the possibility of using such modelling to synthetize time series of cloud 
attenuation to be applied in situations with low data availability as first assessment of the 
propagation conditions at millimeter bands. Observation continuity is the key to improve the long-
term statistical characterization of the atmospheric behavior and such modelling has proved to be 
crucial in assessing and completing attenuation estimate datasets, whenever solid path attenuation 
estimates were not available for relatively long periods. 
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Chapter 4 showed a model chain for the prediction of the tropospheric channel for the downlink 
of interplanetary missions operating above Ku band. The chain has been already tested within a 
feasibility study applied to the BepiColombo mission to Mercury operated by the European Space 
Agency (ESA) and by exploiting the JAXA Hayabusa-2 mission Ka-band data thanks to the ESA 
cross-support service. The model-chain is composed by three modules. A weather forecast module 
for the prediction of the atmospheric state expected during the downlink transmission. A 
radiopropagation module to simulate radiopropagation variables generated by the predicted 
atmospheric state. A downlink budget module for the statistical optimization of the satellite-to-
Earth link. The latter exploits the spatial grid domain and the temporal evolution of the predicted 
radiopropagation variables to compute statistics and uncertainties of the outputs operational 
parameters to use during the transmission. A preliminary validation of the model-chain has been 
carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-
2, showing an average error within 0.2 dB. Finally, a statistical approach has been proposed for the 
downlink optimization, allowing to overpass potential double-penalty errors due to the space-time 
mislocalization of predicted meteorological phenomena. The model-chain will be tested 
extensively making use of the Hayabusa-2 mission data, and systematic online operations are 
planned for future K- and Ka-band missions. 
 
Chapter 5 recaps some studies performed in the context of International Telecommunication Union 
(ITU) activities of ESA. In particular, at the next ITU World Radiocommunication Conference 2019, 
Agenda Item 1.13 will address the identification and the possible additional allocation of radio-
frequency spectrum to serve the future development of the International Mobile 
Telecommunications (IMT) for 2020 and beyond, mainly focused on systems supporting the fifth 
generation of cellular mobile communications. The chapter shows the potential impact of IMT 
deployments in terms of received radio frequency interference by ESA’s telecommunication links 
in frequency bands allocated to the Earth Exploration-Satellite Service and to the Space Research 
Service. Received interference can derive from several propagation mechanisms including line-of-
sight propagation, diffraction, scatter, ducting, reflection/refraction, etc. which strongly depend on 
climate, radio frequency, link availability, distance and path topography; at any time a single 
mechanism or more than one may be present. Particular focus is given to the ESA’s tracking 
network and to the earth stations located in New Norcia (Australia), Cebreros (Spain), Malargüe 
Sur (Argentina) and Kiruna (Sweden). Several dynamic scenarios have been simulated to 
understand the most critical parameters which would contribute to situations of harmful received 
interference. Results point out the need of having separation distances up to 100 km depending on 
the station and frequency band under consideration. 
 
Finally, in chapter 6 an anomaly detection and estimation technique has been presented, using a 
modified version of Kalman filter on a pixel basis in the temporal domain. Advantages of using a 
time-based KAM approach have been discussed, blazing a trail to many applications in detecting 
and monitoring natural and environmental phenomena around the world. After presenting the 
KAM system in a general framework, an application of the latter has been shown to prove its 
performance in detecting clear-air scenarios. The clear-air KAM algorithm has been applied to 
multispectral observations available from geostationary visible-infrared radiometric 
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measurements coming from SEVIRI instrument on-board of the Meteosat satellite. The area of 
interests covers the whole West Africa, for a test period of three months from December 2015 until 
the end of February 2016. This results in a large amount of processed pixels having 96 timeslots per 
day. A validation of the clear-air algorithm has been presented by inter-comparing the detection 
results with the well-known EUMETSAT cloud mask product. This has ensured to have the same 
input data processed by a completely different algorithm approach. The validation has shown 
constant percentages of matching around 90% over the entire period of analysis.  
The add-on value of the Kalman approach is to be able to provide a-priori estimates of the scenario, 
exploiting the previous Kalman filter states and making use of the pixel models. This allows to 
have an equivalent clear-air radiance which is expected to be measured in absence of anomaly (for 
instance, in absence of cloud coverage). In such a way, the KAM algorithm can be globally applied, 
since the estimates are computed from the pixel models and the thresholds can be set 
independently from the area of interest.  
Future work will address the use of the available a-priori states of the Kalman filter to develop 
atmospheric correction methods through the estimation of the atmospheric optical thickness. 
Moreover, efforts will be devoted to fine tuning of the KAM algorithm to add robustness (e.g. 
including channel weights in the anomaly detection) as well as to extending the application over 
other regions for further validation. 
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APPENDICES 
 

A. Sun-Tracking Microware Radiometry: Error sensitivity analysis 

The sensitivity analysis of Sun brightness temperature estimate to residual errors or uncertainty of 
ST-MWR measurements is fundamental to understand the expected accuracy of the technique. The 
following section A.I of this Appendix is devoted to this analysis. Further considerations are also 
provided in the next sections A.II and A.III where the impact of the instrument spectral response 
and the radiometer antenna side lobes is discussed, respectively.  

A.I. Theoretical sensitivity analysis and error budget 

Several sources of uncertainty in ST-MW radiometry can be identified: i) different adopted 
techniques; ii) beam filling factor; iii) antenna pattern; iv) elevation scanning. In order to perform 
this error budget analysis, we can use the first-order error propagation theory by assuming a 
statistical independence among the error sources. 
 
Primarily, uncertainties of the beam-filling factor 𝑓𝑓Ω have to be considered to evaluate its impact in 
the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 estimation, considering that 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ 𝑓𝑓Ω⁄ . In a general way, these are related to errors 
associated to the Sun radiation solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the antenna radiation solid angle Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 
Starting from (3.II.7), the uncertainty in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 because of variation in Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is given by 𝛿𝛿𝛿𝛿𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⁄ )𝛿𝛿Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, where the variations in Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are mainly due to the knowledge of the antenna 
radiation pattern and the half-power beamwidth values. Analogously, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 uncertainty because 
of variations in Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can be obtained from (3.II.7) leading to 𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
−𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗ (Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2⁄ ) 𝛿𝛿Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and variations in Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 shall be computed considering the simplified 
expression in (3.II.17) or the general expression for a Gaussian beam in (3.II.19). The latter depends 
on both Sun disk diameter and half-power beamwidth values. For this reason, a more general 
sensitivity analysis can be achieved from (3.II.21) considering 𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 because of variation in ΘML, 
which yields the following uncertainty: 

 

𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢 =
2 ln(2) 𝜂𝜂𝑀𝑀𝑀𝑀  𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗

𝑓𝑓Ω2
Θ𝑠𝑠𝑠𝑠𝑠𝑠2

ΘML3
𝑒𝑒− ln(2) �Θ𝑠𝑠𝑠𝑠𝑠𝑠ΘML

�
2

𝛿𝛿ΘML (A.1) 

 
Figure A-0-1a shows the previous expression using the AFRL half-power beamwidth values and 
the Sun zenithal plane angle described in Section II.C and using 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗  values in Table A-0-1. It can 
be noted that the uncertainty in the value of ΘML provides a large source of error for the estimate 
of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. For an uncertainty of ΘML up to 0.3°, the error in estimating 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 goes from 1424 K at Ka 
band up to 2888 K at W band. In a more quantitative way, 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 has been be evaluated from (A.1) 
considering a difference of 11% in ΘML (worst case at 31.4 and 72.5, as the differences among AFRL 
values described in II.B and RPG LPW-U72-82 ΘML values from manufacturer specification). The 
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results are given in Table A-0-1 (left side). Furthermore, starting from (3.II.21), errors in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 due 
to main beam efficiency 𝜂𝜂𝑀𝑀𝑀𝑀 variation have to be taken into account according to:  
 

𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗

𝜂𝜂𝑀𝑀𝑀𝑀  ∙  𝑓𝑓Ω
𝛿𝛿𝜂𝜂𝑀𝑀𝑀𝑀 (A.2) 

 

 

Figure A-0-1: Sensitivity analysis of ST-MWR performances for a set of values which are those 
expected between Ka and W band. 

Figure A-0-1b shows the previous expression using values of interest in Table 3-4 and 𝜂𝜂𝑀𝑀𝑀𝑀 
described in Section II.B. For an uncertainty of 𝜂𝜂𝑀𝑀𝑀𝑀 up to 0.05, 𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 goes from -330 K at W band 
up to -450 K at Ka band. Error sources in both (A.1) and (A.2) imply that the AFRL-MWR antenna 
pattern should be known with a high degree of accuracy. 
 
Analogously, the uncertainty in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, because of variations in Θ𝑠𝑠𝑠𝑠𝑠𝑠, can be computed from (3.II.21) 
yielding the following uncertainty: 
 



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Appendix A) Sun-Tracking Microware Radiometry: Error sensitivity analysis 

 

 113  
  

𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
−2 ln(2) 𝜂𝜂𝑀𝑀𝑀𝑀  𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗

𝑓𝑓Ω2
Θ𝑠𝑠𝑠𝑠𝑠𝑠
ΘML2

𝑒𝑒− ln(2) �Θ𝑠𝑠𝑠𝑠𝑠𝑠ΘML
�
2

𝛿𝛿Θ𝑠𝑠𝑠𝑠𝑠𝑠 (A.3) 

 
Since the Earth-Sun distance changes over the year, the disk angle subtended by the Sun varies 
between 0.526° and 0.545°. This leads to a maximum Θ𝑠𝑠𝑠𝑠𝑠𝑠 variation of 0.019°.  
 

TABLE A-0-1: EXPECTED ERRORS IN 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 DUE TO FILLING FACTOR VARIATIONS 
 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 vs 𝛿𝛿ΘML 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 vs 𝛿𝛿Θ𝑠𝑠𝑠𝑠𝑠𝑠 

f [GHz] 𝛿𝛿ΘML[°] 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 𝛿𝛿Θ𝑠𝑠𝑠𝑠𝑠𝑠[°] 

 

𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 
23.8 0.41 1946 0.0019 -63.3 
31.4 0.33 1915 0.0030 -97.0 
72.5 0.17 1489 0.0119 -287.5 
82.5 0.14 1348 0.0152 -356.9 

 
Figure A-0-1c shows (A.3) using the same values of the previous analyses, for Θ𝑠𝑠𝑠𝑠𝑠𝑠 variations of 
about 0.01° (maximum deviation from the value reported in Section II.B), the error in estimating 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is relatively small and it goes from -240 K at 82.5 GHz up to -340 K at 23.8 GHz. Table A-0-1 
(right side) reports the uncertainty in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 because of Θ𝑠𝑠𝑠𝑠𝑠𝑠 variations in more detail, considering 
𝛿𝛿Θ𝑠𝑠𝑠𝑠𝑠𝑠 values obtained by calculating the difference between the general formulation in (3.II.19) 
and the approximation in (3.II.17). This approximation leads to small errors in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 with respect 
to previous sources, especially at lower frequencies where the effect of the radiometer antenna 
pattern can be neglected in (3.II.16). Secondly, error analyses with respect to radiating quantities 
have to be carried out. Sensitivity 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 with respect to 𝛿𝛿Δ𝑇𝑇𝐴𝐴 is obtained from the governing 
equations (3.II.11) and (3.II.15) of Sun-tracking microwave radiometry leading to: 
 

𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑓𝑓Ω

 𝑒𝑒𝜏𝜏 𝛿𝛿Δ𝑇𝑇𝐴𝐴 (A.4) 

 
Figure A-0-1d shows the sensitivity to Δ𝑇𝑇𝐴𝐴, in which 𝜏𝜏 values expected in clear-sky situations 
between K and W band were used (τ=0.10, 0.05, 0.30, and 0.15 Np for the four available frequencies, 
respectively). Since Δ𝑇𝑇𝐴𝐴 values are much smaller at K band with respect to V band, 𝛿𝛿Δ𝑇𝑇𝐴𝐴 
uncertainties have larger effects at lower frequencies with respect to higher frequencies. 
Uncertainties are due to calibration errors and antenna mispointing during Sun tracking and 
atmospheric variability. The first is estimated to be less than 0.5 K at K and Ka band and about 1 K 
at W and V-band, whereas the latter goes from 4 K to 10 K with increasing frequency, whose 
reduction has suggested the filtering approach used in Section II.B. For an uncertainty in Δ𝑇𝑇𝐴𝐴 of 
about 8 K, the error in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 goes from 86 K at 82.5 GHz up to 652 K at 23.8 GHz. Quantitative 
analysis of (3.II.34) is reported in the left side of Table A-0-2, considering 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 uncertainties for 
typical Δ𝑇𝑇𝐴𝐴 in clear air. The latters have been derived from the variability of AFRL-MWR data 
during the ooS and twS switching. In this case, 𝛿𝛿𝑇𝑇𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 are less than 4% at all frequencies with 
respect to the absolute values (worst case at 23.8 GHz). 
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Furthermore, we can obtain the uncertainty in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 due to atmospheric extinction variations 𝛿𝛿𝛿𝛿 
from the same equations as before: 
 

𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑓𝑓Ω

 Δ𝑇𝑇𝐴𝐴 𝑒𝑒𝜏𝜏 𝛿𝛿𝛿𝛿 (A.5) 

 
Figure A-0-1e shows the relation for the same set of 𝜏𝜏 values and for Δ𝑇𝑇𝐴𝐴 values expected in clear-
sky situations (Δ𝑇𝑇𝐴𝐴 = 100, 180, 370, and 580 K for the four available frequencies, respectively). For 
an uncertainty in 𝜏𝜏 of about 0.02 Np, the error in 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 goes from 117 K at 72.5 GHz up to 176 K at 
31.4 GHz. The two considered techniques use different methods to evaluate the atmospheric 
extinction: i) Langley technique estimates 𝜏𝜏𝑧𝑧 through the slope of the linear regression in (3.II.13), 
representing a daily average atmospheric extinction (the associated error is mainly due to the 
attenuation variability during the day and Sun tracking antenna mispointing); ii) Meteorological 
technique needs an estimate of 𝜏𝜏 to be computed according to (3.II.14). This means that both mean 
radiating temperature and antenna noise temperature ooS errors have to be taken into account. 
Note that for the meteorological technique we can provide a daily averaged value of Sun brightness 
temperature in order to mitigate the punctual 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 uncertainties due to 𝛿𝛿𝛿𝛿. Starting from (3.II.14), 
the uncertainty in 𝜏𝜏 because of variation in 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is given by: 
 

𝛿𝛿𝛿𝛿 = −
𝛿𝛿𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝑇𝑇𝑚𝑚𝑚𝑚 − 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (A.6) 

 
Considering a fixed mean radiating temperature of 270 K and typical 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 values expected in clear-
air situations (𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 35, 20, 100, and 60 K for the four available frequencies, respectively), we can 
estimate 𝛿𝛿𝛿𝛿 associated to the 𝛿𝛿𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 absolute accuracies (equal to 0.5 K at K-band and 1 K at W-
band according to the manufacturer specifications). Resulting 𝛿𝛿𝛿𝛿 values are relatively small and 
they go from -0.0021 Np at 23.8 GHz up to -0.0059 Np at 72.5 GHz. 
Furthermore, 𝛿𝛿𝛿𝛿 uncertainty due to errors in estimating 𝑇𝑇𝑚𝑚𝑚𝑚 leads to: 
 

𝛿𝛿𝛿𝛿 =
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝑇𝑇𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) (𝑇𝑇𝑚𝑚𝑚𝑚 − 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)  𝛿𝛿𝑇𝑇𝑚𝑚𝑚𝑚 (A.7) 

 
Since 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 assumes smaller values at K band with respect to V band, 𝛿𝛿𝛿𝛿 uncertainties have larger 
effects at higher frequencies. This behavior is the opposite of what happens in (A.5), where 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
grows with decreasing frequency. For an uncertainty in 𝑇𝑇𝑚𝑚𝑚𝑚 of 3 K, the error in 𝜏𝜏 goes from -0.0008 
Np at 31.4 GHz up to -0.006 Np at 72.5 GHz, using the same clear-air values of the previous 
analysis. 
 
On the right side of Table A-0-2, the error budget analysis of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is shown with respect to 
uncertainties 𝛿𝛿𝛿𝛿. The latter have been derived from both 𝜏𝜏𝑧𝑧 confidence intervals of the linear 
regression slope in (3.II.13) and the standard deviation of the estimated atmospheric extinction time 
series in (3.II.14). The resulting values are very similar for both techniques. Errors in Sun brightness 
temperature are less than 2% at all frequencies with respect to the absolute values (worst case at 
82.5 GHz). 
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TABLE A-0-2: EXPECTED ERRORS IN 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 DUE TO RADIATING QUANTITY VARIATIONS 

 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 vs 𝛿𝛿Δ𝑇𝑇𝐴𝐴 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 vs 𝛿𝛿𝜏𝜏 

f [GHz] 𝛿𝛿Δ𝑇𝑇𝐴𝐴[K] 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 𝛿𝛿𝜏𝜏[Np] 𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[K] 
23.8 4 326 0.019 155 
31.4 5 245 0.009 79 
72.5 8 126 0.015 87 
82.5 10 108 0.021 131 

 
Further error should be considered whether different elevation angles are assumed between off-
the-Sun and toward-the-Sun observations in the computation of the antenna noise temperature 
difference. Considering an ooS observation in (3.II.9) performed at an elevation angle 𝜃𝜃1, the 
antenna noise temperature difference in (3.II.10) depends on both elevation angles (or air-masses). 
The 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 uncertainty due to the air mass variation 𝛿𝛿𝛿𝛿 between the two observations is given by:  
 

𝛿𝛿𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑚𝑚𝑚𝑚)  𝜏𝜏

𝑓𝑓Ω
 𝛿𝛿𝛿𝛿 (A.8) 

 
Note that the atmospheric transmittance ratio has been truncated to the first order the Taylor 
expansion. Figure A-0-1f shows the previous equation for the same set of values used before for 
the four AFRL-MWR frequencies. For an air-mass uncertainty of about 0.4 (worst case 
corresponding to a variation of about 3° from the minimum admitted elevation angle of 20°), the 
error in estimating 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 increases with the frequency decrease and goes from -14 K up to -79 K. 
Finally, we estimated the error in assuming the horizontal homogeneity in clear sky through the 
analysis of the estimated atmospheric extinction time series in (3.II.14) at the same elevation and 
different azimuths. Uncertainties of 𝜏𝜏 were estimated as 0.0039, 0.0016, 0.0053, and 0.0062 Np for 
an average azimuth distance of 5 deg. As such, the assumption holds. 

A.II. Impact of radiometer spectral response 

Radiometer characteristics, such as antenna pattern and receiver bandwidth, are relevant aspects 
to be considered when dealing with the development of algorithms, inter-comparisons with 
radiative transfer model simulations and data assimilation [122]. In order to rigorously approach 
these issues, the expression in (3.II.1) needs to be generalized to include the dependency on 
frequency so that the band-averaged antenna noise temperature is given by:  
 

𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0) = �
∫ 𝑇𝑇𝐵𝐵𝐵𝐵(𝜃𝜃,𝜑𝜑, 𝑓𝑓)𝐹𝐹𝑛𝑛𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑,𝑓𝑓)𝑑𝑑𝑑𝑑4𝜋𝜋

∫ 𝐹𝐹𝑛𝑛𝑛𝑛(𝜃𝜃0,𝜑𝜑0,𝜃𝜃,𝜑𝜑,𝑓𝑓 )𝑑𝑑𝑑𝑑4𝜋𝜋
B

𝐻𝐻𝑛𝑛(𝑓𝑓)d𝑓𝑓 (A.9) 

 
where 𝐻𝐻𝑛𝑛(𝑓𝑓) is the normalized spectral response function (SRF) of the instrument within the 
bandwidth B so that  
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� 𝐻𝐻𝑛𝑛
𝐵𝐵

(𝑓𝑓)𝑑𝑑𝑑𝑑 = 1 (A.10) 

 
The band-averaged 𝑇𝑇𝐴𝐴 in (A.9) is now expressed, with respect to (3.II.1), as the filtering of the 
spectral brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵 through the instrumental SRF within the frequency bandwidth 
B. Moreover, in (A.9) the antenna power radiation pattern 𝐹𝐹𝑛𝑛𝑛𝑛  is also dependent on frequency. 
 
Generally speaking, instrument narrow bandwidths allow to apply the approximation that spectral 
functions 𝑇𝑇𝐵𝐵𝐵𝐵, 𝐹𝐹𝑛𝑛𝑛𝑛 and 𝐻𝐻𝑛𝑛 can be considered constant over B so that (A.9) reduces to (3.II.1). The 
impact of such approximation in our model development is analyzed in this section. Note that the 
frequency dependence of 𝐹𝐹𝑛𝑛𝑛𝑛 can be usually neglected without loss of accuracy for the window 
frequencies, but for high-frequency double-sideband channels around the absorption peak 
frequencies, it may not be negligible and 𝐹𝐹𝑛𝑛𝑛𝑛 should be possibly measured for the low and high 
sidebands.  
In our work we should consider that AFRL-MWR channels at K-band at 23.8, 31.4 center frequency 
have relatively narrow bandwidths of 230 MHz, but the V- and W-band channels at 72.5 and 82.5 
GHz have a bandwidth as large as 2 GHz. As recognized in [122], the errors associated to receiver 
channel bandwidth are less important in K-band and W-band, but this is not necessarily true for 
channels in the V-band or higher frequencies in the wings of absorption lines. On the one hand, 
highly asymmetric SRF can change the effective frequency of a radiometric channel, whereas on 
the other hand, spectral brightness temperature 𝑇𝑇𝐵𝐵𝐵𝐵 due to the atmosphere can significantly vary 
within the same bandwidth B [123], [124].  
Regarding the SRF characterization of AFRL-MWR, the receivers are tuned by the manufacturer as 
a complete system so that the radiometer channel central frequency is a good representation of the 
filter response [112]. For filter tuning a calibrated monochromatic input signal is swept over the 
spectrum, the digital radiometer output is monitored and the effective central frequency calculated. 
This implies that in our case the use of the effective central frequency is a good approximation for 
our purposes, provided that actual SRFs were not available from the manufacturer.  
Indeed, the spectral variability of 𝑇𝑇𝐵𝐵𝐵𝐵 within the assigned bandwidth B needs to be quantified to 
estimate the error due to monochromatic approximation at effective central frequency. To examine 
the SRF impact, we have simulated monochromatic brightness temperatures 𝑇𝑇𝐵𝐵𝐵𝐵 in (A.9) with steps 
of 200 MHz at V and W band and performed several band-averaging summing them according to 
specific weights. We have modeled the SRF weights 𝐻𝐻𝑛𝑛 in (A.9) in order to reproduce the shapes 
of realistic asymmetric spectral response functions, similar to those found in literature (e.g. as in 
[125]). Differences between monochromatic and band-averaged simulations can be up to 1.5 K at 
72 GHz and 0.1 K at 82.5 GHz. As previously stated, this result is expected being the spectral 
variability more relevant for the 72.5 GHz channel as it is closer to the oxygen absorption wing. 
According to our evaluations, it is highly advisable that the radiometer characteristics, such as SRF 
and antenna patterns, are made available to users, especially in future applications at millimetre-
wave frequency channels, as recommended in [124]. 
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A.III. Impact of radiometer antenna side lobes 

As described in Section II.A, the approximation of an antenna Gaussian beam has been used for 
computing 𝑓𝑓Ω. Provided that actual antenna patterns of AFRL-MWR were not available from the 
manufacturer, the Gaussian shape antenna proposed here has been favored with respect to other 
possible approximations, such as a pattern described by Bessel functions, since: i) the main lobe of 
AFRL-MWR is well characterized by the Gaussian shape, as suggested by the manufacturer [112]; 
ii) the side-lobe levels produced by the feed-horn/parabola system are below -30 dB at 23.8 and 31.4 
GHz and below -40 dB at 72.5 and 82.5 GHz [106]. This limits the use of Bessel functions which 
generally provide higher side lobes unless additional tapering by other functions is introduced. 
 
The antenna radiation pattern is, however, characterized not only by the main lobe. In this section 
the effect of neglecting antenna pattern side lobes is evaluated. In our retrievals and in clear sky 
conditions, the effect of side lobes may be relevant: i) at very low elevations when side lobes can 
pick up ground radiation (but typically the radiometer is not operated below 10°); ii) during the 
switch when the Sun can be picked up by the side lobes (at least the first one) when observing in 
the “off the sun” mode.  
In order to take into account the side lobe contributions and to evaluate them quantitatively, a 
Gaussian-shape has been also employed to model both the main lobe and the side lobes centered 
in 𝜃𝜃𝑖𝑖=1,…,𝑚𝑚 in the radiometer antenna normalized pattern 𝐹𝐹𝑛𝑛: 

 

𝐹𝐹𝑛𝑛(𝜃𝜃,𝜑𝜑) = 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜑𝜑) + �𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜑𝜑)
𝑚𝑚

𝑖𝑖=1

= 𝑒𝑒−ln(2) �2 𝜃𝜃
ΘML

�
2

+ �𝐴𝐴𝑖𝑖 𝑒𝑒
−ln(2) �2𝜃𝜃−𝜃𝜃𝑖𝑖ΘSL𝑖𝑖

�
2𝑚𝑚

𝑖𝑖=1

 (A.11) 

 
considering m side lobes in the general expression above,  𝜃𝜃𝑖𝑖,𝜑𝜑𝑖𝑖 as the side lobe pointing angles 
and ΘML and ΘSL𝑖𝑖=1,…,𝑚𝑚 as the half-power beamwidth values for the main lobe and the side lobes, 
respectively. In (A.11), it is reasonable to assume negligible the tails of the Gaussian pattern shapes 
outside of each respective beam, with an impact generally less than 0.1%. The antenna radiation-
pattern solid angle  Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can be obtained from (3.II.2) using (A.11): 
 

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Ω𝑃𝑃𝑃𝑃𝑃𝑃 + �Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑚𝑚

𝑖𝑖=1

 (A.12) 

 
where Ω𝑃𝑃𝑃𝑃𝑃𝑃 and Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 stand for antenna main lobe radiation-pattern solid angle and the antenna 
side lobe radiation-pattern solid angles, respectively. By properly evaluating the integrals, the 
following expressions have been obtained for the aforementioned antenna radiation-pattern solid 
angles: 
 

Ω𝑃𝑃𝑃𝑃𝑃𝑃 ≅
𝜋𝜋

4 ln(2)ΘML
2 �1 − 𝑒𝑒−ln(2) � 2𝜋𝜋ΘML

�
2

� (A.13) 
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Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≅ 2𝜋𝜋 𝐴𝐴𝑖𝑖  �
ΘSL𝑖𝑖2

8 ln(2) �𝑒𝑒
− 𝑎𝑎𝑖𝑖2 − 𝑒𝑒− 𝑏𝑏𝑖𝑖2� +

√𝜋𝜋 ΘSL𝑖𝑖𝜃𝜃𝑖𝑖
4�ln(2)

[erf(𝑏𝑏𝑖𝑖) − erf(𝑎𝑎𝑖𝑖)]� (A.14) 

 
where 
 

𝑎𝑎𝑖𝑖 =
2�ln(2)
ΘSL𝑖𝑖

𝜃𝜃𝑖𝑖    ;     𝑏𝑏𝑖𝑖 =
2�ln(2)
ΘSL𝑖𝑖

(𝜋𝜋 + 𝜃𝜃𝑖𝑖) (A.15) 

 
As described in [108], corrugated feedhorns have traditionally used a linearly tapered internal 
profile with main-beam efficiencies even greater than 98%. By including the parabola spillover, we 
can estimate an overall main-lobe efficiency by means of 
 

𝜂𝜂𝑀𝑀𝑀𝑀 = 𝜂𝜂𝑠𝑠𝜂𝜂𝑀𝑀𝑀𝑀′ = 𝜂𝜂𝑠𝑠
Ω𝑃𝑃𝑃𝑃𝑃𝑃
Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (A.16) 

 
where 𝜂𝜂𝑀𝑀𝑀𝑀 is the overall efficiency, 𝜂𝜂𝑠𝑠 is the spillover efficiency and 𝜂𝜂𝑀𝑀𝑀𝑀′  is the feedhorn main lobe 
efficiency. By properly evaluating (A.12) and (A.13) we can retrieve a reasonable value of 𝜂𝜂𝑀𝑀𝑀𝑀′ =
Ω𝑃𝑃𝑃𝑃𝑃𝑃/Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for each considered frequency. In the radiometer antenna normalized pattern 𝐹𝐹𝑛𝑛, we 
have considered equally spaced side lobes with constant half-power beamwidth values ΘSL𝑖𝑖, equal 
to ΘML/2. Furthermore, in order to have an upper boundary condition, we have assumed that the 
99.9% of the total power is received within 30° from the pointing angle of the main lobe. The values 
of 𝐴𝐴𝑖𝑖 have been set to -30 dB (10-3) at 23.8 and 31.4 GHz and to -40 dB (10-4) at 72.5 and 82.5 GHz, 
according to [106]. Considering spillover efficiencies 𝜂𝜂𝑠𝑠 of 0.98 at Ka band and 0.99 at V-W bands, 
we have obtained 𝜂𝜂𝑀𝑀𝑀𝑀 values equal to 0.969, 0.969, 0.979, 0.979 at 23.8, 31.4, 72.5 and 82.5 GHz, 
respectively. The effect on 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 estimates due to uncertainty in 𝜂𝜂𝑀𝑀𝑀𝑀   is also analyzed in (A.2) (see 
Figure A-0-1b).  By considering the side lobe contributions in (3.II.1), we obtain: 
 

𝑇𝑇𝐴𝐴(𝜃𝜃0,𝜑𝜑0) = 𝜂𝜂𝑠𝑠
Ω𝑃𝑃𝑃𝑃𝑃𝑃
Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃0,𝜑𝜑0) + 𝜂𝜂𝑠𝑠
∑ Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝐵𝐵𝐵𝐵𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖,𝜑𝜑𝑖𝑖)
𝑚𝑚
𝑖𝑖=1

Ω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ (1 − 𝜂𝜂𝑠𝑠)𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

= 𝜂𝜂𝑠𝑠𝜂𝜂𝑀𝑀𝑀𝑀′ 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃0,𝜑𝜑0) + 𝜂𝜂𝑠𝑠(1 − 𝜂𝜂𝑀𝑀𝑀𝑀′ )𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������ + (1 − 𝜂𝜂𝑠𝑠)𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  
(A.17) 

 
where 𝜃𝜃𝑖𝑖,𝜑𝜑𝑖𝑖 represent the pointing angles of the side lobes, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������ is the averaged contribution of side 
lobes and 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the spillover brightness contribution. By supposing 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≅ 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������, we can 
retrieve from (A.17) the deviation 𝛿𝛿𝑇𝑇𝐴𝐴 due to side lobe and spillover effects: 
 

𝛿𝛿𝑇𝑇𝐴𝐴 = 𝜂𝜂𝑠𝑠(1 − 𝜂𝜂𝑀𝑀𝑀𝑀′ )𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������ + (1 − 𝜂𝜂𝑠𝑠)𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≅ (1 − 𝜂𝜂𝑀𝑀𝑀𝑀) 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������ (A.18) 
 
Referring to (A.17), the impact of an additive side lobe radiation is negligible in (3.II.6) since, when 
the main lobe is pointing toward the sun 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, all the side lobes are pointing toward the 
same clear-air scenario 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������  ≅ 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. This condition gives brightness contributions from 20 K at 
31.4 GHz up to 100 K at 72.5 GHz, corresponding to 𝛿𝛿𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 going from 0.6 K to 2 K. Considering 
the same analysis carried out for (3.II.5), we have to take into account the possibility that, during 
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the switch, the Sun can be picked up by one of the side lobes when observing “off the Sun”, i.e. the 
contribution of the side lobes is not uniform. We can rewrite (A.18) as 
 

𝛿𝛿𝑇𝑇𝐴𝐴 = (1 − 𝜂𝜂𝑀𝑀𝑀𝑀)[𝑤𝑤𝑆𝑆𝑆𝑆 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + (1 −𝑤𝑤𝑆𝑆𝑆𝑆 ) 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵������ ] (A.18) 
 
where 𝑤𝑤𝑆𝑆𝑆𝑆 is the weight of the side lobe picking up the Sun radiation. To evaluate a worst-case 
scenario, we have supposed to have the sun precisely centered by the first side lobe that contributes 
for the 80% (𝑤𝑤𝑆𝑆𝑆𝑆  =0.8) with respect to the other side lobes. Using typical clear-air 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values from 
150 K at 23.8 GHz to 600 K at 82.5 GHz, we can obtain 𝛿𝛿𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 values going from 4 K to 10 K. These 
values of 𝛿𝛿𝑇𝑇𝐴𝐴 lead to Δ𝑇𝑇𝐴𝐴 errors that affect the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 estimates as discussed in detail in (A.4) of this 
Appendix A. 
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B. Sun-Tracking Microware Radiometry: radiative transfer 
modelling inter-comparison and validation 

In this work, we focus on the following frequencies: 23.80 (K band), 31.40 (Ka band), 72.50 (V band) 
and 82.50 GHz (W band), corresponding to wavelengths from 12.6 to 3.6 mm, where radiometric 
measurements where available. In particular, 23.8 and 31.4 GHz are used to estimate integrated 
water vapor and liquid water in atmospheric remote sensing. While K and Ka band are actually 
adopted in recent satellite missions [87], the potential advantages of using V and W band are under 
investigation [84]. In this sense, the atmospheric channel characterization at such frequencies 
assumes a great importance and is the aim of this work in order to provide a valid reference to 
evaluation of propagation models and measurements in both atmospheric remote sensing and 
satellite communications fields. We characterize A and TB using both data derived by direct 
measurements and data simulated by radiative transfer models. As concerning the measurements, 
we have considered two ground based microwave radiometers: a Sun tracking [126], [127] and a 
humidity and temperature profiler radiometer [128] (ST-MWR and PRO-MWR, respectively). As 
concerning the radiative transfer models, we have adopted a one-dimensional (1D) stochastic 
model, based on the sky-noise Eddington method (hereafter termed as 1D-RTM) [129] and the 
pseudo three-dimensional (3D) radiative transfer module within the Goddard Satellite Data 
Simulator Unit suite [130], fed by numerical weather predictions (NWP) performed by the weather 
research and forecasting system [131] (hereafter termed as 3D-RTM).  
 
We have also exploited data from weather radar networks and radio sounding observations to 
validate the NWP model. Both measurements and simulations analyzed in this work are co-located 
in space and time and they are performed in the area of Rome, NY, USA, within the Air Force 
Research Laboratory facility for a period of roughly one year between 2015 and 2016. With respect 
to previous works on the same subject, the original aspect highlighted in this study is in the use of 
unconventional tools like ST-MWR and 3D-RTM. The former is a radiometer that uses the Sun as 
reference of stable radiance source with a special antenna pointing system which is able to 
continuously perform observations toward-the-Sun and out-of-Sun while tracking the Sun path 
[127]. So doing, ST-MWR is able to simultaneously derive both TB and A, with a single receiver, in 
all-weather conditions and along different slant directions, thus allowing the statistical 
characterization of the propagation channel for several elevation angles. The shortage of high-
frequency observations makes the statistical characterization of the channel one of the most 
primary interests of the scientific community, especially at millimetre waves. On the other hand, 
investigate the reliability of 3D-RTM model simulations of TB and A is an important task because 
it could open the way to the possibility of performing deterministic forecasts of the atmospheric 
channel. This work is organized into five sections. Available measurements and simulations are 
described in Section B.I and Section B.II, respectively. Comparisons among the various sources of 
A and TB are shown in Section B.III, where also a model for the computation of the probability of 
A conditioned to the elevation angle in continental climate areas is presented. 
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B.I. Available measurements in Rome, NY. 

The following sections provide a complete overview of all the input data and actual measurements 
adopted in this appendix B to train, tune and validate the proposed weather forecast and radiative 
transfer models. 

 Ground-based Sun-tracking microwave radiometer 
The ground-based Sun-Tracking Microwave Radiometer (ST-MWR) is a Radiometer Physics 
GmbH-Liquid Water Path (RPG-LWP-U72+82) water-vapor and cloud-liquid microwave 
radiometer with four channels at 23.8, 31.4, 72.5 and 82.5 GHz. It is described in detail in section 
3.II.B.  
As detailed in chapter 3, section 3.II, the Sun-tracking operation mode allows tracking the Sun 
motion along the ecliptic (Figure 3-1). The available dataset consists of measurements collected by 
the ST-MW radiometer from May 2015 to December 2016 in Rome, NY, USA (43.2°N, 75.4°W) at 
elevation angles varying between 20° and 70° (with some missing data days due to maintenance 
and calibration operations on the radiometer). 

 Ground-based profiler microwave radiometer 
The second source of radiometric measurements is available for the whole year 2016 in Rome, NY 
(43.2°N, 75.4°W) from RPG humidity and temperature profiler microwave radiometer (PRO-
MWR) with 7 channels from 22.24 GHz to 31.4 GHz and 7 channels from 51 GHz to 58 GHz [132], 
[133]. PRO-MWR provides TB measurements that are always taken at zenith, even though the 
radiometer is provided with an azimuth positioner allowing a scan step of 0.15° in elevation and 
0.1° in azimuth. Time resolution and integration time are set to 1 second. In this work we only use 
the frequency channels overlapping with the ones of the ST-MWR that are: 23.8, 26.25 and 31.4 
GHz.  

 Weather radar 
We use the Radar Archive of the National Severe Storms Laboratory (NSSL), including the Next 
Generation Weather Radar System and Terminal Doppler Weather Radar (NEXRAD) network 
[134] - [136], to assess the reliability of the 2-dimensional precipitation fields simulated by the NWP 
model. In particular, we have compared the precipitation accumulations derived from the 
summation of the Surface Precipitation Rate (SPR) product over a specified time interval with the 
precipitation forecasted by NWP model [135]. The one-hour Quantitative Precipitation Estimation 
(QPE) – Radar Only product is an aggregation of the SPR field, which is updated every 2 minutes. 
The SPR fields from the previous 60 minutes are summed to create the one-hour QPE – Radar Only 
field. The QPE is post-processed by a Gauge Bias Correction [136]. Values at or below 0.25 mm are 
removed to reduce the areal coverage of what is most likely false light precipitation. Radar data 
have been taken for a test period going from May to December 2015 and covering various weather 
conditions. 
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 Radiosounding observations 
The closest radiosounding site to Rome, NY, is located at Albany County Airport, NY, USA (World 
Meteorological Organization station Identifier code: 72518, Weather Bureau Army Navy Identifier 
code: 14735; lat/lon 42.69/-73.83). Radiosounding data belonging to the period 2007-2016 have been 
collected for this study to compare and validate the outputs of the NWP models. 

B.II. Simulating brightness temperature and optical 
thickness at centimeter and millimeter wave 

This section is devoted to the description of the radiative transfers models used to simulate TB and 
A: 3D-RTM and 1D-RTM. Since the 3D-RTM is driven by weather forecasts, in the first paragraph 
of this section we describe the numerical weather prediction models considered in this work. 

 Numerical Weather Prediction models 
Several numerical weather prediction models are designed to simulate mesoscale atmospheric 

circulation. In this work we have considered the Fifth-Generation Penn State University/National 
Center for Atmospheric Research Mesoscale Model (MM5) [137], and the Weather Research and 
Forecasting (WRF) system [138], developed by the National Oceanic and Atmospheric 
Administration and by the National Center for Environmental Prediction, are used. 

 
MM5 is a non-hydrostatic, terrain-following sigma-coordinate model, designed to simulate or 
predict mesoscale and regional-scale atmospheric circulation. It includes: 
• a multiple-nest capability; 
• non-hydrostatic dynamics, which allows the model to be used at a few-kilometer scale; 
• multitasking capability on shared and distributed-memory machines; 
• a four-dimensional data-assimilation capability; 
• more physical options. 

 
WRF model system is designed to be a flexible atmospheric simulation system, efficient on 
available parallel computing platforms. It represents: 
• the state-of-the-art model that has good conservation characteristics (e.g., conservation of 

mass); 
• an easy to modify model, that could well parallelize on many processors; 
• plug-compatible physics to support improvements in model physics; 
• designed for grid spacing of 1-10 km. 

 
We have initialized both regional models (MM5 and WRF) with data from the global-scale model 
of the European Center for Medium-range Weather-forecast performing two-way nested domains 
simulations centered on Rome, NY (Figure B-0-2). We have compared the performances of the 
models for different resolutions of the initialization data. 
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After a climatological analysis of the target area of Rome, NY, we have defined the setup for the 
physical parameterizations for the considered models. The MM5 setup considers Reisner II for 
microphysics [139], Grell for cumulus [137], Rapid Radiative Transfer Model for radiations [140] 
and Medium Range Forecast for planetary boundary layer [141]. WRF setup includes Thompson 
for microphysics [142], Grell-Freitas for cumulus [143], Rapid Radiative Transfer Model for 
radiations and Mellor-Yamada-Janjic for planetary boundary layer [144]. 

 

 
Figure B-0-2: Two nested domains of the NWP models centered on the target area of Rome, NY: 

(a) domain 1 at 18 km (and 9 km) resolution; (b): domain 2 at 6 km (and 3 km) resolution. 

 Radiative transfer models from three-Dimensional weather 
forecast and one-Dimensional stochastic clouds 

As previously stated, in this work we consider two radiative transfer models, both focused on the 
area of Rome, NY, were ST-MWR measurements are available. 
The first is a pseudo three-dimensional radiative transfer model (3D-RTM) included in the 
Goddard Satellite Data Simulator Unit suite [130]. The 3D-RTM is based on the two-stream model 
with Eddington’s Second Approximation using bulk single-scattering properties along selected 
slant paths [145]. These slant-paths mimic rigorous 3D microwave radiative transfer approach by 
using a 1D radiative transfer model and for this reason it is referred as “pseudo” 3D-RTM. It takes 
into account the gas absorption (i.e. nitrogen, cloud water, oxygen and water vapor) and the single-
particle single-scattering due to five hydrometeors species (cloud, rain, ice, snow, graupel). 
Consequently, values of downwelling TB and A are produced at several frequencies and elevation 
angles for a period going from 1 August 2015 to 31 July 2016 (according to ST-MWR availability). 
Input scenarios in terms of spatial and temporal hydrometeor and background gases distributions 
are derived by WRF simulation forecasts at the temporal sampling of one hour. Single-particle 
single-scattering properties are computed at each WRF grid point and subsequently integrated 
over the explicit particle size distribution for the various species (e.g. rain, ice, snow, graupel etc.) 
to represent bulk single scattering properties. Lorenz-Mie method is used to calculate single 
scattering properties in rain regimes whereas for ice and snow, discrete dipole approximation or 
T-matrix calculations are selected. Polarization is not taken into account in our simulations. 
Effective refractive indices needed to calculate single scattering properties are obtained through 
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the Maxwell-Garnett method that accounts for bin-by-bin particle effective density (riming 
fraction) and melting fraction. The absorption coefficients for water vapor, oxygen, nitrogen and 
cloud water are calculated using formulas from [56], [54], [146] and [147], respectively. Figure B-
0-3 shows the statistics of A for the target period obtained from the 3D-RTM at the zenith view. 

 
Figure B-0-3: Complementary cumulative distribution function of A computed from 3D-RTM 

simulations from 1 August 2015 to 31 July 2016 for the frequencies of interest. 

The second model that we consider is a sky noise Eddington model that was developed and 
described in [129]. It is a 1Dimensional radiative transfer model (1D-RTM) that gives an Eddington-
based analytical approximation of the solution of the radiative transfer equation [120]. The input 
of 1D-RTM is a synthetic clouds dataset for the random generation of seasonal-dependent and 
time-decorrelated radiometeorological variables at the desired frequencies and elevation angles, 
with statistics driven by radiosounding profiles in clear sky [129] available from the World 
Meteorological Organization. The simulated variables are relative to ten clouds classes (including 
the clear air): cumulonimbus, cumulonimbus with incus, cumulus, cumulus congestus, 
altocumulus, altostratus, nimbostratus, stratus, cirrus and clear air. Each cloud class has 500 
realizations per each season (winter, spring, summer, autumn) for a total of 20000 realizations per 
each considered frequency and elevation angle. 

Both 3D-RTM and 1D-RTM simulations are obtained at several elevation angles (i.e., 10°, 20°, 30° 
36°, 40°, 50°, 54°, 60°, 70°, 80, 90°) for the frequencies at 23.8, 31.4, 72.5 and 82.5 GHz where ST-
MWR measurements are available. 
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B.III. Validation and comparison 

This section shows the validation of weather forecast and radiative transfer models considered in 
this work. For the validation process we have exploited data available from several measurements 
described in section B.I. 

 Validation of numerical weather prediction model 
We have performed quantitative analysis using some statistical parameters: bias (Bias), standard 
deviation (STD) and correlation coefficient (Corr) calculated on the vertical profiles of humidity 
and temperature between simulations and observations according to the following definitions: 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 〈𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜〉 (B.1) 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = �〈[(𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) − 〈(𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)〉]2〉 (B.2) 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝜎𝜎(𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠,𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)

𝜎𝜎𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝜎𝜎𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
 (B.3) 

 
where x represent the considered variable (humidity or temperature) and the subscripts sim and 
obs stand for simulations and observations, respectively. In this case, simulations are from 
Numerical Weather Predictions and observations are from radio soundings or weather radar 
measurements. 
First, we have explored the sensitivity of MM5 and WRF to different initialization data and we 
have found that the best configuration is represented by WRF model initialized with data from the 
European Center for Medium-range Weather-forecast at 0.125° resolution. 
 

 
(a)       (b) 

Figure B-0-4: Numerical weather predictions validation with radiosounding data: (a) absolute 
humidity, (b) temperature. 
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Then, we have validated the WRF best configuration performing a long run in the analysis period 
using two domains, at 12 km and 4 km horizontal spatial resolution, one hour of temporal 
resolution and daily forecast. The run was from 1 August 2015 to 31 July 2016 (according to ST-
MWR availability) on a volume with a base of 4x4 km2 and height ranging from surface to ~ 12 km 
centered on Albany, NY, where radiosounding data were available for the validation. Figure B-0-4 
a and b reports the scatter plot of absolute humidity and temperature, respectively, with respective 
values of bias, correlations and standard deviation. 
To quantify the capability of WRF setup to reproduce radio soundings at every altitude, the Index 
of Agreement (IA) has been adopted [121]. IA is a standardized measure of the degree of model 
prediction error that varies between 0 and 1. An agreement index score of 0 suggests little or rather 
no agreement between weather forecast simulations and radiosounding data, while an agreement 
score of 1 suggests complete match. An IA less than 0.5 suggests a diversity (between forecast and 
observation). 
The results are reported in Figure B-0-5. Humidity content profile (red curve in Figure B-0-5 
obtained from the dataset in Figure B-0-4a) shows an IA ranging between ~ 1 (around surface) and 
~ 0.8 (around 12 km). The IA of temperature profiles (blue curve in Figure B-0-5 obtained from the 
dataset in Figure B-0-4b) ranges between ~ 1 (around surface) and ~ 0.9 (around 12 km). 

 

 
Figure B-0-5: Vertical profile of Index of Agreement between WRF and radiosounding data for 

absolute humidity and temperature profiles. 

We have accomplished a further comparison using hourly surface precipitation, which can mainly 
affect the atmospheric optical thickness A, to evaluate the NWP performances close to the surface 
level. We have compared the output of the NWP model with measurements available from a radar-
gauge mosaic on an area of 4 km x 4 km centered on Albany site (Figure B-0-6). The distribution of 
points density shows a correlation coefficient of 0.44, a bias of -0.09 mm and a standard deviation 
of 0.93 mm. The evaluation scores for the precipitation are sensibly worse than those obtained for 
temperature and humidity previously discussed but, given the large spatial and temporal 
variability of precipitation, they can be considered satisfactory. 
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Figure B-0-6: Comparison between WRF and Radar Data in terms of rain accumulated in 1 hour 

on a domain centered on Albany site. 

 Comparison between radiative transfer models and radiometric 
measurements 

In this section we show several validation comparisons of both 1D-RTM and 3D-RTM with 
available radiometric measurements (ST-MWR and PRO-MWR).  
 
Figure B-0-7 shows TB scatterplots comparing data from 3D-RTM simulations with ST-MWR 
measurements available from 1 August 2015 to 31 July 2016 for the four radiometric channel 
frequencies. Due to the Sun-tracking operation mode, ST-MWR acquires measurements at 
continuously varying elevation angles (from about 20° to about 70°). The comparisons in Figure B-
0-7 are done considering all the points within the elevation-angle range covered by ST-MWR 
measurements performing a time-matching between the two datasets. Because of the different time 
sampling between 3D-RTM and ST-MWR (1 hour vs few seconds, respectively) we have averaged 
ST-MWR measurements over 1 minute around each nominal hour of 3D-RTM simulations. We 
have done the same plots of Figure B-0-7 in terms of A and listed the error scores in Table B-0-3 for 
both TB and A. Error scores between radiometric measurements and radiative transfer model are 
presented in terms of correlation, bias, standard deviation and root mean square error. Both Figure 
B-0-7 and Table B-0-3 show a general agreement between model and measurements although, from 
Figure B-0-7 we note a larger point dispersion at high TB values, i.e. where rainy events likely occur. 
In addition, from Table B-0-3 we observe an underestimation bias of 3D-RTM in terms of TB of the 
order of 11 K to 18 K depending on the frequency. Such biases could be ascribed to several factors: 
inaccuracies in the 3D-RTM routines of the radiative transfer, errors introduced by the slant path 
interpolation implemented within 3D-RTM [130] or to possible calibration biases of the ST-MWR 
[127]. We have also accomplished the same comparison of Figure B-0-7 but at a fixed elevation 
angle of 36° (which is one of the most frequent value during the Sun-tracking antenna motion). 
Results in terms of error scores were promising: correlations always larger than 0.74 and 0.68 for 
TB and A, respectively, and biases ranging from 6 K to 11 K and from 0.13 dB to 0.49 dB.  
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(a)       (b) 

  
 (c)       (d) 

Figure B-0-7: TB scatterplot for the period from 1 August 2015 to 31 July 2016: 3D-RTM vs ST-
MWR after time-matching at all elevation angles interested by the ST-MWR measurements. 

TABLE B-0-3: TB AND A ERROR SCORES FROM 1 AUGUST 2015 TO 31 JULY 2016: 3D-RTM VS ST-MWR 
AFTER TIME-MATCHING AT ALL ELEVATION ANGLES OBSERVED BY ST-MWR 

 Freq. (GHz) 23.80 31.40 72.50 82.50 

TB 

Corr. 0.65 0.56 0.68 0.70 
Bias (K) -13.40 -10.83 -17.48 -14.03 
Std (K) 31.42 39.00 36.63 43.04 
RMSE (K) 34.14 40.46 40.57 45.25 

A 

Corr. 0.52 0.40 0.43 0.43 
Bias (dB) -0.34 -0.34 -0.58 -0.46 
Std (dB) 1.12 1.73 3.30 3.62 
RMSE (dB) 1.17 1.76 3.35 3.65 
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To partially check the origin of the biases listed in Table B-0-3, we have compared 3D-RTM 
simulations with PRO-MWR in the period of interest (1 August 2015 - 31 July 2016) after a time-
matching between the two sources of information. Figure B-0-8 and Table B-0-4 show the results of 
the comparison in two cases of all-weather and clear-sky conditions. The clear-sky identification is 
accomplished using the sky status indicator [113],[114]. However, it should be noted that with 
respect to the previous comparison between 3D-RTM and ST-MWR, where data were compared 
along the direction of 36° elevation angle, in the case of 3D-RTM vs PRO-MWR, the comparisons 
are at 90° since PRO-MWR is a zenithal-pointing radiometer. 
 
From Table B-0-4 we note that the bias in terms of TB sensibly reduces with respect to those listed 
in Table B-0-3 and this lead to conclude that most of the bias in the 3D-RTM vs ST-MWR 
comparisons could be ascribed to ST-MWR calibration issues. Inaccuracies in the 3D-RTM routines 
of the radiative transfer still play a role, especially in clear-sky, as highlighted by the overestimation 
of TB of 3D-RTM with respect to PRO-MWR (look at the lower left tail in Figure B-0-8 panels b, d, 
f). The impact of 3D-RTM overestimation of TB in clear-sky is larger at 31.4 GHz than at 23.84 GHz 
(see biases in Table B-0-4 in clear-sky). This behavior suggests that the water vapor representation 
in 3D-RTM is not able to accurately reproduce PRO-MWR observations. In all weather conditions 
(i.e. clear-sky+ cloud-sky and precipitation, Figure B-0-8, panels a, c, e), the overestimation 
previously noted in 3D-RTM simulations in clear-sky is masked by the variability of cloud and 
precipitation events. 
 
TABLE B-0-4: TB ERROR SCORES FROM 1 AUGUST 2015 TO 31 JULY 2016: 3D-RTM VS PRO-MWR AFTER 

TIME-MATCHING AT ZENITH VIEW (SEE FIGURE B-0-8) 
 Freq. (GHz) 23.84 26.24 31.4 

All-weather 

Corr. 0.70 0.56 0.52 
Bias (K) -1.48 -0.15 0.07 
Std (K) 17.44 20.02 23.63 
RMSE (K) 17.50 20.02 23.62 

Clear-sky 

Corr. 0.97 0.97 0.95 
Bias (K) 0.60 0.51 0.74 
Std (K) 2.06 1.32 1.17 
RMSE (K) 2.14 1.42 1.38 

 
Figure B-0-9 shows the correlation between brightness temperatures at the four channel 
frequencies comparing 1D-RTM, 3D-RTM and ST-MWR. These scatterplots are often exploited for 
data-quality check and for calibrating and validating both measurements and models. Indeed, 
anomalies in the channel correlation can help to find if a channel is unreliable (e.g., due to 
calibration errors) or a simulation is inaccurate (e.g., due to radiative model under or over 
estimation). Due to the variation of the elevation-angle of the ST-MWR measurements and in order 
to have a robust comparison, in Figure B-0-9 we have considered all the elevation angles within the 
range of the ST-MWR data (20°-70°). The figure highlights as the 3D-RTM is able to well reproduce 
the overall statistical trend of ST-MWR measurements. Moreover, the two radiative transfer models 
(3D-RTM and 1D-RTM) are in quite excellent agreement. From Figure B-0-9 we note a considerable 
TB underestimation of the 3D-RTM in the right flank region of the “banana” shape shown in panels 
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a and b. Interestingly both 1D-RTM and 3D-RTM models fails in reproducing lower TB values in 
the 82.5 vs 23.8 GHz plane.  
 

 

 

 
Figure B-0-8: TB scatter density plot for the period from 1 August 2015 to 31 July 2016: 3D-RTM vs 

PRO-MWR after time-matching at zenith view. 
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(a)       (b) 

 
(c)       (d) 

Figure B-0-9: TB - TB  channel correlation of ST-MWR, 1D-RTM and 3D-RTM at the ST-MWR 
frequency channels. All the elevation angles are included. 

Similar considerations can be done looking at the TB-A correlation scatterplots reported in Figure 
B-0-10 with ST-MWR, 1D-RTM and 3D-RTM data. Figure B-0-10 also highlight the saturation 
occurring at high values of A measured by ST-MWR. This behavior is expected because in strong 
rain condition (i.e., for high values of A), the atmosphere appears as a screen from the radiometer 
point of view and obstructs the sight of the Sun preventing the Sun-tracking operation. 
 
Figure B-0-11 reproduces the same quantities as in Figure B-0-9 except that in this case ST-MWR is 
replaced by PRO-MWR and the plots are realized at zenith view. We note a general agreement 
among the three dataset except for the region TB<150 K where 3D-RTM is not totally superimposed 
to 1D-RTM and PRO-MWR. 
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(a)       (b) 

 
(c)       (d) 

Figure B-0-10: TB - A correlation of ST-MWR, 1D-RTM and 3D-RTM at the four ST-MWR 
frequency channels. All the elevation angles are included. 

 
(a)       (b) 

Figure B-0-11: TB - TB  channel correlation of PRO-MWR, 1D-RTM and 3D-RTM at the PRO-MWR 
frequency channels, zenith view. 



Luca Milani, PhD Thesis (October 2019) – Atmospheric remote sensing and radiopropagation:  
Appendix B) Sun-Tracking Microware Radiometry: radiative transfer modelling inter-comparison and validation 

 

 133  
  

 Probabilistic characterization of Sun-tracking data 
In this section we perform a probabilistic analysis of the 3D-RTM simulations through a 
comparison with the available radiometric measurements. 3D-RTM is the result of coupling a 
numerical weather prediction model with a physically-based pseudo-3D radiative transfer model. 
A probabilistic analysis is useful to evaluate the capacity of the 3D-RTM to reproduce the statistical 
trend of the atmospheric radiometeorological parameters. Such statistics can be exploited within 
several contexts (e.g., satellite communications) to characterize the atmospheric channel at 
millimeter wave frequencies. 
 

 
(a)       (b) 

 
(c)       (d) 

Figure B-0-12: Complementary cumulative distribution function of A from 3D-RTM, 1D-RTM, 
and ST-MWR, zenith view. ST-MWR measurements have been reported to the zenith via the 

cosecant law. 

Figure B-0-12 shows the complementary cumulative distribution function of A computed from 3D-
RTM simulations (green line) and 1D-RTM (red line) and compared with the one computed from 
ST-MWR (blue line) measurements at the zenith. Note that ST-MWR measurements have been 
reported to the zenith via the cosecant law, this allows to exploit all the available ST-MWR 
measurements to realize a robust statistic. Due to the fact that ST-MWR measurements are acquired 
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only during daylight, in order to make a homogeneous comparison we have distinguished daylight 
(solid lines) from total (i.e., daylight + night, dashed lines) data for 3D-RTM data. This procedure 
is not possible for 1D-RTM being such data time decorrelated. 
The first thing that leaps out from Figure B-0-12 is the overestimation of A from 1D-RTM model 
with respect to both 3D-RTM and ST-MWR. Since 1D-RTM is a stochastic model driven by a 
synthetic clouds dataset, such overestimation suggest that, before running the 1D-RTM, a 
climatological adaptation should be done by conveniently selecting the clouds classes which are 
more frequent in the area of Rome, NY, for the target period. 
Comparing ST-MWR (blue solid line) with 3D-RTM (green solid line) in Figure B-0-12, we note a 
general agreement between the two dataset. At 23.8 GHz (Figure B-0-12a), as already observed in 
previous figures, 3D-RTM exhibits a slight underestimation which increase at high values of A. 
The error between 3D-RTM and ST-MWR is of the order of 2-3 dB reaching a maximum of 5 dB for 
probability values approaching 10-4. At 31.4 GHz (Figure B-0-12b) we observe an excellent 
agreement between 3D-RTM and ST-MWR (with the green and blue solid lines almost 
superimposed). At 72.5 and 82.5 GHz (Figure B-0-12c and d) we note a very good agreement 
between 3D-RTM and ST-MWR for A values up to about 10 dB. Above 10 dB the lines separate 
reaching a maximum error of about 15 dB and of more than 20 dB at 72.5 and 82.5 GHz, 
respectively. The underestimation of ST-MWR with respect to 3D-RTM at high attenuation values 
can be ascribed to saturation effects already observed in Figure B-0-10. Similar plots to those in 
Figure B-0-12 can be realized in terms of TB. 
 

 
Figure B-0-13: (a) Division of the ST-MWR dataset into air-mass intervals and (b) corresponding 

elevation-angles intervals. 
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