9,475 research outputs found

    Discovery of hard X-ray features around hotspots of Cygnus A

    Full text link
    We present results of analysis of a Chandra observation of Cygnus A in which the X-ray hotspots at the ends of the jets are mapped in detail. A hardness map reveals previously unknown structure in the form of outer and inner hard arcs around the hotspots, with hardness significantly enhanced compared with the hotspot central regions. The outer hard arcs may constitute the first detection of the bow shock; the inner hard arcs may reveal where the jets impact on the hotspots. We argue that these features cannot result from electrons radiating by the synchrotron self-Compton process. Instead we consider two possible sources of the hard emission: the outer arcs may be due to thermal radiation of hot intracluster gas compressed at the bow shock. Alternatively, both outer and inner arcs may be due to synchrotron radiation of electrons accelerated in turbulent regions highly perturbed by shocks and shear flows. Comparison of measured hardness ratios with simulations of the hardness ratios resulting from these processes show that it is more diffcult to explain the observations with a thermal model. Although we cannot rule out a thermal model, we argue in favour of the non-thermal explanation. The hard regions in the secondary hotspots suggest that jet activity is still powering these hotspots.Comment: MNRAS in press; 5 pages, 3 figures (2 figures in colour in jpeg format should be printed separately

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Hot gas in Mach cones around Virgo Cluster spiral galaxies

    Get PDF
    The detailed comparison between observations and simulations of ram pressure stripped spiral galaxies in the Virgo cluster has led to a three dimensional view of the galaxy orbits within the hot intracluster medium. The 3D velocities and Mach numbers derived from simulations can be used to derive simple Mach cone geometries for Virgo spiral galaxies. We search for indications of hot gas within Mach cones in X-ray observations of selected Virgo Cluster spiral galaxies (NGC 4569, NGC 4388, and NGC 4501). We find extraplanar diffuse X-ray emission in all galaxies. Based on the 3D velocity vectors from dynamical modelling a simple Mach cone is fitted to the triangular shape of NGC 4569's diffuse X-ray emission. Assuming that all extraplanar diffuse X-ray emission has to be located inside the Mach cone, we also fit Mach cones to NGC 4388's and NGC 4501's extraplanar X-ray emission. For NGC 4569 it is hard to reconcile the derived Mach cone opening angle with a Mach number based on the sound speed alone. Instead, a Mach number involving the Alfv\'enic speed seems to be more appropriate, yielding a magnetic field strength of ∼3\sim 3-6 μ\muG for a intracluster medium density of n∼10−4n \sim 10^{-4} cm−3^{-3}. Whereas the temperature of the hot component of NGC 4569's X-ray halo (0.5 keV) is at the high end but typical for a galactic outflow, the temperature of the hot gas tails of NGC 4388 and NGC 4501 are significantly hotter (0.7-0.9 keV). In NGC 4569 we find direct evidence for a Mach cone which is filled with hot gas from a galactic superwind. We suggest that the high gas temperatures in the X-ray tails of NGC 4388 and NGC 4501 are due to the mixing of the stripped ISM into the hot intracluster medium of the Virgo cluster.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in Astronomy and Astrophysic

    Multi-wavelength observations of the binary system PSR B1259-63/LS 2883 around the 2010-2011 periastron passage

    Full text link
    We report on broad multi-wavelength observations of the 2010-2011 periastron passage of the gamma-ray loud binary system PSR B1259-63. High resolution interferometric radio observations establish extended radio emission trailing the position of the pulsar. Observations with the Fermi Gamma-ray Space Telescope reveal GeV gamma-ray flaring activity of the system, reaching the spin-down luminosity of the pulsar, around 30 days after periastron. There are no clear signatures of variability at radio, X-ray and TeV energies at the time of the GeV flare. Variability around periastron in the Hα\alpha emission line, can be interpreted as the gravitational interaction between the pulsar and the circumstellar disk. The equivalent width of the Hα\alpha grows from a few days before periastron until a few days later, and decreases again between 18 and 46 days after periastron. In near infrared we observe the similar decrease of the equivalent width of Brγ\gamma line between the 40th and 117th day after the periastron. For the idealized disk, the variability of the Hα\alpha line represents the variability of the mass and size of the disk. We discuss possible physical relations between the state of the disk and GeV emission under assumption that GeV flare is directly related to the decrease of the disk size.Comment: accepted to MNRA

    Probing the Solar Wind Acceleration Region with the Sun--Grazing Comet C/2002 S2

    Get PDF
    Comet C/2002 S2, a member of the Kreutz family of Sungrazing comets, was discovered in white light images of the SOHO/LASCO coronagraph on 2002 September 18 and observed in \hi\, \lya\, emission by the SOHO/UVCS instrument at four different heights as it approached the Sun. The \hi\, \lya\, line profiles detected by UVCS are analyzed to determine the spectral parameters: line intensity, width and Doppler shift with respect to the coronal background. Two dimensional comet images of these parameters are reconstructed at the different heights. A novel aspect of the observations of this sungrazing comet data is that, whereas the emission from the most of the tail is blue--shifted, that along one edge of the tail is red--shifted. We attribute these shifts to a combination of solar wind speed and interaction with the magnetic field. In order to use the comet to probe the density, temperature and speed of the corona and solar wind through which it passes, as well as to determine the outgassing rate of the comet, we develop a Monte Carlo simulation of the \hi\, \lya\, emission of a comet moving through a coronal plasma. From the outgassing rate, we estimate a nucleus diameter of about 9 meters. This rate steadily increases as the comet approaches the Sun while the optical brightness decreases by more than a factor of ten and suddenly recovers. This indicates that the optical brightness is determined by the lifetimes of the grains, sodium atoms and molecules produced by the comet.Comment: 17 pages, 17 figures. Accepted by Ap

    Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Full text link
    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz^-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the photonic detection of electromagnetic waves. Finally, we propose some future work, including a Teraherz wave sensor based on antenna-coupled electro-optic polymer filled plasmonic slot waveguide, as well as a fully packaged and tailgated device.Comment: 20 pages, 16 figure

    Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Get PDF
    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0R_0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0∼0.15R_0 \sim 0.15 -- 0.30.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0≲0.4R_0 \lesssim 0.4 while X-ray light curves suggest 0.1≲R0≲0.30.1\lesssim R_0 \lesssim 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.Comment: Accepted to ApJ, 36 pages, 15 figures; comments welcom
    • …
    corecore