10 research outputs found

    Accurate Closed-Form Real-Time EGN Model Formula Leveraging Machine-Learning over 8500 Thoroughly Randomized Full C-Band Systems

    Get PDF
    We derived an approximate non-linear interference (NLI) closed-form model (CFM), capable of handling a very broad range of optical WDM system scenarios. We tested the CFM over 8500 randomized C-band WDM systems, of which 6250 were fully-loaded and 2250 were partially loaded. The systems had highly diversified channel formats, symbol rates, fibers, as well as other parameters. We improved the CFM accuracy by augmenting the formula with simple machine-learning factors, optimized by leveraging the system test-set. We further improved the CFM by adding a term which models special situations where NLI has high self-coherence. In the end, we obtained a very good match with the results found using the numerically-integrated Enhanced GN-model (or EGN-model). We also checked the CFM accuracy by comparing its predictions with full-C-Band split-step simulations of 300 randomized systems. The combined high accuracy and very fast computation time (milliseconds) of the CFM potentially make it an effective tool for real-time physical-layer-aware optical network management and control

    ROLE OF EQUIPMENT MANAGEMENT IN OPTICAL TRANSPORT NETWORK

    Get PDF
    The ever-developing interest of present day society for information with enhanced execution over longer separations have made the system complex in terms of architecture, technologies, Network Elements, communication between Network Elements, security and signaling control. Equipment Management as a segment of Network Management System gives administrators the capacity to control general operation of the NEs, superintend interaction among NEs and to upper layer administration framework, thus automating the task of managing complex network. This paper presents the role of Equipment Management in Optical Transport Network and some of its challenges

    Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited]

    Get PDF
    As the communication infrastructure that sustains critical societal services, optical networks need to function in a secure and agile way. Thus, cognitive and automated security management functionalities are needed, fueled by the proliferating machine learning (ML) techniques and compatible with common network control entities and procedures. Automated management of optical network security requires advancements both in terms of performance and efficiency of ML approaches for security diagnostics, as well as novel management architectures and functionalities. This paper tackles these challenges by proposing a novel functional block called Security Operation Center (SOC), describing its architecture, specifying key requirements on the supported functionalities and providing guidelines on its integration with optical layer controller. Moreover, to boost efficiency of ML-based security diagnostic techniques when processing high-dimensional optical performance monitoring data in the presence of previously unseen physical-layer attacks, we combine unsupervised and semi-supervised learning techniques with three different dimensionality reduction methods and analyze the resulting performance and trade-offs between ML accuracy and run time complexity

    Preventing dos attacks in multi-domain optical SDN

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2016As redes tradicionais começam a não ter o dinamismo necessário para acompanhar a evolução que os serviços on-line têm vindo a ter nos últimos anos. Como forma de contornar este problema, foi proposto recentemente um novo paradigma de redes: Software Defined Networking (SDN). Enquanto nas redes tradicionais o plano de controlo se encontra junto do plano de dados, isto é, o equipamento de rede é responsável não só por encaminhar pacotes (plano de dados), mas também por decidir como encaminhar o tráfego (plano de controlo), em SDN estas duas camadas são separadas. Em SDN é utilizado um controlador logicamente centralizado para controlar toda a rede. Com esta separação, uma SDN traz vários benefícios que estão relacionados com a programabilidade introduzida pelo controlador e com a visão geral que este possui de toda a rede. Para se poder beneficiar deste novo paradigma, é necessário que exista um plano de migração dos vários tipos de redes existentes. Na arquitetura SDN, como o plano de controlo é implementado num controlador logicamente centralizado, é necessário que este comunique com os equipamentos do plano de dados através de uma interface standard que abstraia os detalhes de implementação específicos do hardware dos equipamentos. Para as redes de comutação de pacotes o protocolo OpenFlow fornece essa interface standard para o hardware, facilitando a sua migração. No caso das redes ópticas a passagem para o paradigma SDN não será simples devido ao facto dos equipamentos ópticos suportarem diferentes protocolos de comunicação e não existirem interfaces standard SDN preparadas para o seu suporte. Para os provedores de serviços de telecomunicações, esta evolução é um desafio, pois requer o desenvolvimento de toda a infraestrutura para controlar e gerir os equipamentos ópticos. Para estes o ideal seria manter a gestão e o controlo do lado dos fornecedores de equipamentos ópticos, e gerir e controlar os equipamentos ópticos de diferentes fornecedores (redes ópticas multidomínio) de uma forma unificada. Desta forma, vários provedores de serviços: China Mobile, China Telecom, Verizon e organizações da indústria como o Open Networking Foundation (ONF) propuseram a criação de uma camada de abstração entre o controlador dos provedores de serviços e os equipamentos ópticos. Essa camada de abstração será responsável por converter a linguagem dos equipamentos ópticos numa Application Programming Interface (API) standard SDN para comunicação com o controlador principal. Cada vendedor de equipamentos ópticos será responsável por fornecer os equipamentos ópticos e a respetiva camada de abstração. Podemos considerar esta camada de abstração como sendo um controlador de equipa-mentos ópticos: o controlador Original Equipment Manufacturer (OEM). Desta forma, os provedores de serviços apenas terão de arranjar um controlador localizado na camada superior da hierarquia que seria responsável por orquestrar toda rede, utilizando para isso a abstração fornecida pelos controladores de equipamentos ópticos. É de notar que o controlo e a gestão dos equipamentos ópticos não ´e feita diretamente pelo controlador dos provedores de serviços, mas sim na camada de abstração abaixo, ou seja, pelos controladores de equipamentos ópticos. Com esta abordagem, os provedores de serviços ficam sem o controlo completo do sistema, pois ficam dependentes das operações e da informação que é dada pelos controladores de equipamentos ópticos, como por exemplo informação de desempenho dos serviços, alarmes ou estados da rede óptica. Neste contexto, como poderão os fornecedores de equipamentos ópticos dar garantias de segurança aos provedores de serviços? Se a disponibilidade ou a integridade do controlador dos equipamentos ópticos for comprometida, poderá haver negação de serviço (o controlador de equipamentos ópticos deixaria de processar informações importantes da rede óptica, como por exemplo alarmes) ou quebras de tráfego (desativação de serviços ópticos), o que seria indesejável e poderia trazer avultados prejuízos para os provedores de serviços. Nesta tese a principal motivação é de facto garantir que o controlador de equipamentos ópticos mantém a sua disponibilidade e integridade no processamento de todos os pedidos. O objetivo deste trabalho é assim desenvolver uma solução que proteja os controladores de equipamentos ópticos de eventuais ataques de negação de serviço. É de notar que mesmo havendo protecção nos links ópticos, um utilizador malicioso poderá colocar o controlador de equipamentos ópticos indisponível, bloqueando assim o acesso à rede óptica por parte do provedor de serviços (se houver problemas na rede óptica, estes não serão detetados). A solução que propomos para este problema é a implementação de mecanismos de monitorização e análise dos pedidos ao controlador de modo a controlar o fluxo de dados à entrada do controlador de equipamentos ópticos e assim garantir a sua disponibilidade. Esta protecção será feita através da utilização de uma reverse proxy e de uma firewall. Para além destes dois mecanismos de protecção, a comunicação entre o controlador do provedor de serviços e o controlador de equipamentos ópticos é feita de forma segura, de modo a garantir a integridade de todos os pedidos.Legacy networks do not have the necessary dynamism to follow the evolution online services have experienced in the past few years. In order to overcome this problem, the Software Defined Networking (SDN) paradigm was proposed. The goal of this paradigm is change the way networks are controlled. In legacy networks, the control plane and the data plane are coupled together in the network elements. SDN separates the control plane and the data plane through the use of a standard SDN Application Programming Interface (API) in the data plane to communicate with the logically centralized control plane. In order to reap the benefits of SDN, a plan of migration for legacy networks should be established. For optical networks the migration to SDN is not easy because optical equipments have their own protocols to communicate and there are no SDN standardized interfaces prepared to abstract these type of equipments. In order to solve this problem, organizations such as China Mobile, China Telecom, Verizon and industry organizations like the Open Networking Foundation (ONF) have proposed the use of an abstraction layer between the data plane and the main controller. This abstraction layer is responsible to convert the optical equipment protocols into a standard SDN Application Programming Interface (API) to communicate with the main controller. The abstraction layer can be considered an optical equipment controller, the Original Equipment Manufacturer (OEM) controller. With this approach, service providers (SP) (i.e., telecommunication operators) only need to have a main controller to orchestrate the whole network through the use of OEM controllers. With this solution the Service Providers (SP) are able to control the optical network with different optical equipment from multiple vendors (multi-domain networks). The OEM controllers are responsible to execute all the operations in the Network Element (NE) (the NE is the optical equipment) that constitutes the Data Plane (DP). They also process information that comes from the NE and translate that information to the main controller. Examples include: network information and performance of services. The challenge is that if the OEM controller is compromised, the entire optical network is compromised. This is the main motivation for this project. The objective of our work is to develop a solution that can help the Service Provider (SP) to have confidence in the NEs and respective optical network connections. To achieve this goal, the system has to guarantee the availability of the OEM controller. The integrity of the communication between the SP orchestrator and the OEM controller should also be guaranteed. The OEM controller should be always available to process notifications, be it from the NEs or from the main controller. It should also be ensured that the integrity of all requests that are sent by the SP controller to the OEM controllers is guaranteed. In order to solve these problems, we propose a new security mechanism for the OEM controller to protect the optical network. The solution consists in the use of a reverse proxy and a firewall to control the flow of requests to the OEM controller. The communication between the SP controller and the OEM controller is also made secure to assure the integrity of requests

    Uma Proposta de Solução para Levantamento do Inventário dos Elementos de Rede em Redes Ópticas de Transporte

    Get PDF
    As demandas por serviços de telecomunicações multimídia, garantia de QoS (Quality of Service) e mecanismos de gerenciamento e controle direcionam a evolução da rede de núcleo para adoção da tecnologia OTN (Optical Transport Network) como solução de rede de transporte. Para conduzir a evolução da tecnologia OTN a ITU-T (International Telecommunication Union Telecommunications Standardization Sector) estabelece uma série de recomendações, dentre elas, as específicas para o plano de gerenciamento de redes. Essas, por sua vez, apresentam deficiências no que se referem ao levantamento do inventário dos objetos gerenciados definidos pelas normas da ITU-T. A ITU-T define a representação dos elementos de rede em caráter funcional, mais especificamente como módulos de Funções Atômicas. Contudo, a falta de clareza na implementação das Funções Atômicas e a carência de integração com as representações físicas dos elementos de rede implica na omissão, por parte dos diversos fabricantes, da implementação dos mecanismos recomendados em norma. Esta dissertação tem como objetivo geral apresentar uma proposta de solução para o levantamento do inventário dos elementos de rede em redes OTN abrangendo de forma integrada as representações funcional e física do elemento de rede, além de possibilitar aos diversos fabricantes a aderência às normas da ITU-T bem como oferecer ao operador de rede a configuração dos componentes de uma forma mais intuitiva

    Optical Network Management and Control

    No full text

    Accurate Closed-Form GN/EGN-Model Formula Leveraging a Large QAM-System Test-Set

    No full text
    We tested the accuracy of a fully-closed-form approximate GN-model formula over 3000 different C -band fully-loaded WDM-QAM system scenarios and 1200 partially-loaded ones. By leveraging the large system test-set, we modified the formula to obtain a closed-form formula approximating the enhanced GN-model (EGN-model). The combined high accuracy and very fast computation time (ms) of such formula potentially make it an effective tool for real-time physical-layer-aware optical network management and control

    Plateformes d'automatisation natives en nuage (Cloud) des réseaux optiques

    No full text
    Optical communication management and control are transforming to integrate new capabilities such as intent-based network management, closed-loop control automation, and multi-stakeholder orchestration. These capabilities are driven by the new connectivity requirements between data centers to enable future generations of services: Beyond 5G (B5G) and 6G applications offered at the edges of optical networks. The next generation of optical network management and control architectures will entail Software-Defined Networking (SDN) principles for the disaggregation of future optical systems. The current optical network controllers and managers are intrinsically proprietary and, consequently, restricted in openness, scalability, and flexibility. This Ph.D. thesis investigates and proposes breakthrough software architectures with: (i) their control functions for the optical systems and (ii) their management functions for optical connection services of Open Disaggregated Optical Networks. After explaining SDN architectures in the context and the constraints of optical switching and transmission networks, the thesis explains the challenges of current optical networks to transition towards the control of Partially Disaggregated Optical Networks as a first step and the control of Fully Disaggregated Optical Networks as the ultimate step. Novel software-defined optical network automation platforms with control functions based on micro-services are described pragmatically, considering open-source software frameworks and several open forums providing their languages and their data models. Their protocols are being developed for devices, network topology, and communication services. Next, the thesis described how control functions are designed as cloud-native network functions (CNF), enabling continuous integration and continuous development of cloud-native optical networking platforms. Automated optical channel path computation functions as services a re first addressed. These optical channel path computation services are described by explaining how the routing constraints defined by the evolutions of optical system capabilities can be integrated into the path computation engines (PCE). Several PCE algorithms for optical channel routing and spectrum allocation are presented, and their performances are compared in terms of reasonable or possibly optimal spectrum allocation.Subsequent to the concepts of automated optical channel path computation functions as services, the thesis proposes automated optical channel defragmentation functions as services to re-arrange the placements of optical channels for better and possibly optimal use of the spectrum grid to gain resources.From the evaluations of these different container-based optical control functions, several optical channel control automation scenarios are described to prove their concepts using a network bench in a lab and demonstrate the potential applications of optical CNFs.Finally, the thesis concludes with the synthesis of these research works and the future challenges to make the control and the management of optical networks more unified and streamlined to enable optical communications to be designed and an asset as connectivity services for future generation services.La gestion et le contrôle des communications optiques se transforment pour intégrer de nouvelles fonctionnalités telles que la gestion de réseau basée sur l'intention, l'automatisation du contrôle en boucle fermée et l'orchestration multipartite. Ces fonctionnalités sont motivées par les nouvelles exigences de connectivité entre les centres de données (datacenters) pour permettre le déploiement de futures générations de services telles que les applications au-delà de la 5G (Beyond 5G or B5G) et 6G offertes à la périphérie des réseaux optiques. La prochaine génération d'architectures de gestion et de contrôle des réseaux optiques comportera des principes de mise en réseau définie par logiciel (SDN) en relation avec la désagrégation des futurs systèmes optiques. Les contrôleurs et gestionnaires de réseaux optiques actuels sont intrinsèquement propriétaires et sont donc limités en termes d'ouverture, d'évolutivité et de flexibilité. Cette thèse de doctorat étudie et propose des architectures logicielles disruptives avec : (i) leurs fonctions de contrôle pour les systèmes optiques et (ii) leurs fonctions de gestion pour les services de connexion optique des réseaux optiques ouverts désagrégés. Après avoir presenté les architectures SDN dans le contexte et les contraintes des réseaux de commutation et de transmission optiques, la thèse explique les défis techniques des réseaux optiques actuels évoluant vers le contrôle des réseaux optiques partiellement désagrégés comme première étape de transition; et vers le contrôle des réseaux optiques entièrement désagrégés comme étape ultime. La nouvelles plates-formes logicielles d'automatisation des réseaux optiques avec leurs fonctions de contrôle basées sur des micro-services sont décrites de manière pragmatique en tenant compte des logiciels libres ainsi que de plusieurs forums de standardisation définissant leurs langages, leurs modèles de données et leurs protocoles pour les équipements, la topologie du réseau et les services de communication. Ensuite, la thèse décrit comment les fonctions de contrôle sont conçues comme des fonctions de réseau virtualisées permettant une intégration et un développement continus des plateformes de réseaux optiques natives en nuage (Cloud). Les fonctions de calcul de chemins de canal optique automatisées conçues comme des services sont d'abord abordées. Ces services de calcul de chemin de canal optique sont décrits en expliquant comment les contraintes de routage définies par l'évolution des fonctionnalités des systèmes optiques peuvent être intégrées dans les moteurs de calcul de chemin (PCE). Plusieurs algorithmes PCE pour le routage des canaux optiques et l'allocation sur la grille spectral sont présentés et leurs performances sont comparées en termes d'allocation bonne ou éventuellement optimale sur le spectre optique. A la suite des concepts de fonctions de calcul de chemin de canaux optiques automatisées en conçues comme des services , la thèse propose des fonctions de défragmentation automatisée des canaux optiques conçues comme des services pour réarranger les placements des canaux optiques afin d’obtenir une meilleure et éventuellement optimale utilisation de la grille de spectre optique pour gagner des ressources. A partir des évaluations de ces différentes fonctions de contrôle optique basées sur des conteneurs, plusieurs scénarios d'automatisation du contrôle des canaux optiques sont décrits pour prouver leurs concepts en utilisant un banc réseau dans un laboratoire, et pour démontrer les applications potentielles des VNF optiques. Enfin, la thèse conclut sur la synthèse de ces travaux de recherche et les défis futurs pour rendre le contrôle et la gestion des réseaux optiques plus unifiés et rationalisés afin de permettre aux communications optiques d'être conçues et d'être un atout conçues comme des services de connectivité pour les services de future génération

    Plateformes d'automatisation natives en nuage (Cloud) des réseaux optiques

    No full text
    La gestion et le contrôle des communications optiques se transforment pour intégrer de nouvelles fonctionnalités telles que la gestion de réseau basée sur l'intention, l'automatisation du contrôle en boucle fermée et l'orchestration multipartite. Ces fonctionnalités sont motivées par les nouvelles exigences de connectivité entre les centres de données (datacenters) pour permettre le déploiement de futures générations de services telles que les applications au-delà de la 5G (Beyond 5G or B5G) et 6G offertes à la périphérie des réseaux optiques. La prochaine génération d'architectures de gestion et de contrôle des réseaux optiques comportera des principes de mise en réseau définie par logiciel (SDN) en relation avec la désagrégation des futurs systèmes optiques. Les contrôleurs et gestionnaires de réseaux optiques actuels sont intrinsèquement propriétaires et sont donc limités en termes d'ouverture, d'évolutivité et de flexibilité. Cette thèse de doctorat étudie et propose des architectures logicielles disruptives avec : (i) leurs fonctions de contrôle pour les systèmes optiques et (ii) leurs fonctions de gestion pour les services de connexion optique des réseaux optiques ouverts désagrégés. Après avoir presenté les architectures SDN dans le contexte et les contraintes des réseaux de commutation et de transmission optiques, la thèse explique les défis techniques des réseaux optiques actuels évoluant vers le contrôle des réseaux optiques partiellement désagrégés comme première étape de transition; et vers le contrôle des réseaux optiques entièrement désagrégés comme étape ultime. La nouvelles plates-formes logicielles d'automatisation des réseaux optiques avec leurs fonctions de contrôle basées sur des micro-services sont décrites de manière pragmatique en tenant compte des logiciels libres ainsi que de plusieurs forums de standardisation définissant leurs langages, leurs modèles de données et leurs protocoles pour les équipements, la topologie du réseau et les services de communication. Ensuite, la thèse décrit comment les fonctions de contrôle sont conçues comme des fonctions de réseau virtualisées permettant une intégration et un développement continus des plateformes de réseaux optiques natives en nuage (Cloud). Les fonctions de calcul de chemins de canal optique automatisées conçues comme des services sont d'abord abordées. Ces services de calcul de chemin de canal optique sont décrits en expliquant comment les contraintes de routage définies par l'évolution des fonctionnalités des systèmes optiques peuvent être intégrées dans les moteurs de calcul de chemin (PCE). Plusieurs algorithmes PCE pour le routage des canaux optiques et l'allocation sur la grille spectral sont présentés et leurs performances sont comparées en termes d'allocation bonne ou éventuellement optimale sur le spectre optique. A la suite des concepts de fonctions de calcul de chemin de canaux optiques automatisées en conçues comme des services , la thèse propose des fonctions de défragmentation automatisée des canaux optiques conçues comme des services pour réarranger les placements des canaux optiques afin d’obtenir une meilleure et éventuellement optimale utilisation de la grille de spectre optique pour gagner des ressources. A partir des évaluations de ces différentes fonctions de contrôle optique basées sur des conteneurs, plusieurs scénarios d'automatisation du contrôle des canaux optiques sont décrits pour prouver leurs concepts en utilisant un banc réseau dans un laboratoire, et pour démontrer les applications potentielles des VNF optiques. Enfin, la thèse conclut sur la synthèse de ces travaux de recherche et les défis futurs pour rendre le contrôle et la gestion des réseaux optiques plus unifiés et rationalisés afin de permettre aux communications optiques d'être conçues et d'être un atout conçues comme des services de connectivité pour les services de future génération.Optical communication management and control are transforming to integrate new capabilities such as intent-based network management, closed-loop control automation, and multi-stakeholder orchestration. These capabilities are driven by the new connectivity requirements between data centers to enable future generations of services: Beyond 5G (B5G) and 6G applications offered at the edges of optical networks. The next generation of optical network management and control architectures will entail Software-Defined Networking (SDN) principles for the disaggregation of future optical systems. The current optical network controllers and managers are intrinsically proprietary and, consequently, restricted in openness, scalability, and flexibility. This Ph.D. thesis investigates and proposes breakthrough software architectures with: (i) their control functions for the optical systems and (ii) their management functions for optical connection services of Open Disaggregated Optical Networks. After explaining SDN architectures in the context and the constraints of optical switching and transmission networks, the thesis explains the challenges of current optical networks to transition towards the control of Partially Disaggregated Optical Networks as a first step and the control of Fully Disaggregated Optical Networks as the ultimate step. Novel software-defined optical network automation platforms with control functions based on micro-services are described pragmatically, considering open-source software frameworks and several open forums providing their languages and their data models. Their protocols are being developed for devices, network topology, and communication services. Next, the thesis described how control functions are designed as cloud-native network functions (CNF), enabling continuous integration and continuous development of cloud-native optical networking platforms. Automated optical channel path computation functions as services a re first addressed. These optical channel path computation services are described by explaining how the routing constraints defined by the evolutions of optical system capabilities can be integrated into the path computation engines (PCE). Several PCE algorithms for optical channel routing and spectrum allocation are presented, and their performances are compared in terms of reasonable or possibly optimal spectrum allocation.Subsequent to the concepts of automated optical channel path computation functions as services, the thesis proposes automated optical channel defragmentation functions as services to re-arrange the placements of optical channels for better and possibly optimal use of the spectrum grid to gain resources.From the evaluations of these different container-based optical control functions, several optical channel control automation scenarios are described to prove their concepts using a network bench in a lab and demonstrate the potential applications of optical CNFs.Finally, the thesis concludes with the synthesis of these research works and the future challenges to make the control and the management of optical networks more unified and streamlined to enable optical communications to be designed and an asset as connectivity services for future generation services
    corecore