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Abstract

Learning for Network Applications and Control

Craig Gutterman

The emergence of new Internet applications and technologies have resulted in an increased

complexity as well as a need for lower latency, higher bandwidth, and increased reliability. This

ultimately results in an increased complexity of network operation and management. Manual

management is not sufficient to meet these new requirements.

There is a need for data driven techniques to advance from manual management to autonomous

management of network systems. One such technique, Machine Learning (ML), can use data to

create models from hidden patterns in the data and make autonomous modifications. This ap-

proach has shown significant improvements in other domains (e.g., image recognition and natural

language processing). The use of ML, along with advances in programmable control of Software-

Defined Networks (SDNs), will alleviate manual network intervention and ultimately aid in au-

tonomous network operations. However, realizing a data driven system that can not only under-

stand what is happening in the network but also operate autonomously requires advances in the

networking domain, as well as in ML algorithms.

In this thesis, we focus on developing ML-based network architectures and data driven net-

working algorithms whose objective is to improve the performance and management of future

networks and network applications. We focus on problems spanning across the network protocol

stack from the application layer to the physical layer. We design algorithms and architectures that

are motivated by measurements and observations in real world or experimental testbeds.

In Part I we focus on the challenge of monitoring and estimating user video quality of experi-

ence (QoE) of encrypted video traffic for network operators. We develop a system for REal-time

QUality of experience metric detection for Encrypted Traffic, Requet. Requet uses a detection

algorithm to identify video and audio chunks from the IP headers of encrypted traffic. Features

extracted from the chunk statistics are used as input to a random forest ML model to predict QoE



metrics. We evaluate Requet on a YouTube dataset we collected, consisting of diverse video assets

delivered over various WiFi and LTE network conditions. We then extend Requet, and present a

study on YouTube TV live streaming traffic behavior over WiFi and cellular networks covering

a 9-month period. We observed pipelined chunk requests, a reduced buffer capacity, and a more

stable chunk duration across various video resolutions compared to prior studies of on-demand

streaming services. We develop a YouTube TV analysis tool using chunks statistics detected from

the extracted data as input to a ML model to infer user QoE metrics.

In Part II we consider allocating end-to-end resources in cellular networks. Future cellular net-

works will utilize SDN and Network Function Virtualization (NFV) to offer increased flexibility

for network infrastructure operators to utilize network resources. Combining these technologies

with real-time network load prediction will enable efficient use of network resources. Specifically,

we leverage a type of recurrent neural network, Long Short-Term Memory (LSTM) neural net-

works, for (i) service specific traffic load prediction for network slicing, and (ii) Baseband Unit

(BBU) pool traffic load prediction in a 5G cloud Radio Access Network (RAN). We show that

leveraging a system with better accuracy to predict service requirements results in a reduction of

operation costs.

We focus on addressing the optical physical layer in Part III. Greater network flexibility through

SDN and the growth of high bandwidth services are motivating faster service provisioning and

capacity management in the optical layer. These functionalities require increased capacity along

with rapid reconfiguration of network resources. Recent advances in optical hardware can enable

a dramatic reduction in wavelength provisioning times in optical circuit switched networks. To

support such operations, it is imperative to reconfigure the network without causing a drop in

service quality to existing users. Therefore, we present a ML system that uses feedforward neural

networks to predict the dynamic response of an optically circuit-switched 90-channel multi-hop

Reconfigurable Optical Add-Drop Multiplexer (ROADM) network. We show that the trained deep

neural network can recommend wavelength assignments for wavelength switching with minimal

power excursions. We extend the performance of the ML system by implementing and testing



a Hybrid Machine Learning (HML) model, which combines an analytical model with a neural

network machine learning model to achieve higher prediction accuracy.

In Part IV, we use a data-driven approach to address the challenge of wireless content delivery

in crowded areas. We present the Adaptive Multicast Services (AMuSe) system, whose objective is

to enable scalable and adaptive WiFi multicast. Specifically, we develop an algorithm for dynamic

selection of a subset of the multicast receivers as feedback nodes. Further, we describe the Mul-

ticast Dynamic Rate Adaptation (MuDRA) algorithm that utilizes AMuSe’s feedback to optimally

tune the physical layer multicast rate. Our experimental evaluation of MuDRA on the ORBIT

testbed shows that MuDRA outperforms other schemes and supports high throughput multicast

flows to hundreds of nodes while meeting quality requirements. We leverage the lessons learned

from AMuSe for WiFi and use order statistics to address the performance issues with LTE evolved

Multimedia Broadcast/Multicast Service (eMBMS). We present the Dynamic Monitoring (DyMo)

system which provides low-overhead and real-time feedback about eMBMS performance to be

used for network optimization. We focus on the Quality of Service (QoS) Evaluation module and

develop a Two-step estimation algorithm which can efficiently identify the SNR Threshold as a one

time estimation. DyMo significantly outperforms alternative schemes based on the Order-Statistics

estimation method which relies on random or periodic sampling.



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Learning for Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Networking Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Video Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 End-to-End Resource Allocation in Cellular Networks . . . . . . . . . . . 3

1.2.3 Dynamic Optical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Adaptive Wireless Multicast . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Video Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 End-to-End Resource Allocation in Cellular Networks . . . . . . . . . . . 8

1.3.3 Dynamic Optical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Adaptive Wireless Multicast . . . . . . . . . . . . . . . . . . . . . . . . . 10

i



1.4 Contributions to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Video Streaming 14

Chapter 2: Real-Time QoE Metric Detection for Encrypted YouTube Traffic . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Background & Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Adaptive BitRate Streaming Operation . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Video States and Playback Regions . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 QoE Metrics and Prediction Challenges . . . . . . . . . . . . . . . . . . . 24

2.4 Chunk Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Chunk Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Chunk Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Trace Collection from Browser over WiFi . . . . . . . . . . . . . . . . . . 30

2.5.2 Trace Collection from YouTube Android App over Cellular . . . . . . . . . 33

2.6 Requet ML Feature Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Chunk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Chunk-based Features in Requet . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Baseline Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Buffer Warning Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Video State Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ii



2.7.3 Video Resolution Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.4 Performance Comparison of Browser-WiFi vs. App-LTE . . . . . . . . . . 46

2.7.5 Extended Test over WiFi Networks . . . . . . . . . . . . . . . . . . . . . . 47

2.A Appendix: Video State Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.B Appendix: Dataset Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 3: Inferring Live Streaming User Experience of YouTube TV from Encrypted Traffic 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Trace Collection from YouTube Android App . . . . . . . . . . . . . . . . 56

3.2.2 Typical Profile and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Multi-Chunk Detection (MCD) . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Multi-Chunk Unit (MCU) Behavior . . . . . . . . . . . . . . . . . . . . . 64

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 QoE Inference Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II End-to-End Resource Allocation in Cellular Networks 68

Chapter 4: RAN Resource Usage Prediction for a 5G Slice Broker . . . . . . . . . . . . . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Wireless RAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Background on RAN Resource Allocation . . . . . . . . . . . . . . . . . . 74

iii



4.3.2 RAN Resource Utilization Metrics . . . . . . . . . . . . . . . . . . . . . . 75

4.4 RAN Resource Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Computation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Experimental Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 LTE Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.3 X-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.1 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.2 Slice Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7.3 Slice Allocation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 5: Deep Neural Network Based Dynamic Resource Reallocation of BBU Pools in
5G C-RAN ROADM Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Problem Statements and BBU Pool Resource Reallocation Approach . . . . . . . . 95

5.3 Case Study and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

iv



III Dynamic Optical Systems 100

Chapter 6: Deep Neural network based wavelength selection and switching in ROADM
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Proposed Machine Learning Methodology . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5.2 Deep Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . 111

6.5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 7: Hybrid Machine Learning EDFA Model . . . . . . . . . . . . . . . . . . . . . 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 WDM Channel Gain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Machine Learning Model and Performance . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.2 Machine Learning Performance . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Hybrid Machine Learning Model and Performance . . . . . . . . . . . . . . . . . 127

7.5.1 Hybrid Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.2 Hybrid Machine Learning Performance . . . . . . . . . . . . . . . . . . . 129

v



IV Adaptive Multicast Services 131

Chapter 8: Light-Weight Feedback for Wireless Multicast . . . . . . . . . . . . . . . . . . 132

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Network Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.5 The AMuSe Feedback Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5.1 The Feedback Node Selection Algorithm . . . . . . . . . . . . . . . . . . 143

8.5.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.5.3 The Node Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.6 Experimental Evaluation of Testbed Environment . . . . . . . . . . . . . . . . . . 148

8.6.1 The ORBIT Testbed and Experiment Settings . . . . . . . . . . . . . . . . 148

8.6.2 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.6.3 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.6.4 Abnormal Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.7 Feedback Node Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.7.1 Static Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.7.2 Dynamic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.A Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 9: Multicast Dynamic Rate Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 165

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

vi



9.3 Testbed and Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.4 Network Model and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.5 Multicast Rate Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.5.1 Feedback Node Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.5.2 Rate Decision Rules and Procedure . . . . . . . . . . . . . . . . . . . . . 175

9.5.3 The Stability Preserving Method . . . . . . . . . . . . . . . . . . . . . . . 178

9.5.4 Handling Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.6 Reporting Interval Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.7.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.7.2 Impact of High Node Churn . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.7.3 Impact of External Interference . . . . . . . . . . . . . . . . . . . . . . . . 187

9.7.4 Video multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.8 Demonstration Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Chapter 10: Dynamic Monitoring of Large Scale LTE-eMBMS . . . . . . . . . . . . . . . . 193

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.2.1 eMBMS Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.3 Model and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.3.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vii



10.4 The DyMo System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.4.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.4.3 Dynamic eMBMS Parameter Tuning . . . . . . . . . . . . . . . . . . . . . 203

10.5 Algorithms for SNR Threshold Estimation . . . . . . . . . . . . . . . . . . . . . . 203

10.5.1 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.5.2 The Two-Step Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . 204

10.5.3 The Iterative Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . 207

10.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.6.2 Simulated Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

10.6.3 Performance over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.6.4 Impact of Various Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 220

10..5 Analysis of the Two-Step Estimation Algorithm . . . . . . . . . . . . . . . 223

V Conclusions 226

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

viii



List of Tables

2.1 Chunk Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Clip distribution in our dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 % of chunks in each state (Set A Browser-WiFi). . . . . . . . . . . . . . . . . . . . 36

2.4 % of chunks in each state (Set A App-LTE). . . . . . . . . . . . . . . . . . . . . . 37

2.5 Buffer warning performance with data in group A. . . . . . . . . . . . . . . . . . . 44

2.6 Video state performance with data in group A. . . . . . . . . . . . . . . . . . . . . 44

2.7 Video resolution performance with data in group A. . . . . . . . . . . . . . . . . . 45

2.8 Notation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Clip distribution in our dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Percent of Data in each Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Video resolution performance (%) . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Video phase performance (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Throughput for PRB rate along with the UE’s MCS. . . . . . . . . . . . . . . . . . 79

4.2 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 REVA computation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Parameters of the optimized deep neural network. . . . . . . . . . . . . . . . . . . 111

6.2 Test RMSE and maximal prediction error. . . . . . . . . . . . . . . . . . . . . . . 116

ix



7.1 RMSE of analytical and ML models. . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1 Multicast: Features of related work . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1 Notation and parameter values used in experiments. . . . . . . . . . . . . . . . . . 171

9.2 The percentage of PDR loss at nodes (∆PDR(T)) as a function the reporting inter-
val T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.3 Average throughput (Mbps) of pseudo-multicast, MuDRA, and SRA schemes with
and without background traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.1 Notation for DyMo model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.2 Example of the DyMo feedback report overhead. . . . . . . . . . . . . . . . . . . 202

x



List of Figures

1.1 System Diagram: Data acquisition and Requet components: ChunkDetection, fea-
ture extraction, and QoE prediction models. . . . . . . . . . . . . . . . . . . . . . 7

1.2 A block diagram of the contributions to adaptive wireless multicast for both WiFi
and cellular networks: a light-weight feedback mechanism, multicast dynamic rate
adaptation, loss recovery and Forward Error Correction (FEC), and video rate adap-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Amount of data received (KB), amount of data sent (KB), and buffer level (sec) for
two sessions over a 20 sec window (100 ms granularity): (a) 720p, (b) 144p. . . . . 16

2.2 System Diagram: Data acquisition and Requet components: ChunkDetection, fea-
ture extraction, and QoE prediction models. . . . . . . . . . . . . . . . . . . . . . 17

2.3 Behavior of a 10-min session in 100 ms windows: (a) amount of data received
(MB), (b) average download bitrate (Mbps) over the past 60 sec, (c) buffer level,
(d) playback region, (e) video state, (f) video resolution. . . . . . . . . . . . . . . . 23

2.4 Definition of chunk metrics (video or audio). . . . . . . . . . . . . . . . . . . . . . 26

2.5 Individual video/audio chunks in a 10-min session with highest resolution (V:1080p,
A:160kbps). (a) Chunk Size, (b) Get Request Size. . . . . . . . . . . . . . . . . . 29

2.6 Individual video/audio chunks in a 10-min session with lowest resolution (V:144p,
A:70kbps). (a) Chunk Size, (b) Get Request Size. . . . . . . . . . . . . . . . . . . 30

2.7 Experimental setup for our trace collection. (a) WiFi experiments conducted in the
lab on a laptop, (b) Cellular experiments on an android cellphone. . . . . . . . . . 32

2.8 Average playback bitrate vs. video resolution for clips in our dataset. Clips in all
four groups are shown in scatter plots, while clips in group A are also shown with
box plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



2.9 Chunk metrics for all audio chunks in set A in Browser-WiFi setting. (a) chunk
size, (b) chunk duration, (c) download time. . . . . . . . . . . . . . . . . . . . . . 36

2.10 Chunk metrics for all video chunks in set A in Browser-WiFi setting. (a) chunk
size, (b) chunk duration, (c) download time. . . . . . . . . . . . . . . . . . . . . . 36

2.11 Chunk metrics for all audio chunks in set A in App-LTE setting. (a) chunk size, (b)
chunk duration, (c) download time. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 Chunk metrics for all video chunks in set A in App-LTE setting. (a) chunk size, (b)
chunk duration, (c) download time. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Accuracy of Requet models trained with group A. (a) Precision of video state, (b)
Precision of video resolution, (c) Precision of stall warning, (d) Recall of video
state, (e) Recall of video resolution, (f) Recall of stall warning. . . . . . . . . . . . 46

3.1 Experimental setup for our trace collection. . . . . . . . . . . . . . . . . . . . . . 56

3.2 Behavior of a 10 min session: (a) Average download bitrate (MBps), (b) Average
upload bitrate (KBps), (c) Video resolution, (d) Buffer health. . . . . . . . . . . . . 58

3.3 WiFi Dataset: (a) Buffer health in steady state for each channel, (b) Chunk duration
in steady state for each channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Cellular Dataset: (a) Buffer health in steady state for each channel, (b) Chunk
duration in steady state for each channel. . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Chunks shown on Chrome browser developer tools. . . . . . . . . . . . . . . . . . 62

3.6 Overlapping audio and video chunks. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Multi-chunk metrics for MCU in the WiFi dataset: (a) Number of chunks per
MCU, (b) MCU duration, (c) MCU size. . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Multi-chunk metrics for MCU in the cellular dataset: (a) Number of chunks per
MCU, (b) MCU duration, (c) MCU size. . . . . . . . . . . . . . . . . . . . . . . 63

4.1 5G network slice architecture: the network infrastructure is divided into slices for
tenants. The RAN broker monitors each slice’s SLA. The broker then predicts
future slice resource usage. Slice provisioning is done based on the SLA and the
predicted resource usage. The slice prediction and provisioning information is used
by the slice broker for admission control decisions. . . . . . . . . . . . . . . . . . 70

xii



4.2 (a) An example of provisioning resources to slices which is based on the broker’s
admission control decisions, where in the second decision interval a 5th slice is
admitted. (b) An example of monitoring REVA for a single slice and the corre-
sponding dynamic resource provisioning. . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Lab Configuration Setup. The LTE eNodeB scheduler calculates REVA which
is forwarded to Central Analytics Engine to compute optimal policy action. The
Central Analytics Engine sends the action to the Slice Manager for enforcement.
Additional components (MME, SGW, HSS, PCRF) are left out for simplicity. . . . 83

4.4 Experimental Data Collected (a) Set 1, (b) Set 1 autocorrelation, (c) Set 2, (d) Set
2 autocorrelation, (e) Set 3, (f) Set 3 autocorrelation. . . . . . . . . . . . . . . . . . 85

4.5 An example of X-LSTM machine learning architecture used for the experimentally
collected data. This X-LSTM architecture contains two phases, one at a time scale
of 30 seconds and the next at 5 seconds. . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Residual of first phase prediction (a) Set 1, (b) Set 1 autocorrelation, (c) Set 2, (d)
Set 2 autocorrelation, (e) Set 3, (f) Set 3 autocorrelation. . . . . . . . . . . . . . . 88

4.7 Results obtained by various prediction models: (a) Set 1, (b) Set 2, (c) Set 3. . . . 89

4.8 Prediction errors for Sets 1,2,3 illustrated in Fig. 7: (a) RMSE, (b) MAE, (c)
MAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Average system cost vs. SLA cost K for various prediction models: (a) Set 1, (b)
Set 2, (c) Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 C-RAN network architecture with the capability of resource reallocation from a
busy BBU to an open BBU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 (a) Recurrent Neural architecture unrolled through time creating a deep neural net-
work, (b) LSTM network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 New York City regional PoP topology. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 (a) Different traffic patterns (Resident, office, and entertainment dominant) of dif-
ferent ROADMS, (b) Traffic patterns at two BBU pools. . . . . . . . . . . . . . . . 98

5.5 Traffic pattern prediction on two BBU pools using LSTM. . . . . . . . . . . . . . 98

5.6 (a) Traffic throughput improvement with resource reallocation, (b) Reduced traffic
rejection rate with the resource reallocation. . . . . . . . . . . . . . . . . . . . . . 99

xiii



6.1 (a) The schematic diagram of a neuron, (b) Illustration of a deep neural network
containing two hidden layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Schematic of the experiment setup including 5 ROADM nodes, 4 fiber spans and
8 EDFAs with different gain characteristics. The training, validation, and test data
are collected by reconfiguring the channel loadings and measuring the power ex-
cursions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 EDFAs in the first span with different gain spectra. (a) The Wavelength dependent
gain spectrum of the first EDFA, (b) Wavelength dependent gain spectrum of the
second EDFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 The architecture of the deep neural network. The input layer contains 180 features,
representing the ’on’ or ’off’ state of initial channels and new channels. The output
layer contains a single output, representing the maximal power excursion among
all initial channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 The root-mean-square error (RMSE) of the training set and the test set as a function
of the number of training samples during online training. . . . . . . . . . . . . . . 113

6.6 RMSE as a function of the number of epochs in the training state. The training
stage is terminated at the 217th epoch with the validation set RMSE of 0.104 dB. . 115

6.7 Predicted power excursion vs. measured power excursion over the test set. (a)
Deep neural network, (b) Ridge regression, (c) Random forest. Both ridge regres-
sion and random forest underestimates the power excursion when the actual power
excursion is above 2dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 MSEC as a function of wavelength locations using different machine learning ap-
proaches. The deep neural network not only provides less prediction error but also
more stable performance across the entire 90 channel spectrum. . . . . . . . . . . . 117

6.9 δ-recommendation accuracy as a function of δ margin from the actual minimal
power excursion. The deep neural network is able to recommend the actual optimal
wavelength 79.5% of 210 test cases. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.10 Receiver operating characteristic (ROC) curves to assess the classification accuracy
for different system power excursion thresholds. (a) 0.5-dB threshold, (b) 1.5-dB
threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11 PTPR curves using different machine learning models with two different system
power excursion thresholds. (a) 0.5-dB threshold, (b) 1.5-dB threshold. . . . . . . . 120

7.1 Gain spectrum in experiment and prediction by analytical model. . . . . . . . . . . 123

xiv



7.2 Experiment setup for data capture. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Architecture of neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Normalized frequency desnity funciton of prediction error using the CM analytical
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Error distribution of analytical model and ML model with dynamic range of ± 3,
6, 9 dB, (a) ±3 dB, (b) ±3 dB corner, (c) ±6 dB, (d) ±6 dB corner, (e) ±9 dB, (f)
±9 dB corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Error distribution of analytical model and ML model with gain value of (a) 14 dB,
and (b) 22 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7 Structure of the hybrid machine learning model. 90 features (x1 − x90) of input
channel power and another 90 features (x91 − x180) of gain spectrum predicted by
analytical model are used. The hidden layers have 180, 90, 90, 45 neurons. . . . . . 128

7.8 Normalized Frequency Density of Analytical, ML, and HML models after 5000
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 EComparison of models in (a) convergence speed, and (b) size of samples. . . . . . 129

8.1 The AMuSe feedback mechanism (highlighted in red) as a part of the overall AMuSe sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Feedback node selection by AMuSe. A node with the poorest channel quality in ev-
ery neighborhood is selected as a Feedback node. Each feedback node periodically
sends updates about the service quality to the Access Point. . . . . . . . . . . . . . 134

8.3 Unreliable packet delivery by the LBP and the Pseudo-Broadcast approach. . . . . 139

8.4 State diagram of the AMuSe FB node selection algorithm at each node. All nodes
initialize in the VOLUNTEER state. . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5 An example of a wireless network a single AP and 4 receivers. All 3 requirements
described in Section 8.5 for an accurate feedback selection are important for this
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xv



8.6 Link Quality (LQ) and Packet Delivery Ratio (PDR) heatmaps at the AP for D = 6
meters with transmission bitrate of 12 Mbps and noise level of -70 dBm and -35
dBm. The FB nodes are highlighted with a thick border in red in the LQ heatmap
and in blue in the PDR heatmap. Empty locations represent nodes that did not
produce LQ or PDR reports and they are excluded from our experiments. Nodes
with PDR = 0 are active nodes that reported LQ values but were unable to decode
packets. These nodes are excluded from the FB node selection process. Note
that the minimum threshold below which a node does not become an FB node is
configurable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.7 Experimental results for testing hypothesis H1 and verifying the presence of ab-
normal nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.8 Experimental results for testing hypotheses H2—–H3: (a) LQ STD: varying T XAP
without noise, cluster size = 3m, (b) PDR STD: varying T XAP without noise, cluster
size = 3m, (c) LQ STD: varying T XAP without noise, cluster size = 6m, (d) PDR
STD: varying T XAP without noise, cluster size = 6m, (e) LQ STD: varying noise,
T XAP = 12 Mbps, cluster size = 3m, and (f) PDR STD: varying noise, T XAP = 12
Mbps, cluster size = 3m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.9 The impact of clustering: (a) the number of FB nodes for different cluster sizes,
(b) CDF of PDR differences of pairs of nodes within and across clusters for no
external noise and bitrate of 54Mbps, and (c) CDF of PDR differences of pairs of
nodes within and across clusters for external noise of −30dBm and bitrate of 12Mbps.153

8.10 Static settings with bitrate of 48Mbps: (a) the number of Poorly Represented Nodes
(PRN) vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different
PRN-Gap and fixed cluster size of D = 3 m, and (c) maximal distance between an
FB and non-FB node for various cluster radius. . . . . . . . . . . . . . . . . . . . 157

8.11 Static settings with external noise: (a) the number of Poorly Represented Nodes
(PRN) vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different
PRN-Gap and fixed cluster size of D = 3 m, and (c) maximal distance between an
FB and non-FB node for various cluster radius. . . . . . . . . . . . . . . . . . . . 158

8.12 Dynamic Settings: The number of Poorly Represented Nodes (PRN) vs. the cluster
radius with fixed PRN-Gap of 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.13 Dynamic Settings: The number of Poorly Represented Nodes (PRN) for different
PRN-Gap and fixed cluster size of D = 3 m. . . . . . . . . . . . . . . . . . . . . . 160

8.14 The number of Poorly Represented Nodes (PRNs) vs. percentage of moved nodes
for (a) fixed bitrate of 36Mbps, (b) fixed bitrate of 48Mbps, and (c) bitrate of
12Mbps and noise of 5dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xvi



9.1 The Adaptive Multicast Services (AMuSe) system consisting of the Multicast Dy-
namic Rate Adaptation (MuDRA) algorithm and a multicast feedback mechanism. . 166

9.2 Experimental measurement of the number of abnormal nodes in time, for fixed
rates of 24 and 36Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.3 The CDF of the PDR values of 170 nodes during normal operation and during a
spike at rate of 36Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.4 The PDR distribution of one set of experiments with T XAP rates of 24, 36, and
48Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.5 The percentage of nodes that remain normal after increasing the T XAP from 36Mbps
to 48Mbps vs. their PDR values at the 36Mbps for different PDR-thresholds (L). . . 175

9.6 Evolution of the multicast rate over time when the delay between rate changes =
1s (2 reporting intervals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.7 (a) Rate adaptation performance for reporting intervals of 100ms, (b) Fraction of
data sent at various rates with MuDRA for different reporting intervals, and (c)
Control overhead for various reporting intervals. . . . . . . . . . . . . . . . . . . . 180

9.8 A typical sample of MuDRA’s operation over 300s with 162 nodes: (a) Mid-PDR
and abnormal nodes, (b) Multicast rate and throughput measured at the AP, and (c)
Control data sent and received. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.9 (a) Rate and throughput for the pseudo-multicast scheme, (b) CDF of PDR distri-
butions of 162 nodes for fixed rate, MuDRA, Pseudo-Multicast, and SRA schemes,
and (c) Multicast throughput vs. the number of feedback nodes (K). . . . . . . . . 183

9.10 Emulating topology change by turning off FB nodes after 150s results in changing
optimal rate for MuDRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.11 Performance of MuDRA with high node churn: (a) Distribution of time duration for
which a node is a FB node for different values of probability p of node switching
its state on/off every 6s, (b) Multicast rate and throughput measured at the AP with
p = 0.2, (c) Percentage of data sent at various rates for different values of p. . . . . 186

9.12 Performance of MuDRA with 155 nodes where an interfering AP transmits on/off
traffic: (a) Mid-PDR and abnormal FB nodes, (b) Multicast rate and throughput,
(c) CDF for PDR distribution with interference for fixed rate, MuDRA, pseudo-
multicast, SRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.13 Multicast throughput with node 1-8 transmitting interfering on/off packet stream
with node churn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xvii



9.14 Distribution of video quality and PSNR (in brackets) measured at 160 nodes for
different multicast schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.15 A screenshot of the web-based application for evaluating performance of AMuSe .
The control panel for selecting the feedback and MuDRA algorithm parameters is
on the top. The video at two selected nodes is shown below. In this example we
show one node with poor quality and one with good quality video. The multicast
throughput and other metrics are in the graphs. The performance of the client nodes
is shown on the grid where numbers in each box indicate the PDR and the color of
the box indicates the range of PDR. The nodes highlighted with a red border are
FB nodes and nodes in grey are non-functional due to hardware issues. . . . . . . . 190

10.1 The DyMo system architecture: It exchanges control information with the Multi-
cast Coordination Entity (MCE) of BSs which use soft signal combining for eM-
BMS. The Instruction Control module uses broadcast to dynamically partition the
UEs into groups, each sending QoS reports at a different rate. The reports are
sent to the Feedback Collection module and allow the QoS Evaluation module to
identify an SNR Threshold. It is used by the MCS Control module to specify the
optimal MCS to the MCEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.2 Operation of DyMo for a sample UE QoS distribution: UEs are partitioned into
two groups based on their SNR and each group is instructed to send QoS reports
at a different rate. The partitioning is dynamically adjusted based on the reports to
yield more reports from UEs whose SNR is around the estimated SNR Threshold. 196

10.3 Estimates of (a) p = 1% and (b) p = 0.1% quantiles for 500 runs for the Order-
Statistics estimation (1-step) method and the Two-step estimation algorithm. . . . . 208

10.4 (a) The heatmap of SNR distribution of UEs (b) the evolution of the number of ac-
tive UEs over time compared to the number estimated by DyMo for a homogeneous
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.5 (a) The heatmap of UE SNR distribution in a stadium area of 1000 × 1000m2 and
(b) the evolution of the number of active UEs over time compared to the number
estimated by DyMo for a stadium environment. . . . . . . . . . . . . . . . . . . . 210

10.6 The heatmap of the SNR distribution of UEs (a) before a failure and (b) after a
failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xviii



10.7 Simulation results from a single simulation instance lasting for 30mins in a com-
ponent homogeneous environment with 20,000 UEs moving side to side between
two random points, with p = 0.1 and r = 5 messages/sec. (a) The actual per-
centile of the SNR Threshold estimated by DyMo, (b) the actual percentile of the
SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation,
(d) spectral Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of Optimal
vs. Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of
outliers by using Uniform and Order-Statistics, and (h) the QoS report overhead. . 214

10.8 Simulation results from a single simulation instance lasting for 30mins in a sta-
dium environment with 20,000 UEs moving from the edges to the center and back,
with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Thresh-
old estimated by DyMo, (b) the actual percentile of the SNR Threshold estimated
by Order-Statistics, (c) the SNR Threshold estimation, (d) spectral efficiency of
Optimal vs. DyMo, (e) spectral efficiency of Optimal vs. Order-Statistics, (f) the
number of Outliers by using DyMo, (g) the number of Outliers by using Uniform
and Order-Statistics, and (h) the QoS report overhead. . . . . . . . . . . . . . . . 215

10.9 Simulation results from a single simulation instance lasting for 30mins in a com-
ponent failure environment with 20,000 UEs moving side to side between two ran-
dom points, with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the
SNR Threshold estimated by DyMo, (b) the actual percentile of the SNR Thresh-
old estimated by Order-Statistics, (c) the SNR Threshold estimation, (d) spectral
Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of Optimal vs. Order-
Statistics, (f) the number of Outliers by using DyMo, (g) the number of outliers by
using Uniform and Order-Statistics, and (h) the QoS report overhead. . . . . . . . 216

10.10The Root Mean Square Error (RMSE) of different parameters averaged over 5
different simulation instances lasting for 30mins each in homogeneous scenario
with different SNR characteristics and UE mobility patterns. (a) SNR Threshold
percentile RMSE vs. the total number of UEs in the system, (b) SNR Threshold
percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold percentile RMSE
vs. the number of permitted reports , (d) Overhead RMSE vs. the number of UEs,
(e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the
number of permitted reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.11The Root Mean Square Error (RMSE) of different parameters averaged over 5
different simulation instances lasting for 30mins each in a stadium environment
with different SNR characteristics and UE mobility patterns. (a) SNR Threshold
percentile RMSE vs. the total number of UEs in the system, (b) SNR Threshold
percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold percentile RMSE
vs. the number of permitted reports, (d) Overhead RMSE vs. the number of UEs,
(e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the
number of permitted reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xix



10.12The Root Mean Square Error (RMSE) of different parameters averaged over 5
different simulation instances lasting for 30mins each in failure scenario with dif-
ferent SNR characteristics and UE mobility patterns. (a) SNR Threshold percentile
RMSE vs. the total number of UEs in the system, (b) SNR Threshold percentile
RMSE vs. the QoS Constraint p, (c) SNR Threshold percentile RMSE vs. the
number of permitted reports , (d) Overhead RMSE vs. the number of UEs, (e)
Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the num-
ber of permitted reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xx



Acknowledgements

I am writing this acknowledgment to recognize all those people who supported me during

my Ph.D. First and foremost, I would like to thank my Ph.D. advisor, Prof. Gil Zussman. His

guidance, motivation, and high standards were instrumental in shaping me as a researcher. I will

be forever grateful for his mentorship. Additionally, I would like to express my appreciation to

my entire thesis committee consisting of Prof. Dabisis Mitra, Prof. Ethan Katz-Bassett, Prof. Dan

Kilper, and Dr. Katherine Guo.

I would like to extend a special thanks to Dr. Varun Gupta. For the first few years of my journey,

Varun was a de-facto mentor to me on the AMUSE project. I also want to take this opportunity

to express a deep sense of gratitude to Dr. Katherine Guo who has been a close collaborator and

mentor throughout my time at Columbia.

In addition, a thank you to my fellow WiMNet research group members. I express my deepest

thanks to Tingjun Chen who I began my Ph.D journey with and discussed research with through-

out the process. I am thankful to work alongside Maria Gorlatova, Berk Birand, Robert Margolies,

Jelena Marasevic, Saleh Soltan, Manav Kohli, Mahshid Ghasemi, Guy Grebla, and Jonathan Os-

tometzky. I would also like to thank other my other office mates Todd Arnold, Kunal Mahajan,

and Niloofar Bayat.

My thesis would not have been possible without much successful collaborations. For my work

on the Requet project, I had the opportunity to work with Dr. Katherine Guo, Sarthak Arora,

Trey Gilliland, Dr. Xiaoyang Wang, Dr. Les Wu, and Prof. Ethan Katz-Bassett. I would like to

thank Dr. Edward Grinshpun and Dr. Sameer Sharma for their collaboration at Bell Labs. For

all my research related to optical networks I would like to express my deepest appreciation to

Prof. Dan Kilper for his mentorship and guidance. In addition, I had the honor of collaborating

with Ph.D students and Postdoctoral research scientists Artur Minakhmetov, Jiakai Yu, Weiyang

Mo, Yao Li, Shengxiang Zhu, Yishen Huang, and Payman Samadi on projects related to optical

networks. Throughout my work on the AMuSe project I had the opportunity to collaborate with

Jaime Ferragut, Andy Xu, Bohan Wu, Hannaneh Pasandi, and Rodda John. I would like to extend

xxi



a special thanks to Dr. Yigal Bejerano for his guidance. I would also like to thank my collaborators

on COSMOS including Ivan Seskar and Michael Sherman. I would also like to thank all the

undergraduate and masters’ students that I had the pleasure of working with.

Finally, and above all, I am grateful to my wonderful family for all of their unconditional love

and support.

Financial Support: The research described in this thesis was supported in part by NSF grants:

Graduate Research Fellowship Program (GRFP) DGE-1644869, NSF Integrative Graduate Ed-

ucation and Research Traineeship (IGERT) Fellowship From Data to Solutions, CNS-1910757,

CNS-1827923, CNS-1650685, CNS-1650669, PFI-1601784, CNS-1423105, CNS-1054856, NSF

CIAN ERC under grant EEC-0812072, and by the New York City Media Lab Combine program

grant.

xxii



Dedication

To all my family and friends,

and specifically to my amazing parents, wonderful sister, and phenomenal grandparents.

None of this would have been possible without your love and support.

xxiii



Chapter 1: Introduction

1.1 Learning for Networking

The emergence of new applications, including virtual reality, augmented reality, Internet of

Things (IoT), connected cars, smart cities, and edge computing, requires increased reliability, lower

latency, and higher bandwidth from wired and wireless networks. This ultimately results in an

increased complexity of network operation and management. Therefore, manual management is

not sufficient to meet these new requirements.

There is a need for data driven techniques to advance from manual management to autonomous

management of network systems. One such technique, Machine Learning (ML), can use data to

create models from hidden patterns in the data and make autonomous modifications to the net-

work. This approach has shown significant improvements in other domains (e.g., image recogni-

tion and natural language processing) [38, 29, 83, 104]. The use of ML, along with advances in

programmable control of Software-Defined Networks (SDNs), will alleviate manual network inter-

vention and ultimately aid in autonomous network operations. Realizing a data driven system that

can not only understand what is happening in the network but also operate autonomously requires

advances in the networking domain, as well as in ML and Artificial Intelligence (AI) algorithms.

In this thesis, we focus on developing ML-based network architectures and data driven network

algorithms whose objective is to improve the performance and management of future networks. We

focus on problems spanning across the networking protocol stack from the application layer to the

physical layer. Specifically, we focus on the networking domains of analyzing encrypted network

traffic for video quality of experience (QoE), allocating end-to-end resources in cellular networks,

enabling dynamic optical networks, and providing reliable feedback for wireless multicast.

While these domains span across the whole stack and across optical, IP, and wireless domains,
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there are many commonalities in system and algorithm development. As a result, in each of these

domains we explore the following: (i) Understanding the networking sub-problem, (ii) Collecting

real data or simulated data, (iii) Developing an appropriate ML system, and (iv) Evaluating the

proposed solution via simulations and experimentation.

The rest of this chapter is organized as follows. We first provide the background on each

domain in Section 1.2. In Section 1.3 we briefly discuss the ML or data driven contribution to each

domain. We conclude in Section 1.4 with an overview of the contributions to the literature.

1.2 Networking Domains

As mentioned above, we develop ML techniques for networking problems related to video

streaming, end-to-end network resource allocation in cellular networks, dynamic optical systems,

and adaptive wireless multicast. In this section, we provide background for each of these domains.

1.2.1 Video Streaming

The first application of ML is for real-time encrypted traffic classification. Specifically, we

focus on the application of identifying video streams and user QoE. Video streaming dominates

application traffic over the Internet. This has been largely attributed to the proliferation of on-

demand video streaming services, with live streaming poised to take off. By 2021, video streaming

traffic is expected to grow to 82% of all IP traffic [41], mobile video will represent 78% of all

mobile traffic [208], while live video usage will account for 13% of global Internet traffic [30].

To ensure video streaming consumer satisfaction and reduce customer churn rate, it is essen-

tial for Internet Service Providers (ISPs) or network operators to provision and manage network

resources such that streaming video end users with limited available resources maintain high QoE.

A critical component of QoE-aware network management is a monitoring tool residing within the

network whose objective is to infer metrics related to end user QoE.

Client-side measurement applications can accurately report QoE metrics such as player events

and video quality levels [214, 144]. Traditionally, Deep Packet Inspection (DPI) enabled operators
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to examine HTTP packet flows and extract video session information to infer QoE metrics [10, 32].

However, to address security and privacy concerns, content providers are increasingly adopting

end-to-end encryption. A majority of YouTube traffic has been encrypted since 2016 [91] with a

combination of HTTPS (HTTP/TLS/TCP) [14, 168, 56] and QUIC (HTTP/QUIC/UDP) [101, 49].

Similarly, since 2015, Netflix has been deploying HTTPS for video traffic [16].

Although the trend of end-to-end encryption does not affect client-side or server-side QoE

monitoring, it renders traditional DPI-based video QoE monitoring ineffective for operators. De-

spite encryption occluding session information, patterns from IP headers that are still in plain text

can be utilized and applied to infer video QoE metrics.

1.2.2 End-to-End Resource Allocation in Cellular Networks

The second application of ML is for end-to-end resource allocation in cellular networks. Tra-

ditional cellular networks rely on Radio-Access Networks (RANs) in which baseband signal pro-

cessing is carried out at the location of the cellular antennas. As traffic has increased, cell sizes are

decreasing, dramatically increasing the number of cell sites and their capacity. In order to improve

the scalability of these large numbers of access points, separation of the Remote Radio Heads

(RRHs) and the Base Band Processing Units (BBUs) has been proposed for 5G networks. By

utilizing SDN and Network Function Virtualization (NFV), wireless RAN virtualization will offer

greater flexibility for network infrastructure operators, while also adding benefits to their customers

(typically called tenants [172]). By enabling RAN virtualization, Mobile Network Operators can

share common RAN resources leading to reduced costs and increased energy efficiency. The con-

cept of network virtualization will enable infrastructure as a service for end-to-end networking

[51].

Another key technology to improve the performance and management of future networks is

network slicing. The Next Generation Mobile Network (NGMN) Alliance defines a network slice

as a set of network functions and associated resources, forming a complete virtualized end-to-end

logical network meeting certain network characteristics required by the associated service [51, 2,
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110]. Namely, by utilizing technologies such as SDN and NFV, slices will provide virtualized re-

source separation for different services, while still allowing for statistical multiplexing of network

resources.

1.2.3 Dynamic Optical Systems

In recent years, the advent of network applications such as video streaming, Internet-of-Things

(IoT), and cloud computing have contributed to exponential Internet traffic growth [198]. As traffic

increases, the ability to manage capacity and provision new services in the optical layer in real-time

becomes important. Provisioning times in commercial systems takes minutes per wavelength, and

in practice, days of careful offline wavelength planning are used to mitigate unpredictable dynamic

effects [96, 148]. To allow for such an increase in dynamic network traffic, optical metro and long

haul networks need to be dynamic and need to utilize network resources efficiently [67, 55].

The service provider provisions optical paths for its customers, such that, in Dense Wavelength

Division Multiplexing (DWDM), up to 96 wavelengths (or unique optical signals) are transmitted

in a single fiber. These signals are added and dropped from the network at Reconfigurable Optical

Add-Drop Multiplexer (ROADM) nodes which connect to Layer 2/3 switches. Optical switch-

ing techniques have been investigated for real time adaptation of optical layer capacity based on

changing traffic conditions. A key challenge is the optical power dynamics which arise and grow in

cascade in a ROADM system in the presence of optical circuit switching [184, 107, 98]. However,

today’s commercial ROADM systems remain ‘quasi-static’, with wavelengths being provisioned

to meet the peak traffic requirements [202].

A key unresolved challenge to achieving dynamic ROADM systems through SDN is predicting

and controlling the optical power dynamics resulting from wavelength switching operations. Power

excursions can result from the interactions between the wavelength dependent gain and Automatic

Gain Control (AGC) of optical amplifiers, Raman scattering in the fiber, and other wavelength

dependent phenomena. AGC is commonly used in Erbium-Doped Fiber Amplifiers (EDFAs) to

maintain constant average gain for varying input conditions. EDFAs are used to boost the optical
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signal being transported between two end nodes. This results in power excursions, one of the main

types of power dynamics in optical networks. Due to the EDFA’s wavelength dependent gain, with

changing input conditions, power excursions occur on active channels, and grow over multiple

EDFAs along the propagation path. The AGC attempts to amplify the channel to obtain a target

gain value, but adding or removing a channel can cause deviations that perturb other channels

resulting in excursions. These gains cannot be corrected until slow per-channel power controls in

the optical nodes are able to re-adjust the power level, which requires repeated measurements and

adjustments.

Deviations of the channel power levels outside pre-allocated system margins can potentially

result in service disruption due to reduced quality of transmission (QoT) [107]. For this reason,

today’s commercial systems take minutes and even hours to provision a wavelength through time-

consuming power adjustments along an optical path [148].

1.2.4 Adaptive Wireless Multicast

The fourth domain explored is in the area of wireless networks. As video traffic continues to

increase, the delivery of such traffic becomes a bottleneck for wireless networks. One solution

to this problem is based on dense deployments of WiFi Access Points (APs) or cellular Base

Stations (BSs), which require considerable capital and operational expenditure, may suffer from

interference between APs, and may exacerbate hidden node problems [159, 80]. Wireless multicast

is an attractive approach for content delivery to large groups of users interested in venue specific

content.

Video delivery is an essential service for wireless networks and several solutions were proposed

for crowded venues [195, 42, 231]. Multicast offers another approach for video delivery to large

groups of users interested in venue specific content (e.g., sports arenas, entertainment centers, and

lecture halls). However, WiFi networks provide limited multicast support at a low rate (e.g., 1Mbps

for 802.11b/g/n, 6Mbps for 802.11a/n) without a feedback mechanism that guarantees service

quality. Similarly, the evolved Multicast and Broadcast Services (eMBMS) standard [4] for LTE
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networks does not specify a mechanism for collecting real-time feedback from receivers which is

important for tuning parameters such as transmission rates and error correction.

However, in crowded venues with tens of thousands of User Equipments (UEs) (e.g., [58]),

even infrequent Quality of Service (QoS) reports by each UE may result in high signaling over-

head and blocking of unicast traffic over a cellular network. Therefore, for WiFi, even if feedback

is not collected continuously, a swarm of retransmission requests may be sent following an inter-

ference event thereby causing additional interruptions. Implementing a solution to this problem

requires extensive understanding of packet delivery based on experimental results. In addition, a

multicast system should conduct efficient rate adaptation based on only limited reports from the

nodes. Therefore, there is a need to design data driven techniques for efficient feedback collection

mechanisms and dynamic multicast rate adaptation mechanisms for WiFi and cellular multicast.

1.3 Contributions

In this section, we briefly describe the contributions made in the different chapters of this the-

sis. These include ML and data driven contributions made to the networking domains of analyzing

encrypted network traffic for video QoE, allocating end-to-end network resources in cellular net-

works, dynamic optical networks, and wireless multicast.

1.3.1 Video Streaming

Part I focuses on systems for QoE metric detection for encrypted traffic. We design a system

that works in real time and is applicable to multiple video streaming services for both WiFi and

cellular networks. In Chapter 2 we develop and present a system, Requet for REal-time QUality of

experience metric detection for Encrypted Traffic, Requet, that is suitable for network middlebox

deployment. Requet uses a detection algorithm we develop to identify video and audio chunks

from the IP headers of encrypted traffic. Features extracted from the chunk statistics are used as

input to a random forest ML model to predict QoE metrics, specifically, buffer warning (low buffer,

high buffer), video state (buffer increase, buffer decay, steady, stall), and video resolution.
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Figure 1.1: System Diagram: Data acquisition and Requet components: ChunkDetection, feature
extraction, and QoE prediction models.

One of the main challenges is collecting enough data to accurately understand the underlying

networking system and then developing a classification algorithm. We collect a large YouTube

dataset consisting of diverse video assets delivered over various WiFi and LTE network conditions

to evaluate the performance.

Fig. 1.1 depicts the system diagram for Requet and necessary components to train the QoE

models as well as evaluate its performance. Requet consists of the ChunkDetection algorithm,

chunk feature extraction, and ML QoE prediction models. The data acquisition process involves

collecting YouTube traffic traces (Trace Collection) and generating ground truth QoE metrics as

labels directly from the player (Video Labeling). Packet traces are fed into Requet’s ChunkDetec-

tion algorithm to determine audio and video chunks. The chunks are then used during the Feature

Extraction process to obtain chunk-based features. The chunk-based features from the training

data along with the corresponding QoE metrics are used to generate QoE prediction models. For

evaluation, traffic traces from the testing dataset are fed into the trained QoE models to generate

predicted QoE metrics. Accuracy is measured by comparing the predicted QoE metrics and the

ground truth labels.

We compare Requet with a baseline system based on previous work and show that Requet out-

performs the baseline system in accuracy of predicting buffer low warning, video state, and video

resolution by 1.12×, 1.53×, and 3.14×, respectively.

In Chapter 3, we extend the work from Chapter 2 and present a study on YouTube TV live

streaming traffic behavior over WiFi and cellular networks. YouTube TV is a television service
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that offers live TV for more than 70 US television networks and is gaining popularity [234]. Our

data collection spans a 9-month period leading up to Feb. 2020. We collect ground truth playback

quality metrics directly from the YouTube TV application on an Android mobile device over WiFi

networks and LTE cellular networks. Using the collected data, we develop a multi-chunk detection

(MCD) algorithm to detect multiple video and audio chunks with concurrent transmission in the

same IP flow. We define a multi-chunk unit (MCU) as a group of overlapping chunks. We design

random forest ML models to infer user QoE metrics such as video resolution and buffer health

from features based on MCUs extracted from IP traffic.

1.3.2 End-to-End Resource Allocation in Cellular Networks

Part II focuses on using recurrent neural networks, a type of deep neural network, to improve

resource allocation in cellular networks. In Chapter 4 we focus on supporting the operation of the

RAN slice broker, which maps slice requirements into the allocation of Physical Resource Blocks

(PRBs). We develop a new metric, REVA, based on the number of PRBs available to a single

Very Active bearer. REVA is independent of channel conditions and allows easy derivation of an

individual wireless link’s throughput. In order for the slice broker to efficiently utilize the RAN,

there is a need for reliable and short term prediction of resource usage by a slice.

To support such prediction, we construct an LTE testbed and develop custom additions to the

scheduler. Using data collected from the testbed, we compute REVA and develop a realistic time

series prediction model for REVA. Specifically, we present the X-LSTM prediction model, based

upon Long Short-Term Memory (LSTM) neural networks. Evaluated with data collected in the

testbed, X-LSTM outperforms Autoregressive Integrated Moving Average Model (ARIMA) and

LSTM neural networks by up to 31%. X-LSTM also achieves over 91% accuracy in predicting

REVA. By using X-LSTM to predict future usage, a slice broker is more adept at provisioning a

slice and reducing over-provisioning and Service Level Agreement (SLA) violation costs by more

than 10% in comparison to LSTM and ARIMA.

In Chapter 5 we present an LSTM neural network used for BBU pool resource reallocations in
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a 5G C-RAN network using a ROADM switched optical network. Traffic aggregated at different

BBU pools has been shown to be comprised of different types of traffic patterns each with a tem-

poral time component. Making accurate predictions would allow for resource reallocation before

the actual demand is needed, and therefore gives enough time for optical network reconfiguration

to route the traffic through the C-RAN to a BBU pool with available computing resources.

We design a discrete event simulation of traffic aggregated at different BBU pools in a 5G C-

RAN ROADM optical network. We develop an accurate prediction model using an LSTM neural

network to predict future network resource requirements. The LSTM network is trained with

740 samples and achieves a 7% increase in network throughput and an 18% processing resource

reduction by using the predicted traffic pattern to reconfigure the ROADM optical network 30

minutes in advance.

1.3.3 Dynamic Optical Systems

Part III focuses on using ML to ensure stable performance and reliable Quality of Transmis-

sion (QoT) for dynamic optical operation. In Chapter 6 we present a feedforward deep neural

network based-ML model to predict the power dynamics of a 90-channel ROADM system. A

metro-scale multi-hop ROADM system is built to study wavelength switching using the proposed

ML approach. The deep neural network is able to learn the complex optical power excursion re-

sponse with 67,200 training samples and obtains a 0.1 dB RMSE for 8,400 test samples. Based

on the predicted power excursions, the deep neural network can recommend valid wavelengths for

wavelength switching with a precision of more than 99% over the tested samples. The deep neural

network was also shown to be far more effective than regression and random forest models.

In Chapter 7 we examine an ML model, analytical model, and a hybrid ML model. We initially

compare the performance of an analytical model [98] and feedforward deep neural network based-

ML model to predict amplifier gain in an EDFA. The input to each model is the power levels of

each of the 90 channel source used to generate the WDM input. The ML based model is shown to

reduce the gain estimation error compared with analytical models.
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Figure 1.2: A block diagram of the contributions to adaptive wireless multicast for both WiFi and
cellular networks: a light-weight feedback mechanism, multicast dynamic rate adaptation, loss
recovery and Forward Error Correction (FEC), and video rate adaptation.

We then take advantage of an analytical model and use it as the input to a feedforward deep

neural network. Based on experimental measurements, compared to the previous ML model, this

hybrid ML model is shown to increase prediction accuracy of the output optical power spectrum of

an EDFA by 10.5%, reduce the training sample size by 33% and reduce the training time by 37%.

1.3.4 Adaptive Wireless Multicast

Part IV focuses on the use of data-driven solutions for large scale content delivery via wireless

multicast, both for WiFi and cellular networks. We address the research challenges associated

with several aspects of wireless multicast. For WiFi multicast, we address challenges related to

feedback and rate adaptation as part of the Adaptive Multicast Services (AMuSe) system [22]. For

LTE, our focus is on efficient large-scale monitoring using light-weight feedback.

In Chapter 8 we study approaches for light-weight feedback for WiFi multicast. We conducted

extensive experiments with over 200 WiFi nodes on the ORBIT testbed in order to better under-

stand the performance of existing schemes. Our observations show that some nodes suffer from

low Packet Delivery Ratio (PDR), even when the AP is transmitting at a low bit-rate and there is

no external interference (referred to as abnormal nodes). Furthermore, this set of abnormal nodes

varies across experiments.

Next, we introduce AMuSe, a low-overhead feedback system which leverages the existing WiFi
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standards for tuning the network parameters, i.e., optimizing the network utilization while preserv-

ing QoS requirements. The AMuSe feedback mechanism dynamically divides the network into

clusters based on the adjacency of nodes and maximum cluster size. In each cluster, one node is

selected as the feedback node that updates the Access Point (AP) about its channel quality.

In Chapter 9, we present the design and evaluation of the Multicast Dynamic Rate Adaptation

(MuDRA) algorithm for WiFi. Our experimental evaluation on the ORBIT testbed shows that when

the multicast rate exceeds an optimal rate, called the target-rate, numerous receivers suffer from a

low packet delivery ratio and their losses cannot be easily recovered.

We experimentally demonstrate that MuDRA can swiftly converge to the target rate while meet-

ing QoS requirements, e.g., ensuring that more than 85% of packets are correctly received by at

least 95% of the 200 nodes in our setup. We show that in our experimental settings, MuDRA can

deliver 3 or 4 high definition H.264 videos (each one of 4Mbps) in which over 90% of the nodes

receive video quality classified as excellent or good based on user perception.

In Chapter 10, we describe the Dynamic Monitoring (DyMo) system designed to support ef-

ficient LTE-eMBMS1 deployments in crowded and dynamic environments by providing accurate

QoS reports with low overhead. DyMo identifies the maximal eMBMS SNR Threshold such that

only a small number of UEs with SNR below the SNR Threshold may suffer from poor service.

DyMo leverages eMBMS for broadcasting stochastic group instructions to all UEs. This simple

feedback mechanism collects very limited QoS reports from the UEs. The reports are used for

network optimization, thereby ensuring high QoS to the UEs.

We focus on the QoS Evaluation module and develop a Two-step estimation algorithm which

can efficiently identify the SNR Threshold as a one time estimation. We also develop an Iterative

estimation algorithm for estimating the SNR Threshold iteratively, when the distribution changes

due to UE mobility or environmental changes, such as network component failures.

We conduct extensive at-scale simulations, based on real eMBMS radio survey measurements

from a stadium and an urban area. It is shown that DyMo accurately infers the SNR Threshold and

1LTE-eMBMS enables broadcast delivery to a large number of UEs in LTE.
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optimizes the eMBMS parameters with low overhead under different mobility patterns and even in

the event of component failures. DyMo significantly outperforms alternative schemes based on the

Order-Statistics estimation method which relies on random or periodic sampling.

1.4 Contributions to the Literature

The research about video quality of experience of YouTube in Chapter 2 appeared in the pro-

ceedings of ACM MMSys’19 [78]. An extended version appeared in ACM Transactions on Mul-

timedia Computing, Communications and Applications (TOMM) [77]. 2

The research results in Chapter 4 on prediction of RAN resource usage for a 5G slice broker

were published in the proceedings of ACM MobiHoc’19 [76]. In addition, the results in Chapter 5

for using deep neural networks to predict BBU pool traffic in C-RAN ROADM networks appeared

in the proceedings of OSA OFC’18 [140].

The deep neural network developed in Chapter 6 was published in OSA Journal of Optical

Communications and Networking’18 [139]. A shorter version of this work originally appeared in

ACM SIGCOMM Big DAMA’17 Workshop [79]. Chapter 7 discusses a hybrid machine learn-

ing model to improve the accuracy of power excursion prediction. The research results from this

chapter are a combination of results from the proceedings of ECOC’18 [240] and OFC’20 [239].

Additional research contributions have been made to the COSMOS testbed [43] that do not ap-

pear in this thesis. These contributions include results that appeared in the proceedings of OSA

OFC [136, 236, 235] and ACM MobiCom’20 [167].

The research results relating to efficient feedback collection for WiFi multicast described in

Chapter 8, was published in the proceedings of IEEE ICNP’13 [20] and an extended journal version

appeared in IEEE/ACM Transactions on Networking [71]. Additionally, the lessons learned from

the large scale experimentation on the ORBIT testbed were summarized in an invited paper in the

proceedings of GENI Research and Educational Experiment Workshop’14 (GREE) [21]. A demo

of the concepts described in this work was presented at IEEE LCN’15 [75].
2A demo of this work was presented in the NYC Media Lab Annual Summit’19 and received the top prize in the

Enabling Technology category among more than 100 demos.
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The design and experimental evaluation of MuDRA for dynamic rate adaptation for WiFi mul-

ticast in Chapter 9 appeared in the proceedings of IEEE INFOCOM’16 [73]. An extended journal

version appeared in IEEE Transactions on Wireless Communications [72]. A demo of the rate

adaptation process was presented at and appeared in the proceedings of IEEE INFOCOM’16 [74]3.

The overview of the results spanning the entire AMuSe project appeared in the proceedings of IEEE

ICCCN’16 [22] as an invited paper.

The description and evaluation of the DyMo system for efficient monitoring of large scale

eMBMS deployments as described in Chapter 10 appeared in the proceedings of IEEE INFO-

COM’17 [24] and was selected as the best paper runner-up. An extended version with additional

results was fast-tracked to IEEE/ACM Transactions on Networking [23].

3The same demo was presented in the NYC Media Lab Annual Summit’15 and won the second prize among more
than 100 demos.
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Chapter 2: Real-Time QoE Metric Detection for Encrypted YouTube Traffic

This part of the thesis focuses on the development of a system for real-time quality of expe-

rience metric detection for encrypted traffic, Requet. In this chapter, we collect a large YouTube

dataset consisting of diverse video assets delivered over various WiFi and LTE network condi-

tions to evaluate the performance. We compare Requet with a baseline system based on previous

work and show that Requet outperforms the baseline system in accuracy of predicting buffer low

warning, video state, and video resolution.

2.1 Introduction

Video has monopolized Internet traffic in recent years. Specifically, the portion of video over

mobile data traffic is expected to be 78% by 2021 [208]. Content providers, Content Delivery

Networks (CDNs), and network operators are all stakeholders in the Internet video sector. They

want to monitor user video Quality of Experience (QoE) and improve upon it in order to ensure

user engagement. Content providers and CDNs can measure client QoE metrics, such as video

resolution by using server-side logs [68, 12]. Client-side measurement applications can accurately

report QoE metrics such as player events and video quality levels [214, 144].

Traditionally, Deep Packet Inspection (DPI) enabled operators to examine HTTP packet flows

and extract video session information to infer QoE metrics [10, 32]. However, to address secu-

rity and privacy concerns, content providers are increasingly adopting end-to-end encryption. A

majority of YouTube traffic has been encrypted since 2016 [91] with a combination of HTTPS

(HTTP/TLS/TCP) [14, 168, 56] and QUIC (HTTP/QUIC/UDP) [101, 49]. Similarly, since 2015

Netflix has been deploying HTTPS for video traffic [16]. In general, the share of encrypted traffic

is estimated to be over 80% in 2019 [57].
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Figure 2.1: Amount of data received (KB), amount of data sent (KB), and buffer level (sec) for two
sessions over a 20 sec window (100 ms granularity): (a) 720p, (b) 144p.

Although the trend of end-to-end encryption does not affect client-side or server-side QoE

monitoring, it renders traditional DPI-based video QoE monitoring ineffective for operators. En-

crypted traffic still allows for viewing packet headers in plain text. This has led to recent efforts

to use ML and statistical analysis to derive QoE metrics for operators. These works either provide

offline analysis for the entire video session [52, 152] or online analysis using both network and

transport layer information with separate models for HTTPS and QUIC [133].

Previous research developed methods to derive network layer features from IP headers by cap-

turing packet behavior in both directions: uplink (from the client to the server) and downlink (from

the server to the client) [133, 109, 152]. However, determining QoE purely based on IP header

information is inaccurate. To illustrate, Fig. 2.1 shows a 20 sec portion from two example ses-

sions from our YouTube dataset, described in Section 2.5, where each data point represents 100

ms. Both examples exhibit similar patterns in the downlink direction while in the uplink direction,

traffic spikes are much higher in Fig. 2.1(b) than in Fig. 2.1(a). However, Fig. 2.1(a) shows a 720p

resolution with the buffer decreasing by 15 secs, whereas Fig. 2.1(b) shows a 144p resolution with

the buffer increasing by 20 secs.

Given this challenge, our objective is to design features from IP header information that utilize

patterns in the video streaming algorithm. In general, video clips stored on the server are divided

into a number of segments or chunks at multiple resolutions. The client requests each chunk by
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Figure 2.2: System Diagram: Data acquisition and Requet components: ChunkDetection, feature
extraction, and QoE prediction models.

individually sending an HTTP GET request to the server. Existing work using chunks either in-

fers QoE for the entire session [126] rather than in real-time, or lacks insight on chunk detection

mechanisms from network or transport layer data [117, 177, 52].

To improve on existing approaches that use chunks, we develop Requet, a system for REal-

time QUality of experience metric detection for Encrypted Traffic designed for traffic monitoring

in middleboxes by operators. Requet is devised for real-time QoE metric identification as chunks

are delivered rather than at the end of a video session. Requet is designed to be memory efficient for

middleboxes, where the memory requirement is a key consideration. Fig. 2.2 depicts the system

diagram for Requet and necessary components to train the QoE models as well as evaluate its

performance. Requet consists of the ChunkDetection algorithm, chunk feature extraction, and ML

QoE prediction models. The data acquisition process involves collecting YouTube traffic traces

(Trace Collection) and generating ground truth QoE metrics as labels directly from the player

(Video Labeling).

Packet traces are fed into Requet’s ChunkDetection algorithm to determine audio and video

chunks. The chunks are then used during the Feature Extraction process to obtain chunk-based

features. The chunk-based features from the training data along with the corresponding QoE met-

rics are used to generate QoE prediction models. For evaluation, traffic traces from the testing

dataset are fed into the trained QoE models to generate predicted QoE metrics. Accuracy is mea-

sured by comparing the predicted QoE metrics and the ground truth labels.

Recent studies have shown that (i) stall events have the largest negative impact on end user
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engagement and (ii) higher average video playback bitrate improves user engagement [12, 54].

Motivated by these findings, Requet aims to predict the current video resolution and events that

lead to QoE impairment ahead of time. This allows operators to proactively provision resources

[44, 161]. Requet predicts low buffer level which allows operators to provision network resources

to avoid stall events [109]. Requet predicts four video states: buffer increase, buffer decay, steady,

and stall. Furthermore, Requet predicts current video resolution during a video session in real-

time. Specifically, Requet predicts video resolution on a more granular scale (144p, 240p,360p,

480p, 720p, 1080p), while previous work predicts only two or three levels of video resolution for

the entire video session [52, 126, 133].

We make the following contributions:

• Collect packet traces of 60 diverse YouTube video clips resulting in a mixture of HTTP/TLS/TCP

and HTTP/QUIC/UDP traffic. The traces are collected in two distinct settings with the first

set collected from a laptop web browser over WiFi networks from three service providers,

two in the United States and one in India, and the second set collected from the YouTube

App on an Android mobile device over LTE cellular networks. This is in contrast to most

prior works which rely on simulation or emulation [109, 133, 203] (see Section 2.5).

• Design Requet components

– Develop ChunkDetection, a heuristic algorithm to identify video and audio chunks

from IP headers (see Section 2.4).

– Analyze the correlation between audio and video chunk metrics (e.g., chunk size, dura-

tion, and download time) and various QoE metrics, and determine fundamental chunk-

based features useful for QoE prediction. Specifically, design features based on our

observation that audio chunk arrival rate correlates with the video state (see Section

2.6).

– Develop ML models to predict QoE metrics in real-time: buffer warning, video state,

and video resolution (see Section 2.7).
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• Evaluate Requet performance

– Demonstrate drastically improved prediction accuracy using chunk-based features ver-

sus baseline IP layer features commonly used in prior work [109, 133, 152, 203]. For

the setting of a web browser over WiFi networks, Requet predicts low buffer warning

with 92% accuracy, video state with 84% accuracy, and video resolution with 66% ac-

curacy, representing an improvement of 1.12×, 1.53×, and 3.14×, respectively, over the

existing baseline system. Furthermore, Requet delivers a 91% accuracy in predicting

low (144p/240p/360p) or high resolution (480p/720p/1080p) in both the web browser

over WiFi setting and the YouTube App over LTE setting (see Section 2.7).

– Demonstrate that Requet trained in a lab environment works on unseen clips with vary-

ing lengths from different operators in multiple countries. This evaluation is more

diverse than prior work [109, 133, 52, 203] (see Section 2.7).

The design and experimental evaluation of Requet appeared in ACM Transactions on Multime-

dia Computing, Communications and Applications (TOMM) [77]. A preliminary version appeared

in the proceedings of ACM MMSys’19 [78]. The work on Requet started in collaboration with Dr.

Katherine Guo from Bell Labs. Undergraduate students Sarthak Arora and Trey Gilliland made

important contributions to the data collection.

2.2 Related Work

Traditional traffic monitoring systems rely on DPI to understand HTTP request and reply mes-

sages. The systems use meta-data to understand ABR and infer video QoE metrics. The MIMIC

system estimates average bitrate, re-buffering ratio and bitrate switches for a session by examining

HTTP logs [128]. Comparatively, BUFFEST builds ML classifiers to estimate buffer level based

either on the content of HTTP requests in the clear or on unencrypted HTTPS requests by a trusted

proxy [109]. HighSee identifies HTTP GET requests and builds a linear Support Vector Machine

(SVM) [46] model to identify audio, video, and control chunks to separate audio, video and control
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flows [64].

For encrypted traffic, proposals fall into two categories. The first category builds session mod-

els offline by detecting HTTP requests as in eMIMIC [126], while the second category builds ML

models to predict QoE metrics either offline or online.

Offline Models: The offline approach uses entire video session traffic to generate features to

classify the session into classes. YouQ classifies a session into two to three QoS classes [152]. The

system in [52] builds models to roughly put a session into three categories in terms of stall events

(“non-stall”, “0-1 stalls”, or “2-or-more stalls”), or three classes based on average quality level.

The system in [153] captures IP level traffic information (which is suitable for both TLS and QUIC

traffic) and feeds ML models to predict per-session Mean Opinion Score (MOS) (2 or 3 classes),

longest resolution (“sd” vs. “hd”), and stalling occurrences (“yes” vs. “no”). Using simulation,

[205] builds ML models to predict average bitrate, quality variation, and three levels of stall ratio

(no, mid, severe) for entire sessions using post processing. Comparatively, [123] classifies a

session into two categories (with or without stall events) based on cell-related information collected

at the start of a video session.

Focusing on the newly proposed Network Data Analytics Function in the 5G architecture, [178]

associates network QoS metrics with the MOS for each video session using ML models. Rather

than using actual network traces, the evaluation of the ML models is purely based on simulation.

Online Models: The online approach uses traffic from the past time window in the session to

generate features to predict QoE metrics specific to that time window. ViCrypt [182] develops ML

models to predict stall events both in real-time and for the entire video session based on network

level information for separate TCP and UDP flows. On the other hand, [222] builds ML models to

purely predict video resolution in real-time using network level information as features. The focus

of the study is on feature selection and benchmarking of different ML models. Similarly, [124]

simply focuses on prediction of buffer level using features based on network level information. It

only predicts two states – “buffering” and “stable” and discards any transition period in between

(that is, without including these data in training or testing of ML models), while Requet predicts
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video state based on buffer status in much finer granularity (with four exclusive states: buffer

increase, buffer decay, steady state and stall) without discarding any data. The system in [133]

develops features based on both network and transport level information in a 10 sec time window

to build separate classifiers for HTTPS and QUIC traffic to infer startup delay (below or above a

given threshold), stall event occurrence, and video quality level (“low” and “high”). This system

uses features based on packet level information and collects data for time windows of 100 ms. This

has a relatively large memory requirement compared to Requet which only requires network data

collected on a per chunk basis.

The system in [28] uses network and application level features to infer startup delay and reso-

lution. Similar to Requet , they also identify video chunks.

Flow Identification: Identifying video flows from encrypted traffic is orthogonal to the QoE

detection problem for given ABR flows. It is an example of the broad encrypted traffic classifi-

cation problem. The Silhouette system [117] detects video chunks (also named Application Data

Units) from encrypted traffic in real-time for ISP middleboxes using video chunk size, payload

length, download rate threshold values. The real-time system in [169] identifies Netflix videos

using TCP/IP header information including TCP sequence numbers. This approach relies on a

“finger print” database built from a large number of video clips hosted by Netflix. The finger print

is unique for each video title, therefore it is ineffective in classifying new video titles not previ-

ously seen. The system in [203] classifies an encrypted Youtube flow every 1sec interval into HAS

or non-HAS flows in real-time. For a HAS flow, it further identifies the buffer states of the video

session into filling, steady, depleting and unclear. The high accuracy to predict buffer state is partly

due to the fact that the entire dataset contains only 3 clips with multiple sessions for each clip. This

system also uses a feature based on the standard deviation of packet size, which is not feasible for

implementation in middleboxes due to the memory requirement.
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2.3 Background & Problem Statement

2.3.1 Adaptive BitRate Streaming Operation

A majority of video traffic over the Internet today is delivered using HTTP Adaptive Streaming

(HAS) with its dominating format being Dynamic Adaptive Streaming over HTTP (DASH) or

MPEG-DASH [192, 223]. In Adaptive BitRate (ABR), a video asset or clip is encoded in multiple

resolutions. Encoding is controlled by multiple parameters and a given resolution is associated with

a fixed setting for quantization, which is then coarsely related to an average bandwidth determined

by the source video. A clip with a given resolution is then divided into a number of segments or

chunks of variable length, a few seconds in playback time [129]. Typically video clips are encoded

with Variable Bitrate (VBR) encoding and are restricted by a maximum bitrate for each resolution.

An audio file or the audio track of a clip is usually encoded with Constant Bitrate (CBR). For

example some of the YouTube audio bitrates are 64, 128, and 192 Kbps [211].

At the start of the session, the client retrieves a manifest file which describes the location of

chunks within the file containing the clip encoded with a given resolution. There are many ABR

variations across and even within video providers [129]. ABR is delivered over HTTP(S) which

requires either TCP or any other reliable transport [61]. The ABR algorithm can use concurrent

TCP or QUIC/UDP flows to deliver multiple chunks simultaneously. A chunk can either be video

or audio alone or a mixture of both.

2.3.2 Video States and Playback Regions

The client employs a playout buffer or client buffer, whose maximum value is buffer capacity,

to temporarily store chunks to absorb network variation. To ensure smooth playback and ade-

quate buffer level the client requests a video clip chunk by chunk using HTTP GET requests, and

dynamically determines the resolution of the next chunk based on network condition and buffer

status.1

1The field of ABR client algorithm design is an active research area [130, 92].

22



0 100 200 300 400 500
Time (seconds)

0.0

0.2

0.4

0.6

D
a
ta

R
e
ce

iv
e
d

(M
B

)

(a)

0 100 200 300 400 500
Time (seconds)

0.0

0.2

0.4

0.6

A
v
e
 

d
o
w

n
lo

a
d

b
it

ra
te

(M
b
p
s)

(b)

0 100 200 300 400 500
Time (seconds)

0

40

80

120

B
u
ff

e
r 

 L
e
v
e
l 
(s

)

(c)

0 100 200 300 400 500
Time (seconds)

Buffering

Paused

Playing

P
la

y
b
a
ck

 
 R

e
g
io

n

(d)

0 100 200 300 400 500
Time (seconds)

Stall

Buf. Decay

Steady

Buf. Increase

V
id

e
o
 S

ta
te

(e)

0 100 200 300 400 500
Time (seconds)

Startup
144p
240p
360p
480p
720p

1080p

V
id

e
o
 

 Q
u
a
lit

y

(f)

Figure 2.3: Behavior of a 10-min session in 100 ms windows: (a) amount of data received (MB),
(b) average download bitrate (Mbps) over the past 60 sec, (c) buffer level, (d) playback region, (e)
video state, (f) video resolution.

When the buffer level is below a low threshold, the client requests chunks as fast as the network

can deliver them to increase the buffer level. We call this portion of ABR operation the buffer

filling stage. In this stage, buffer level can increase or decrease. Once the buffer level reaches a

high threshold, the client aims to maintain the buffer level in the range between the threshold and

buffer capacity. One example of a client strategy is to request chunks as fast as they are consumed

by the playback process, which is indicated by the video playback bitrate for the chunk [203]. We

call this portion the steady state stage. The playback stalls when the buffer is empty before the

end of the playback is reached. After all chunks have been downloaded to the client buffer, there

is no additional traffic and the buffer level decreases. From the perspective of buffer level, an ABR

session can experience four exclusive video states: buffer increase, buffer decay, steady state, and

stall.

Orthogonally, from the perspective of YouTube video playback, a session can contain three

exclusive regions: buffering, playing, and paused. Buffering region is defined as the period when

the client is receiving data in its buffer, but video playback has not started or is stopped. Playing

region is defined as the period when video playback is advancing regardless of buffer status. Paused

region is defined as the period when the end user issues the command to pause video playback

before the session ends. In playing region, video state can be in either buffer increase, decay, or
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steady state.

Fig. 2.3 shows the behavior of a 10-min session from our dataset in Section 2.5 in each 100 ms

window with (a) the amount of data received (MB), (b) download throughput (Mbps) for the past

60 sec, (c) buffer level (sec), (d) occurrence of three playback regions, (e) occurrence of four video

states, and (f) video resolution. At the start of the session and after each of the three stall events,

notice that video resolution slowly increases before settling at a maximum level.

2.3.3 QoE Metrics and Prediction Challenges

This subsection describes the QoE metrics that we reference and the challenges in predicting

these metrics. We focus on metrics that the operator can use to infer user QoE impairments in

real-time. Specifically, we use three QoE metrics: buffer warning, video state and video quality.

We do not focus on start up delay prediction, as it has been extensively studied in [109, 133, 126].

The first QoE metric we aim to predict is the current video state. The four options for video

state are: buffer increase, buffer decay, stall, or steady state. This metric allows for determining

when the video level of the user is in the ideal situation of steady state. Video state also recog-

nizes occurrences of buffer decay and stall events, when the operator may want to allocate more

resources towards this user given that there are enough resources and the user is not limited by the

data plan.

The buffer warning metric is a binary classifier for determining if the buffer level is below

a certain threshold BuffWarningthresh (e.g., under 20 sec). This enables operators to provision

resources in real-time to avoid potential stall events before they occur. For example, at a base

station or WiFi AP, ABR traffic with buffer warning can be prioritized.

Another metric used is the current video resolution. Video encoders consider both resolution

and target video bitrate. Therefore, it is possible to associate a lower bitrate with a higher res-

olution. One can argue bitrate is a more accurate indicator of video quality. However, higher

resolutions for a given clip often result in higher bitrate values. The YouTube client reports in

real-time resolution rather than playback bitrate. Therefore, we use resolution as an indicator of
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video quality.

ABR allows the client to dynamically change resolution during a session. Frequent changes in

resolution during a session tend to discourage user engagement. Real-time resolution prediction

enables detection of resolution changes in a session. However, this prediction is challenging as

download bitrate to video resolution does not follow a 1-to-1 mapping. In addition, a video chunk

received by the client can either replace a previous chunk or be played at any point in the future.

Under the assumption that playback typically begins shortly (in the order of seconds) after the user

requests a clip, one can associate the average download bitrate with video quality, since higher

quality requires higher bitrate for the same clip. However, this is not true in a small time scale

necessary for real-time prediction. Network traffic reveals the combined effect of buffer trend

(increase or decay) and video playback bitrate which correlates to resolution. During steady state,

video’s download bitrate is consistent with playback bitrate. However, when a client is in non-

steady state, one cannot easily differentiate between the case in which a higher resolution portion

is retrieved during buffer decay state (Fig. 2.1(a)), and the case in which a lower resolution portion

is retrieved during buffer increase state (Fig. 2.1(b)). Both of these examples exhibit similar traffic

patterns, however the behavior of QoE metrics is dramatically different.

2.4 Chunk Detection

The fundamental delivery unit of ABR is a chunk [114]. Therefore, identifying chunks instead

of relying on individual packet data can capture important player events. Our approach is to explore

the fundamental principle of HAS which is to transmit media in the unit of video and audio chunks.

The behavior of chunks over the transmission network is directly associated with the HAS protocol

and behavior of the client buffer. This method is able to derive QoE metrics as long as one can (i)

detect chunks and (ii) build models associating IP level traffic information with client buffer level.

Therefore, this method is immune to changes to HAS as long as chunks can be detected from IP

level traffic.

Specifically, the occurrence of a chunk indicates that the client has received a complete segment
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Figure 2.4: Definition of chunk metrics (video or audio).

of video or audio, resulting in increased buffer level in playback time. An essential component of

Requet in Fig. 2.2 is its ChunkDetection algorithm to identify chunks from encrypted traffic traces.

Features are extracted from the chunks and used as the input to the ML QoE prediction models.

Existing work using chunks either studies per-session QoE metrics [126] instead of predicting

QoE metrics in real-time, or lacks insight in chunk detection mechanisms [117, 177, 52]. In

general, there are two approaches of identifying chunks, (i) identify a packet with non-zero payload

from the client to the server as an HTTP request [126] and (ii) use an idle period (e.g., 900 ms is

used to separate chunks in a flow of Netflix traffic [124]).

In this section, we first describe metrics capturing chunk behavior. We then develop ChunkDe-

tection, a heuristic algorithm using chunk metrics to identify individual audio and video chunks

from IP level traces. Requet uses ChunkDetection to detect chunks from multiple servers simulta-

neously regardless of the use of encryption or transport protocol. It relies purely on source/destination

IP address, port, protocol, and payload size from the IP header.

2.4.1 Chunk Metrics

We define the following metrics for a chunk based on the timestamp of events recorded on the

end device (as shown in Fig. 2.4).

• Start_Time - The timestamp of sending the HTTP GET request for the chunk.

• TTFB - Time To First Byte, defined as the time duration between sending an HTTP GET

request and the first packet received after the request.

• Download_Time - The time duration between the first received packet and the last received

packet prior to the next HTTP GET request.
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Algorithm 1 Audio Video Chunk Detection Algorithm
1: procedure CHUNKDETECTION

2: Initialize ®Audio and ®Video for each IP flow I
3: for each uplink packet p with IP flow I do
4: if uplink(p) and (packetlength(p) > GETthresh then)
5: c ← [GetTimestamp,GetSize,DownStart ,
6: DownEnd,GetProtocol, I ]
7: AV f lag← DetectAV(c)
8: if AV f lag == 0 then
9: Append c to ®Audio
10: else if AV f lag == 1 then
11: Append c to ®Video
12: else
13: Drop c

14: GetTimestamp ← time(p)
15: GetSize← packetlength(p)
16: DownFlag← 0
17: if downlink(p) and (packetlength(p) > Downthresh then)
18: if DownFlag == 0 then
19: DownFlag = 1
20: DownStart ← time(p)

21: DownEnd ← time(p)
22: DownSize+ = packetlength(p)

• Slack_Time - The time duration between the last received packet and the next HTTP GET

request.

• Chunk_Duration - The time duration between two consecutive HTTP GET requests. The

end of the last chunk in a flow is marked by the end of the flow. Note that a different concept

called “segment duration” is defined in standards as playback duration of the segment [1].

For a given chunk, Chunk_Duration equals “segment duration” only during steady state.

• Chunk_Size - The amount of received data (sum of IP packet payload size) during Down-

load_Time from the IP address that is the destination of the HTTP GET request marking the

start of the chunk.

Note, for any chunk, the following equation holds: Chunk_Duration = sum(TTFB, Down-

load_Time, Slack_Time).

2.4.2 Chunk Detection Algorithm

We explore characteristics of YouTube audio and video chunks. Using the web debugging

proxy Fiddler [196], we discovered that audio and video are transmitted in separate chunks, and
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Table 2.1: Chunk Notation

Symbol Semantics

GETthresh pkt length threshold for request (300 B)
Downthresh pkt length threshold for downlink data (300 B)
GetTimestamp timestamp of GET request
GetSize pkt length of GET request
DownStart timestamp of first downlink packet of a chunk
DownEnd timestamp of last downlink packet of a chunk
DownSize sum of the payload of downlink packets of a chunk
GetProtocol IP header protocol field
DetectAV sorts chunk into audio chunk, video chunk or no

chunk based on GetSize, DownSize, GetProtocol
®Audio audio chunks for an IP flow
®Video video chunks for an IP flow

they do not overlap in time for either HTTPS or QUIC. For both protocols we notice at most one

video or audio chunk is being downloaded at any given time. Each HTTP GET request is carried in

one IP packet with IP payload size above 300 B. Smaller uplink packets are HTTP POST requests

regarding YouTube log events, or TCP ACKs.

We propose a heuristic chunk detection algorithm in Algorithm 1 using notations in Table 2.1.

ChunkDetection begins by initializing each IP flow with empty arrays for both audio and video

chunks. This allows for the chunk detection algorithm to collect chunks from more than one server

at a time.

ChunkDetection initially recognizes any uplink packet with a payload size above 300 B as an

HTTP GET request (line 4). This threshold may vary depending on the content provider. For

YouTube, we note that GET requests over TCP are roughly 1300 bytes, while GET requests over

UDP are roughly 700 bytes. For each new GET request the GetTimestamp, and GetSize, are

recorded (lines 14-16). After detecting a GET request in an IP flow, chunk size is calculated by

summing up payload size of all downlink packets in the flow until the next GET is detected (lines

17-22). The last downlink packet in the group between two consecutive GET requests marks the

end of a chunk download. The chunk download time then becomes the difference in timestamp

between the fist and the last downlink packet in the group. 2

2ChunkDetection does not flag TCP retransmission packets, therefore can overestimate chunk size when retrans-
mission happens. ChunkDetection also assumes chunks do not overlap in time in a given IP flow. If it happens, the
individual chunk size can be inaccurate, but the average chunk size over the period with overlapping chunks is still
accurate.

28



0 100 200 300 400 500
Time (seconds)

100

1000

10000
B

y
te

s 
(k

B
)

re
ce

iv
e
d

p
e
r 

ch
u
n
k

Video Chunk

Audio Chunk

(a)

0 100 200 300 400 500
Time (seconds)

600

800

1000

B
y
te

s 
 (

B
)

se
n
t

p
e
r 

ch
u
n
k

Video Chunk

Audio Chunk

(b)

Figure 2.5: Individual video/audio chunks in a 10-min session with highest resolution (V:1080p,
A:160kbps). (a) Chunk Size, (b) Get Request Size.

Once the next GET is detected, ChunkDetection records GetTimestamp, GetSize, download

start time DownStart, download end time DownEnd, the protocol used GetProtocol, download

size DownSize, and the IP flow I of the previous chunk (line 5). This allows for the calculation of

chunk duration and slack time using the timestamp of the next GET. GET request size and chunk

size are used in DetectAV (line 7) to separate data chunks into audio chunks, video chunks, or

background traffic (lines 8-11). DetectAV uses the heuristic that HTTP GET request size for audio

chunks is slightly smaller than request size for video chunks consistently. Figs. 2.5 and 2.6 plot

the HTTP GET request size and subsequent audio/video chunk size in a high (1080p) and a low

(144p) resolution session, respectively. It is evident from Figs. 2.5(b), and 2.6(b) that the HTTP

GET request size for audio chunks is slightly smaller than that for video chunks. Through the

examination of encrypted YouTube HTTP GET requests for video and audio using Fiddler, we

discover that this difference is due to the additional fields used in HTTP GET requests for video

content which do not exist for audio content. Furthermore, as can be seen in Fig. 2.5(a), the video

chunk size at higher resolution levels is consistently larger than the audio chunk size. However, as

can be seen in Fig. 2.6(a), the video chunk size at lower resolution levels can be similar to or even

smaller than the audio chunk size. We can conservatively set the low threshold for chunk size to be

80 KB for our dataset. Furthermore, if download size is too small (< 80 KB), DetectAv recognizes

that the data is neither an audio or video chunk, and the data is dropped (lines 12-13). This allows

ChunkDetection to ignore background YouTube traffic.
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Figure 2.6: Individual video/audio chunks in a 10-min session with lowest resolution (V:144p,
A:70kbps). (a) Chunk Size, (b) Get Request Size.

2.5 Data Acquisition

As shown in Fig. 2.2, data acquisition provides data for training and evaluation for Requet QoE

prediction models, including traffic trace collection, derivation of QoE metrics as ground truth

labels associated with traffic traces. We describe additional details about the publicly available

dataset in Appendix 2.B. We collect data in two distinct settings, one using YouTube from a

browser on a laptop over WiFi networks (“Browser-WiFi”), and the other using YouTube App on

an Android smartphone over LTE cellular networks (“App-LTE”). We name the datasets Browser-

WiFi and App-LTE, respectively. The data is collected over two different time periods to illustrate

Requet’s performance, since the underlying protocol of YouTube may vary on different devices,

over different networks, and over time [129].

2.5.1 Trace Collection from Browser over WiFi

For the first set of experiments, we design and implement a testbed (shown in Fig. 2.7(a)) to

capture a diverse range of YouTube behavior over WiFi. We watch YouTube video clips using the

Google Chrome browser on a Macbook Air laptop. We connect the laptop to the Internet via an

Access Point (AP) using IEEE 802.11n. A shell script simultaneously runs Wireshark’s Command

Line Interface, Tshark [8], and a Javascript Node server hosting the YouTube API.

The YouTube IFrame API environment collects information displayed in the “Stats for Nerds”

window. From this API we monitor: video playback region (‘Playing’, ‘Paused’, ‘Buffering’),

playback time since the beginning of the clip, amount of video that is loaded, and current video

resolution. From these values we determine the time duration of the portion of the video clip

remaining in the buffer. We collect information once every 100 ms as well as during any change
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event indicating changes in video playback region or video resolution. This allows us to record

any event as it occurs and to keep detailed information about playback progress.

We have two options to collect network level packet traces in our setup, on the end device or

on the WiFi AP. Collecting traces at the AP would limit the test environment only to a lab setup.

Therefore, we opt to collect traces via Wireshark residing on the end device. This ensures that the

YouTube client data is synchronized with Wireshark traces and the data can be collected on public

and private WiFi networks. Our traces record packet timestamp, size, as well as the 5-tuple for

IP-header (source IP, destination IP, source port, destination port, protocol). Our dataset contains

delivery over HTTPS (9% GET requests) and QUIC (91% GET requests). We do not use any

transport level information. In addition, we record all data associated with a Google IP address.

The IP header capture allows us to calculate total number of packets and bytes sent and received

by the client in each IP flow during a given time window.

To generate traces under varying network conditions, we run two categories of experiments:

static and movement. For static cases, we place the end device in a fixed location for the entire

session. However, the distance from the AP varies up to 70 feet or multiple rooms away. For

movement cases, we walk around the corridor (up to 100 feet) in our office building with the end

device, while its only network connection is through the same AP.

We select 60 YouTube clips representing a wide variety of content types and clip lengths. Each

clip is available in all 6 common resolutions from YouTube, namely 144p, 240p, 360p, 480p, 720p

and 1080p. We categorize them into four groups, where groups A and B are medium length clips

(8 to 12 min), C are short clips (3 to 5 min), and D are long clips (25-120 min). Table 7.1 lists the

number of unique clips in the group, along with the length of each clip and the session length, that

is, the duration for which we record the clip from its start.

For group A, we collect 425 sessions in both static (over 300) and movement cases (over 100)

in a lab environment in our office building. All remaining experiments are conducted in static

cases. For clips in group B, we collect traces in an apartment setting in the US (set B1 with 60

sessions) and in India (set B2 with 45 sessions) reflecting different WiFi environments. We collect
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(a) (b)

Figure 2.7: Experimental setup for our trace collection. (a) WiFi experiments conducted in the lab
on a laptop, (b) Cellular experiments on an android cellphone.

traces in set C and D from the lab environment, where each set contains more than 25 sessions.

Overall, there are over 10 sessions for each clip in group A and B and 6 sessions for each clip in

group C and D.

Clips in both groups A and B range from 8 to 12 min in length. In each session we play a clip

and collect a 10-min trace from the moment the client sends the initial request. We choose this

range of length in order for the client to experience buffer increase, decay and steady state. Shorter

clips with a length close to buffer capacity (e.g., 2 min) can sometimes never enter steady state,

even when given abundant network bandwidth. In general, when there is sufficient bandwidth to

support the clip’s requirement, a clip can be delivered in its entirety before the end of the playback

happens. On the contrary, when available network bandwidth is not enough to support the clip’s

requirement, a clip may experience delayed startup and even stall events.

We collect traces over 6 months from Jan. through June 2018, with video resolution selection

set to “auto”. This means the YouTube client is automatically selecting video resolution based

on changes in network conditions. For each session, we set an initial resolution to ensure that all

resolution levels have enough data points.

Each group includes a diverse set of clips in terms of activity level. It ranges from low activity

types such as lectures to high activity types such as action sequences. This fact can be seen in the

wide range of video bitrates for any given resolution. Fig. 2.8 shows the average playback bitrate

for each video resolution for each clip in our dataset. All clips are shown in scatter plots, while

clips in group A are also shown with box plots.3 One can see that the average video playback

bitrate spans overlapping regions. Therefore, this cannot provide a perfect indication of the video
3For all box plots in the chapter, the middle line is the median value. The bottom and top line of the box represents

Q1 (25-percentile) and Q3 (75-percentile) of the dataset respectively. The lower extended line represents Q1−1.5IQR,
where IQR is the inner quartile range (Q3-Q1). The higher extended line represents Q3 + 1.5IQR.
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Table 2.2: Clip distribution in our dataset.
Group Clip Session No. of Unique

Length Length Clips

A 8 − 12 min 10 min 40
B 8 − 12 min 10 min 10
C 3 − 5 min 5 min 5
D 25 − 120 min 30 min 5

144p 240p 360p 480p 720p 1080p
Resolution

0.1

0.5
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3.0
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Group B
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Figure 2.8: Average playback bitrate vs. video resolution for clips in our dataset. Clips in all four
groups are shown in scatter plots, while clips in group A are also shown with box plots.

resolution even if the entire session is delivered with a fixed resolution.

In our dataset, we notice that YouTube buffer capacity varies based on video resolution. For

example, it is roughly 60, and 120 sec for 1080p and 144p, respectively.

We collect data for each YouTube video session in the Chrome browser as the sole application

on the end device. We record all packets between the client and any Google server. The client con-

tacts roughly 15 to 25 different Google servers per session. We examine the download throughput

(see Fig. 2.3(a) and 2.3(b) for example) further by looking at the most commonly accessed server

IP addresses for each session sorted by the total bytes received. Our observation is that, during a

session, the majority of traffic volume comes from a single to a few servers.

2.5.2 Trace Collection from YouTube Android App over Cellular

Testing on a mobile device connected to a laptop computer allows us to easily connect to

cellular networks which enables testing outside of a lab environment over a cellular network. For

the second set of experiments, we design and implement a data acquisition environment (shown in

Fig. 2.7(b)) to capture YouTube video playback statistics and encrypted network packet data on an

Android device over a cellular network. We use a rooted Motorola Moto G6 smartphone connected

to the Internet via Google Fi’s cellular networks. A shell script autonomously sets up the testing
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environment using Android Debugging Bridge (ADB), collects packet data through tcpdump, and

collects video playback statistics through the YouTube Android App.

The YouTube App allows for collection of video playback statistics through its “Stats for

Nerds” window. This window allows us to easily monitor audio and video resolution, buffer health,

and video playback region (“Playing”, “Paused”, and “Buffering”). We copy the information pro-

vided by that window every 1 sec to a clipboard log using ClipStack which can then be easily

exported from the device.

Because we do not have access to data going through the cellular network, we opt to collect

network traffic data on the phone using tcpdump for Android. We conduct tests in multiple cellular

conditions such as in a car driving on the highway, on a Columbia University shuttle bus around

upper Manhattan, in a backpack walking up and down the streets of New York City, and during

lectures. We collect this set of cellular data over 7 months from June through Dec. 2019. Again,

we use the 40 unique medium length clips in group A (8 to 12 min in length). The dataset consists

of over 250 video sessions with resolution ranging from 144p to 1080p.

2.6 Requet ML Feature Design

We develop the ML QoE metric prediction models for Requet by using packet traces and as-

sociated ground truth labels (Section 2.5). We describe in detail in Appendix 2.A our heuristic

algorithm for the video state labeling process to associate each time window with one of the four

video states: buffer increase, buffer decay, steady state, and stall. As shown in Fig. 2.2, Requet uses

its ChunkDetection component (Section 2.4) to convert traces into chunks, followed by its Feature

Extraction component to extract associated features.

We develop ML models using Random Forest (RF) to predict user QoE metrics [86]. We

build the RF classifier in Python using the sklearn package. We configured the model to have 200

estimators with the entropy selection criterion and the maximum number of features per tree set to

auto. We choose RF for the following reasons. (i) ML classification algorithms based on decision

trees have shown better results in similar problems [52, 133, 152, 203, 222, 124] with RF showing
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the best performance among the class [203, 222, 124]. (ii) On our dataset, Feedforward Neural

Network and RF result in roughly equal accuracy. (iii) RF can be implemented with simple rules

for classification in real-time, well suited for real-time resource provisioning in middleboxes.

Each session in our dataset consists of (i) IP header trace and (ii) QoE metric ground truth labels

generated by our video labeling process in data acquisition (Section 2.5). Requet’s ChunkDetection

(Section 2.4.2) transforms the IP header trace into a sequence of chunks along with the associated

chunk metrics (Section 2.4.1). The goal of Requet QoE models is to predict QoE metrics using

chunk metrics. To train such ML models, it is critical to capture application behavior associated

with QoE metrics using chunk-based features. In this section, we analyze chunk behavior in our

dataset (Section 2.6.1), explore how to capture such behavior in chunk-based features (Section

2.6.2), and explain how to generate baseline features used in prior work that are oblivious to chunk

information (Section 2.6.3).

2.6.1 Chunk Analysis

We apply the ChunkDetection algorithm (Algorithm 1) of Requet to all sessions from the 40

clips in set A in our dataset in both Browser-WiFi and App-LTE settings.

We examine the correlation between various chunk metrics (audio or video, chunk size, chunk

duration, effective rate which we define as chunk size over chunk duration, TTFB, download time,

and slack time) to QoE metrics (buffer level, video state, and resolution). In most cases of our

dataset, for a given session, audio and video chunks are transmitted from one server. However, in

some cases audio and video traffic comes from different servers. In other cases, the server switches

during a session. These findings are consistent with existing YouTube traffic studies [144].

Chunk Analysis in Browser-WiFi Setting

We list the distribution of audio and video chunks along with video state at the end of chunk

download in Table 2.3. Most of the chunks arrive during steady or buffer increase states. An

extremely small fraction (4% audio and 9% video) are associated with stall or buffer decay states.
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Figure 2.9: Chunk metrics for all audio chunks in set A in Browser-WiFi setting. (a) chunk size,
(b) chunk duration, (c) download time.
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Figure 2.10: Chunk metrics for all video chunks in set A in Browser-WiFi setting. (a) chunk size,
(b) chunk duration, (c) download time.

Table 2.3: % of chunks in each state (Set A Browser-WiFi).

Resolution Video State
Stall Decay Steady Increase

Audio 1.2 2.8 40.9 55.1
Video 3.7 5.9 47.6 42.8

They represent two possible scenarios: (i) bandwidth is limited and there are not enough chunks

arriving to increase buffer level substantially or (ii) buffer is about to transition into increase state.

Figs. 2.9 and 2.10 show the box plots for chunk duration, size, and download time for audio

and video chunks respectively. Each plus sign represents an outlier. TTFB reflects the round trip

time from the client to the server, and has a median value of 0.05 sec. This accounts for a tiny

portion of chunk duration (median value ≥ 5 sec). We can safely simplify the relationship between

various chunk metrics to (slack time = chunk duration - download time). Notice that slack time

and effective rate are derivable from chunk duration, size, and download time. The latter three are

the key metrics used in our feature selection for ML models.

Audio is encoded with CBR, however our examination of HTTP requests using Fiddler [196]

reveal that in the four video states (steady, buffer increase, decay and stall), audio chunk size
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Table 2.4: % of chunks in each state (Set A App-LTE).

Resolution Video State
Stall Decay Steady Increase

Audio 2.7 4.0 52.3 41.0
Video 3.6 6.8 49.6 40.0

decreases in the same order. This implies that audio chunk playback time also decreases in the

same order. This behavior is consistent across all resolution levels (Fig. 2.9(a)) and indicates

that audio chunk size exhibits a strong correlation with video state. Across all resolution levels,

Fig. 2.9(b) shows median audio chunk duration in steady and buffer increase state is roughly 30

and 10 sec respectively, but does not exhibit clear pattern in stall and buffer decay states. Fig. 2.9(c)

shows audio chunk download time in steady and buffer increase states are similar in value, both

smaller than that of stall state, which is smaller than that of buffer decay state. The longer download

time is an indication that the network bandwidth is limited. This is a useful insight that current

bandwidth alone can not reveal. For example, a specific throughput can be associated to a low

resolution with the buffer increasing or a higher resolution with the buffer decreasing. All three

audio chunk metrics are clearly correlated with video state.

Fig. 2.10 shows video chunk statistics. There is a large overlap across different resolutions and

video states in chunk size (Fig. 2.10(a)) and chunk duration (Fig. 2.10(b)). It reveals that without

knowing video state, it would be difficult to determine video resolution, chunk size, and chunk

duration. For example, these statistics are very similar for a 240p chunk in buffer increase state

and a 720p chunk in buffer decay. Using audio chunk statistics to identify video state is critical in

separating these two cases.

For video chunks, our examination of HTTP requests using Fiddler also shows that for a clip

with a given resolution, steady state chunk size is larger than that in the remaining three states.

Fig. 2.10(a) further shows that median video chunk size increases as resolution increases from 144p

to 480p and stays roughly the same around 2 MB from 480p to 1080p. Fig. 2.10(b) shows median

chunk duration in steady state is similar for 144p, 240p, and 360p, in the range of 35 − 45 sec,

and decreases from 25 sec for 480p to 5 sec for 1080p. To obtain a higher effective rate for higher
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Figure 2.11: Chunk metrics for all audio chunks in set A in App-LTE setting. (a) chunk size, (b)
chunk duration, (c) download time.

resolutions the chunk size levels off, but to compensate chunk duration decreases. Fig. 2.10(c)

shows that median chunk download time exhibits larger values in stall or buffer decay state, smaller

and similar values in steady or buffer increase state. This is expected as with limited bandwidth,

a session may experience buffer decay or even stall. Both buffer decay and stall periods exhibit

larger chunk download times. However, during buffer increase, retrieving smaller chunks faster

than steady state results in similar download time as steady state. During steady and buffer increase

state, chunk size and duration combined provide some indication of resolution levels. However,

during stall and buffer decay state, no indication can be easily seen from the three metrics.

To summarize, our key observations are as follows: (i) Without knowing video state it would

be difficult to differentiate between the two cases: (a) Higher resolution clip in buffer decay and (b)

Lower resolution clip in buffer increase. (ii) Audio chunk statistics exhibit strong association with

video state. (iii) Video chunk size increases and eventually levels off as resolution increases. At the

same time, video chunk duration is higher for lower resolution levels and decreases as resolution

level increases.

Chunk Analysis in App-LTE Setting

Similar to the Browser-WiFi setting, most of the chunks in the App-LTE setting arive during

steady or buffer increase states.

For the App-LTE setting, Figs. 2.11 and 2.12 show the box plots for chunk duration, size, and

download time for audio and video chunks respecitvely. Each plus sign represents an outlier.

38



S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

0

500

1000

1500

2000

2500

3000

3500
V
id

e
o
 C

h
u
n
k 

S
iz

e
 (
K
B
)

144p

S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

240p

S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

360p

S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

480p

S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

720p

S
ta

ll
D
e
ca

y
S
te

a
d
y

In
cr

e
a
se

1080p

(a)

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

0

10

20

30

40

50

60

70

80

V
id
e
o
 C
h
u
n
k 
D
u
ra
ti
o
n
 (
s)

144p

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

240p

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

360p

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

480p

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

720p

S
ta
ll

D
e
ca
y

S
te
a
d
y

In
cr
e
a
se

1080p

(b)

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

0

5

10

15

20

25

30

35

40

V
id

e
o
 D

o
w

n
lo

a
d
 T

im
e
 (

s)

144p

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

240p

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

360p

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

480p

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

720p

S
ta

ll
D

e
ca

y
S
te

a
d
y

In
cr

e
a
se

1080p

(c)

Figure 2.12: Chunk metrics for all video chunks in set A in App-LTE setting. (a) chunk size, (b)
chunk duration, (c) download time.

Across all resolution levels, Fig. 2.11(b) shows that median audio chunk duration is roughly 10

sec in steady state and 5 sec in buffer increase state. However, there is no clear pattern in stall or

buffer decay states. Audio chunk size is consistent across all resolution levels (Fig. 2.11(a)) and is

usually around 70KB or 170KB. These patterns are considerably different from the Browser-WiFi

setting in Fig. 2.9.

Fig. 2.12 shows video chunk statistics in the App-LTE setting. Again, the pattern is drastically

different than the pattern in the Browser-WiFi setting in Fig. 2.10. Fig. 2.12(a) shows that across

different states in the same resolution, the chunk size is much more consistent. In addition there

is a clear pattern of increasing chunk size as the resolution increases. The video chunk duration

results (Fig. 2.12(b)) show that video chunks arrive roughly every 10 sec during steady state and

roughly every 5 sec during buffer increase state. This video chunk arrival behavior is similar to

that of the audio chunks in the same dataset. Fig. 2.12(c) shows, with a fixed resolution, median

video chunk download times exhibit larger values in stall or buffer decay state, and smaller values

in steady or buffer increase state. This is expected, since with a fixed chunk size, a larger chunk

duration is associated with limited bandwidth, which can cause a session to deplete its buffer (enter

buffer decay state) or even stall.

2.6.2 Chunk-based Features in Requet

Requet identifies chunks using Algorithm 1 executed over all flows during a YouTube session.

For each audio or video chunk, it records the following seven chunk metrics: protocol used to send

the GET request, start time, TTFB, download time, slack time, chunk duration, and chunk size.
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However, it does not record the server IP address from which the chunk is delivered to the end

device as it has no relationship with our QoE metrics.

Results from Section 2.6.1 show that the most important metrics for both audio and video are

chunk size, duration, and download time. Chunk arrival is not a uniform process in time and

therefore, the number of chunks in a time window vary. This would require a variable number of

features. Instead, Requet uses statistics of chunk metrics in different time windows. Specifically,

for the 20 windows representing the immediate past 10, 20, ..., 200 sec, it records total number of

chunks, average chunk size and download time for each time window, resulting in 60 features each

for audio and video, and a total of 120 features.4 Regarding video resolution, Requet only makes

predictions upon receiving a video chunk. Therefore, beyond the 120 features, it further includes

the 7 features associated with the video chunk. By only collecting data on a per chunk basis, Requet

requires a minimal amount of storage of 7 fields per chunk in the middlebox. Figs. 2.11(b) and

2.12(b) show that chunks in the dataset arrive on average once every 5 sec. The sliding window

based features in Requet make it ideal for middleboxes with a memory requirement of 1016 bytes

for the 127 features (assuming each feature requires a maximum of 8 bytes).

2.6.3 Baseline Features

For the baseline system, we remove Requet’s ChunkDetection algorithm in Fig. 2.2 and the

associated features. We replace Requet and design a baseline system with a set of features that

are commonly used in prior work [109, 133, 152, 203]. Specifically, we select features that are

used in more than one of these prior works and use time window based features. We collect basic

IP level features in terms of flow duration, direction, volume (total bytes), burstiness, as well as

transport protocol. For each 100 ms window, we calculate the total number of uplink and downlink

packets and bytes, and include a one-hot vector representation of the transport protocols used for

each IP address.5 The five features for transport protocol are QUIC, TCP with TLS, TCP without

4We use the past 200sec history as YouTube buffer rarely increases beyond 3 min.
5In natural language processing, a one-hot vector is a 1xN matrix (vector) used to distinguish each word in a

vocabulary from every other word in the vocabulary. The vector consists of 0s in all cells with the exception of a
single 1 in a cell used uniquely to identify the word. In our case, each IP address is treated as a word.
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TLS, no packets in that interval, or other. After examining the total downlink bytes of the top

20 flows in a session in our dataset, we decide to include traffic from the top 3 servers in our

feature set. The remaining flows have significantly smaller traffic volume and therefore represent

background traffic in a session and do not deliver video or audio traffic. By doing so, we effectively

eliminate the traffic that is unrelated to our QoE metrics. In addition, we include the total number

of uplink/downlink bytes and packets from the top 20 servers for the session.

We calculate the average throughput and the total number of packets in the uplink and downlink

direction during a set of time intervals to capture recent traffic behavior. Specifically, we use six

intervals immediately proceeding the current prediction window, and they are of length 0.1, 1, 10,

60, 120, and 200 sec.

Furthermore, during these six windows, we record the percentage of 100 ms slots with any

traffic in uplink and downlink separately. These two features are added to determine how bursty

the traffic is during the given time window. In addition to the four features for the total network

traffic for all servers contacted during the session, the features for each of the top three servers are:

• total bytes in past 100 ms in uplink/downlink

• total number of packets in past 100 ms in uplink/downlink

• transport protocol (5 features)

• for each of the windows of length 1, 10, 60, 120, and 200 sec:

– average throughput in uplink/downlink

– total number of packets in uplink/downlink

– % of 100 ms slots without any traffic in uplink/downlink

To summarize, for each time window, there are up to 4 + 3 × (4 + 5 + 5 × 6) = 121 features for

the baseline system.
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2.7 Evaluation

We evaluate the performance of Requet in both the Browser-WiFi setting and the App-LTE

setting. For the Browser-WiFi setting we compare the accuracy in predicting each QoE metric of

Requet versus the baseline system. Both systems predict the current QoE metrics every 5 sec, ex-

cept for Requet which predicts resolution every chunk. Since the collected network traffic transport

payload is encrypted, we are unable to evaluate Requet against previous works that use deep packet

inspection. Data collected as described in Section 2.5 is used for training, validation, and testing.

Out of the four sets of traces in our dataset (Section 2.5.1), we use group A, the largest one to train

both systems to predict each QoE metric in real-time. We follow the same testing procedure to

evaluate the performance of Requet in the App-LTE setting. We then compare the performance

differences of Requet in both settings.

We extend the evaluation of Requet in the Browser-WiFi setting by testing Requet on smaller

groups B, C, and D. Subsequently, we use groups B1 and B2 to determine how training in the lab

environment works on clips with similar length but with different service providers and wireless

network conditions. B1 and B2 are experiments in residential WiFi settings in the US and India,

respectively. We also use group A as the training set for evaluating shorter clips (group C) and

longer clips (group D) in the same lab environment as group A.

For group A, we conduct 4-fold cross validation on the 40 clips. Specifically, we divide the 40

clips into four exclusive sets each with ten unique clips. In each fold, we first train a model for

each QoE metric using RF with features from 30 clips (three of the four sets). We then test the

model on the ten clips from the remaining set. We report each model’s average performance over

the four folds.

The buffer warning model produces two prediction possibilities. It indicates whether the buffer

level is below the threshold BuffWarningthresh or not. The video state model produces four states

and the resolution model produces six resolution levels.

We report accuracy of each model as the ratio of the number of correct predictions over total
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number of predictions. For each label a model predicts, we further report: (i) precision defined as

the ratio of true positives to total positives, that is, the percentage of correct predictions out of all

positive predictions of a label, and (ii) recall defined as the ratio of correct predictions to total true

occurrences of a label, that is, the percentage of a label correctly predicted.

2.7.1 Buffer Warning Prediction

The first metric we examine is buffer warning. We set the threshold for buffer level warning,

BuffWarningthresh, to be 20 secs. This provides ample time to provision enough bandwidth before

an actual stall occurs.

For this metric, each time window in our dataset is labeled with either “no buffer warning”

(NBfW) or “buffer warning” (BfW). In group A, significantly more chunks are labeled with NBfW

(84%) than BfW (16%). The results in Table 2.5 show that in the Browser-WiFi setting both base-

line and Requet perform well for this task, with accuracy reaching 85% and 92%, respectively. We

see that precision and recall for NBfW are higher than those for BfW in both baseline and Requet.

Given the current label is BfW, Requet provides significantly higher probability of predicting BfW

correctly with recall of 68% over 11% for the baseline. This is because Requet uses chunk features

to detect the case when no chunks have recently arrived. However, it is difficult for the baseline

system to identify such cases due to the lack of chunk detection. For example, baseline can not

differentiate packets as being part of a chunk or background traffic.

In the App-LTE setting, Requet shows slightly improved performance compared to Browser-

WiFi. Requet achieves a recall of 79.9% for BfW and 99.2% for NBfW. This results in a total

accuracy of 97.8%. For the Browser-WiFi dataset, the download time and TTFB of the most

recent chunk, the video chunk count and the average video chunk size of a variety of windows are

significant features that are used in the RF model for buffer warning prediction. For the App-LTE

dataset, the download time and TTFB of the most recent chunk, the video chunk count, and the

audio chunk count of a variety of windows are significant features that are used in the RF model

for buffer warning prediction.
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Table 2.5: Buffer warning performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

BfW 51.0 11.1 79.0 68.7 88.4 79.7
NBfW 86.0 98.1 94.1 96.5 98.5 99.2

Accuracy 84.9 92.0 97.8

Table 2.6: Video state performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

Stall 31.1 7.6 70.4 51.9 92.2 86.3
Buf. Decay 32.0 16.3 78.0 78.7 65.7 25.2
Buf. Increase 64.1 57.6 80.2 84.2 88.1 95.8
Steady 57.6 80.2 90.7 92.2 89.6 90.2

Accuracy 55.4 84.2 88.2

2.7.2 Video State Prediction

The results of video state prediction are shown in Table 2.6. In the Browser-WiFi setting,

Requet achieves overall accuracy of 84%, compared to 55% for baseline, representing a 53%

improvement. Requet also outperforms baseline in precision and recall for each state.

Stall, buffer decay, buffer increase and steady state appear in 3.7%, 5.9%, 42.8% and 47.6% of

chunks in group A respectively (Table 2.3). The precision and recall for both systems increase in

the same order of stall, buffer decay, buffer increase and steady.

However, baseline achieves below 40% in precision and recall for both the stall and buffer

decay states. This implies that during these two states, network traffic does not have a significant

pattern for baseline to discover. Furthermore, during steady state there can be gaps of 30 sec or

longer. A long gap also occurs when buffer is in decay state. Baseline features cannot separate

buffer decay from steady state.

Examination of the Requet model reveals that audio chunk count for each 20 sec window is an

important feature to predict video state. For example, if there are a few audio chunks in the past

20 sec it is likely that buffer is increasing, and if there are no audio chunks in the past 120 sec it is

likely to be in stall state. This explains the relatively high performance of Requet .

In the App-LTE setting, Requet achieves an overall accuracy of 88.2%. Compared to the
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Table 2.7: Video resolution performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

144p 13.0 7.6 80.6 79.9 87.8 86.2
240p 14.6 10.1 68.7 64.3 74.0 81.8
360p 14.1 9.9 49.2 64.4 74.0 79.4
480p 24.7 33.3 64.9 63.8 73.7 57.2
720p 24.5 30.3 60.6 54.5 80.3 83.4
1080p 22.2 20.1 75.0 76.9 91.9 89.4

Accuracy 21.8 66.9 80.6

Browser-WiFi dataset, Requet in the App-LTE setting achieves an improved performance in pre-

dicting the stall state, but is worse in predicting buffer decay.

For the App-LTE dataset the download time and TTFB of the most recent chunk, and the

number of video chunks in the time range from 60 to 200 sec are significant features that are used

in the RF model for state prediction. For the Browser-WiFi dataset the download time and TTFB

of the most recent chunk, the number of video chunks in the time range from 60 to 200 sec, and

the average chunk size are significant features that are used in the RF model for state prediction.

2.7.3 Video Resolution Prediction

It is extremely challenging for baseline to predict video resolution even with history of up to

200 sec. Overall accuracy is only 22%, slightly better than randomly picking one out of six choices.

As seen in Fig. 2.8, there is a large overlap of average playback bitrates of video clips of

different resolutions due to varying activity levels in the video content. Without any knowledge

about the content of the video or the video state, it is extremely difficult if not impossible to

associate a chunk given its playback bitrate with the resolution it is encoded with. Furthermore,

without knowing video state there is a large overlap in video chunk size and chunk duration across

resolutions as seen in Fig. 2.10.

By using both audio and video chunks, Requet achieves a 66% accuracy for predicting res-

olution (six levels) in the Browser-WiFi setting. This result demonstrates that Requet is able to

enhance video resolution prediction. By narrowing down the options in resolution to three: small

(144p/240p), medium (360p/480p), and large (720p/1080p), Requet achieves an accuracy of 87%.
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Figure 2.13: Accuracy of Requet models trained with group A. (a) Precision of video state, (b)
Precision of video resolution, (c) Precision of stall warning, (d) Recall of video state, (e) Recall of
video resolution, (f) Recall of stall warning.

If the number of options is reduced to two: small (144p/240p/360p) and large (480p/720p/1080p)

the accuracy improves to 91%.

The accuracy of Requet in the App-LTE setting is 80.6%. Requet in the App-LTE setting has

improved performance compared to in the Browser-WiFi setting in predicting all resolutions except

480p, where it has difficulties differentiating 480p from 360p. This can be caused by the dataset

having more data points during 360p as well as having similar video chunk sizes for these two

resolutions.

For both datasets, the most important features are those features related to the most recent

chunk as well as the average video chunk size.

2.7.4 Performance Comparison of Browser-WiFi vs. App-LTE

The performance of Requet in the App-LTE setting is considerably greater than in the Browser-

WiFi setting. As shown in Tables 2.5, 2.6, and 2.7, the accuracy for predicting buffer warning,

video state, and video resolution in the Browser-WiFi setting is 92.0%, 84.2%, and 66.9%, respec-
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tively. While the accuracy for predicting buffer warning, video state, and video resolution in the

App-LTE setting is 97.8%, 88.2%, and 80.6%, respectively. The only exception to this is when

predicting the buffer decay state, the accuracy is higher in the Browser-WiFi setting.

There are two potential reasons for the higher accuracy in the App-LTE setting. First, across

different states in the same resolution, the chunk size is more consistent in the App-LTE setting.

Second, the network conditions are more stable in the App-LTE setting, due to generally good ser-

vice coverage in our test area. However, in the Browser-WiFi setting, artificially varying network

conditions are created from movement experiments during the data collection stage. More stable

network conditions naturally lead to less variation in video states once steady state is entered.

2.7.5 Extended Test over WiFi Networks

Up to this point we have reported results from our systems trained with part of group A and

tested on different clips in group A in both the Browser-WiFi setting and the App-LTE setting.

Next, we use group A in the Browser-WiFi setting as the training data for Requet and evaluate with

groups B1, B2, C, and D. We test Requet on 10 clips from groups B1 and B2 for residential WiFi

settings in the US and India, respectively, to see how they perform on unseen clips of similar length

and unseen WiFi environments. In addition, we use the same lab WiFi environment in group A, to

test Requet on 5 clips of shorter length of 5 min in group C and longer length of 25 min in group

D. Fig. 2.13 reports the average precision and recall of these four tests along with the 4-fold cross

validation results from group A.

Depending on the environment and QoE metric, performance of these extended sets of tests

either improves or deteriorates compared with results from group A reported earlier in this section.

For example, groups B1, B2, and C have improved precision and recall in predicting stall and buffer

decay states. Group D shows lower precision in predicting buffer decay, but higher recall for both

stall and buffer decay. Improved precision and recall results appear for predicting buffer threshold

warning.

Accuracy for video resolution varies from experiment to experiment. Surprisingly, group B2
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has the highest overall accuracy of 70% when training with group A. This is in part due to that

there were zero 480p events collected in group B2. This resolution level has lower precision than

144p, 240p, and 1080p (see Table 2.7), and is extremely difficult for the other test sets to predict

as well.

Most precision and recall results for other sets are better than group A with a few exceptions.

This could be due to the fact that group A includes movement experiments, while the other groups

only contain static ones. A video session naturally exhibits different behavior in different types

of environments. In addition, we plan to improve our prediction models by studying how the

imbalance in data samples impacts the precision and recall of each model.

2.A Appendix: Video State Labeling

A goal for predicting video QoE in real-time inside the network is to enable real-time resource

provisioning to prevent stalls and decreases in video resolution. To enable this prediction, accurate

labeling of video state is critical. The four exclusive video states (buffer increase, decay, stall and

steady state) accurately capture the variations in buffer level. They can be used in combination

with actual buffer level to predict dangerous portions of ABR operation that may lead to QoE

degradation. For example, when the buffer level is close to 0, a stall event is likely to happen in

the near future. Increasing network capacity for the session may prevent a stall.

As shown in Section 2.3, playback regions reported by the client ignore buffer level changes,

and cannot be used to generate video states. Prior work uses manual examination which is time

consuming and can be inaccurate [203]. We opt to automate the process by developing the defini-

tion of video states based on buffer level variation over time followed by our video state labeling

algorithm. We define the four video states as follows:

1. Buffer Increase: Buffer level is increasing. It has a slope greater than ε per sec over time

window Tslope.

2. Steady State: Buffer level is relatively flat. The slope of buffer level is between −ε and +ε
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Algorithm 2 Video State Labeling Algorithm
1: procedure VIDEOSTATELABELING
2: Initialize δ, ε ,Tsmooth,Tslope

3: for every t do
4: Calculate B̂t ← median[Bt−Tsmooth , ..., Bt+Tsmooth ]

5: Calculate mt ←
B̂t+Tslope−B̂t−Tslope

2Tslope

6: if B̂t ≤ δ then
7: Statet ← Stall
8: else if −ε ≤ mt ≤ ε and B̂t > Bu f fSS then
9: Statet = Steady State
10: else if mt < 0 then
11: Statet ← Buffer Decay
12: else
13: Statet ← Buffer Increase
14: SmoothState(State)

Table 2.8: Notation Summary
Symbol Semantics Defaults

δ Stall threshold 0.08 sec
ε Buffer slope boundary for 0.15 sec

sec
Steady State

Tsmooth Time window for smoothing buffer 15 sec
Tslope Time window to determine buffer 5 sec

slope
Bu f f SS Minimum buffer level to be 10 sec

in steady state
ThrSS Minimum time window to 15 sec

stay in steady state
MinTimeSS Time window to look for quick 10 sec

changes out of steady state
MinTimestall Time window to look for quick 10 sec

changes out of stall state

sec
sec over time window Tslope. To be in steady state the slope needs to be in this range for

greater than T hrSS sec.

3. Buffer Decay: Buffer level is decreasing with a slope less than −ε sec
sec over time window

Tslope.

4. Stall: Buffer level is less than or equal to δ.

We execute our video state labeling algorithm in Algorithm 2 for each time instance t when

buffer information is recorded (every 100 ms) to determine video state for a session according to

our definition.

As a chunk arrives at the client, buffer level increases by chunk length in sec. During playback,

buffer level decreases by 1 sec for every sec of playback. Looking at short windows or the wrong
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point of a window would incorrectly determine that buffer is decreasing. We use a smoothing

function to derive a more accurate buffer slope. Specifically, we use a moving median filter over a

window around t defined by [t − Tsmoooth, t + Tsmooth]. We examine the rate of change of the buffer

slope over a window around t defined by [t − Tslope, t + Tslope].

In order to avoid rapid changes of stall state, we set δ to 0.08 sec. This value ensures that small

variations in and out of stall state are consistently labeled as being in stall state. If the buffer level

is above Bu f f SS and has a slope between −ε and ε sec
sec , then we label it as steady state. If these

specifications are not met and the slope is negative, we set the state to buffer decay. If the slope is

positive, we set the state to buffer increase.

To ensure that video state does not change rapidly due to small fluctuations of buffer level, we

use an additional heuristic of SmoothState: steady state has to last longer than T hrSS. This allows

chunks with playback time longer than this value to arrive at the client. If there are changes out

of and then back into stall state that last less than MinTimestall we consider the entire period as

stall state. Similarly, if there are changes out of and then back into steady state that last less than

MinTimeSS, we consider the entire period steady state. For clarity, we list all symbols in Table 4.2,

as well as the values that we find to work the best empirically for our dataset.

2.B Appendix: Dataset Info

This appendix provides a description of the dataset acquired in Section 2.5, used for Requet

chunk detection in Section 2.4, and for evaluation in Section 2.7.

The dataset can be found in a Github Repository (https://github.com/Wimnet/RequetDataSet).

The dataset is divided into 5 group folders for data from groups A, B1, B2, C, D, along with a

summary file named ’ExperimentInfo.txt’ for the entire dataset. Each line in the file describes an

experiment using the following four attributes: (a) experiment number, (b) video ID, (c) initial

video resolution, and (d) length of experiment in seconds.

A group folder is further divided into two subfolders, one for PCAP files, and the other for txt

files. Each experiment is described by a PCAP file and a txt file. The PCAP file with name in the
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form of (i) ′baseline_{date}_exp_{num}.pcap′ is for an experiment where the end device is static

for the entire duration whereas a file with name in the form of (ii) ′movement_{date}_exp_{num}.pcap′

is for an experiment where the end device movement occurs during the experiment. The txt file

names end with ′merged.t xt′. The txt file contains data colletect from YouTube API and summary

of PCAP trace for the experiment.

In each ′merged.t xt′ file, data is recorded for each 100 ms interval. Each interval is represented

as: [ Relative Time, # Packets Sent, # Packets Received, # Bytes Sent, # Bytes Received, [Network

Info 1], [Network Info 2], [Network Info 3], [Network Info 4], [Network Info 5], ... , [Network

Info 25], [ Playback Info] ].

Relative Time marks the end of the interval. Relative Time is defined as the time since the

Javascript Node server hosting the YouTube API is started. Relative Time for the 0th interval is

defined as 0 sec. It is updated in intervals of 100 ms. TShark is called prior to the Javascript Node

server. Therefore, the 0th interval contains Wireshark data up to the start of the Javascript Node

server.

Network Info i is represented as: [IP_Src, IP_Dst, Protocol, # Packets Sent, # Packets Received,

# Bytes Sent, # Bytes Received] for each interval. IP_Src is the IP address of the end device. The

top 25 destination IP addresses in terms of total bytes sent and received for the entire session

are recorded. For each i of the top 25 IP_Dst addresses, the Protocol associated with the higher

data volume for the interval (in terms of total number of packets exchanged) is selected, and data

volume in terms of packets and bytes for each interval is reported for the IP_Src, IP_Dst, Protocol

tuple in [Network Info i].

Playback Info is represented as: [Playback Event, Epoch Time, Start Time, Playback Progress,

Video Length, Playback Quality, Buffer Health, Buffer Progress, Buffer Valid]. From the perspec-

tive of video playback, a YouTube session can contain three exclusive regions: buffering, playing,

and paused. YouTube IFrame API considers a transition from one playback region into another

as an event. It also considers as an event any call to the API to collect data. The API enables the

recording of an event and of detailed information about playback progress at the time the event
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occurs. Epoch Time marks the time of the most recent collection of YouTube API data in that

interval. Playback Info records events occurred during the 100 ms interval.

Each field of Playback Info is defined as follows:

• Playback Event - This field is a binary array with four indexes for the following states:

‘buffering’, ‘paused’, ‘playing’, and ‘collect data’. The ‘collect data’ event occurs every 100

ms once the video starts playing. For example, an interval with a Playback Event [1,0,0,1]

indicates that playback region has transitioned into ‘buffering’ during the 100 ms interval

and a ‘collect data’ event occurred.

• Epoch Time - This field is the UNIX epoch time in milliseconds of the most recent YouTube

API event in the 100 ms interval.

• Start Time - This field is the UNIX epoch time in milliseconds of the beginning of the

experiment.

• Playback Progress - This field reports the number of seconds the playback is at epoch time

from the start of the video playback.

• Video Length - This field reports the length of the entire video asset (in seconds).

• Playback Quality - This field is a binary array of size 9 with indices for the following states:

unlabelled, tiny (144p), small (240p), medium (360p), large (480p), hd720, hd1080, hd1440,

and hd2160. The unlabeled state occurs when the video is starting up, buffering, or paused.

For example, a Playback Quality [0, 1, 1, 0, 0, 0, 0, 0, 0] indicates that during the current

interval, video playback experienced two quality levels - tiny and small.

• Buffer Health - This field is defined as the amount of buffer in seconds ahead of current

video playback. It is calculated as:
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Buffer Health = Buffer Progress × Video Length−

Playback Progress

• Buffer Progress - This field reports the fraction of video asset that has been downloaded

into the buffer.

• Buffer Valid - This field has two possible values: True or ‘−1’. True represents when data

is being collected from the YouTube IFrame API. ‘−1’ indicates when data is not being

collected from the YouTube IFrame API during the current interval.
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Chapter 3: Inferring Live Streaming User Experience of YouTube TV from

Encrypted Traffic

In this chapter, we extend the work from Chapter 2 and present a study on YouTube TV live

streaming traffic behavior over WiFi and cellular networks.

3.1 Introduction

As cord cutting has become a real trend, with twice as many subscribers abandoning their

traditional TV subscriptions in 2018 versus the previous year [62], there has been an increase in

live TV streaming services such as AT&T TV Now, FuboTV, Hulu, Philo, SlingTV, and YouTube

TV over broadband and mobile networks [197]. By 2021, video streaming traffic is expected to

grow to 82% of all IP traffic [41], while live video usage will account for 13% of global Internet

traffic [30].

Popular on-demand streaming services have been steadily improving their ability to provide

good user experience [221, 28]. In addition to network capacity improvements, a major reason that

these services can provide reasonable QoE is their ability to avoid rebuffering events, due to their

design decision to store tens (and even hundreds) of seconds of video in the client device buffer.

Compared to on-demand services, live streaming services must provide much lower latency, which

results in a design with a reduced client buffer capacity, defined as the maximum duration of the

video content the buffer can hold. The question that begs to be answered is whether such design

impacts the QoE of live TV streaming.

In order to gain better understanding of live streaming services, in this chapter we focus on

analyzing the YouTube TV service behavior and inferring a variety of QoE metrics using machine

learning (ML) techniques. YouTube TV is a television service that offers live TV for more than 70
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US television networks and is gaining popularity [234]. Specifically, this chapter presents a traffic

measurement study of YouTube TV service over mobile networks.

To perform the analysis, we develop a system to collect both QoE metrics as well as network

level data. Our data collection period spans a 9-month period leading up to Feb. 2020. We collect

ground truth playback quality metrics directly from the YouTube TV application on an Android

mobile device over WiFi networks and LTE cellular networks. We extract the quality metrics from

the Stat for Nerds window during video playback. From this window, we monitor the current video

ID, video format, audio format, and buffer health. We capture packet data using tcpdump on the

mobile device.

Our contributions are as follows: (i) Design a system to collect network traffic and client play-

back metrics (buffer health and video resolution). (ii) Analyze application performance of YouTube

TV. We discuss how the streaming algorithm differs from on-demand video services in terms of

transmission of chunks, and the design of the client buffer. We also provide insights into YouTube

TV’s ad replacements during commercials. (iii) Develop a multi-chunk detection (MCD) algo-

rithm to detect multiple video and audio chunks with concurrent transmission in the same IP flow.

We define a multi-chunk unit (MCU) as a group of overlapping chunks. (iv) Develop ML tools to

infer user QoE metrics such as video resolution and buffer health from features based on MCUs

extracted from IP traffic. To the best of our knowledge, this is the first video QoE study to provide

insight into the performance of a live TV streaming service over mobile networks.

For further background on streaming algorithms and prior work on QoE inference see Sections

2.3 and 2.2 in Chapter 2, respectively. The rest of the chapter is organized as follows. Section 3.2

presents our data collection methods and measurement results to demonstrate the unique character-

istics of YouTube TV traffic profiles. Section 3.3 describes our MCD algorithm and demonstrates

the behavior of MCUs in our dataset. Section 3.4 presents the ML models to predict video resolu-

tion for each MCU and predict playback phase of the client buffer every 2 sec.

This research started in collaboration with Dr. Katherine Guo for Bell Labs. Trey Gilliland

made important contributions to the data collection.
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Figure 3.1: Experimental setup for our trace collection.

3.2 Measurements

In this section we describe the setup and trace collection for our YouTube TV dataset. We then

describe the profile from a representative video session followed by insights that we obtained.

3.2.1 Trace Collection from YouTube Android App

We design and implement a data acquisition environment, as shown in Fig. 3.1, to capture

YouTube TV video playback statistics and encrypted network packet data on an Android device.

This setup contains a laptop running Ubuntu 18.04 connected via USB to a rooted Motorola Moto

G6 smartphone. The phone is either connected to a WiFi Access Point (AP) or to Google Fi’s LTE

cellular network.

For data collection, we first run a shell script on the laptop autonomously setting up the test

environment using Android Debugging Bridge (ADB). The native YouTube TV application is run-

ning on the phone. The script on the laptop uses ADB to trigger events on the phone. The ini-

tial step includes setting up the test environment by connecting to the correct network, loading a

dummy startup video, and starting the Stats for Nerds window. This window allows us to easily

monitor the audio and video codecs, current resolution, current video ID, and buffer health. Buffer

health is defined as the time duration of the video content stored in the buffer, also known as buffer

length. The shell script on the laptop, then initializes tcpdump on the phone to collect all network

traffic. The network packet logs record packet timestamp, packet size, as well as the 5-tuple for

IP-header (source IP, destination IP, source port, destination port, and protocol).

We then load a video for each experiment by joining a YouTube TV channel. Once the video
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Table 3.1: Clip distribution in our dataset.
Channel WiFi Cellular

Experiments Experiments

CBS 17 21
TNT 19 24
NBA TV 19 23
Food Network 17 26
BBC America 18 32
AMC 19 29
Animal Planet 18 26
BBC World 18 26
Cartoon Network 21 31
CBS Sports 19 30
CNN 17 32

is loaded, the information in the Stats for Nerds window is copied every 1 sec to a clipboard log

using ClipStack (Stats for Nerds updates every 1 sec). Each experiment lasts 10 mins. After

the experiment, the information in Clipstack and network packet logs, obtained via tcpdump, are

exported from the phone to the laptop. The data is then merged into one file and uploaded to

Google Cloud.

3.2.2 Typical Profile and Insights

We collect data from 11 TV channels, as seen in Table 7.1. Even though the number of channels

is relatively small, since the channels carry live TV content, it is unlikely that any of the experi-

ments contain the exact same video content. This results in the dataset having a large variation in

video content. We collected this dataset over 9 months from June 2019 through Feb. 2020. The

data consists of resolutions ranging from 144p to 1080p.

The WiFi dataset consists of 202 experiments. To create various network conditions, we con-

duct tests in the lab environment by varying the distance of the client device from the AP. The dis-

tance is up to 80 feet and multiple rooms away. The cellular dataset consists of 300 experiments.

We conduct tests in various settings aiming for the client device to experience various network

conditions. For example, we collect data when the device is in a car driving on the highway, in a
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Figure 3.2: Behavior of a 10 min session: (a) Average download bitrate (MBps), (b) Average
upload bitrate (KBps), (c) Video resolution, (d) Buffer health.

backpack with the owner walking on the streets, and during lectures.

For our WiFi dataset, all of the video streams are over IPv4. In addition, 96% of the data is

carried over QUIC/UDP while a majority of the rest of the traffic is over TCP+TLSv1.2. For our

cellular dataset, 80% is over IPv4, with the remaining over IPv6. To break it down further, 76%

is QUIC/UDP with IPv4, 19% is TCP+TLSv1.2 with IPv6, and 4% is TCP+TLSv1.2 with IPv4.

The IP protocol used depends on the underlying cellular service that Google Fi was using and the

region of the country.

Upon close examination of the data, another interesting finding is that YouTube TV replaces

some advertisements during commercial breaks with their own advertisements. We are able to

identify this due to a change in Video ID. Ad replacement session times are in multiples of 15

sec, with a majority of the session time for replacement ads being 60 sec. The individual ads that

YouTube inserts are 15 sec in length. In addition, YouTube inserts Slates, animated YouTube logos

with the channel information, when it does not have an ad to fill the gap before starting playback

of the main video.

Fig. 3.2 shows the trace from an example YouTube TV stream in our dataset collected over a

10 min period. Fig. 3.2(a) and Fig. 3.2(b) report the total downstream bitrate (MBps) and upstream
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Table 3.2: Percent of Data in each Resolution
Resolution WiFi Cellular
Start Up 1 1
144p 23 14
240p 22 17
360p 9 15
480p 14 26
720p 12 9
1080p 19 18

bitrate (KBps), respectively. It is evident that traffic follows a periodic pattern, where short bursts

of traffic are separated by periods of quiet time over the network.

Fig. 3.2(c) and Fig. 3.2(d) show the current quality of the video frames being played and the

buffer health (in seconds) respectively. Notice that buffer health increases quickly from the startup

phase to over 20 sec in length when the video playback starts.

We define buffer increase phase as the video playback phase when buffer health is increasing

faster than it is draining. For this example, this phase starts right after the client device sends the

request to join the TV channel and lasts until 1 sec after playback information is collected. Once

the buffer health enters a steady region determined by the ABR algorithm, it stays in a steady state

with a buffer health between 17 and 24 sec, due to periodic draining and refilling of the buffer.

Based on the proposed heuristic algorithm in Requet [78], we automatically label the playback

state according to the dynamics of buffer health using four exhaustive labels: Increase, Steady,

Decay, and Stall.

In addition to this example session, we demonstrate the typical performance of video sessions

in our dataset. We focus on two important design choices for HAS: (i) buffer health during steady

state and (ii) chunk duration.

Fig. 3.3(a) shows that channels in our WiFi dataset consistently have a median steady state

buffer health of 15 sec. Fig. 3.4(a) shows that the median buffer health is approximately 20 sec in

our cellular dataset.

In terms of buffer health during steady state, most channels consistently hover around 15 and
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Figure 3.3: WiFi Dataset: (a) Buffer health in steady state for each channel, (b) Chunk duration in
steady state for each channel.
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Figure 3.4: Cellular Dataset: (a) Buffer health in steady state for each channel, (b) Chunk duration
in steady state for each channel.

20 sec over WiFi and cellular networks, respectively. The outlier for the dataset is TNT which has

a larger range for steady state buffer health. In comparison, the average steady state buffer health

of Netflix is approximately 240 sec [124], while for YouTube on-demand streaming service, the

60



average buffer health during steady state can go up to 180 sec [78]. The observed buffer health

for YouTube TV is different than a majority of other streaming services as YouTube TV aims for a

low buffer health in an effort to maintain low latency for live streaming content.

The second important design decision for HAS is chunk duration, which is the level the buffer

increases upon a chunk arrival. To calculate this, we record the amount of buffer health increase

after the arrival of each chunk in the Stats for Nerds window, during the steady state phase. This

level is relatively stable for all channels and is usually around 5 sec of video for both the WiFi

(Fig. 3.3(b)) and cellular (Fig. 3.4(b)) datasets. For YouTube on-demand service, during steady

state, the average chunk duration for video chunks stays between 30 − 40 sec for 144p to 360p

videos, and decreases from 40 to 5 sec when video resolution increases from 360p to 1080p. For

audio chunks it is approximately 30 sec [78]. For Netflix, it has been shown to be 4 sec for video

chunks, and 16 sec for audio chunks [124].

A majority of the data collected is in steady state (roughly 78% and 87% of the time for the

WiFi and cellular datasets, respectively). The median time of the first data point collected after the

start of a session for buffer health is 15 and 20 sec for the WiFi and cellular dataset, respectively.

Due to the fact that we only collect buffer health information after the start of a session, this is an

indication that once the session starts, it can reach steady state buffer health quickly and stay in

steady state during most of the session.

To confirm that these observations are accurate, we investigate YouTube TV video streams on

a Chrome browser on a laptop using the developer tools. Fig. 3.5 displays an example of two

subsequent chunk requests along with the waterfall to show the timing of the requests. We use

time to first byte (TTFB) to denote the time between the GET request and the first packet of the

response. An important point to note is that HTTP requests for both chunks are pipelined and are

sent at almost the same time. The first chunk has a size of 1.9 MB, a TTFB of 5 msec, and a total

time of TTFB and content download of 129 msec. The second chunk has a size of 81.1 KB, a

TTFB of 8 msec, and a total time of TTFB and content download of 27 msec. Information in the

requested URLs show that the first chunk is a 5 sec video chunk, and the second chunk is a 5 sec
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Figure 3.5: Chunks shown on Chrome browser developer tools.

Figure 3.6: Overlapping audio and video chunks.

audio chunk. It is clear that the transmission of these two chunks overlap in time.

In practice video and audio chunks should not overlap as it may cause head-of-line blocking.

Prior work based on chunk detection for QoE inference all rely on detection of chunk boundaries

to derive accurate chunk size and chunk inter-arrival time [128, 109, 126, 127, 124, 78, 28]. This

newly observed behavior of YouTube TV using overlapping chunks will reduce the accuracy of

proposed chunk detection algorithms. Therefore, to handle this phenomenon we propose a new

chunk detection algorithm in Section 3.3.1.

3.3 Methodology

3.3.1 Multi-Chunk Detection (MCD)

The fundamental delivery unit of ABR is a chunk [114]. Therefore, identifying chunks in-

stead of relying on individual packet data can capture important player events. Specifically, the

occurrence of a chunk indicates that the client has received a complete segment of video or au-

dio, resulting in increased buffer level in playback time. Therefore, for any video QoE inference

algorithm it is important to extract these chunks.

The delivery of a chunk is described with the following protocol. An HTTP GET request is

sent from the client to the server. The GET request contains larger than a 300 byte payload, while

smaller uplink packets are acknowledgments or HTTP POST requests. After the request is sent,

the server sends an HTTP response to the client. The HTTP response are packets with payload

62



containing data of the chunk. The chunk size is the total amount of data received for this chunk

until the next request is sent.

All existing mechanisms for chunk identification [109, 127, 124, 78] rely on the assumption

that HTTP requests are not pipelined even though pipelining is feasible with multiple concurrent

streams within a QUIC or HTTP/2 connection [82, 25]. In practice, video clients do not pipeline

HTTP video requests as this potentially causes contention for bandwidth among video chunks, and

causes head-of-line blocking [127].
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Figure 3.7: Multi-chunk metrics for MCU in the WiFi dataset: (a) Number of chunks per MCU,
(b) MCU duration, (c) MCU size.
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Figure 3.8: Multi-chunk metrics for MCU in the cellular dataset: (a) Number of chunks per MCU,
(b) MCU duration, (c) MCU size.

However, as audio chunk size is typically significantly smaller than video chunk size for a

majority of the video resolution [78], the change of head-of-line blocking for overlapping audio

and video chunks is significantly smaller than overlapping video chunks. When the effect of head-

of-line blocking is not significant, pipelined requests can potentially reduce latency of chunks and

this is beneficial for live streaming services.

When two chunk transmission processes do not overlap in time, it is easy to see the boundary

between the chunks and calculate individual chunk sizes. The problem shown in Fig. 3.5 is that

for YouTube TV, the chunk requests are pipelined. The overlap of the audio chunks and the video
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chunks demonstrated in Fig. 3.6 reveal that it is difficult to identify the TTFB, download time of

the chunk, and the chunk size of the two pipelined chunks. For pipelined HTTP requests it is

nontrivial to determine how many chunks are overlapping and the size of each of these chunks.

We propose a new algorithm Multi-Chunk Detection (MCD) to detect the boundary for a group

of chunks and report statistics for this group. We name the group of chunks a multi-chunk unit

(MCU).

The algorithm operates on each IP flow. When a packet is detected in the upstream direction

from a client to a server with a packet size of greater than 300 bytes, it is marked as a potential

chunk request. For this MCU of this IP flow the algorithm keeps track of the number of GET

requests within the next second. As soon as no GET requests are detected within a 1 sec time

window, no additional GET requests are added to this MCU. The next MCU starts when a new

GET request appears more than 1 sec after the previous GET request. The end of the previous

MCU is marked when the next GET request appears indicating the start of the current MCU. In

addition, the algorithm keeps track of all the downstream packets. The size of the download for

the MCU is calculated by summing up the payload size of all the downstream packets. The time

for the first GET request for the MCU is recorded, along with the first and last downstream packet

of this MCU.

If the MCU is less than 30 KB in download size, it is assumed that there is no chunk infor-

mation, and the MCU is removed from the flow. This approach operates at the IP level, and it

therefore is applicable for both encrypted TCP and QUIC/UDP flows.

3.3.2 Multi-Chunk Unit (MCU) Behavior

We apply the MCD algorithm to all the sessions in our dataset for both WiFi and cellular net-

works. We investigate the characteristics of MCD to determine patterns to guide machine learning

feature design for classifying the state and video resolution during the playback of a live video

stream.

For both the WiFi and cellular datasets we examine the MCU related metrics under different
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buffer states and video resolutions. We show the statistics of the number of chunks in each MCU,

the size of each MCU, and the MCU duration (time between each MCU) in the WiFi (Fig. 3.7) and

cellular (Fig. 3.8) datasets.

The first set of figures display the median number of chunks in an MCU. This median number

over WiFi (Fig. 3.7(a)) and cellular (Fig. 3.8(a)) are highly centered around the median of 2 chunks.

This is because the audio and video chunks usually occur together in one MCU. This indicates that

for YouTube TV service, roughly one audio chunk corresponds to one video chunk, and the chunk

duration should therefore be similar (5 sec for both video and audio respectively in Fig. 3.5).

The second set of figures display the MCU duration over WiFi (Fig. 3.7(b)) and cellular

(Fig. 3.8(b)). During steady state the MCU are also tightly around the median of 5 sec. This

is consistent with the data noted from analyzing the Stats for Nerds buffer health in Figs. 3.3(b),

3.4(b) and by using the Chrome developer tools (Fig. 3.5). The MCU duration decreases across

all video resolutions during the buffer increase phase. This is due to the fact that during the buffer

increase phase chunks are requested as fast as the network capacity allows for the client buffer to

fill up.

The third set of figures show the size of MCU over WiFi (Fig. 3.7(c)) and cellular (Fig. 3.8(c)).

As video resolution increases from 144p to 1080p the MCU size increases accordingly. There is a

wide range for each MCU size based on the encoding of each video scene.

3.4 Evaluation

We propose solving the prediction of video resolution and video phase as a classification prob-

lem. Features based on the network level data are used as input to the system. The classes for

prediction are the resolution levels available for YouTube TV: 144p, 240p, 360p, 480p, 720p, and

1080p. The classes for the prediction of the video playback phase are steady state or buffering

defined to include buffer increase, decay, and stall. The three states are combined into one phase

as the player is in need of data as soon as possible during all these states. We begin by describing

the ML system designed for this task. We continue with the evaluation of this system using both
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Table 3.3: Video resolution performance (%)
WiFi Cell Both

Prec. Rec. Prec. Rec. Prec. Rec.
144p 93 97 90 93 91 97
240p 91 93 81 88 87 89
360p 89 75 80 69 82 71
480p 80 87 80 85 80 85
720p 77 70 58 51 68 61
1080p 87 86 85 87 86 86
Accuracy 87 81 84

Table 3.4: Video phase performance (%)
WiFi Cell Both

Prec. Rec. Prec. Rec. Prec. Rec.
Buffering 60 43 72 55 66 46
Steady 86 92 96 98 92 96
Accuracy 82 95 89

the WiFi and cellular datasets.

3.4.1 Machine Learning Models

We develop ML models using Random Forest (RF) to infer metrics reflecting user QoE. We

build the RF classifiers in Python using the sklearn package. We base the feature selection on

previous works that infer QoE metrics using online models with time scale smaller than the length

of a video session [182, 222, 124, 78, 133, 28]. Specifically for each prediction we compute a

set of attributes based on the MCU statistics for windows of the past 10, 20, 30, 40, and 50 sec.

The first attribute per window is the number of MCUs. The second attribute is the average number

of GET requests per MCU. The third attribute is the average download time for each MCU. The

fourth attribute is the average download size (in bytes) per MCU. The fifth attribute is the standard

deviation of MCU size. The sixth attribute is the standard deviation of the inter MCU arrival time.

Each one of these 6 attributes is collected for the 5 windows to create a total of 30 features.

Prediction of video playback phase is done every 2 sec, while prediction of resolution is done

only after every MCU arrives. It is not beneficial to do resolution prediction more often because
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resolution can only change at the boundary of video chunks. In addition to the 30 previously

discussed features, for predicting resolution, we add in an additional 6 features per MCU. These

6 features include the first GET request size, the download size, the protocol used, the number of

GET requests, the time between the first GET request of the MCU and first download packet of

that MCU (TTFB), and the time between the first download packet of the MCU and the last packet

of the MCU.

3.4.2 QoE Inference Accuracy

For classification, we divide each dataset into 5 subsets based on TV channels. From these 5

subsets we use 5-fold cross validation to determine the performance of the model on prediction of

video resolution and playback phase.

Video Resolution Prediction: Table 3.3 reports the performance (precision, recall, accuracy)

of resolution prediction. The prediction achieves an overall accuracy of 87%, 81%, 84%, for

training on the WiFi dataset, cellular dataset, and combined datsets, respectively. For the combined

dataset 86% of the errors are 1 resolution away from the actual resolution. Therefore, the classifier

is able to predict the actual resolution to a 1 resolution error 98% of the time.

The most important features for the RF model for resolution prediction are the download size

of the most recent MCU, and the average download size of the MCUs in each window. The next

most important attribute is the standard deviation of the MCU size. The least important feature is

the average number of combined chunks in each window. This is due to majority of MCUs having

2 chunks per MCU independent of video resolution.

Playback Phase Prediction: Table 3.4 shows the performance of playback phase prediction

(precision, recall, accuracy). The prediction achieves an overall accuracy of 82%, 95%, 89%, for

training on the WiFi dataset, cellular dataset, and combined datsets, respectively.

The most important features for the RF model for phase prediction are the average download

time of each MCU in each window. The next most important features are the number of MCUs

and the standard deviation of the interarrival time of the MCUs in the past 50 sec.
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Part II

End-to-End Resource Allocation in Cellular

Networks
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Chapter 4: RAN Resource Usage Prediction for a 5G Slice Broker

Part II focuses on using recurrent neural networks, a type of deep neural network, to improve

resource allocation in cellular networks. In this chapter we focus on supporting the operation of the

RAN slice broker, which maps slice requirements into the allocation of Physical Resource Blocks

(PRBs) in a 5G network.

4.1 Introduction

It is expected that 5G networks will support a variety of services including smart cities, au-

tonomous and network assisted driving, augmented reality, and virtual reality. Such services will

impose an extremely diverse set of requirements on the mobile network, ranging from ultra high

throughput to ultra low latency at the order of milliseconds [90].

Network slicing will allow 5G operators to split a shared physical infrastructure into virtual

slices to meet these diverse requirements (see Fig. 4.1). The Next Generation Mobile Network

(NGMN) Alliance defines a network slice as a set of network functions and associated resources,

forming a complete virtualized end-to-end logical network meeting certain network characteristics

required by the associated service [51, 2, 110]. Namely, slices will provide virtualized resource

separation for different services, while still allowing for statistical multiplexing of the resources.

An anticipated challenge is managing a large number of tenants, each with multiple services,

resulting in separate slice instances. Each such instance may have unique Service Level Agreement

(SLA) requirements in terms of bandwidth, latency, reliability, mobility, and security. Each slice

can contain multiple bearers from multiple User Equipments (UEs)1, and each bearer can have a

Guaranteed Bit Rate (GBR)2 or a non-GBR service.
1A bearer is defined as a path for the traffic with a common QoS from a UE to the Packet Data Network Gateway.
2GBR bearers have bandwidth guarantees (e.g., min throughput, max throughput, packet delay variation) from the

LTE network.
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Figure 4.1: 5G network slice architecture: the network infrastructure is divided into slices for
tenants. The RAN broker monitors each slice’s SLA. The broker then predicts future slice resource
usage. Slice provisioning is done based on the SLA and the predicted resource usage. The slice
prediction and provisioning information is used by the slice broker for admission control decisions.

The complexity of management and orchestration will increase with 5G slicing. As illustrated

in Fig. 4.1, a Radio Access Network (RAN) slice broker (to which we will refer to as a broker)

is used to manage and orchestrate the slice life cycle [174]. The broker monitors each slice’s SLA

and predicts its future RAN resource usage. The prediction is utilized to dynamically provision

resources to slices. Admission control decisions are based on the slice priority and resource re-

quirements. For example, in Fig. 4.2(a) during the first two decision intervals four and five slices

are admitted, respectively. Slice admission control algorithms that take into account given RAN

usage have been developed based on solutions to the multidimensional knapsack problem [34,

179].

Efficiently utilizing the RAN resources is crucial to enable multiplexing gains and cost effec-

tiveness for service providers [132]. Therefore, an accurate prediction model of the usage must be

developed to efficiently utilize the RAN. An overestimation in the amount of allocated resources

results in a decrease in revenue for the service provider, while underestimation results in SLA

violations.

Specifically, this chapter has two related objectives. The first is to develop a metric that mea-

sures the amount of Physical Resource Blocks (PRBs) available to very active bearers for each

slice. The metric could be easily used for slice provisioning. The second objective is to develop an
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Figure 4.2: (a) An example of provisioning resources to slices which is based on the broker’s
admission control decisions, where in the second decision interval a 5th slice is admitted. (b) An
example of monitoring REVA for a single slice and the corresponding dynamic resource provi-
sioning.

accurate and short time scale prediction model of that metric. Once the prediction is obtained, the

broker can use each slice’s predicted PRB usage for slice provisioning.3

Accordingly we define a new metric, REVA, that precisely measures the average amount of

wireless Physical Resource Blocks that the RAN scheduler can allocate to Very Active bearers

(see Section 4.4). The amount of resources given to each bearer in a slice is determined by the

RAN scheduler. The Very Active (VA) bearers are those that attempt to obtain more than their fair

share of the PRBs that are available from the scheduler. A broker determines the amount of PRBs

to allocate to each slice in order to satisfy the SLA (e.g., a slice’s SLA may require a minimum

video quality for a remote surveillance camera). Since the RAN scheduler reserves PRBs for each

GBR bearer (e.g., voice conversation), the REVA metric focuses on measuring the PRB usage of

the non-GBR bearers in a slice. For example, in Fig. 4.2(b) when REVA falls below the SLA in

decision interval t9, it reveals that there are insufficient available PRBs for VA bearers. The slice

provisioning algorithm would use this information to increase the total amount of PRBs allocated

to that slice.

Due to the lack of relevant data and while 5G systems are still undergoing standardization and

development, we design and evaluate a model for short term (single to tens of seconds) REVA

prediction using a custom-designed experimental LTE testbed (see Section 4.5). The scheduler

3Slice admission control is out of the scope of this chapter and is for future work.
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in the testbed is augmented with a thin layer to compute REVA in real time4 and we use a single

Quality of Service (QoS) class identifier (QCI) per slice. The testbed was used to collect traces of

hundreds of hours of RAN resource allocation under a variety of network usage patterns. We used

one, two, and three overlapping periodic time patterns to emulate the temporal patterns that occur

in cellular networks [215].

The data collected from the testbed is used to develop and evaluate the prediction models for

REVA (see Section 4.6). Current time series models [27, 185, 88] are inadequate for multistep

prediction of network resource usage over a short time scale. These models are designed for pre-

dicting one step into the future, but there is a need for higher accuracy over multiple time steps for

dynamic provisioning and other network optimization techniques (e.g., VM migration). Therefore,

we design a modified Long Short Term Memory (LSTM) model, X-LSTM, to improve prediction

accuracy. To evaluate the performance (see Section 4.7), we use X-LSTM to predict REVA tens of

seconds in advance. We show that the gains of X-LSTM over traditional models such as Autore-

gressive Integrated Moving Average Model (ARIMA) and LSTM neural networks increase as the

number of components in the time pattern increases. Given time patterns composed of one, two,

and three independent semi-periodic components, X-LSTM outperformed ARIMA and LSTM by

10%, 22%, and 31% respectively. We show that X-LSTM achieves accuracy predictions of over

91%.

To evaluate the impact of each prediction model on slice provisioning, we introduce a simple

slice provisioning algorithm. The algorithm exploits the prediction models to minimize cost for

service providers. The cost is measured by the amount of over-provisioned PRBs and violating

the SLA. We show that X-LSTM offers the service provider a greater than 10% cost reduction

compared to ARIMA and LSTM.

This work is based on collaboration with Nokia Bell Labs and has appeared previously in the

proceedings of ACM Mobihoc’19 [76].

4We expect that the additions to the scheduler and the REVA metric will be applicable to 5G schedulers.
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4.2 Related Work

Network Slicing: Architectural aspects of 5G RAN slicing are developed by the 5G NORMA

project [6] within 5G-PPP, by utilizing Software Defined Networks and Network Function Vir-

tualization. Wireless RAN virtualization will offer greater flexibility for network infrastructure

operators, while also adding benefits to their customers (typically called tenants [172]). By en-

abling RAN virtualization, Mobile Network Operators can share common RAN resources leading

to reduced costs and increased energy efficiency. The concept of network virtualization will enable

infrastructure as a service for end to end networking [51]. An optimization framework was devel-

oped in [116] for resource allocation of network bandwidth and cloud processing. A network slice

broker will enable mobile operators to request and lease infrastructure dynamically [174]. Orion

was developed to enable dynamic virtualization of the base station [63]. In [179, 34], the authors

develop an admission control decision algorithm for RAN slice requests based on the knapsack

problem and propose solutions using a greedy algorithm and online-reinforcement learning. The

resource efficiency and cost-effectiveness of resource management in network slicing is studied

in [132]. Slice overbooking has been shown to maximize the revenue of mobile operators with

minimal impact of SLAs [173].

Cellular Traffic: Recent work has characterized and modeled city wide traffic in cellular networks

[237, 215, 216, 220, 238], where congestion is characterized by measuring the traffic load. In [85],

the authors improve on previous congestion metrics by also including round trip times. In [112] a

single cell load measure is defined as a combination of the number of connected bearers, achieved

throughput, and percentage of total PRBs per bearer. In [194] congestion is characterized via

skewness of measured aggregate throughput.

Network Analytics: Numerous research efforts have been devoted to improving network perfor-

mance using network analytics. In [9, 187] traffic congestion and mobility is predicted across a

university WLAN network. Improvements for adaptive video streaming performance over LTE

are studied in [228, 229, 241] where the LTE bandwidth is estimated by monitoring the broadcast
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messages or LTE bandwidth availability is given.

Time Series Modeling: Statistical and machine learning models for forecasting time series have

received significant attention. Common statistical models are ARIMA and the Seasonal ARIMA

(SARIMA) models [27, 185]. Neural Networks (NNs), a popular model in machine learning, are

used to approximate non linear multivariate functions. Recurrent Neural Networks (RNNs) is a

NN that uses feedback from previous steps. A specific type of RNN is an LSTM NN, which has

memory cells to maintain information for longer periods [88]. Additional work has been done to

improve the performance of LSTMs for specific applications [65, 147, 40].

4.3 Wireless RAN

In this section, we provide background on RAN resource allocation and then discuss the limi-

tations of the existing metrics available for monitoring resource utilization. Note that we use LTE

terminology while describing and evaluating our methods, but they should be applicable to 5G

schedulers which are currently in development.

4.3.1 Background on RAN Resource Allocation

3GPP defines wireless resource allocation in the time and frequency domains. LTE and LTE

Advanced utilize a resource allotment unit called a PRB. A PRB consists of 180 kHz in the fre-

quency domain and one slot of 0.5 ms in the time domain. Every Transmission Time Interval (TTI)

(1 ms in LTE), the scheduler distributes the available PRBs for the Downlink (DL) and Uplink (UL)

among LTE bearers. The total number of PRBs assigned depends on the number of TTIs and the

system bandwidth configuration. According to the LTE standard, there are 6 PRBs per TTI for 1.4

MHz configuration to 100 PRBs for 20 MHz configuration [2].

The scheduler at the base station (eNodeB) uses channel condition information received peri-

odically from the UEs to assign Modulation and Coding Schema (MCS) to the allocated PRBs.

This essentially determines the number of bits transmitted using the allocated PRB. Using a higher

MCS with poor channel conditions leads to data loss and requires using more PRBs for retransmis-
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sions. In good channel conditions, using a lower MCS leads to unnecessarily reduced throughput.

RAN scheduling algorithms are optimized to determine the best MCS assignment for each allo-

cated PRB. In the time domain, the schedulers also make decisions regarding how often PRBs are

assigned to a specific bearer.

The LTE standard defines scheduling priorities or QCIs to address the different scheduling rules

for the different classes of service [3]. Each QCI has its own associated QoS characteristics (e.g.,

priority, guaranteed (or not) bit rate, packet delay budget, and packet error loss rate. QCIs reserved

for GBR service have the scheduler attempt to ensure certain guaranteed bitrate for the bearer.

For example, QCI 1 is typically reserved for Voice over IP traffic. QCIs designed for non-GBR

traffic typically use weighted or max-min fair share scheduling algorithms for PRB allocation [3].

Max-min fair share algorithms assign users with a small demand the resources that they need and

distribute the remaining resources evenly to large users.

4.3.2 RAN Resource Utilization Metrics

The broker allocates PRBs based on the SLA of each slice. In order to get better insight

into provisioning resources, it is important to understand how bearers in that slice are currently

utilizing the resources. In addition, it would be insightful to separate PRB usage and user channel

conditions. Each have an essential role in the throughput and latency of individual UEs. RAN

usage has been studied by several previous research efforts [112, 237, 215, 216, 85, 194]. However,

they specifically do not focus on the application of RAN slicing. Below are examples of metrics

that are not adequate for a broker.

• Aggregate percent of available PRB utilization per second by the scheduler [112] -

There is no sense of fairness and relation to per bearer SLA. A single greedy application

such as FTP can utilize close to 100% of all PRBs in the LTE RAN, if there are no other

bearers served by the RAN. Clearly, the RAN serving just a single client is not congested,

and if a second FTP client joins, the scheduler would allocate to it roughly half of the avail-

able PRBs.
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• Aggregate throughput of all bearers [237, 215, 216] - The metric is inadequate for the

same reasons given above. A single FTP bearer in perfect channel conditions can utilize

close to 100% of all PRBs.

• Metrics based upon latency or throughput of individual or groups of bearers [85, 194]

- These metrics are inadequate due to the reasons below:

– Bearer throughput depends on channel conditions. Low throughput or high latency

of bearer(s) may not result from RAN congestion but could result from poor channel

conditions of the respective bearer(s).

– Low throughput may be a function of applications usage characteristics. Specific ap-

plications may not need a lot of network resources (e.g., Voice over IP, low resolution

video, and instant messaging).

• Number of users served by the RAN - Such a metric does not take into account RAN

resource consumption by individual bearers. A RAN serving a large number of VoIP or

other low volume bearers is not necessarily congested.

4.4 RAN Resource Estimation

In this section we outline the design objective for a prediction model along with the REVA

metric. We then describe the definitions needed for REVA, and the algorithm for its computation.

4.4.1 Objective

Our objective is to develop a metric, REVA, that can be used by a broker to efficiently measure,

predict usage, and provision slice resources. We represent REVA as yt throughout the remainder

of the chapter. We assume the broker has a history of T decision intervals of the series: yt−1 =

(yt−1, yt−2, ..., yt−T ). A prediction model f uses the history yt−1 to predict s decision intervals ahead:

ŷt, ˆyt+1, ..., ˆyt+s−1 = f (yt−1). The goal is to develop a prediction model for yt that has a minimal
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prediction error εt :

yt = f (yt−1) + εt . (4.1)

The REVA metric is developed as follows:

• A function of the available resources that is independent of: (i) channel conditions of the

bearers; (ii) the application behavior and throughput needs of individual user bearers; (iii)

transport protocol (e.g., TCP, QUIC, UDP, or raw IP); (iv) bearer throughput or roundtrip

time. This would allow for scheduling slices based on the required PRBs.

• The average number of PRBs used by the bearers that attempt to obtain more than their

maximal fair share of PRBs (defined as very active bearer in Definition 4.2). These are the

bearers that need to be monitored to ensure SLAs.

• A method for precise and direct computation of available bearer throughput per slice. When

combining the amount of average PRBs (PRBi) with individual channel bearer conditions

(bi), it allows for easy derivation of the wireless throughput available to a very active bearer

i. The throughput can be computed as:

R(b) = PRBi · C(bi) (4.2)

where C(bi) is the average number of useful bits per PRB for bearer i [219]. The forecast

of the UEs channel quality can be used to estimate the MCS [175]. Table 4.1 illustrates the

average throughput given a variety of PRB rates along with the user’s MCS. For each PRB

range, 3 MCS values are provided along with the corresponding resulting max throughput.

4.4.2 Definitions

We introduce the following definitions prior to defining REVA. Without loss of generality, we

assume one or more QCIs per slice.
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Definition 1. Active bearers for a non-GBR QCI m are bearers that use on average γ PRBs per

second (e.g., γ = 30)5. Active bearers can be broken down into two groups: Very Active and Less

Active.

Definition 2. Very Active (VA) bearers for a non-GBR QCI m are those that continuously attempt

to obtain more than a maximal fair share of PRBs that are available from the scheduler for a given

duration of time.

Definition 3. Less Active (LA) bearers for a non-GBR QCI m are the active bearers that are not

VA.

Examples of VA bearers are FTP and HTTP adaptive streaming video. Examples of LA bearers

are web browsing and viewing social media. An example of a non-active bearer is a smartphone ap-

plication that periodically performs keep-alive handshakes and receives push notifications. Bearers

for each slice are classified into VA and LA based upon PRB resource consumption.

REVA is now formally defined as the following:

Definition 4. REVA for a slice is defined per QCI and traffic direction (DL or UL) as: available

Resource rate (in PRBs/sec) for an ideal ‘Very Active’ bearer.

REVA determines the number of PRBs that a VA bearer at a given QCI can obtain. REVA

specifically focuses on non-GBR bearers since, for GBR bearers a guaranteed amount of resources

are allocated. The GBR service class guarantees the throughput and therefore the amount of PRBs

allocated to a GBR bearer depends upon bearer channel conditions which typically varies in time.

Notice that we use 1 second (1,000 TTIs) as the time interval. For low latency slices, one can use

a smaller time interval (e.g., 20 to 100 TTIs).

The algorithm to calculate REVA appears in Algorithm 1. Bearers are categorized in an itera-

tive way similar to the max-min fair share algorithm. In each iteration, LA bearers are those that

use less than their fair share of the resources remaining. We define Stotal as the total number of

530 PRBs limits the max throughput of a bearer to ∼ 1 KBps with channel conditions appropriate for 16QAM
modulation. This parameter can vary based on the service type of the slice.
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Table 4.1: Throughput for PRB rate along with the UE’s MCS.

Average PRBs/sec MCS Max Throughput(kb/sec)

0-500 8,19,27 70,180,310
500-1000 8,19,27 140,360,630

1000-2000 8,19,27 280,720,1260
2000-3000 8,19,27 420,1080,1900
3000-5000 8,19,27 700,1800,3150

Table 4.2: Notation.
Symbol Semantics

Stotal Total number of PRBs/sec available
to a slice over interval ∆t

δ Fraction of control plane PRBs
(typically 0.01 or 0.02)

wm Proportional fair weight for QCIm
RPRBm Reserved PRBs for QCIm
®Bm Vector of PRBs of active bearers at QCIm
®BRm Vector of PRBs of unclassified active bearers at QCIm
®L Am Vector of PRBs of LA bearers at QCIm

Nm Number of active bearers at QCIm
NRm Number of unclassified active bearers at QCIm
Um Number of PRBs used by LA bearers at QCIm
Im Fair share of PRBs at QCIm

PRBs/sec available to a slice. For example, for a slice with 10 MHz bandwidth, Stotal = 50,000

PRBs/sec. The available PRBs for the slice is Stotal(1 − δ), where δ represents a fraction of control

plane PRBs.

In this section, we assume that the slice includes multiple QCIs and we compute the REVA

metric for each non-GBR QCI. Algorithm 1 consists of two steps:

• Compute available PRB rate per QCI of the slice. (line 5 of Algorithm 1, Procedure 1)

• For each QCI, classify the slice bearers into VA and LA based upon their PRB consumption.

Then, compute the REVA value. (lines 6-10 of Algorithm 1)

®Bm is the vector of PRB rates for all the active bearers at QCIm. Initialization is done by assigning

Nm as the total number of active bearers at QCIm. ®BRm is the vector of PRB rates for all the active
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Procedure 1 Aggregate available PRB Rate
1: procedure Sm
2: S = Stotal(1 − δ) −

∑
j≤4 PRBj

3: if Proportional Weighted Share Scheduling then
4: Sm = S −

∑
5≤ j≤9, j,m min(PRBj,S · wj)

5: if Strict Priority Scheduling then
6: Sm = S −

∑
5≤ j≤m Sj −

∑
j≥m+1 RPRBj

return Sm

Algorithm 1 REVA Computation
1: Initialize δ, Stotal

2: for m = 5 : 9 do
3: Initialize ®Bm, Nm, ®L Am
4: ®BRm = ®Bm, NRm = Nm, NRprev

m = 0, Um = 0
5: Calculate Sm (Procedure 1)
6: while do NRm , NRprev

m
7: NRprev

m = NRm
8: Im =

Sm−Um

max(1,NRm)

9: Update ®BRm, NRm, Um, ®L Am

10: REV A(m) = Sm−Um

V Am

bearers that have not been classified yet, and is initially set to ®Bm. NRm is denoted as the number

of active bearers that have not been classified yet and is initially set to Nm. Um is the number of

PRBs used by LA bearers, and is initially 0. ®L Am is the vector of PRB rates for bearers that are

classified as LA, and initially it is empty.

The next step of Algorithm 1 is to estimate the amount of available PRBs for non-GBR QCIm

(Procedure 1).

Procedure 1 first adjusts for control PRBs and then removes the PRB rate for all the GBR

bearers in line 2. The next computation performed depends upon the scheduling schema used

across QCI classes. If proportional weighted share scheduling is used, Sm is set based on the

minimum of the fair share requirement or the amount of traffic required for that QCI level. In the

case of priority scheduling, the amount of resources for that QCI level is calculated based on the

amount of resources for higher priority QCI levels and the amount of Required PRBs (RPRB) for

lower priority QCIs. The minimum number of resources for lower priority QCIs is used to ensure

that even lower priority QCIs are not starved.
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Table 4.3: REVA computation example.

Iteration NRm Um Im LA UEs

0 20 0 2,450 12-20
1 11 1,620 4,307 8-20
2 7 16,120 4,697 5-20
3 4 25,620 4,845 3-20
4 2 39,120 4,940 2-20
5 1 44,020 4,980 2-20

Algorithm 1 continues by iteratively eliminating LA bearers. In each iteration, the amount of

fair share of PRBs, Im, is calculated. LA bearers are those that use less than Im. The amount of

PRBs used by LA bearers, Um, is updated accordingly. After eliminating LA bearers, the amount

of unclassified active bearers and the vector of PRBs of those bearers are updated, NRm and ®BRm,

respectively. Iterations continue until either no additional LA bearers are added (NRprev
m == NRm),

or 0 or 1 non-LA bearers remain. Eliminated bearers are LA, and remaining bearers are classified

as VA. The resulting REVA level is computed for each QCI m. Each slice will have at least 1 VA

bearer by definition. Therefore, if 0 non-LA bearers remain, then the LA bearer with the largest

number of PRBs becomes VA.

4.4.3 Computation Example

Consider a scenario where 20 UEs are served by a 10 MHz slice (50,000 PRBs/sec) with δ =

0.02 and each UE has a single DL bearer at QCI 9. The PRBs over the past 1 second are assigned

as follows (all units in PRBs/sec): UE1-5000, UE2-4900, UE3-4800,..., UE9-4200, UE10-3000,

UE11-3000, UE12-20 each have 180 PRBS/sec. For example, in iteration 0 there are initially 20

active bearers, with Sm = 49,000. The fair share would be Im = 2,450 PRBs, but UEs 12 to 20 use

less than that amount and should be classified as LA. The amount of PRBs used by the LA bearers,

Um, would then be set to 1,620 with 11 remaining active bearers for iteration 1. The algorithm

would then operate as shown in Table 4.3. After 6 iterations there is 1 VA UE, resulting in a REVA

value of 4,980 PRBs/sec.

81



There is one UE that is using its maximal share of the PRBs and the other UEs do not require

additional resources. This can be converted into throughput based on the UE’s MCS. The slice

broker can then update the slice’s PRB allocation accordingly.

4.5 Experimental Data Collection

Due to the lack of data from service providers, we built an experimental LTE testbed to collect

data and calculate the REVA metric. PRB distribution per bearer with ≤ 1 second granularity is

unavailable from deployed eNodeBs. Hence, we designed a lab LTE network with synthetic loads.

The collected data is used in Section 4.6 to train forecasting models and in Section 4.7 to evaluate

the impact prediction accuracy has on dynamically allocating resources. In this section we describe

the experimental setup and the data collection process.

4.5.1 LTE Testbed

The experiments were performed using the lab testbed configuration depicted in Fig. 4.3. The

LTE eNodeB was configured with a 10 MHz bandwidth using 700 MHz wireless spectrum (LTE

band 13). All UE minicomputers were connected to LTE Remote Radio Heads (RRHs) via LTE

USB modems using Radio Frequency (RF) cables and splitters. An RF impairment tool with two

input and two output ports was used to emulate a variety of radio conditions for two groups of UEs.

Slices were emulated by using different QCIs, with separate Access Point Names (APNs) con-

figured for each slice. For the purpose of this chapter we focused on predicting REVA of a non-

GBR slice at QCI 9. We built an LTE load generator consisting of 15 UEs configured for QCI 9

and 3 UEs configured for QCI 3 (GBR). The operation of the load generator was controlled via

scripts by a load generator controller connected to the UEs over Ethernet LAN. In each experi-

ment, the non-GBR UEs were running FTP download over LTE in a continuous loop. The scripts

also controlled GBR UEs to start/stop FTP download over LTE to emulate multiple independent

patterns for the non-GBR slice.

We enhanced the LTE eNodeB scheduler by adding a thin layer to instantaneously compute
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Figure 4.3: Lab Configuration Setup. The LTE eNodeB scheduler calculates REVA which is
forwarded to Central Analytics Engine to compute optimal policy action. The Central Analytics
Engine sends the action to the Slice Manager for enforcement. Additional components (MME,
SGW, HSS, PCRF) are left out for simplicity.

REVA. The LTE eNodeB scheduler sends data digests every second in the form of the REVA

metric per QCI and per slice to the Central Analytics Engine (CAE) via a dedicated out-of-band

connection. The CAE performs instantaneous REVA data smoothing and further processing of the

smoothed data. The predicted REVA metric is processed by the CAE policy engine to suggest an

optimal policy for resource allocation. The CAE then sends this suggestion to the slice manager

for enforcement.

4.5.2 Data Collection

The REVA metric (Section 4.4) is calculated at the eNodeB Scheduler. It records per bearer

PRB distribution data every TTI (1 millisecond), and aggregates per bearer data into bins of time

duration ∆t (e.g., ∆t = 1 second or ∆t = 100 milliseconds). At the end of each ∆t interval,

it performs the computation described in Algorithm 1 (Section 4.4) and sends data digest per

QCI level to the analytics engine. Our measurements indicate that executing Algorithm 1 every 1

second with approximately 500 active bearers adds less than 1% to eNodeB CPU utilization. The

algorithm’s complexity is O(k2), where k is the number of users. Performing preprocessing of the
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data at the agent instead of sending the raw scheduler data every 1 millisecond, reduces the amount

of data transfer by a factor of more than 1000.

The original REVA data has a high variance over short windows due to fluctuations in the

TCP client behavior. To rectify this issue we smoothed the data to reduce the noise fluctuations.

Smoothing is done by looking at a window size of 10 seconds and eliminating the minimum and

maximum values to remove potential outliers. The minimum remaining value of REVA is chosen.

We focus on the minimum opposed to other metrics (e.g., mean, median, max) to ensure that

current slices have enough resources and to prioritize current slices over incoming new slices.

In this chapter, we discuss 3 time series sets collected from the testbed. [215] shows that there

are temporal patterns of cellular traffic at time scales on an hourly, daily, and weekly basis. We

vary the number of overlapping temporal patterns from 1 to 3 to emulate similar situations.

The data sets consist of the 15 non-GBR clients using FTP, and were collected for roughly 18

hours. The first data trace contained one periodic GBR client and is referenced as Set 1 and viewed

in Fig. 4.4(a). This resulted in a simple square pattern with small variations and can be used for

baseline evaluations of the prediction models. The second data set had two varying GBR clients

that used FTP and is referenced as Set 2 and viewed in Fig. 4.4(c). Three GBR clients periodically

used FTP to create a three pattern overlay profile for Set 3 (Fig. 4.4(e)).

The Autocorrelation Function (ACF) is used to analyze the potential predictability of a time

series. ACF is the correlation of a signal with a time lag l version of itself. The results of ACF give

insight into how much information from the past can be used to predict future values. Figs. 4.4(b),

4.4(d), 4.4(f) show ACF at a time lag of l = 0,1, ...,2000 for REVA in Sets 1,2, and 3, respectively.

The periodic nature of ACF for Set 1 shows spikes that do not decay. It also reveals that the

underlying data should have a high predictability. The ACF of Set 2 shows a stong autocorrelation

for the first 100 time lags with additional significant correlation at later time lags. The medium

correlation values reveal a time series that should have moderate predictability. The ACF of Set 3

is not smooth like the previous two functions. In addition, there are not as many peaks in the ACF,

meaning that this data set should be the most difficult of the three to predict.
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Figure 4.4: Experimental Data Collected (a) Set 1, (b) Set 1 autocorrelation, (c) Set 2, (d) Set 2
autocorrelation, (e) Set 3, (f) Set 3 autocorrelation.

4.6 Machine Learning Models

A precise prediction model allows a broker to utilize the RAN more effectively. Therefore,

there is a need for reliable and short term prediction of the slice resource utilization. Current

time series models are designed for predicting one step into the future and do not perform well

when predicting multiple steps at a time. Our design objective is to forecast REVA for the next

30 seconds with prediction intervals of 5 seconds. The forecasting function f (yt−1), will provide a

forecast for ˆyt+5, ˆyt+10, ˆyt+15, ˆyt+20, ˆyt+25, ˆyt+30. The first 60% of each time series is used as training

data, the next 20% for validation, and the final 20% for testing. We begin this section with a

description of the time series models used as a baseline: ARIMA and LSTM. We then describe the
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architecture of the X-LSTM model designed to solve this problem.

4.6.1 ARIMA

One of the most popular statistical methods for time series analysis is the ARIMA model [27].

The ARIMA model assumes that future values are a linear function of previously observed values

and random noise. The ARIMA model can be modeled as ARIM A(p, d,q).

The data used to train the ARIMA model was the 5-second averages of the smoothed data.

The ARIMA model was implemented in Python using the Statsmodel package. Optimizing the

performance of the ARIMA prediction model requires tuning of the parameters p, q, and d. The

optimal model was selected by a grid search while varying the parameters for p, q, and d between

0 and 3. The parameter setting that gave the minimum RMSE for the validation data was (p,q, d) =

(1,0,1) for both data sets. To obtain a 30 second prediction, there were 6 steps of prediction done

at a time. The ARIMA model parameters are retained for every batch of multistep prediction.

4.6.2 LSTM

Recurrent Neural Networks (RNNs) differ from traditional Feedforward Neural Networks (FNNs)

in that they contain feedback loops to allow information to propagate from previous steps. Feeding

information from previous steps into the next step allows for a deep neural network architecture

without computing and storing as many parameters. Therefore, these models are ideal neural net-

work architectures for time series prediction. One of the major problems with traditional RNN is

that it does not store information for long periods of time due to the vanishing gradient problem

[87]. A type of RNN specifically designed to understand long term dependencies is an LSTM [88].

We implemented the LSTM neural network in Python on Keras using the Tensorflow backend.

It contains a single recurrent layer with a linear layer. Validation data was used to tune the perfor-

mance of a variety of neural network architectures. The architecture chosen for testing uses a single

LSTM layer with 100 hidden neurons, and a dense output layer to predict the output congestion

level. The LSTM uses a history of the previous 80 timesteps to predict the next step. The learning
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Figure 4.5: An example of X-LSTM machine learning architecture used for the experimentally
collected data. This X-LSTM architecture contains two phases, one at a time scale of 30 seconds
and the next at 5 seconds.

rate was set to α = 0.005. The input data is the 5 second averages of the RAN congestion. In the-

ory, LSTMs can store memory for an infinite number of timesteps, but, as the number of timesteps

increases it creates more computation complexity to tune the parameters for back propagation. In

implementation the Truncated Back Propagation Through Time (TBPTT) method is used to limit

the number of memory steps [103].

For multistep prediction (Multistep LSTM), an iterative procedure is used with T set to 80. For

the first prediction the real past 80 timesteps are used. For the second prediction, 79 real timesteps

are used along with the previously predicted value. This continues until the 6th prediction is done

with 75 real values and the previous 5 predicted values.

4.6.3 X-LSTM

We develop X-LSTM as an extension of LSTM. It is based on the idea of ARIMA and the X-11

statistical method. X-11 is an iterative process that decomposes time series data into seasonal data

patterns. This method combined with the prediction of an LSTM improves results over standard

methods. We break the method into two phases as can be seen in Fig. 4.5.

The X-LSTM model uses multiple LSTMs, each with a different time scale. It filters out higher

order temporal patterns and uses the residual to make additional predictions on data with a shorter

time scale.

We implemented each LSTM neural network of X-LSTM in Python using Keras with the Ten-

sorflow backend. Each LSTM block contains a single recurrent layer with 100 hidden neurons

with a dense output layer. For each LSTM block 80 timesteps were used. The learning rate was
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Figure 4.6: Residual of first phase prediction (a) Set 1, (b) Set 1 autocorrelation, (c) Set 2, (d) Set
2 autocorrelation, (e) Set 3, (f) Set 3 autocorrelation.

set to α = 0.005.

For our experimental data, the first phase is done at a 30 second time level. The first LSTM

block makes predictions for the average over the next 30 seconds, ˆyt+30. The goal of the next

phase LSTM is to make predictions for the time series of the residuals (yt − ˆyt+30) at a higher

granularity. For our evaluation, a second phase with a time scale of 5 seconds was used. The

residual values for Sets 1, 2 and 3 are seen in Figs. 4.6(a), 4.6(c), and 4.6(e), respectively. Looking

at the autocorrelations, in 4.6(b), 4.6(d), 4.6(f), reveals that the residual data has information from

previous time lags that can be used to improve the prediction accuracy.
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Figure 4.7: Results obtained by various prediction models: (a) Set 1, (b) Set 2, (c) Set 3.

The first step is to make a prediction for the average over the next 30 seconds. The second

LSTM phase predicts the residual (yt − ˆyt+30) on a granularity of 5 seconds. It is used for multistep

prediction in an iterative procedure for 6 steps. The 6 predicted values are then added back to the

predicted 30 second average in order to predict REVA at ˆyt+5, ˆyt+10, ˆyt+15, ˆyt+20, ˆyt+25, ˆyt+30.

The number of phases and the time scale of each phase are the additional tuning parameters

for X-LSTM neural network. While each of our data sets was only collected for roughly one day,

this method can be extended to longer data sets by including additional phases. Typically networks

exhibit time patterns due to natural seasonal, weekly, daily, and hourly traffic variations [215]. Data

can be reduced by summarizing the data into lower granularity. For example, instead of storing per

second data, data can be summarized into hourly, and daily averages. Data can be stored on the

granularity of seconds for the past day, per hour bases for the past month, and daily values for the

past year. This can reduce the amount of data needed for prediction by over 99%.

4.7 Evaluation

In this section we briefly discuss accuracy measures used for evaluation. We then analyze the

prediction accuracy of each proposed prediction model. We continue with a description of a slice

provisioning algorithm and design of a cost function based on the amount of over-provisioned

PRBs and SLA violations. We conclude by showing how the algorithm exploits the prediction

models to minimize cost for service providers.
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Figure 4.8: Prediction errors for Sets 1,2,3 illustrated in Fig. 7: (a) RMSE, (b) MAE, (c) MAPE.

4.7.1 Prediction Results

Accuracy measures used for comparison between the different time series methods include:

Root Mean Square Error (RMSE), Mean Absolute Error (MAE),and Mean Absolute Percentage

Error (MAPE). The true output value is yt and the predicted value is ŷt for each time t. The

accuracy of each proposed method is measured by splitting the experimental data collected into

three components: training, validation, and test. The training data is used to tune the machine

learning parameters for each method, while the validation data determines the best parameters for

each method. The test data is used to compare the performance of each model.

The prediction results on test data for Sets 1, 2, and 3 can be seen in Fig. 4.7, along with the

resulting error measures in Fig. 4.8. Four different prediction models are used for comparison.

The first model predicts a one step 30 second mean of the time series using a vanilla LSTM model

(referred to as 30 Second LSTM). The second model is determined by the X-LSTM model. The

third prediction model uses a multistep LSTM to determine the congestion over the next 30 seconds

in a granularity of 5 seconds. The fourth model uses a multistep ARIMA model to predict the

congestion over the next 30 seconds in a granularity of 5 seconds.

Set 1 follows close to a periodic square wave with numerous time steps in between. The

results show that all the models are able to follow the square wave relatively accurately. The

multistep LSTM and ARIMA models have a more difficult time and incorporate errors from earlier

steps leading to extrapolation. The prediction of the 30 Second LSTM is better able to determine

the square pattern, as it has less information to store from previous periods and is only making

a one step prediction. The resulting error measurements show that even on the simpler square
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wave pattern, our X-LSTM model outperforms the other models. It is able to learn meaningful

information from the residual between phase 1 and phase 2.

The second best model, 30 Second LSTM, gives a MAPE of 7.68% and an RMSE of 312,

while the X-LSTM model gives a MAPE of 6.93% and an RMSE of 256, resulting in a 10% and

18% improvement, respectively.

Set 2 has a more complex time series which has two overlapping periodic events. All models

in this data set have a higher error rate than in Set 1. The multistep LSTM has a difficult time

incorporating the many variations it learned from the two overlapping patterns. When creating

multistep predictions the errors continue in a positive or negative direction causing a sawtooth

pattern. The multistep ARIMA model has a higher accuracy for Set 2 than the multistep LSTM

model. Phase 1 of the X-LSTM model is able to track the model, however it is often slow to update

when there are large changes. The X-LSTM model is able to incorporate the residual difference

and make an improvement on the phase 1 predictions. The additional benefit of X-LSTM is that

when the last phase LSTM needs to predict multiple steps, the bias of the prediction is reduced.

The second best model is again, 30 Second LSTM, which has a MAPE of 8.11% and an RMSE

of 353. The X-LSTM model has a MAPE of 6.36% and an RMSE of 304, resulting in a 22% and

14% improvement.

The most challenging set to model due to its three overlapping periodic patterns is Set 3. The

result is a lower level accuracy across all models. There is a strong residual component that has

high ACF values. This allows the second phase of X-LSTM to improve upon the accuracy of the

first phase and thus reduce the prediction error. The multistep ARIMA and LSTM models in this

situation perform significantly worse than X-LSTM.

The MAPE of the multistep LSTM is 13.07% and for the LSTM predicting 30 second averages

it is 13.03%. The X-LSTM is able to outperform these models by 31% with a MAPE of 8.99%.
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Figure 4.9: Average system cost vs. SLA cost K for various prediction models: (a) Set 1, (b) Set
2, (c) Set 3.

4.7.2 Slice Allocation

We evaluate the impact that forecasting accuracy has on slice resource utilization. The REVA

metric allows for easy adjustment of slice provisioning by using the difference between REVA and

the SLA. The value can be used to estimate the amount of additional resources the slice should be

allocated to satisfy the SLA or the amount of PRBs that should be removed while still satisfying

the SLA.

We assume that the forecasting error εt in (1) is normally distributed with a standard deviation

of σ and a mean of 0, since the exact distribution of the empirical error is unavailable. This gives

a Gaussian prior for the prediction model:

yt ∼ N(ŷt, σ
2) (4.3)

We assume that assigning too few resources results in an SLA violation and incurs a penalty with

cost k. Conversely, when forecasting a higher REVA value than predicted results in extra PRBs

available to VA users that can otherwise be allocated to other slices. We use a one sided prediction

interval h that determines the bound that should be used when assigning resources for forecast

model f . We define the cost function, Γ as:

Γ(yt) =


k, if ŷt + h > yt

yt − h − ŷt , if ŷt + h ≤ yt

Accordingly, we formulate the following optimization problem to obtain the optimal h such
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that the system cost is minimized, given σ, ŷt , and k:

minimize
h

k(ŷt + h − yt)
+ + (yt − ŷt − h)(yt − ŷt − h)+. (4.4)

Taking the expected value of the cost metric simplifies the optimization problem to:

minimize
h

(k + ŷt)(Φ(
h
σ
)) − h(1 − Φ(

h
σ
)) + σ(

φ( h
σ )

1 − Φ( h
σ )
), (4.5)

Where Φ(z) is the CDF of the standard normal random variable Z, and φ(z) is the PDF of the

standard normal random variable Z.

4.7.3 Slice Allocation Efficiency

For each forecasting model, the optimal h is used for each ŷt and the cost Γ(yt) is calculated.

Fig. 4.9 shows the average Γ per forecasting point verses the SLA violation cost k. As k increases

the optimization function weighs SLA violations more. Therefore, the number of standard devia-

tions away the prediction interval h is increases. The optimization function causes the probability

of missing the SLA to decrease from 10% to 1% (depending on the forecasting algorithm’s σ, ŷt ,

and the cost k).

In data set 1, with k = 0, Multistep LSTM slightly outperforms X-LSTM by less than 1%. For

every other SLA cost k the X-LSTM outperforms the other forecasting algorithms. For k ≥ 5000,

X-LSTM provides more than 15%, 40%, and 15% reduction in average system cost over 30 Second

LSTM, Multistep ARIMA, and Multistep LSTM, respectively. In data set 2, X-LSTM provides

more than 11%, 35%, and 60% reduction in average system cost over 30 Second LSTM, Multistep

ARIMA, and Multistep LSTM, respectively. In data set 3, X-LSTM provides more than 18%,

39%, and 18% reduction in average system cost over 30 Second LSTM, Multistep ARIMA, and

Multistep LSTM, respectively. Generally across the three data sets, as SLA violations increase in

cost the value of X-LSTM over the other prediction models increases.
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Chapter 5: Deep Neural Network Based Dynamic Resource Reallocation of

BBU Pools in 5G C-RAN ROADM Networks

In the previous chapter, we presented the X-LSTM prediction model, and showed that by using

a higher accuracy prediction model a slice broker is more adept at provisioning a slice and reducing

over-provisioning and Service Level Agreement (SLA) violation costs. In this chapter, we focus on

allocating optical fronthaul wavelengths between the Remote Radio Heads (RRHs) and the Base

Band Processing Units (BBUs).

5.1 Introduction

Traditional cellular networks rely on RANs in which baseband signal processing is carried out

at the location of the cellular antennas. As traffic has increased, cell sizes are decreasing, dramat-

ically increasing the number of cell sites and their capacity. In order to improve the scalability of

these large numbers of access points, separation of the RRHs and the BBUs has been proposed for

5G networks. In centralized or cloud-RAN (C-RAN), the BBUs will be moved to a centralized

location to allow for sharing of computing resources among multiple RRHs and mobile networks.

By consolidating BBUs into several common locations (called BBU pools), cost and energy can be

saved by sharing power and computational resources, leading to a reduction of capital and opera-

tional expenditures [145]. The high capacity required in these C-RAN fronthaul networks motivate

the use of wavelength division multiplexed (WDM) optical systems.

It has been shown that traffic in different regions of a city can have different cellular network

load pattern [215]. Therefore, further efficiency improvements might be possible if traffic can

be reallocated among remote BBU pools based on the traffic load, using reconfigurable optical

add drop multiplexers (ROADM). Previous work on assigning traffic to different BBU pools has
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Figure 5.1: C-RAN network architecture with the capability of resource reallocation from a busy
BBU to an open BBU.

relied on mixed integer linear programming (MILP) solutions [146]. Given that reconfiguration of

optical networks takes minutes [148], real-time reallocation requires methods that can address this

significant time dependence.

In this chapter, we develop a deep neural network based algorithm that can accurately pre-

dict future ROADM network resource requirements. Making accurate predictions 30 minutes in

advance would allow for resource reallocation before the actual demand is needed, and therefore

gives enough time for optical network reconfiguration to route the traffic through the C-RAN to

a BBU pool with available computing resources. We compare the proposed resource reallocation

approach with fixed resource allocation to evaluate the resource savings.

This research was done in collaboration with Prof. Dan Kilper’s research group at the Univer-

sity of Arizona, with significant contributions from collaborating Postodctoral Research Scientist

Dr. Yao Li, and Ph.D. student Dr. Weiyang Mo. It appeared in the proceedings of OSA OFC’18

[76].

5.2 Problem Statements and BBU Pool Resource Reallocation Approach

Fig. 5.1 shows a C-RAN architecture with ‘fronthaul’ WDM connections from an RRH to

a remote BBU pool, which is typically via a common public radio interface (CPRI). Although

fronthaul enables more efficient cloud based processing, the overall required transport capacity

increases when the full digitized RF signal is used. Without the prediction of the traffic in advance,

enough optical capacity and enough BBUs must be installed at each BBU pool to guarantee the
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(a) (b)

Figure 5.2: (a) Recurrent Neural architecture unrolled through time creating a deep neural network,
(b) LSTM network.

peak processing requirement. On the other hand, the aggregated traffic at different BBU pools is

different due to different cellular network load patterns, creating an opportunity to take advantage

of sharing processing resources across BBU pools. To enable this sharing through ROADM optical

network reconfiguration, which can take minutes, traffic pattern prediction must be made minutes

in advance.

Recurrent neural networks (RNNs) can be used for predicting time series data through inter-

connected neurons based on previous time samples to make predictions for the next time series [65]

as shown in Fig. 5.2(a). Unlike feedforward neural networks, RNNs do not only use information

from the current input, but also use information from previous time steps. When unrolled through

time, as seen in Fig. 5.2(a), it creates a deep neural network. A specific type of RNN architecture

designed for long-term time series prediction is a Long Short-Term Memory (LSTM) network de-

picted in Fig. 5.2(b). LSTM works by storing information in the memory cell and passing it to the

next time step. The inputs to the LSTM cell gates are a concatenation of the new input xt and the

previous output ht-1. The LSTM cell has a forget gate fg that allows information to be forgotten

from the previous cell state ct-1, an input gate ig to add information into the new cell state ct, and

an output gate og for passing information from the new cell state ct to the output ht [88].

96



Figure 5.3: New York City regional PoP topology.

5.3 Case Study and Results

We use discrete event simulations to evaluate the resource reallocation approach, considering

the traffic rejection rate and total network throughputs as two main performance metrics. A re-

gional New York City point of presence (PoP) network is considered, where 9 ROADM nodes

cover a 400km2 region with a 3.5 average degree, as shown in Fig. 5.3. 12060 connection requests

following Poisson arrivals are generated with uniformly-distributed source and destination pairs.

We assume 64 small cells (SC) are directly routed to each ROADM with a maximum fronthaul link

of 23Gbps per SC (i.e., 1.472Tbps peak traffic per ROADM). Residential, office, and entertainment

traffic is considered in the simulations, and the distribution of the three types for each ROADM

varies based on its geographical locations [65]. As a result, different ROADMs have different

time-dependent traffic patterns. Fig. 5.4(a) shows the traffic pattern over 28 days for ROADM 2,

ROADM 5, and ROADM 8 with residential dominant, office dominant, and entertainment domi-

nant, respectively. Each fronthaul connection is required to pass a BBU pool for data processing

before dropping at the destination ROADM. First, we evaluate the BBU pool resource reallocation

approach with a highly-consolidated BBU pool placement, where only ROADM 2 and ROADM

5 (solid circle) have BBU pools. For each connection, a modified k-shortest path routing (k=5)

with the first-fit wavelength assignment is used, where each routing path must pass through a BBU

pool. 50GHz spaced dense WDM channels over C-band links are used with grooming and 100

Gb/s PM-QPSK modulation.

In the fixed resource allocation approach, for any connection request, the shortest path is chosen
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(a) (b)

Figure 5.4: (a) Different traffic patterns (Resident, office, and entertainment dominant) of different
ROADMS, (b) Traffic patterns at two BBU pools.

Figure 5.5: Traffic pattern prediction on two BBU pools using LSTM.

and the first BBU pool along this path is chosen to process the data. Fig. 5.4(b) shows the traffic

pattern over 28 days for two BBU pools averaged every 30 minutes. The peak traffic of the two

BBU pools is 4.7Tbps and 3.2Tbps, respectively. We then evaluate the LSTM network based

resource reallocation. The time t of the LSTM network is in the interval of 30 minutes. Using

the LSTM approach, the traffic of each BBU pool can be predicted 30 minutes in advance with

high accuracy. An LSTM network is trained with 55% (740 samples) of the data in Fig. 5.4(b),

and 20% (268 samples) is used for validation, and the last 25% (336 samples) is used for testing.

Training is done by stochastic gradient descent where the training data is broken into batch sizes

of 20 and optimized over 1000 epochs. Truncated back propagation through time (TBPTT) is

used to optimize the weight parameters of the network. For the experiments, 60 time steps Xt =

{xt−59, xt−58, xt−57, ...xt} are used. Fig. 5.5 shows the prediction performance of the test data.
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(a) (b)

Figure 5.6: (a) Traffic throughput improvement with resource reallocation, (b) Reduced traffic
rejection rate with the resource reallocation.

The model obtains a mean absolute error (MAE) of 84.2Gbps, mean absolute percentage error

of 3.1%, a root mean square error of 96.9Gbps, and a maximum error of 319.2Gbps. With the

prediction of the traffic pattern in each BBU pool, the optical network can be reconfigured 30

minutes in advance so that some resources can be reallocated from one BBU pool to another for

processing, and then routed to the destination ROADM.

We study the performance of resource reallocation, by varying the peak resource processing

capacity of each BBU pool from 2Tbps to 5Tbps, and compare with the case with fixed resource

allocation. Fig. 5.6(a) shows that with a small processing capacity, resource reallocation does not

give much improvement since both BBU pools are usually overloaded and there is no additional

capacity for reallocation. With the increase of BBU processing capacity, resource reallocation

gives a higher 5G traffic throughput, with a 7% maximum improvement at 3.5Tbps. When the

BBU processing capacity further increases, the improvement decreases because there is less of

a need for resource reallocation. Fig. 5.6(b) shows the relation between the BBU processing

capacity and traffic rejection rate. It is seen that with resource reallocation, zero traffic rejection

rate is achieved with 3.8Tbs capacity in each BBU pool (i.e., 7.6Tbps in total). On the other hand,

4.6Tbps processing capacity is required for each BBU pool (9.2Tbps in total) to serve all the traffic.

Overall, resource reallocation leads to an 18% processing resource reduction.
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Part III

Dynamic Optical Systems
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Chapter 6: Deep Neural network based wavelength selection and switching

in ROADM systems

In this part we focus on using ML to ensure stable performance and reliable Quality of Trans-

mission (QoT) for dynamic optical operation. Specifically, in this chapter we present a feedforward

deep neural network based-ML model to predict the power dynamics of a 90-channel ROADM

system.

6.1 Introduction

Growing dynamic traffic demands for Internet applications, including HD video rendering,

cloud computing, and the Internet of things (IoT), motivate more efficient networks capable of

handling a wide range of applications [106]. Dynamic ROADM systems in which connections are

established through real-time wavelength switching have long been studied as a means to achieve

greater scalability and increase the network resource utilization [125]. However, today’s commer-

cial ROADM systems remain ’quasi-static’, with wavelengths being provisioned to meet the peak

traffic requirements and left in place [202]. While ROADMs are extensively deployed in today’s

wavelength-division multiplexing (WDM) systems, they are primarily used for flexible wavelength

provisioning without real-time switching functionality. SDN potentially provides software control

capabilities that might be exploited to achieve real-time wavelength switching, but its scalability

and flexibility are limited by various types of physical layer impairments [119, 230, 118].

A key unresolved challenge to achieving dynamic ROADM systems through SDN is predict-

ing and controlling the optical power dynamics resulting from wavelength switching operations.

Power excursions can result from the interactions between the wavelength dependent gain and

automatic gain control of optical amplifiers, Raman scattering in the fiber and other wavelength

101



dependent phenomena. Deviations of the channel powers outside pre-allocated system margins

can potentially result in service disruption due to reduced quality of transmission (QoT) [107]. For

this reason, today’s commercial systems take minutes and even hours to provision a wavelength

through time-consuming power adjustments along an optical path [nelson17]. To realize dynamic

ROADM systems, we implement a deep neural network that predicts power excursions resulting

from wavelength switching operations. After training a 90-channel multi-hop ROADM system

including 8 Erbium-doped fiber amplifiers (EDFAs) and 5 ROADM nodes with 67,200 training

samples, the deep neural network is able to recommend wavelength assignments for wavelength

switching in randomly loaded systems with over 99% precision.

The remainder of this chapter is organized as follows. In Section 6.2, we discuss the basics

of power excursions and related work to address power excursions. In Section 6.3, we introduce

the principle of the proposed deep neural network approach. The experimental setup is discussed

in Section 6.4. In Section 6.5, we discuss the deep neural network architecture, data collection,

training, and power excursion prediction. The performance of the deep neural network is evalu-

ated against different metrics to show its effectiveness to mitigate power excursions in wavelength

switching operations.

This research was done in collaboration with Prof. Dan Kilper’s research group at the Univer-

sity of Arizona, with significant contributions from collaborating Postodctoral Research Scientist

Dr. Yao Li, and Ph.D. students Shengxiang Zhu and Dr. Weiyang Mo. The hardware testbed for

the evaluations was entirely built by collaborators at the University of Arizona. The research re-

sults presented in this chapter appeared in the Journal of Optical Communications and Networking

[139]. A preliminary version of this chapter appeared in the proceedings of Big-DAMA Workshop

at SIGCOMM’17 [79].

6.2 Problem Statement

Recent work has extensively investigated advanced modulation formats to improve the spec-

tral efficiency and network capacity of WDM transmission systems [227]. But, these spectrally
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efficient modulation formats require tighter QoT margins due to lower tolerance to both optical

noise accumulation (impacting the optical signal-to-noise ratio (OSNR)) and fiber nonlinearity

based impairments. As a result, the reduced transmission distances are further compromised by

large margins that are needed to account for optical channel power variations or uncertainties.

Thus, optical power dynamics that arise from wavelength switching operations become especially

problematic in these systems. Furthermore, optical power dynamics often include phenomena that

switching a wavelength on one channel causes power changes on other channels [107].

One main manifestation of optical power dynamics is the transient effect in an optical ampli-

fier. The transient effect is fast power overshoots and undershoots that arise from sudden changes

in input power due to wavelength switching operations or upstream fiber cut. For automatic gain

controlled (AGC) EDFAs, a fast feedforward control loop can be implemented to augment the

slower feedback control loop to effectively and rapidly suppress the transient effect. The feedfor-

ward control loop has the response time of 1 µs that can immediately adjust the pump power based

on a pre-defined relationship between the pump current and input power for a target gain [199].

A different form of optical power dynamics in optical amplifiers—power excursions that result

from the interactions between the wavelength dependent gain and AGC of optical amplifiers—can

occur in wavelength switching operations. In the case of these power excursions, wavelength

switching operations lead to persistent power differences on surviving channels, which are then

corrected over long time scales using individual channel power controls in the ROADM nodes.

Power excursions can grow in magnitude over cascaded amplifiers and cause substantial service

disruptions. In recent work, 15 dB power excursions were reported in a WDM transmission system

with recirculating loops totaling 2240 km [189]. For this reason, introducing or provisioning a new

channel into a ROADM system is a time-consuming process that requires repetitive small-step

power adjustments by sequentially actuating many optical components along an optical path to

ensure that the powers of all surviving channels are within pre-allocated margins. In commercial-

scale transmission systems, the fastest reported wavelength provisioning time is several minutes

for a single 400 Gbps wavelength channel over a long-distance link [148].
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There have been a number of approaches to address these amplifier-based power excursions. A

fast tunable source was implemented to distribute a single optical signal over two wavelengths—one

with a high gain and the other with a low gain—to equalize the mean gain and cancel out the power

excursions [143]. An analytical solution was studied in [98] to mitigate power excursions based

on a pre-measured EDFA gain spectrum. However, the gain spectrum does not consider the tilt

change during wavelength switching operations and as a result only 5%–15% power excursion re-

duction is achieved. An optical probing method was also investigated to measure the EDFA gain

spectrum without causing power excursions on surviving channels and thus recommend an opti-

mal wavelength assignment with minimal power excursions [142]. Nevertheless, previous work

relies on either specific system designs or specialized hardware and as a result increases the total

hardware cost. Conversely, machine learning offers a more flexible solution without special hard-

ware requirements. Particularly, machine learning has been well used to promote the development

of intelligent optical communication systems [18, 230]. Through the extensive data collection of

the power excursions versus changing channel loadings, a machine learning model can be trained

to accurately recommend new wavelength assignments which will not cause power excursions.

Previous machine learning applications examined wavelength assignment and defragmentation to

minimize the channel power divergence or standard deviation of surviving channels, which pri-

marily arises from the static gain ripple and tilt of EDFAs [94, 93]. Regression models, such as

ridge regression and kernelized Bayesian regression were investigated to predict the channel power

divergence in a 24-channel single-hop ROADM system, but such regression models do not con-

sider the interactions between WDM channels and are unlikely to accurately predict the power

excursions in wavelength switching operations. In order to accurately predict power excursions for

WDM transmission systems including multiple ROADM hops and full C-band WDM channels, a

more sophisticated machine learning model based on a deep neural network is investigated in this

chapter. In this work, we extend a recent analysis of neural network based wavelength switching in

[79]. We provide additional analysis on the computational complexity, overfitting reduction, and

early termination using the deep neural network. The performance is also compared against ran-
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(a) (b)

Figure 6.1: (a) The schematic diagram of a neuron, (b) Illustration of a deep neural network con-
taining two hidden layers.

dom forest, showing the advantage of the deep neural network in learning and predicting complex

power excursions.

6.3 Proposed Machine Learning Methodology

Machine learning has been developed to allow computers to learn to do a specific task with-

out being explicitly instructed. Machine learning problems can be divided into two general cate-

gories—supervised learning problems and unsupervised learning problems. Supervised learning

analyzes the training data and produces a relationship between an input object and the desired

output object, which can be used for predicting the output of new input objects. Unsupervised

learning problems try to draw inferences from datasets only consisting of input data. In this work,

the focus is on developing a supervised machine learning model to predict power excursions based

on an initial set of channels and the addition of a new set of channels. The data set includes the

impact of complex interactions between channels that result in the power excursion response. A

popular machine learning model for solving such complex problems is deep neural networks.

Deep neural networks are computational models that are inspired by the biological neural net-

works in the human brain [66]. The basic unit of a deep neural network is a neuron (also known

as a node or unit) as shown in Fig. 6.1(a), which receives the input from other neurons and com-

putes the output. In the real world, most data are nonlinear and we want these neurons to learn

complex nonlinear representations. Therefore, nonlinear activation functions are introduced to the

output of neurons to improve neural network approximations. Common types of nonlinear ac-
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Figure 6.2: Schematic of the experiment setup including 5 ROADM nodes, 4 fiber spans and 8
EDFAs with different gain characteristics. The training, validation, and test data are collected by
reconfiguring the channel loadings and measuring the power excursions.

tivation functions include tanh (hyperbolic tangent), sigmoid, and ReLU (a unit ramp function).

Recent work has reported the advantages of ReLU because ReLU does not cause the “Gradient

Vanishing” problem (which can completely stop the neural network from further training) [84].

However, the optimal activation functions will still depend on the particular applications and need

to be determined by trial and error during the training process. Deep neural networks combine

many layers of neural networks to find complex relationships and abstractions from the input data

to understand and approximate the output.

A deep neural network consists of three types of layers as shown in Fig. 6.1(b): (i) Input layer:

contain input neurons that provide information from the outside world. (ii) Hidden layer: contain

hidden neurons that perform nonlinear transformations from the input layer to the output layer.

A deep neural network may contain multiple hidden layers. (iii) Output layer: contain output

neurons that predict the output to the outside world. The initial weights of the neural network are

randomly set based on a probability distribution determined by the user. The first stage of training

the neural network is forward propagation. The input vector is propagated through the neural

network to determine the corresponding output. A cost function C is used to measure the accuracy

of the predicted output yi and the corresponding true output yi. Common cost functions include

mean square error (MSE) for regression (Eq. (6.1)) and cross entropy log loss for classification

(Eq. (6.2)):
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Figure 6.3: EDFAs in the first span with different gain spectra. (a) The Wavelength dependent gain
spectrum of the first EDFA, (b) Wavelength dependent gain spectrum of the second EDFA.

C =
1

2m

m∑
i=1
(yi − ŷi)

2 (6.1)

C =
1
m

m∑
i=1
(−yilog(yi) − (1 − yi)log(1 − yi)) (6.2)

The next step is to determine how to update the network weights in order to minimize the cost

function. Mini-batch (only a user-selected small subset of the training set in each training iteration)

gradient descent is commonly used to determine the direction of steepest descent and how each

weight in the neural network should be updated [149].

In order to optimize the performance of the deep neural network, validation data is used to

compare the performance of a deep neural network with different parameters. The configuration

that minimizes the specified loss function is chosen, and the test data is used to get an unbiased

view of the performance of the deep neural network.

6.4 Experimental Setup

A metro-scale multi-hop ROADM system shown in Fig. 6.2 is built to study wavelength switch-

ing using the proposed machine learning approach. At the transmitter, a 90-channel comb source

with spacing of 50-GHz is used to create 90 WDM channels from 191.60 THz to 196.05 THz (i.e.,
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1529.2 nm to 1564.7 nm in wavelength). The power of the transmitter is then equally divided into

four equal outputs using a 1×4 splitter, and each output is sent to a different ROADM (ROADM 1

to ROADM 4) to create different channel loadings. The ROADM system consists of five ROADMs

which are separated by four standard single-mode fiber (SSMF) spans. Each SSMF span contains

two dual-stage AGC EDFAs to compensate for the loss of the ROADMs and the transmission fiber

and one variable optical attenuator (VOA) to increase the span loss to match the average 18-dB am-

plifier gain. Two-stage EDFAs realize the tilt-control by adjusting the attenuation of the variable

optical attenuator (VOA) in the first stage, taking advantage of the fact that the tilt is dependent on

the internal gains of the individual stages [142]. The tilt of each EDFA is adjusted in order to create

wavelength dependent gain and study the power excursion mitigation, however, the peak to peak

gain variation is kept within ±0.5 dB, which is typical for line amplifiers. Two-stage EDFAs real-

ize the tilt-control by adjusting the attenuation of the variable optical attenuator (VOA) in the first

stage, taking advantage of the fact that the tilt is dependent on the internal gains of the individual

stages [142]. The VOA of the EDFA will be automatically adjusted by its internal controller based

on the user-specified tilt requirement. The tilt is defined as the peak-to-peak gain variation of a

least-squares-fitted line of the channel gains over the full signal band (ranging from 1529.2 nm to

1564.7 nm). Figure. 3 shows the gain spectrum of the two EDFAs in the first span. The tilt of the

first EDFA is set to -0.4 dB to compensate for the stimulated Raman scattering (SRS) in the trans-

mission fiber. The tilt of the second EDFA is set to 1.0 dB. The EDFAs in the other three spans have

the same gain and tilt settings, thus giving rise to a similar gain spectrum. After cascading four

transmission spans, the cumulative peak-to-peak gain variation across the C-band is measured to

be 3.8 dB. Note that 4-6 dB gain variation is typically allowed between ROADM nodes depending

on the system design. Such peak-to-peak gain variation along with the AGC operation results in

substantial power excursions in wavelength switching operations. Each ROADM is comprised of

multiple wavelength selective switches (WSSs), per-channel VOAs and per-channel optical chan-

nel monitors (OCMs). The power at the drop point is tapped to the OCM for per-channel power

measurement. To measure the power excursion, we first measure the per-channel power of initial
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channels at the channel drop point before the wavelength switching operation. Then, we measure

the per-channel power of initial channels at the channel drop point after the wavelength switching

operation (i.e., a new wavelength channel is added into the system). The power excursions are

measured by taking the differences between them. Note that in general ROADMs will perform

gain equalization for all the output ports to remove the power excursion accumulated in the pre-

vious link. This operation is time consuming and requires spectral analysis and therefore would

come after the channel add or drop event and would be used to remove any residual power ex-

cursions. Using the deep neural network based wavelength switching, thus minimizes these gain

equalization operations, resulting in more stable system operation and faster turn up times for new

channels.

The effectiveness of machine learning is evaluated for power excursions that occur on top of

the static power divergence due to the EDFA gain ripple and tilt. Thus, the system is initially

configured to remove the static power divergence. Two types of channels are identified for wave-

length switching operations—initial channels and new channels. First, the VOAs in each ROADM

are initialized to ensure uniform 0-dBm launch power per-channel into the transmission fiber (i.e.,

19.5-dBm total power) with the 90 initial channels (i.e., with 90-channel WDM input). These

attenuation values are stored as a reference for newly added channels. Note that the VOA initial-

ization can largely mitigate the channel power divergence due to static wavelength dependent gain

in the EDFAs and static SRS in the transmission fiber. However, the initial VOA values cannot

guarantee uniform 0-dBm power per-channel when the initial channel loading is changed in later

experiments due to EDFA tilt change, EDFA power excursions, and dynamic SRS. Thus, VOA

adjustment is executed to remove any power variations before wavelength switching, as would

normally be done in system operation.

6.5 Results and Discussion

In this section, we describe the data collection process, deep neural network architecture, train-

ing process, power excursion estimation, and wavelength assignment recommendation using the
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trained deep neural network. A deep neural network is first built and trained. Its performance is

evaluated with regard to the number of training samples, the speed of the training process, and the

accuracy in power excursion prediction and wavelength assignments. The performance of ridge re-

gression and random forest methods are evaluated against the deep neural network for comparison

purposes.

6.5.1 Data Collection

The first step in learning the complex optical power excursion response is extensive data col-

lection of the power excursion response under a variety of channel loadings. However, such a

data collection process is time-consuming due to the speed limitation of hardware actuation and

software control. In this experiment, collection of each data sample takes approximately 3 sec-

onds on average, including the latency of control signaling, WSS actuation along an optical path,

VOA adjustment, and power excursion measurement. Note that the VOA adjustment is executed

only once on each initial channel for each initial channel loading to remove any power variations,

as would normally be done in system operation. The WSS actuation to turn on the new chan-

nels (with no additional VOA adjustments) and the power excursion measurement are executed

for each wavelength switching operation. Collecting data might even take longer in commercial

large-scale systems, and thus potentially imposes an obstacle to using the machine learning in

practical ROADM systems. Methods to overcome to address these implementation issues will be

discussed later. In this experiment, 1,680 training cases are used to train a deep neural network,

each of which contains 40 power excursion measurements (i.e., 67,200 training samples in total) as

the following process: 40 available wavelength positions for adding a new channel are randomly

selected, and the maximal power excursion among all initial channels is measured by switching

on and off these 40 wavelength positions one by one. In addition, 210 validation cases are col-

lected for evaluating how well the deep neural network is trained and which parameters provide

optimal prediction performance. Finally, another 210 testing cases are collected for evaluating the

prediction accuracy and the performance of wavelength switching using the deep neural network.
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Figure 6.4: The architecture of the deep neural network. The input layer contains 180 features,
representing the ’on’ or ’off’ state of initial channels and new channels. The output layer contains
a single output, representing the maximal power excursion among all initial channels.

Table 6.1: Parameters of the optimized deep neural network.
Parameter Value

Neurons in hidden layers (180,120,30,15)
Activation function (tanh, tanh, ReLU, ReLU)
L2 regularization 0.001
Dropout rate 0.1
Initial learning rate 0.005
Number of epochs 217

In total, 84000 data samples are used in this experiment, taking approximately 70 hours for col-

lection. Note that in this experiment all channels are sent through the longest route over 4 spans

(i.e., ROADM 1-2-3-4-5), but the machine learning methodology is applicable to the multi-route

case by recording the added ROADM and the dropped ROADM as additional input and collecting

more training samples. Strategies to minimize the number of training samples while ensuring the

prediction accuracy will be detailed in the training section.

6.5.2 Deep Neural Network Architecture

A deep neural network is built to predict the power excursion that occurs when adding a new

channel into the multi-hop ROADM system. The input of the deep neural network is a 180-element

binary vector as shown in Eq. (6.3). The first 90 binary input features (which correspond to 90

wavelength locations) are used to represent the wavelength locations of initial channels. A ‘1’ rep-

resents that the wavelength is initially lit or occupied and a ‘0’ represents that the wavelength is not

initially lit. The next 90 binary input features represent the wavelength locations of new channels
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being added into the systems. The ‘1s’ represent the new wavelength locations of new channels

added into the system. Note that in this experiment, we focus on the channel add operation, and

we will show that minimized power excursions are guaranteed for channel add operations. Since

the channel drop operation is the reverse process of the channel add operation, minimized power

excursions are also guaranteed for the corresponding channel drop operations. The output that we

aim to predict is the maximum power excursion among all initial channels as shown in Eq. (6.4).

®x = [®xinitial, ®xnew] = [x1, x2, ..., x90, x91, ..., x180] ∈ {0,1}180 (6.3)

®y = max
j∈Initial channel

∆Pj (6.4)

The optimal neural network architecture is determined by varying a number of parameters.

The optimized parameters include: the number of hidden layers, the number of neurons per layer,

the activation function of hidden layers, the number of iterations (or epochs), the learning rate,

the L2 regularization term, and the dropout rate. The performance is determined by minimizing

the root mean square error (RMSE) against the validation set. The RMSE can be interpreted as

the standard deviation of the difference between observed and predicted values (in dB). A lower

RMSE indicates a more accurate prediction. The architecture with the lowest validation RMSE

depicted in Fig. 6.4 includes 4 hidden layers using a combination of tanh and ReLU activation

functions. Other parameters are summarized in Table. I, and the details of training the deep neural

network will be discussed in the next section.

6.5.3 Training

It is important to minimize the data collection time while still ensuring prediction accuracy.

With a small number of available training samples, the deep neural network tends to over-fit the
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Figure 6.5: The root-mean-square error (RMSE) of the training set and the test set as a function of
the number of training samples during online training.

specific training samples resulting in a low training error. However, since these training cases do

not well represent the full set of behaviors in the system, this causes a high variance that gener-

ates a high prediction error in the test samples as new data samples have not been seen by the

deep neural network. Getting more training samples can effectively reduce the variance and better

generalize the model, but the prediction performance might saturate at some point because of the

existence of a small bias that limits further improvement of learning performance. The bias in

this experiment mainly arises from actual system and measurement errors such as time-varying

penalties (e.g., temperature change) and measurement uncertainty (e.g., OCM inaccuracy). For

example, the accuracy of OCMs in this experiment is ±0.1 dB, and it may happen that two data

samples with the same features give rise to different target output.

In this experiment, online training is implemented in a control plane to determine the number

of training samples that are needed as follows. 210 testing cases and 210 validation cases are first

collected. The online training of the deep neural network contains repetitive processes. For each

process, 168 more training cases (i.e., 6,720 more training samples) are added to the training set to

train the deep neural network and calculate the root-mean-square error (RMSE) of the 210 testing

cases. The online training continues until the test RMSE does not decrease with two consecutive

processes. Fig. 6.5 illustrates the training RMSE and test RMSE over a varying number of training

samples (also called the learning curve) during online training of the deep neural network. The

training error curve shows the difference between the prediction based on the training data com-

pared against the actual training data; whereas the test error curve shows the error in predicting the
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power excursion for different sets of random data (the test set). With just 6720 training samples,

there is a large difference between the training error and the test error due to large variance on

different samples, indicating a poor generalization of the model. With the increased number of

training samples, the training error and the test error start to converge but a gap will persist due

to the inherent variance of the samples. Online training stops at 67200 training samples because

there is no RMSE decrease over two consecutive processes.

The deep neural network shown in Fig. 6.4 is trained to minimize the RMSE using mini-batch

stochastic gradient descent (SGD) with a mini-batch size of 64. In order to prevent overfitting,

regularization techniques, including L2 regularization [201] and dropout [134] are implemented.

Several combinations were tested with a varying L2 regularization value and dropout rate in each

hidden layer, and we found an L2 regularization of 0.001 and a dropout rate of 0.1 can effectively

prevent overfitting and achieve low RMSE. The initial learning rate is set to 0.005 and is adapted

in the training stage to allow for fine weight updates. The learning rate adaptation is multiplied by

0.99 every epoch.

It is important to reduce the training time as long training time for a system can add significant

cost. One important metric that decides the training time is the number of epochs in the training

stage, since the total training time is linearly proportional to the number of epochs. In this ex-

periment, the tradeoff between the prediction accuracy and the number of epochs is evaluated by

comparing the accuracy of the neural network predication using the validation data set. Figure. 6

shows the RMSE (in dB) of the training set and the validation set in the training stage as a function

of the number of epochs. Initially, the RMSE of both the training set and the validation set signif-

icantly decreases with the increased number of epochs. After approximate 200 epochs, although

small fluctuations exist, the RMSE of the validation set shows minimal improvement. In fact, the

RMSE of the validation set is 0.103 dB after 200 epochs and 0.100 dB after 900 epochs. In this

experiment, the training is terminated if three consecutive epochs fail to decrease the RMSE of the

validation set. By introducing this rule to the training stage, the training stage is terminated at the

217th epoch with a validation RMSE of 0.104 dB. Compared with the validation RMSE of 0.100
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Figure 6.6: RMSE as a function of the number of epochs in the training state. The training stage is
terminated at the 217th epoch with the validation set RMSE of 0.104 dB.
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Figure 6.7: Predicted power excursion vs. measured power excursion over the test set. (a) Deep
neural network, (b) Ridge regression, (c) Random forest. Both ridge regression and random forest
underestimates the power excursion when the actual power excursion is above 2dB.

dB at 900th epoch, there is negligible performance difference, but the training time is reduced by

more than a factor of four.

6.5.4 Performance Evaluation

After the training stage has completed, a check on the deep neural network performance is

carried out against the test set using different metrics. For comparison purposes, ridge regression

and random forest methods are also evaluated against the test set. For the ridge regression model,

the regularization parameter was tuned to 0.01 through cross validation. For the random forest

model, 200 trees (with 180 features being considered for each tree) are found to provide the best

performance while ensuring minimal training time. Note that we also evaluated the support vector

machine (SVM), but its computational time does not scale well to a large number of training

samples [141].

First, the RMSE and the maximal prediction error of the entire test set are evaluated, and the re-
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Table 6.2: Test RMSE and maximal prediction error.
Machine learning model RMSE (dB) Maximal error (dB)

Deep neural network 0.104 0.8
Ridge regression 0.273 2.3
Random forest 0.281 2.7

sults are summarized in Table 6.2. A lower RMSE indicates a more accurate prediction. Similarly,

a lower maximal prediction error reveals a better fit under corner cases. The deep neural network

outperforms ridge regression and random forest by more than a factor of two in the RMSE and the

maximal error. Random forest results in a worse performance because it is not able to learn the

complex nonlinear relationship among 180 features with the given 67200 training samples. Ridge

regression performs worse than the deep neural network because ridge regression does not take

into account the inter-dependencies between input features. The prediction errors using different

machine learning models can also be viewed in Fig. 6.7. The actual power excursion ranges from

0 dB to 3.5 dB, and black dashed lines indicate the perfect prediction. Its seen that the deep neural

network obtains significantly lower errors between the actual power excursions and the predicted

power excursions, and its accuracy is stable over the entire power excursion range. On the other

hand, both ridge regression and random forest result in high prediction errors, particularly when

the actual power excursion is above 2 dB.

The second metric used to evaluate the performance is the mean square error of the channel

(MSEC) at a particular wavelength. A low MSEC indicates a high prediction accuracy for the

particular wavelength, while a high MSEC indicates that the particular wavelength may not be

considered as a potential candidate for wavelength switching due to a substantial prediction error.

Fig. 6.8 shows the MSEC of 10 different wavelengths. The deep neural network efficiently keeps

the MSEC below 0.02 dB across all 10 wavelength locations, while the maximal MSEC using

ridge regression and random forest can be as large as 0.11 dB and 0.13 dB, respectively. Moreover,

the MSEC is stable among all 90 channel wavelength locations with a standard deviation of 0.004

(Note that only 10 wavelengths are shown in the figure), indicating that the deep neural network is
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Figure 6.8: MSEC as a function of wavelength locations using different machine learning ap-
proaches. The deep neural network not only provides less prediction error but also more stable
performance across the entire 90 channel spectrum.

trustworthy to make an accurate prediction over the entire spectrum. In contrast, ridge regression

and random forest result in much higher standard deviations of 0.03 and 0.04, respectively.

Third, we evaluate the δ recommendation accuracy, which is the proportion of test cases in

which the deep neural network is able to recommend a wavelength with a power excursion within

a δ margin from the minimal power excursion (which is achieved by switching on the optimal

wavelength). A higher δ recommendation accuracy indicates the model is able to accurately rec-

ommend wavelengths for wavelength switching operations within a tighter power excursion bound.

Fig. 6.9 shows the δ recommendation accuracy as a function of the δ margin using the deep neural

network, ridge regression, and random forest. In this experiment, the minimum δ margin is 0.1 dB,

taking into account the ±0.1 dB precision in the power measurement.

When the δ margin is set to 0.1 dB, such that the system has the strictest requirement of wave-

length assignments (i.e., the exact optimal wavelength must be predicted by the model), the deep

neural network can recommend the optimal wavelength among 40 wavelength candidates over

79.5% of the time (i.e., 167 test cases out of 210 test cases), while ridge regression and random

forest only achieves 41.4% and 56.7% recommendation accuracy. When the δ margin increases

to 0.4 dB (i.e., the actual power excursion of switching on the recommended wavelength must be

within 0.4 dB from the minimal power excursion), the recommendation accuracy of the deep neu-

ral network is 100%, while the recommendation accuracy of ridge regression and random forest

are only 89.5% and 96.2%. We also note that although random forest demonstrates a better accu-
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Figure 6.9: δ-recommendation accuracy as a function of δ margin from the actual minimal power
excursion. The deep neural network is able to recommend the actual optimal wavelength 79.5% of
210 test cases.

racy than ridge regression under a small δ margin, its performance gets saturated after δ = 1.2 dB.

This result indicates that random forest leads to a higher variance over the new data set with high

power excursions (i.e., predict some test cases pretty well but others poorly). Note that these tests

are conducted over a finite size, randomly generated data set within a very large space of possible

values and therefore this bound does not guarantee accuracy over the full range of possible events.

Next, the classification accuracy is assessed for different power excursion thresholds using re-

ceiver operating characteristic (ROC) curves as shown in Fig. 6.10. A better classification accuracy

indicates a more powerful model that is able to separate good wavelength candidates from the bad

ones for a given system power excursion threshold. In this experiment, the classification accuracy

is checked against two different power excursion thresholds, 0.5 dB and 1.5 dB, in according to the

system QoT requirement reported in our previous work [143]. The classification is evaluated by

two metrics: (i) The ability to separate positive cases from negative cases, which is quantified by

the true positive rate (TPR) at a given false positive rate (FPR). A positive case means that the deep

neural network recommends a channel as being within a given decision threshold, and a negative

case means that the deep neural network rejects a channel as being outside a given decision thresh-

old. Note that the decision threshold is used by the machine learning model to determine whether

a potential wavelength is positive or negative, which is different from the system power excursion

threshold. TPR is the ratio of correct positive predictions to all actual positives, and FPR is the ratio

of incorrect positive predictions to all actual negative predictions. A perfect classification model is
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Figure 6.10: Receiver operating characteristic (ROC) curves to assess the classification accuracy
for different system power excursion thresholds. (a) 0.5-dB threshold, (b) 1.5-dB threshold.

able to obtain 100% TPR while maintaining 0% FPR. The ROC curve is formed by connecting all

TPR/FPR pairs, each of which corresponds to a different decision threshold. (ii) The area under

the ROC curve (AUC). The AUC varies from 0.5 to 1, where 0.5 is the performance of a random

classification model and 1 is the performance of a perfect classification model. Figure 10 shows the

classification accuracy under 0.5 dB and 1.5 dB thresholds using the deep neural network, and the

performance is compared to ridge regression and random forest. With a 0.5-dB power excursion

threshold, the deep neural network obtains the best classification accuracy with a TPR of 80.4%

while ensuring the FPR less than 1% and the AUC of 0.977. When the system power excursion

threshold is increased to 1.5 dB, the deep neural network obtains the TPR of 97.1% with less than

1% FPR and the AUC is 0.995. We also note the interesting behavior of random forest for which

the classification accuracy goes down (with an AUC from 0.947 to 0.883) when the system power

excursion threshold is increased from 0.5 dB to 1.5 dB. This indicates that random forest tends to

estimate the power excursion to be less than 1.5 dB, when the actual power excursion is above 1.5

dB.

Finally, we evaluate the PTPR, which is defined as the precision at a specific TPR under a sys-

tem power excursion threshold. The precision is the ratio of true positives to the number of total

positive values predicted. Keeping a high PTPR is important because minimizing the chance of

adding a channel with a power excursion beyond the system margin (which may disrupt the whole

transmission system) is more important than missing a possible valid channel candidate. Thus, a

high PTPR guarantees reliable system operations with a minimal possibility of system disruption
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Figure 6.11: PTPR curves using different machine learning models with two different system
power excursion thresholds. (a) 0.5-dB threshold, (b) 1.5-dB threshold.

due to wavelength switching operations. Fig. 6.11 shows the PTPR curve with 0.5 dB and 1.5 dB

thresholds using different machine learning models. With a 0.5 dB power excursion threshold, the

deep neural network obtains a precision of over 99% while ensuring a TPR of greater than 76%

(i.e., ensure less than 1% false positives but also misses roughly 24% valid wavelength candidates).

For comparison, ridge regression and random forest only obtain the TPR of 13.1% and 35.4% re-

spectively in order to achieve the same precision. When the power excursion threshold is increased

to 1.5 dB, the deep neural network is able to obtain a 100% precision while obtaining a 96.4% TPR

(i.e., ensure zero false positives while missing only 3.6% valid wavelength candidates).
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Chapter 7: Hybrid Machine Learning EDFA Model

In Chapter 6 we designed a feedforward deep neural network based-ML model to predict the

power dynamics of a 90-channel ROADM system. In this chapter we design an improved ML

model to predict the power excursion of the amplifier gain in an EDFA.

7.1 Introduction

In previous research, methods to predict to optical channel power divergence and dynamics

in transmission systems include neural network based dynamic channel power estimation [79] and

machine learning based power divergence prediction[94]. Furthermore, several mathematical mod-

els were introduced to predict individual channel output power under changing channel configura-

tions, including a numerical power estimation framework used to predict EDFA output power[59],

a detailed analytical model for the wavelength dependent gain impact[100] and a model designed

for system applications using a simple characterization method[97], but with limited accuracy.

We examine the use of machine learning, replacing lookup tables or analytical models [100, 97,

240, 233, 142, 50], to determine the channel configuration and input power dependent EDFA gain

spectrum. Deep neural networks are built and trained to predict the gain spectrum based on the

input power spectrum. However, these machine learning models are built solely from a-posteriori

knowledge which is trained from the experimental data, ignoring the existing a-priori knowledge.

We then compare the performance of a hybrid machine learning (HML) model for EDFAs, which

combines an analytical model with a neural network machine learning model to achieve higher

prediction accuracy while reducing the training complexity, in both the training time and the size

of the training sample data sets.

The remainder of this chapter is organized as follows. In Section 7.2, we discuss the basics of
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power excursions and gain dynamics in AGC WDM line EDFAs. In Section 7.3, we discuss the

experimental setup. In Section 7.4, we discuss the deep neural network model and its performance.

In Section 7.5, we discuss the hybrid deep neural network model and its performance.

This research was done in collaboration with Prof. Dan Kilper’s research group at the Uni-

versity of Arizona, with significant contributions from Postodctoral Research Scientist Dr. Yao Li,

and collaborating Ph.D. students Shengxiang Zhu and Dr. Weiyang Mo. The hardware testbed

for the evaluations was entirely built by collaborators at the University of Arizona. The research

results presented in this chapter appeared in the proceedings of European Conference on Optical

Communication’18 (ECOC) [240] and in OSA OFC’20[239].

7.2 WDM Channel Gain Models

Gain dynamics occur in automatic gain controlled (AGC) WDM line EDFAs due to wavelength

dependent gain, where the gain excursion ĝ due to a change in channel powers Pj can be written:

ĝ(λi) = g(λi)
GTC

GM
[

∑
j Pj + NI + NC∑

j Pjg j t j + gN NR + gI NI
] (7.1)

Accurate channel output power estimation therefore requires the gain ripple g j , tilt t j , and

input noise NI and gain gI , amplifier noise NR and gain gR, and the amplifier noise compensation

factor NC . Many of these parameters such as g j and t j are also dependent on the input channel

configuration through the internal amplifier gain. Other effects such as spectral hole burning may

also play a role.

In another study, a model was proposed for calculating the gain spectrum based on measure-

ment of the single channel ripple and WDM ripple functions [97], which can be written as:

ĝ(λi) = g(λi) +

∑n
j=1[gs(λ j) − g(λ j)]

n
(7.2)
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Figure 7.1: Gain spectrum in experiment and prediction by analytical model.

Figure 7.2: Experiment setup for data capture.

In this expression, ĝ(λi) is the gain spectrum of wavelength λi when a set of wavelengths

{λ1, ..., λn} is input to the EDFA. g(λi) represents the characterized WDM gain spectrum, i.e., the

gain spectrum when all WDM input channels are active. gs(λi) denotes the characterized single

channel gain spectrum, i.e., the spectrum of the gain of each channel λ j when no other channels

are present. An example of measured g(λ j) and gs(λ j) is shown in Fig. 7.1. This center of mass

(CM) approach conveniently provides an estimate from easily measured configurations, but misses

detailed effects that can be important, particularly in certain corner cases.

7.3 Experimental Setup

As shown in Fig. 7.2, a 90-channel comb source is used to generate the WDM input. The

wavelength selective switch is used to control the input power spectrum. The EDFA is configured

to have 3 dB tilt and work in AGC mode, with target gain set as 18 dB. Two optical channel

monitors are used to monitor the input and output power spectrum. The controller is used to

communicate with all of these devices and capture data.
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Figure 7.3: Architecture of neural networks.

First, we characterized the single channel and WDM ripple of the EDFA and built a model

using (Eq. (7.2)). In Fig. 7.1, the typical single channel and WDM input gain spectra are shown.

We can see that for different channel loading the gain spectra are quite different.

7.4 Machine Learning Model and Performance

7.4.1 Machine Learning Model

A supervised machine learning algorithm is designed to train a neural network model of ED-

FAs to predict the gain spectrum based on the input power spectrum. The Neural Network (NN)

architecture is implemented with TensorFlow.

Ninety features are used as the input to the NN, representing the power levels of each of the 90

channels. A separate NN is created for each output channel. Data is divided into 3 classes: training

data, validation data, and test data. The training data is used to train the NN to minimize the Mean

Square Error (MSE) loss function. The validation data is used to determine which parameters

provide optimal performance after using the training data. The test data is used to evaluate the

trained model.

The resulting parameters for the NN architecture are described as follows. All power levels

are converted into decimal power levels, normalized, and scaled by a factor of 300. Each neu-

ral network has 4 hidden layers with artificial neuron transfer function of ReLU (rectified linear

unit), Linear, ReLU, Linear, and ReLU. The full NN architecture can be seen in Fig. 7.3. The

model is trained by minimizing the MSE loss function using stochastic gradient descent with back-
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Figure 7.4: Normalized frequency desnity funciton of prediction error using the CM analytical
model.

Table 7.1: RMSE of analytical and ML models.
Dynamic Range [dB] Analytical [dB] Machine Learning [dB]

±3 0.247 0.081
±6 0.359 0.180
±9 0.410 0.266

propagation with a mini batch size of m=60 and a learning rate, α = 0.00025. Training is done

over 15000 iterations.

7.4.2 Machine Learning Performance

We characterized the single channel and WDM ripple of the EDFA and built a model using

Eq. 7.2. In Fig. 7.1, the typical single channel and WDM input gain spectra are shown. We can see

that for different channel loading the gain spectra are quite different.

We used captured samples of measured input and output spectra to evaluate the error of analyt-

ical model derived from Eq. 7.2. In Fig. 7.4, the normalized frequency density (NFD) of the error

of analytical model is shown. It is shown that wider dynamic range of the input power leads to

higher error in the prediction of the gain spectrum.

To build the NN, we captured data samples of the input and output spectra under different

channel loadings. We then compare the root mean square error (RMSE) distribution of the CM

analytical model and the ML model. In Table 7.1, the dynamic range is defined as the range over

which the input channel power is varied around the target power (-18 dBm) in a uniform random
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Figure 7.5: Error distribution of analytical model and ML model with dynamic range of ± 3, 6, 9
dB, (a) ±3 dB, (b) ±3 dB corner, (c) ±6 dB, (d) ±6 dB corner, (e) ±9 dB, (f) ±9 dB corner.

distribution. It is shown in the table that the ML model is able to reduce the RMSE by 67%, 50%,

and 35% in scenarios where dynamic range is ±3 dB, ±6 dB, and ±9 dB.

We then analyze the error distribution of the analytical model and the ML model using the same

test set, shown in Fig. 7.5(a), Fig. 7.5(c) and Fig. 7.5(e). In the case of ±3 dB dynamic range, the

ratio of the errors below 0.5 dB is 99.95% for the ML model and 94.9% for the analytical model.

In the ±6 dB case, the ratio is 98.37% vs. 85.11%. In the ±9 dB case, the ratio is 93.57% vs.

81.07%. The ML model shows better performance in gain spectrum prediction for all dynamic
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range values.

Since the most severe channel power dynamics occur when there is a handful of open channels,

it is of interest to analyze how the ML models perform in these corner cases. Here we look at the

corner case with just two channels turned on. In Fig. 7.5(b), Fig. 7.5(d), and Fig. 7.5(f), the error

distributions of these corner cases are shown. With dynamic ranges of ±3, 6, 9 dB, the ratios

of prediction errors below 0.5 dB are 99.38% vs. 95.88%, 98.57% vs. 87.78% and 95.62% vs.

83.18%, respectively. The ML model is able to avoid high errors (over 0.5 dB) for most of the

cases, outperforming the analytical model.

To verify the performance of ML modeling under different EDFA configurations, we adjusted

the gain setting of the EDFA and test the error of the models. In Fig. 7.6, the EDFA with 14 dB

and 22 dB gain were modeled and tested and the error distributions are shown. The overall RMSE

error reduction in ±9 dB dynamic range is 10.37% (0.3535 vs. 0.3944) for 14 dB gain and 15.21%

(0.3501 vs. 0.4129) for 22 dB.

The EDFA spontaneous emission noise will show up at the downstream amplifier inputs on

blocked channels if more than one amplifier is used between nodes (before being blocked again at

the next node). In this ML model, noise power outside the dynamic range is ignored. Test results

further show that the RMSE reduction is 51.71% (0.2368 vs. 0.4904), 33.18% (0.2346 vs. 0.3511),

9.44% (0.2840 vs. 0.3136), with blocked channel noise levels of -40, -35, -30 dBm per channel,

respectively.

7.5 Hybrid Machine Learning Model and Performance

7.5.1 Hybrid Machine Learning Model

A supervised machine learning algorithm is designed to train a neural network model of ED-

FAs to predict the gain spectrum based on the input power spectrum. The Neural Network (NN)

architecture is implemented with TensorFlow.

For the hybrid ML model, one hundred eighty features are used as the input to the NN. The

first ninety features represent the power levels of each of the 90 channels. The second 90 features
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(a) (b)

Figure 7.6: Error distribution of analytical model and ML model with gain value of (a) 14 dB, and
(b) 22 dB.

Figure 7.7: Structure of the hybrid machine learning model. 90 features (x1− x90) of input channel
power and another 90 features (x91− x180) of gain spectrum predicted by analytical model are used.
The hidden layers have 180, 90, 90, 45 neurons.

are the predicted output power levels determined by the analytical model. All power levels are

converted into decimal power levels and normalized. Each neural network has 4 hidden layers

and an output layer with artificial neuron transfer functions of ReLU (rectified linear unit), Linear,

ReLU, Linear, and ReLU. Each layer contains 180 neurons, 90 neurons, 90 neurons, 45 neurons,

and 1 neuron, respectively. The full NN architecture can be seen in Fig. 7.7.

A separate NN is created for each output channel. Data is divided into 3 classes: training data,

validation data, and test data. The training data is used to train the NN to minimize the Mean

Square Error (MSE) loss function. The validation data is used to determine which parameters

provide optimal performance after using the training data. The test data is used to evaluate the

trained model. The model is trained by minimizing the MSE loss function using stochastic gradient
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Figure 7.8: Normalized Frequency Density of Analytical, ML, and HML models after 5000 itera-
tions.

(a) (b)

Figure 7.9: EComparison of models in (a) convergence speed, and (b) size of samples.

descent with backpropagation with m = 60 mini batch size and a learning rate α = 0.00025.

In the experiment, the EDFA is configured to have 18 dB gain and the input channels are

randomly set to be ‘on’ or ‘off’, with -18 dBm +/- 6 dB variation in optical channel power for each

‘on’ channel. Three dimensions of machine learning system performance are evaluated, as shown

below.

7.5.2 Hybrid Machine Learning Performance

First is the accuracy of HML model with abundant data samples (12,000 samples is used) and

unlimited training time (25,000 iterations is used). The mean square error (MSE) of the predicted

channel power is 0.362 dB (analytical), 0.160 dB (ML), 0.144 dB (HML), in which HML has a

10.5% reduction of error, compared with ML model. In the worst case, HML has 1.15% of high

error (error > 0.5 dB), which is lower than ML (1.63%).

As a result, the ultimate performance of HML is slightly better than ML given unlimited data
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and time. However, when data and time are limited, HML has a much better performance than

ML. In Fig. 7.8, the normalized frequency density of error shows that HML has much narrower

error distribution than ML, when the number of iterations is limited to 5,000 (originally 25,000,

training sample size is the same as original). From Fig. 7.9(a), the convergence process of the

models is shown, where the HML has a faster speed. In fact, considering a target MSE of 0.2 dB,

HML requires 37% less time than the ML model (with the same ML configuration).

The third dimension is the number of training samples required. In Fig. 7.9(b), the MSE with

different numbers of samples are shown for the three models. With fewer training samples, HML

can achieve the same performance as ML. For example, to achieve the ultimate 0.134 dB MSE by

the ML model, HML needs 33% fewer training samples. In another example, in order to surpass

the prediction accuracy of the analytical model, HML needs 17% fewer training samples than the

ML model.

Greater accuracy in the channel power prediction for EDFAs is expected to improve the accu-

racy of channel performance or QoT estimation, which is critical for the control and management

of optical systems. In a typical optical system, the accuracy of power control and measurement is

usually around 0.1 dB, which means that the 0.144 dB prediction error of the HML model is close

to the system limitation. Although the HML can largely reduce the training sample size and train-

ing time relative to the ML approach, it still requires a longer data capturing process, compared to

the analytical model, and further progress is needed to reduce this training process, for example

through the use of transfer learning.
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Part IV

Adaptive Multicast Services
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Chapter 8: Light-Weight Feedback for Wireless Multicast

This part of the thesis focuses on large scale content delivery via wireless multicast for both

WiFi and cellular networks. In this chapter we address the challenge of light-weight feedback for

WiFi multicast.

8.1 Introduction

Current state of the art techniques using IEEE 802.11 for content delivery leverage either uni-

cast or multicast data delivery. Commercial products [42, 231] rely on unicast for streaming the

content to individual users. With standards such as 802.11ac offering total speeds up to 800 Mbps

using multi-user MIMO, it is theoretically possible to serve video streams to hundreds of users.

However, studies [159, 80] throw cold water on this promise. A large number of neighboring APs

leads to hidden terminal problems and this coupled with increased interference sensitivity due to

channel bonding, makes the entire approach highly susceptible to interference.

On the other hand, WiFi multicast services are rarely used by practical content delivery applica-

tions. Standard WiFi broadcast/multicast frames are transmitted at a fixed and low bitrate without

any feedback. This raises several known reliability and efficiency issues. While some commercial

products [42] are experimenting with WiFi multicast deployments for crowded environments, there

remain several challenges to its widespread adoption. In particular, a published IETF Internet Draft

highlights several open technical problems for WiFi multicast [160]. High packet loss due to inter-

ference and the hidden node problem can significantly degrade service quality. On the other hand,

transmitting at low bitrates leads to low network utilization. As described in Section 8.2, there are

numerous studies that propose solutions for overcoming these limitations from two aspects. One

aims to reduce the overhead of feedback information to the multicast sender. The other aims to
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Figure 8.1: The AMuSe feedback mechanism (highlighted in red) as a part of the overall
AMuSe system.

improve message reliability based on available feedback information. All the existing schemes,

however, suffer from one or more issues including lack of scalability, inability to guarantee high

service quality, or compliance with existing standards. Further, none of the schemes have been

tested experimentally at scale.

We consider the use of WiFi multicast to address the challenge of providing scalable and effi-

cient delivery of multimedia content to a very large number of WiFi nodes in a small geographical

region (e.g., sport arenas, lecture halls, and transportation hubs). This is an attractive approach

for delivering live video content to a dense user population that shares common interests (e.g.,

providing simultaneous video feeds of multiple camera angles in a sports arena).

The core challenge in providing such a service is collecting limited yet sufficient feedback

from the users for optimizing the network performance. To address this challenge, we introduce

AMuSe (Adaptive Multicast Services), a low-overhead feedback mechanism which leverages the

existing WiFi standards for tuning the network parameters, i.e., optimizing the network utiliza-

tion while preserving Quality of Service (QoS) requirements. AMuSe is based on the following

hypothesis, which was reported in [11] and is validated in this chapter.
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Figure 8.2: Feedback node selection by AMuSe. A node with the poorest channel quality in every
neighborhood is selected as a Feedback node. Each feedback node periodically sends updates
about the service quality to the Access Point.

Main Hypothesis: A cluster of adjacent nodes experience similar channel quality and suffer from

similar interference levels. Hence, a node v with a worse channel condition than its adjacent

neighbors can represent the service quality observed by the nodes in the cluster.

AMuSe dynamically divides the nodes in a network into clusters based on the adjacency of

nodes and maximum cluster size (D m). In each cluster, one node is selected as a Feedback (FB)

node and the FB node updates the AP about its service quality, e.g., channel quality (an example

is shown in Fig. 8.2). The AP, in response, may take several actions such as1:

(i) Rate Adaptation: AMuSe can allow the APs to transmit multicast traffic at the highest possible

bitrate while meeting constraints set by a network operator, i.e. ensuring high Packet Delivery

Ratio (PDR) for a large fraction of the nodes.

(ii) Tuning FEC: We demonstrate in this chapter that ensuring 100% packet deliveries to all nodes

is challenging. In large multicast groups, even a small amount of packet losses at nodes could

lead to large packet retransmissions. In such situations, dynamically tuning application-level FEC

might be a more suitable option. Feedback from AMuSe can be used to adjust the amount of FEC

dynamically.

(iii) Detecting Interference: AMuSe collects detailed packet statistics which can be used to iden-

tify causes of packet loss in the network such as collisions and noise. For instance, packet losses

that occur at the same time at multiple nodes can help pinpoint the location of the interference.

1The actions of the AP will require changes only at the AP side which is relatively straightforward.
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AMuSe can be implemented as a light-weight application on any WiFi enabled device with

minor or no modifications to the receiver devices and does not require changes to the existing

802.11 standard. The AMuSe feedback mechanism allows multicast service operators to balance

between the number of FB nodes, the accuracy of the feedback, and the overall convergence time

by controlling AMuSe parameters, such as the cluster radius D. AMuSe ensures that every node

is at most D m away from an FB node with similar or weaker channel quality. To ensure sparse

FB node density, any pair of FB nodes are at least D m apart which results in low communication

overhead. The problem of selecting FB nodes which meet the above requirements is a variant of

the well known Minimal Independent Dominating Set problem [131]. Although this problem is

NP-hard, we prove that AMuSe can find a solution with a small constant approximation ratio.

We evaluated AMuSe on the large-scale ORBIT testbed [151] using over 200 WiFi nodes by

implementing AMuSe on the application layer at each device. In all of our experiments, one node

served as the AP and it sent a continuous multicast flow to all the other nodes, which acted as re-

ceivers. We first study the variation of channel quality metrics in different scenarios, (e.g., varying

external interference levels, different transmission bit rates). The observations from these experi-

ments serve as guiding principles for the design of AMuSe.

We observe that during any experiment, some nodes, which will be defined as abnormal nodes,

suffer from low PDR, even when the AP is transmitting at a low bitrate and there is no external

interference. Furthermore, this set of abnormal nodes varies across experiments.

We collected detailed channel and service statistics from all the nodes. They include the Link

Quality2 (LQ) reported by each node’s WiFi card as representative of its observed received signal

strength (RSS), its PDR, and its distance from the AP. Our preliminary evaluations show only

moderate correlation between the nodes’ LQ and the experienced PDR and a weak correlation

between the nodes’ distance from the multicast AP and the PDR values.

To validate the Main Hypothesis, we consider all the possible clusters with radius 3 and 6 m

and calculate the Standard Deviation (STD) of the LQ and PDR values in the clusters at different
2Although LQ is not a standard measurement metric, we observed that the reported LQ by the Atheros chipsets

indicates the RSS in db normalized to a reference value of -110 dBm (thermal noise).
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bitrate and noise-levels. Our experiments indeed show low LQ and PDR STDs between the nodes

in a cluster. However, as we increase the transmission bitrate or the noise level, we observe an

increase in STD for the PDR values. We also notice that clusters with a small radius have lower

LQ and PDR STDs than larger clusters.

We assess the feedback reports produced by AMuSe when the channel quality is evaluated ac-

cording to the nodes’ LQ, PDR, or a combination of them. These variants are denoted as AMuSe-

LQ, AMuSe-PDR, and AMuSe-Mix respectively. We compare their performance to other feedback

node selection schemes; K-Worst [218, 39], which selects the receivers with the worst channel con-

dition as FB nodes, and Random, which selects a fixed number of random FB nodes. To evaluate

the quality of an FB node selection, we compute the number of non-FB nodes that experience PDR

value strictly lower than their respective FB node. We refer to these nodes as Poorly Represented

Nodes (PRNs). We show that AMuSe-PDR and AMuSe-Mix produce a negligible number of PRNs

and they outperform the other schemes when evaluated with different multicast bitrates and various

noise levels. AMuSe-LQ and K-Worst have comparable performance, and are significantly better

than the Random scheme.

Furthermore, we assess the performance of AMuSe as a service quality predictor in the event

of environment changes. More specifically, we first select the FB nodes of the different variants

at a given network setting. We then, compute the number of poorly represented nodes when using

the same FB nodes, but after changing the multicast bitrate or the noise-level. We observe that at

low bitrates AMuSe-LQ has slightly less PRNs than AMuSe-PDR, while AMuSe-PDR has similar

performance to K-Worst. We notice a different trend when operating at a high multicast bitrate, in

which AMuSe-PDR outperformed AMuSe-LQ and K-Worst. In all evaluations AMuSe-Mix was

the best variant while Random, suffered from a very high number of PRNs. We explain these

observations and provide additional results in Section 8.6.

Our experimental results demonstrate the ability of AMuSe to effectively provide feedback

about the performance and quality of wireless multicast services. In turn, this feedback can be

used for tuning the network parameters (e.g., rate adaptation, FEC configuration, and interference
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classification) to optimize multimedia content delivery.

We discuss related work in Sections 8.2. We describe the network settings and our objectives in

Sections 8.3 and 8.4 respectively. We present testbed evaluation of the design of AMuSe in Section

8.5 and the experimental results of evaluating channel quality metrics in Section 8.6. Finally, the

evaluation of the performance of AMuSe is presented in Section 8.7 for both the static and dynamic

cases.

This chapter was published in the proceedings of IEEE ICNP’13 [20] and appeared in IEEE/ACM

Transactions on Networking [71]. The work on AMuSe project started in collaboration with Bell

Labs, Nokia with Dr. Yigal Bejerano, Dr. Katherine Guo, and Dr. Thyaga Nandagopal. Collaborat-

ing Ph.D. students Dr. Jaime Ferragut and Dr. Varun Gupta made numerous important contributions

in the design and data analysis of experiments.

8.2 Related work

Various methods have been proposed for multimedia content dissemination to multiple re-

ceivers. They leverage either unicast or multicast data delivery. This brief overview describes

the most relevant studies Commercial products [42, 231] rely on unicast for streaming content to

individual users. This approach requires deployment of numerous APs and it does not scale to

crowded areas. Alternatively, the basic 802.11 multicast mechanism without any node feedback

simply sets the transmission bitrate to the lowest rate. Cellular networks also operate without any

node feedback and set the transmission bitrate to a low value, assuming some nodes are located

near the cell edge. Any multicast mechanism without feedback results in low network utilization.

Many of the schemes to improve multicast services are based on integrating Automatic Repeat

Request (ARQ) mechanisms into the protocol architecture [33, 39, 111, 193, 218], adding Forward

Error Correction (FEC) packets to the multicast stream [13, 36], or both [226]. Other studies

propose rate adaptation mechanisms for improved network utilization [121].

In all cases, a key requirement is having appropriate feedback from the receivers regarding

their observed service quality. These feedback mechanisms can be classified as follows: (i) In-
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dividual Feedback from multicast receivers, (ii) Leader-Based Protocol with acknowledgements

(LBP-ACK), (iii) Pseudo-Broadcast, and (iv) Leader-Based Protocol with negative acknowledge-

ments (LBP-NACK).

Individual Feedback mechanisms require all receivers to send acknowledgements of received

packets either at the link layer [193, 70, 217, 191, 218], the application layer [226], or using

periodic updates [13]. With More Reliable Groupcast (MRG) [95, 60] from IEEE 802.11 working

group, each receiver transmits a bit-map of correctly received packets. Using this feedback, the

sender determines lost packets and retransmits them to the group. This approach offers reliability

but incurs high feedback overhead with large groups. The other three approaches reduce this

overhead as follows.

The LBP-ACK approach [209, 218] provides scalability by selecting a subset of the receivers to

provide feedback. The Pseudo-Broadcast approach [33, 39, 158], converts the multicast feed to a

unicast flow and sends it to one leader, typically, the receiver with the weakest channel. The leader

acknowledges the reception of the unicast flow. The other receivers receive packets by listening to

the channel in promiscuous mode. The LBP-NACK approach [111, 120, 121] improves Pseudo-

Broadcast by allowing the other receivers to send NACKs for lost packets. After receiving the

ACK from the leader, the sender can infer successful transmission to all receivers since an NACK

would collide with the leader’s ACK.

With LBP-ACK and Pseudo-Broadcast, the selection of the leader(s) or subset of the receivers

to provide feedback, can compromise service reliability. In Fig. 8.3(a), the leader v acknowledges

a packet on behalf of node u, even though node u suffers from external interference that prevents

correct reception of the packet. In Fig. 8.3(b), the node u might have an uplink transmission collide

with the multicast packet from the AP, but since the leader correctly receives the multicast packet,

the AP thinks the transmission has succeeded.

The LBP-NACK scheme requires changes to the standard and suffers from lack of reliability

since a non-leader cannot reply with a NACK if it cannot identify a corrupted packet. Furthermore,

due to the capture effect, the AP may be able to decode the ACK and ignore NACK messages.
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Figure 8.3: Unreliable packet delivery by the LBP and the Pseudo-Broadcast approach.

Table 8.1: Multicast: Features of related work
Scalable QoS High Standards Low

Guarantees Util. Compatible Cost
(a) (b) (c) (d) (e)

Unicast x
√

x
√

x
Basic

multicast
√

x x
√ √

Individual
Feedback x

√
x x

√

Pseudo
Broadcast

√
x x

√ √

LBP-NACK
√

x x x
√

AMuSe
√ √ √ √ √

A major drawback of the LBP-NACK scheme is lack of fine-grained information about packet

losses. Consider an example with 100 nodes in a multicast group, each with PDR of 99%. The

expected fraction of packets for which NACK messages are received is 1− .99100, which translates

to roughly 63% of the packets. Thus, even in the case of network performing well, the AP observes

poor performance.

Table 8.1 summarizes the main features of existing approaches. In summary, at least one of the

following weaknesses hinders their performance: (i) requirement of feedback from a large number

of receivers, (ii) ignorance of AP to interference-related packet loss, (ii) low network utilization

to compensate for lack of feedback information or due to abnormal nodes, (iv) requirement of

changes to standard WiFi protocol, or (v) expensive deployment of numerous APs. This moti-

vates our desire for a scalable solution that improves reliability of multimedia delivery for WiFi

deployments.
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8.3 Network Setting

We consider an IEEE 802.11 WLAN and focus on a single AP serving a dense deployment

of WiFi devices or nodes. A multicast server sends data to the AP and the AP transmits this data

using multicast to all the nodes in its transmission range. There could be several sources of external

interference in the network including transmissions from nodes within the network, adjacent APs,

and nodes outside the network.

We follow the model where a node may report its service quality (e.g., channel quality) to an

AP or multicast server. The AP or the multicast server, in response, may decide to adjust the FEC,

adjust the transmission bitrate, retransmit lost packets, or execute a combination of the above.

In practice, the AP and the multicast server are two separate logical entities and may reside in

multiple network layers. Only the AP, however, is responsible for adjusting the network layer

parameters. To simplify presentation, in the rest of the chapter we refer to AP as a representation

of the combination of an AP and a multicast server.

At any given time, each node is associated with a single AP and nodes are assumed to have

a quasi-static mobility pattern. In other words, nodes are free to move from place to place, but

they tend to stay in the same physical locations for several minutes or more. This is a reasonable

assumption for various crowded venues, such as sports arenas or transportation hubs. We assume

that mobile devices can estimate their locations (e.g., by using one of the methods in [138]) with

an accuracy of a few meters, and also determine if they are static3 or mobile.

8.4 Objective

We focus on designing a light-weight feedback mechanism for supporting scalable WiFi multi-

cast services for a very large number of nodes. This allows APs4 to monitor the network conditions

and to take appropriate actions for improving the multicast service quality while meeting various

3We consider a node static, if its movement is restricted to a few meters.
4To simplify our presentation, we assume that AMuSe is implemented as a software module on the APs. In practice,

AMuSe can be realized as an independent server or even a cloud service.
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service delivery constraints. We rely on the following observation reported in [11]:

Observation: A cluster of adjacent nodes experience similar channel quality and suffer from sim-

ilar interference levels. Hence, a node v with worse channel condition than its adjacent neighbors

can represent the service quality observed by the nodes in the cluster.

Based on this observation, the nodes can be grouped into clusters of adjacent nodes and a single

Feedback (FB) node from each cluster can represent that particular cluster. The FB node can be

used to report the channel quality of the cluster to the AP. Our feedback mechanism should ensure

the following requirements:

(i) The FB nodes should accurately represent the network conditions in their neighborhood.

This implies that the channel state experienced by non-FB nodes should not be significantly

worse than the channel state reported by FB nodes.

(ii) The FB nodes should be well distributed throughout the network. In other words, the distance

between the FB and non-FB nodes should be small. This ensures that the AP is informed

about any interference even if it affects a small area.

(iii) The FB nodes should be responsive to changes of the service condition and should accu-

rately report the impact of environmental changes, such as the multicast bitrate or external

interference.

We now provide a formal definition of our objective. Given any FB node selection scheme and

assume that every non-FB-node is represented by a single FB-node, typically the closest FB-node.

A non-FB-node is considered a Poorly Represented Node (PRN) if its PDR is ε > 0 below the

PDR of its representing FB-node. We refer to ε as the PRN Gap. Consequently, our objective can

be defined as follows;

Objective: Consider an upper bound on the number of FB nodes or their density5 as well as a fixed

PRN-Gap ε > 0. Design a low-communication FB node selection mechanism that minimizes the

following metrics:
5The FB node density can be enforced by requiring a minimal distance D between any two FB nodes.
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Figure 8.4: State diagram of the AMuSe FB node selection algorithm at each node. All nodes
initialize in the VOLUNTEER state.

• Number of PRNs in normal operation as well as after environment changes, e.g. bitrate or

noise level changes.

• Maximum distance between a non-FB-node and its representing FB node.

8.5 The AMuSe Feedback Mechanism

This section provides an overview of the AMuSe feedback mechanism. For any given D we

define two nodes to be D-adjacent if they are separated by a distance of at most D. In order to

find a small set of FB nodes that can provide accurate reports, AMuSe should satisfy the following

requirements.

(i) Each node should be D-adjacent to an FB node.

(ii) An FB node must have similar or weaker channel quality than its D-adjacent nodes.

(iii) Any two FB nodes cannot be D-adjacent.

In order to evaluate the channel quality, various metrics can be considered, including Received

Signal Strength (RSS), Signal-to-Noise Ratio (SNR) and Packet Delivery Ratio (PDR). We exper-

imentally compare LQ2 and PDR as channel quality metrics in Section 8.6.
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8.5.1 The Feedback Node Selection Algorithm

We present a semi-distributed process for FB node selection, where some nodes volunteer

to serve as FB nodes, and the AP selects the best candidates. If node location information and

observed channel quality are known, then the AP can easily select the ideal set of FB nodes. Yet,

this is not feasible in practice for large groups. Hence, we seek to minimize the number of nodes

that send their information to the AP as part of the FB node selection process, while ensuring that

a small set of FB nodes meeting the above requirements is selected.

The AP periodically (e.g., once every τAP = 500 ms in our experiments) multicasts an FBN-

LIST message with a list of FB nodes (these messages can be sent multiple times for reliable

transmissions and do not incur overhead, since they are 1-2 packets long). Each entry in the FBN-

LIST contains the node ID6, its reported location7, its reported channel quality, and a measure of

the PDR8.

Each node is in one of three states:

• FB-NODE - A node that has been selected as FB node.

• VOLUNTEER - A node that is not aware of any D-adjacent FB node with lower or similar

channel quality and can serve as an FB node.

• NON-FB-NODE - A node that either is in a transient state or is aware of a D-adjacent FB

node with similar or lower channel quality.

Fig. 8.4 presents the state transition diagram for each node. When a node v joins the network,

it is in the VOLUNTEER state. The node waits for an FBN-LIST message, and checks if there are

any D-adjacent FB nodes in this list with similar or weaker channel quality. If there are any such

nodes, node v switches to the NON-FB-NODE state and records the list of D-adjacent FB nodes

in the FBN-LIST message with similar or weaker channel quality.
6Nodes can be assigned temporary virtual IDs to maintain privacy.
7Relying on a user to be truthful about its location/channel quality could lead to denial-of-service attacks. Yet, we

shelve this orthogonal discussion.
8This can be easily changed to report the last acknowledged packet sequence number to support finer granularity

of message reliability.
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If there are no such nodes, node v starts a random back-off timer for a period chosen in the

interval [0,T] (our experiments use the maximum receiver back-off timer T = 5 seconds). The

random timer solves the problem of many nodes overwhelming the WiFi channel and AP with

FBN-JOIN messages in the situation of changes in channel condition. During this countdown, if

node v learns of a D-adjacent FB node from a FBN-LIST message, then it cancels its countdown,

and switches to a NON-FB-NODE state. Otherwise, upon expiry of the timer, it sends a FBN-

JOIN message to the AP, and waits to see if its ID appears on the next FBN-LIST. The FBN-JOIN

message contains the node ID, node location, and the observed channel quality (e.g., the node PDR

and LQ). If node v appears on the FBN-LIST, it switches to the FB-NODE state. If not, it repeats

the back-off process again until it leaves the VOLUNTEER state. At any time, upon receipt of an

FBN-LIST message, if an FB node v does not find itself on the FBN-LIST, it ceases to be in the

FB-NODE state. In this case, the node returns to the VOLUNTEER state and waits for the next

FBN-LIST to either (i) switch to the NON-FB-NODE state due to the existence of a D-adjacent

node of lower quality, or (ii) send the FBN-JOIN message again after the back-off timer expires.

An important property of this FB node selection algorithm is that the FB node selection is done

in a semi-distributed manner, since a node volunteers to serve as an FB node, only if there is no

other FB node in its vicinity with weaker channel quality. Thus, the AP is only responsible to re-

solve conflicts when several D-adjacent nodes volunteer simultaneously and to prune unnecessary

FB nodes. Consequently, after receiving FBN-JOIN messages and before sending a FBN-LIST

message, the AP runs the node pruning algorithm, described in Section 8.5.3 to decide which

nodes are FB nodes.

Each FB node periodically (e.g., once every τFB = 500 ms in our experiments) sends REPORT

messages to update the AP about the channel and service quality experienced by the node, and thus

its representative cluster. If the AP does not receive any message from one of the FB nodes for a

given duration, (for example, 3τFB used in our experiments), then the AP removes it from the list

of FB nodes.

A few aspects of the AMuSe feedback are worth pointing out.
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Figure 8.5: An example of a wireless network a single AP and 4 receivers. All 3 requirements
described in Section 8.5 for an accurate feedback selection are important for this example.

(i) AMuSe does not require the nodes to listen to all the traffic on the network. All they have to

do is listen to the AP on the multicast group address. This conserves energy at the receivers.

(ii) AMuSe does not require the location information for nodes to be very precise. As mentioned

in Section 8.3, coarse granularity is acceptable, as long as the accuracy is in the order of few

meters, which has been demonstrated by some studies as feasible and practical [37].

(iii) AMuSe provides variable levels of reliability by fine-tuning the combination of AP node

selection frequency τAP, the receiver reporting frequency, τFB, the maximum receiver back-

off timer T , and the node adjacency distance D. AMuSe can ensure more reliable and frequent

reports at a cost of more overhead. Instead of a single control, AMuSe provides multiple

control knobs, giving greater flexibility to the operator to provide different types of service

for various multicast streams.

(iv) Fourth, as described above, AMuSe reports can be used for optimizing different aspects of

WiFi multicast services, such as rate-adaptation, FEC configuration and interference classi-

fication. To this end, the REPORT messages may carry different information. For instance,

in [20] we showed that PDR and LQ information is sufficient for performing rate adaptation,

while reporting about received and lost packets is required for interference classification.
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8.5.2 Illustrative Example

Consider the network shown in Fig. 8.5(a) with a single AP and four receivers. Assume that

numbers labeling the nodes denote their IDs and the order in which they join the multicast service

at this AP. There are four different channel quality levels: very good, good, fair and poor as expe-

rienced by node 1, 2, 3, and 4 respectively. Fig. 8.5(b) shows a circle with radius D around every

node, say node v, where each node, u, inside the circle of v is D-adjacent to node v. Hence, nodes

u and v are considered neighbors to one another.

In this example, we demonstrate the importance of all three requirements mentioned at the

beginning of this section on the quality and density of the set of FB nodes. Assume first that the

FB nodes have to meet only requirement (i) and (ii), but not (iii). Under these guidelines, at the

moment each node joins the multicast, it has a weaker channel quality than all its neighbors, and

therefore, it is selected as an FB node. At the end of the process, the network contains four FB

nodes. It is easy to see that this approach does not scale for large groups.

Now, let us assume that requirement (iii) is enforced. Right after a node joins the network, the

set of FB nodes is optimized. When node 1 joins, it becomes the FB node. After node 2 joins, node

2 becomes the FB node, while node 1 becomes a non-FB node because of (iii). After node 3 joins,

it becomes an FB node while both node 1 and 2 become non-FB nodes because all three nodes are

D-adjacent to one another. After node 4 joins, it becomes an FB node, while node 3 becomes a

non-FB node. In addition, node 2 becomes an FB node again. Notice that node 2 switches state

twice, after node 3 and 4 joins respectively. However, after each node joins the multicast group,

the set of FB nodes is optimal.

This example shows that while AMuSe FB node selection algorithm satisfies all three require-

ments, it may cause churn as nodes enter and leave the FB-NODE state. We show next that the

selected set of FB nodes is near-optimal when the set of nodes receiving the multicast do not

change.
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8.5.3 The Node Pruning Algorithm

As described above, the FB node selection process ensures that every receiver is D-adjacent

to a candidate node with similar or weaker channel condition. The list of candidates at the AP

contains the current FB nodes as well as the nodes in the VOLUNTEER state. Thus, the AP is

responsible to trim unnecessary candidates to select a small set of FB nodes such that any pair of

nodes in the set are not D-adjacent.

The problem of finding the minimum set of FB nodes that meets the three requirements above

is a variant of the minimum dominating set problem, which is a known NP-complete problem even

in the case of unit disk graph [131]. Below we present a heuristic algorithm that selects a near

optimal set of candidates that meet our three requirements.

The heuristic algorithm: The AP creates a list L of the candidates sorted in increasing order

according to their channel quality. Then, it iteratively selects the first candidate v in L as an FB

node and remove v and all its D-adjacent nodes from L. The algorithm ends when L is empty.

Let F denote the FB nodes selected by the heuristic algorithm and OPT denote the optimal set

of FB nodes among all nodes, our algorithm ensures the following property:

Proposition 1. |F | ≤ 5 · |OPT |. If the channel quality is a monotonic decreasing function with the

distance from the AP then |F | ≤ 3 · |OPT |

For proof see Appendix 8.A.

Stability vs. optimality trade-off: As illustrated in Section 8.5.2, a naive implementation of the

heuristic algorithm may cause churn of FB nodes, which obstructs system stability. Since node

pruning is done by the AP, the algorithm can be easily modified to prevent churn, for instance by

giving higher priorities to already selected FB nodes or relaxing the distance constraint between FB

nodes. In our experiments, we also observed rapid switching of FB nodes due to minor variations

in channel qualities. In this case, ensuring that the difference between channel quality of a non-FB

and FB node is greater than some value greater than zero before a non-FB node volunteers is an

effective solution. Although striking a proper balance between system stability and optimality of
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(b) Packet Delivery Ratio
Heatmap, noise = -70 dBm.
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(c) Packet Delivery Ratio
Heatmap, noise = -35 dBm.

Figure 8.6: Link Quality (LQ) and Packet Delivery Ratio (PDR) heatmaps at the AP for D = 6
meters with transmission bitrate of 12 Mbps and noise level of -70 dBm and -35 dBm. The FB
nodes are highlighted with a thick border in red in the LQ heatmap and in blue in the PDR heatmap.
Empty locations represent nodes that did not produce LQ or PDR reports and they are excluded
from our experiments. Nodes with PDR = 0 are active nodes that reported LQ values but were
unable to decode packets. These nodes are excluded from the FB node selection process. Note that
the minimum threshold below which a node does not become an FB node is configurable.

the FB node selection is a central topic in the design of AMuSe, it is beyond the scope of this thesis.

8.6 Experimental Evaluation of Testbed Environment

We validated AMuSe experimentally using the 400-node ORBIT testbed [151]. We describe

these experiments in this section. We use the Link Quality2 (LQ) metric reported by a node’s

WiFi card as representative of its observed RSS. We first consider the following set of auxiliary

hypotheses used to validate our main hypotheses in Section 8.1.

H1: There is a correlation between the PDR and LQ values observed by a node.

H2: Clustered nodes experience similar LQ and PDR.

H3: Clustered nodes suffer from similar interference.

8.6.1 The ORBIT Testbed and Experiment Settings

The ORBIT testbed [151] consists of a dynamically configurable grid of 20 × 20 (400 overall)

nodes each with an 802.11 radio. The grid separation between nodes is 1 meter and in addition,
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Table 8.2: Evaluation Parameters
Parameter Definition

LQi Link Quality of node i with the AP.
Pvec

i A vector of the packets received by node
i.

(xi, yi) (row, column) location of node i.
T XAP Broadcast/Multicast transmission rate at

the AP.

the testbed provides a noise generator with four noise antennas at the corners of the grid whose

attenuation can be independently controlled, permitting the emulation of a richer topology. In

order to avoid performance artifacts stemming from a mismatch of WiFi hardware and software,

we select the subset of nodes equipped with Atheros 5212/5213 wireless cards with ath5k wireless

driver. Furthermore, we remove unresponsive nodes (nodes with hardware issues) in the grid before

every experiment. This results in approximately 200 nodes participating in each experiment.

We implemented the AMuSe system as an application layer program for the AP and the clients,

running on all nodes. Each node is identified by its (row, column) location. The node at the

corner (1,1) serves as a single multicast AP, configured in master mode, and it uses channel 40 of

802.11a9 to send a multicast UDP flow with a transmission power of 1 mW= 0 dBm. The other

nodes are the multicast receivers, configured in managed mode. This means that in practice our

experiments consider at most a quarter of the transmission range of an AP. Each UDP packet is

1400 bytes in payload length and the payload data contains sequence number for each packet in

order to identify missing packets at the nodes. While we consider a single multicast group in our

experiments, AMuSe can allow for monitoring of several multicast groups individually. If several

multicast groups should be monitored together, then a control multicast group can be setup.

Every node keeps track of the parameters described in Table 8.2, which we process off-line

after each experiment. The received or dropped packets are marked by 1s or 0s respectively in a

boolean vector Pvec
i stored at each node i. The packet delivery ratio (PDR) value of each node i

is calculated from its Pvec
i vector. Note that the throughput measured at each node is a function

9We observed that channel 40 at the 5 Ghz band suffers from lower external interference levels on the ORBIT grid
than the channels at 2.4Ghz band.
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of the PDR as well as the bitrate and is different from the transmission throughput at the AP. The

testbed hardware and software allows us to measure the LQ or RSS values from the user-space.

The PDR values can be measured on any commodity hardware by measuring the received packets.

It is possible that some environments such as iOS do not provide LQ or RSS information to the

user-space. In such cases, AMuSe can rely on PDR measurements alone. As we show later, AMuSe

with PDR measurements alone can provide reliable feedback.

8.6.2 Experiment Description

We now describe the types of experiments conducted to validate our hypotheses presented

earlier in this section.

Different Bitrates: We fix the AP multicast transmission bitrate, denoted by T XAP, to different

values allowed by the card (6, 9, 12, 18, 24, 36, 48, 54 Mbps), each bitrate for a duration of 10

seconds. We repeat these experiments 10 times at different times of the day without any external

noise.

Different Noise Levels: We fix the AP multicast transmission bitrate to 12 Mbps and turn on the

noise generator near node (20, 1). The noise generator is configured to provide AWGN noise for

the entire spectrum of channel 40. Starting with −70 dBm (low noise), we vary noise power in

steps of 5 dBm up to −35 dBm (high noise).

Fig. 8.6 presents three sample heatmaps of one run of the experiments, when T XAP = 12 Mbps

and external noise of −70 dBm and −35 dBm generated near node (20,1). Each heatmap shows

the active nodes used in the experiment and either the LQ or PDR values that they experienced, in

addition to the FB nodes that the AP has selected with D-adjacency parameter of 6 meters. Nodes

marked with thick red or blue border are FB nodes selected by the AMuSe scheme. Nodes with

PDR = 0 are active nodes that reported LQ values but unable to decode packets in the experiment

run. For example, node (13,11) with LQ = 20 and PDR = 0 in Fig. 8.6(a) and 8.6(b) for a noise

level at −70 dBm. These nodes are excluded from the FB node selection algorithm.

An interesting observation is that a selected FB node v may have higher PDR (or LQ) values
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(a) PDR vs. LQ, T XAP = 6 Mbps.
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(b) PDR vs. LQ, T XAP = 24 Mbps.
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(c) PDR vs. LQ, T XAP = 36 Mbps.
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(d) PDR vs. LQ, T XAP = 48 Mbps.
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(f) PDR vs. distance, T XAP = 48
Mbps.

Figure 8.7: Experimental results for testing hypothesis H1 and verifying the presence of abnormal
nodes.

than an adjacent non-FB node, say u. Such a situation results from the independent-set property

of the selected FB nodes and it may occur if u is D-adjacent to another FB node with even lower

PDR (or LQ) values. For instance, in Fig. 8.6(b) Node (7,13) with PDR of 99% was selected as FB

node although it has a neighbor, Node (7,11), with PDR of 80%. The reason is that Node (7,11) is

6-adjacent to FB node (10,8) with PDR of 66%.

8.6.3 Hypotheses Testing

We turn to test our hypotheses based on the information collected from the experiments de-

scribed in Section 8.6.2.

H1 - Correlation between PDR and LQ: Fig. 8.7(a)-8.7(e) demonstrate the correlation between

the PDR of a node with respect to its LQ for different transmission bitrates without external noise,

whereas, Fig. 8.7(f) shows the correlation between the PDR of a node with respect to its distance

from the AP at a transmission rate of 48 Mbps. PDR values are close to 100% for almost all nodes
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Figure 8.8: Experimental results for testing hypotheses H2—–H3: (a) LQ STD: varying T XAP
without noise, cluster size = 3m, (b) PDR STD: varying T XAP without noise, cluster size = 3m,
(c) LQ STD: varying T XAP without noise, cluster size = 6m, (d) PDR STD: varying T XAP without
noise, cluster size = 6m, (e) LQ STD: varying noise, T XAP = 12 Mbps, cluster size = 3m, and (f)
PDR STD: varying noise, T XAP = 12 Mbps, cluster size = 3m.

for bitrates up to 24 Mbps (Fig. 8.7(a)-8.7(b)). Some degradation of PDR values is observed for

bitrates of 36 Mbps (Fig. 8.7(c)) and even higher variance of PDR values are seen for 48 Mbps

(Fig. 8.7(d)) and above.

Fig. 8.7(d) and Fig. 8.7(e) show that the correlation between the PDR and LQ is not very strong,

suggesting that nodes with the same LQ value may have significantly different PDR. Fig. 8.7(f)

illustrates very weak correlation between the PDR of a node and its proximity to the AP (with

T XAP = 48 Mbps), and some of the nodes adjacent to the AP suffer from low PDR. For instance,

Fig. 8.7(f) shows that one of the nodes with distance of 5 meters from the AP suffers from PDR of

25%. This observed variation of PDR with LQ as well as variation of PDR with distance to the AP

is consistent with prior work, e.g., [164],[210], [105] and [69].

H2 - Clustered nodes experience similar LQ and PDR: We measure the standard deviation

(STD) of LQ and PDR without noise in each cluster radius of 3 and 6 meters on the grid, where
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Figure 8.9: The impact of clustering: (a) the number of FB nodes for different cluster sizes, (b)
CDF of PDR differences of pairs of nodes within and across clusters for no external noise and
bitrate of 54Mbps, and (c) CDF of PDR differences of pairs of nodes within and across clusters for
external noise of −30dBm and bitrate of 12Mbps.

each cluster contains an FB node and all its neighbors Histograms of the distribution of the LQ and

PDR STD in different clusters are shown in Fig. 8.8(a)-8.8(d). We measure the same distributions

in the presence of various noise levels with a cluster radius of 3 meters, and plot the results in

Fig. 8.8(e) and Fig. 8.8(f). We expect the STD across clusters to be a good measurement of how

similar the PDR and the LQ values are.

Fig. 8.8(a), Fig. 8.8(c), and Fig. 8.8(e) show that the LQ STD is very similar across all the

bitrates regardless of the noise levels. This indicates that although adjacent nodes experience

similar LQ (and similar RSS), the LQ metrics do not capture the effect of external interference

and bitrate variation. By comparing Fig. 8.8(a) and Fig. 8.8(c), we see that a higher percentage of

clusters report higher LQ STD for cluster size 6 m than with cluster size 3 m.

We now consider the distribution of the PDR STD values. Fig. 8.8(b) shows that with T XAP ≤

36 Mbps, only very few clusters show significant deviations (> 5%) in PDR. This is because

most nodes have PDR above 99% when T XAP ≤ 36 Mbps as shown in Fig. 8.7. However, the

variability of the PDR becomes evident at higher bitrates. By comparing Fig. 8.8(b) and Fig. 8.8(d),

we observe that a higher percentage of clusters report higher PDR STD for cluster size 6 m as

compared to cluster size 3 m. Further, we see in Fig. 8.8(d) that at higher bitrates, PDR STD is

higher for a significant number of clusters.

As shown in Fig. 8.8(f), interference introduces noticeable deviations (> 5%) in PDR across
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nearly two-thirds of the clusters. To understand this, we revisit the heatmaps in Fig. 8.6(c). It is

clear that the PDR values are decreasing for nodes near the bottom-left corner where the noise

generator is located. The nodes which are not able to decode the AP beacons (at a bitrate of 6

Mbps) disconnect from the AP, are not shown on the heatmap, and are not included in the variance

calculations. The nodes which report a 0 PDR value are the ones that fail to receive any multicast

packet. These nodes are shown in the heatmap red with a 0 value. At higher noise levels, many

more nodes report PDR values of 0. This explains the high levels of PDR variance observed in

Fig. 8.8(f).

The increase in LQ and PDR STD with the cluster size point to the inherent tradeoff in FB node

selection process using both LQ and PDR as the quality metrics. The system should ideally operate

in a mode where a large fraction of the nodes experience high PDR and the PDR STD is very low.

Increasing the cluster size reduces the number of FB nodes, however, leads to increased STD of

quality metrics in clusters, particularly the PDR STD at higher bitrates. The average number of

FB nodes for different cluster sizes is shown in Fig. 8.9(a). The FB overhead of AMuSe is directly

proportional to the number of FB nodes. Each FB node, periodically sends an FB message which

is roughly 100 bytes long. The frequency of feedback messages is application-specific e.g., for

multicast rate adaptation application, 1s could be sufficient [73]. This implies that 50 FB nodes

will add an overhead of 40Kbps. In our case, 50 FB nodes correspond to a cluster radius of 3m

from Fig. 8.9(a). The FB overhead is much smaller than the multicast throughput measured at the

AP (order of Mbps even for bitrate of 6Mbps). The above observations serve as a good motivation

to carefully set the parameters for the FB node selection algorithm.

Finally, we demonstrate that clustering is not redundant by comparing the proximity of chan-

nel quality values within and across clusters. Fig. 8.9(b) shows the CDF of the PDR differences

between pairs of nodes inside and across clusters for bitrate of 54Mbps and no noise for a clus-

ter radius of 3m. We chose bitrate of 54Mbps for ease of exposition. Roughly 60% of the node

pairs have PDR differences less than 20% within a cluster while fewer than 50% of pairs have

differences less than 20% across clusters. Similarly, Fig. 8.9(c) shows the CDF of the PDR differ-
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ences between pairs of nodes inside and across clusters for bitrate of 12Mbps and external noise

of −30dBm for a cluster radius of 3m. In this case also, the differences are similar. These results

show that clustering is effective in grouping nodes with similar channel qualities.

H3 - Clustered nodes suffer from similar interference: Fig. 8.6 shows that external noise has

a largely local effect near the noise source. Moreoever, Fig. 8.8(f) shows that even with a small

cluster size of 3 meters, the PDR STD can be high due to external interference. The above two

observations validate the need for a well-distributed and non-sparse set of FB nodes to report the

values of quality metrics in order to reflect the interference experienced by receivers.

Our experiments also show that increasing T XAP has an impact on all nodes, and that beyond a

certain bitrate, the PDR of many nodes drops below 90%, as shown in Fig. 8.7(d) and Fig. 8.7(f).

Thus, it is critical to assign T XAP appropriate values in order to improve the multicast service.

8.6.4 Abnormal Nodes

In general, we refer to a node with low PDR as abnormal. Specifically, in our experiments,

a node is abnormal if its PDR is below the abnormal threshold H = 90%. In contrast, a node is

normal if its PDR is at least H = 90%. In this section, we study the number of abnormal nodes as

a function of the T XAP and the link quality (LQ). Fig. 8.7(a)-8.7(d) show how PDR varies with LQ

for each node in a single experiment run with T XAP bitrates of 6,24,36 and 48 Mbps respectively.

Results from all values of T XAP (including ones not shown here) show that the number of abnormal

nodes increases with the increase of T XAP.

In Fig. 8.7(a)-8.7(c), PDR values are close to 100% for a large fraction of the nodes for bitrates

up to 36 Mbps. However, Fig. 8.7(a) demonstrates that even in the extreme case of very low T XAP

without any interference some of the nodes (two in this case) are abnormal and suffer from low

PDR.

The set of abnormal nodes remained small when we increase T XAP to higher bitrates until 36

Mbps, as shown in Fig. 8.7(b) and Fig. 8.7(c). The number of abnormal nodes increases signifi-

cantly once T XAP reaches 48 Mbps. Surprisingly, the set of abnormal nodes is not the same in all
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experiments.

8.7 Feedback Node Selection

The primary objective of this section is to study the performance of feedback node selection

schemes. We compare AMuSe FB node selection scheme with other schemes and in the process,

validate our main hypothesis from Section 8.1. We consider the following schemes including the

three flavors of AMuSe that select either the LQ, the PDR or a mix as the metric which is used by

the AP for selecting FB nodes.

(i) AMuSe-LQ – AMuSe based on LQ.

(ii) AMuSe-PDR – AMuSe based on PDR.

(iii) AMuSe-Mix – AMuSe based on mix of LQ and PDR.

(iv) K-worst-LQ – K nodes with lowest LQ are FB nodes.

(v) K-worst-PDR – K nodes with lowest PDR are FB nodes.

(vi) K-random – K random nodes as FB nodes.

The AMuSe-Mix scheme relies on lexicographic ordering of PDR and LQ values for compar-

ing channel quality. For nodes with PDR > 98%, the ordering is based on LQ. For nodes with

PDR ≤ 98%, the ordering is based on PDR. Thus, the channel quality is defined by the following

tuple in lexicographic order: (min(PDR,98), LQ) The motivation behind AMuSe-Mix lies in our

observation that LQ is weakly correlated with PDR in Section 8.6. Very high PDR values (> 98%)

could result from random packet losses and small PDR variations above this value are unreliable

indicators of difference in channel quality. Thus, we use AMuSe-Mix to study if LQ can be a better

metric to distinguish nodes which have high PDR values.

Moreover, we study the parameter choices for cluster radius (represented by the adjacency

parameter, D). When we refer to cluster radius D as a parameter for the Random, K-worst-LQ, or
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Figure 8.10: Static settings with bitrate of 48Mbps: (a) the number of Poorly Represented Nodes
(PRN) vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different PRN-Gap and fixed
cluster size of D = 3 m, and (c) maximal distance between an FB and non-FB node for various
cluster radius.

K-worst-PDR schemes, we select as many FB nodes as AMuSe feedback schemes have (for a fair

comparison).

We study the performance of different feedback nodes selection schemes under two network

settings:

• Static Settings: The multicast bitrate and the external interference level are fixed.

• Dynamic Settings: In a dynamic environment of either (i) changing multicast bitrate, (ii)

changing external interference, or (iii) emulated mobility.

For all our evaluations in both the static as well as the dynamic settings, we collected detailed

packet traces at each node in the testbed for several bitrate and interference conditions. The num-

ber of nodes in the experiments was kept similar between 170 to 200 to avoid any performance

mismatch. All the results for varying bitrate conditions were averaged over five runs of 10s at each

bitrate. We ensured the appropriate setting of controlled interference by measuring the interference

on a spectrum-analyzer on the testbed. During our experiments we observed sporadic spikes of un-

controlled interference. For mitigating their impact, we consider only time instants when there was

no uncontrolled noise in our evaluations.
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Figure 8.11: Static settings with external noise: (a) the number of Poorly Represented Nodes
(PRN) vs. the cluster radius with fixed PRN-Gap of 1%, (b) PRN for different PRN-Gap and fixed
cluster size of D = 3 m, and (c) maximal distance between an FB and non-FB node for various
cluster radius.

8.7.1 Static Settings

We first study the performance of different feedback schemes while the multicast bitrate and

the generated external noise level are fixed. This setting allows us to evaluate the various schemes

under normal network operation in stable conditions. We repeat our experiments with different

bitrates and noise levels. We present our results for 3 different cases.

(i) Fixed bitrate of 36 Mbps – The optimal bitrate at which most of the nodes experience PDR

close to 100 and only a few nodes suffer from low PDRs, as shown in Fig. 8.7(c).

(ii) Fixed bitrate of 48 Mbps – Above the optimal bitrate many nodes experience low PDR, as

shown in Fig. 8.7(f).

(iii) External Noise – The bitrate is set to 12 Mbps and the receivers suffer from different inter-

ference levels between −70dBm to −35dBm. The interference is concentrated on one corner

of the grid as in Section 8.7.1.

The results of our evaluation are presented in Figs. 8.10-8.11. Figs. 8.10(a) and 8.11(a) show the

number of PRNs as the cluster radius D increases at bitrate 48Mbps without external noise and at

bitrate of 12Mbps wit external noise respectively. We only show the nodes with minimum PRN-

Gap of 1% to avoid counting non-FB nodes with PDRs lower than their associated FB nodes by

a small margin as PRN. Both AMuSe-Mix and AMuSe-PDR yield close to 0 PRNs since both
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schemes select nodes with lowest PDR in each cluster. K-worst-PDR also yields 0 PRNs, since it

selects nodes with overall lowest PDR values. The link quality based schemes AMuSe-LQ and K-

worst-LQ have similar performance which could be explained due to the weak correlation between

LQ and PDR. As expected, the Random feedback selection scheme performs the worst and as the

number of feedback nodes decreases (increase in cluster size), the number of PRNs increases due

to fewer feedback nodes. We omit the results at lower bitrates since they are qualitatively similar

but yield fewer overall PRNs since the vast majority of the nodes experience PDR above 99%. The

Random scheme yields much higher number of PRNs that increases with the cluster radius.

Figs. 8.10(b) and 8.11(b) present the number of PRNs at different values of PRN-Gap at bitrate

48Mbps without external noise and at bitrate of 12Mbps wit external noise respectively. The

Random, K-worst-LQ, and AMuSe-LQ schemes result in a considerable number of PRNs. This

number is high even for a PRN-Gap of 20% (e.g., Fig. 8.10(b) and 8.11(b) show that the K-worst-

LQ and AMuSe-LQ schemes have between 5 to 10 PRNs with PRN-Gap of 20%). This means that

the PDR value of each one of these nodes is at least 20% lower than its representative FB node.

The situation is even worse for the Random scheme. We again omit the results at lower bitrates

due to very low number of PRNs.

Finally, Figs. 8.10(c) and 8.11(c) show the maximum distance between an FB and non-FB node

as D increases at bitrate 48Mbps without external noise and at bitrate of 12Mbps wit external noise

respectively. As expected, for AMuSe schemes, this distance scales linearly with D. The maximum

distance between an FB and non-FB node is significantly higher for the Random scheme and it is

about twice for the K-worst-LQ and K-worst-PDR schemes. This indicates that FB nodes might be

concentrated in areas of high losses. Thus, even though K-worst-PDR scheme leads to low number

of PRNs, it does not obtain a well-distributed set of FB nodes. The distribution of FB nodes could

be especially important in case of rapid network changes.
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(b) Switching from 48 to 54 Mbps
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(c) Increasing noise by 10 dB

Figure 8.12: Dynamic Settings: The number of Poorly Represented Nodes (PRN) vs. the cluster
radius with fixed PRN-Gap of 1%.
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Figure 8.13: Dynamic Settings: The number of Poorly Represented Nodes (PRN) for different
PRN-Gap and fixed cluster size of D = 3 m.

8.7.2 Dynamic Settings

Next, we emulate a dynamic environment of either: (i) changing AP bitrate, (ii) changing

external interference, (iii) emulating node mobility. The methodology of the dynamic evaluations

of (i) and (ii) relies on selecting a feedback set at one bitrate or external interference value and

studying the performance of that set at a different value of bitrate or interference. Since the ORBIT

environment is relatively static, we emulate mobility by exchanging positions of nodes but keeping

their channel quality values fixed. The FB nodes are selected at a particular setting and a fixed

percentage of non-FB nodes exchange locations with each other within a certain radius. The PRNs

are then evaluated with the same FB nodes and clustering as the initial conditions. The dynamic

setting helps to evaluate the performance of the considered schemes under changes in the network.

Obviously, under such dynamic changes, the feedback node selection process may choose a

new set of FB nodes. However, this process may require noticeable convergence time (depending
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on several parameters, such as τAP and τFB) of up to a few seconds. During this time the system

may not receive accurate reports about the service quality. Thus, it is essential that the selected FB

nodes continue to provide accurate FB reports in the event of such changes. For instance, during

any interference episode, the AP should receive the accurate feedback information without delays

to take appropriate interference mitigation actions, such as adding more FEC, reducing bitrate, etc.

Similarly, if the AP increases the multicast bitrate using a rate adaptation algorithm, the FB nodes

should provide accurate state information about the change to the AP. For the dynamic setting we

consider the following cases: (a) Switching from bitrate of 36 Mbps to 48 Mbps, (b) Switching

from bitrate of 48 Mbps to 54 Mbps, (c) Increasing the noise level by 10 dB, and (d) Emulated

mobility.

Fig. 8.12 presents the number of PRNs vs. the cluster radius (D) for the three cases where the

PRN-Gap is 1%. Fig. 8.12(a) shows the number of PRNs when switching the bitrate from 36 to

48 Mbps. In this case, the AMuSe-LQ and K-worst-LQ have comparable performance to the static

case with bitrate of 48 Mbps. This is an expected result since LQ is a measure of the received

signal strength and is not affected from changing the bitrate. However, AMuSe-PDR performs

significantly worse than the static case. To understand this trend, recall that at bitrate of 36 Mbps

most of receivers experience PDR close to 100%, as shown in Fig. 8.7(c). Therefore, when the

cluster size is small and large number of receivers are selected as FB nodes, most of the FB nodes

have PDR above 99%. With such high PDR, a selected FB node may not be affected by increasing

the bitrate. Observe that the number of PRNs decreases by increasing the cluster size. This is not

surprising since now most of the selected FB nodes have PDR below 98%, which indicates that

they experience only moderate channel quality and therefore they are more susceptible to a bitrate

increase. A similar explanation holds true for the K-worst-PDR scheme. AMuSe-Mix outperforms

the other schemes since it considers both the PDR and the LQ of the receivers and uses the LQ

values when the PDR is very high. Like the static setting, the Random scheme suffers from very

high number of PRNs.

Fig. 8.12(b) shows the number of PRNs for bitrate increases from 48 to 54Mbps. In this case
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Figure 8.14: The number of Poorly Represented Nodes (PRNs) vs. percentage of moved nodes for
(a) fixed bitrate of 36Mbps, (b) fixed bitrate of 48Mbps, and (c) bitrate of 12Mbps and noise of
5dBm.

AMuSe-Mix , AMuSe-PDR , and K-worst-PDR outperform the LQ based solutions. By revisiting

Fig. 8.7(f), we see that many receivers suffer from low PDR due to a weak channel condition at a

bitrate of 48 Mbps. Since these nodes are selected as FB nodes, they provide good lower bound

reports of the service quality observed by the nodes in their clusters. We notice a similar situation

in Fig. 8.12(c) when increasing the noise level by 10 dB.

The distribution of PRNs vs the PRN-Gap is shown in Fig. 8.13 for a cluster radius D = 3

m. The figure supports our observations from Fig. 8.12 and demonstrates that AMuSe-Mix outper-

forms the other alternatives in all cases. Since the feedback node set is not changed when increasing

the bitrate or noise level, the maximum distance between an FB and non-FB node remains the same

as shown in Figs. 8.10(c) or 8.11(c).

The results for emulated node mobility are shown in Fig. 8.14. Fig. 8.14(a) shows the number

of PRNs vs. the percentage of moved nodes within a radius of 2m at a fixed bitrate of 36Mbps.

Similar results at bitrate of 48Mbps are in Fig. 8.14(b) and with external noise in Fig. 8.14(c). The

Random scheme yields the largest number of PRNs and is not affected by increasing number of

moved nodes. The AMuSe-Mix, AMuSe-PDR, and K-worst-PDR schemes perform quite similarly

and the PRNs for all of them increase with increase in the number of moved nodes. The LQ based

schemes AMuSe-LQ and K-worst-LQ perform worse than the PDR based schemes.

We also evaluate the sensitivity of AMuSe to errors in node location estimation by injecting

errors into reported node locations. The errors are picked from a Gaussian distribution with µ =
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0, σ = 7 meters. However, we observed only insignificant increases in the number of PRNs for the

AMuSe schemes.

Our experiments on the ORBIT testbed with approximately 200 nodes validate the practicality

of AMuSe-Mix as an excellent scheme for reporting the provided quality of an ongoing WiFi mul-

ticast services for both static and dynamic settings. The K-worst-PDR scheme also peforms quite

well but does not yield a well-distributed set of FB nodes. Our evaluation shows that a relative

small number of FB nodes is sufficient to provide accurate reports. Yet, the number of required FB

nodes will also depend on the application.

8.A Proof of Proposition 1

Proposition 1: |F | ≤ 5 · |OPT |. If the channel quality is a monotonic decreasing function with

the distance from the AP then |F | ≤ 3 · |OPT |

Proof of Proposition 1. We prove the general proposition of |F | ≤ 5 · |OPT |, which is based on

Lemma 3.1 in [131]. The special case of |F | ≤ 3 · |OPT |, where the channel quality is a monotonic

decreasing function with the distance from the AP, can be proved by using similar arguments and

Lemma 3.3 in [131].

Consider a point x in the plane and let Z be an independent set of points in the circle with radius

r around point x. i.e, the distance between any two points in Z is more than r . Then according to

Lemma 3.1 in [131], |Z | ≤ 5.

To prove that AMuSe guarantees approximation ratio of 5, we just need to show that for any

given multicast group there is a mapping from F to OPT such that at most 5 nodes in F are mapped

to the same node in OPT . To this end, we map every FB node v ∈ F to its nearest node u ∈ OPT ,

which may be node v itself. Recall that both OPT and F are dominating independent sets such

that each node has an adjacent FB node with distance at most D and the minimal distance between

any pair of FB nodes is at least D. From this it is implied that any FB node v is either in OPT or it

is D-adjacent to at least one node in OPT .
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Now, consider an FB node u ∈ OPT and let W ⊆ F be the set of FB nodes selected by

our scheme that are D-adjacent to u. Since F is an independent set it holds that W is also an

independent set, i.e., the minimal distance between any pair of FB nodes x, y ∈ W is dx,y > D.

Observe that all nodes in W are included in a disk with radius D centered at node u. Thus, according

to Lemma 3.1 in [131], it follows that |W | ≤ 5. This leads to the result that each node in OPT is

associated with at most 5 nodes in F. �
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Chapter 9: Multicast Dynamic Rate Adaptation

The AMuSe system consists of the following components: (i) an efficient feedback mechanism,

and (ii) dynamic rate adaptation algorithm. In Chapter 8 we discussed the feedback node selection

process. In this chapter we focus on the second component of developing a system that dynamically

adapts the multicast rate.

9.1 Introduction

Multicast Rate Adaptation (RA) - Challenges: A key challenge in designing multicast RA

schemes for large groups is to obtain accurate quality reports with low overhead. Some sys-

tems [226, 33, 180] experimentally demonstrated impressive ability to deliver video to a few dozen

nodes by utilizing Forward Error Correction (FEC) codes and retransmissions. However, most ap-

proaches do not scale to very large groups with hundreds of nodes, due to the following:

(i) Most schemes tune the rate to satisfy the receiver with the worst channel condition. As shown

in [20, 156] in crowded venues, a few unpredictable outliers, referred to as abnormal nodes, may

suffer from low SNR and Packet Delivery Ratio (PDR) even at the lowest rate and without inter-

ference. This results from effects such as multipath and fast fading [165]. Therefore, a multicast

scheme cannot provide high rate while ensuring reliable delivery to all users.

(ii) It is impractical to continuously collect status reports from all or most users without hindering

performance. Even if feedback is not collected continuously, a swarm of retransmission requests

may be sent following an interference event, (wireless interference is bursty [11]) thereby causing

additional interruptions.

To overcome these challenges, a multicast system should conduct efficient RA based on only

limited reports from the nodes. In the previous chapter we focused on efficient feedback collec-
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Figure 9.1: The Adaptive Multicast Services (AMuSe) system consisting of the Multicast Dynamic
Rate Adaptation (MuDRA) algorithm and a multicast feedback mechanism.

tion mechanisms for WiFi multicast as part of the AMuSe system. In this chapter, we present the

Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA leverages the efficient mul-

ticast feedback collection of AMuSe and dynamically adapts the multicast transmission rate to

maximize channel utilization while meeting performance requirements. Fig. 9.1 shows the overall

AMuSe system composed of the MuDRA algorithm and the AMuSe feedback mechanism where the

focus of this chapter is MuDRA .

We present a multicast rate adaptation algorithm MuDRA which is designed to support WiFi

multicast to hundreds of users in crowded venues. MuDRA can provide high throughput while

ensuring high Quality of Experience (QoE). MuDRA benefits from a large user population, which

allows selecting a small yet sufficient number of Feedback (FB) nodes with marginal channel

conditions for monitoring the quality. We address several design challenges related to appropriate

configuration of the feedback level.

We note that using MuDRA does not require any modifications to the IEEE 802.11 standard

or the mobile devices. MuDRA requires application layer measurements from mobile devices for

multicast rate adaptation decisions. The multicast rate changes can be supported by most Access

Points through changes in the driver-level code or through API calls.

We implemented MuDRA with the AMuSe system on the ORBIT testbed [151], evaluated its

performance with all the operational IEEE 802.11 nodes (between 150 and 200), and compared it
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to other multicast schemes. We use 802.11a to maximize the number of WiFi devices available1.

To the best of our knowledge, this is the largest set of wireless devices available to the research

community. Our key contributions are:

(i) The need for RA: We empirically demonstrate the importance of RA. Our experiments on OR-

BIT show that when the multicast rate exceeds an optimal rate, termed as target-rate, numerous

receivers suffer from low PDR and their losses cannot be recovered. We also observed that even a

controlled environment, such as ORBIT, can suffer from significant interference. These observa-

tions constitute the need for a stable and interference agnostic RA algorithm that does not exceed

the target-rate.

(ii) Practical method to detect the target-rate: Pseudo-multicast schemes that rely on unicast RA

[33] may occasionally sample higher rates and retreat to a lower rate after a few failures. Based on

the observation above about the target rate, schemes with such sampling mechanisms will provide

low QoE to many users. To overcome this, we developed a method to detect when the system

operates at the target-rate, termed the target condition. Although the target condition is sufficient

but not necessary, our experiments show that it is almost always satisfied when transmitting at the

target-rate. MuDRA makes RA decisions based on the target condition and employs a dynamic

window based mechanism to avoid rate changes due to small interference bursts.

(iii) Extensive experiments with hundreds of receivers: Our experiments demonstrate that Mu-

DRA swiftly converges to the target-rate, while meeting the Service Level Agreement (SLA) re-

quirements (e.g., ensuring PDR above 85% to at least 95% of the nodes). Losses can be recovered

by using appropriate application-level FEC methods [157, 183, 36, 212, 7].

MuDRA is experimentally compared to (i) pseudo-multicast with a unicast RA [137], (ii) fixed

rate, and (iii) a rate adaptation mechanism proposed in [20] which we refer to as the Simple Rate

Adaptation (SRA) algorithm. MuDRA achieves 2x higher throughput than pseudo-multicast while

sacrificing PDR only at a few poorly performing nodes. While the fixed rate and SRA schemes

can obtain similar throughput as MuDRA, they do not meet the SLA requirements. Unlike other

1The ORBIT testbed supports only about 30 802.11n enabled devices
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schemes, MuDRA preserves high throughput even in the presence of interference. Additionally,

MuDRA can handle significant node churn. Finally, we devise a live multicast video delivery

approach for MuDRA. We show that in our experimental settings with target rate of 24 − 36Mbps,

MuDRA can deliver 3 or 4 high definition H.264 videos (each one of 4Mbps) where over 90% of

the nodes receive video quality that is classified as excellent or good based on user perception.

To summarize, to the best of our knowledge, MuDRA is the first multicast RA algorithm de-

signed to satisfy the specific needs of multimedia/video distribution in crowded venues. Moreover,

AMuSe in conjunction with MuDRA is the first multicast content delivery system that has been

evaluated at scale.

The rest of the chapter is organized as follows. Section 9.3 describes the ORBIT testbed and

important observations. Section 9.4 presents the model and objectives. MuDRA’s design is de-

scribed in Sections 9.5 and 9.6. The experimental evaluation is presented in Section 9.7.

The design and experimental evaluation of MuDRA appeared in the proceedings of IEEE IN-

FOCOM’16 [73] and in IEEE Transactions on Wireless Communications [72]. Dr. Yigal Bejerano

and Ph.D student Dr. Varun Gupta contributed to the design behind MuDRA. A demo of the rate

adaptation process was presented at and appeared in the proceedings of IEEE INFOCOM’16 [74]

with significant contributions from undergraduate students Raphael Norwitz and Savvas Petridis.

9.2 Related Work

Multicast rate adaptation approaches are in general closely linked to multicast feedback. In

Chapter 8, we described existing approaches for multicast feedback mechanisms in detail. In this

chapter, we focus on unicast and multicast te adaptation.

Unicast RA: We discuss unicast RA schemes, since they can provide insight into the design of

multicast RA. In Sampling-based algorithms, both ACKs after successful transmissions and the

relation between the rate and the success probability are used for RA after several consecutive

successful or failed transmissions [102, 113, 26]. The schemes in [155, 224, 108] distinguish

between losses due to poor channel conditions and collisions, and update the rate based on former.
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Recently, [163, 45] propose multi-arm bandit based RA schemes with a statistical bound on the

regret.

However, such schemes cannot support multicast, since multicast packets are not acknowl-

edged. In Measurement-based schemes the receiver reports the channel quality to the sender which

determines the rate [89, 166, 99, 213, 164, 48]. Most measurement-based schemes modify the

wireless driver on the receiver end and some require changes to the standard, which we avoid.

Multicast RA: In [181, 19, 209, 33, 122] the sender uses feedback from leaders (nodes with worst

channel conditions) for RA. In [121] when the channel conditions are stable, RA is conducted

based on reports of a single leader. When the channel conditions are dynamic, feedback is col-

lected from all nodes. Medusa [180] combines Pseudo-Multicast with infrequent application layer

feedback reports from all nodes. The MAC layer feedback sets backoff parameters while appli-

cation layer feedback is used for RA and retransmissions of video packets. Recently, in [20] we

considered multicast to a large set of nodes and provided a rudimentary RA scheme which is not

designed to achieve optimal rate, maintain stability, or respond to interference.

9.3 Testbed and Key Observations

We evaluate MuDRA on the ORBIT testbed [151], which is a dynamically configurable grid of

20 × 20 (400) 802.11 nodes where the separation between nodes is 1m. It is a good environment

to evaluate MuDRA, since it provides a very large and dense population of wireless nodes, similar

to the anticipated crowded venues.

Experiments: To avoid performance variability due to a mismatch of WiFi hardware and software,

only nodes equipped with Atheros 5212/5213 cards with ath5k driver were selected. For each

experiment we activated all the operational nodes that meet these specifications (between 150 and

250 nodes). In all the experiments, one corner node served as a single multicast AP. The other

nodes were multicast receivers. The AP used 802.11a to send a multicast UDP flow, where each

packet was 1400 bytes. Most practical applications such as video streaming include a sequence

number to keep track of packet delivery at the clients. We embed an artificial sequence number
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Figure 9.2: Experimental measurement of the number of abnormal nodes in time, for fixed rates of
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Figure 9.3: The CDF of the PDR values of 170 nodes during normal operation and during a spike
at rate of 36Mbps.

for each packet in the UDP payload for measurement purposes. The AP used the lowest supported

transmission power of 1mW = 0dBm to ensure that the channel conditions of some nodes are

marginal.

Technical challenges: While analyzing the performance, we noticed that clients disconnect from

the AP at high bit-rates, thereby causing performance degradation. We noticed that in several WiFi

driver implementations, the beacon rate is set as the multicast rate. Increasing the bit-rate also

increases the WiFi beacon bit-rate which may not be decoded at some nodes. A sustained loss of

beacons leads to node disconnection. To counter this, we modified the ath5k driver to send beacons

at a fixed minimum bit-rate.

Interference and Stability: We study the time variability of the channel conditions on the ORBIT

testbed by measuring the number of nodes with low PDR (below a threshold of 85%). We call

these nodes abnormal nodes (the term will be formally defined in Section 9.4). The number of

abnormal nodes out of 170 nodes for rates of 24 and 36Mbps is shown in Fig. 9.2. We repeated

these experiments several times and observed that even at a low rate, the channel may suffer from

sporadic interference events, which cause a sharp increase in the number of abnormal nodes. These

interference spikes caused by non-WiFi devices are beyond our control and their duration varies in
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Table 9.1: Notation and parameter values used in experiments.

Symbol Semantics Exp.
Val.

n Number of nodes associated with the
AP.

> 150

X Population threshold - Minimal fraction
of nodes that should experience high
PDR.

95%

Amax The maximal number of allowed abnor-
mal nodes.

8

L PDR threshold - Threshold between ac-
ceptable (normal) and low (abnormal)
PDR.

85%

H Threshold between high PDR and mid-
PDR.

97%

K Expected number of FB nodes, K = α ·
Amax .

30

R Reporting PDR threshold.
At Number of abnormal nodes at time t.
Mt Number of mid-PDR FB nodes at time

t.
Wmin Minimal RA window size (multiples of

reporting intervals).
8

Wmax Maximal RA window size. 32

time.

Fig. 9.3 provides the Cumulative Distribution Function (CDF) of the PDR values with and

without sporadic interference. The figure shows that during a spike, over 15% of the nodes suffer

from PDR around 50%. Further, the location of the nodes affected by the spikes varies with time

and does not follow a known pattern. These experiments show that even in a seemingly controlled

environment, nodes may suffer from sporadic continuous interference, which may cause multicast

rate fluctuations. Users are very sensitive to changes in video quality [47, 17], and therefore, to

keep a high QoE we would like to avoid rate changes due to sporadic interference.

9.4 Network Model and Objective

We consider a WiFi LAN with multiple APs and frequency planning such that the transmis-

sions of adjacent APs do not interfere with each other. Thus, for RA we consider a single AP with n

associated users. We assume low mobility (e.g., users watching a sports event). Although we con-
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sider a controlled environment, the network may still suffer from sporadic interference, as shown

in Section 9.3. The main notation used in the chapter is summarized in Table 9.1. Specifically, a

PDR-Threshold L, is defined such that a node has high QoE if its PDR is above L. Such a node is

called a normal node. Otherwise, it is considered an abnormal node.

Our objective is to develop a practical and efficient rate control system which satisfies the fol-

lowing requirements:

(R1) High throughput – Operate at the highest possible rate, i.e., the target rate, while preserving

SLAs.

(R2) Service Level Agreements (SLAs) – Given L (e.g., L = 85%), and a Population-Threshold

X (e.g., X = 95%), the selected rate should guarantee that at least X% of the nodes experience

PDR above L (i.e., are normal nodes). Except for short transition periods, this provides an upper

bound of Amax = dn · (1 − X)e on the number of permitted abnormal nodes.

(R3) Scalability – Support hundreds of nodes.

(R4) Stability – Avoid rate changes due to sporadic channel condition changes.

(R5) Fast Convergence – Converge fast to the target rate after long-lasting changes (e.g., user

mobility or network changes).

(R6) Standard and Technology Compliance – No change to the IEEE 802.11 standard or oper-

ating system of the nodes.

9.5 Multicast Rate Adaptation

The overall multicast rate adaptation process of MuDRA as a part of the AMuSe system relies on

three main components, as illustrated in Fig. 9.1 and discussed below. We first provide a high level

description of each component and then discuss the details in the following subsections.

(i) Feedback (FB) Node Selection: Selects a small set of FB nodes that provide reports for mak-

ing RA decisions. We describe the FB node selection process in Section 9.5.1 and calculate the

reporting interval duration in Section 9.6.2

2Unlike in unicast where each packet is acknowledged, MuDRA’s reporting intervals are long (in the experiments
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Algorithm 2 MuDRA Algorithm
1: rate← lowestRate, window ← Wmin, changeTime← t, re f Time← t, t := current time
2: while (true) do
3: Get PDR reports from all FB nodes
4: Get Status of each FB node i
5: Calc Ât and M̂t

6: rate,action, changeTime← GetRate(...)
7: window,re f Time← GetWinSize(...)
8: set multicast rate to rate
9: sleep one reporting interval

Procedure 1 Rate Decision
1: procedure GETRATE(rate,window, changeTime, t)
2: action← Hold
3: if (t − changeTime) > window then
4: canDecrease← true, canIncrease← true
5: for τ ← 0 To window do
6: if Ât−τ < Amax then
7: canDecrease← f alse
8: else if Ât−τ + M̂t−τ > Amax − ε then
9: canIncrease← f alse

10: if canDecrease and rate > ratemin then
11: rate← NextLowerRate
12: action← Decrease, changeTime← t
13: if canIncrease and rate < ratemax then
14: rate← NextHigherRate
15: action← Increase, changeTime← t
16: return rate, action, changeTime

The following two components compose the MuDRA Algorithm (Algorithm 2). It collects the

PDR values from the FB nodes, updates their status (normal or abnormal), invokes the GETRATE

procedure, which calculates the desired rate, and invokes the GETWINSIZE procedure, which

determines the window size of rate updates (to maintain stability).

(ii) Rate Decision (Procedure 1): Utilizes the limited and infrequent FB reports to determine

the highest possible rate, termed the target-rate, while meeting the requirements in Section 9.4.

The rate decisions (lines 5–15) rely on rate decision rules that are described in Section 9.5.2. To

maintain rate stability, rate change operations are permitted, only if the conditions for rate change

are satisfied for time equal to a window size (determined by the Stability Preserving Method).

(iii) Stability Preserving Method (Procedure 2): A window based method that maintains rate

stability in the event of sporadic interference and after an RA decision. It follows the classical Ad-

we consider 2 reports per second).
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Procedure 2 Window Size Determination
1: procedure GETWINSIZE(Action,window,re f Time, t)
2: if Action = Decrease then
3: window ← min(Wmax,2 · window), re f Time← t
4: else if Action = Increase then
5: re f Time← t
6: else if (t − re f Time) > thresholdTime
7: and Action = Hold then
8: window ← max(Wmin,window − 1)
9: re f Time← t

10: return window,re f Time

ditive Increase Multiplicative Decrease (AIMD) approach. The duration of the time window varies

according to the network and channel characteristics (e.g., the typical duration of interference).

More details appear in Section 9.5.3.

9.5.1 Feedback Node Selection

MuDRA uses a simple and efficient mechanism based on a quasi-distributed FB node selection

process, termed K-Worst [20], where the AP sets the number of FB nodes and their reporting rates.

K nodes with the worst channel conditions are selected as FB nodes (the node’s channel condition

is determined by its PDR). Hence, the selection process ensures an upper bound on the number of

FB messages, regardless of the multicast group size. This upper bound is required for limiting the

interference from FB reports, as explained in Section 9.6. The process works as follows: At the

beginning of each reporting interval the AP sends a message with a list of K or less FB nodes as

well as a reporting PDR threshold R. R is used for adjusting the set of FB nodes to changes due

to mobility or variation of the channel condition, i.e., interference3. Upon receiving this message,

each FB node waits a short random time for avoiding collisions and then reports its measured

PDR to the AP. Every other node checks if its PDR value is below R and in such situation it

volunteers to serve as an FB node. To avoid a swarm of volunteering messages in the case of

sporadic interference, a non FB node verifies that its PDR values are below R for three consecutive

reporting intervals before volunteering. At the end of a reporting interval, the AP checks the PDR

values of all the FB and volunteering nodes, it selects the K with lowest PDR values as FB nodes

3when the system is activated the FB list is empty and R = L.
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Figure 9.5: The percentage of nodes that remain normal after increasing the T XAP from 36Mbps
to 48Mbps vs. their PDR values at the 36Mbps for different PDR-thresholds (L).

and updates R. If the number of selected FB nodes is K then for keeping the stability of the FB list,

R is set slightly below the highest PDR value of the FB nodes (e.g., 1% point below) . Otherwise,

R is set slightly above the highest PDR value of the FB nodes (e.g., 0.5% point above). The AP

sends a new message and the process repeats. We note that in a quasi static scenario, the values

of R do not have a significant impact on the feedback or the overhead of feedback. Tuning R is a

challenge only in the rare scenario when a large number of nodes with significantly different PDR

values rapidly enter or leave the multicast system.

9.5.2 Rate Decision Rules and Procedure

In this subsection, we describe the target condition which is an essential component of the rate

selection rules. Then, we describe the rules and the corresponding Procedure 1.

The Target Condition: At a given time, the FB reports are available only for the current rate. To

detect the target-rate, most RA schemes occasionally sample higher rates. However, the following

experiment shows that this approach may cause undesired disruption to many receivers. We eval-

uated the PDR distribution of 160 − 170 nodes for different multicast transmission rates, denoted

as T XAP for 3 different experiment runs on different days. Fig. 9.4 shows the number of nodes in
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different PDR ranges for T XAP values of 24, 36, and 48Mbps for one experiment with 168 nodes.

When T XAP is at most 36Mbps, the number of abnormal nodes is very small (at most 5). However,

when T XAP exceeds 36Mbps, the PDR of many nodes drops significantly. In this experiment 47

nodes became abnormal nodes which is more than Amax = 8 (for X = 95%). We observed similar

results in other experiments. Thus, in this case, the target rate is 36Mbps which is the highest rate

above which the SLA requirements will be violated.

A key challenge is to determine if the AP operates at the target-rate, without FB reports from

higher rates. We refer to this assessment as the target condition. Unfortunately, the target-rate can-

not be detected from RF measurements, such as SNR. As shown in [170, 81] different nodes may

have different receiver sensitivities, which may result in substantial PDR gaps between nodes with

similar RF measurements. However, large scale multicast environments enable us to efficiently

predict the target condition as described next.

From Fig. 9.4, we obtain the following important observation.

Observation I: When operating below the target-rate, almost all the nodes have PDR close to 100%.

However, when operating at the target-rate, noticeable number of receivers experience PDR below

97%. At 36Mbps, 17 nodes had PDR below 97%, which is substantially more than Amax = 8.

Fig. 9.5 shows the average percentage of nodes that remain normal vs. their initial PDR when

increasing T XAP from 36Mbps to 48Mbps averaged for 3 different sets of experiments. The total

number of nodes in these experiments was 168. We derive the following observation from Fig. 9.5.

Observation II: There is a PDR threshold, H, such that every node with PDR between L and H

becomes abnormal after the rate increase with very high probability. Typically, H can be a value

slightly below 100%. In our experiments on ORBIT, we use H = 97% since 97% is the highest

threshold for which this observation holds. We refer to these nodes as mid-PDR nodes.

Observation II is not surprising. As reported in [170, 190], each receiver has an SNR band of

2 − 5dB, in which its PDR drops from almost 100% to almost 0%. The SNR of mid-PDR nodes

lies in this band. Increasing the rate requires 2 − 3dB higher SNR at the nodes. Hence, mid-PDR

nodes with SNR in the transition band before the rate increase will be below or at the lower end of

176



the transition band after the increase, and therefore, become abnormal nodes.

In summary, Observations I and II imply that it is possible to assess the target condition by

monitoring the nodes close to transitioning from normal to abnormal. Let At and Mt denote the

number of abnormal and mid-PDR nodes at time t, respectively. We obtain the following empirical

property.

Property 1 (Target Condition). Assume that at a given time t, the following condition holds,

At ≤ Amax and At + Mt > Amax (9.1)

then almost surely, the AP transmits on the target-rate at time t. This is sufficient but not a neces-

sary condition.

It is challenging to analytically predict when the target condition is satisfied with the available

FB information and without a model of the receiver sensitivity of all the nodes. However, our

experiments show that the target condition is typically valid when operating at the target-rate.

Adjusting the Multicast Rate: The SLA requirement (R2) and target condition (9.1) give us a

clear criteria for changing the rate. The FB scheme only gives us estimates of At and Mt , denoted

by Ât and M̂t respectively. For the K-Worst scheme, if K > Amax + ε (ε is a small constant), then

Ât and M̂t are sufficient to verify if (9.1) is satisfied because of the following property:

Property 2. If K ≥ Amax + ε , then, Ât = min(At, Amax + ε) and Ât + M̂t = min(At +Mt, Amax + ε),

where Ât and M̂t are the known number of abnormal and mid-PDR known to the AP, and ε is

a small constant. In other words, given that K is large enough, the K-worst scheme provides

accurate estimates of abnormal and mid-PDR nodes.

Proof. First consider the claim Ât = min(At, Amax + ε). Consider the case At ≤ Amax + ε , we

know that the number of estimated abnormal nodes Ât = At since K ≥ Amax + ε and all abnormal

nodes must belong in the K FB nodes set. Next, if At > Amax + ε then all the FB nodes chosen are

abnormal by the definition of the K-worst feedback scheme which implies Ât = Amax + ε .
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A similar argument can be made for the claim Ât + M̂t = min(At +Mt, Amax + ε). If At +Mt ≤

Amax + ε , then Ât + M̂t = At + Mt since the K feedback nodes will necessarily include the At

abnormal and Mt mid-PDR nodes. If At + Mt > Amax + ε , then Ât + M̂t which is upper bounded

by Amax + ε . � �

The objective is to choose minimum K (for minimum FB overhead) that is sufficient to verify

(9.1). In our experiments, we found that for Amax = 8, K > 10 works well (Section 9.7.1). We

now derive the following rate changing rules:

Rule I Ât > Amax: The system violates the SLA requirement (R2) and the rate is reduced.

Rule II Ât + M̂t ≥ Amax − ε : The system satisfies the target condition.

Rule III Ât + M̂t < Amax − ε : The target condition does not hold and the rate can be increased,

under the stability constraints provided in Section 9.5.3.

In our experiments we use ε = 2 to prevent rate oscillations.

The rate change actions in Procedure 1 are based on the these rules. The flags canIncrease and

canDecrease indicate whether the multicast rate should be increased or decreased. Rate change

operations are permitted, only if the time elapsed since the last rate change is larger than the

window size determined by the Stability Preserving Method (line 3). The for-loop checks whether

the rate should be decreased according to Rule I (line 6) or increased according to Rule III (line 9)

for the window duration. Finally, based on the value of the flags and the current rate, the algorithm

determines the rate change operation and updates the parameters rate and action, accordingly

(lines 10–15).

9.5.3 The Stability Preserving Method

It is desirable to change the rate as soon as Rules I or III are satisfied to minimize QoE dis-

ruption (see (R5) in Section 9.4). However, as we show in Fig. 9.6 such a strategy may cause

severe fluctuations of the transmission rate. These result from two main reasons: (i) the reporting

mechanism not stabilizing after the last rate change, and (ii) interference causing numerous low

PDR reports.
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Figure 9.6: Evolution of the multicast rate over time when the delay between rate changes = 1s (2
reporting intervals).

.

To address this, we introduce in Procedure 2 a window based RA technique which considers

the two situations and balances fast convergence with stability. In Procedure 2, the rate is changed

only if the rate change conditions are satisfied over a given time window, after the last rate change

operation (lines 5-9). To prevent oscillations due to short-term wireless channel degradation, when

the rate is reduced, the window is doubled in Procedure 2 (line 3). The window size is decreased by

1 when a duration thresholdTime elapses from the last rate or window size change (line 8). This

allows recalibrating the window after an atypical long interference episode. The window duration

varies between Wmin and Wmax FB reporting periods. In the experiments, Wmin = 8 and Wmax = 32.

9.5.4 Handling Losses

MuDRA can handle mild losses (below 15%) by adding application level FEC [212] to the mul-

ticast streams. The PDR-Threshold in our experiments (L = 85%) was selected to allow nodes to

handle losses in the event of short simultaneous transmission of another node. In such a situation,

the collision probability is below 2/CWmin, where CWmin is the minimal 802.11 contention win-

dow. For 802.11a/g/n CWmin = 16, which implies collision probability is below 12.5%. Therefore,

nodes with high PDR (near 100%) should be able to compensate for the lost packets. If there is

strong interference, other means should be used. For instance, the multicast content can be divided

into high and low priority flows, augmenting the high priority flow with stronger FEC during the

interference period, while postponing low priority flows.
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Figure 9.7: (a) Rate adaptation performance for reporting intervals of 100ms, (b) Fraction of data
sent at various rates with MuDRA for different reporting intervals, and (c) Control overhead for
various reporting intervals.

9.6 Reporting Interval Duration

MuDRA relies on status reports from the FB nodes. For immediate response to changes in

service quality, the status reports should be sent as frequently as possible, (i.e., minimal reporting

interval). However, this significantly impairs the system performance as described below.

Impact of Aggressive Reporting: Figs. 9.7(a)-9.7(c) show the impact of different reporting in-

tervals on MuDRA. In these experiments, the number of FB nodes (K) is 50 and the total number

of nodes is 158. To focus on RA aspects, we set both Wmin and Wmax to 5 reporting intervals.

Fig. 9.7(a) shows that when the reporting interval is too short, MuDRA does not converge to the

target rate of 24Mbps. Fig. 9.7(b) shows that in the case of reporting interval of 100ms, more than

50% of the packets are transmitted at the lowest rate of 6 Mbps. Fig. 9.7(c) shows that the con-

trol overhead is significantly larger for short reporting intervals (shorter than 200ms). The control

overhead comprises of unicast FB data sent by nodes and multicast data sent by AP to manage K

FB nodes.

These phenomena result from collisions between feedback reports and multicast messages. In

the event of a collision, FB reports, which are unicast messages, are retransmitted, while multicast

messages are lost. Frequent reporting increases the collision probability, resulting in PDR reduc-

tion and causes the classification of many nodes as mid-PDR nodes, i.e., PDR < Hhigh = 97%.

Thus, due to Rule II from Section 9.5.2, the rate is kept close to the minimal rate.

Appropriate Reporting Interval Duration:
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Table 9.2: The percentage of PDR loss at nodes (∆PDR(T)) as a function the reporting interval T .
T (ms) 100 200 300 400 500 700 1000
∆PDR% 4.69 1.56 0.94 0.67 0.52 0.36 0.25

Assume a greedy AP which continuously transmits multicast messages. We now estimate the

PDR reduction, denoted as ∆PDR, for a given reporting interval T and upper bound K on the

number of FB nodes (both normal and abnormal), when the system operates at the low rate of

6Mbps.

Packet Transmission Duration: We denote with D and d the transmission duration of multicast

and feedback report message at the rate of 6Mbps, respectively. Since the length of each multicast

packet is 12Kbits, its transmission duration is 12Kbits
6Mbps = 2.0ms. Given WiFi overhead of about

30%, we assume D = 3ms. The feedback messages are much shorter and we assume that their

transmission duration is d = 1ms.

Number of feedback reports and multicast messages: Consider a time interval U, say a minute.

The number of feedback reports, denoted as F, is

F = U
T · K

The number of multicast message B is given by,

B =
U − d · F

D
=

U
D
·

(
1 −

d · K
T

)
Collision probably of a multicast packet (∆PDR): Let us first calculate the number of contention

window slots, denoted by S, in which packet may be transmitted from the view point of the AP

during the time interval U. Recall that between any two multicast transmissions, the AP waits an

average of half of the contention window size CWmin/2 = 8. This leads to

S = CWmin

2 · B

∆PDR is the fraction of slots in which both the AP and a FB node send a message. To simplify

our estimation, we ignore collisions and retransmission of FB messages4, and assume that in any

4These are second order effects of already low collision probabilities.
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Figure 9.8: A typical sample of MuDRA’s operation over 300s with 162 nodes: (a) Mid-PDR and
abnormal nodes, (b) Multicast rate and throughput measured at the AP, and (c) Control data sent
and received.

slots only one FB node may transmit. Therefore,

∆PDR =
F
S
·

B
S
=

[
2

CWmin

]2
·

F
B

With proper assignment we get,

∆PDR =
[

2
CWmin

]2
·

K · D
T − d · K

(9.2)

Equation (9.2) confirms that ∆PDR is reduced by increasing the reporting interval or by using

a higher bit-rate, which reduces D. Table 9.2 provides the ∆PDR values for K = 50 when T varies

between 0.1 to 1 second. In our experiments we wanted ∆PDR ≤ 0.5%, which implies using

reporting interval T ≥ 500ms.

9.7 Experimental Evaluation

For evaluating the performance of MuDRA on the ORBIT testbed, we use the parameter values

listed in Table 9.1. In all our evaluations, we consider backlogged multicast traffic. The perfor-

mance metrics are described below:

(i) Multicast rate and throughput: The time instants when the target condition is satisfied are

marked separately.

(ii) PDR at nodes: Measured at each node.

(iii) Number of abnormal and mid-PDR nodes: We monitored all the abnormal and mid-PDR
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Figure 9.9: (a) Rate and throughput for the pseudo-multicast scheme, (b) CDF of PDR distribu-
tions of 162 nodes for fixed rate, MuDRA, Pseudo-Multicast, and SRA schemes, and (c) Multicast
throughput vs. the number of feedback nodes (K).

nodes (not just the FB nodes).

(iv) Control traffic: The feedback overhead (this overhead is very low and is measured in Kbps).

We compared MuDRA to the following schemes:

(i) Fixed rate scheme: Transmit at a fixed rate of 36Mbps, since it is expected to be the target rate.

(ii) Pseudo-multicast: Unicast transmissions to the node with the lowest SNR/RSS. The unicast

RA is the driver specific RA algorithm Minstrel [137]. The remaining nodes are configured in

promiscuous mode.

(iii) Simple Rate Adaptation (SRA) algorithm [20]: This scheme also relies on measuring the

number of abnormal nodes for making RA decisions. Yet, it is not designed to achieve the target

rate, maintain stability, or respond to interference.

9.7.1 Performance Comparison

We evaluated the performance of MuDRA in several experiments on different days with 160 −

170 nodes. Fig. 9.8 shows one instance of such an experiment over 300s with 162 nodes. Fig. 9.8(a)

shows the mid-PDR and abnormal nodes for the duration of one experiment run. Fig. 9.8(b) shows

the rate determined by MuDRA. The AP converges to the target rate after the initial interference

spike in abnormal nodes at 15s. The AP successfully ignored the interference spikes at time instants

of 210, 240, and 280s to maintain a stable rate. The target-condition is satisfied except during

the spikes. The overall control overhead as seen in Fig. 9.8(c) is approximately 40Kbps. The

population of abnormal nodes stays around 2−3 for most of the time which implies that more than
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Table 9.3: Average throughput (Mbps) of pseudo-multicast, MuDRA, and SRA schemes with and
without background traffic.

No Background traffic Background traffic
Fixed rate = 36Mbps 20.42 13.38
Pseudo-Multicast 9.13 5.36
MuDRA 18.75 11.67
SRA 19.30 4.55

160 nodes (> 98%) have a PDR > 85%. The actual throughput is stable at around 20Mbps which

after accounting for 15% FEC correction implies a goodput of 17Mbps.

Fig. 9.9(a) shows a sample of the throughput and rate performance of the pseudo-multicast

scheme. The throughput achieved is close to 9Mbps. We observe that pseudo-multicast frequently

samples higher rates (up to 54Mbps) leading to packet losses. The average throughput for dif-

ferent schemes over 3 experiments of 300s each (conducted on different days) with 162 nodes is

shown in Table 9.3. MuDRA achieves 2x throughput than pseudo-multicast scheme. The fixed rate

scheme yields approximately 10% higher throughput than MuDRA. SRA has similar throughput as

MuDRA.

Fig. 9.9(b) shows the distribution of average PDR of 162 nodes for the same 3 experiments. In

the pseudo-multicast scheme, more than 95% of nodes obtain a PDR close to 100% (we did not

consider any retransmissions to nodes listening in promiscuous mode). MuDRA meets the QoS

requirements of 95% nodes with at least 85% PDR. On the other hand, in SRA and the fixed rate

schemes 45% and 70% of the nodes have PDR less than 85%, respectively.

In pseudo-multicast, more reliable transmissions take place at the cost of reduced throughput,

since the AP communicates with the node with the poorest channel quality in unicast. The signif-

icant difference in QoS performance of the fixed rate and SRA schemes is because the target rate

can change due to interference etc. In such a situation, MuDRA can achieve the new target rate

while the fixed rate and SRA schemes lead to significant losses (we observed that exceeding the

target rate even 10% of time may cause up to 20% losses and less than 5% throughput gain).

Changing number of FB nodes: We varied the number of FB nodes (K) between 1 − 100 for

MuDRA. Fig. 9.9(c) shows the throughput as K changes. For K = 1, MuDRA tunes to the node
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Figure 9.10: Emulating topology change by turning off FB nodes after 150s results in changing
optimal rate for MuDRA.

with the worst channel quality, and consequently, the throughput is very low. On the other hand,

increasing K from 30 to 90 adds similar amount of FB overhead as decreasing the report interval

from 500ms to 200ms in Section 9.6. Thus, the throughput decreases for a large number of FB

nodes. The throughput for K between 10−50 does not vary significantly which is aligned with our

discussion in Section 9.5 that MuDRA needs only K > Amax + ε for small ε to evaluate the target

rate conditions.

Impact of topology changes: To demonstrate that changes in the network may lead MuDRA to

converge to a different rate, we devised a strategy to emulate network topology changes on the

grid. During an experiment, a number of FB nodes are turned off at a given time. Since FB nodes

have the lowest PDRs, it may lead to changes in the target rate as a large number of nodes with

low PDR disappear from the network. Fig. 9.10 shows the scenario when 30 FB nodes are turned

off after 150s during the experiment. The rate converges quickly and without oscillations to a new

target rate of 54Mbps.

9.7.2 Impact of High Node Churn

We evaluate the performance of MuDRA when emulating severe network changing conditions.

In the experiments, each node leaves or joins the network with probability p every 6s. Thus,

p = 0.1 implies that a node changes its state with probability of approximately 50% at least once

in a minute. Initially, 50% of the nodes are randomly selected to be in the network.

We conducted 3 experiments consisting of 155 nodes (initially, 77 nodes are in on state).
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Figure 9.11: Performance of MuDRA with high node churn: (a) Distribution of time duration for
which a node is a FB node for different values of probability p of node switching its state on/off
every 6s, (b) Multicast rate and throughput measured at the AP with p = 0.2, (c) Percentage of
data sent at various rates for different values of p.
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Figure 9.12: Performance of MuDRA with 155 nodes where an interfering AP transmits on/off
traffic: (a) Mid-PDR and abnormal FB nodes, (b) Multicast rate and throughput, (c) CDF for PDR
distribution with interference for fixed rate, MuDRA, pseudo-multicast, SRA.

Fig. 9.11(a) shows the impact of p on the distribution of time duration that the nodes remain

as FB nodes. Higher values of p imply higher churn and lead to shorter periods for which nodes

serve as FB nodes. The average number of changes in FB nodes per second is 2, 5, and 10 for p

equal to 0, 0.2, and 0.9, respectively. Even with these changes, the average control overhead is

very low (35Kbps) and is not affected by the degree of churn. Fig. 9.11(b) shows one instance of

the RA process with p = 0.2. We see that MuDRA can adapt to the changing target rate at times

10, 30, and 255s. Fig. 9.11(c) shows the percentage of data sent at different rates for several values

of p averaged over 3 different experiment runs. MuDRA achieves a similar rate distribution for all

values of p. Our experiments show that MuDRA can achieve the target rate, maintain stability,

and adds low overhead, even under severe network changing conditions.
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Figure 9.13: Multicast throughput with node 1-8 transmitting interfering on/off packet stream with
node churn.

9.7.3 Impact of External Interference

We envision that MuDRA will be deployed in environments where the wireless infrastructure

is centrally controlled. However, in-channel interference can arise from mobile nodes and other

wireless transmissions. In addition to the uncontrolled interference spikes on ORBIT, we evaluate

the impact of interference from a nearby node which transmits at the same channel as the multicast

AP. We consider a scenario with two nodes near the center of the grid that exchange unicast traffic at

a fixed rate of 6Mbps in a periodic on/off pattern with on and off periods 20s each. The transmission

power of the interfering nodes is 0dBm which is equal to the transmission power of the multicast

AP. This helps us evaluate the performance in the worst case scenario of continuous interference

and study the dynamics of changing interference.

Fig. 9.12(a) shows the mid-PDR and abnormal nodes and Fig. 9.12(b) shows the rate and

throughput for one experiment with 155 nodes. The number of mid-PDR nodes increases dur-

ing the interference periods, due to losses from collisions. MuDRA converges to the target rate

of 24Mbps. Notice during interference periods, MuDRA satisfied the target-condition and that

using the stability preserving method, MuDRA manages to preserve a stable rate. The average

throughput of different schemes with on/off background traffic for 3 experiments of 300s each is

in Table 9.3. Pseudo-multicast achieves half while SRA has a third of the throughput of MuDRA.

The fixed rate scheme achieves similar throughput as MuDRA.

The PDR distribution of nodes is in Fig. 9.12(c). MuDRA satisfies QoS requirements while

maintaining high throughput. Pseudo-multicast scheme has 90% nodes with PDR more than 90%
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since it makes backoff decisions from unicast ACKs. SRA yields 55% nodes with PDR less than

85% as it transmits at low rates. The fixed rate scheme yields 30% nodes with PDR less than 85%.

The fixed rate scheme performs better than SRA since it maintains a higher rate. We also investi-

gate the combined impact of both interference and node churn, where every 6s, the probability of

a node switching on/off is p = 0.2. Fig. 9.13 shows the rate and throughput for this case. Similar

to results in Section 9.7.2, the performance of the system is not affected by node churn.

9.7.4 Video multicast

We demonstrate the feasibility of using MuDRA for streaming video. The video is segmented

with segment durations equal to the period of rate changes (1s) and each segment is encoded at

several rates in H.264 format. For each time period, the key (I) frames are transmitted reliably at

the lowest rate 6Mbps (note that transmitting the key frames can be achieved with 100% reliability

even at 12Mbps on the testbed). The non-key (B and P) frames are transmitted at the rate set by

MuDRA. At each instant, we know the expected throughput D̂R for every rate R, the fraction of

key frame data fk , and the fraction of non-key frame data fnk . Denote the expected throughput at

6Mbps by D̂min. The video rate can be calculated by solving linear equations VR =
D̂min·D̂R

D̂min· fnk+D̂R · fk
.

Let the multicast rate for current time period be R,the expected data throughput at this rate be

D̂R, and the estimated throughput at the minimum rate be D̂min. Let fk be the fraction of key frame

data and fnk be the fraction of non-key frame data. The video server has to determine the video

rate VR at each time t. Let the fraction of transmission time for key frames Tk =
VR · fk
D̂min

and fraction

of transmission time for non-key frames Tnk =
VR · fnk

D̂R
. We know that

tk + tnk = 1

The video rate can be calculated by solving linear equations VR =
D̂min·D̂R

D̂min· fnk+D̂R · fk
. In environ-

ments where estimates of throughput are inaccurate due to interference, techniques such as in [200]

can be utilized.
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Figure 9.14: Distribution of video quality and PSNR (in brackets) measured at 160 nodes for
different multicast schemes.

Experimental Results: We use raw videos from an online dataset [207] and encode the videos

with H.264 standard. In our data sets, fk is 15 − 20%. For MuDRA with throughput 19Mbps and

FEC correction of 15%, we can support a video rate of 13 − 15 Mbps, which is sufficient for 3 or

4 HD streams (each 4Mbps) on mobile devices. For each node, we generated the video streams

offline by mapping the video frames to the detailed packet traces collected on ORBIT from an

RA experiment. For a fair comparison, the I frames were transmitted at 6Mbps for all schemes

even though MuDRA can dynamically adjust the transmission rate to be much higher even for

reliable transmissions. In our experiments, we only considered a single video stream of rate VR.

We measured the PSNR of the video at each node and classified the PSNR in 5 categories based

on visual perception5.

Fig. 9.14 shows the video quality and PSNR ranges at the nodes for 3 experiments each of

300s and with 150 − 160 nodes. With MuDRA, more than 90% of the nodes achieve excellent

or good quality, 5% achieve fair quality, and less than 5% get poor or bad quality. While the

pseudo-multicast scheme results in almost all nodes obtaining excellent quality, the video through-

put for this scheme is significantly lower (8Mbps). SRA and the fixed rate schemes have more

than 50% nodes with poor or bad video quality. The higher thorughput from MuDRA can allow

streaming of several concurrent video streams or streams encoded at higher rates while ensuring

QoS requirements.

5PSNR quantifies the distortion of the received as compared to the original transmitted video.
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Figure 9.15: A screenshot of the web-based application for evaluating performance of AMuSe .
The control panel for selecting the feedback and MuDRA algorithm parameters is on the top. The
video at two selected nodes is shown below. In this example we show one node with poor quality
and one with good quality video. The multicast throughput and other metrics are in the graphs.
The performance of the client nodes is shown on the grid where numbers in each box indicate the
PDR and the color of the box indicates the range of PDR. The nodes highlighted with a red border
are FB nodes and nodes in grey are non-functional due to hardware issues.

9.8 Demonstration Application

To visually evaluate the performance of AMuSe and video delivery over AMuSe , we developed

an interactive web-based application that illustrates the performance of the overall AMuSe system

based on experimental traces collected on the ORBIT testbed. We collected the traces over several

days in different experimental settings with 150-200 nodes. Each experimental trace consisted of

channel measurements at each node using several metrics such Link Quality, Packet Delivery Ratio

(PDR) etc.

The application allows considering different scenarios such as different channel conditions,

interfering transmissions etc. For each scenario, the application shows the dynamic conditions

over a period of time on the testbed from the appropriate experimental traces. The application can

be used to compare the performance of several multicast schemes such as pseudo-multicast, unicast

transmissions in different scenarios that have been measured on the testbed (e.g. interference, other
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WiFi flows, etc.) as well as syntactic scenarios based on manipulating the measured data. We note

that the application is flexible and can be used for testing even more scenarios and algorithms in

the future.

The application has three main components: (i) the back-end where the experimental data is

stored and managed, (ii) the front-end which provides the user interface, and (iii) a video tool

for generating video streams. Both the front-end and the back-end are light weight applications.

The front-end is web-based and can operate on any standard browser while the back-end requires

installation of easily available open source libraries. For any experimental condition, the video tool

generates the video stream received by a selected node. It maps video payload to UDP packets and

discarding lost packet, according to the node’s traces.

The front end is built using Angular [15] which is a JavaScript framework for rendering dy-

namic features on web applications. The FB node selection and MuDRA algorithms are built

in the Django framework. The back-end utilizes a Postgres [162] database and interfaces with

Django [53]. The algorithmic parameters can be tuned at any given time on the front-end. The

front-end periodically relays the parameters to Django. Django utilizes the user input and system

state information derived from the back-end to run the required FB and rate adaptation algorithms.

The system state is then relayed to Angular, which renders the information on user’s screen. Fi-

nally, the experiment can be paused at any time to allow the video tool to generate videos at the

nodes for that period of time. The video tool uses ffmpeg to render and generate the videos and an

nginx server [150] to transmit to the front-end.

The back-end utilizes a Postgres [162] database and interfaces with Django. The database is

populated using the data derived from the experimental traces. The database consists of parameters

several experimental parameters at each node at different times for each experimental scenario.

This allows us to characterize the performance of the testbed with evolving channel conditions. The

statistics about performance at each node are derived from the detailed packet traces. The feedback

algorithms are built in the Django framework. The application is very flexible and allows other

feedback algorithms to be incorporated as well. The users can change the feedback algorithms and
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tune the algorithm specific parameters at any given time on the front-end.

The front end is built using Angular [15] which is a JavaScript framework designed for ren-

dering dynamic features on web applications. The front-end periodically relays the user defined

parameters to Django which runs the corresponding FB algorithm and responds with information

(including the state of the nodes and the system) to Angular. Angular in turn renders the infor-

mation on user’s screen. The period of rendering at the front-end as well as calculation of system

performance parameters can be changed by the user. Typically, we use a period of 500ms.

Fig. 9.15 shows a screenshot of the application. The application allows selecting different

experiment settings such as AP bit rate, feedback algorithm, number of feedback nodes on the web

interface. This information is used along with data collected from the experiments to show how

the performance at all the nodes on the grid. The feedback nodes are highlighted with a red border.

The rate adaptation and multicast throughput measured at the AP appears below. The information

on the front-end is updated periodically.
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Chapter 10: Dynamic Monitoring of Large Scale LTE-eMBMS

Previously, we focused on WiFi multicast in Chapter 8 and 9. In this chapter, we consider sup-

port for efficient LTE-eMBMS deployments in crowded and dynamic environments by providing

accurate QoS reports with low overhead.

10.1 Introduction

LTE-eMBMS (evolved Multimedia Broadcast/Multicast Service) [4, 115] provides an alter-

native method for content delivery in crowded venues which is based on broadcasting to a large

population of User Equipment (UEs) (a.k.a. eMBMS receivers). As illustrated in Fig. 10.1, in

order to improve the Signal-to-Noise Ratio (SNR) at the receivers, eMBMS utilizes soft signal

combining techniques.1 Thus, a large scale Modulation and Coding Scheme (MCS) adaptation

should be conducted simultaneously for all the BSs based on the Quality of Service (QoS) at the

UEs.

Unfortunately, the eMBMS standard [4] only provides a mechanism for UE QoS reporting

once the communication terminates, thereby making it unsuitable for real-time traffic. Recently,

the Minimization of Drive Tests (MDT) protocol [5] was extended to provide eMBMS QoS reports

periodically from all the UEs or when a UE joins/leaves a BS. However, in crowded venues with

tens of thousands of UEs (e.g., [58]), even infrequent QoS reports by each UE may result in high

signaling overhead and blocking of unicast traffic.2 Due to the limited ability to collect feedback, a

deployment of an eMBMS system is very challenging. In particular, it is hindered by the following

limitations:
1All the BSs in a particular venue transmit identical multicast signals in a time synchronized manner.
2A BS can only support a limited number of connections while the minimal duration for an LTE connection is in

the order of hundreds of milliseconds.
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Figure 10.1: The DyMo system architecture: It exchanges control information with the Multicast
Coordination Entity (MCE) of BSs which use soft signal combining for eMBMS. The Instruction
Control module uses broadcast to dynamically partition the UEs into groups, each sending QoS
reports at a different rate. The reports are sent to the Feedback Collection module and allow the
QoS Evaluation module to identify an SNR Threshold. It is used by the MCS Control module to
specify the optimal MCS to the MCEs.

(i) Extensive and time consuming radio frequency surveys: Such surveys are conducted before

each new eMBMS deployment. Yet, they provide only limited information from a few mon-

itoring nodes.

(ii) Conservative resource allocation: The eMBMS MCS and Forward Error Correction (FEC)

codes are set conservatively to increase the decoding probability.

(iii) Oblivious to environmental changes: It is impossible to infer QoS degradation due to envi-

ronmental changes, such as new obstacles or component failures.

Clearly, there is a need to dynamically tune the eMBMS parameters according to the feed-

back from UEs. However, a key challenge for eMBMS parameter tuning for large scale groups

is obtaining accurate QoS reports with low overhead. Schemes for efficient feedback collection

in wireless multicast networks have recently received considerable attention, particulalty in the

context of WiFi networks (e.g., [206, 71, 217, 60]). Yet, WiFi feedback schemes cannot be easily

adapted to eMBMS since unlike WiFi, where a single Access Point transmits to a node, transmis-

sions from multiple BSs are combined in eMBMS. Efforts for optimizing eMBMS performance

focus on periodically collecting QoS reports from all UEs (e.g., [31]) but such approaches rely on

extensive knowledge of the user population (for more details, see Section 10.2.2).

In this chapter, we present the Dynamic Monitoring (DyMo) system designed to support ef-
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ficient LTE-eMBMS deployments in crowded and dynamic environments by providing accurate

QoS reports with low overhead. DyMo identifies the maximal eMBMS SNR Threshold such that

only a small number of UEs with SNR below the SNR Threshold may suffer from poor service3.

To identify the SNR Threshold accurately, DyMo leverages the broadcast capabilities of eMBMS

for fast dissemination of instructions to a large UE population.

Each instruction is targeted at a sub-group of UEs that satisfies a given condition. It instructs

the UEs in the group to send a QoS report with some probability during a reporting interval.4 We

refer to these instructions as Stochastic Group Instructions. For instance, as shown in Fig. 10.2,

DyMo divides UEs into two groups. UEs with poor or moderate eMBMS SNR are requested to

send a report with a higher rate during the next reporting interval. In order to improve the accuracy

of the SNR Threshold, the QoS reports are analyzed and the group partitions and instructions are

dynamically adapted such that the UEs whose SNR is around the SNR Threshold report more

frequently. The SNR Threshold is then used for setting the eMBMS parameters, such as the MCS

and FEC codes.

From a statistics perspective, DyMo can be viewed as a practical method for realizing impor-

tance sampling [154] in wireless networks. Importance sampling improves the expectation ap-

proximation of a rare event by sampling from a distribution that overweighs the important region.

With limited knowledge of the SNR distribution, DyMo leverages Stochastic Group Instructions

to narrow down the SNR sampling to UEs that suffer from poor service and consequently obtains

accurate estimation of the SNR Threshold. To the best of our knowledge, this is the first realization

of using broadcast instructions for importance sampling in wireless networks.

The DyMo system architecture is illustrated in Fig. 10.1. It operates on an independent server

and exchanges control information with several BSs supporting eMBMS. The Instruction Control

module instructs the different groups to send reports at different rates. The reports are sent via

unicast to the Feedback Collection module and allow the QoS Evaluation module to identify an

3While various metrics can be used for QoS evaluation, we consider the commonly used eMBMS SNR, referred
to as SNR, as a primary metric.

4A higher probability results in a higher reporting rate, and therefore, we will use rate and probability interchange-
ably.
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Figure 10.2: Operation of DyMo for a sample UE QoS distribution: UEs are partitioned into two
groups based on their SNR and each group is instructed to send QoS reports at a different rate. The
partitioning is dynamically adjusted based on the reports to yield more reports from UEs whose
SNR is around the estimated SNR Threshold.

accurate SNR Threshold. The SNR Threshold is determined such that only a predefined number

of UEs with SNR below the threshold, termed as outliers, may suffer from poor service. The

MCS Control module utilizes the SNR Threshold to configure the eMBMS parameters (e.g., MCS)

accordingly. Finally, the QoS Evaluation module continually refines group partitions based on the

reports.

We focus on the QoS Evaluation module and develop a Two-step estimation algorithm which

can efficiently identify the SNR Threshold as a one time estimation. We also develop an Iterative

estimation algorithm for estimating the SNR Threshold iteratively, when the distribution changes

due to UE mobility or environmental changes, such as network component failures. Our analysis

shows that the Two-step estimation and Iterative estimation algorithms can infer the SNR Thresh-

old with a small error and limited number of QoS reports. It is also shown that they outperform

the Order-Statistics estimation method, a well-known statistical method, which relies on sampling

UEs with a fixed probability. For instance, the Two-step estimation requires only 400 reports when

estimating the 1th percentile to limit the error to 0.3% for each re-estimation. The Iterative esti-

mation algorithm performs even better than the Two-step estimation and the maximum estimation

error can be bounded according to the maximum change of SNR Threshold.

We conduct extensive at-scale simulations, based on real eMBMS radio survey measurements

from a stadium and an urban area. It is shown that DyMo accurately infers the SNR Threshold and

optimizes the eMBMS parameters with low overhead under different mobility patterns and even in

the event of component failures. DyMo significantly outperforms alternative schemes based on the
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Order-Statistics estimation method which rely on random or periodic sampling.

Our simulations show that both in a stadium-like and urban area, DyMo detects the eMBMS

SNR value of the 0.1% percentile with Root Mean Square Error (RMSE) of 0.05% with only 5

messages per second in total across the whole network. This is at least 8 times better than Order-

Statistics estimation based methods. DyMo also infers the optimal SNR Threshold with RMSE of

0.3 dB regardless of the UE population size, while the error of the best Order-Statistics estimation

method is above 1 dB. DyMo violates the outlier bound (of 0.1%) with RMSE of at most 0.35

while the best Order-Statistics estimation method incurs RMSE of over 4 times as compared to

DyMo. The simulations also show that after a failure, DyMo converges instantly (i.e., in a single

reporting interval) to the optimal SNR Threshold. Thus, DyMo is able to infer the maximum MCS

while preserving QoS constraints.

To summarize, the main contributions of this chapter are three-fold:

(i) We present the concept of Stochastic Group Instructions for efficient realization of importance

sampling in wireless networks.

(ii) We present the system architecture of DyMo and efficient algorithms for SNR Threshold esti-

mation.

(iii) We show via extensive simulations that DyMo performs well in diverse scenarios.

The principal benefit of DyMo is its ability to infer the system performance based on a low number

of QoS reports. It converges very fast to the optimal eMBMS configuration and it reacts very fast

to changes in the environment. Hence, it eliminates the need for service planning and extensive

field trials. Further, DyMo is compatible with existing LTE-eMBMS deployments and does not

need any knowledge of the UE population.

The rest of the chapter is organized as follows. We provide background information about

eMBMS and a brief review of related work in Section 10.2. We introduce the model and objective

in Section 10.3. We present the DyMo system in Section 10.4. The algorithms for SNR threshold

estimation with their analysis are given in Section 10.5. The numerical evaluation results appear

in Section 10.6 while some details of our analysis are given in the Appendix.
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The description and evaluation of the DyMo system appeared in the proceedings of IEEE IN-

FOCOM’17 [24] and was selected as a best paper runner-up. An extended version was fast-

tracked to IEEE/ACM Transactions on Networking [23]. The design and evaluation of DyMo was

based on significant contributions from Ph.D student Dr. Varun Gupta and co-authors at Bell Labs

especially, Dr. Yigal Bejerano, Dr. Chandru Raman, and Dr. Chun-Nam Yu.

10.2 Related Work

10.2.1 eMBMS Background

LTE-Advanced networks provide broadcast services by using evolved Multimedia Broadcast/Multicast

Service (eMBMS) [115]. eMBMS is best suited to simultaneously deliver common content like

video distribution to a large number of users within a contiguous region of cells. eMBMS video

distribution is offered as an unidirectional service without feedback from the UE nor retransmis-

sions of lost packets. This is enabled by all cells acting in a coordinated Single Frequency Network

(SFN) arrangement, i.e., transmitting identical signals in a time synchronized manner, called Mul-

ticast Broadcast Single Frequency Network (MBSFN). The identical signals combine over the air

in a non-coherent manner at each of the user locations, resulting in an improved Signal-Noise

Ratio (SINR). Thus, what is normally out-of-cell interference in unicast becomes useful signal in

eMBMS. For avoiding further interference from cells not transmitting the same MBSFN signal,

the BSs near the boundary of the MBSFN area are used as a protection tier and they should not

include eMBMS receivers in their coverage areas.

10.2.2 Related Work

Most previous work on eMBMS (e.g., [232, 188, 135, 35]) assumes individual feedback from

all the UEs and proposes various MCS selection or resource allocation techniques. Yet, extensive

QoS reports impose significant overhead on LTE networks, which are already highly congested in

crowded venues [58]. An efficient feedback scheme was proposed in [31] but it relies on knowledge

of path loss (or block error) of the entire UE population to form the set of feedback nodes.
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Table 10.1: Notation for DyMo model.
Symbol Semantics

m The number of UEs in the venue, also the
number of active eMBMS receiver in static settings.

m(t) The number of active eMBMS receivers at time t.
hv(t) The individual SNR value of UE v

at time interval t.
s(t) The SNR Threshold at time t.
p QoS Threshold - The maximal portion of UEs

with individual SNR value hv(t) < s(t).
r Overhead Threshold - An upper bound on the

average number of reports in a reporting interval.

Recently, [225] proposed a multicast-based anonymous query scheme for inferring the maxi-

mum MCS that satisfies all UEs without sending individual queries. However, the scheme cannot

be implemented in current LTE networks, since it will require UEs to transmit simultaneous beacon

messages in response to broadcast queries.

Most of the wireless multicast schemes are designed for WiFi networks and a comprehensive

survey of WiFi multicast feedback approaches was described in Section 8.2. However, WiFi mul-

ticast solutions cannot easily be applied to LTE-eMBMS systems. First, in WiFi, each node is

associated with an Access Point, and therefore, the Access Point is aware of every node and can

specify the feedback nodes. In LTE, eMBMS UEs could be in the idle state and the network may

not be aware of the number of active UEs. Second, eMBMS is based on simultaneous transmis-

sion from various BSs. Thus, unlike in WiFi where MCS adaptation is done at each Access Point

independently, a common MCS adaptation should be done at all BSs.

10.3 Model and Objective

10.3.1 Network Model

We consider an LTE-Advanced network with multiple base stations (BSs) providing eMBMS

service to a very large group of m UEs in a given large venue (e.g., sports arena, transportation

hub).5 Such venues can accommodate tens of thousands of users. The eMBMS service is managed

5In this chapter, we consider only the UEs subscribing to eMBMS services.
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by a single DyMo server as shown in Fig. 10.1 and all the BSs transmit identical multicast signals

in a time synchronized manner. The multicast flows contain FEC code that allows the UEs to

tolerate some level of losses ` (e.g., up to 5% packet losses).

All UEs can detect and report the eMBMS QoS they experience. More specifically, time is

divided into short reporting intervals, a few seconds each. We assume that the eMBMS SNR

distribution of the UEs does not change during each reporting interval.6 We define the individual

SNR value hv(t), such that at least a given percentage 1 − ` (e.g., 95%) of the eMBMS packets

received by an UE v during a reporting interval t have an SNR above hv(t). For a given SNR value,

hv(t), there is a one-to-one mapping to an eMBMS MCS such that a UE can decode all the packets

whose SNR is above hv(t) [135, 35]. The remaining packets ` can be recovered by appropriate

level of FEC assuming ` is not too large. A summary of the main notations used throughout the

chapter are given in Table 10.1.

10.3.2 Objective

We aim to design a scalable efficient eMBMS monitoring and control system for which the

objective is outlined below and that satisfies the following constraints:

(i) QoS Constraint – Given a QoS Threshold p � 1, at most a fraction p of the UEs may suffer

from packet loss of more than `. This implies that, with FEC, a fraction 1 − p of the UEs

should receive all of the transmitted data. We refer to the set UEs that suffer from packet

loss after FEC as outliers and the rest are termed normal UEs.

(ii) Overhead Constraint – The average number of UE reports during a reporting interval should

be below a given Overhead Threshold r .

Objective: Accurately identify at any given time t the maximum SNR Threshold, s(t) that satisfies

the QoS and Overhead Constraints.
6The SNR of each individual eMBMS packet is a random variable selected from the UE SNR distribution. We

assume that this distribution does not change significantly during the reporting interval.
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Namely, the calculated s(t) needs to ensure that a fraction 1 − p of the UEs have individual SNR

values hv(t) ≥ s(t).

The network performance can be maximized by using s(t) to calculate the maximum eMBMS

MCS that meets the QoS constraint [135, 35]. This allows reducing the resource blocks allocated

to eMBMS. Alternatively for a service such as video, the video quality can be enhanced without

increasing the bandwidth allocated to the video flow.

10.4 The DyMo System

This section introduces the DyMo system. It first presents the DyMo system architecture, which

is based on the Stochastic Group Instructions concept. Then, it provides an illustrative example of

DyMo operations along with some technical aspects of eMBMS parameter tuning.

10.4.1 System Overview

We now present the DyMo system architecture, shown in Fig. 10.1.

Feedback Collection: This module operates in the DyMo server and in a DyMo Mobile-Application

on each UE. At the beginning of each reporting interval, the Feedback Collection module broad-

casts Stochastic Group Instructions to all the UEs. These instructions specify the QoS report prob-

ability as a function of the observed QoS (i.e., eMBMS SNR). In response, each UE independently

determines whether it should send a QoS report at the current reporting interval.

QoS Evaluation: The UE feedback is used to estimate the eMBMS SNR distribution, as shown in

Fig. 10.2. Since the system needs to determine the SNR Threshold, s(t), the estimation of the low

SNR range of the distribution has to be more accurate. To achieve this goal, the QoS Evaluation

module partitions the UEs into two or more groups, according to their QoS values. This allows

DyMo to accurately infer the optimal value of s(t), by obtaining more reports from UEs with low

SNR. We elaborate on the algorithms for s(t) estimation in Section 10.5.

MCS Control: Since the eMBMS signal is a combination of synchronized multicast transmissions

from several BSs, the unicast SNR can be used as a lower bound on the eMBMS SNR. Therefore,
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Table 10.2: Example of the DyMo feedback report overhead.

Group
No.

of UEs
Report
Prob.

Avg. reports
per interval

Avg.
per sec

Rate
per min

H 250 20% 50 5 ≈ 100%
L 2250 2% 45 ≈ 5 ≈ 12%

the initial eMBMS MCS and FEC are determined from unicast SNR values reported by the UEs

during unicast connections. Then, after each reporting interval, the QoS Evaluation module infers

the SNR Threshold, s(t), and the MCS Control module determines the desired eMBMS settings,

mainly the eMBMS MCS and FEC, according to commonly used one-to-one mappings [135, 35].

10.4.2 Illustrative Example

DyMo operations and the Stochastic Group Instructions concept are demonstrated in the fol-

lowing example. Consider an eMBMS system that serves 2,500 UEs with the QoS Constraint that

at most p = 1% = 25 UEs may suffer from poor service. Assume a reporting interval of 10 sec-

onds. To infer the SNR Threshold, s(t), that satisfies the constraint, the UEs are divided into two

groups:

• High-Reporting-Rate (H): 10% (250) of UEs that experience poor or moderate service quality

report with probability of 20%, i.e., an expected number of 50 reports per interval.

• Low-Reporting-Rate (L): 90% (2250) of the UEs that experience good or excellent service

quality report with probability of 2%, implying about 45 reports per interval.

Table 10.2 presents the reporting probability of each UE and the number of QoS reports per report-

ing interval by each group. It also shows the number of QoS reports per second and the reporting

rate per minute (i.e., the expected fraction of UEs that send QoS reports in a minute). Since the

QoS Constraint implies that only 25 UEs may suffer from poor service, these UEs must belong to

group H. Although only 10 QoS reports are received at each second, all the UEs in group H send

QoS reports at least once a minute. Thus, the SNR Threshold can be accurately detected within

one minute.
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10.4.3 Dynamic eMBMS Parameter Tuning

Besides the MCS, DyMo can leverage the UE feedback and the calculated SNR Threshold, s(t),

for optimizing other eMBMS parameters including FEC, video coding and protection tier. While

this aspect is not the focus of this study, we briefly discuss the challenges and the solutions for

dynamic tuning of the eMBMS parameters.

Once the SNR Threshold s(t) is selected, DyMo tunes the eMBMS parameters accordingly.

Every time DyMo changes the eMBMS parameters, the consumption of wireless resources for the

service is affected as well. For instance, when the eMBMS MCS index is increased, some of

the wireless resources allocated for eMBMS are not needed and can be released. Alternatively,

the service provider may prefer to improve the video quality by instructing the content server to

increase the video resolution. Similarly, before the eMBMS MCS index is lowered, the wireless

resources should be increased or the video resolution should be reduced to match the content

bandwidth requirements to the available wireless resources.

Since the eMBMS signal is a soft combination of the signals from all BSs in the venue, any

change of eMBMS parameters must be synchronized at all the BSs to avoid interruption of service.

The fact that all the clocks of the BSs are synchronized can be used and a scheme similar to the

two phase commit protocol (which is commonly used in distributed databases [186]) can be used.

10.5 Algorithms for SNR Threshold Estimation

This section describes the algorithms utilized by DyMo for estimating the SNR Threshold, s(t),

for a given QoS Constraint, p and Overhead Constraint r . In particular, it addresses the challenges

of partitioning the UEs into groups according to their SNR distribution as well as determining the

group boundaries and the reporting rate from the UEs in each group, such that the overall estima-

tion error of s(t) is minimized. We first consider a static setting with fixed number of eMBMS

receivers, m, where the SNR values of UEs are fixed. Then, we extend our solution to the case of

dynamic environments and UE mobility.
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10.5.1 Order Statistics

We first briefly review a known statistical method in quantile estimation, referred to as Order-

Statistics estimation. It provides a baseline for estimating s(t) and is also used by DyMo for

determining the initial SNR distribution in its first iteration assuming a single group. Let F(x) be

a Cumulative Distribution Function (CDF) for a random variable X , the quantile function F−1(p)

is given by, inf{x | F(x) ≥ p}.

Let X1,X2, . . . ,Xr be a sample from the distribution F, and Fr its empirical distribution func-

tion. It is well known that the empirical quantile F−1
r (p) converges to the population quantile

F−1(p) at all points p where F−1 is continuous [204]. Moreover, the true quantile, p̂ = F(F−1
r (p)),

of the empirical quantile estimate F−1
r (p) is asymptotically normal [204] with mean p and variance

Var[p̂] =
p(1 − p)

r
(10.1)

For SNR Threshold estimation, F is the SNR distribution of all UEs. A direct way to estimate

the SNR Threshold s(t) is to collect QoS reports from r randomly selected UEs, and calculate the

empirical quantile F−1
r (p) as an estimate.7

10.5.2 The Two-Step Estimation Algorithm

We now present the Two-step estimation algorithm that uses two groups for estimating the SNR

Threshold, s(t), in a static setting. We assume a fixed number of UEs, m, and a bound r on the

number of expected reports. By leveraging Stochastic Group Instructions, DyMo is not restricted to

collecting reports uniformly from all UEs and can use these instructions to improve the accuracy

of s(t). One way to realize this idea is to perform a two-step estimation that approximates the

shape of the SNR distribution before focusing on the low quantile tail. The Two-step estimation

7Note that F can have at most m points of discontinuity. Therefore, we assume p is a point of continuity for F−1 to
enable normal approximation. If the assumption does not hold, we can always perturb p by an infinitesimal amount to
make it a point of continuity for F−1.
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algorithm works as follows:

Algorithm 1: Two-Step Estimation for the Static Case

1. Select p1 and p2 such that p1p2 = p. Use p1 as the percentile boundary for defining the two

groups.

2. Select number of reports r1 and r2 for each step such that r1 + r2 = r .

3. Instruct all UEs to send QoS reports with probability r1/m and use these reports to estimate

the p1 quantile x̂1 = F−1
r1 (p1).

4. Instruct UEs with SNR value below x̂1 to send reports with probability r2/(p1 ·m) and calcu-

late the p2 quantile x̂2=G−1
r2 (p2) as an estimation for s(t) (G is the CDF of the subpopulation

with SNR below x̂1). (Gr2 is the empirical CDF of the subpopulation with SNR below x̂1).

Upper Bound Analysis of the Two-Step Algorithm: To simplify the notation, we use r1 and r2

to denote the expected number of reports at each step. From (10.1) we know that

p̂1 = F(x̂1) and p̂2 = G(x̂2)

are unbiased estimators of p1 and p2 with variance

Var[p̂1] =
p1(1 − p1)

r1
and Var[p̂2] =

p2(1 − p2)

r2
(10.2)

Our estimate x̂2 has true quantile p̂1 p̂2. Assume p̂1 is less than p1 + ε1 and p̂2 is less than p2 + ε2

with high probability (for example, we can take ε1 and ε2 to be 3 times the standard deviation for

> 99.8% probability). Then, the over-estimation error is bounded by

ε = (p1 + ε1)(p2 + ε2) − p

= p1p2 + ε1p2 + ε2p1 + ε1ε2 − p

≈ ε1p2 + ε2p1

(10.3)
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after ignoring the small higher order term ε1ε2. The case for under-estimation is similar. As shown

in the Appendix, the error is minimized by taking,

p1= p2=
√

p and r1=r2=r/2

so that

ε1=ε2=3
√
√

p(1 −
√

p)/(r/2)

This leads to proposition 2.

Proposition 2. The distance between p and the quantile of the Two-Step estimator x̂2, p̂ = F−1(x2),

is bounded by

6
√

2

√
p
√

p(1 − √p)
r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, where Φ is the normal CDF.

We now compare this result against the bound of 3 standard deviations in the Order Statistics

case, which is 3
√

p(1 − p)/r . With some simple calculations, it can be easily shown that if p ≤

1/49 ≈ 2%, the Two-step estimation has smaller error than the Order-Statistics estimation method.

Essentially the Order-Statistics estimation method has an error of order
√

p/
√

r , while the Two-step

estimation has an error of order p3/4/
√

r . Since p � 1, the difference can be significant.

Example: We validated the error estimation of the Two-step estimation algorithm and the Order-

Statistics estimation method by numerical analysis. We considered the cases of p = 1% and

p = 0.1% of uniform distribution on [0,1] using r = 400 samples over population size of 106.

The Two-step estimation algorithm has smaller standard error compared to the Order-Statistics

estimation, as shown in Fig. 10.3. Its accuracy is significantly better for very small p.

The Two-step estimation algorithm can be generalized to 3 or more telescoping group sizes,

but p will need to be much smaller for these sampling schemes in order to reduce the number of
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samples.

10.5.3 The Iterative Estimation Algorithm

We now turn to the dynamic case in which DyMo uses the SNR Threshold estimation s(t − 1)

from the previous reporting interval to estimate s(t) at the end of reporting interval t. Assume that

the total number of eMBMS receivers, m, is fixed and it is known initially.

Suppose that DyMo has a current estimate x̂ of the SNR threshold, s(t), and s(t) changes over

time. We assume that the change in SNR of each UE is bounded over a time period. Formally,

|hv(t1) − hv(t2)| ≤ L |t1 − t2 |

where L is a Lipschitz constant for SNR changes. For example, we can assume that the UEs’

SNR cannot change by more than 5dB during a reporting interval. 8 This implies that within the

interval, only UEs with SNR below x̂+5dB affect the estimation of the p quantile (subject to small

estimation error in x̂).

DyMo only needs to monitor UEs with SNR below xL = x̂ + L. Denote the true quantile

of xL , defined by F−1(xL), as pL . To apply a process similar to the second step of the Two-step

estimation algorithm by focusing on UEs with SNR below xL , first an estimate of pL is required.

DyMo uses the previous SNR distribution to estimate pL and instructs the UEs to send reports at

a rate q = r/(pL · m). Let Y be the number of reports received during the last reporting interval,

then Y/m · q can be used as an updated estimator, p̂L , for pL . This estimator is unbiased and has

variance

Var[p̂L] = Var[
Y

m · q
] =

pL

m
1 − q

q
(10.4)

As a result, the Iterative Estimation algorithm works as follows:

Algorithm 2: Iterative Estimation for the Dynamic Case

8In our simulations, each reporting interval has a duration of 12s.
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Figure 10.3: Estimates of (a) p = 1% and (b) p = 0.1% quantiles for 500 runs for the Order-
Statistics estimation (1-step) method and the Two-step estimation algorithm.

1. Instruct UEs with SNR below x̂ + L to send reports at a rate q. Construct an estimator p̂L of

pL from the number of received reports Y .

2. Set p′ = p/p̂L . Find the p′ quantile x′ = G−1
Y (p

′) and report it as the p quantile of the whole

population (G is the CDF of the subpopulation with SNR below x̂ + L).

Upper Bound Analysis of the Iterative Algorithm: Suppose the estimation error of pL is bounded

by ε1, and the estimation error of p′ = p/p̂L is bounded by ε2 with high probability. Then, the es-

timation error is

ε = (
p

p̂L
± ε2)pL − p = (

p
pL ± ε1

± ε2)pL − p.

The over-estimation error is bounded by

p
pL − ε1

ε1 + pLε2. (10.5)

If we assume pL − ε1 ≥ p (we know pL ≥ p by the Lipschitz assumption), then the bound can be

simplified to ε1 + pLε2. The same bound also works for the under-estimation error. If r denotes

also the expected number of samples collected, r = pL ·m · q. The standard deviation of p̂L can be

written as: √
pL

m
1 − q

q
=

√
p2

L

r
(1 −

r
pLm
) ≤

pL
√

r
.

If we assume ε1 = 3pL/
√

r , the error of p̂L is less than ε1 with probability at least Φ(3). Since

we assume pL−ε1 ≥ p above, this implies (1−3/
√

r)pL ≥ p. If r ≥ 100, then p< 0.7pL will satisfy

our requirement.
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The standard deviation of estimating the p′ = p/p̂L quantile is√
1
Y

p
p̂L
(1 −

p
p̂L
) ≤

1
2
√

Y
, (10.6)

by using the fact that x(1 − x) ≤ 1/4 for x ∈ [0,1] and Y is the number of reports received (a

random variable). If the expected number of reports r is reasonably large (≥ 100, say), then Y

can be well approximated by a normal and Y ≥ 0.7r with high probability Φ(3) = 99.8%. Then,

(10.6) is bounded by 2/(3
√

r) ≥ 1/(2
√

0.7r) with high probability (Φ(3) = 99.8%), and we can set

ε2 = 2/
√

r . Substituting these back into (10.5), gives us the following proposition.

Proposition 3. The distance between p and the quantile of the estimator x, p̂ = F−1(x), is approx-

imately bounded by

5
pL
√

r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, if the expected sample size r ≥ 100 and

p ≤ 0.7pL .

This shows that the error is of order pL/
√

r . We can see that the estimation error can be smaller

compared to the error of order p3/4/
√

r in the static Two-step estimation if pL is small (i.e., the

SNR of individual users does not change much during a reporting interval).

Exponential Smoothing: DyMo applies exponential smoothing by weighing past and current re-

ports to smooth the estimates of the SNR Threshold, s(t), and take older reports into account. It

estimates the SNR Threshold as

s(t) = α x̂(t) + (1 − α)s(t − 1)

where x̂(t) is the new raw SNR Threshold estimate using the Iterative estimation above and s(t−1)

is the SNR Threshold from the previous reporting interval. We set α = 0.5 to allow some re-use

of past reports without letting them have too strong an effect on the estimates (e.g., samples older

than 7 reporting intervals have less than 1% weight). DyMo also uses the exponential smoothing
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Figure 10.4: (a) The heatmap of SNR distribution of UEs (b) the evolution of the number of active
UEs over time compared to the number estimated by DyMo for a homogeneous environment.
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Figure 10.5: (a) The heatmap of UE SNR distribution in a stadium area of 1000 × 1000m2 and (b)
the evolution of the number of active UEs over time compared to the number estimated by DyMo
for a stadium environment.

method for estimating the SNR distribution while taking into account QoS reports from previous

reporting intervals.

Dynamic and Unknown Number of eMBMS Receivers: If the total number of UEs, m(t), is

unknown or changes dynamically, DyMo can estimate m(t) by requiring UEs above the threshold

x̂ + L to send reports. These UEs can send reports at a lower rate, since m(t) is not expected

to change rapidly. Similar to the Two-step estimation algorithm, DyMo allocates r1 = r2 = r/2

reports to each group. The errors in estimating the total number of UEs m(t) will contribute to the

error ε1 in the estimation of pL in (10.5). The error analysis in this case is largely similar.

10.6 Performance Evaluation

10.6.1 Methodology

We perform extensive simulations to evaluate the performance of DyMo with various values of

QoS Constraint, p, Overhead Constraint, r , and number of UEs, m. Our evaluation considers dy-
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Figure 10.6: The heatmap of the SNR distribution of UEs (a) before a failure and (b) after a failure.

namic environments with UE mobility and a changing number of active eMBMS receivers denoted

by m(t), dynamically selected from the given set of m UEs in the considered venue. In this chapter,

we present a few sets of simulation results, which capture various levels of variability of the SNR

threshold, s(t), over time.

We consider a variant of DyMo where the number of active UEs is unknown and is estimated

from its measurements. We compare the performance of DyMo to four other schemes. To demon-

strate the advantages of DyMo, we augment each scheme with additional information, which is

hard to obtain in practice. The evaluated benchmarks are the following:

• Optimal – Full knowledge of SNR values of the UEs at any time and consequently accurate

information of the SNR distribution. This is the best possible benchmark although impractical,

due to its high overhead.

• Uniform – Full knowledge of the SNR characteristics at any location while assuming uniform

UE distribution and static eMBMS settings. In practice, this knowledge cannot be obtained even

with rigorous field trial measurements.

• Order-Statistics – It is based estimation of the SNR Threshold using random sampling. The

active UEs send reports with a fixed probability of r/E[m(t)] per second, assuming that the ex-

pected number of active UEs, E[m(t)], is known. We assume that the UEs are configured with

this reporting rate during initialization. In practice, E[m(t)] is not available. We also ignore initial

configuration overhead in our evaluation. Order-Statistics is the best possible approach when not

using broadcast messages for UE configuration. We consider two variants of Order-Statistics. The

first is Order-Statistics w.o. History which ignores SNR measurements from earlier reporting
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intervals. The second variant Order-Statistics w. History considers the history of reports.

Both DyMo and Order-Statistics w. History perform the same exponential smoothing process

for assigning weights to the measurements from previous reporting intervals with a smoothing

factor of α = 0.5. We use the following metrics to evaluate the performance of the schemes:

(i) Accuracy – The accuracy of the SNR Threshold estimation, s(t). After calculating s(t) at

each reporting interval, we check the actual SNR Threshold Percentile in the accurate SNR

distribution of the considered scheme. This metric provides the percentile of active UEs with

individual SNR values below s(t).

(ii) QoS Constraint violation – The number of outliers above the QoS Constraint p. The number

of outliers of a scheme in a given reporting interval t is defined as the actual SNR Threshold

Percentile of the scheme times the number of active eMBMS receivers, m(t), at time t.

(iii) Overhead Constraint violation – The number of reports above the Overhead Threshold, r , at

each reporting interval.

The total simulation time for each instance is 30mins with 5 reporting intervals per minute

(each is 12s). During each reporting interval, an active UE may send its SNR value at most once.

The accuracy of each SNR report is 0.1dB.

10.6.2 Simulated Environments

We simulated a variety of environments with different SNR distributions and UE mobility pat-

terns. Although the simulated environments are artificial, their SNR distributions mimic those of

real eMBMS networks obtained through field trial measurements. To capture the SNR character-

istics of an environment, we divide its geographical area into rectangles of 10m × 10m. For each

reporting interval, each UE draws its individual SNR value, hv(t), from a Gaussian-like distribu-

tion which is a characteristic of the rectangle in which its located. The rectangles have different

mean SNR, but the same standard deviation of roughly 5dB (as observed in real measurements).
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Thus, the SNR characteristics of each environment are determined by the mean SNR values of the

rectangles at any reporting interval.

To demonstrate the performance of the different schemes, we discuss three types of environ-

ments.

•Homogeneous: In the homogeneous9 setting the mean SNR value of each rectangle is fixed and

it is uniformly selected in the range of 5−25dB. Fig. 10.4(a) provides an example of the mean SNR

values of such a venue as well as typical UE location distribution. In such instances, we assume

random mobility pattern, in which each UE moves back and forth between two uniformly selected

points. During the simulation, 50% of the UEs are always active, while the other 50% join and

leave at some random time, as illustrated by Fig. 10.4(b). As we show later in such setting s(t)

barely change over time.

• Stadiums: In a stadium, the eMBMS service quality is typically significantly better inside the

stadium than in the surrounding vicinity (e.g., the parking lots). To capture this, we simulate several

stadium-like environments, in which the stadium, in the center of the venue, has high eMBMS SNR

with mean values in the range of 15− 25dB. On the other hand, the vicinity has significantly lower

SNR with means values of 5 − 10dB. An example of a stadium is shown in Fig. 10.5(a).

We assume a mobility pattern in which, the UEs move from the edges to the inside of the

stadium in 12mins, stay there for 3mins, and then go back to the edges.10 As shown in Fig. 10.5(b),

as the UEs move toward the center, the number of active UEs gradually increases from 10% of the

UEs to 100%, and then declines again as they move away.

• Failures: Such an environment is similar to the homogeneous setting with a sudden event of

a component failure. In the case of a malfunctioning component, the QoS in some parts of a

venue can degrade significantly. To simulate failures, we consider cases in which the eMBMS

SNR is high with a mean between 15− 25dB. During the simulation, (around the 10th minute), we

mimic a failure by reducing the mean SNR values of some of the rectangles by over 10dB to the

9We use the term homogeneous since the term uniform is already used to denote the Uniform scheme.
10While significant effort has been dedicated to modeling mobility (e.g., [171, 176] and references therein), we use

a simplistic mobility model since our focus is on the multicast aspects rather than the specific mobility patterns.
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Figure 10.7: Simulation results from a single simulation instance lasting for 30mins in a component
homogeneous environment with 20,000 UEs moving side to side between two random points,
with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated
by DyMo, (b) the actual percentile of the SNR Threshold estimated by Order-Statistics, (c) the
SNR Threshold estimation, (d) spectral Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of
Optimal vs. Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of outliers
by using Uniform and Order-Statistics, and (h) the QoS report overhead.

range of 5 − 10dB. The mean SNR values are restored to their original values after a few minutes.

Figs. 10.6(a) and 10.6(b) provide an example of the mean SNR values of such a venue before and

after a failure, respectively. We assume the same mobility pattern like the homogeneous setting, as

shown by Fig. 10.4(b).

10.6.3 Performance over time

We first illustrate the performance of the different schemes over time for three given instances, a

homogeneous, a stadium and a failure scenarios, with m = 20,000 UEs, QoS Constraint p = 0.1%,

and Overhead constraint r = 5 reports/sec, i.e., 60 messages per reporting interval. The number of

permitted outliers depends on the number of active UEs at the current reporting interval. In the

three considered scenarios, it can be at most 20 at any given time. The key difference between the

different instances is the rate at which the SNR Threshold changes. In the homogeneous environ-
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Figure 10.8: Simulation results from a single simulation instance lasting for 30mins in a stadium
environment with 20,000 UEs moving from the edges to the center and back, with p = 0.1 and
r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b)
the actual percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold
estimation, (d) spectral efficiency of Optimal vs. DyMo, (e) spectral efficiency of Optimal vs.
Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of Outliers by using
Uniform and Order-Statistics, and (h) the QoS report overhead.

ment the SNR Threshold is almost fixed with very limited variability. In the case of the stadium,

the SNR Threshold gradually changes as the UEs change their locations. In the failure scenario,

the SNR Threshold is roughly fixed but it drops instantly by 10dBs for the duration of the failure.

The results of the homogeneous, stadium and failure cases are shown in Figs. 10.7, 10.8 and 10.9,

respectively. Figs. 10.7(a), 10.7(b), 10.8(a), 10.8(b), 10.9(a), and 10.9(b) show the actual SNR

Threshold percentile over time. From Figs. 10.7(a), 10.8(a) and 10.9(a), we observe that DyMo

can accurately infer the SNR Threshold with an estimation error of at most 0.1%. Fig. 10.9(a)

shows slightly higher error of 0.25% at the time of the failure (at the 7th minute). The Order-

Statistics variants suffer from much higher estimation error to the order of a few percentage points,

as shown by Figs. 10.8(b), 10.8(b) and 10.8(b)11. This performance gap results in different es-

timation accuracy of the SNR Threshold for DyMo and Order-Statistics schemes as illustrated in

11Notice that the pairs (i) Figs. 10.7(a) and 10.7(b), (ii) Figs. 10.8(a) and 10.8(b) as well as (iii)
Figs. 10.9(a) and 10.9(b) use different scales for the Y axes.
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Figure 10.9: Simulation results from a single simulation instance lasting for 30mins in a component
failure environment with 20,000 UEs moving side to side between two random points, with p = 0.1
and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b)
the actual percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold
estimation, (d) spectral Efficiency of Optimal vs. DyMo, (e) spectral Efficiency of Optimal vs.
Order-Statistics, (f) the number of Outliers by using DyMo, (g) the number of outliers by using
Uniform and Order-Statistics, and (h) the QoS report overhead.

Figs. 10.7(c), 10.8(c) and 10.9(c), respectively. These figures show that the performance of DyMo

and Optimal is almost identical. Even in the event of a failure, DyMo reacts immediately and de-

tects the SNR Threshold accurately. The Order-Statistics variants react quickly to a failure but not

as accurately as DyMo. After the recovery, both DyMo and Order-Statistics w. History gradually

increase their SNR Threshold estimates, due to the exponential smoothing process.

The SNR Threshold estimation gap directly impacts the number of outliers as well as the net-

work utilization, i.e., the spectral efficiency. Figs. 10.7(d) and 10.7(e) show the number of outliers

of DyMo and Order-Statistics variants for the homogeneous environment, respectively12, while

Figs. 10.7(f) and 10.7(g) show the spectral efficiency of the schemes. Figs. 10.7(d) and 10.7(f)

reveal that after a short adaptation phase DyMo converges to the optimal performance, i.e., spec-

tral efficiency, while preserving the QoS constraint. Fig. 10.7(f) show that both Optimal and DyMo

12Notice that the figure pairs, (i) Figs. 10.7(d) and 10.7(e), (ii) Figs. 10.8(d) and 10.8(e) as well as (iii) Figs. 10.9(d)
and 10.9(e), use different scales for the Y axes.
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Figure 10.10: The Root Mean Square Error (RMSE) of different parameters averaged over 5 dif-
ferent simulation instances lasting for 30mins each in homogeneous scenario with different SNR
characteristics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total num-
ber of UEs in the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR
Threshold percentile RMSE vs. the number of permitted reports , (d) Overhead RMSE vs. the
number of UEs, (e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the
number of permitted reports.

fluctuate between two spectral efficiency levels, 0.29 and 0.36 bit/sec/Hz, which results from oscil-

latation between two MCS levels 3 and 4. Such oscillations can be easily suppressed by enforcing

some delay between MCS increase operations. The Order-Statistics variants over estimate the

SNR threshold and suffer from higher number of outliers, as shown by Fig. 10.7(e). The homo-

geneous setting represents quasi-static environments with minor variation of the SNR threshold,

s(t). In such settings, the Uniform scheme provides a good estimation13 of s(t) and its number of

outliers as well as the obtained spectral efficiency are comparable to DyMo. However, this is not

the situation when s(t) is time varying.

The number of outliers of DyMo and Order-Statistics variants for the stadium environment

is shown in Figs. 10.8(d) and 10.8(e), respectively, while Figs. 10.9(d) and 10.9(e) illustrate the

13Assuming rigorous field trial measurements.
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Figure 10.11: The Root Mean Square Error (RMSE) of different parameters averaged over 5 dif-
ferent simulation instances lasting for 30mins each in a stadium environment with different SNR
characteristics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total num-
ber of UEs in the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR
Threshold percentile RMSE vs. the number of permitted reports, (d) Overhead RMSE vs. the
number of UEs, (e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the
number of permitted reports.

number of outliers of DyMo and Order-Statistics variants for the failure scenario, in this order.

These figures show that the number of outliers that results from the Order-Statistics w. History and

Order-Statistics w.o. History variants are occasionally over 200 and 800, respectively. Whereas,

DyMo ensures that the number of outliers at any time is comparable to Optimal and in the worst

case it exceeds the permitted number by less than a factor of 2.

Figs. 10.8(f) and 10.8(g) show the spectral efficiency for the stadium environment, whereas

Figs. 10.9(f) and 10.9(g) show the spectral efficiency for the component failure case. The spectral

efficiency for each case is correlated to the SNR Threshold. For the stadium environment, DyMo

has spectral efficiency close to Optimal while Uniform has the lowest spectral efficiency. In the

event of a failure, the spectral efficiency of DyMo follows the Optimal as expected from the SNR

Threshold estimations. Since Order-Statistics variants typically over estimate the SNR Thresh-
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Figure 10.12: The Root Mean Square Error (RMSE) of different parameters averaged over 5 differ-
ent simulation instances lasting for 30mins each in failure scenario with different SNR character-
istics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs
in the system, (b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold
percentile RMSE vs. the number of permitted reports , (d) Overhead RMSE vs. the number of
UEs, (e) Overhead RMSE vs. the QoS constraint p, and (f) Overhead RMSE vs. the number of
permitted reports.

old, they frequently determine MCS and consequently spectral efficiency that exceed the optimal

settings. Such inaccuracy leads to a high number of outliers.

Figs. 10.7(h), 10.8(h) and 10.9(h) indicate only mild violation of the Overhead Constraint by

both the DyMo and Order-Statistics variants. We observe that accurate SNR Threshold estima-

tion allows DyMo to achieve near optimal spectral efficiency with negligible violation of the QoS

Constraint. The other schemes suffer from sub-optimal spectral efficiency, excessive number of

outliers, or both. Given that the permitted number of outliers is at most 20, the Order-Statistics

w. History and Order-Statistics w.o. History schemes exceed this value sometimes by a factor of

10 and 40, respectively. Among these two alternatives, Order-Statistics w. History leads to lower

number of outliers. While Uniform provides accurate estimation of s(t) for the homogeneous

environment, we observe that it yields a very conservative eMBMS MCS setting in the stadium
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example, which causes low network utilization. In the failure scenario, the conservative eMBMS

MCS of Uniform is not sufficient to cope with the low SNR Threshold and it leads to excessive

number of outliers.

10.6.4 Impact of Various Parameters

We now turn to evaluate the quality of the SNR Threshold estimation and the schemes’ ability to

preserve the QoS and Overhead Constraints under various settings. We use the same configuration

of m = 20,000 UEs, p = 0.1% and r = 5 reports/sec and we evaluate the impact of changing the

values of one of the parameters. The results for the homogeneous, stadium and failure scenarios

are shown in Figs. 10.10, 10.11 and 10.12, respectively. Each point in the figures is the average of 5

different simulation instances of 30mins each with different SNR characteristics and UE mobility

patterns. The error bars are small and not shown. In these examples, we compare DyMo only with

Optimal and Order-Statistics w. History which is the best performing alternative. We omit the

Uniform scheme since it does not adapt to variation of s(t).

First, we consider the impact of changing these parameters on the accuracy of the SNR Thresh-

old estimation. Figs. 10.10(a), 10.11(a), and 10.12(a) show the Root Mean Square Error (RMSE)

in SNR Threshold percentile estimation vs. m, for homogeneous, stadium and failure scenarios,

respectively. The non-zero values of RMSE in Optimal are due to quantization of SNR reports.

The RMSE in the SNR Threshold estimation of DyMo is close to that of Optimal regardless of the

number of UEs, while Order-Statistics w. History suffers from order of magnitude higher RMSE.

Figs. 10.10(b), 10.11(b), and 10.12(b) show the RMSE in SNR Threshold estimation as the

QoS Constraint p changes, for homogeneous, stadium and failure scenarios. DyMo outperforms

the alternative schemes as p increases. As p increases, we observe an increasing quantization

error, which impacts the RMSE of all the schemes including the Optimal. Recall that the SNR

distribution is represented by a histogram where each bar has a width of 0.1dB. As p increases,

the number UEs in the bar that contains the p percentile UE increases as well. Since s(t) should be

below the SNR value of this bar, we notice a higher quantization error.
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Figs. 10.10(c), 10.11(c), and 10.12(c) illustrate the SNR Threshold percentile RMSE as the

Overhead Constraint is relaxed, for homogeneous, stadium and failure cases, respectively. The

SNR Threshold percentile RMSE of DyMo is 0.05% even with Overhead Constraint of 5 re-

ports/sec, while Optimal RMSE due to quantization is 0.025%. DyMo error slightly reduces by

relaxing the Overhead Constraint (Optimal error stays 0.25%). Even with 10 times higher report-

ing rate, DyMo significantly outperforms the Order-Statistics alternatives. The RMSE in SNR

Threshold percentile for Order-Statistics is in the order of the required average value of 0.1 even

with a permitted overhead of 50 reports/sec, i.e,. 3000 reports per reporting interval. This is a very

high overhead on the unicast traffic, since in LTE networks the number of simultaneously open

unicast connections is limited, i.e., several hundreds per base station and each connection lasts

several hundred msecs even for sending a short update. Unlike the downlink, uplink resources

are not reserved for eMBMS systems and utilize the unicast resources. The RMSE of number of

outliers is qualitatively similar to the SNR Threshold percentile results.

We also compute the overhead RMSE for different UE population sizes, m, QoS Constraint p,

and Overhead Constraints r . The results are shown is sub-figures (d), (e) and (f) of Figs. 10.10,

10.11 and 10.12, respectively. In most cases, the overhead RMSE of DyMo is between 1 − 4

reports even when the system parameters change. We observe an increase in the overhead RMSE

only in failure scenarios when the permitted overhead is relaxed, as shown in Fig. 10.12(f). This is

expected immediately after a failure because many more UEs suffer from poor service than DyMo

estimated. Thus, as the permitted overhead increases also the spike in the number of reports during

the first reporting interval after the failure also increases, which results in a gradual increase of the

Overhead RMSE14.

Figs. 10.10 and 10.12 show that the Order-Statistics variants experience very low violation of

the Overhead Constraint in the homogeneous and Failure scenarios. This is not surprising, since

in these scenarios the variation in the number of active eMBMS receivers is very small and this

number is roughly E[m(t)] (the expected number of active eMBMS receivers). As mentioned in

14Notice that the RMSE metric is sensitive to sporadic but very high error.
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Section 10.6.1, this observation is misleading, since we assume that E[m(t)] is known and we

ignore the overhead of configuring the UEs with the proper reporting rate. Obviously, the exact

number of active receivers, E[m(t)], is unknown in practice. Furthermore, Fig. 10.11(f) shows

that in scenarios with high variation in the number of active receivers, m(t), (like the case in the

stadium simulations) the violation of the Overhead Constraint is high and it is amplified as the

permitted number of reports, r , increases. This is due to the static reporting rate of Order-Statistics

despite dynamic changes of the number of active eMBMS receivers. Fig. 10.11(f) confirms that the

overhead violation of Order-Statistics is very sensitive to the estimation of E[m(t)] and its variance.

Given that the number of active eMBMS receivers, m(t), is unknown and may change signif-

icantly over time, Order-Statistics cannot practically preserve the Overhead Constraint without

keeping track of the active UEs and sending individual messages to a subset of the active UEs.

However, keeping track of m(t) requires each UE to report when it starts and stops receiving

eMBMS services, which may incur much higher overhead than permitted. For instance, in our

simulations with m = 20,000 UEs, even if such switching occurs at most once (start and stop)

by each UE, the total number of reports is 40,000. When dividing this number by the simulation

duration of 30 minutes (1,800 sec) we get 22 messages/second, which is much higher than the

permitted overhead.

Summary: Our simulations show that DyMo achieves accurate, close to optimal, estimation of the

SNR Threshold even when the number of active eMBMS receivers is unknown. It can improve

the spectral efficiency for eMBMS operation, while adding a very low reporting overhead. DyMo

can predict the SNR Threshold with lower errors than other alternatives under a wide range of the

SNR Threshold requirement p and reporting Overhead Constraint r . These observations show that

DyMo exceeds the expectations of our analysis in Section 10.5.
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10..5 Analysis of the Two-Step Estimation Algorithm

We now extend the analysis of the Two-step estimation algorithm given in Section 10.5.2. We

show that the optimal settings for minimizing the error ε of Equation (10.3) is obtained by taking

p1= p2=
√

p and r1=r2=r/2

Notice that the settings should satisfy the following two constraints:

p = p1 · p2 (10.7)

and

r = r1 + r2 (10.8)

From Equation (10.2) and by taking 3 times the standard deviation, we get that the errors ε1 and ε2

are

ε1 = 3

√
p1(1 − p1)

r1
and ε2 = 3

√
p2(1 − p2)

r2

By combining with Equation (10.3), we get

ε = 3

√
p1(1 − p1)

r1
p2 + 3

√
p2(1 − p2)

r2
p1 (10.9)

By using the two constraints (10.7) and (10.8), we assign p2 = p/p1 and r2 = r −r1. Consequently,

ε = 3

√
p1(1 − p1)

r1

p
p1
+ 3

√
(p/p1)(1 − p/p1)

r − r1
p1

= 3 p

√(

1
p1
− 1

)
1
r1
+

√(
p1
p
− 1

)
1

r − r1


(10.10)
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By taking the partial derivative ∂ε
∂p1

we get,

∂ε

∂p1
= 3 p

− ©­«2 p2
1

√(
1
p1
− 1

)
1
r1

ª®¬
−1

+

©­«2 p

√(
p1
p
− 1

)
1

r − r1

ª®¬
−1

(10.11)

For minimizing the error we calculate ∂ε
∂p1
= 0 and get that

p2
1

√(
1
p1
− 1

)
1
r1
= p

√(
p1
p
− 1

)
1

r − r1
(10.12)

By simple mathematical manipulations we get

p4
1

(
1
p1
− 1

)
(r − r1) = p2

(
p1
p
− 1

)
r1 (10.13)

Similarly, from the partial derivative ∂ε
∂r1

we get

∂ε

∂r1
= 3 p


√(

1
p1
− 1

)
−1

2 r3/2
1

+

√(
p1
p
− 1

)
1

2 (r − r1)3/2

 (10.14)

For minimizing the error we calculate ∂ε
∂r1
= 0 and get that

√(
1
p1
− 1

)
1

2 r3/2
1

=

√(
p1
p
− 1

)
1

2 (r − r1)3/2
(10.15)

By simple mathematical manipulations we get

(
1
p1
− 1

)
(r − r1)

3 =

(
p1
p
− 1

)
r3
1 (10.16)
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Noticed that Equations (10.13) and (10.16) together provide two simple conditions to optimize p1

and r1. By dividing Equation (10.13) by Equation (10.16) we obtain,

(r − r1) =
r1 p2

1
p

(10.17)

Using Equation (10.17) in Equation (10.16) results that

(
1
p1
− 1

) (
r1 p2

1
p

)3

=

(
p1
p
− 1

)
r3
1(

1
p1
− 1

) p6
1

p2 =

(
p1
p
− 1

) (10.18)

From this we get the following relation

p6
1 − p5

1 + p1 p2 − p3 = 0 (10.19)

The only real solutions are p1 = ±
√

p. Since p1 must be positive we get that p =
√

p. From this

solution and Equation (10.17), it is implies that the optimal setting is

p1 = p2 =
√

p, and r1 = r2 = r/2

Consequently, the errors of the two steps are

ε1=ε2=3
√
√

p(1 −
√

p)/(r/2)

From this we obtain Proposition 2 and a bound on the error of,

6
√

2

√
p
√

p(1 − √p)
r

This concludes our analysis of the Two-step estimation algorithm.
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Part V

Conclusions
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This thesis presented ML-based network architectures and data driven network algorithms

whose objective is to improve the performance and management of future networks. Below we

highlight general conclusions and possible future directions.

Video Streaming

In Part I we focused on developing systems for QoE metric detection for encrypted traffic. In

Chapter 2, we presented a system, Requet, for Real-time Quality of experience metric detection

for Encrypted traffic. Requet consists of the ChunkDetection algorithm, chunk feature extraction,

and ML QoE prediction models. Our evaluation using YouTube traffic collected over WiFi net-

works demonstrates that Requet, which uses chunk-based features, exhibits significantly improved

prediction power over the baseline system, that uses IP-layer features.

In Chapter 3, we extended the work from Chapter 2 and presented a study on YouTube TV live

streaming traffic behavior over WiFi and cellular networks. We presented our study which spanned

a 9-month period. Using the collected data, we developed a multi-chunk detection algorithm to

detect multiple video and audio chunks with concurrent transmission in the same IP flow.

A current limitation of Requet is that it is based on specific services and needs to be trained

separately for each streaming algorithm. Therefore, one direction of future work includes building

a generic model for a wide range of networks and client algorithms for ABR. Another direction of

future work includes using SDN to utilize Requet and investigate the QoE improvements achieved

via resource scheduling.

End-to-End Resource Allocation in Cellular Networks

In Part II we focused on using deep neural networks to improve resource allocation in cellular

networks. In Chapter 4 we presented a new metric, REVA, that precisely measures the amount

of PRBs that the RAN scheduler can allocate to VA bearers. An experimental LTE testbed was

developed to collect REVA for time series analysis. In addition, we proposed an evaluated a new

time series prediction model, X-LSTM, for REVA. We showed that X-LSTM provides a higher
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degree of accuracy over other time series models such as ARIMA and LSTM.

In Chapter 5 we presented an LSTM neural network used for BBU pool resource reallocations

in a 5G C-RAN network using a ROADM switched optical network. Through simulations our

analysis shows that using the predicted traffic pattern to reconfigure the ROADM network can

improve network throughput and reduce the amount of BBU processing resources required.

Dynamic Optical Systems

In Part III we focused on using ML to ensure stable performacne and reliable QoT for dy-

namic optical operation. In Chapter 6 we presented a feedforward deep neural network based-ML

model to predict the dynamic power excursions of a 90-channel ROADM system. Based on the

predicted power excursions, the deep neural network can recommend valid wavelengths for wave-

length switching with a precision over 99% over the tested samples. The deep neural network was

also shown to be far more effective than regression and random forest models.

In Chapter 7 we extended the work from Chapter 6 and examine an ML model, an analytical

model, and a hybrid ML model. The hybrid ML model takes advantage of an analytical model as

input to the ML model. Based on experimental measurements, the hybrid ML model is shown to

increase prediction accuracy of the output optical power spectrum of an EDFA.

For future work we will investigate the deep neural network approach in large-scale networks

along with transfer and online learning techniques for practical implementations. We plan on using

the optical-wireless infrastructure of the COSMOS testbed to evaluate the ML models from Part

III of this thesis, along with extending the works in [136, 236, 235, 167].

Adaptive Multicast Services

In Part IV we focused on the use of data-driven solutions for large scale content delivery via

wireless multicast, both for WiFi and cellular networks.

In Chapters 8 and 9 we addressed challenges related to feedback and rate adaptation as part of

the Adaptive Multicast Services (AMuSe) system [22] for WiFi multicast. In Chapter 8 we studied
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approaches for light-weight feedback for WiFi multicast. We presented the design and large-scale

experimental evaluation of the AMuSe system for providing scalable and efficient multicast ser-

vices for a large group of users in a small geographical region. In Chapter 9, we presented the

design and evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm for WiFi.

MuDRA balances fast adaptation to channel conditions and stability, which is essential for mul-

timedia applications. Our experimental evaluation of MuDRA on the ORBIT testbed with over

150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast

flows to hundreds of receivers while meeting quality requirements.

In Chapter 10, we described the Dynamic Monitoring (DyMo) system designed to support effi-

cient LTE-eMBMS, based on the concept of Stochastic Group Instructions. Our extensive simula-

tions show that DyMo achieves accurate, close to optimal, estimation of the SNR Threshold even

when the number of active UEs is unknown. It can improve the spectral efficiency for eMBMS

operation while adding a low reporting overhead.

In summary, this thesis contributed to the development ML and data driven network algorithms

spanning across the networking protocol stack from the application layer to the physical layer.

In each of the networking domains we explored the networking sub-problem and presented ML

algorithms and architectures that were motivated by measurements and observations in the real

world or from experimental testbeds. While we are able to show promising results, there remain

a variety of open challenges to advance ML for networking. Finally, to make a fully autonomous

network that is practically deployable there is a still a need to improve the accuracy, scalability,

and integration of ML and AI network solutions.
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