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As the communication infrastructure that sustains critical societal services, optical networks need to func-
tion in a secure and agile way. Thus, cognitive and automated security management functionalities are
needed, fueled by the proliferating Machine Learning (ML) techniques and compatible with common
network control entities and procedures. Automated management of optical network security requires
advancements both in terms of performance and efficiency of ML approaches for security diagnostics,
as well as novel management architectures and functionalities. This paper tackles these challenges by
proposing a novel functional block called Security Operation Center (SOC), describing its architecture,
specifying key requirements on the supported functionalities and providing guidelines on its integration
with optical layer controller. Moreover, to boost efficiency of ML-based security diagnostic techniques
when processing high-dimensional optical performance monitoring data in the presence of previously
unseen physical-layer attacks, we combine unsupervised and semi-supervised learning techniques with
three different dimensionality reduction methods and analyze the resulting performance and trade-offs
between ML accuracy and run time complexity. © 2020 Optical Society of America

https://doi.org/10.1364/JOCN.402884

1. INTRODUCTION

Uninterrupted and secure operation of high-performance com-
munication networks is one of the key enablers of the ongoing
evolution towards a networked, information society. Corre-
spondingly, critical network infrastructure proves as an attrac-
tive target of counterfeit attacks aimed at breaching communica-
tion confidentiality, integrity or availability. Optical networks, as
the only future-proof solution capable of supporting the prolifer-
ating bandwidth-hungry applications, are no exception from the
expanding landscape of security threats which evolve in their
sophistication and scale. Attacks targeting the optical layer can,
according to their objective, roughly be divided into eavesdrop-
ping and service disruption. Eavesdropping is aimed at gaining
unauthorized access to the information transmitted through the
optical fiber (e.g., by abusing a well-known monitoring method
of bending the fiber and creating temporary couplers [1]), and
can be counteracted by encryption at different network layers [2].

Service disruption attacks, which are in the focus of this work,
can be performed by methods of varying levels of sophistica-
tion, scope, persistence, or effects. Physical breaches into the
network infrastructure can be exploited to sever the fibers, caus-

ing outright service interruption, to insert harmful signals (e.g.,
jamming, which exacerbates non-linear impairments) or to neg-
atively affect fiber properties (e.g. fiber squeezing that leads to
error-inducing fast variations in the polarization state of light).
Effects of physical-layer breaches can propagate to upper layer
services, resulting in correlated cascading failures. Attacks can
be designed to evade detection, or maximize the damage by
adapting to known counteractions, making network security
management a complex challenge.

To cope with the ever-evolving intelligent adversary, cyberse-
curity is strongly benefiting from Artificial Intelligence (AI)-
driven automation across all network domains and applica-
tions [3]. In general, AI-based approaches are finding a widen-
ing application in a variety of tasks related to cognitive and
automated optical network management and control. As a
viable alternative to the ineffective and unreliable use of pre-
determined thresholds on network performance indicator values
for invoking network adaptation [4], AI techniques, and in par-
ticular ML approaches as their subset, are considered pivotal
for realizing the Collect-Analyze-Test loop for autonomous net-
work operation [5, 6]. Examples of successful applications of

https://github.com/carlosnatalino/2020-JOCN-efficient-ML
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ML to complex optical networking problems include Quality
of Transmission (QoT) estimation [7], nonlinearity monitoring
and launch power optimization [8], as well as management of
various faults (overviewed in [9]) such as filter shift and tight-
ening [10], or unexpected signal power reduction [11]. These
approaches predominately rely on Supervised Learning (SL)
techniques, e.g. Artificial Neural Networks (ANNs) or Support
Vector Machines (SVMs), trained on a priori labeled data that
contains complete information about the mapping between the
input given to the models and the expected output.

Since physical-layer attacks cause intricate changes in op-
tical signal parameters which vary drastically across different
attack techniques, defining exact analytical models or thresholds
for triggering countermeasures has not been proven viable to-
wards cognitive physical-layer security management. Instead,
strong potential of ML techniques to support this cause has been
demonstrated in several ways. In [12], SVM was applied to
detect the presence of unauthorized optical signals by inspect-
ing the optical spectrum. ANN-based approach for detecting
high-power jamming attacks was proposed in [13]. Detection
and identification of attacks using experimental data obtained
by performing in- and out-of-band-jamming, as well as polariza-
tion scrambling attacks at the link level was carried out in [14]
using various SL techniques. In addition to SL, the work in [15]
focused on the application of Unsupervised Learning (UL) and
Semi-Supervised Learning (SSL) techniques to network-level
detection of attacks. As UL and SSL are not trained on previ-
ously collected, labeled Optical Performance Monitoring (OPM)
data, they can detect even novel, previously unseen attack tech-
niques, making them a worthwhile contender for coping with
the evolving threat landscape.

In spite of the tremendous breakthroughs and continuous
refinements in capabilities and performance of ML techniques,
their integration into production environments is still at its in-
fancy due to several important challenges. The first set of chal-
lenges stems from practical system integration and interoper-
ability issues. Run-time carrier-grade deployment of ML-based
techniques in Network Management Systems (NMSs) requires
a framework for autonomous optical network security man-
agement tightly integrated with existing workflows and tools.
The ML models need to be accessible to a variety of network
elements, ranging from optical nodes to multi-domain orches-
trators, in order to enable multi-domain security management,
as well as federated or hierarchical learning [16]. ML models
should feature multi-protocol adaptive interfaces exposing their
functionalities to the network elements involved in security man-
agement routines, supporting input formats inherent to both
current and legacy devices that provide machine-readable OPM
and/or visual channel representation data. In addition, ML mod-
els should execute fast to allow incorporation into carrier-grade
interval-defined monitoring cycles during which the OPM data
must be collected, analyses by the ML models must be carried
out, their outputs consolidated in the Software Defined Network-
ing (SDN) controller, and required network-level actions must be
triggered. To support cognitive network operation with monitor-
ing cycles expected to tighten, low-complexity (training and/or
inference) models used in conjunction with purpose-specific ML
accelerators, containerization and load balancing are key to the
implementation of encompassing security management without
impacting control procedures in place.

The second set of challenges is related to the performance of
ML models themselves. To ensure correct and reliable operation,
high model accuracy is the primary requirement. However, in

reality different models obtain different false positive and false
negative rates, so their applicability greatly depends on the use
case. For example, from a security point of view, an operator
might be willing to trade off slightly higher false positive rates
to certain threats, which can impact the resource usage efficiency
due to triggering unnecessary reconfigurations, for zero false
negative rates, thus ensuring that attacks do not go unnoticed.
Accuracy of deployed ML models can also be improved by using
a sliding window approach, where the impact of inaccuracies
detected over an observation window can be leveled out by
carefully dimensioning the window, or by using ensemble and
symbolic models that intertwine different ML models and/or
specialist knowledge. The ML models outputs should be inter-
pretable to support the security analysts keeping pace with the
sheer volume of alerts being generated [17].

Finally, consolidation of coherent transceivers as the de facto
next generation optical transmission technology [18] enables the
collection of a rich set of OPM data with tens of features. In Deep
Learning (DL) models, which have built-in feature extraction
layers, this high number of features has the potential to posi-
tively impact the model accuracy, while features which do not
contribute to the accuracy can be filtered out. However, SSL and
UL models do not have built-in feature extraction capabilities.
This means that an increased number of features may impact
negatively on the accuracy of the models [19]. In such cases,
dimensionality reduction methods can be applied in the dataset
pre-processing phase, removing the features with lower rele-
vance to the problem [20]. The potential benefits of combining
dimensionality reduction with SSL and UL are twofold: (i) the
accuracy of the SSL/UL model can be improved by extracting
only relevant data and (ii) the run time of the SSL/UL model
can be reduced, since less data needs to be processed.

In [21], we identified some of the challenges related to achiev-
ing carrier-grade performance of ML techniques for optical-layer
security management. This paper extends the high-level consid-
erations from [21] by proposing guidelines for incorporating
security assurance into the optical network management archi-
tecture. To this end, we propose a new functional block which
we call the Optical Security Manager (OSM), describe its archi-
tecture and define key requirements on the OSM functionalities.
We then carry out an experimental case study of SSL and UL tech-
niques for physical-layer attack detection. To improve efficiency
of the approaches, we apply different dimensionality reduction
methods to the SSL and UL models for the attack detection task
and analyze the obtained trade-offs between performance and
scalability.

The remainder of the paper is organized as follows. Section
2 presents the security-oriented network management architec-
ture and describes the main Network Security Manager features
and requirements. Section 3 details the background of dimen-
sionality reduction methods applied to un- and semi-supervised
ML techniques, followed by a detailed performance analysis in
Section 4. Several open challenges related to optical network
security management are summarized in Section 5, and conclud-
ing remarks are given in Section 6.

2. OPTICAL LAYER SECURITY IN EVOLVING NETWORK
OPERATION

A. Network Security Management Framework
Network security management in general relies on three main
pillars, illustrated in Fig. 1 [21]. Risk management entails the de-
velopment of accurate risk models capturing the versatile effects
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Fig. 1. High-level view of a network security management loop.

of different attack vectors and gauging the impact of these effects
on the network. Based on such models, this pillar also includes
minimization of the network surface exposed to attacks. Guar-
anteeing a certain level of robustness to known and emerging
security threats requires continuous updates of the risk models
and security-enhancing network design. Examples of model
instances for gauging the effects of targeted fiber cut attacks
on the optical network can be found in [22], while examples of
attack-aware optical network planning under static, periodic
and dynamic traffic can be found in [23], [24] and [25].

Attack cognition encompasses the gathering of representative
and indicative network performance data, performing its deep
analysis, and correctly attributing the observed trends to dif-
ferent types of security breaches in order to detect an attack
and identify the location of the breach. This requires detailed
knowledge about possible attack entry points and the so-called
signatures of different attack methods, i.e., their effects on the
distinct OPM parameters. Due to the sparse deployment of
costly OPM equipment, ubiquitous, real-time collection of OPM
data in optical networks is challenging. However, the latest
generation of coherent receivers with rich Digital Signal Process-
ing (DSP) functionalities alleviates this issue by collecting a rich
OPM dataset at the destination of each connection (e.g., on a
per-minute basis) and exposing it to the NMS through standard-
ized interfaces. In addition to the examples of approaches for
detecting the presence of physical-layer breaches summarized
in Sec. 1, an approach for localization of high-power jamming
signals can be found in [26], while [15, 27] describe a framework
for attack monitoring probe design to aid localization of harmful
connections and/or breached links.

Based on the security diagnostics, the incident response pillar
entails recovery of affected network elements and connections,
neutralization of the breach and network adaptation to improve
resilience towards potential future occurrences of similar attacks.
Network adaptation can benefit from e.g. attack-aware pre-
planning of backup resources [28], fast frequency hopping [29],
connection rerouting, modulation format and spectrum reassign-
ment (e.g., using a procedure described in [30]), or periodical
proactive resource reallocation [13].

B. Security Assurance in Optical Network Management Archi-
tecture

Optical Security Assurance (OSA) must be tackled in the frame-
work of Cognitive Network Management System (C-NMS)
evolving architectures [4]. The advent of Transport-SDN con-
cept and the development of open source multi-vendor network
controllers have deeply transformed the optical network man-

agement vision [31]. The crucial aspects of the new C-NMS
paradigm can be summarized as follows.

• The Network Management and Control is a cross-layer com-
prehensive architecture composed by a number of network
controllers (each one dedicated to a specific network layer
or operation domain) and one or more orchestrators;

• Each controller provides end-to-end services that are set-up
on demand by an upper layer orchestrator;

• Standard Application Programming Interfaces (APIs) pro-
vide easy access to network services for users and external
systems (e.g. Data Center Hypervisors);

• Analytics are widely used to effectively diagnose network
status and implement the appropriate countermeasures for
any malfunction.

Security assurance represents a new important feature of
optical transport services that must be smoothly introduced in
the present Transport-SDN control architecture. Another cru-
cial aspect of optical security management is the need for its
tight integration in the processes of the SOC, the organization
in charge of the whole network and Information Technology
security in many large companies. In other words, OSA lays
on the borderline between network and security management.
Therefore, any conflict or superposition of roles and responsibili-
ties between the Network Operation Center (NOC) and the SOC
must be absolutely avoided. For these reasons, the introduction
of security assurance in optical networks is a non-trivial task
with the following essential functionalities and requirements:

• telemetry (if not provided by the optical controller);

• attack detection and classification;

• prompt attack reaction for service downtime minimization;

• attack localization;

• permanent attack remediation.

C. Optical Security Manager (OSM) Architecture
The functions described in the previous subsection must cooper-
ate smoothly with the optical layer controller, the Transport-SDN
component that manages all optical layer functions and exposes
end-to-end optical transport services to a network orchestrator.
Rather than redesigning the architecture of optical layer con-
trollers which is well established in the open source community
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Fig. 2. The proposed OSM architecture in the framework of
a cognitive Transport Software Defined Network (T-SDN)
controller (adapted from [4]).

(see for instance [32]), we propose to complement the optical
layer controller functions with the introduction of an OSM as a
new functional block. The OSM architecture, shown in Fig. 2,
encompasses all the optical security functions and is in principle
compatible with any optical controller. It also provides a suitable
interface towards SOC systems.

The OSM is composed by a Telemetry and Telemetry data
base (DB) blocks that retrieve and store the coherent transceiver
OPM data (and possibly other relevant network status data) [15].
The OPM data are used by the two ML modules: the Attack Detec-
tor and Classifier and the Attack Localizer whose functions are self-
explanatory. For example, these modules can run algorithms for
attack detection, identification and localization based on super-
vised, unsupervised or semi-supervised learning, whose details
and experimental performance evaluation can be found in [15].
Based on the attack condition information reported by the ML
blocks, a quick attack response action is decided by the Fast At-
tack Fixing Processor. The purpose of this block is to select a quick
countermeasure aimed at minimizing service downtime (e.g. by
a simple traffic rerouting). The countermeasure implementation
is queried to optical controller by means of an appropriate API.
The task of a complete attack remedy is rather different, and
it is performed by another block: the Attack Remedy Processor.
This block uses attack classification and localization information
to elaborate an ultimate attack fixing strategy. The nature of
optical layer attacks implies that the network infrastructure has
been fraudulently modified and it is, therefore, unlikely that
the attack can be permanently fixed with elementary network
functions like traffic protection or rerouting. This is the reason
why the Attack Remedy Processor has a suitable API that pro-
vides to the SOC systems the information required to organize a
human repair intervention on the network infrastructure, such
as the physical location of the attack, the attack type, and the
type of a physical device that has likely been introduced by a
hacker and should be removed. This intervention may consist
in immediate actions like switching off optical amplifiers for
isolating a link under attack, followed by a physical removal of
the attack devices in the field.

As shown in Fig. 2, the OSM can be easily integrated in
the general architecture of a Transport Software Defined Net-
work (T-SDN) controller (see for instance [4] where only the
Proactive fault detection module was considered) and it exploits
some basic functions already present in the architecture: the
Northbound and Southbound interfaces and the Telemetry and
Telemetry DB. From the functional viewpoint, the OSM and the
Proactive fault detection module are designed as independent
modules: they both use the information of the Telemetry DB and
the services provided by the interfaces, but they work indepen-
dently and provide to the network management applications
different kind of information. This functional independence
of the OSM with respect to other network management blocks
eases its integration in the T-SDN controller.

D. Optical Security Manager features and requirements
The proposed OSM functions impose different Key Performance
Indicators (KPIs) on the various blocks, discussed as follows.

• Telemetry: OPM data acquisition time is the most impor-
tant KPI for telemetry. It also represents the update time of
the network attack status reported by ML algorithms.

• Attack detection and classification: The detection time and
classification time are the basic KPIs together with accuracy
of the ML algorithms, in particular the obtained False Posi-
tive (FP) and False Negative (FN) rates.

• Attack reaction: We can define the KPI of this function
as the time required to identify the proper quick reaction
strategy (e.g. by a search on a data base of strategies defined
“a priori”) and to send the corresponding implementation
request to the optical controller.

• Attack localization: The most important KPI for this func-
tion is the attack localization accuracy: for instance, a local-
ization accuracy of a few tens of meters makes the attack
device hunting in urban areas quite easy for a field team.
Other KPIs are the localization time and the probability of
localization error.

• Permanent attack remediation: The most important KPI
of this function is the time required to provide the fixing
information to the SOC systems.

3. EFFICIENT ATTACK COGNITION APPROACHES

Attack cognition is a key capability of the network security man-
agement framework. In particular, the attack detection task can
be directly related to the classical anomaly detection task in ML.
Among the ML techniques, SSL and UL are the most promising
ones to implement detection of evolving attacks due to their
ability to detect previously unseen attacks. In the following, we
introduce the ML techniques for detection of unseen attacks, the
main ways to measure accuracy of these techniques, and the di-
mensionality reduction methods that can be used in combination
with the ML techniques.

A. ML Techniques for Detection of Evolving Attacks
One of the key characteristics of SSL and UL techniques is that
they do not need labeled data. This characteristic is particularly
important in the context of network security, where labeling
data requires specialist knowledge for the known attacks, while
being impossible for unseen attacks. This means that even if SL
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models can accurately detect and identify attacks, they can do
so only for previously recorded attack methods whose effects
have been scrutinized by experts.

ML techniques that do not require labeled data are a com-
pelling solution for coping with the virtually open-ended,
quickly-evolving threat space. However, the benefit of not need-
ing a labeled dataset comes at the expense of lower accuracy,
inability to provide fine-granular interpretation of e.g. type and
intensity of an attack, and typically longer time needed to pro-
cess the same amount of data in comparison to SL, calling for
approaches that improve the efficiency and performance of SSL
and UL techniques.

A.1. Semi-Supervised Learning (SSL)

SSL models belong to a category of ML models that do not
require a labeled dataset representing all possible conditions, but
only a dataset that contains samples considered normal. These
models learn the boundaries of the normal working conditions
region, which enables detection of data points that fall outside
the region. Once the boundaries are learned, the model can
perform the inference by only analyzing new samples.

In the context of physical layer optical network security, a
drawbacks of SSL models is the need to train a new model or
update an existing one upon establishing each new lightpath.
This is necessary to accommodate for the large variations in
properties of lightpaths that traverse different links, use differ-
ent transceivers, and are allocated different parts of the optical
spectrum. Therefore, the SSL models need to incorporate the
normal working conditions of each individual lightpath.

One of the most regarded SSL techniques is the One-Class
Support Vector Machine (OCSVM), which uses a kernel func-
tion to create a multi-dimensional space. There are three main
parameters to be selected when configuring the OCSVM model:
(i) the kernel, which specifies the kernel type used in the algo-
rithm; (ii) the γ, which specifies the kernel coefficient for some
kernels; and (iii) the ν, which specifies an upper bound on the
fraction of training errors. During the training phase, the algo-
rithm encloses the normal working condition data as tightly as
possible. During inference, if a new data point falls outside of
the boundaries of the learned space, it is considered an anomaly
(i.e., an attack in the context of this work).

A.2. Unsupervised Learning (UL)

UL models rely on the assumption that anomalies (i.e., attacks)
are rare events. Based on this assumption, UL models analyze a
significant number of samples at every inference to determine
what can be considered as a normal working condition, and
what cannot. In the context of this work, this intuition is useful
because it bypasses the need to train models. The characteri-
zation of normal working conditions is obtained solely by the
consideration of a significant number of samples. On the other
hand, since a number of samples needs to be analyzed at every
inference, UL models tend to be more complex than SSL models,
resulting in significantly longer times to make inferences.

One of the most commonly used UL techniques is the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN).
DBSCAN uses a notion of neighborhood around each sample,
and counts how many other samples fall within this neighbor-
hood region. There are two main parameters to be selected when
configuring the DBSCAN model: (i) the ε defines the radius of a
neighborhood around each sample; and (ii) the MinPts defines
how many neighbors a sample should have to be considered a
normal sample. Based on these two parameters, samples that

do not have enough neighbors are considered anomalies (i.e.,
attack samples in the context of this work). Another important
parameter to consider when using DBSCAN is the size of the
sample window, which defines how many previously collected
samples are provided to the algorithm to characterize the nor-
mal vs. anomalous working conditions. This window should be
large enough to include normal variations of parameters over
time, without excessively increasing the algorithm complexity
which is proportional to the window size.

B. Accuracy Measures for Attack Detection
The accuracy of attack detection techniques can be measured in
terms of four basic metrics:

• True negative rate [Tn ∈ (0, 1)]: the portion of normal oper-
ating condition samples detected as normal samples;

• False positive rate [Fp ∈ (0, 1)]: the portion of normal oper-
ating condition samples detected as attacks;

• True positive rate [Tp ∈ (0, 1)]: the portion of attack sam-
ples detected as attacks;

• False negative rate [Fn ∈ (0, 1)]: the portion of attack sam-
ples detected as normal samples.

The sum of the true negative and the false positive rates must
be equal to one, i.e., Tn + Fp = 1, as does the sum of the true
positive and the false negative rates, i.e., Tp + Fn = 1.

Within the scope of our work, it is expected that the number
of normal operating condition samples is much greater than the
attack ones, configuring a highly imbalanced dataset. In such
cases, precision and recall can be used to summarize the accuracy
of the model. Precision [P ∈ (0, 1)] defined in Eq. (1) measures
the sensitivity of the model under evaluation to false positives.
Recall [R ∈ (0, 1)] defined in Eq. (2) measures the sensitivity
of the model under evaluation to false negatives. Finally, the
f1 score [F1 ∈ (0, 1)] defined in Eq. (3) computes the harmonic
mean of precision and recall, summarizing the accuracy of a
model in a single metric. The f1 score is particularly useful
because, to achieve a good score, the model must achieve both
high precision and high recall.

P =
Tp

Tp + Fp
(1)

R =
Tp

Tp + Fn
(2)

F1 = 2
P× R
P + R

(3)

C. Dimensionality Reduction Methods
Dimensionality reduction methods have been developed pri-
marily for use in data representation and visualization. These
methods assume that most of the useful knowledge of a dataset
is usually (or can be) concentrated in only a few of its features or
can be summarized with only a few features synthesized from
the dataset. This assumption is particularly relevant for optical
network monitoring, where DSP-enabled transponders collect
a rich set of features, but not all of them are equally indicative
for every use case. Dimensionality reduction methods are capa-
ble of analyzing datasets with a multitude of dimensions and
extracting only a given number of them that contains the most
information about the dataset [33]. This allows, for instance, to
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visualize a dataset using only two or three dimensions, making
it easier for humans to understand the data.

Meanwhile, SSL and UL models may suffer from scalabil-
ity issues such as run time complexity and sensitivity to high-
dimensional data. The run time issue is caused by the fact that,
mainly in UL models, the model needs to iterate over a set of
samples to evaluate a certain definition of distance between
samples, causing its run time to increase exponentially with
the number of samples. Sensitivity to high-dimensional data is
characterized by cases where increasing the number of features
degrades the model accuracy. Models sensitive to dimension-
ality usually show improved performance when increasing the
number of dimensions from one to a few, but degraded per-
formance when the number of dimensions increases further.
Conversely, the performance of models that are not sensitive
to dimensionality usually improves when the number of di-
mensions increases from one to a few, reaching a plateau if the
number of dimensions is further increased.

Scalability issues of semi-supervised and unsupervised learn-
ing models, both in terms of run time complexity and sensitiv-
ity to data dimensionality, challenge their application to large,
high-dimensional datasets [20, 34, 35]. Such datasets have been
successfully analyzed by SL models assisted by DL techniques.
However, unlike DL models, SSL and UL models do not have
feature extraction capabilities. This means that if there are noisy
or irrelevant features in the dataset, these features will degrade
the performance of the model. Therefore, dimensionality re-
duction methods have recently been combined with semi- and
unsupervised models as a way to mitigate their sensitivity to
high-dimensional data, acting as feature extraction before the
execution of the models [19, 35]. It is important to note, how-
ever, that potential benefits of applying dimensionality reduction
methods are highly dependent on the problem, i.e., on the fea-
tures and anomalies being detected. Therefore, their application
should be evaluated for each problem. In this work, we focus
on evaluating their suitability for physical layer attack detection

in optical networks.
Fig. 3 shows the workflow of SSL and UL models. In a tra-

ditional workflow (Fig. 3(a)) the data is pre-processed before
being fed to an SSL or a UL model. The pre-processing applies
some variation of data transformation or normalization, which
usually consists of fitting the feature values into a scale that
facilitates the learning by the models. However, this process
does not change the dimensions of the data, i.e., it maintains
the same number of features as the original data. Therefore, al-
though data transformation or normalization usually improves
the performance (by increasing accuracy and/or facilitating the
learning) of the ML models, it does not solve other issues such as
sensitivity to high-dimensional data. In a workflow that uses di-
mensionality reduction (Fig. 3(b)), the dimensionality reduction
method computes a few dimensions that better represent the
data. Thus, the ML model can concentrate on fewer dimensions
when detecting anomalies. The reduced number of dimensions
can bring higher accuracy and/or improved scalability to the
model [19, 34]. In the following, we describe three of the most
used dimensionality reduction methods.

C.1. Principal Component Analysis (PCA)

PCA is a dimensionality reduction method that tries to encode in
the extracted features as much variance from the original dataset
as possible [36], illustrated in Fig. 3(c). For this purpose, it selects
a given number of orthogonal components from the dataset
based on their variance. For each component to be extracted
from the dataset, PCA finds a linear combination of the original
features that results in the highest variance of the projected data
points. Once the components are selected, the method can be
used to project high-dimensional data onto a lower number of
components using a linear combination of the original features.
As PCA works with projected-dimension-wise steps (instead
of, for instance, sample-wise steps), it works efficiently over
large number of samples with large number of dimensions in
the dataset.
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C.2. t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a dimensionality reduction method that builds upon the
Stochastic Neighbor Embedding with the capability of retaining
local and global relations between data points [37], illustrated
in Fig. 3(d). t-SNE starts by computing the pair-wise distances
among all samples in the original dataset and then randomly
projects the data points over a given number of dimensions.
t-SNE proceeds with a (predefined or not) number of steps. At
each step, the projected data points are moved such that the
distance between points which are close in the original dataset is
minimized in the projected dimensions. Conversely, the distance
between points which are distant in the original dataset is max-
imized. The direction and amplitude of adjusting the position
of each data point (known as gradient) can be computed using
different algorithms such as stochastic gradient descent. As
t-SNE works with sample-wise steps (as opposed to projected-
dimensions-wise, for instance), its complexity (and therefore run
time) is expected to be much higher than other dimensionality
reduction methods such as PCA and Autoencoders (AEs). There
are also a few simplification methods that reduce the complexity
of the t-SNE, making it more suitable for very large datasets
with many features [38].

C.3. Autoencoder (AE)

Autoencoders are a type of a neural network that can be used
for several different purposes, including denoising, one-shot
learning and dimensionality reduction [39, 40], illustrated in
Fig. 3(e). For the autoencoder, a neural network is used where
input and output layers have the same dimension as the dataset.
Among the hidden layers, the central layer is the one responsible
to contain the encoded representation of the data. The objective
of the autoencoder is for the neural network to reproduce at the
output the same values it receives at the input. The training
is performed in a supervised manner, where the same samples
are used both as input as well as the ground truth values at the
output.

When an autoencoder is built with the task of performing
dimensionality reduction, the feature extraction part is done
by a central layer that represents the number of features to be
extracted from the dataset. Once the autoencoder is trained, the
neural network is split into encoder and decoder parts, and only
the encoder part is used to perform the dimensionality reduction.
The values output by the encoder can then be directly input to an
SSL or a UL model to perform anomaly detection. The AE needs
to be trained only once for each lightpath, at the beginning of its
operation. In fact, the same trained AE can be used for multiple
lightpaths, but this investigation is out of the scope of this work.
Since the inference of the AE is quite efficient (and can be further
assisted by specific-purpose hardware), its overhead in terms of
additional run time is expected to be lower than other methods
such as t-SNE.

4. PERFORMANCE ANALYSIS

In this section, we investigate the impact of the three dimen-
sionality reduction methods on the accuracy and scalability of
SSL and UL models for physical-layer attack detection in opti-
cal networks. The introduction of a dimensionality reduction
method into the ML workflow needs to be carefully analyzed by
evaluating (i) whether the dimensionality reduction improves
the accuracy and (ii) whether the resulting reduction in the ML
model complexity compensates for the extra complexity intro-
duced by the dimensionality reduction method.
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Fig. 4. Network testbed used in security experiments [15].

We carry out this analysis on an experimental optical network
security dataset reported in our recent work [15]. The experi-
mental optical network testbed and the dataset characteristics
are summarized in subsection A. The impact of the dimension-
ality reduction methods on the ML model accuracy and run
time complexity are analyzed in subsections B and C. The ac-
curacy and run time performance analyses are then combined
in subsection D to provide insight into the overall efficiency
and tradeoffs involved in designing an ML-based physical layer
attack detection mechanism for optical networks.

A. Testbed and Parameter Setup

The dataset used in this paper is collected from an experimental
optical network testbed based upon commercial optical trans-
port network technology and is composed by 6 Reconfigurable
Optical Add-Drop Multiplexer (ROADM) nodes, 1 Erbium-
Doped Fiber Amplifier (EDFA) amplification node and 10 op-
tical fiber links, shown in Fig. 4. The coherent transponders
collect a rich OPM dataset reporting the average, minimum and
maximum values of the following parameters every minute:
chromatic dispersion, differential group delay, Optical Signal-
to-Noise Ratio (OSNR), polarization dependent loss, Q factor,
block errors, Bit Error Rate (BER) and presence of uncorrected
blocks before Forward Error Correction (FEC), BER after FEC,
received and transmitted optical power and frequency, and the
loss of signal alarm status.

In the testbed, we characterize the normal operating condi-
tions and apply three attack techniques: in-band and out-of-
band jamming, and polarization modulation attack. We vary the
intensity of the attack for each technique, characterizing a light
and a strong attack scenario. The Optical Channels (OChs) under
test are two 200 Gbit/s polarization multiplexed 16QAM signals
at frequencies of 195.2 and 195.3 THz, respectively, operating
error-free with 32 dB OSNR0.1. The properties of attack scenar-
ios, i.e., the power and frequency of the Continuous Wave (CW)
jamming signal and the amplitude of the 136 kHz sinewave
signal driving the fiber squeezer in the polarization modulation
attack, are summarized in Table 1. A detailed description of
the experiments can be found in [15]. Each of the 7 security
conditions (one normal and 6 attack scenarios) is recorded over
a 24-hour period. The resulting dataset contains 1440 samples
for each scenario, each sample containing 31 features. Finally,
the dataset is cleaned (by removing data points with missing
features) and standardized.

We use the implementations available on Scikit-learn [41]
for the data processing tasks. For the OCSVM, we investigate
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Table 1. Summary of attack scenarios [15].

Attack scenario
Jamming
signal
power

Jamming
signal
frequency

Fiber
squeezer
driver am-
plitude

Out of
band
jamming

Light P0+3 dB 195.1 THz -

Strong P0+8.7 dB 195.1 THz -

In band
jamming

Light P0-10 dB f0 -

Strong P0-7 dB f0 -

Polarization
modulation

Light - - 0.3 V

Strong - - 1.6 V

P0 and f0 denote the power level and frequency of the OCh under test.

a number of configurations defined by the kernel, γ and ν pa-
rameters.The combinations of the kernels {rbf, linear, sigmoid}, γ
values {0.001, 0.1, 0.2, 0.5, 0.7, 1} and ν values {0.01, 0.1, 0.3, 0.5,
0.7, 1} were tested. For the DBSCAN, we investigate a number
of configurations defined by the ε and MinPts parameters. The
combinations of the ε values {0.1, 0.5, 1, 2, 3, 4, 5, 10} and MinPts
values {3, 5, 8, 10} were tested. Moreover, we assume a window
of 100 samples to characterize the normal working conditions of
a lightpath in DBSCAN, with a 10:1.5 ratio between normal and
attack samples. Naturally, in OCSVM, a lightpath requires the
processing of a single monitoring sample.

By applying the dimensionality reduction methods, the
dataset is represented by 1 to 7 dimensions. For PCA, the only
parameter to be set is the number of components to be extracted.
For t-SNE, we additionally set the algorithm to use the exact
method to compute the gradients and a maximum of 300 itera-
tions. For AE, after testing several neural network architectures,
the architecture with {31, 400, 100, 40, n, 40, 100, 400, 31} neurons
(where n represents the number of dimensions to be extracted)
was the one that achieved the best performance, i.e., the lowest
error. The trainable parameters of the autoencoder are initial-
ized using the uniform initializer [42], and during training the
training and validation errors are monitored to ensure that over-
training is not reached. As a baseline for comparison, we tested
the performance of the algorithms when supplied with the Full
Dataset (FD).

B. Accuracy Analysis
In this section, we focus on assessing the impact of dimensional-
ity reduction methods on the accuracy of the SSL and UL mod-
els. Therefore, the OCSVM and DBSCAN algorithms are ran in
combination with the dimensionality reduction methods with
different parameter settings, as well as the full dataset. Each
parameter combination results in a false positive and false nega-
tive rate, which can be summarized by the f1 score. Out of these
performance results, we highlight the accuracy frontiers, while
opaque data points in Figs. 5 and 6 represent configurations
which are not part of the accuracy frontier.

Fig. 5 highlights the accuracy frontiers for OCSVM in terms
of false positive and false negative rates for the three dimension-
ality reduction methods and the number of dimensions ranging
from 1 to 7. We can observe that all three dimensionality reduc-
tion methods degrade the OCSVM accuracy compared to the
FD scenario. This demonstrates that OCSVM takes advantage

of the extra features included in the full dataset This property is
also underlined by the fact that extracting only one dimension
substantially degrades accuracy compared to a higher number
of dimensions or the FD case.

Across all the dimensions and dimensionality reduction meth-
ods, the best f1 score is always achieved using the rbf kernel.
In the case of PCA (Fig. 5a), the highest accuracy is achieved
for 6 dimensions, while further increasing the number of di-
mensions does not improve the algorithm performance. The
highest accuracy is achieved with ν=0.01 and γ=1.0. In the
case of t-SNE (Fig. 5b), the best accuracy is achieved already
with 3 dimensions, ν=0.1 and γ=0.2, and the variation of perfor-
mance observed with 2-7 dimensions shows that t-SNE is able
to extract useful features from the dataset with fewer dimen-
sions than PCA. Finally, applying the autoencoder obtains a
progressive increase in the f1 score as we increase the number of
dimensions, with 6 and 7 dimensions presenting similar accu-
racy. The OCSVM configuration that achieves this accuracy is
ν=0.01 and γ=1.0 for both 6 and 7 dimensions.

Fig. 6 highlights the accuracy frontiers for DBSCAN. We can
observe that, as opposed to OCSVM, dimensionality reduction
techniques significantly improve DBSCAN accuracy compared
to the FD case. DBSCAN in combination with t-SNE (Fig. 6b)
achieves the highest f1 score among the dimensionality reduc-
tion methods, and does so with only two dimensions. The reduc-
tion in false positive rate reaches as high as 16% and 2.5% in false
negative rate with two dimensions when ε=1 and MinPts=5.
Unlike OCSVM which presents a clear gain when the number of
dimensions increases, DBSCAN shows a more indefinite trend,
requiring careful parameter configuration depending on the
particular dimensionality reduction method.

In the case of PCA (Fig. 6a), benefits are obtained only with 4
or more dimensions, with the best accuracy reached when using
6 dimensions, with MinPts=10 and ε=0.5. The t-SNE, when
combined with DBSCAN (Fig. 6b), also brings good accuracy
benefits, except for the case with a single dimension. Similar
to the behavior observed with OCSVM (Fig. 5b), t-SNE with
DBSCAN also shows a smaller accuracy variation for two or
more dimensions in comparison with the other dimensionality
reduction methods. This demonstrates a trend of t-SNE achiev-
ing good accuracy with a lower number of dimensions. The
best f1 score is obtained with MinPts=10 and ε=2.0. The au-
toencoder also shows benefits in terms of accuracy, but not as
substantial as the other two dimensionality reduction methods.
Interestingly, using only 3 dimensions already yields the best f1
score (same as for 7 dimensions), with MinPts=5 and ε=0.1.

C. Run Time Complexity Analysis
To analyze the run time of the two ML models combined with
different dimensionality reduction methods as a function of the
number of monitored connections in the network, we have ar-
tificially inflated the size of the dataset by generating synthetic
samples with each feature following a Gaussian distribution
dictated by the average and standard deviation obtained from
the original dataset. To conduct a fair comparison, the dataset
presented to DBSCAN contains 100 samples per lightpath (nec-
essary to characterize the normal working conditions), while
the one presented to OCSVM contains one sample per lightpath.
The synthetically generated dataset is then processed by the
dimensionality reduction methods (when applicable) and by the
ML models, while the run times are recorded.

Fig. 7 shows the amount of time taken by the entire attack
detection process, including dimensionality reduction and the
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Fig. 5. Accuracy of the SSL (i.e. OCSVM) model for the different dimensionality reduction methods and different number of dimen-
sions. The number in parentheses represents the highest f1 score obtained for the respective number of dimensions and the full
dataset. Opaque data points represent configurations which are not part of the accuracy frontier.
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Fig. 6. Accuracy of the UL (i.e. DBSCAN) model for the different dimensionality reduction methods and different number of di-
mensions. The number in parentheses represents the highest f1 score obtained for the respective number of dimensions and the full
dataset. Opaque data points represent configurations which are not part of the accuracy frontier.

anomaly detection algorithm, for a varying number of moni-
tored lightpaths. The times were obtained by running the algo-
rithms on an Intel Core i9 9900X CPU clocked at 3.5 GHz with
64 GB of RAM. For both OCSVM and DBSCAN, a clear trend
in complexity can be observed. PCA is the method that incurs
the least extra run time out of the methods, followed by the
autoencoder. The t-SNE method shows a much higher overhead,
imposing up to three orders of magnitude higher run time than
other dimensionality reduction methods.

Fig. 7a shows that when OCSVM is used, there is no run
time benefit in using a dimensionality reduction method. In
fact, when these results are combined with the ones discussed
in the previous section, we can state that there are no benefits in
using dimensionality reduction methods in combination with
OCSVM. This is substantiated by the fact that the OCSVM can
process FD data associated to 300 lightpaths in 0.2 milliseconds.
Fig. 7b indicates an opposite trend for DBSCAN. While t-SNE
imposes a significant runtime overhead, PCA and autoencoder
can reduce run time by a significant margin, i.e., by almost one
order of magnitude compared to FD. This reduction represents
the ability to process a few hundreds more lightpaths in a real-
world deployment if we consider a 10 seconds monitoring loop.
Moreover, combined with an improved accuracy brought by the
dimensionality reduction methods, DBSCAN can greatly benefit

from the introduction of these methods.

D. Accuracy vs. Run Time

The accuracy and run time performance of the OCSVM and
DBSCAN models with and without the dimensionality reduc-
tion methods are summarized in Fig. 8. We can see that the
OCSVM performance is concentrated in the bottom right part
of the plot, while DBSCAN is concentrated in the top left part.
This clearly shows that the SSL model, i.e. OCSVM, is a more ac-
curate and a more time efficient option for physical layer attack
detection in optical networks. Conversely, UL, i.e. DBSCAN,
achieves lower accuracy and takes longer to run.

At first, these properties might seem to indicate that SSL is
the only model of choice for detection of novel types of physical
layer attacks in optical networks while UL has no advantages.
However, inaccuracies can be mitigated by the use of several
methods, such as a window-based approach [15]. Moreover,
in a real-world deployment, SSL models may introduce extra
complexity beyond their use to detect attacks, such as the need of
training the model for every new lightpath. Therefore, it might
make sense for network operators to sacrifice accuracy and run
time complexity for easier use during operation, depending on
the network characteristics and specific use cases.
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Fig. 7. Run time (in seconds) necessary for processing a num-
ber of lightpaths. FD accounts for the model run time using all
the features. PCA, t-SNE and AE account for the run time of
the dimensionality reduction and the model run time. Differ-
ent shades of colors denote different number of dimensions.

5. OPEN CHALLENGES AND FUTURE WORK

Achieving truly autonomous, multi-layer network security man-
agement requires tackling several remaining open challenges.
A set of these challenges is related to the human-ML interac-
tion. While the refinements in ML performance may reduce
the level of human interventions, their elimination is highly un-
likely. Automation of suitable data processing tasks and attack
remediation strategies, development of visualization platforms,
and improving explainability of ML outputs, will be key to
unburdening the security experts and allowing them to create
advanced solutions for unprecedented circumstances.

Multi-domain security management will require exchange of
relevant data and knowledge on security incidents across differ-
ent domains without violating confidential or proprietary infor-
mation. Development of privacy-preserving federated learning
models may provide a useful mechanism for collaborative train-
ing without sharing possibly sensitive data. However, such
models are prone to adversarial attacks such as data poison-
ing which target the ML algorithms themselves. If an attacker
deceives an ML algorithm into falsely detecting attacks, the un-
necessarily triggered response can inflict substantial damage to
network operators in terms of e.g. enlarged operating expendi-
tures. Use of smart contracts or distributed ledger technologies
such as blockchain may help counteract this by enforcing ML
models’ privacy and trustworthiness [43].

Tight integration of optical-layer security with existing SOCs
frameworks will require approaches that are capable of dealing
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Fig. 8. Run time per lightpath (in ns) vs. accuracy (best f1
score) for the Full Dataset (FD), PCA, t-SNE and AE dimen-
sionality reduction methods combined with OCSVM and
DBSCAN models.

with uncertainties stemming from both the ML models and
the observed environment. The time scale of tasks and actions
impacted by these uncertainties needs to be taken into account
when deciding on the most appropriate form of modeling. For
example, less time-critical tasks with a lower level of uncertainty
can benefit from adaptive automation of converting learning
models to algorithms, processes and workflows, while more
time-critical ones with greater sensitivity require acceleration
techniques and continuous incremental learning [44].

6. CONCLUSIONS

This paper focuses on challenges related to the incorporation of
optical network security assurance into carrier-grade network
management processes. To tackle practical system integration
issues, a new functional block called Security Operation Cen-
ter (SOC) was proposed, along with defining its architecture,
functionalities, and KPI requirements. To cope with the evolv-
ing intelligent adversary landscape, unsupervised and semi-
supervised ML techniques were applied for detection of pre-
viously unseen attacks. Their sensitivity to the OPM dataset
dimensionality was assessed and they were combined with di-
mensionality reduction methods to analyze the trade-offs be-
tween the obtained accuracy and run time complexity, aiding
network operators to make informed choices on optical network
security management. The results showed that SSL might not
benefit from dimensionality reduction methods, while for UL
benefits in terms of both increased accuracy as well as reduced
run time were observed.

FUNDING

Vetenskapsrådet (2019-05008).

ACKNOWLEDGMENTS

The authors gratefully acknowledge Roberto Morro for fruitful
discussions.

REFERENCES

1. T. Uematsu, H. Hirota, T. Kawano, T. Kiyokura, and T. Manabe, “Design
of a temporary optical coupler using fiber bending for traffic monitoring,”
IEEE Photonics J. 9, 1–13 (2017).



Research Article Journal of Optical Communications and Networking 11

2. T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenri-
eth, V. Lopez, J. Cho, and W. Kellerer, “Automatic intent-based se-
cure service creation through a multilayer SDN network orchestra-
tion,” IEEE/OSA J. Opt. Commun. Netw. 10, 289–297 (2018). DOI:
10.1364/JOCN.10.000289.

3. S. Zeadally, E. Adi, Z. Baig, and I. A. Khan, “Harnessing artificial intelli-
gence capabilities to improve cybersecurity,” IEEE Access 8, 23817–
23837 (2020). DOI: 10.1109/ACCESS.2020.2968045.

4. D. Rafique, T. Szyrkowiec, H. Grießer, A. Autenrieth, and J.-P. El-
bers, “Cognitive assurance architecture for optical network fault man-
agement,” IEEE/OSA J. Light. Technol. 36, 1443–1450 (2018). DOI:
10.1109/JLT.2017.2781540.

5. T. Tanaka, A. Hirano, S. Kobayashi, T. Oda, S. Kuwabara, A. Lord,
P. Gunning, O. Gonzáles de Dios, V. Lopez, A. M. Lopez de Lerma,
and A. Manzalini, “Autonomous network diagnosis from the carrier
perspective [invited],” IEEE/OSA J. Opt. Commun. Netw. 12, A9–A17
(2020). DOI: 10.1364/JOCN.12.0000A9.

6. L. Velasco, A. C. Piat, O. González, A. Lord, A. Napoli, P. Layec,
D. Rafique, A. D’Errico, D. King, M. Ruiz, F. Cugini, and R. Casel-
las, “Monitoring and data analytics for optical networking: Bene-
fits, architectures, and use cases,” IEEE Netw. pp. 1–9 (2019). DOI:
10.1109/MNET.2019.1800341.

7. I. Sartzetakis, K. K. Christodoulopoulos, and E. M. Varvarigos,
“Accurate quality of transmission estimation with machine learn-
ing,” IEEE/OSA J. Opt. Commun. Netw. 11, 140–150 (2019). DOI:
10.1364/JOCN.11.000140.

8. M. Lonardi, J. Pesic, P. Jennevé, P. Ramantanis, N. Rossi,
A. Ghazisaeidi, and S. Bigo, “Optical nonlinearity monitoring and launch
power optimization by artificial neural networks,” J. Light. Technol. 38,
2637–2645 (2020). DOI: 10.1109/JLT.2020.2985779.

9. F. Musumeci, C. Rottondi, G. Corani, S. Shahkarami, F. Cugini, and
M. Tornatore, “A tutorial on machine learning for failure management
in optical networks,” IEEE/OSA J. Light. Techn. 37, 4125–4139 (2019).
DOI: 10.1109/JLT.2019.2922586.

10. B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from the
optical spectrum: Failure detection and identification,” IEEE/OSA J.
Light. Techn. 37, 433–440 (2019). DOI: 10.1109/JLT.2018.2859199.

11. X. Chen, B. Li, R. Proietti, Z. Zhu, and S. J. B. Yoo, “Self-taught anomaly
detection with hybrid unsupervised/supervised machine learning in
optical networks,” IEEE/OSA J. Light. Techn. 37, 1742–1749 (2019).
DOI: 10.1109/JLT.2019.2902487.

12. Y. Li, N. Hua, Y. Yu, Q. Luo, and X. Zheng, “Light source and trail
recognition via optical spectrum feature analysis for optical network
security,” IEEE Commun. Lett. 22, 982–985 (2018).

13. M. Bensalem, S. K. Singh, and A. Jukan, “On detecting and preventing
jamming attacks with machine learning in optical networks,” in 2019
IEEE Global Communications Conference (GLOBECOM), (2019), pp.
1–6. DOI: 10.1109/GLOBECOM38437.2019.9013238.

14. C. Natalino, M. Schiano, A. Di Giglio, L. Wosinska, and M. Furdek,
“Experimental study of machine-learning-based detection and identifi-
cation of physical-layer attacks in optical networks,” IEEE/OSA J. Light.
Technol. 37, 4173–4182 (2019). DOI: 10.1109/JLT.2019.2923558.

15. M. Furdek, C. Natalino, F. Lipp, D. Hock, A. D. Giglio, and M. Schi-
ano, “Machine learning for optical network security monitoring: A
practical perspective,” J. Light. Technol. 38, 2860–2871 (2020). DOI:
10.1109/JLT.2020.2987032.

16. G. Liu, K. Zhang, X. Chen, H. Lu, J. Guo, J. Yin, R. Proietti, Z. Zhu,
and S. J. B. Yoo, “Hierarchical learning for cognitive end-to-end service
provisioning in multi-domain autonomous optical networks,” J. Light.
Technol. 37, 218–225 (2019). DOI: 10.1109/JLT.2018.2883898.

17. K. Bresniker, A. Gavrilovska, J. Holt, D. Milojicic, and T. Tran,
“Grand challenge: Applying artificial intelligence and machine
learning to cybersecurity,” Computer. 52, 45–52 (2019). DOI:
10.1109/MC.2019.2942584.

18. M. Filer, J. Gaudette, M. Ghobadi, R. Mahajan, T. Issenhuth, B. Klink-
ers, and J. Cox, “Elastic optical networking in the microsoft cloud
[invited],” IEEE/OSA J. Opt. Commun. Netw. 8, A45–A54 (2016). DOI:
10.1364/JOCN.8.000A45.

19. E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,” ACM
Trans. Database Syst. 42 (2017). DOI: 10.1145/3068335.

20. Y. Chen, S. Tang, N. Bouguila, C. Wang, J. Du, and H. Li, “A fast clus-
tering algorithm based on pruning unnecessary distance computations
in dbscan for high-dimensional data,” Pattern Recognit. 83, 375 – 387
(2018). DOI: 10.1016/j.patcog.2018.05.030.

21. M. Furdek and C. Natalino, “Machine learning for optical network secu-
rity management,” in Optical Fiber Communication Conference (OFC)
2020, (Optical Society of America, 2020), p. M4E.4.

22. C. Natalino, A. Yayimli, L. Wosinska, and M. Furdek, “Infrastruc-
ture upgrade framework for content delivery networks robust to
targeted attacks,” Opt. Switch. Netw. 31, 202 – 210 (2019). DOI:
10.1016/j.osn.2018.10.006.

23. N. Skorin-Kapov, J. Chen, and L. Wosinska, “A new approach
to optical networks security: Attack-aware routing and wave-
length assignment,” IEEE Trans. Netw. 18, 750–760 (2010). DOI:
10.1109/TNET.2009.2031555.

24. K. Manousakis, P. Kollios, and G. Ellinas, “Multi-period attack-aware
optical network planning under demand uncertainty,” in Optical Fiber
and Wireless Communications, R. Roka, ed. (2017). DOI: 10.5772/in-
techopen.68491.

25. J. Zhu, B. Zhao, and Z. Zhu, “Leveraging game theory to achieve
efficient attack-aware service provisioning in EONs,” IEEE/OSA J. Light.
Techn. 35, 1785–1796 (2017). DOI: 10.1109/JLT.2017.2656892.

26. Tao Wu and A. K. Somani, “Cross-talk attack monitoring and localiza-
tion in all-optical networks,” IEEE/ACM Trans. Netw. 13, 1390–1401
(2005). DOI: 10.1109/TNET.2005.860103.

27. M. Furdek, V. W. S. Chan, C. Natalino, and L. Wosinska, “Network-
wide localization of optical-layer attacks,” in Proc. of ONDM, (Athens,
Greece, 2019), pp. 310–322. DOI: 10.1007/978-3-030-38085-4_27.

28. M. Furdek, N. Skorin-Kapov, and L. Wosinska, “Attack-aware dedicated
path protection in optical networks,” IEEE/OSA J. Light. Techn. 34,
1050–1061 (2016). DOI: 10.1109/JLT.2015.2509161.

29. Y. Li, N. Hua, Y. Song, S. Li, and X. Zheng, “Fast lightpath hopping en-
abled by time synchronization for optical network security,” IEEE Com-
mun. Lett. 20, 101–104 (2016). DOI: 10.1109/LCOMM.2015.2497703.

30. N. Sambo, K. Christodoulopoulos, N. Argyris, P. Giardina, C. Dele-
zoide, D. Roccato, A. Percelsi, R. Morro, A. Sgambelluri, A. Kretsis,
G. Kanakis, G. Bernini, E. Varvarigos, and P. Castoldi, “Field trial:
Demonstrating automatic reconfiguration of optical networks based on
finite state machine,” J. Light. Technol. 37, 4090–4097 (2019). DOI:
10.1109/JLT.2019.2922841.

31. E. Riccardi, P. Gunning, O. González de Dios, M. Quagliotti, V. López,
and A. Lord, “An operator view on the introduction of white boxes
into optical networks,” J. Light. Technol. 36, 3062–3072 (2018). DOI:
10.1109/JLT.2018.2815266.

32. OpenDaylight, “Transport PCE,” https://docs.opendaylight.org/en/
stable-fluorine/release-notes/projects/transportpce.html.

33. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science. 313, 504–507 (2006).

34. W. Wang, Y. Huang, Y. Wang, and L. Wang, “Generalized autoen-
coder: A neural network framework for dimensionality reduction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, (2014), pp. 490–497.

35. S. A. Shah and V. Koltun, “Robust continuous clustering,” Proc. Natl.
Acad. Sci. 114, 9814–9819 (2017). DOI: 10.1073/pnas.1700770114.

36. R. Vidal, Yi Ma, and S. Sastry, “Generalized principal component
analysis (gpca),” IEEE Transactions on Pattern Analysis Mach. Intell.
27, 1945–1959 (2005). DOI: 10.1109/TPAMI.2005.244.

37. L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. ma-
chine learning research 9, 2579–2605 (2008).

38. L. Van Der Maaten, “Accelerating t-SNE using tree-based algorithms,”
The J. Mach. Learn. Res. 15, 3221–3245 (2014).

39. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural computation 18, 1527–1554 (2006). DOI:
10.1162/neco.2006.18.7.1527.

40. Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimen-

https://doi.org/10.1364/JOCN.10.000289
https://doi.org/10.1109/ACCESS.2020.2968045
https://doi.org/10.1109/JLT.2017.2781540
https://doi.org/10.1364/JOCN.12.0000A9
https://doi.org/10.1109/MNET.2019.1800341
https://doi.org/10.1364/JOCN.11.000140
https://doi.org/10.1109/JLT.2020.2985779
https://doi.org/10.1109/JLT.2019.2922586
https://doi.org/10.1109/JLT.2018.2859199
https://dx.doi.org/10.1109/JLT.2019.2902487
https://doi.org/10.1109/GLOBECOM38437.2019.9013238
https://doi.org/10.1109/JLT.2019.2923558
https://doi.org/10.1109/JLT.2020.2987032
https://doi.org/10.1109/JLT.2018.2883898
https://doi.org/10.1109/MC.2019.2942584
https://doi.org/10.1364/JOCN.8.000A45
https://doi.org/10.1145/3068335
https://doi.org/10.1016/j.patcog.2018.05.030
https://doi.org/10.1016/j.osn.2018.10.006
https://doi.org/10.1109/TNET.2009.2031555
https://doi.org/10.5772/intechopen.68491
https://doi.org/10.5772/intechopen.68491
https://doi.org/10.1109/JLT.2017.2656892
https://doi.org/10.1109/TNET.2005.860103
https://doi.org/10.1007/978-3-030-38085-4_27
https://doi.org/10.1109/JLT.2015.2509161
https://doi.org/10.1109/LCOMM.2015.2497703
https://doi.org/10.1109/JLT.2019.2922841
https://doi.org/10.1109/JLT.2018.2815266
https://docs.opendaylight.org/en/stable-fluorine/release-notes/projects/transportpce.html
https://docs.opendaylight.org/en/stable-fluorine/release-notes/projects/transportpce.html
https://doi.org/10.1073/pnas.1700770114
https://doi.org/10.1109/TPAMI.2005.244
https://doi.org/10.1162/neco.2006.18.7.1527


Research Article Journal of Optical Communications and Networking 12

sionality reduction,” Neurocomputing 184, 232–242 (2016). DOI:
10.1016/j.neucom.2015.08.104.

41. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.
12, 2825–2830 (2011).

42. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” (JMLR Workshop and Conference Pro-
ceedings, Chia Laguna Resort, Sardinia, Italy, 2010), pp. 249–256.

43. P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and
M. Atiquzzaman, “A trustworthy privacy preserving framework for ma-
chine learning in industrial iot systems,” IEEE Transactions on Ind.
Informatics 16, 6092–6102 (2020). DOI: 10.1109/TII.2020.2974555.

44. G. Cirincione and D. Verma, “Federated machine learning for multi-
domain operations at the tactical edge,” in Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications, vol. 11006
T. Pham, ed. (SPIE, 2019), pp. 29 – 48. DOI: 10.1117/12.2526661.

https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1109/TII.2020.2974555
https://doi.org/10.1117/12.2526661

	Introduction
	Optical layer security in evolving network operation
	Network Security Management Framework
	Security Assurance in Optical Network Management Architecture
	Optical Security Manager (OSM) Architecture
	Optical Security Manager features and requirements

	Efficient Attack Cognition Approaches
	ML Techniques for Detection of Evolving Attacks
	Semi-Supervised Learning (SSL)
	Unsupervised Learning (UL)

	Accuracy Measures for Attack Detection
	Dimensionality Reduction Methods
	Principal Component Analysis (PCA)
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	Autoencoder (AE)


	Performance Analysis
	Testbed and Parameter Setup
	Accuracy Analysis
	Run Time Complexity Analysis
	Accuracy vs. Run Time

	Open Challenges and Future Work
	Conclusions

