106 research outputs found

    Computing CQ lower-bounds over OWL 2 through approximation to RSA

    Full text link
    Conjunctive query (CQ) answering over knowledge bases is an important reasoning task. However, with expressive ontology languages such as OWL, query answering is computationally very expensive. The PAGOdA system addresses this issue by using a tractable reasoner to compute lower and upper-bound approximations, falling back to a fully-fledged OWL reasoner only when these bounds don't coincide. The effectiveness of this approach critically depends on the quality of the approximations, and in this paper we explore a technique for computing closer approximations via RSA, an ontology language that subsumes all the OWL 2 profiles while still maintaining tractability. We present a novel approximation of OWL 2 ontologies into RSA, and an algorithm to compute a closer (than PAGOdA) lower bound approximation using the RSA combined approach. We have implemented these algorithms in a prototypical CQ answering system, and we present a preliminary evaluation of our system that shows significant performance improvements w.r.t. PAGOdA.Comment: 26 pages, 1 figur

    SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL

    Get PDF
    AbstractOntology-mediated querying (OMQ) provides a paradigm for query answering according to which users not only query records at the database but also query implicit information inferred from ontology. A key challenge in OMQ is that the implicit information may be infinite, which cannot be stored at the database and queried by off -the -shelf query engine. The commonly adopted technique to deal with infinite entailments is query rewriting, which, however, comes at the cost of query rewriting at runtime. In this work, the partial materialization method is proposed to ensure that the extension is always finite. The partial materialization technology does not rewrite query but instead computes partial consequences entailed by ontology before the online query. Besides, a query analysis algorithm is designed to ensure the completeness of querying rooted and Boolean conjunctive queries over partial materialization. We also soundly and incompletely expand our method to support highly expressive ontology language, OWL 2 DL. Finally, we further optimize the materialization efficiency by role rewriting algorithm and implement our approach as a prototype system SUMA by integrating off-the-shelf efficient SPARQL query engine. The experiments show that SUMA is complete on each test ontology and each test query, which is the same as Pellet and outperforms PAGOdA. Besides, SUMA is highly scalable on large datasets

    Subset reasoning for event-based systems

    Get PDF
    In highly dynamic domains such as the Internet of Things (IoT), smart industries, smart manufacturing, pervasive health or social media, data is being continuously generated. By combining this generated data with background knowledge and performing expressive reasoning upon this combination, meaningful decisions can be made. Furthermore, this continuously generated data typically originates from multiple heterogeneous sources. Ontologies are ideal for modeling the domain and facilitates the integration of heterogeneous produced data with background knowledge. Furthermore, expressive ontology reasoning allows to infer implicit facts and enables intelligent decision making. The data produced in these domains is often volatile. Time-critical systems, such as IoT Nurse Call systems, require timely processing of the produced IoT data. However, there is still a mismatch between volatile data and expressive ontology reasoning, since the incoming data frequency is often higher than the reasoning time. For this reason, we present an approximation technique that allows to extract a subset of data to speed-up the reasoning process. We demonstrate this technique in a Nurse Call proof of concept where the locations of the nurses are tracked and the most suited nurse is selected when the patient launches a call and in an extension of an existing benchmark. We managed to speed up the reasoning process up to 10 times for small datasets and up to more than 1000 times for large datasets

    Query-based comparison of OBDA specifications

    Get PDF
    An ontology-based data access (OBDA) system is composed of one or more data sources, an ontology that provides a conceptual view of the data, and declarative mappings that relate the data and ontology schemas. In order to debug and optimize such systems, it is important to be able to analyze and compare OBDA specifications. Recent work in this direction compared specifications using classical notions of equivalence and entailment, but an interesting alternative is to consider query-based notions, in which two specifications are deemed equivalent if they give the same answers to the considered query or class of queries for all possible data sources. In this paper, we define such query-based notions of entailment and equivalence of OBDA specifications and investigate the complexity of the resulting analysis tasks when the ontology is formulated in DL-LiteR

    The Role of Semantic Technologies in Diagnostic and Decision Support for Service Systems

    Get PDF
    In this research, we utilize semantic technology for robust early diagnosis and decision support. We present a light-weight platform that provides the end-user with direct access to the data through an ontology, and enables detection of any forthcoming faults by considering the data only from the reliable sensors. Concurrently, it indicates the actual sources of the detected faults, enabling mitigation action to be taken. Our work is focused on systems that require only real-time data and a restricted part of the historic data, such as fuel cell stack systems. First, we present an upper-level ontology that captures the semantics of such monitored systems and then we present the structure of the platform. Next, we specialize on the fuel cell paradigm and we provide a detailed description of our platform’s functionality that can aid future servicing problem reporting applications

    Ontology-Mediated Queries for NOSQL Databases

    No full text
    This paper is an extended abstract of the paper with the same title presented at AAAI 2016.International audienceOntology-Based Data Access has been studied so far for relational structures and deployed on top of relational databases. This paradigm enables a uniform access to heterogeneous data sources, also coping with incomplete information. Whether OBDA is suitable also for non-relational structures, like those shared by increasingly popular NOSQL languages, is still an open question. In this paper, we study the problem of answering ontology-mediated queries on top of key-value stores. We formalize the data model and core queries of these systems, and introduce a rule language to express lightweight ontologies on top of data. We study the decidability and data complexity of query answering in this setting

    Teaching an RDBMS about ontological constraints

    Get PDF
    International audienceIn the presence of an ontology, query answers must reflect not only data explicitly present in the database, but also implicit data, which holds due to the ontology, even though it is not present in the database. A large and useful set of ontology languages enjoys FOL reducibility of query answering: answering a query can be reduced to evaluating a certain first-order logic (FOL) formula (obtained from the query and ontology) against only the explicit facts. We present a novel query optimization framework for ontology-based data access settings enjoying FOL reducibility. Our framework is based on searching within a set of alternative equivalent FOL queries, i.e., FOL reformulations, one with minimal evaluation cost when evaluated through a relational database system. We apply this framework to the DL-LiteR Description Logic underpinning the W3C's OWL2 QL ontology language, and demonstrate through experiments its performance benefits when two leading SQL systems, one open-source and one commercial, are used for evaluating the FOL query reformulations

    Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation

    Full text link
    Existential rules have been proposed for representing ontological knowledge, specifically in the context of Ontology- Based Data Access. Entailment with existential rules is undecidable. We focus in this paper on conditions that ensure the termination of a breadth-first forward chaining algorithm known as the chase. Several variants of the chase have been proposed. In the first part of this paper, we propose a new tool that allows to extend existing acyclicity conditions ensuring chase termination, while keeping good complexity properties. In the second part, we study the extension to existential rules with nonmonotonic negation under stable model semantics, discuss the relevancy of the chase variants for these rules and further extend acyclicity results obtained in the positive case.Comment: This paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014
    • 

    corecore