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Abstract
Ontology-mediated querying (OMQ) provides a paradigm for query answering according to which users not only query 
records at the database but also query implicit information inferred from ontology. A key challenge in OMQ is that the 
implicit information may be infinite, which cannot be stored at the database and queried by off -the -shelf query engine. 
The commonly adopted technique to deal with infinite entailments is query rewriting, which, however, comes at the cost of 
query rewriting at runtime. In this work, the partial materialization method is proposed to ensure that the extension is always 
finite. The partial materialization technology does not rewrite query but instead computes partial consequences entailed by 
ontology before the online query. Besides, a query analysis algorithm is designed to ensure the completeness of querying 
rooted and Boolean conjunctive queries over partial materialization. We also soundly and incompletely expand our method 
to support highly expressive ontology language, OWL 2 DL. Finally, we further optimize the materialization efficiency by 
role rewriting algorithm and implement our approach as a prototype system SUMA by integrating off-the-shelf efficient 
SPARQL query engine. The experiments show that SUMA is complete on each test ontology and each test query, which is 
the same as Pellet and outperforms PAGOdA. Besides, SUMA is highly scalable on large datasets.

Keywords Ontology reasoning · Materialization · Role rewriting

1 Introduction

With the rapid development of the semantic web, there are 
more and more applications based on ontology, especially, 
query answering applications [3]. Query answering can 
return implicit information that is not explicitly stored at the 
database but instead entailed by ontology to a user query. In 
this sense, it improves the quality of the answers compared 
to traditional database querying. The most popular query 

answering systems can be categorized into two major types: 
materialization-based and query rewriting-based.

The materialization approach precomputes all conse-
quences entailed by ontologies (also known as the universal 
model or chase) offline so that the online query can be evalu-
ated directly on the extended RDF data. Thus, it is preferred 
at online query performance-critical scenarios. PAGOdA 
[30] is based on materialization algorithm. It is scalable by 
delegating a large amount of the computational load to a 
datalog reasoner [21, 23] and using the hypertableau algo-
rithm [22] only when necessary.

However, when the ontologies contain cyclic depend-
ency relation, the universal model can be infinite [17]. The 
infinite extended data cannot be stored at the database and 
directly queried by the query engine. The infinite materi-
alization is a significant challenge in materialization-based 
query answering systems. PAGOdA is incomplete in terms 
of infinite materialization (we proved it in Sect. 6).

The commonly adopted approach to deal with infinite 
materialization is query rewriting. Query rewriting tech-
niques have been studied intensively and implemented in 
many systems, e.g., QuOnto [5], Mastro [7], Ontop [6] for 
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DL-Lite, Grind [11] for EL , Clipper [8] for Horn-SHIQ . 
These systems do not materialize the data , but rather first 
rewrite the query according to the ontologies and mappings. 
Query rewriting uses a virtual RDF graph technique to avoid 
infinite materialization. However, it significantly increases 
the cost of query because rewriting is performed at runt-
ime, and usually, it requires manual mapping. Moreover, the 
rewritten query can be exponentially large [26].

Besides query rewriting, the materialization-based ontol-
ogy reasoner, e.g., Pellet [28], adopts a tableau algorithm 
with a roll-up technique [14] to solve infinite materializa-
tion. Pellet is not scalable for large datasets. It can only be 
applied to small and medium-sized datasets due to the high 
complexity of the tableau algorithm.

gOWL [19] proposes a partial materialization-based 
approach that deals with acyclic queries. The materialization 
algorithm of gOWL has a high time and space complexity 
due to its poor indexes for the storage and rules. Besides, 
gOWL cannot handle cyclic queries and Boolean queries, 
and its approximation rules lose most of the semantics of 
the OWL 2 DL.

There is also a hybrid approach [15] that computes the 
canonical model, which is always finite by reusing the 
anonymous individual name. And it rewrites the queries to 
remove wrong answers that the canonical model produces. 
But this rewriting algorithm cannot deal with role inclusion 
axioms. Then, a filter mechanism is proposed to replace the 
rewriting technique. The filter mechanism does not rewrite 
queries at runtime but filters spurious answers after query 
evaluation [17]. It supports role inclusions. However, it is 
still limited to lightweight ontology languages, DL-LiteR 
[2].

Motivated by the users are mainly interested in the first 
few levels of the anonymous part of the universal mod-
els [10], in this paper, we describe a novel partial mate-
rialization approach. Partial means we do not compute 
all consequences entailed by ontology, but instead com-
pute a subset of the universal model. Partial ensures the 
extended RDF data are always finite. Then, we propose 

a query analysis algorithm(QAA). QAA takes conjunc-
tive queries as input, and its output indicates the size of 
the partial universal model. This algorithm is designed 
to ensure the partial materialization can always produce 
the same answers as a universal model for rooted con-
junctive queries [16] and partial Boolean conjunctive 
queries in DL-LiteN

horn
 [2]. Consider the following query 

Q ∶ select ?X where {?X type Student. ?X advisor ?Y0. ?Y0 teaches ?Y1.}. 
and the infinite universal model (the RDF), as shown in 
Fig. 1. 

In this paper, we select only one part from the entire 
model (the sRDF) for answering the query Q as ans(sRDF, 
Q ) = ans(RDF, Q ). The sRDF is the partial universal model.

To make our approach unlimited to lightweight ontol-
ogy languages, we soundly and incompletely generalize our 
approach to deal with OWL 2 DL by rewriting and approxi-
mation techniques. The approximation techniques apply to 
axioms whose semantics exceed DL-LiteN

horn
 . And, additional 

data structures are designed to preserve the semantics that 
approximation techniques may lose.

We implement our approach as a prototype system SUMA 
and integrate a role rewriting algorithm [27] to optimize 
materialization efficiency further. From a system perspec-
tive, SUMA allows us to design an offline modular architec-
ture to integrate off-the-shelf efficient SPARQL [12] query 
engines. In this way, it makes online queries more efficient.

We validate our proposal in two cases: an evaluation in 
the finite universal model scenario and an evaluation in the 
infinite universal model scenario. In the former case, experi-
ments are conducted on two widely adopted benchmark and 
two real datasets. In the latter case, we manually extend the 
LUBM [9] and UOBM [18] ontologies to evaluate query 
answering systems on an infinite universal model. These 
experiments confirm that: (i) the ontology reasoning algo-
rithm used in PAGOdA cannot deal with infinite materiali-
zation, (ii) although Pellet is complete, it is not scalable and 
can only be used for small and medium data, (iii) SUMA 
is good at the trade-off the scalability and completeness. 
Experiments show that SUMA is highly efficient, only 

Fig. 1  A running example of 
partial materialization



SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL  

1 3

taking 124s to materialize LUBM(1000) and 411s to mate-
rialize UOBM(500). And, in each test query, it returns the 
same quality of answers as Pellet.

The rest of the paper is structured as follows. Section 2 
introduces the basic notions. Section 3 presents the defini-
tion of QAA algorithm for rooted and Boolean conjunctive 
queries and gives a detailed proof. Section 4 shows how to 
approximate the OWL 2 DL axiom to DL axiom while pre-
serving its semantics. Section 5 presents the architecture of 
SUMA and algorithms used at SUMA. The performance of 
SUMA on two benchmarks and real datasets is demonstrated 
in Sect. 6. Section 7 concludes this paper.

This work is an extension of the previous proceedings in 
[1]. In particular, (i) it extends QAA to support Boolean con-
junctive queries that contain cyclic or fork structure, (ii) it 
adopts a role rewriting algorithm [27] to optimize materiali-
zation efficiency further, (iii) and it extends the experiments 
with role rewriting algorithm evaluation, gOWL system and 
YAGO dataset. This work confirms and extends the main 
finding from [1]: SUMA is good at the trade-off the scal-
ability and completeness.

2  Preliminaries

In this section, we briefly introduce the syntax and semantics 
of description logics(DLs)DL-LiteN

horn
 , conjunctive query, 

and universal model.

2.1  Description Logics

Description Logic is a family of logics that have been stud-
ied and used in knowledge representation and reasoning. 
DLs underlie the standard Web Ontology Language OWL 
and OWL 2. In DLs, the elements of the domain are com-
piled into concepts (corresponding to unary predicates in 
first-order languages), and their properties are structured 
by means of roles (corresponding to binary predicates in 
first-order languages). Complex concepts and role expres-
sions are made from atomic concepts and atomic role names. 
These names are connected by suitable constructors. The set 
of available constructors depends on the semantic of spe-
cific description logic. The richer the constructors that the 
description logic contains, the more complex the semantics 
that the description logic can capture.

Description logic knowledge base K consists of TBox 
( T  ) and ABox ( A ). A TBox typically consists of a set of 
axioms stating the inclusion between concepts and roles. 
The semantics of TBox is affected by the constructors. 
In an ABox, one can assert membership of objects (i.e., 
constants) in concepts, or that a pair of objects are con-
nected by a role.

Let �
�
 be the individual set. In this paper, by default, we 

use a, b, c, d, e (with subscripts) to represent individual 
names. A, B, Z denote concept names, C (with subscripts) 
are concepts, P, S are role names, and R (with subscripts) 
are roles. Next, we present a brief overview of two differ-
ent description logics, DL-LiteN

horn
 , and SROIQ.

DL-LiteN
horn

 defines roles and concepts as follows:

DL-LiteN
horn

 presents ∃R as ≥ 1R and defines (P−)− with P. 
Let �−

�
 denote the set of roles.

A DL-LiteN
horn

 T  is a finite collection, including con-
cept inclusions (CIs) axioms, that are in the form of 
C1 ⊓… ⊓ Cn ⊑ C . A DL-LiteN

horn
 ABox consists of concept 

assertions A(a) and role assertions P(a, b).
The semantics of DL-LiteN

horn
 are defined by the interpre-

tation I = (�I, ⋅I) , where �I  is a non-empty domain. The 
function is denoted by ⋅I  , which can map each A into the 
set AI , each P into the relation PI and each a to an element 
aI  . AI  and PI  are subsets of �I  and �I × �I  , respectively. 
The aI  is an element of �I  . Besides, DL-LiteN

horn
 imple-

ments the unique name assumption (UNA), that is, if v and 
w are distinct, then vI  is different from wI .

⋅
I  interprets each complex concept or role in the fol-

lowing ways: (1) ⊥I = � ( ⊥ is the bottom concept); (2) 
(S−)I = {(v,w) ∣ (w, v) ∈ SI} ; and (3) (≥ mS)I = {w ∣ ♯{v ∣ 
(w, v) ∈ SI} ≥ m} . Here ♯ denotes the cardinality.

The I  satisfies a CIs axiom T1 in the form of 
C1 ⊓… ⊓ Cn ⊑ C  if only if 

⋂n

i=1
CI
i
⊆ CI  , denoted as 

I ⊧ T1 . If aI ∈ AI then I ⊧ A(a) holds. If (aI, bI) ∈ PI then 
I ⊧ P(a, b) holds. If I  satisfies all TBox and ABox axioms 
of K then I  is a model of K.

SROIQ  i s  t he  under ly ing  log ic  o f  OWL 
2 DL. The concept of SROIQ is  def ined as: 
C ∶= ⊥ ∣ ⊤ ∣ A ∣ ¬ A ∣ {a} ∣ ≥ mR.A ∣ ∃R.A . Besides, 
A ⊔ B , ∀R.A , and ≤ nR.A can be rewritten to ¬(¬A ⊓ ¬B) , 
¬∃R.¬A , and ¬ ≥ (n + 1)R.A , respectively. Enumeration 
{a1, a2,… , an} is equal to {a1} ⊔ {a2} ⊔… ⊔ {an}.

A SROIQ K consists of RBox R , TBox T  and ABox 
A.

In addition to the concept inclusions (CIs) axioms con-
tained in DL-Lite, a SROIQ T  also includes disjointness 
axioms ( Dis(C1,C2) ) and Equivalent concepts ( C1 ≡ C2 ). 
Given an interpretation I  , we write I ⊧ Dis(C1,C2) if 
C1

I ∩ C2
I = � , I  ⊧ Dis(R1,R2) if R1

I ∩ R2
I = �.

The RBox is a limited collection of either role inclu-
sion axioms like R1 ⊑ R2 or R1◦R2 ⊑ R3 , or disjointness 
axioms in the form of Dis(R1,R2) . The inverse role is 
denoted as Inv(R) with Inv(R) = R− , the symmetric role is 
denoted as Sym(R) (defined as Inv(R) ≡ R ), and the tran-
sitive role is denoted as Trans(R) (defined as R◦R ⊑ R ). 
Fun(R) represents functional role. Given an interpretation 

R ∶= P ∣ P−, C ∶= ⊥ ∣ A ∣≥ m R.
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I  , we write I ⊧ R1 ⊑ R2 if R1
I ⊆ R2

I  , I ⊧ R1◦R2 ⊑ R3 if 
R1

I × R2
I ⊆ R3

I .
A SROIQ ABox A without UNA includes individual 

equality a ≐ b ( ≐ is called sameAs in OWL) and individual 
inequality a≠̇b . If I ⊧ a ≐ b then aI = bI . If I ⊧ a≠̇b then 
aI ≠ bI  . If the role R is functional, then I ⊧ (≥ 2R ⊑ ⊥) . 
Besides, if both (a, b) ∈ RI , (a, d) ∈ RI and b≠̇d ∉ A , then 
b ≐ d.

2.2  Conjunctive Query

We use �
�
 to denote a collection of variables. A(t) 

denotes the concept atomic form, and P(t, t�) denotes role 
atomic form with t, t� ∈ �

�
∪ �

�
 . A conjunctive query (CQ) 

q = ∃��(�, �) . It is making up of concept and role atoms. It 
connects these atoms by conjunction. The vector � consists 
of free variables. If |�| = 0 , we call q Boolean. The vec-
tor � comprises a collection of variables that are quantified. 
Since disconnected queries can be divided into connected 
subqueries for processing, this article only considers con-
nected conjunctive queries. If a CQ is connected and not 
Boolean, it is a rooted CQ.

The notions of answers and certain answers of CQ are 
introduced as follows [15]. Let q(�) be a CQ with |�| = k , 
and I  be an interpretation. The �

�
 is used for indicating 

the collection of all terms in q, that is �
�
= �

�
∪ �

�
 . Let 

� be a mapping which maps each term of q to �I and each 
constant a to aI  , we call I  satisfies q under � if only if 
for every A(t) ∈ q , �(t) ∈ AI  and for every P(t, t�) ∈ q , 
(�(t),�(t�)) ∈ PI . The � is called a match for CQ in I  . The 
vector � = a1 … ak is an answer of q, when given a map-
ping � with �(vi) = aI

i
 ( i ≤ k ) and I ⊧𝜋 q . The ans(q(�),K) 

represents the collection of all answers of q(�) . Ind(A) repre-
sents a set of individual names occurring in A . Let’s call � a 
certain answer when � is a subset of Ind(A) and each model 
of K satisfies q(�) . The certain answer collection is denoted 
as cert(q(�),K).

2.3  Universal Model

Materialization is a forward chain algorithm that expands 
ABox according to the axioms in TBox. The ABox exten-
sion means expanding the ABox A to a universal model 
for the given KB K = (T,A) . More specifically, during the 
materialization, the universal model is enriched by a set of 
additional individuals derived from existential and number 
restrictions axioms and additional assertions derived from 
CIs in T .

A role R is called generating in K if there exists 
a ∈ Ind(A) and R1, … , Rn = R such that the followings 
hold: (agen) K ⊧ ∃R1(a) but R1(a, b) ∉ A , for all b ∈ Ind(A) 
(written a ⇝ cR1

 ); (rgen) for i < n , T ⊧ ∃R−
i
⊑ ∃Ri+1 and 

R−
i
≠ Ri+1 (written cRi

⇝ cRi+1
 ). If R is generating in K , then 

cR is called an anonymous individual. And, the anonymous 
individual collection is denoted as �T

�
 , which is disjoint from 

Ind(A) . A new assertion C2(a) will be included in univer-
sal model, if the ABox A contains C1(a) , TBox T  contains 
C1 ⊑ C2 and ABox A does not contain C2(a).

The canonical interpretation IK for K is defined as 
follows:

• �IK = Ind(A) ∪ {cR ∣ R ∈ N−
R

 , R is generating in K};
• aIK = a , for all a ∈ Ind(A);
• A

IK = {a ∈ Ind(A) ∣ K ⊧ A(a)} ∪ {c
R
∈ 𝛥IK ∣ T ⊧ ∃ R

− ⊑ A};
• PIK = {(a, b) ∈ Ind(A) × Ind(A) ∣ P(a, b) ∈ A} 

∪{(d, cP) ∈ �IK × 𝖭
T
𝖨
∣ d ⇝ cP} 

∪{(cP− , d) ∈ 𝖭
T
𝖨
× �IK ∣ d ⇝ cP−}.

A path in IK is a finite sequence acR1
⋯ cRn

 (n ≥ 0) , such that 
a ∈ Ind(A) and R1,… ,Rn satisfy (agen) and (rgen) (that is, 
a ⇝ cR1

 and cRi
⇝ cRi+1

 , for 1 ≤ i < n ). The last element of � 
in a path is denoted by tail(�).

The universal model UK is defined as follows:

• �UK = {a ⋅ cR1
⋯ cRn

∣ a ∈ Ind(A)  ,  n ≥ 0, a ⇝ c
R1

⇝

⋯ ⇝ c
R
n

},
• aUK = a , for all a ∈ Ind(A);
• AUK = {� ∈ �UK ∣ tail(�) ∈ AIK};
• P

UK = {(a, b) ∈ Ind(A) × Ind(A) ∣ P(a, b) ∈ A} ∪ {(�, � ⋅ c
P
)

∈ �UK × �UK ∣ tail(�) ⇝ c
P
} ∪ {(� ⋅ c

P−
, �) ∈ �UK × �UK ∣

tail(�) ⇝ c
P−
}.

The difference between a canonical interpretation and a uni-
versal model is that the canonical interpretation is always 
finite. It ensures that the extended ABox is finite by reus-
ing the symbols of anonymous individuals. However, this 
reuse mechanism can lead to the canonical model produc-
ing wrong answers to conjunctive queries under the certain 
answer semantic. We compare the definitions of canonical 
interpretation IK and universal model UK by Examples 1 
and 2.

Example 1 Let K consist of T = {B ⊑ ∃S,∃S− ⊑ ∃S} and 
A = {B(d0)}.

Then �I
K

= {d0, d1} , BIK = {d0} , and SIK = {(d0, d1),

(d1, d1)}.
�U
K

= {d0, d1, d2, d3,…} , BUK = {d0} , and SUK = {(d0, d1),

(d1, d2),…}.
Let q be ∃v S(v, v) . If �(v) = d1 , then IK ⊧𝜋 q , however, 

UK ̸⊧𝜋 q . Thus, K ̸⊧𝜋 q , the canonical interpretation IK pro-
duces wrong answers.

Example 2 Let K consist of T = {Student ⊑ ∃advisor,  
∃advisor− ⊑ ∃teaches , ∃teaches− ⊑ ∃studiedBy,∃studiedBy− ⊑

Student} , and A = {Student(a0)}.
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The universal model of this example is shown in Fig. 1.
Kontchakov et  al. proposed that for every consistent  

DL-LiteN
horn

 KB K and every CQ q ,  we have 
cert(q,K) = ans(q,UK) [15].

3  n‑step Universal Model DL-LiteN
horn

In this section, we present the definition of n-step universal 
model and query analysis algorithm. The n-step universal 
model is a implementation of the partial materialization 
idea. And the query analysis algorithm is proposed to ensure 
the n-step universal model always has the same answers as 
the universal model.

3.1  n‑step Universal Model

Query answering over A with T  can be reduced to query 
answering over the universal model, as shown in preliminar-
ies. However, the universal model can be infinite.

Considering such axioms, it satisfies three characteristics. 
Firstly, it belongs to the concept of inclusions. Secondly, its 
head and body directly or indirectly contain both existen-
tial quantifiers. Thirdly, the roles included in this axiom are 
inverse to each other. We refer to this kind of axiom as cyclic 
existential quantifiers axioms (CEQ, for short) in this paper. 
The simple form of CEQ axioms is ∃R− ⊑ ∃R or ∃R− ⊑ A , 
A ⊑ ∃R . When ontology contains CEQ axioms, the universal 
model is infinite [17], as shown in Examples 1 and 2. The 
infinite RDF data cannot be directly stored and queried with 
off the shelf query engine.

We propose an n-step universal model to replace the 
possible infinite universal model. Intuitively, the process of 
materialization is to extend ABox to a universal model. The 
process can be thought of as a sequence U = {ABox, U1

K
, 

U2
K
, … , Un

K
, …} . And, Ui

K
⊆ Ui+1

K
 , i < |U| . The (agen) and 

(rgen) (see Sect. 2) are the fundamental reasons for expand-
ing Ui

K
 to Ui+1

K
 . The element Un

K
 of U is called the n-step 

universal model in our method. Un
K

 is always finite. The dif-
ference between partial materialization and materialization 
is that the core of partial materialization is to calculate the 
n-step universal model, while materialization computes the 
whole model. We ensure our materialization is always finite 
by selecting Un

K
 from the UK for query answering.

To formalize Un
K

 , we require some preliminary defini-
tions. We label R as n-step generating in K , when a is an 
individual of Ind(A) , and the R = R1 …Rn satisfies (agen) 
and (rgen). The ��

�
 denotes the set of roles that are ≤ n-

step generating in K . The n-step canonical interpretation is 
defined as follows:

Definition 1 n-step canonical interpretation

�In
K = Ind(A) ∪ {cR|R ∈ �

�

�
},

aI
n
K = a, for all a ∈ Ind(A),

A
In
K = {a ∈ Ind(A) | K ⊧ A(a)} ∪ {c

R
∈ 𝛥In

K | T ⊧ ∃R− ⊑ A},
PIn

K = {(a, b) ∈ Ind(A) × Ind(A)|P(a, b) ∈ A} ∪ {(d, cp)

∈ �In
K × NT

I
|d ⇝ cp} ∪ {(cP− , d) ∈ NT

I
× �In

K |d ⇝ cP−}.

All roles included in the n-step canonical interpretation 
must be ≤ n-step generating in K . All anonymous variables 
are witness of roles which are ≤ n-step generating in K . Based 
on the definition of the n-step canonical interpretation, we can 
derive the definition of n-step universal model ( Un

K
).

Definition 2 n-step universal model

�Un

K = {a ⋅ c
R
1
⋯ c

R
l

| a ∈ Ind(A),R
l
∈ 𝖭

𝗇

𝖱
, a ⇝ c

R
1
⇝

… ⇝ c
R
l

},
aU

n
K = a, for all a ∈ Ind(A),

AUn
K = {� ∈ �Un

K | tail(�) ∈ AIn
K},

P
Un

K = {(a, b) ∈ Ind(A) × Ind(A) | P(a, b) ∈ A} ∪ {(�, �

⋅c
P
) ∈ �Un

K× 
�Un

K | tail(�) ⇝ c
P
} ∪ {(� ⋅ c

P− , �) ∈ �Un

K × �Un

K | tail(�)
⇝ c

P−}.

Example 3 We use Example  1 to illustrate Un
K

 .  
�Un

K = {d0, d1,… , dn}, d0
Un
K  = d0, B

Un

K = {d0}, S
Un

K =

{(d0, d1), (d1, d2),… , (d
n−1, dn)} . The graph of the 2-step 

universal model is shown in Fig. 2.

Example 4 The 2-step universal model (sRDF) of Example 2 
is shown in Fig. 1.

3.2  QAA Based on Rooted Conjunctive Queries

We design a query analysis algorithm (QAA) to ensure that 
the n-step universal model can always compute the same 
answer as the universal model. QAA takes a rooted query 
as input and calculates the number of quantified variables n. 
Obviously, n can be calculated in O(|�

�
|) . The number of 

quantified variables denotes the step of the universal model. 
If the step size is n, then the n-step universal model, i.e., the 
Un
K

 in U, can produce the same answers for q as the univer-
sal model. This method is proved in Theorem 2. We define 
a new triple relation on q. � denotes a path that consists of 
terms. � represents a path that includes roles.

Fig. 2  The 2-step universal model of Example 3
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Definition 3 Let q = ∃��(�, �) be a CQ, T  be a 
TBox and � be a mapping, we define a triple relation 
f𝜌 = ∪i≥0f

i
𝜌
⊆ �

�
× �

�

∗ × �
−
�

∗  w i t h  � = {t ∣ t ∈ �
�
, 

�(t) ∈ Ind(A)} , where

f 0
�
= {(t, t, �) | t ∈ �};

f i+1
�

= f i
�
∪ {(t, �st, �SR) ∣ (s, �s, �S) ∈ f i

�
,R(s, t) ∈ q, tail(�(s)) ⇝ 

tail(�(t))} ∪ {(t, �, �) ∣ (s, �s, �R−) ∈ f i�,R(s, t) ∈ q, tail(�(s)) 
⇝ tail(�(t))}.

A path � = t0 ⋅ t1 ⋯ tn−1 ⋅ tn is a certain path of q, if (t0) is 
mapped to Ind(A) and all other terms are mapped to �T

�
 . A 

certain path collection is represented as CertPath(q,�) . The 
max certain path is defined as MaxCertPath(q,�) ∶= {� 
∣ |�i| ≤ |�|, for all �i ∈ CertPath(q,�)} . Let � be a map-
ping. We set the depth of q as dep(q,�) ∶= |�| − 1 , with 
� ∈ MaxCertPath(q,�).

The anonymous part of the universal model is a forest-
shaped structure, as shown in Examples 3 and 4. Thus, the 
subquery that is matched to the anonymous part of the uni-
versal model must be a forest-shaped structure. If a term 
t in q wants to be mapped to an anonymous part of UK , it 
can only be mapped in this way, �(t) = �(t0) ⋅ cR1

⋯ cRn
 with 

(t, �, �) ∈ f� , where � = t0t1 ⋯ tn is a certain path, and � = 
R1R2 ⋯Rn.

Example 5 Let q(x) be a cyclic CQ of the following form: 
∃ yP(x, y) ∧ P(y, y) , T = {A ⊑ ∃P,∃P− ⊑ ∃P}.

Given the first knowledge base K1 = {T,A1} and 
A1 = {A(a)} . As shown in Fig. 3, the universal model is heter-
ogeneous to the query q. Thus, ans(q,UK) = cert(q,K1) = �.

Given the second knowledge base K2 = {T,A2} and 
A2 = {A(a), P(a, b),P(b, b)} . As shown Fig. 4, the universal 
model is homogeneous to the query q. � = {x → a, y → b} . 
f� = f 0

�
= {(x, x, �), (y, y, �)}  .  T h u s ,  dep(q,�) = 0  . 

ans(q,UK) = cert(q,K1) = {a}.
These two examples demonstrate that the cyclic part 

of the query only can be mapped into the ABox part of 
the universal model because the anonymous part of the 
universal model is a forest-shaped structure.

Example 6 Let q(x) be a fork-shaped CQ of the following 
form: ∃ yP(x, y) ∧ P(z, y) , T = {A ⊑ ∃P,∃P− ⊑ ∃P}.

Consider K1 = {T,A1} and A1 = {A(a),A(b)} . Then, as 
shown in Fig. 5, the universal model is heterogeneous to the 
query q. Thus, ans(q,UK) = cert(q,K1) = �.

L e t  K2 = {T,A2}  ,  w h e r e  A1 = {A(a),A(b), 
P(a, c),P(b, c)} . Then, as shown in Fig. 6, the universal model 
is homogeneous to the query q. � = {x → a, z → b, y → c} . 
f� = f 0

�
= {(x, x, �), (y, y, �), (z, z, �)} . Thus, dep(q,�) = 0 . 

ans(q,UK) = cert(q,K1) = {a, b} .
These two examples confirm that not only a cyclic 

query, but also a fork query, the fork part of the query 
can only be mapped into the ABox part of the universal 
model, due to the anonymous part of the universal model 
is a forest-shaped structure.

Theorem 1 For every consistent DL-LiteN
horn

 KB K , every 
rooted conjunctive query q = ∃��(�, �) , and every mapping 
� , with dep(q,�) = n , we have UK ⊧𝜋 q if only if Un

K
⊧𝜋 q.

Proof (⇒ ) For every � with dep(q,�) = n , then there exists a 
max certain path � = t0t1 ⋯ tn−1tn and R(tn−1, tn) ∈ q . Thus, 
R is n-step generating, and all other roles are ≤ n-step gen-
erating. By definition of Un

K
 , we have that for every R ∈ q , if 

a a …

Fig. 3  The universal model of K1

Fig. 4  The universal model of 
K2

…

…

Fig. 5  The universal model of K1

Fig. 6  The universal model of K2
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(a, b) ∈ RUK then a ∈ �Un
K and b ∈ �Un

K . Thus, (a, b) ∈ RUn
K . 

Since q is connected, for every A ∈ q , suppose a ∈ AUK , then 
(a, ∗) ∈ RUK or (∗, a) ∈ RUK . Thus, a ∈ �Un

K and a ∈ AUn
K . In 

conclusion, Un
K

⊧ q.
(⇐ ) For every R ∈ q , if (a, b) ∈ RUn

K then a ∈ �Un
K and 

b ∈ �Un
K . Because �Un

K is a subset of �U
K

 , a ∈ �U
K

 , b ∈ �U
K

 
and (a, b) ∈ RUK . For every A ∈ q , if a ∈ AUn

K , then a ∈ �Un
K . 

Thus a ∈ �U
K

 and a ∈ AUK.
Therefore, Un

K
⊧ q(�, �) if only if UK ⊧ q(�, �) .   ◻

Let f� is a function if for every term t, f�(t) is singleton 
set or if (t, �, �) ∈ f (t) and (t, ��, ��) ∈ f (t) , then � = ��.

Lemma 1 For every mapping, if UK ⊧𝜋 q , then f� is a 
function and every � ∈ MaxCertPath(q,�) is finite and 
dep(q,�) ≤ |�|.

Proof Suppose f� is not a function, then there exists t ∈ �
�
 , 

with (t, �i, �i) ∈ f�(t) and (t, �j, �j) ∈ f�(t) , where �i ≠ �j . We 
labeled �i and �j as �i = R0

i
⋅ R1

i
⋯R

ni
i
 and �j = R0

j
⋅ R1

j
⋯R

nj

j
 , 

respectively. Thus, UK ̸⊧𝜋 q due to cR0
i
⋯ cRni

i
≠ cR0

j
⋯ c

R
nj

j

 . 
This creates a contradiction.

Because �
�
 is finite, if � is not finite, then there exists 

t′ , with � = �1t
��2t

��3 . Thus, (t�, �1t�, �1) ∈ f�(t
�) and 

(t�, �1t
��2t

�, �2) ∈ f�(t
�) . By the definition of f� , we have 

that �1 is a subsequence of �2 because �1t′ is a subsequence 
of �1t′�2t′ . Thus, f�(t) is not a function. However, we have 
proved that if UK ⊧𝜋 q , then f� is a function. This creates a 
contradiction.

Suppose dep(q,𝜋) > |�| , then there exists a � with 
|𝜎| > |�| + 1 . Because free variables can only be mapped 
into Ind(A) , a quantified variable repeatedly appears in the 
path � exists. Thus, � is infinite. We have proved that if 
UK ⊧𝜋 q , then every � ∈ MaxCertPath(q,�) is finite. This 
creates a contradiction.   ◻

Based on Lemma 1 and Theorem 1, we can conclude 
that, for every rooted query, we extend the model at most 
|�| steps. The core of the QAA:

Theorem 2 For each consistent DL-LiteN
horn

 KB K and each 
rooted conjunctive query q = ∃��(�, �) , with |�| = n , we 
have cert(q,K) = ans(q,Un

K
).

P r o o f  K o n t c h a k o v  e t   a l .  p r o p o s e d  t h a t 
cert(q,K) = ans(q,UK) (see Sect. 2). Thus, we only need to 
proof ans(q,UK) = ans(q,Un

K
).

(⇒ ) Lemma 1 shows that for every mapping � , if UK ⊧𝜋 q , 
then n∗ = dep(q, �) ≤ |�| . Based on Theorem 1, we can 

conclude that Un∗

K
⊧𝜋 q . Because n∗ ≤ |�| , 𝛥Un∗

K ⊆ 𝛥Un
K ⊆ 𝛥U

K
 . 

We can conclude that Un
K
⊧𝜋 q.

(⇐ ) Because 𝛥Un
K ⊆ 𝛥U

K
 , if Un

K
⊧𝜋 q then UK ⊧𝜋 q.

In conclusion,  ans(q,UK) = ans(q,Un
K
) ,  that  is , 

cert(q,K) = ans(q,UK) .   ◻

Example 7 The example in Sect. 1 proves our idea. Under 
the � = {x → a0, y0 → a1, y1 → a2} , we can conclude that 
f� = {(x, x, �), (y0, xy0, advisor), (y1, xy0y1, advisor ⋅ teaches)} . 
CertPath(q,�) = {�1, �2, �3} w i t h  �1 = x  ,  �2 = xy0  , 
�3 = xy0y1 .  T h e n  MaxCertPath(q,�) = {�3} ,  a n d , 
dep(q,�) = 2 . Obviously, the dep(q,�) is not greater than 
the number of quantified variables, thus, the sRDF(2- step 
universal model) makes ans(sRDF,Q) = ans(RDF,Q).

3.3  QAA Based on Boolean Conjunctive Queries

A Boolean conjunctive query is in the form of q = ∃��(�) . 
It is a special case of conjunctive queries q = ∃��(�, �) , 
with |�| = 0 . As mentioned in Sect. 2, all non-connected 
queries can be decomposed into connected subqueries for 
processing, so we only consider connected Boolean queries. 
Because Boolean conjunctive query does not have a variable 
that must be mapped into ABox, the query analysis algo-
rithm does not explicitly apply to Boolean conjunctive que-
ries. As shown in Example 8, the query analysis algorithm is 
unsound for Boolean conjunctive queries q(x), that is, when 
Un
K

 does not satisfy q, it is possible for K to satisfy q.

Example 8 Let q(x) be a Boolean CQ of the following form: 
∃ x y z (R1(x, y) ∧ R2(y, z)) , T = {A ⊑ ∃S,∃S− ⊑ B,B ⊑ ∃P,

∃P− ⊑ C,C ⊑ ∃R1,∃R1
− ⊑ D,D ⊑ ∃R2,∃R2

− ⊑ C} a n d 
A = {A(a)} . Figure 7 shows the graph of 3-step universal 
model and query. Obviously, the 3-step universal model does 
not satisfy q, but the universal model does.

To extend QAA to support Boolean conjunctive que-
ries, we firstly summarize the general properties of the 
universal model.

…
{ } { } { } { }{ } { }

{ } { }{ } { }

Fig. 7  The universal model of K
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If the ontology contains the CEQ axioms, the universal 
model is infinite.
The anonymous part of the universal model is forest-
like, and is heterogeneous to the cyclic and fork struc-
tures.

The two properties are explained or proved in the pre-
ceding two sections. Based on the two attributes, we can 
conclude that if the Boolean conjunctive query contains a 
cyclic structure or fork structure and the Boolean conjunc-
tive query can be satisfied, then there must be a variable 
mapped to ABox. Therefore, the Boolean conjunctive que-
ries which contain a cyclic or fork structure can be directly 
solved by QAA. To verify this, we first extend the triple 
relation f� defined in the rooted queries to Boolean queries 
by modifying the definition of �.

Definition 4 Let q = ∃��(�, �) be a CQ, T  be a 
TBox and � be a mapping, we define a triple rela-
tion f𝜌 = ∪i≥0f

i
𝜌
⊆ �

�
× �

∗
�
× �

−
�

∗ with � = {t ∣ t ∈ �
�
, 

�(t) ∈ Ind(A) or there is no t�such that tail(�(t�)) ⇝ tail(�(t))} , 
where

f 0
�
= {(t, t, �) | t ∈ �};

f i+1
�

= f i
�
∪ {(t, �st, �SR) ∣ (s, �s, �S) ∈ f i

�
,R(s, t) ∈ q, tail(�(s)) ⇝ 

tail(�(t))} ∪ {(t, �, �) ∣ (s, �s, �R−) ∈ f i
�
,R(s, t) ∈ q, tail(�(s)) 

⇝ tail(�(t))}.

Lemma 2 For each consistent DL-LiteN
horn

 KB K and each 
Boolean conjunctive query q = ∃��(�) which contains a 
cyclic structure or fork structure, we have that if UK satis-
fies q and q contains a cyclic structure or fork structure, 
then there are variables in the query that must be mapped 
to ABox.

Proof Assuming that all variables in q are mapped to anony-
mous variables, if UK satisfies q and q contains a cyclic 
structure or fork structure, then there must be a variable 
t ∈ �

�
 , such that (t, �i, �i) ∈ f�(t) and (t, �j, �j) ∈ f�(t) , where 

head(�i) ⋅ �i ≠ head(�j) ⋅ �j . The �i and �j are labeled as �i = 
R0
i
⋅ R1

i
⋯R

ni
i

 and �j = R0
j
⋅ R1

j
⋯R

nj

j
 , respectively. Thus, 

UK ̸⊧𝜋 q  d u e  t o 
�(head(�i)) ⋅ cR0

i
⋯ cRni

i
≠ �(head(�j)) ⋅ cR0

j
⋯ c

R
nj

j

 . This cre-
ates a contradiction. Thus, if UK satisfies Boolean conjunc-
tive query q and q contains a cyclic structure or fork struc-
ture, then there are variables in the query that must be 
mapped to ABox.   ◻

Example 9 Let q(x) be a fork-shaped CQ of the follow-
ing form: ∃ x y z P(x, z) ∧ P(y, z) ,  T = {A ⊑ ∃R} and 
A = {A(a),A(b)}.

Based on the definition of f� , we have that (z, x ⋅ z,R) ∈ f� 
and (z, y ⋅ z,R) ∈ f� . If UK satisfies q under � and all 
variables are mapped to anonymous individuals, then 
�(z) = �(x) ⋅ cR = �(y) ⋅ cR . However, �(x) ≠ �(y) , this cre-
ates a contradiction. Thus, there is no mapping where UK 
satisfies q under this mapping and all variables are mapped 
to anonymous individuals.

As shown in the following Fig. 8, the universal model is 
heterogeneous to the query q. Thus, UK ̸⊧ q.

Theorem 3 For each consistent DL-LiteN
horn

 KB K and each 
Boolean conjunctive query q = ∃��(�) which contains a 
cyclic structure or fork structure, we have that UK satisfies 
q if only if Un

K
 satisfies q with n = |�|.

Proof (⇒ ) Based on Lemma 2, if UK satisfies q under � and 
q contains a cyclic structure or fork structure then there are 
variables in the query that must be mapped to ABox. Then, 
we can conclude that dep(q,�) ≤ |�| based on Lemma 1. 
We label the max certain path of q as � = t0t1 ⋯ tm−1tm 
and R(tm−1, tm) ∈ q . Thus, R is m-step generating with m is 
≤ |�| . By definition of Un

K
 , we have that for every R ∈ q , if 

(a, b) ∈ RUK then a ∈ �Un
K and b ∈ �Un

K . Thus, (a, b) ∈ RUn
K . 

Since q is connected, for every A ∈ q , suppose a ∈ AUK , then 
(a, ∗) ∈ RUK or (∗, a) ∈ RUK . Thus, a ∈ �Un

K and a ∈ AUn
K . In 

conclusion, Un
K

⊧ q.
(⇐ ) Because Un

K
 satisfies q and Un

K
 is a subset of UK , so 

UK satisfies q.   ◻

4  n‑step Universal Model in OWL 2 DL

OWL 2 DL is based on SROIQ . Because SROIQ has 
more complex constructors than DL-LiteN

horn
 , more complex 

information about the described domain can be captured by 
OWL 2 DL. Particularly, OWL 2 DL has complex restric-
tions, such as property restrictions and arbitrary cardinality. 
Besides, UNA is not adopted by OWL 2 DL, that is, different 
individual names may point to the same individual.

However, with the improvement of ontology language 
expressiveness, the complexity of reasoning algorithms 
will also increase. For instance, when dealing with the axi-
oms in the form of UNION, such as C ⊑ C1 ⊔C2 , it is nec-
essary to try all possibilities and backtrace the tree when 

Fig. 8  The graph of query and universal mode
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there are contradictions in the leaf nodes. This process sig-
nificantly increases the time and memory consumption of 
materialization.

To enjoy the high expressiveness of OWL 2 DL and 
improve materialization efficiency, we implement the sup-
port for OWL 2 DL through approximation and rewriting 
mechanisms. Given an OWL 2 DL ontology, we first attempt 
to rewrite it as an equivalent DL-LiteN

horn
 TBox axiom, if pos-

sible. Otherwise, we have three choices, approximate pro-
cessing or adding additional data structures or other ABox 
transformation rules. The last two methods can preserve the 
semantics that approximate processing would lose.

4.1  TBox Transformation

TBox transformation is presented in Tables 1 and 2 (r and s 
denote role names). Given a SROIQ TBox axiom, we first 

rewrite it to an equivalent one according to the rewriting 
rules in Table 1, also known as normalization in [25]. We 
add concept and its complement to a complement table (CT), 
which is designed to record complement semantic.

Because of the normalized TBox axioms T  beyond the 
expressiveness of DL-LiteN

horn
 , and the axiom in the form of 

C ⊑ ⊔n
i=1

Ci or C ⊑ ∃R.{a1, a2, a3} will lead to non-determin-
ism, we syntactically approximate partial axioms by their 
complement, as shown in Table 2. Specially, we construct 
a new concept for nominals at No.10 approximation rule. 
All TBox transformation rules are sound, as shown in [25].

4.2  ABox Transformation

The semantics of DL-LiteN
horn

 do not cover the axiom shown 
in Table 3. Thus, we design tractable ABox transforma-
tion rules, i.e., ABox reasoning rules for them based on the 
semantics of SROIQ.

An extended TBox T∗ is a set of axioms obtained from T  
by applying TBox transformation rules and adding ABox 
transformation rules. Let K∗ ∶= (T∗,A) . Let n be a natural 
number. The n-step universal model of (T∗,A) is called an 
extended n-step universal model, denoted by Un

K∗ , of K.
By Theorem 2 and the definition of the transformation 

rules, we can conclude:

Proposition 1 (Approximation) Let K = (T,A) be a con-
sistent KB and q = ∃��(�, �) be a rooted CQ with |�| = n . 
For every � ⊆ Ind(A) with |�| = |�| , if � ∈ ans(q,Un

K∗ ) then 
� ∈ cert(q,K).

Example 10 Let K = ({�1, �2, �3}, {�1, �2, �3, �4, �5}) be 
a KB shown in the following table. GraduateStudent was 
abbreviated as GS.

Axiom Expression Axiom Expression

�1 GS ≡ Person ⊓ ≥ 3takeCourse�2 takeCouse(b, c1)

�2 Person ≡ Woman ⊔ Man�3 takeCouse(b, c2)

�3 Dis(Woman, Man) �4 takeCouse(b, c3)

�1 GS(a) �5 Man(b)

First step: we get new TBox axioms: 

Table 1  OWL 2 DL rewriting rules

No. TBox axiom Rewriting TBox axiom

1 n

⊓
i=1

C
i
≡ C

n

⊓
i=1

C
i
⊑ C,C ⊑

n

⊓
i=1

C
i

2
C ⊑

n

⊓
i=1

C
i

C ⊑ C
i
, 1 ≤ i ≤ n

3 ∃R.{a1, a2, a3} ≡ C ∃R.{a1, a2, a3} ⊑ C,C ⊑ ∃R.{a1, a2, a3}

4 n

⊔
i=1

C
i
≡ C

n

⊔
i=1

C
i
⊑ C,C ⊑

n

⊔
i=1

C
i

5 n

⊔
i=1

C
i
⊑ C

C
i
⊑ C, 1 ≤ i ≤ n

6 Dis(A,B) A ⊑ ¬B,B ⊑ ¬A

7 Dis(r, s) r ⊑ ¬s, s ⊑ ¬r

8 r ≡ s r ⊑ s, s ⊑ r

Table 2  Approximation rules

No. TBox axiom Approximation axiom

9
C ⊑

n

⊔
i=1

C
i

n

⊓
i=1

¬C
i
⊑ ¬C

10 C ⊑ ∃R.{a1, a2, a3} C1 ≡ {a1, a2, a3},∀R.¬C1 ⊑ ¬C

11 C ⊑≤ mR.C1 ≥ (m + 1)R.C1 ⊑ ¬C

Table 3  ABox transformation No. TBox axiom ABox reasoning rules

12 {C ≡ {a1, a2,⋯ , a
n
}} A = A ∪ {C(a

i
)}, 1 ≤ i ≤ n

13 Fun(r) r(a, b) ∈ A ∧ r(a, c) ∈ A ∧ b≠̇c ∉ A → A = A ∪ {b ≐ c}

14 Trans(r) r(a, b) ∈ A ∧ r(b, c) ∈ A ∧ r(a, c) ∉ A → A = A ∪ r(a, c)

15 Sym(r) r(a, b) ∈ A ∧ r(b, a) ∉ A → A = A ∪ r(b, a)
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�1
1

GS ⊑ Person (�1, No1, No2)

�2
1

GS ⊑ ≥ 3takeCourse.Thing(�1, No1, No2)

�3
1

Person ⊓ ≥ 3takeCourse ⊑ GS(�1, No1)

�1
2

Woman ⊑ Person (�2, No4, No5)

�2
2

Man ⊑ Person (�2, No4, No5)

�1
3

Woman ⊑ ¬Man (�3, No6)

�2
3

Man ⊑ ¬Woman (�3, No6)

Second step: from the above axioms, we can get the fol-
lowing new facts: 

�1
1

Person(a) (�1, �
1
1
) �2

1
takeCourse(a, a1) (�1, �

2
1
)

�1
5

Person(b) (�5, �
2
2
) �3

1
takeCourse(a, a2) (�1, �

2
1
)

�6 GS(b) (�2 − �4, �
1
5
, �3

1
) �4

1
takeCourse(a, a3) (�1, �

2
1
)

�2
5

¬Woman(b) (�5, �
2
3
) �8 (a1, ≠̇, a2) (�2

1
, �3

1
, �2

1
)

�7 (a1, ≠̇, a3) (�2
1
, �4

1
, �2

1
) �9 (a2, ≠̇, a3) (�3

1
, �4

1
, �2

1
)

5  The System and Implementation of SUMA

SUMA computes universal model offline and executes 
queries online. The offline stage consists of three modules: 
ontology processor, storage, and materialization (Fig. 9).

The ontology processor module has four submodules. 
OWL 2 DL processor parses the ontology through the 
OWL API [13], rewrites it to DL − Lite axioms according to 
rewriting and approximation techniques. It builds the inverse 
role table and equivalent role table to support role rewriting 
algorithm.

The role processor implements role scoring algorithm 
[27]. The role rewriter firstly generates equivalent and 
inverse role mappings following [27]. For instance, if role 
d is equivalent to role e and d.score < e.score , then d is 
mapped to e. Formally, mapping(d) = e,mapping(e) = e . 
If d.score = e.score and d.id > e.id , then d is mapped to e. 
Secondly, the role rewriter rewrites axioms and facts.

Example 11 We use the ontologies and facts in Fig. 10 to 
illustrate the process of role rewriting. The role graph is 
generated by role score algorithm. Based on the role graph, 
taughtBy is mapped to teach and like is mapped to love. After 
choosing the mapping, the role rewriting can be divided into 
three parts: axiom rewriting, fact rewriting and optimizing 
rewriting. In fact rewriting phase, taughtBy(Physics, Lisa) 
and like(Lisa, basketball) are changed to teach(Lisa, Phys-
ics) and love(Lisa, basketball), respectively. The axiom 
range(taughtBy, Teacher) is rewritten at axiom rewrit-
ing phase. It was first rewritten to range(teach− , Teacher) 
and then optimized to domain(taughtBy, Teacher). Dur-
ing the materialization process, taughtBy(Physics, Lisa) 
and like(Lisa, basketball) are not stored in memory, and 
Teacher(Lisa) can only be generated once by teach(Lisa, 
Physics).

The storage module uses the Jena API to load RDF data 
and generates a dictionary by encoding each RDF resource 
in integer ID. The dictionary is shared by the storage mod-
ule and ontology processor. The RDF data are stored as 

Fig. 9  The architecture of 
SUMA
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a triple table with three types of indexes, e.g., a primary 
index, a secondary index, and a tertiary index. TableItera-
tor can traverse the triple table efficiently by three types of 
indexes. And, it maintains an index array that records the 
n-step model corresponding index ranges in the triple table.

The materialization module has three submodules: 
binding query, axiom matcher, and sameAs reasoner. 
The detailed materialization algorithm is shown in Algo-
rithm 1. It iteratively reads a new triple F from the triple 
table through TableIterator. If F has an equivalent triple G 
(For instance, F = (d,R, e) , G = (d�,R, e�) , d ≐ d′ , e ≐ e′ ), 
then the program does not process F to improve reason-
ing efficiency. The reasoning of F can be divided into three 
situations.

Algorithm 1 Materialization Algorithm
Input: I : a collection of facts, T : a collection of axioms
Output: I: a collection of expanded facts
1: while F = I.next and F �= ε do
2: G = Ω.getSameAsMapping(F );
3: if G.equals(F ) then
4: if F is the form of (d, .=, e) then
5: sameAsReasoning(F );
6: else
7: if F is the form of (d, P, e) ∧ P.isFunctionalProperty then
8: for e∗ ∈ I.getIndividual(d, P ) do
9: if I.contains((e, � .=, e∗)) then
10: result in contradiction;
11: else I.add((e, .=, e∗));
12: end if
13: end for
14: else
15: for each (type, r, F ) ∈ matchAxiom(F, T ) do
16: for F ′ ∈ I.evaluate(type, r, F ) do
17: I.add(F ′);
18: end for
19: end for
20: end if
21: end if
22: end if
23: end while

Firstly, if F is the form of (d,≐, e) , it is processed by 
Algorithm  2. The sameAs reasoning function puts the 
individual d and e into an equivalent pool and selects the 
individual with the smallest ID as the identifier. We set the 
sameAs mapping of d as c if there exists (d,≐, c) and c is the 
smallest ID of the equivalent pool. Secondly, if the role in 
F is a functional or an inverse functional role, (for instance, 
F = (d,P, e) , and P is a functional role), then, all triples like 
(d,P, ∗) are returned by I.getIndividual(d,P) . A new fact 
(e,≐, ∗) is added to I  if I  does not contain a fact (e, ≠̇, ∗) . 
Thirdly, axiom matcher returns all axioms that can match the 
triple F through matchAxiom(F, T) . Binding query function 
converts these partially matched axioms into partial binding 
queries. The function I.evaluate executes these queries over 
I  and returns a new fact.

Algorithm 2 sameAs Reasoning Algorithm
Input: I : d, e : individual name, pool : a list of equivalent pool
1: idx = mergeEquivalentPool(d, e);
2: c = selectNewIdentifier(pool [idx]);
3: for i ∈ pool [idx] do
4: i.setSameAsMapping(c);
5: end for

The online part includes a SPARQL processor and a 
model matcher. The SPARQL processor applies QAA 
technologies to compute the step size (n) of the model. In 
essence, it takes O(1) time complexity to calculate the num-
ber of quantified variables. The model matcher takes n as 
input and passes the n-step universal model to the SPARQL 
query engine. The SPARQL query engine executes SPARQL 
queries and returns query results.

6  Experiments and Evaluations

SUMA delegates SPARQL queries to RDF-3X [24] at this 
experiment. The experimental environment is a 24-core 
machine that is equipped with 180GB RAM and Ubuntu 
18.04. The experiment is divided into three parts: the evalu-
ation of query answering system on finite model, the evalu-
ation of query answering system on infinite model and role 
rewriting algorithm evaluation.

Evaluation criteria We test two aspects, (i) the soundness 
and completeness of the answers, (ii) the scalability of the 
query answering system. The first aspect is testing the num-
ber of queries that the system can answer correctly under the 
certain answer semantic. The evaluation of the scalability 
of the query answering system is to test the pre-processing 
time, consists of data load time and materialization time, and 
the query processing time on the increasing datasets.

Data load time: This time includes all the data pre-pro-
cessing steps before materialization, such as constructing 
a dictionary, generating an index, etc.
Materialization time: The time taken by reasoner to com-
pute consequences.
Query processing time: The time taken by the system 
to execute a query on the extended data and return the 
query results.

Comparison system We compare SUMA with the following 
four systems, all of which use materialization methods.

Pellet is sound and complete in OWL 2 DL. It is adopted 
as the criterion for soundness and completeness evalua-
tion.
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PAGOdA employs RDFox for highly scalable reasoning. 
Therefore, we mainly test the scalability of SUMA with 
PAGOdA.
gOWL also adopts partial materialization algorithm to 
solve infinite materialization problem. We evaluate two 
kinds of partial materialization algorithms from the 
experimental perspective.
SUMA-N indicates a query answering system that does 
not use the role rewriting algorithm. SUMA-N is used to 
evaluate the performance of the role rewriting algorithm.

6.1  Query Answering over Finite Universal Model

Table 4 gives a summary of all datasets and queries used in 
this experiment. Besides the 14 standard queries of LUBM, 
we also test ten queries from PAGOdA. The DBPedia [4] 
axiom is simple. It could be captured by OWL 2 RL [20]. 
Therefore, we adopt the DBPedia+ axiom and 1024 DBPe-
dia+ queries provided by PAGOdA. The DBPedia+ axiom 
includes additional tourism ontologies. We generate 260 
atomic queries for the YAGO [29] dataset.

6.1.1  The Soundness and Completeness Evaluation

Because Pellet and gOWL cannot give query results on 
LUBM(100), UOBM(100), DBPedia+ and YAGO in 2 h, 
we do not display the results of them. As shown in Table 5, 
SUMA can correctly answer all queries on each test dataset.

6.1.2  The Scalability Test

Since gOWL cannot materialize DBPedia+ and YAGO in 
less than 2 hours, we compare SUMA and gOWL on small 

datasets before comparing SUMA and PAGOdA. gOWL 
takes 1.77 h to materialize LUBM(10), while SUMA takes 
1.51 s. The materialization time of gOWL on UOBM(10) is 
3.19 h. SUMA only costs 8.34 s materializing UOBM(10). 
SUMA is more scalable than gOWL.

Next, we test SUMA and PAGOdA on a series of data-
sets. For LUBM, we use datasets of increasing size with a 
step of 200. Since UOBM ontology is more complicated 
than LUBM ontology, we set the UOBM dataset growth step 
length as 100. For each dataset and ontology, we test the 
pre-processing time (pre-time), data load time, materiali-
zation time (mat-time), and average query processing time 
(avg-time).

Pre-processing Time Evaluation As shown in Fig. 11, 
SUMA significantly reduces pre-processing time. Time 
increases linearly with the size of the dataset. On each test 
dataset, the pre-processing time of SUMA is faster than 
PAGOdA.

SUMA only takes 124s to materialize LUBM(1000). The 
pre-processing time of SUMA on LUBM(1000) is 549s, 
faster than PAGOdA’s 1692s. The time taken by SUMA to 
materialize UOBM(500) is 411s. The total pre-processing 
time is 862s. Compared with the 5937s pre-processing time 
of PAGOdA, SUMA is much faster. SUMA takes 18s and 6s 
to materialize DBPeida+ and YAGO, respectively. The pre-
processing time of SUMA on DBPedia+ and YAGO is 71s 
and 63s, respectively. PAGOdA costs 309s pre-processing 
DBPedia+ and 139s pre-processing YAGO. SUMA is more 
scalable than PAGOdA.

Average Query Processing Time Evaluation
The average query processing time of SUMA on LUBM 

(1) and UOBM (1) is four and five orders of magnitude faster 
than Pellet, respectively. Because SUMA and gOWL both 
rely on existing query engines to perform queries, we only 
compare SUMA with PAGOdA in the average query pro-
cessing time evaluation.

We test the average query processing time of 24 LUBM 
queries on six LUBM datasets, 15 UOBM queries on five 
UOBM datasets, 1024 DBPedia+ queries on one DBPe-
dia+ dataset and 260 YAGO queries on the YAGO dataset. 
As shown in Fig. 12a, SUMA has a faster average query 
processing time than PAGOdA on all LUBM datasets 
except LUBM(100). (Time(SUMA, LUBM(100)) = 0.62 s, 
Time(PAGOdA, LUBM(100)) = 0.57 s). The significant 
decrease in the query processing time of SUMA on LUBM 
(500) is related to RDF-3X. RDF-3X can provide shorter 
query time on larger data by building different efficient 
indexes.

Figure 12b shows the average query processing time of 
SUMA is an order of magnitude faster than that of PAGOdA 
on all UOBM datasets.

The average query processing time of SUMA on DBPe-
dia+ is 24.337ms faster than PAGOdA’s 33.235ms. The 

Table 4  The information of datasets

Data Expressivity Axioms Facts Queries

LUBM(n) EL++ 243 n∗ 105 24
UOBM(n) SHION(D) 502 2.6n∗ 105 15
DBPedia+ SHION(D) 3000 2.6∗ 107 1024
YAGO EL++ 484,998 1.3∗ 107 260

Table 5  The quality of the answers

Solved SUMA Pellet PAGOdA gOWL

LUBM(1) 24 24 24 14
LUBM(100) 24 ∗ 24 *
UOBM(1) 15 15 15 2
UOBM(100) 15 ∗ 15 *
DBPedia+ 1024 ∗ 1024 *
YAGO 260 ∗ 260 *
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average query processing time of SUMA on YAGO is 
39.166ms faster than PAGOdA’s 67.096ms.

6.2  Query Answering over Infinite Universal Model

Since the LUBM, UOBM, DBPedia+ all have a finite uni-
versal model, they are not suitable for the second experi-
ment. We add some manual CEQ axioms to the LUBM and 
UOBM ontologies, respectively. Table 6 shows all the data 
used at the infinite model evaluation.

We also customize some additional queries to test 
LUBM+ and UOBM+. Table 7 summarizes our queries. 
Besides the queries included in the first experiment, we 
add nine queries for LUBM+ and five customized queries 
for UOBM+. The third column shows the number of que-
ries that contain a cyclic structure. The number of queries 
with more than two quantified variables is given in the 
table’s fourth column.
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Fig. 11  Pre-processing experimental results

Table 6  The information of datasets

Data Expressivity Axioms Facts Queries

LUBM+(n) EL++ 245 n∗ 105 33
UOBM+(n) SHION(D) 504 2.6n∗ 105 20
LUBM++(n) EL++ 545 n∗ 105 ∗

UOBM++(n) SHION(D) 805 2.6n∗ 105 ∗

Table 7  The information of queries

Query ♯total ♯cyclic ♯quan-
tified 
≥ 3

LUBM+ 33 2 9
UOBM+ 20 2 3



 X. Qin et al.

1 3

6.2.1  The Soundness and Completeness Evaluation

As shown in Table 8, SUMA and Pellet can calculate all 
the correct answers for all test queries, whereas PAGOdA 
is incomplete on five LUBM+ queries (Q2, Q4, Q5, Q6, 
Q7) and three UOBM+ queries (Q1, Q2, Q3).1 gOWL is 
complete only on a few queries.

6.2.2  The Scalability Test

According to statistical analysis of the actual SPARQL que-
ries, more than 96% of the queries include up to 7 triple 
patterns [10]. Therefore, in most cases, we only need to 
consider the step of universal model (n) is not greater than 
7. Besides, we find that SUMA is also efficient when n is 
more than 7.

SUMA shows high scalability on LUBM+ and UOBM+. 
The average query processing time of SUMA on LUBM+(1) 
and UOBM+(1) is 1.99 ms and 6.48 ms, respectively. It is 
faster than the PAGOdA’s 11.78 ms and 10.40 ms and five 
orders of magnitude faster than Pellet.

We focus on testing the materialization time of the infinite 
universal model. To make our test more challenging, we 
manually add 100 CEQ axioms to LUBM+ and UOBM+ 
ontologies, named as LUBM++ and UOBM++, as shown 
in Table 6.

The materialization time of the 15-step universal model 
of LUBM++(1000) and UOBM++(500) is 276.869 s and 
584.600 s, respectively. When n = 7 , the materialization 
time of LUBM++(1000) and UOBM++(500) is 172.308 s 
and 486.504 s, respectively. SUMA is highly scalable on the 
infinite universal model.

6.3  The Role Rewriting Algorithm Evaluation

As shown in the previous two experiments, SUMA is com-
plete on all test queries, which shows that the role rewriting 
algorithm does not lose the completeness of materialization. 
Table 9 shows the number of equivalent and inverse roles in 
the test dataset. Because the YAGO dataset does not include 
equivalent roles and inverse roles, it is not used to evaluate 
role rewriting algorithm.

Materialization Efficiency Evaluation As shown in 
Fig. 12e, f, on all LUBM and UOBM test data sets, the mate-
rialization time of SUMA is faster than that of SUMA-N. 
SUMA takes 124 s to materialize the LUBM(1000) dataset, 
while SUMA-N takes 202 s to materialize the LUBM(1000) 
dataset. SUMA takes 411 s to materialize the UOBM(500) 
dataset, while SUMA-N takes 515  s to materialize the 
UOBM(500) dataset.

As shown in Fig. 12g, h, on all LUBM++ and UOBM++ 
test data sets, the materialization time of SUMA is faster 
than that of SUMA-N. SUMA takes 276 s to materialize the 
15-step LUBM++(1000) model, while SUMA-N takes 351 s 
to materialize the 15-step LUBM++(1000) data set. SUMA 
took 584 s to materialize the 15-step UOBM++(500) data 
set, while SUMA-N took 698 s to materialize the 15-step 
UOBM++ (500) data set.

On the DBPedia+ dataset, SUMA materialization takes 
18 s, while SUMA-N takes 20 s.

The experiment verifies that the role rewriting algorithm 
can improve materialization efficiency without reducing the 
answers’ quality.

6.4  Memory Optimization Evaluation

Since SUMA is calculated based on memory, this experi-
ment uses the number of triples in the materialization pro-
cess to measure the memory consumption of the system. 
Figure 12i, j shows the number of redundant facts reduced 
by SUMA. It can be seen from the figure that as the size of 
the dataset increases, the number of redundant data reduced 
by the role rewriting algorithm increases linearly. The role 
rewriting algorithm reduces the memory consumption of 
LUBM data by 9.48% on average, and reduces the mem-
ory consumption of UOBM data by 12.42%. And with the 
increase in the number of equivalent roles and inverse roles, 
the effect of memory optimization becomes more obvious.

Table 8  The quality of the answers

Solved SUMA Pellet PAGOdA gOWL

LUBM+(1) 33 33 28 15
UOBM+(1) 20 20 17 3

Table 9  The information of the datasets

Ontology ♯equivalent role ♯inverse role

LUBM 0 4
UOBM 2 8
DBPedia+ 0 2
YAGO 0 0

1 https ://githu b.com/SUMA-2019/SUMA.

https://github.com/SUMA-2019/SUMA
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Fig. 12  Experimental results
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7  Conclusions

In this paper, we have proposed a partial materialization-
based approach for ontology-mediated query answering 
over OWL 2 DL. Our technique’s core idea is that for a 
rooted conjunctive query or a Boolean conjunctive query 
with n quantified variables, the answer to the n-step univer-
sal model is the same as the answer to the universal model 
in DL. SUMA significantly reduces offline materialization 
costs by building efficient indexes for facts and rules and 
integrates role rewriting algorithm. The low complexity 
materialization algorithm makes SUMA can support effi-
cient reasoning of large-scale datasets. In future works, we 
are interested in extending this proposal to support distrib-
uted reasoning, and extending our approach to support other 
normalized ontology models.
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