
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-020-00150-0

SUMA: A Partial Materialization‑Based Scalable Query Answering
in OWL 2 DL

Xiaoyu Qin1 · Xiaowang Zhang1 · Muhammad Qasim Yasin1 · Shujun Wang1 · Zhiyong Feng2 · Guohui Xiao3

Received: 30 May 2020 / Revised: 3 November 2020 / Accepted: 28 November 2020
© The Author(s) 2021

Abstract
Ontology-mediated querying (OMQ) provides a paradigm for query answering according to which users not only query
records at the database but also query implicit information inferred from ontology. A key challenge in OMQ is that the
implicit information may be infinite, which cannot be stored at the database and queried by off -the -shelf query engine.
The commonly adopted technique to deal with infinite entailments is query rewriting, which, however, comes at the cost of
query rewriting at runtime. In this work, the partial materialization method is proposed to ensure that the extension is always
finite. The partial materialization technology does not rewrite query but instead computes partial consequences entailed by
ontology before the online query. Besides, a query analysis algorithm is designed to ensure the completeness of querying
rooted and Boolean conjunctive queries over partial materialization. We also soundly and incompletely expand our method
to support highly expressive ontology language, OWL 2 DL. Finally, we further optimize the materialization efficiency by
role rewriting algorithm and implement our approach as a prototype system SUMA by integrating off-the-shelf efficient
SPARQL query engine. The experiments show that SUMA is complete on each test ontology and each test query, which is
the same as Pellet and outperforms PAGOdA. Besides, SUMA is highly scalable on large datasets.

Keywords  Ontology reasoning · Materialization · Role rewriting

1  Introduction

With the rapid development of the semantic web, there are
more and more applications based on ontology, especially,
query answering applications [3]. Query answering can
return implicit information that is not explicitly stored at the
database but instead entailed by ontology to a user query. In
this sense, it improves the quality of the answers compared
to traditional database querying. The most popular query

answering systems can be categorized into two major types:
materialization-based and query rewriting-based.

The materialization approach precomputes all conse-
quences entailed by ontologies (also known as the universal
model or chase) offline so that the online query can be evalu-
ated directly on the extended RDF data. Thus, it is preferred
at online query performance-critical scenarios. PAGOdA
[30] is based on materialization algorithm. It is scalable by
delegating a large amount of the computational load to a
datalog reasoner [21, 23] and using the hypertableau algo-
rithm [22] only when necessary.

However, when the ontologies contain cyclic depend-
ency relation, the universal model can be infinite [17]. The
infinite extended data cannot be stored at the database and
directly queried by the query engine. The infinite materi-
alization is a significant challenge in materialization-based
query answering systems. PAGOdA is incomplete in terms
of infinite materialization (we proved it in Sect. 6).

The commonly adopted approach to deal with infinite
materialization is query rewriting. Query rewriting tech-
niques have been studied intensively and implemented in
many systems, e.g., QuOnto [5], Mastro [7], Ontop [6] for

 *	 Xiaowang Zhang
	 xiaowangzhang@tju.edu.cn

	 Xiaoyu Qin
	 xiaoyuqin@tju.edu.cn

1	 College of Intelligence and Computing, Tianjin University,
Tianjin 300350, China

2	 College of Intelligence and Computing, Shenzhen
Research Institute of Tianjin University, Tianjin University,
Tianjin 300350, China

3	 Faculty of Computer Science, Free University
of Bozen-Bolzano, Bolzano, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00150-0&domain=pdf

	 X. Qin et al.

1 3

DL-Lite, Grind [11] for EL , Clipper [8] for Horn-SHIQ .
These systems do not materialize the data , but rather first
rewrite the query according to the ontologies and mappings.
Query rewriting uses a virtual RDF graph technique to avoid
infinite materialization. However, it significantly increases
the cost of query because rewriting is performed at runt-
ime, and usually, it requires manual mapping. Moreover, the
rewritten query can be exponentially large [26].

Besides query rewriting, the materialization-based ontol-
ogy reasoner, e.g., Pellet [28], adopts a tableau algorithm
with a roll-up technique [14] to solve infinite materializa-
tion. Pellet is not scalable for large datasets. It can only be
applied to small and medium-sized datasets due to the high
complexity of the tableau algorithm.

gOWL [19] proposes a partial materialization-based
approach that deals with acyclic queries. The materialization
algorithm of gOWL has a high time and space complexity
due to its poor indexes for the storage and rules. Besides,
gOWL cannot handle cyclic queries and Boolean queries,
and its approximation rules lose most of the semantics of
the OWL 2 DL.

There is also a hybrid approach [15] that computes the
canonical model, which is always finite by reusing the
anonymous individual name. And it rewrites the queries to
remove wrong answers that the canonical model produces.
But this rewriting algorithm cannot deal with role inclusion
axioms. Then, a filter mechanism is proposed to replace the
rewriting technique. The filter mechanism does not rewrite
queries at runtime but filters spurious answers after query
evaluation [17]. It supports role inclusions. However, it is
still limited to lightweight ontology languages, DL-LiteR
[2].

Motivated by the users are mainly interested in the first
few levels of the anonymous part of the universal mod-
els [10], in this paper, we describe a novel partial mate-
rialization approach. Partial means we do not compute
all consequences entailed by ontology, but instead com-
pute a subset of the universal model. Partial ensures the
extended RDF data are always finite. Then, we propose

a query analysis algorithm(QAA). QAA takes conjunc-
tive queries as input, and its output indicates the size of
the partial universal model. This algorithm is designed
to ensure the partial materialization can always produce
the same answers as a universal model for rooted con-
junctive queries [16] and partial Boolean conjunctive
queries in DL-LiteN

horn
 [2]. Consider the following query

Q ∶ select ?X where {?X type Student. ?X advisor ?Y0. ?Y0 teaches ?Y1.}.
and the infinite universal model (the RDF), as shown in
Fig. 1.

In this paper, we select only one part from the entire
model (the sRDF) for answering the query Q as ans(sRDF,
Q ) = ans(RDF, Q ). The sRDF is the partial universal model.

To make our approach unlimited to lightweight ontol-
ogy languages, we soundly and incompletely generalize our
approach to deal with OWL 2 DL by rewriting and approxi-
mation techniques. The approximation techniques apply to
axioms whose semantics exceed DL-LiteN

horn
 . And, additional

data structures are designed to preserve the semantics that
approximation techniques may lose.

We implement our approach as a prototype system SUMA
and integrate a role rewriting algorithm [27] to optimize
materialization efficiency further. From a system perspec-
tive, SUMA allows us to design an offline modular architec-
ture to integrate off-the-shelf efficient SPARQL [12] query
engines. In this way, it makes online queries more efficient.

We validate our proposal in two cases: an evaluation in
the finite universal model scenario and an evaluation in the
infinite universal model scenario. In the former case, experi-
ments are conducted on two widely adopted benchmark and
two real datasets. In the latter case, we manually extend the
LUBM [9] and UOBM [18] ontologies to evaluate query
answering systems on an infinite universal model. These
experiments confirm that: (i) the ontology reasoning algo-
rithm used in PAGOdA cannot deal with infinite materiali-
zation, (ii) although Pellet is complete, it is not scalable and
can only be used for small and medium data, (iii) SUMA
is good at the trade-off the scalability and completeness.
Experiments show that SUMA is highly efficient, only

Fig. 1   A running example of
partial materialization

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

taking 124s to materialize LUBM(1000) and 411s to mate-
rialize UOBM(500). And, in each test query, it returns the
same quality of answers as Pellet.

The rest of the paper is structured as follows. Section 2
introduces the basic notions. Section 3 presents the defini-
tion of QAA algorithm for rooted and Boolean conjunctive
queries and gives a detailed proof. Section 4 shows how to
approximate the OWL 2 DL axiom to DL axiom while pre-
serving its semantics. Section 5 presents the architecture of
SUMA and algorithms used at SUMA. The performance of
SUMA on two benchmarks and real datasets is demonstrated
in Sect. 6. Section 7 concludes this paper.

This work is an extension of the previous proceedings in
[1]. In particular, (i) it extends QAA to support Boolean con-
junctive queries that contain cyclic or fork structure, (ii) it
adopts a role rewriting algorithm [27] to optimize materiali-
zation efficiency further, (iii) and it extends the experiments
with role rewriting algorithm evaluation, gOWL system and
YAGO dataset. This work confirms and extends the main
finding from [1]: SUMA is good at the trade-off the scal-
ability and completeness.

2 � Preliminaries

In this section, we briefly introduce the syntax and semantics
of description logics(DLs)DL-LiteN

horn
 , conjunctive query,

and universal model.

2.1 � Description Logics

Description Logic is a family of logics that have been stud-
ied and used in knowledge representation and reasoning.
DLs underlie the standard Web Ontology Language OWL
and OWL 2. In DLs, the elements of the domain are com-
piled into concepts (corresponding to unary predicates in
first-order languages), and their properties are structured
by means of roles (corresponding to binary predicates in
first-order languages). Complex concepts and role expres-
sions are made from atomic concepts and atomic role names.
These names are connected by suitable constructors. The set
of available constructors depends on the semantic of spe-
cific description logic. The richer the constructors that the
description logic contains, the more complex the semantics
that the description logic can capture.

Description logic knowledge base K consists of TBox
( T  ) and ABox ( A ). A TBox typically consists of a set of
axioms stating the inclusion between concepts and roles.
The semantics of TBox is affected by the constructors.
In an ABox, one can assert membership of objects (i.e.,
constants) in concepts, or that a pair of objects are con-
nected by a role.

Let �
�
 be the individual set. In this paper, by default, we

use a, b, c, d, e (with subscripts) to represent individual
names. A, B, Z denote concept names, C (with subscripts)
are concepts, P, S are role names, and R (with subscripts)
are roles. Next, we present a brief overview of two differ-
ent description logics, DL-LiteN

horn
 , and SROIQ.

DL-LiteN
horn

 defines roles and concepts as follows:

DL-LiteN
horn

 presents ∃R as ≥ 1R and defines (P−)− with P.
Let �−

�
 denote the set of roles.

A DL-LiteN
horn

 T is a finite collection, including con-
cept inclusions (CIs) axioms, that are in the form of
C1 ⊓… ⊓ Cn ⊑ C . A DL-LiteN

horn
 ABox consists of concept

assertions A(a) and role assertions P(a, b).
The semantics of DL-LiteN

horn
 are defined by the interpre-

tation I = (�I, ⋅I) , where �I is a non-empty domain. The
function is denoted by ⋅I  , which can map each A into the
set AI , each P into the relation PI and each a to an element
aI  . AI and PI are subsets of �I and �I × �I  , respectively.
The aI is an element of �I  . Besides, DL-LiteN

horn
 imple-

ments the unique name assumption (UNA), that is, if v and
w are distinct, then vI is different from wI .

⋅
I interprets each complex concept or role in the fol-

lowing ways: (1) ⊥I = � ( ⊥ is the bottom concept); (2)
(S−)I = {(v,w) ∣ (w, v) ∈ SI} ; and (3) (≥ mS)I = {w ∣ ♯{v ∣
(w, v) ∈ SI} ≥ m} . Here ♯ denotes the cardinality.

The I satisfies a CIs axiom T1 in the form of
C1 ⊓… ⊓ Cn ⊑ C if only if

⋂n

i=1
CI
i
⊆ CI  , denoted as

I ⊧ T1 . If aI ∈ AI then I ⊧ A(a) holds. If (aI, bI) ∈ PI then
I ⊧ P(a, b) holds. If I satisfies all TBox and ABox axioms
of K then I is a model of K.

SROIQ i s t he under ly ing log ic o f OWL
2 DL. The concept of SROIQ is def ined as:
C ∶= ⊥ ∣ ⊤ ∣ A ∣ ¬ A ∣ {a} ∣ ≥ mR.A ∣ ∃R.A . Besides,
A ⊔ B , ∀R.A , and ≤ nR.A can be rewritten to ¬(¬A ⊓ ¬B) ,
¬∃R.¬A , and ¬ ≥ (n + 1)R.A , respectively. Enumeration
{a1, a2,… , an} is equal to {a1} ⊔ {a2} ⊔… ⊔ {an}.

A SROIQ K consists of RBox R , TBox T and ABox
A.

In addition to the concept inclusions (CIs) axioms con-
tained in DL-Lite, a SROIQ T also includes disjointness
axioms ( Dis(C1,C2) ) and Equivalent concepts ( C1 ≡ C2 ).
Given an interpretation I  , we write I ⊧ Dis(C1,C2) if
C1

I ∩ C2
I = � , I ⊧ Dis(R1,R2) if R1

I ∩ R2
I = �.

The RBox is a limited collection of either role inclu-
sion axioms like R1 ⊑ R2 or R1◦R2 ⊑ R3 , or disjointness
axioms in the form of Dis(R1,R2) . The inverse role is
denoted as Inv(R) with Inv(R) = R− , the symmetric role is
denoted as Sym(R) (defined as Inv(R) ≡ R ), and the tran-
sitive role is denoted as Trans(R) (defined as R◦R ⊑ R ).
Fun(R) represents functional role. Given an interpretation

R ∶= P ∣ P−, C ∶= ⊥ ∣ A ∣≥ m R.

	 X. Qin et al.

1 3

I  , we write I ⊧ R1 ⊑ R2 if R1
I ⊆ R2

I  , I ⊧ R1◦R2 ⊑ R3 if
R1

I × R2
I ⊆ R3

I .
A SROIQ ABox A without UNA includes individual

equality a ≐ b ( ≐ is called sameAs in OWL) and individual
inequality a≠̇b . If I ⊧ a ≐ b then aI = bI . If I ⊧ a≠̇b then
aI ≠ bI  . If the role R is functional, then I ⊧ (≥ 2R ⊑ ⊥) .
Besides, if both (a, b) ∈ RI , (a, d) ∈ RI and b≠̇d ∉ A , then
b ≐ d.

2.2 � Conjunctive Query

We use �
�
 to denote a collection of variables. A(t)

denotes the concept atomic form, and P(t, t�) denotes role
atomic form with t, t� ∈ �

�
∪ �

�
 . A conjunctive query (CQ)

q = ∃��(�, �) . It is making up of concept and role atoms. It
connects these atoms by conjunction. The vector � consists
of free variables. If |�| = 0 , we call q Boolean. The vec-
tor � comprises a collection of variables that are quantified.
Since disconnected queries can be divided into connected
subqueries for processing, this article only considers con-
nected conjunctive queries. If a CQ is connected and not
Boolean, it is a rooted CQ.

The notions of answers and certain answers of CQ are
introduced as follows [15]. Let q(�) be a CQ with |�| = k ,
and I be an interpretation. The �

�
 is used for indicating

the collection of all terms in q, that is �
�
= �

�
∪ �

�
 . Let

� be a mapping which maps each term of q to �I and each
constant a to aI  , we call I satisfies q under � if only if
for every A(t) ∈ q , �(t) ∈ AI and for every P(t, t�) ∈ q ,
(�(t),�(t�)) ∈ PI . The � is called a match for CQ in I  . The
vector � = a1 … ak is an answer of q, when given a map-
ping � with �(vi) = aI

i
 ( i ≤ k ) and I ⊧𝜋 q . The ans(q(�),K)

represents the collection of all answers of q(�) . Ind(A) repre-
sents a set of individual names occurring in A . Let’s call � a
certain answer when � is a subset of Ind(A) and each model
of K satisfies q(�) . The certain answer collection is denoted
as cert(q(�),K).

2.3 � Universal Model

Materialization is a forward chain algorithm that expands
ABox according to the axioms in TBox. The ABox exten-
sion means expanding the ABox A to a universal model
for the given KB K = (T,A) . More specifically, during the
materialization, the universal model is enriched by a set of
additional individuals derived from existential and number
restrictions axioms and additional assertions derived from
CIs in T .

A role R is called generating in K if there exists
a ∈ Ind(A) and R1, … , Rn = R such that the followings
hold: (agen) K ⊧ ∃R1(a) but R1(a, b) ∉ A , for all b ∈ Ind(A)
(written a ⇝ cR1

 ); (rgen) for i < n , T ⊧ ∃R−
i
⊑ ∃Ri+1 and

R−
i
≠ Ri+1 (written cRi

⇝ cRi+1
 ). If R is generating in K , then

cR is called an anonymous individual. And, the anonymous
individual collection is denoted as �T

�
 , which is disjoint from

Ind(A) . A new assertion C2(a) will be included in univer-
sal model, if the ABox A contains C1(a) , TBox T contains
C1 ⊑ C2 and ABox A does not contain C2(a).

The canonical interpretation IK for K is defined as
follows:

•	 �IK = Ind(A) ∪ {cR ∣ R ∈ N−
R

 , R is generating in K};
•	 aIK = a , for all a ∈ Ind(A);
•	 A

IK = {a ∈ Ind(A) ∣ K ⊧ A(a)} ∪ {c
R
∈ 𝛥IK ∣ T ⊧ ∃ R

− ⊑ A};
•	 PIK = {(a, b) ∈ Ind(A) × Ind(A) ∣ P(a, b) ∈ A}

∪{(d, cP) ∈ �IK × 𝖭
T
𝖨
∣ d ⇝ cP}

∪{(cP− , d) ∈ 𝖭
T
𝖨
× �IK ∣ d ⇝ cP−}.

A path in IK is a finite sequence acR1
⋯ cRn

 (n ≥ 0) , such that
a ∈ Ind(A) and R1,… ,Rn satisfy (agen) and (rgen) (that is,
a ⇝ cR1

 and cRi
⇝ cRi+1

 , for 1 ≤ i < n ). The last element of �
in a path is denoted by tail(�).

The universal model UK is defined as follows:

•	 �UK = {a ⋅ cR1
⋯ cRn

∣ a ∈ Ind(A)  , n ≥ 0, a ⇝ c
R1

⇝

⋯ ⇝ c
R
n

},
•	 aUK = a , for all a ∈ Ind(A);
•	 AUK = {� ∈ �UK ∣ tail(�) ∈ AIK};
•	 P

UK = {(a, b) ∈ Ind(A) × Ind(A) ∣ P(a, b) ∈ A} ∪ {(�, � ⋅ c
P
)

∈ �UK × �UK ∣ tail(�) ⇝ c
P
} ∪ {(� ⋅ c

P−
, �) ∈ �UK × �UK ∣

tail(�) ⇝ c
P−
}.

The difference between a canonical interpretation and a uni-
versal model is that the canonical interpretation is always
finite. It ensures that the extended ABox is finite by reus-
ing the symbols of anonymous individuals. However, this
reuse mechanism can lead to the canonical model produc-
ing wrong answers to conjunctive queries under the certain
answer semantic. We compare the definitions of canonical
interpretation IK and universal model UK by Examples 1
and 2.

Example 1  Let K consist of T = {B ⊑ ∃S,∃S− ⊑ ∃S} and
A = {B(d0)}.

Then �I
K

= {d0, d1} , BIK = {d0} , and SIK = {(d0, d1),

(d1, d1)}.
�U
K

= {d0, d1, d2, d3,…} , BUK = {d0} , and SUK = {(d0, d1),

(d1, d2),…}.
Let q be ∃v S(v, v) . If �(v) = d1 , then IK ⊧𝜋 q , however,

UK ̸⊧𝜋 q . Thus, K ̸⊧𝜋 q , the canonical interpretation IK pro-
duces wrong answers.

Example 2  Let K consist of T = {Student ⊑ ∃advisor,
∃advisor− ⊑ ∃teaches , ∃teaches− ⊑ ∃studiedBy,∃studiedBy− ⊑

Student} , and A = {Student(a0)}.

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

The universal model of this example is shown in Fig. 1.
Kontchakov et al. proposed that for every consistent

DL-LiteN
horn

 KB K and every CQ q , we have
cert(q,K) = ans(q,UK) [15].

3 � n‑step Universal Model DL-LiteN
horn

In this section, we present the definition of n-step universal
model and query analysis algorithm. The n-step universal
model is a implementation of the partial materialization
idea. And the query analysis algorithm is proposed to ensure
the n-step universal model always has the same answers as
the universal model.

3.1 � n‑step Universal Model

Query answering over A with T can be reduced to query
answering over the universal model, as shown in preliminar-
ies. However, the universal model can be infinite.

Considering such axioms, it satisfies three characteristics.
Firstly, it belongs to the concept of inclusions. Secondly, its
head and body directly or indirectly contain both existen-
tial quantifiers. Thirdly, the roles included in this axiom are
inverse to each other. We refer to this kind of axiom as cyclic
existential quantifiers axioms (CEQ, for short) in this paper.
The simple form of CEQ axioms is ∃R− ⊑ ∃R or ∃R− ⊑ A ,
A ⊑ ∃R . When ontology contains CEQ axioms, the universal
model is infinite [17], as shown in Examples 1 and 2. The
infinite RDF data cannot be directly stored and queried with
off the shelf query engine.

We propose an n-step universal model to replace the
possible infinite universal model. Intuitively, the process of
materialization is to extend ABox to a universal model. The
process can be thought of as a sequence U = {ABox, U1

K
,

U2
K
, … , Un

K
, …} . And, Ui

K
⊆ Ui+1

K
 , i < |U| . The (agen) and

(rgen) (see Sect. 2) are the fundamental reasons for expand-
ing Ui

K
 to Ui+1

K
 . The element Un

K
 of U is called the n-step

universal model in our method. Un
K

 is always finite. The dif-
ference between partial materialization and materialization
is that the core of partial materialization is to calculate the
n-step universal model, while materialization computes the
whole model. We ensure our materialization is always finite
by selecting Un

K
 from the UK for query answering.

To formalize Un
K

 , we require some preliminary defini-
tions. We label R as n-step generating in K , when a is an
individual of Ind(A) , and the R = R1 …Rn satisfies (agen)
and (rgen). The ��

�
 denotes the set of roles that are ≤ n-

step generating in K . The n-step canonical interpretation is
defined as follows:

Definition 1  n-step canonical interpretation

�In
K = Ind(A) ∪ {cR|R ∈ �

�

�
},

aI
n
K = a, for all a ∈ Ind(A),

A
In
K = {a ∈ Ind(A) | K ⊧ A(a)} ∪ {c

R
∈ 𝛥In

K | T ⊧ ∃R− ⊑ A},
PIn

K = {(a, b) ∈ Ind(A) × Ind(A)|P(a, b) ∈ A} ∪ {(d, cp)

∈ �In
K × NT

I
|d ⇝ cp} ∪ {(cP− , d) ∈ NT

I
× �In

K |d ⇝ cP−}.

All roles included in the n-step canonical interpretation
must be ≤ n-step generating in K . All anonymous variables
are witness of roles which are ≤ n-step generating in K . Based
on the definition of the n-step canonical interpretation, we can
derive the definition of n-step universal model ( Un

K
).

Definition 2  n-step universal model

�Un

K = {a ⋅ c
R
1
⋯ c

R
l

| a ∈ Ind(A),R
l
∈ 𝖭

𝗇

𝖱
, a ⇝ c

R
1
⇝

… ⇝ c
R
l

},
aU

n
K = a, for all a ∈ Ind(A),

AUn
K = {� ∈ �Un

K | tail(�) ∈ AIn
K},

P
Un

K = {(a, b) ∈ Ind(A) × Ind(A) | P(a, b) ∈ A} ∪ {(�, �

⋅c
P
) ∈ �Un

K×
�Un

K | tail(�) ⇝ c
P
} ∪ {(� ⋅ c

P− , �) ∈ �Un

K × �Un

K | tail(�)
⇝ c

P−}.

Example 3  We use Example 1 to illustrate Un
K

 .
�Un

K = {d0, d1,… , dn}, d0
Un
K = d0, B

Un

K = {d0}, S
Un

K =

{(d0, d1), (d1, d2),… , (d
n−1, dn)} . The graph of the 2-step

universal model is shown in Fig. 2.

Example 4  The 2-step universal model (sRDF) of Example 2
is shown in Fig. 1.

3.2 � QAA Based on Rooted Conjunctive Queries

We design a query analysis algorithm (QAA) to ensure that
the n-step universal model can always compute the same
answer as the universal model. QAA takes a rooted query
as input and calculates the number of quantified variables n.
Obviously, n can be calculated in O(|�

�
|) . The number of

quantified variables denotes the step of the universal model.
If the step size is n, then the n-step universal model, i.e., the
Un
K

 in U, can produce the same answers for q as the univer-
sal model. This method is proved in Theorem 2. We define
a new triple relation on q. � denotes a path that consists of
terms. � represents a path that includes roles.

Fig. 2   The 2-step universal model of Example 3

	 X. Qin et al.

1 3

Definition 3  Let q = ∃��(�, �) be a CQ, T be a
TBox and � be a mapping, we define a triple relation
f𝜌 = ∪i≥0f

i
𝜌
⊆ �

�
× �

�

∗ × �
−
�

∗ w i t h � = {t ∣ t ∈ �
�
,

�(t) ∈ Ind(A)} , where

f 0
�
= {(t, t, �) | t ∈ �};

f i+1
�

= f i
�
∪ {(t, �st, �SR) ∣ (s, �s, �S) ∈ f i

�
,R(s, t) ∈ q, tail(�(s)) ⇝

tail(�(t))} ∪ {(t, �, �) ∣ (s, �s, �R−) ∈ f i�,R(s, t) ∈ q, tail(�(s))
⇝ tail(�(t))}.

A path � = t0 ⋅ t1 ⋯ tn−1 ⋅ tn is a certain path of q, if (t0) is
mapped to Ind(A) and all other terms are mapped to �T

�
 . A

certain path collection is represented as CertPath(q,�) . The
max certain path is defined as MaxCertPath(q,�) ∶= {�
∣ |�i| ≤ |�|, for all �i ∈ CertPath(q,�)} . Let � be a map-
ping. We set the depth of q as dep(q,�) ∶= |�| − 1 , with
� ∈ MaxCertPath(q,�).

The anonymous part of the universal model is a forest-
shaped structure, as shown in Examples 3 and 4. Thus, the
subquery that is matched to the anonymous part of the uni-
versal model must be a forest-shaped structure. If a term
t in q wants to be mapped to an anonymous part of UK , it
can only be mapped in this way, �(t) = �(t0) ⋅ cR1

⋯ cRn
 with

(t, �, �) ∈ f� , where � = t0t1 ⋯ tn is a certain path, and � =
R1R2 ⋯Rn.

Example 5  Let q(x) be a cyclic CQ of the following form:
∃ yP(x, y) ∧ P(y, y) , T = {A ⊑ ∃P,∃P− ⊑ ∃P}.

Given the first knowledge base K1 = {T,A1} and
A1 = {A(a)} . As shown in Fig. 3, the universal model is heter-
ogeneous to the query q. Thus, ans(q,UK) = cert(q,K1) = �.

Given the second knowledge base K2 = {T,A2} and
A2 = {A(a), P(a, b),P(b, b)} . As shown Fig. 4, the universal
model is homogeneous to the query q. � = {x → a, y → b} .
f� = f 0

�
= {(x, x, �), (y, y, �)}  . T h u s , dep(q,�) = 0  .

ans(q,UK) = cert(q,K1) = {a}.
These two examples demonstrate that the cyclic part

of the query only can be mapped into the ABox part of
the universal model because the anonymous part of the
universal model is a forest-shaped structure.

Example 6  Let q(x) be a fork-shaped CQ of the following
form: ∃ yP(x, y) ∧ P(z, y) , T = {A ⊑ ∃P,∃P− ⊑ ∃P}.

Consider K1 = {T,A1} and A1 = {A(a),A(b)} . Then, as
shown in Fig. 5, the universal model is heterogeneous to the
query q. Thus, ans(q,UK) = cert(q,K1) = �.

L e t K2 = {T,A2}  , w h e r e A1 = {A(a),A(b),
P(a, c),P(b, c)} . Then, as shown in Fig. 6, the universal model
is homogeneous to the query q. � = {x → a, z → b, y → c} .
f� = f 0

�
= {(x, x, �), (y, y, �), (z, z, �)} . Thus, dep(q,�) = 0 .

ans(q,UK) = cert(q,K1) = {a, b} .
These two examples confirm that not only a cyclic

query, but also a fork query, the fork part of the query
can only be mapped into the ABox part of the universal
model, due to the anonymous part of the universal model
is a forest-shaped structure.

Theorem 1  For every consistent DL-LiteN
horn

 KB K , every
rooted conjunctive query q = ∃��(�, �) , and every mapping
� , with dep(q,�) = n , we have UK ⊧𝜋 q if only if Un

K
⊧𝜋 q.

Proof  (⇒ ) For every � with dep(q,�) = n , then there exists a
max certain path � = t0t1 ⋯ tn−1tn and R(tn−1, tn) ∈ q . Thus,
R is n-step generating, and all other roles are ≤ n-step gen-
erating. By definition of Un

K
 , we have that for every R ∈ q , if

a a …

Fig. 3   The universal model of K1

Fig. 4   The universal model of
K2

…

…

Fig. 5   The universal model of K1

Fig. 6   The universal model of K2

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

(a, b) ∈ RUK then a ∈ �Un
K and b ∈ �Un

K . Thus, (a, b) ∈ RUn
K .

Since q is connected, for every A ∈ q , suppose a ∈ AUK , then
(a, ∗) ∈ RUK or (∗, a) ∈ RUK . Thus, a ∈ �Un

K and a ∈ AUn
K . In

conclusion, Un
K

⊧ q.
(⇐ ) For every R ∈ q , if (a, b) ∈ RUn

K then a ∈ �Un
K and

b ∈ �Un
K . Because �Un

K is a subset of �U
K

 , a ∈ �U
K

 , b ∈ �U
K

and (a, b) ∈ RUK . For every A ∈ q , if a ∈ AUn

K , then a ∈ �Un
K .

Thus a ∈ �U
K

 and a ∈ AUK.
Therefore, Un

K
⊧ q(�, �) if only if UK ⊧ q(�, �) . 	� ◻

Let f� is a function if for every term t, f�(t) is singleton
set or if (t, �, �) ∈ f (t) and (t, ��, ��) ∈ f (t) , then � = ��.

Lemma 1  For every mapping, if UK ⊧𝜋 q , then f� is a
function and every � ∈ MaxCertPath(q,�) is finite and
dep(q,�) ≤ |�|.

Proof  Suppose f� is not a function, then there exists t ∈ �
�
 ,

with (t, �i, �i) ∈ f�(t) and (t, �j, �j) ∈ f�(t) , where �i ≠ �j . We
labeled �i and �j as �i = R0

i
⋅ R1

i
⋯R

ni
i
 and �j = R0

j
⋅ R1

j
⋯R

nj

j
 ,

respectively. Thus, UK ̸⊧𝜋 q due to cR0
i
⋯ cRni

i
≠ cR0

j
⋯ c

R
nj

j

 .
This creates a contradiction.

Because �
�
 is finite, if � is not finite, then there exists

t′ , with � = �1t
��2t

��3 . Thus, (t�, �1t�, �1) ∈ f�(t
�) and

(t�, �1t
��2t

�, �2) ∈ f�(t
�) . By the definition of f� , we have

that �1 is a subsequence of �2 because �1t′ is a subsequence
of �1t′�2t′ . Thus, f�(t) is not a function. However, we have
proved that if UK ⊧𝜋 q , then f� is a function. This creates a
contradiction.

Suppose dep(q,𝜋) > |�| , then there exists a � with
|𝜎| > |�| + 1 . Because free variables can only be mapped
into Ind(A) , a quantified variable repeatedly appears in the
path � exists. Thus, � is infinite. We have proved that if
UK ⊧𝜋 q , then every � ∈ MaxCertPath(q,�) is finite. This
creates a contradiction. 	� ◻

Based on Lemma 1 and Theorem 1, we can conclude
that, for every rooted query, we extend the model at most
|�| steps. The core of the QAA:

Theorem 2  For each consistent DL-LiteN
horn

 KB K and each
rooted conjunctive query q = ∃��(�, �) , with |�| = n , we
have cert(q,K) = ans(q,Un

K
).

P r o o f   K o n t c h a k o v e t a l . p r o p o s e d t h a t
cert(q,K) = ans(q,UK) (see Sect. 2). Thus, we only need to
proof ans(q,UK) = ans(q,Un

K
).

(⇒ ) Lemma 1 shows that for every mapping � , if UK ⊧𝜋 q ,
then n∗ = dep(q, �) ≤ |�| . Based on Theorem 1, we can

conclude that Un∗

K
⊧𝜋 q . Because n∗ ≤ |�| , 𝛥Un∗

K ⊆ 𝛥Un
K ⊆ 𝛥U

K
 .

We can conclude that Un
K
⊧𝜋 q.

(⇐ ) Because 𝛥Un
K ⊆ 𝛥U

K
 , if Un

K
⊧𝜋 q then UK ⊧𝜋 q.

In conclusion, ans(q,UK) = ans(q,Un
K
) , that is ,

cert(q,K) = ans(q,UK) . 	� ◻

Example 7  The example in Sect. 1 proves our idea. Under
the � = {x → a0, y0 → a1, y1 → a2} , we can conclude that
f� = {(x, x, �), (y0, xy0, advisor), (y1, xy0y1, advisor ⋅ teaches)} .
CertPath(q,�) = {�1, �2, �3} w i t h �1 = x  , �2 = xy0  ,
�3 = xy0y1 . T h e n MaxCertPath(q,�) = {�3} , a n d ,
dep(q,�) = 2 . Obviously, the dep(q,�) is not greater than
the number of quantified variables, thus, the sRDF(2- step
universal model) makes ans(sRDF,Q) = ans(RDF,Q).

3.3 � QAA Based on Boolean Conjunctive Queries

A Boolean conjunctive query is in the form of q = ∃��(�) .
It is a special case of conjunctive queries q = ∃��(�, �) ,
with |�| = 0 . As mentioned in Sect. 2, all non-connected
queries can be decomposed into connected subqueries for
processing, so we only consider connected Boolean queries.
Because Boolean conjunctive query does not have a variable
that must be mapped into ABox, the query analysis algo-
rithm does not explicitly apply to Boolean conjunctive que-
ries. As shown in Example 8, the query analysis algorithm is
unsound for Boolean conjunctive queries q(x), that is, when
Un
K

 does not satisfy q, it is possible for K to satisfy q.

Example 8  Let q(x) be a Boolean CQ of the following form:
∃ x y z (R1(x, y) ∧ R2(y, z)) , T = {A ⊑ ∃S,∃S− ⊑ B,B ⊑ ∃P,

∃P− ⊑ C,C ⊑ ∃R1,∃R1
− ⊑ D,D ⊑ ∃R2,∃R2

− ⊑ C} a n d
A = {A(a)} . Figure 7 shows the graph of 3-step universal
model and query. Obviously, the 3-step universal model does
not satisfy q, but the universal model does.

To extend QAA to support Boolean conjunctive que-
ries, we firstly summarize the general properties of the
universal model.

…
{ } { } { } { }{ } { }

{ } { }{ } { }

Fig. 7   The universal model of K

	 X. Qin et al.

1 3

If the ontology contains the CEQ axioms, the universal
model is infinite.
The anonymous part of the universal model is forest-
like, and is heterogeneous to the cyclic and fork struc-
tures.

The two properties are explained or proved in the pre-
ceding two sections. Based on the two attributes, we can
conclude that if the Boolean conjunctive query contains a
cyclic structure or fork structure and the Boolean conjunc-
tive query can be satisfied, then there must be a variable
mapped to ABox. Therefore, the Boolean conjunctive que-
ries which contain a cyclic or fork structure can be directly
solved by QAA. To verify this, we first extend the triple
relation f� defined in the rooted queries to Boolean queries
by modifying the definition of �.

Definition 4  Let q = ∃��(�, �) be a CQ, T be a
TBox and � be a mapping, we define a triple rela-
tion f𝜌 = ∪i≥0f

i
𝜌
⊆ �

�
× �

∗
�
× �

−
�

∗ with � = {t ∣ t ∈ �
�
,

�(t) ∈ Ind(A) or there is no t�such that tail(�(t�)) ⇝ tail(�(t))} ,
where

f 0
�
= {(t, t, �) | t ∈ �};

f i+1
�

= f i
�
∪ {(t, �st, �SR) ∣ (s, �s, �S) ∈ f i

�
,R(s, t) ∈ q, tail(�(s)) ⇝

tail(�(t))} ∪ {(t, �, �) ∣ (s, �s, �R−) ∈ f i
�
,R(s, t) ∈ q, tail(�(s))

⇝ tail(�(t))}.

Lemma 2  For each consistent DL-LiteN
horn

 KB K and each
Boolean conjunctive query q = ∃��(�) which contains a
cyclic structure or fork structure, we have that if UK satis-
fies q and q contains a cyclic structure or fork structure,
then there are variables in the query that must be mapped
to ABox.

Proof  Assuming that all variables in q are mapped to anony-
mous variables, if UK satisfies q and q contains a cyclic
structure or fork structure, then there must be a variable
t ∈ �

�
 , such that (t, �i, �i) ∈ f�(t) and (t, �j, �j) ∈ f�(t) , where

head(�i) ⋅ �i ≠ head(�j) ⋅ �j . The �i and �j are labeled as �i =
R0
i
⋅ R1

i
⋯R

ni
i

 and �j = R0
j
⋅ R1

j
⋯R

nj

j
 , respectively. Thus,

UK ̸⊧𝜋 q d u e t o
�(head(�i)) ⋅ cR0

i
⋯ cRni

i
≠ �(head(�j)) ⋅ cR0

j
⋯ c

R
nj

j

 . This cre-
ates a contradiction. Thus, if UK satisfies Boolean conjunc-
tive query q and q contains a cyclic structure or fork struc-
ture, then there are variables in the query that must be
mapped to ABox. 	� ◻

Example 9  Let q(x) be a fork-shaped CQ of the follow-
ing form: ∃ x y z P(x, z) ∧ P(y, z) , T = {A ⊑ ∃R} and
A = {A(a),A(b)}.

Based on the definition of f� , we have that (z, x ⋅ z,R) ∈ f�
and (z, y ⋅ z,R) ∈ f� . If UK satisfies q under � and all
variables are mapped to anonymous individuals, then
�(z) = �(x) ⋅ cR = �(y) ⋅ cR . However, �(x) ≠ �(y) , this cre-
ates a contradiction. Thus, there is no mapping where UK
satisfies q under this mapping and all variables are mapped
to anonymous individuals.

As shown in the following Fig. 8, the universal model is
heterogeneous to the query q. Thus, UK ̸⊧ q.

Theorem 3  For each consistent DL-LiteN
horn

 KB K and each
Boolean conjunctive query q = ∃��(�) which contains a
cyclic structure or fork structure, we have that UK satisfies
q if only if Un

K
 satisfies q with n = |�|.

Proof  (⇒ ) Based on Lemma 2, if UK satisfies q under � and
q contains a cyclic structure or fork structure then there are
variables in the query that must be mapped to ABox. Then,
we can conclude that dep(q,�) ≤ |�| based on Lemma 1.
We label the max certain path of q as � = t0t1 ⋯ tm−1tm
and R(tm−1, tm) ∈ q . Thus, R is m-step generating with m is
≤ |�| . By definition of Un

K
 , we have that for every R ∈ q , if

(a, b) ∈ RUK then a ∈ �Un
K and b ∈ �Un

K . Thus, (a, b) ∈ RUn
K .

Since q is connected, for every A ∈ q , suppose a ∈ AUK , then
(a, ∗) ∈ RUK or (∗, a) ∈ RUK . Thus, a ∈ �Un

K and a ∈ AUn
K . In

conclusion, Un
K

⊧ q.
(⇐ ) Because Un

K
 satisfies q and Un

K
 is a subset of UK , so

UK satisfies q. 	� ◻

4 � n‑step Universal Model in OWL 2 DL

OWL 2 DL is based on SROIQ . Because SROIQ has
more complex constructors than DL-LiteN

horn
 , more complex

information about the described domain can be captured by
OWL 2 DL. Particularly, OWL 2 DL has complex restric-
tions, such as property restrictions and arbitrary cardinality.
Besides, UNA is not adopted by OWL 2 DL, that is, different
individual names may point to the same individual.

However, with the improvement of ontology language
expressiveness, the complexity of reasoning algorithms
will also increase. For instance, when dealing with the axi-
oms in the form of UNION, such as C ⊑ C1 ⊔C2 , it is nec-
essary to try all possibilities and backtrace the tree when

Fig. 8   The graph of query and universal mode

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

there are contradictions in the leaf nodes. This process sig-
nificantly increases the time and memory consumption of
materialization.

To enjoy the high expressiveness of OWL 2 DL and
improve materialization efficiency, we implement the sup-
port for OWL 2 DL through approximation and rewriting
mechanisms. Given an OWL 2 DL ontology, we first attempt
to rewrite it as an equivalent DL-LiteN

horn
 TBox axiom, if pos-

sible. Otherwise, we have three choices, approximate pro-
cessing or adding additional data structures or other ABox
transformation rules. The last two methods can preserve the
semantics that approximate processing would lose.

4.1 � TBox Transformation

TBox transformation is presented in Tables 1 and 2 (r and s
denote role names). Given a SROIQ TBox axiom, we first

rewrite it to an equivalent one according to the rewriting
rules in Table 1, also known as normalization in [25]. We
add concept and its complement to a complement table (CT),
which is designed to record complement semantic.

Because of the normalized TBox axioms T beyond the
expressiveness of DL-LiteN

horn
 , and the axiom in the form of

C ⊑ ⊔n
i=1

Ci or C ⊑ ∃R.{a1, a2, a3} will lead to non-determin-
ism, we syntactically approximate partial axioms by their
complement, as shown in Table 2. Specially, we construct
a new concept for nominals at No.10 approximation rule.
All TBox transformation rules are sound, as shown in [25].

4.2 � ABox Transformation

The semantics of DL-LiteN
horn

 do not cover the axiom shown
in Table 3. Thus, we design tractable ABox transforma-
tion rules, i.e., ABox reasoning rules for them based on the
semantics of SROIQ.

An extended TBox T∗ is a set of axioms obtained from T
by applying TBox transformation rules and adding ABox
transformation rules. Let K∗ ∶= (T∗,A) . Let n be a natural
number. The n-step universal model of (T∗,A) is called an
extended n-step universal model, denoted by Un

K∗ , of K.
By Theorem 2 and the definition of the transformation

rules, we can conclude:

Proposition 1  (Approximation) Let K = (T,A) be a con-
sistent KB and q = ∃��(�, �) be a rooted CQ with |�| = n .
For every � ⊆ Ind(A) with |�| = |�| , if � ∈ ans(q,Un

K∗) then
� ∈ cert(q,K).

Example 10  Let K = ({�1, �2, �3}, {�1, �2, �3, �4, �5}) be
a KB shown in the following table. GraduateStudent was
abbreviated as GS.

Axiom Expression Axiom Expression

�1 GS ≡ Person ⊓ ≥ 3takeCourse�2 takeCouse(b, c1)

�2 Person ≡ Woman ⊔ Man�3 takeCouse(b, c2)

�3 Dis(Woman, Man) �4 takeCouse(b, c3)

�1 GS(a) �5 Man(b)

First step: we get new TBox axioms:

Table 1   OWL 2 DL rewriting rules

No. TBox axiom Rewriting TBox axiom

1 n

⊓
i=1

C
i
≡ C

n

⊓
i=1

C
i
⊑ C,C ⊑

n

⊓
i=1

C
i

2
C ⊑

n

⊓
i=1

C
i

C ⊑ C
i
, 1 ≤ i ≤ n

3 ∃R.{a1, a2, a3} ≡ C ∃R.{a1, a2, a3} ⊑ C,C ⊑ ∃R.{a1, a2, a3}

4 n

⊔
i=1

C
i
≡ C

n

⊔
i=1

C
i
⊑ C,C ⊑

n

⊔
i=1

C
i

5 n

⊔
i=1

C
i
⊑ C

C
i
⊑ C, 1 ≤ i ≤ n

6 Dis(A,B) A ⊑ ¬B,B ⊑ ¬A

7 Dis(r, s) r ⊑ ¬s, s ⊑ ¬r

8 r ≡ s r ⊑ s, s ⊑ r

Table 2   Approximation rules

No. TBox axiom Approximation axiom

9
C ⊑

n

⊔
i=1

C
i

n

⊓
i=1

¬C
i
⊑ ¬C

10 C ⊑ ∃R.{a1, a2, a3} C1 ≡ {a1, a2, a3},∀R.¬C1 ⊑ ¬C

11 C ⊑≤ mR.C1 ≥ (m + 1)R.C1 ⊑ ¬C

Table 3   ABox transformation No. TBox axiom ABox reasoning rules

12 {C ≡ {a1, a2,⋯ , a
n
}} A = A ∪ {C(a

i
)}, 1 ≤ i ≤ n

13 Fun(r) r(a, b) ∈ A ∧ r(a, c) ∈ A ∧ b≠̇c ∉ A → A = A ∪ {b ≐ c}

14 Trans(r) r(a, b) ∈ A ∧ r(b, c) ∈ A ∧ r(a, c) ∉ A → A = A ∪ r(a, c)

15 Sym(r) r(a, b) ∈ A ∧ r(b, a) ∉ A → A = A ∪ r(b, a)

	 X. Qin et al.

1 3

�1
1

GS ⊑ Person (�1, No1, No2)

�2
1

GS ⊑ ≥ 3takeCourse.Thing(�1, No1, No2)

�3
1

Person ⊓ ≥ 3takeCourse ⊑ GS(�1, No1)

�1
2

Woman ⊑ Person (�2, No4, No5)

�2
2

Man ⊑ Person (�2, No4, No5)

�1
3

Woman ⊑ ¬Man (�3, No6)

�2
3

Man ⊑ ¬Woman (�3, No6)

Second step: from the above axioms, we can get the fol-
lowing new facts:

�1
1

Person(a) (�1, �
1
1
) �2

1
takeCourse(a, a1) (�1, �

2
1
)

�1
5

Person(b) (�5, �
2
2
) �3

1
takeCourse(a, a2) (�1, �

2
1
)

�6 GS(b) (�2 − �4, �
1
5
, �3

1
) �4

1
takeCourse(a, a3) (�1, �

2
1
)

�2
5

¬Woman(b) (�5, �
2
3
) �8 (a1, ≠̇, a2) (�2

1
, �3

1
, �2

1
)

�7 (a1, ≠̇, a3) (�2
1
, �4

1
, �2

1
) �9 (a2, ≠̇, a3) (�3

1
, �4

1
, �2

1
)

5 � The System and Implementation of SUMA

SUMA computes universal model offline and executes
queries online. The offline stage consists of three modules:
ontology processor, storage, and materialization (Fig. 9).

The ontology processor module has four submodules.
OWL 2 DL processor parses the ontology through the
OWL API [13], rewrites it to DL − Lite axioms according to
rewriting and approximation techniques. It builds the inverse
role table and equivalent role table to support role rewriting
algorithm.

The role processor implements role scoring algorithm
[27]. The role rewriter firstly generates equivalent and
inverse role mappings following [27]. For instance, if role
d is equivalent to role e and d.score < e.score , then d is
mapped to e. Formally, mapping(d) = e,mapping(e) = e .
If d.score = e.score and d.id > e.id , then d is mapped to e.
Secondly, the role rewriter rewrites axioms and facts.

Example 11  We use the ontologies and facts in Fig. 10 to
illustrate the process of role rewriting. The role graph is
generated by role score algorithm. Based on the role graph,
taughtBy is mapped to teach and like is mapped to love. After
choosing the mapping, the role rewriting can be divided into
three parts: axiom rewriting, fact rewriting and optimizing
rewriting. In fact rewriting phase, taughtBy(Physics, Lisa)
and like(Lisa, basketball) are changed to teach(Lisa, Phys-
ics) and love(Lisa, basketball), respectively. The axiom
range(taughtBy, Teacher) is rewritten at axiom rewrit-
ing phase. It was first rewritten to range(teach− , Teacher)
and then optimized to domain(taughtBy, Teacher). Dur-
ing the materialization process, taughtBy(Physics, Lisa)
and like(Lisa, basketball) are not stored in memory, and
Teacher(Lisa) can only be generated once by teach(Lisa,
Physics).

The storage module uses the Jena API to load RDF data
and generates a dictionary by encoding each RDF resource
in integer ID. The dictionary is shared by the storage mod-
ule and ontology processor. The RDF data are stored as

Fig. 9   The architecture of
SUMA

Axiom
Table

Role
Processor

Role
Rewriter

Binding Query

Axiom Matcher

sameAs Reasoner

Ontology Processor

Materializa�on

Triple Table

Primary Index

Secondary Index

Ter�ary IndexTable Iterator

Dic�onaryStorage

SPARQL Query

Model Matcher

Query Processor

SPARQL Query
Engineer

OWL 2 DL
Processor

Offline

Online

Results

like

love

charge

teach

taughtBy

1

2

2
5

5

Role graph Input

• taughtBy(Physics, Lisa)
• like(Lisa, basketball)

• inverseProperty(taughtBy, teach)
• range(taughtBy, Teacher)
• subClassOf(Teacher, Person)
• equivalentProperty(like, love)

Fact rewri�ng

• teach(Lisa, Physics)
• love(Lisa, basketball)

Axiom rewri�ng

• domain(teach, Teacher)
• subClassOf(Teacher, Person)

taughtBy teach

Inverse role map
key value

like love

Equivalent role map
key value

Materializa�on
• Teacher(Lisa) • Person(Lisa)

Fig. 10   An example of role rewriting algorithm

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

a triple table with three types of indexes, e.g., a primary
index, a secondary index, and a tertiary index. TableItera-
tor can traverse the triple table efficiently by three types of
indexes. And, it maintains an index array that records the
n-step model corresponding index ranges in the triple table.

The materialization module has three submodules:
binding query, axiom matcher, and sameAs reasoner.
The detailed materialization algorithm is shown in Algo-
rithm 1. It iteratively reads a new triple F from the triple
table through TableIterator. If F has an equivalent triple G
(For instance, F = (d,R, e) , G = (d�,R, e�) , d ≐ d′ , e ≐ e′ ),
then the program does not process F to improve reason-
ing efficiency. The reasoning of F can be divided into three
situations.

Algorithm 1 Materialization Algorithm
Input: I : a collection of facts, T : a collection of axioms
Output: I: a collection of expanded facts
1: while F = I.next and F �= ε do
2: G = Ω.getSameAsMapping(F);
3: if G.equals(F) then
4: if F is the form of (d, .=, e) then
5: sameAsReasoning(F);
6: else
7: if F is the form of (d, P, e) ∧ P.isFunctionalProperty then
8: for e∗ ∈ I.getIndividual(d, P) do
9: if I.contains((e, � .=, e∗)) then
10: result in contradiction;
11: else I.add((e, .=, e∗));
12: end if
13: end for
14: else
15: for each (type, r, F) ∈ matchAxiom(F, T) do
16: for F ′ ∈ I.evaluate(type, r, F) do
17: I.add(F ′);
18: end for
19: end for
20: end if
21: end if
22: end if
23: end while

Firstly, if F is the form of (d,≐, e) , it is processed by
Algorithm 2. The sameAs reasoning function puts the
individual d and e into an equivalent pool and selects the
individual with the smallest ID as the identifier. We set the
sameAs mapping of d as c if there exists (d,≐, c) and c is the
smallest ID of the equivalent pool. Secondly, if the role in
F is a functional or an inverse functional role, (for instance,
F = (d,P, e) , and P is a functional role), then, all triples like
(d,P, ∗) are returned by I.getIndividual(d,P) . A new fact
(e,≐, ∗) is added to I if I does not contain a fact (e, ≠̇, ∗) .
Thirdly, axiom matcher returns all axioms that can match the
triple F through matchAxiom(F, T) . Binding query function
converts these partially matched axioms into partial binding
queries. The function I.evaluate executes these queries over
I and returns a new fact.

Algorithm 2 sameAs Reasoning Algorithm
Input: I : d, e : individual name, pool : a list of equivalent pool
1: idx = mergeEquivalentPool(d, e);
2: c = selectNewIdentifier(pool [idx]);
3: for i ∈ pool [idx] do
4: i.setSameAsMapping(c);
5: end for

The online part includes a SPARQL processor and a
model matcher. The SPARQL processor applies QAA
technologies to compute the step size (n) of the model. In
essence, it takes O(1) time complexity to calculate the num-
ber of quantified variables. The model matcher takes n as
input and passes the n-step universal model to the SPARQL
query engine. The SPARQL query engine executes SPARQL
queries and returns query results.

6 � Experiments and Evaluations

SUMA delegates SPARQL queries to RDF-3X [24] at this
experiment. The experimental environment is a 24-core
machine that is equipped with 180GB RAM and Ubuntu
18.04. The experiment is divided into three parts: the evalu-
ation of query answering system on finite model, the evalu-
ation of query answering system on infinite model and role
rewriting algorithm evaluation.

Evaluation criteria We test two aspects, (i) the soundness
and completeness of the answers, (ii) the scalability of the
query answering system. The first aspect is testing the num-
ber of queries that the system can answer correctly under the
certain answer semantic. The evaluation of the scalability
of the query answering system is to test the pre-processing
time, consists of data load time and materialization time, and
the query processing time on the increasing datasets.

Data load time: This time includes all the data pre-pro-
cessing steps before materialization, such as constructing
a dictionary, generating an index, etc.
Materialization time: The time taken by reasoner to com-
pute consequences.
Query processing time: The time taken by the system
to execute a query on the extended data and return the
query results.

Comparison system We compare SUMA with the following
four systems, all of which use materialization methods.

Pellet is sound and complete in OWL 2 DL. It is adopted
as the criterion for soundness and completeness evalua-
tion.

	 X. Qin et al.

1 3

PAGOdA employs RDFox for highly scalable reasoning.
Therefore, we mainly test the scalability of SUMA with
PAGOdA.
gOWL also adopts partial materialization algorithm to
solve infinite materialization problem. We evaluate two
kinds of partial materialization algorithms from the
experimental perspective.
SUMA-N indicates a query answering system that does
not use the role rewriting algorithm. SUMA-N is used to
evaluate the performance of the role rewriting algorithm.

6.1 � Query Answering over Finite Universal Model

Table 4 gives a summary of all datasets and queries used in
this experiment. Besides the 14 standard queries of LUBM,
we also test ten queries from PAGOdA. The DBPedia [4]
axiom is simple. It could be captured by OWL 2 RL [20].
Therefore, we adopt the DBPedia+ axiom and 1024 DBPe-
dia+ queries provided by PAGOdA. The DBPedia+ axiom
includes additional tourism ontologies. We generate 260
atomic queries for the YAGO [29] dataset.

6.1.1 � The Soundness and Completeness Evaluation

Because Pellet and gOWL cannot give query results on
LUBM(100), UOBM(100), DBPedia+ and YAGO in 2 h,
we do not display the results of them. As shown in Table 5,
SUMA can correctly answer all queries on each test dataset.

6.1.2 � The Scalability Test

Since gOWL cannot materialize DBPedia+ and YAGO in
less than 2 hours, we compare SUMA and gOWL on small

datasets before comparing SUMA and PAGOdA. gOWL
takes 1.77 h to materialize LUBM(10), while SUMA takes
1.51 s. The materialization time of gOWL on UOBM(10) is
3.19 h. SUMA only costs 8.34 s materializing UOBM(10).
SUMA is more scalable than gOWL.

Next, we test SUMA and PAGOdA on a series of data-
sets. For LUBM, we use datasets of increasing size with a
step of 200. Since UOBM ontology is more complicated
than LUBM ontology, we set the UOBM dataset growth step
length as 100. For each dataset and ontology, we test the
pre-processing time (pre-time), data load time, materiali-
zation time (mat-time), and average query processing time
(avg-time).

Pre-processing Time Evaluation As shown in Fig. 11,
SUMA significantly reduces pre-processing time. Time
increases linearly with the size of the dataset. On each test
dataset, the pre-processing time of SUMA is faster than
PAGOdA.

SUMA only takes 124s to materialize LUBM(1000). The
pre-processing time of SUMA on LUBM(1000) is 549s,
faster than PAGOdA’s 1692s. The time taken by SUMA to
materialize UOBM(500) is 411s. The total pre-processing
time is 862s. Compared with the 5937s pre-processing time
of PAGOdA, SUMA is much faster. SUMA takes 18s and 6s
to materialize DBPeida+ and YAGO, respectively. The pre-
processing time of SUMA on DBPedia+ and YAGO is 71s
and 63s, respectively. PAGOdA costs 309s pre-processing
DBPedia+ and 139s pre-processing YAGO. SUMA is more
scalable than PAGOdA.

Average Query Processing Time Evaluation
The average query processing time of SUMA on LUBM

(1) and UOBM (1) is four and five orders of magnitude faster
than Pellet, respectively. Because SUMA and gOWL both
rely on existing query engines to perform queries, we only
compare SUMA with PAGOdA in the average query pro-
cessing time evaluation.

We test the average query processing time of 24 LUBM
queries on six LUBM datasets, 15 UOBM queries on five
UOBM datasets, 1024 DBPedia+ queries on one DBPe-
dia+ dataset and 260 YAGO queries on the YAGO dataset.
As shown in Fig. 12a, SUMA has a faster average query
processing time than PAGOdA on all LUBM datasets
except LUBM(100). (Time(SUMA, LUBM(100)) = 0.62 s,
Time(PAGOdA, LUBM(100)) = 0.57 s). The significant
decrease in the query processing time of SUMA on LUBM
(500) is related to RDF-3X. RDF-3X can provide shorter
query time on larger data by building different efficient
indexes.

Figure 12b shows the average query processing time of
SUMA is an order of magnitude faster than that of PAGOdA
on all UOBM datasets.

The average query processing time of SUMA on DBPe-
dia+ is 24.337ms faster than PAGOdA’s 33.235ms. The

Table 4   The information of datasets

Data Expressivity Axioms Facts Queries

LUBM(n) EL++ 243 n∗ 105 24
UOBM(n) SHION(D) 502 2.6n∗ 105 15
DBPedia+ SHION(D) 3000 2.6∗ 107 1024
YAGO EL++ 484,998 1.3∗ 107 260

Table 5   The quality of the answers

Solved SUMA Pellet PAGOdA gOWL

LUBM(1) 24 24 24 14
LUBM(100) 24 ∗ 24 *
UOBM(1) 15 15 15 2
UOBM(100) 15 ∗ 15 *
DBPedia+ 1024 ∗ 1024 *
YAGO 260 ∗ 260 *

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

average query processing time of SUMA on YAGO is
39.166ms faster than PAGOdA’s 67.096ms.

6.2 � Query Answering over Infinite Universal Model

Since the LUBM, UOBM, DBPedia+ all have a finite uni-
versal model, they are not suitable for the second experi-
ment. We add some manual CEQ axioms to the LUBM and
UOBM ontologies, respectively. Table 6 shows all the data
used at the infinite model evaluation.

We also customize some additional queries to test
LUBM+ and UOBM+. Table 7 summarizes our queries.
Besides the queries included in the first experiment, we
add nine queries for LUBM+ and five customized queries
for UOBM+. The third column shows the number of que-
ries that contain a cyclic structure. The number of queries
with more than two quantified variables is given in the
table’s fourth column.

100 300 500 700 900 1000

105

106
T
im

e(
m
s)

SUMA

(a) LUBM Load Time
100 300 500 700 900 1000

105

106

T
im

e(
m
s)

SUMA

(b) LUBM Mat-time
100 300 500 700 900 1000

102

103

T
im

e(
s)

SUMA
PAGOdA

(c) LUBM Pre-time

100 200 300 400 500

105

106

T
im

e(
m
s)

SUMA

(d) UOBM Load Time
100 200 300 400 500

105

106

T
im

e(
m
s)

SUMA

(e) UOBM Mat-time
100 200 300 400 500

103

104

T
im

e(
s)

SUMA
PAGOdA

(d) UOBM Pre-time

Fig. 11   Pre-processing experimental results

Table 6   The information of datasets

Data Expressivity Axioms Facts Queries

LUBM+(n) EL++ 245 n∗ 105 33
UOBM+(n) SHION(D) 504 2.6n∗ 105 20
LUBM++(n) EL++ 545 n∗ 105 ∗

UOBM++(n) SHION(D) 805 2.6n∗ 105 ∗

Table 7   The information of queries

Query ♯total ♯cyclic ♯quan-
tified
≥ 3

LUBM+ 33 2 9
UOBM+ 20 2 3

	 X. Qin et al.

1 3

6.2.1 � The Soundness and Completeness Evaluation

As shown in Table 8, SUMA and Pellet can calculate all
the correct answers for all test queries, whereas PAGOdA
is incomplete on five LUBM+ queries (Q2, Q4, Q5, Q6,
Q7) and three UOBM+ queries (Q1, Q2, Q3).1 gOWL is
complete only on a few queries.

6.2.2 � The Scalability Test

According to statistical analysis of the actual SPARQL que-
ries, more than 96% of the queries include up to 7 triple
patterns [10]. Therefore, in most cases, we only need to
consider the step of universal model (n) is not greater than
7. Besides, we find that SUMA is also efficient when n is
more than 7.

SUMA shows high scalability on LUBM+ and UOBM+.
The average query processing time of SUMA on LUBM+(1)
and UOBM+(1) is 1.99 ms and 6.48 ms, respectively. It is
faster than the PAGOdA’s 11.78 ms and 10.40 ms and five
orders of magnitude faster than Pellet.

We focus on testing the materialization time of the infinite
universal model. To make our test more challenging, we
manually add 100 CEQ axioms to LUBM+ and UOBM+
ontologies, named as LUBM++ and UOBM++, as shown
in Table 6.

The materialization time of the 15-step universal model
of LUBM++(1000) and UOBM++(500) is 276.869 s and
584.600 s, respectively. When n = 7 , the materialization
time of LUBM++(1000) and UOBM++(500) is 172.308 s
and 486.504 s, respectively. SUMA is highly scalable on the
infinite universal model.

6.3 � The Role Rewriting Algorithm Evaluation

As shown in the previous two experiments, SUMA is com-
plete on all test queries, which shows that the role rewriting
algorithm does not lose the completeness of materialization.
Table 9 shows the number of equivalent and inverse roles in
the test dataset. Because the YAGO dataset does not include
equivalent roles and inverse roles, it is not used to evaluate
role rewriting algorithm.

Materialization Efficiency Evaluation As shown in
Fig. 12e, f, on all LUBM and UOBM test data sets, the mate-
rialization time of SUMA is faster than that of SUMA-N.
SUMA takes 124 s to materialize the LUBM(1000) dataset,
while SUMA-N takes 202 s to materialize the LUBM(1000)
dataset. SUMA takes 411 s to materialize the UOBM(500)
dataset, while SUMA-N takes 515 s to materialize the
UOBM(500) dataset.

As shown in Fig. 12g, h, on all LUBM++ and UOBM++
test data sets, the materialization time of SUMA is faster
than that of SUMA-N. SUMA takes 276 s to materialize the
15-step LUBM++(1000) model, while SUMA-N takes 351 s
to materialize the 15-step LUBM++(1000) data set. SUMA
took 584 s to materialize the 15-step UOBM++(500) data
set, while SUMA-N took 698 s to materialize the 15-step
UOBM++ (500) data set.

On the DBPedia+ dataset, SUMA materialization takes
18 s, while SUMA-N takes 20 s.

The experiment verifies that the role rewriting algorithm
can improve materialization efficiency without reducing the
answers’ quality.

6.4 � Memory Optimization Evaluation

Since SUMA is calculated based on memory, this experi-
ment uses the number of triples in the materialization pro-
cess to measure the memory consumption of the system.
Figure 12i, j shows the number of redundant facts reduced
by SUMA. It can be seen from the figure that as the size of
the dataset increases, the number of redundant data reduced
by the role rewriting algorithm increases linearly. The role
rewriting algorithm reduces the memory consumption of
LUBM data by 9.48% on average, and reduces the mem-
ory consumption of UOBM data by 12.42%. And with the
increase in the number of equivalent roles and inverse roles,
the effect of memory optimization becomes more obvious.

Table 8   The quality of the answers

Solved SUMA Pellet PAGOdA gOWL

LUBM+(1) 33 33 28 15
UOBM+(1) 20 20 17 3

Table 9   The information of the datasets

Ontology ♯equivalent role ♯inverse role

LUBM 0 4
UOBM 2 8
DBPedia+ 0 2
YAGO 0 0

1  https​://githu​b.com/SUMA-2019/SUMA.

https://github.com/SUMA-2019/SUMA

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

Fig. 12   Experimental results

100 300 500 700 900 1000

106

107

T
im

e(
µ
s)

SUMA
PAGOdA

(a) LUBM Avg-time
100 200 300 400 500

105

106

107

108

T
im

e(
µ
s)

SUMA
PAGOdA

(b) UOBM Avg-time

1 3 5 7 9 11 13 15

102

102.2

102.4

102.6

T
im

e(
s)

SUMA

(c) LUBM++ Mat-time
1 3 5 7 9 11 13 15

102.4

102.5

102.6

102.7

102.8

102.9

T
im

e(
s)

SUMA

(d) UOBM++ Mat-time

100 300 500 700 900 1000

105

106

T
im

e(
m
s)

SUMA
SUMA-N

(e) LUBM Mat-time
100 200 300 400 500

105

106

T
im

e(
m
s)

SUMA
SUMA-N

(f) UOBM Mat-time

1 3 5 7 9 11 13 15

102

102.2

102.4

102.6

T
im

e(
s)

SUMA
SUMA-N

(g) LUBM++(1000) Mat-time
1 3 5 7 9 11 13 15

102.4

102.5

102.6

102.7

102.8

102.9

T
im

e(
s)

SUMA
SUMA-N

(h) UOBM++(500) Mat-time

100 300 500 700 900 1000

100.4

100.6

100.8

101

101.2

T
ri
pl
es
(1
06

)

(i) LUBM reduced triples
100 200 300 400 500

100.8

101

101.2

101.4

T
ri
pl
es
(1
06

)

(j) UOBM reduced triples

	 X. Qin et al.

1 3

7 � Conclusions

In this paper, we have proposed a partial materialization-
based approach for ontology-mediated query answering
over OWL 2 DL. Our technique’s core idea is that for a
rooted conjunctive query or a Boolean conjunctive query
with n quantified variables, the answer to the n-step univer-
sal model is the same as the answer to the universal model
in DL. SUMA significantly reduces offline materialization
costs by building efficient indexes for facts and rules and
integrates role rewriting algorithm. The low complexity
materialization algorithm makes SUMA can support effi-
cient reasoning of large-scale datasets. In future works, we
are interested in extending this proposal to support distrib-
uted reasoning, and extending our approach to support other
normalized ontology models.

Acknowledgements  We thank Guilin Qi for valuable comments. This
work is supported by the National Key Research and Development
Program of China (2017YFC0908401), the National Natural Science
Foundation of China (61972455, 61672377), and Shenzhen Science
and Technology Foundation (JCYJ2017081609 3943197).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Qin X, Zhang X, Yasin MQ, Wang S, Feng Z, Xiao G (2020) A
partial materialization-based approach to scalable query answer-
ing in OWL 2 DL. In: International conference on database sys-
tems for advanced applications, pp 171–187

	 2.	 Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009)
The DL-Lite family and relations. J Artif Intell Res 36:1–69. https​
://doi.org/10.1613/jair.2820

	 3.	 Bienvenu M (2016) Ontology-mediated query answering: har-
nessing knowledge to get more from data. In: Proceedings of the
twenty-fifth International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp.
4058–4061. http://www.ijcai​.org/Abstr​act/16/600

	 4.	 Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R,
Hellmann S (2009) DBpedia—a crystallization point for the web
of data. J Web Semant 7(3):154–165. https​://doi.org/10.1016/j.
webse​m.2009.07.002

	 5.	 Botoeva E, Calvanese D, Santarelli V, Savo DF, Solimando A,
Xiao G (2015) Beyond OWL 2 QL in OBDA: rewritings and
approximations (extended version). CoRR arxiv​:abs/1511.08412​

	 6.	 Calvanese D, Cogrel B, Komla-Ebri S, Kontchakov R, Lanti D,
Rezk M, Rodriguez-Muro M, Xiao G (2017) Ontop: answer-
ing SPARQL queries over relational databases. Semant Web
8(3):471–487. https​://doi.org/10.3233/SW-16021​7

	 7.	 Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A,
Rodriguez-Muro M, Rosati R, Ruzzi M, Savo DF (2011) The
MASTRO system for ontology-based data access. Semant Web
2(1):43–53. https​://doi.org/10.3233/SW-2011-0029

	 8.	 Eiter T, Ortiz M, Simkus M, Tran T, Xiao G (2012) Query rewrit-
ing for horn-shiq plus rules. In: Proceedings of the twenty-sixth
AAAI Conference on Artificial Intelligence, 22–26 July 2012,
Toronto, Ontario, Canada. http://www.aaai.org/ocs/index​.php/
AAAI/AAAI1​2/paper​/view/4931

	 9.	 Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL
knowledge base systems. J Web Semant 3(2–3):158–182. https​://
doi.org/10.1016/j.webse​m.2005.06.005

	10.	 Han X, Feng Z, Zhang X, Wang X, Rao G, Jiang S (2016) On
the statistical analysis of practical SPARQL queries. In: Pro-
ceedings of the 19th international workshop on Web and Data-
bases, San Francisco, CA, USA, June 26, 2016, p 2. https​://doi.
org/10.1145/29321​94.29321​96

	11.	 Hansen P, Lutz C (2018) Computing fo-rewritings in EL in
practice: from atomic to conjunctive queries. CoRR arxiv​
:abs/1804.06907​

	12.	 Harris S, Seaborne A (2013) Sparql 1. 1 query language
	13.	 Horridge M, Bechhofer S (2011) The OWL API: a java API

for OWL ontologies. Semant Web 2(1):11–21. https​://doi.
org/10.3233/SW-2011-0025

	14.	 Horrocks I, Tessaris S (2002) Querying the semantic web: a
formal approach. In: The Semantic Web—ISWC 2002, First
International Semantic Web Conference, Sardinia, Italy, 9-12
June 2002, Proceedings, pp 177–191. https​://doi.org/10.1007/3-
540-48005​-6_15

	15.	 Kontchakov R, Lutz C, Toman D, Wolter F, Zakharyaschev
M (2010) The combined approach to query answering in DL-
Lite. In: Principles of knowledge representation and reasoning:
proceedings of the twelfth international conference, KR 2010,
Toronto, Ontario, Canada, 9-13 May 2010. http://aaai.org/ocs/
index​.php/KR/KR201​0/paper​/view/1282

	16.	 Lutz C (2008) The complexity of conjunctive query answer-
ing in expressive description logics. In: 4th International Joint
Conference Automated Reasoning, IJCAR 2008, Sydney, Aus-
tralia, 12–15 August 2008, Proceedings, pp 179–193. https​://
doi.org/10.1007/978-3-540-71070​-7_16

	17.	 Lutz C, Seylan I, Toman D, Wolter F (2013) The combined
approach to OBDA: taming role hierarchies using filters. In:
The Semantic Web—ISWC 2013—12th International Semantic
Web Conference, Sydney, NSW, Australia, 21–25 October 2013,
Proceedings, Part I, pp 314–330. https​://doi.org/10.1007/978-
3-642-41335​-3_20

	18.	 Ma L, Yang Y, Qiu Z, Xie GT, Pan Y, Liu S (2006) Towards
a complete OWL ontology benchmark. In: The semantic web:
research and applications, 3rd European Semantic Web Con-
ference, ESWC 2006, Budva, Montenegro, 11–14 June 2006,
Proceedings, pp 125–139. https​://doi.org/10.1007/11762​256_12

	19.	 Meng C, Zhang X, Xiao G, Feng Z, Qi G (2018) gowl: A fast
ontology-mediated query answering. In: Proceedings of the
ISWC 2018 posters & demonstrations, industry and blue sky
ideas tracks co-located with 17th International Semantic Web
Conference (ISWC 2018), Monterey, USA, 8–12 October 2018.
http://ceur-ws.org/Vol-2180/paper​-41.pdf

	20.	 Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (2009)
OWL 2 web ontology language profiles. W3C recommendation
27:61

	21.	 Motik B, Nenov Y, Piro R, Horrocks I, Olteanu D (2014)
Parallel materialisation of datalog programs in centralised,

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1613/jair.2820
https://doi.org/10.1613/jair.2820
http://www.ijcai.org/Abstract/16/600
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1016/j.websem.2009.07.002
http://arxiv.org/abs/abs/1511.08412
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-2011-0029
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
http://arxiv.org/abs/abs/1804.06907
http://arxiv.org/abs/abs/1804.06907
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1007/3-540-48005-6_15
https://doi.org/10.1007/3-540-48005-6_15
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
https://doi.org/10.1007/978-3-540-71070-7_16
https://doi.org/10.1007/978-3-540-71070-7_16
https://doi.org/10.1007/978-3-642-41335-3_20
https://doi.org/10.1007/978-3-642-41335-3_20
https://doi.org/10.1007/11762256_12
http://ceur-ws.org/Vol-2180/paper-41.pdf

SUMA: A Partial Materialization‑Based Scalable Query Answering in OWL 2 DL﻿	

1 3

main-memory RDF systems. In: Proceedings of the twenty-
eighth AAAI Conference on Artificial Intelligence, 27–31 July
2014, Québec City, Québec, Canada, pp 129–137. http://www.
aaai.org/ocs/index​.php/AAAI/AAAI1​4/paper​/view/8505

	22.	 Motik B, Shearer R, Horrocks I (2009) Hypertableau reasoning
for description logics. J Artif Intell Res 36:165–228. https​://doi.
org/10.1613/jair.2811

	23.	 Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J (2015)
Rdfox: a highly-scalable RDF store. In: The Semantic Web—
ISWC 2015—14th International Semantic Web Conference,
Bethlehem, PA, USA, 11–15 October 2015, Proceedings, Part
II, pp 3–20. https​://doi.org/10.1007/978-3-319-25010​-6_1

	24.	 Neumann T, Weikum G (2008) RDF-3X: a risc-style engine
for RDF. Proc VLDB Endow 1(1):647–659. https​://doi.
org/10.14778​/14538​56.14539​27

	25.	 Pan JZ, Ren Y, Zhao Y (2016) Tractable approximate deduction
for OWL. Artif Intell 235:95–155. https​://doi.org/10.1016/j.
artin​t.2015.10.004

	26.	 Pérez-Urbina H, Motik B, Horrocks I (2009) A comparison of
query rewriting techniques for DL-Lite. In: Proceedings of the
22nd international workshop on Description Logics (DL 2009),

Oxford, UK, 27–30 July 2009. http://ceur-ws.org/Vol-477/paper​
_2.pdf

	27.	 Qin X, Zhang X, Feng Z (2020) Optimizing ontology mate-
rialization with equivalent role and inverse role rewriting. In:
Companion of the 2020 Web Conference 2020, Taipei, Taiwan,
20–24 April 2020, pp 40–41. https​://doi.org/10.1145/33664​
24.33826​87

	28.	 Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet:
a practical OWL-DL reasoner. J Web Semant 5(2):51–53. https​://
doi.org/10.1016/j.webse​m.2007.03.004

	29.	 Tanon TP, Weikum G, Suchanek FM (2020) YAGO 4: a reason-
able knowledge base. In: The Semantic Web—17th International
Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June
4, 2020, Proceedings, pp 583–596. https​://doi.org/10.1007/978-3-
030-49461​-2_34

	30.	 Zhou Y, Grau BC, Nenov Y, Kaminski M, Horrocks I (2015)
Pagoda: pay-as-you-go ontology query answering using a datalog
reasoner. J Artif Intell Res 54:309–367. https​://doi.org/10.1613/
jair.4757

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8505
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8505
https://doi.org/10.1613/jair.2811
https://doi.org/10.1613/jair.2811
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.1016/j.artint.2015.10.004
https://doi.org/10.1016/j.artint.2015.10.004
http://ceur-ws.org/Vol-477/paper_2.pdf
http://ceur-ws.org/Vol-477/paper_2.pdf
https://doi.org/10.1145/3366424.3382687
https://doi.org/10.1145/3366424.3382687
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1613/jair.4757
https://doi.org/10.1613/jair.4757

	SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Description Logics
	2.2 Conjunctive Query
	2.3 Universal Model

	3 n-step Universal Model
	3.1 n-step Universal Model
	3.2 QAA Based on Rooted Conjunctive Queries
	3.3 QAA Based on Boolean Conjunctive Queries

	4 n-step Universal Model in OWL 2 DL
	4.1 TBox Transformation
	4.2 ABox Transformation

	5 The System and Implementation of SUMA
	6 Experiments and Evaluations
	6.1 Query Answering over Finite Universal Model
	6.1.1 The Soundness and Completeness Evaluation
	6.1.2 The Scalability Test

	6.2 Query Answering over Infinite Universal Model
	6.2.1 The Soundness and Completeness Evaluation
	6.2.2 The Scalability Test

	6.3 The Role Rewriting Algorithm Evaluation
	6.4 Memory Optimization Evaluation

	7 Conclusions
	Acknowledgements
	References

