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ABSTRACT
In highly dynamic domains such as the Internet of Things (IoT), Smart Industries, Smart Manufacturing,
Pervasive Health or Social Media, data is being continuously generated. By combining this generated
data with background knowledge and performing expressive reasoning upon this combination, meaningful
decisions can be made. Furthermore, this continuously generated data typically originates from multiple
heterogeneous sources. Ontologies are ideal for modeling the domain and facilitates the integration of
heterogeneous produced data with background knowledge. Furthermore, expressive ontology reasoning
allows to infer implicit facts and enables intelligent decision making. The data produced in these domains
is often volatile. Time-critical systems, such as IoT Nurse Call systems, require timely processing of
the produced IoT data. However, there is still a mismatch between volatile data and expressive ontology
reasoning, since the incoming data frequency is often higher than the reasoning time. For this reason, we
present an approximation technique that allows to extract a subset of data to speed-up the reasoning process.
We demonstrate this technique in a Nurse Call proof of concept where the locations of the nurses are tracked
and the most suited nurse is selected when the patient launches a call and in an extension of an existing
benchmark. We managed to speed up the reasoning process up to 10 times for small datasets and up to more
than 1000 times for large datasets.

INDEX TERMS Reasoning, Streams, Event-Based, Ontology, Nurse Call

I. INTRODUCTION

A. PROBLEM DESCRIPTION

Highly dynamic domains such as the Internet of Things
(IoT), Smart Industries, Smart Manufacturing, Pervasive
Health, financial sector or Social Media require real-time
processing of heterogeneous generated data [1]. These time-
critical systems need to react as quick as possible to newly
generated event data. However, many of these systems need
to integrate background knowledge with the event data on
the fly, to enable real-time interpretation of these events and
execute advanced logics to make correct decisions [2], [3].
For instance, in an IoT nurse call system, expressive reason-
ing is required to capture the capabilities of the nurse, the
pathologies of the patients, the relation between the patients
and the staff, etc [4]. To automatically determine the priority
of a launched patient call, the pathology of the patient needs
to be inspected. Depending on the patient’s disease, the call
gets a higher priority. Similar examples can be thought of in
other domains such as detecting hazard situations in a smart
manufacturing scenario or reacting to traffic jams in smart

cities.

Semantic web technologies, such as ontologies, are the
preferred model for the integration of the generated heteroge-
neous data with background knowledge [5], [6]. An ontology
formally describes concepts, properties, and their relations,
within a certain domain. By defining the relations between
various concepts, a model can incorporate the knowledge
about a certain domain. Through the use of a reasoner,
implicit facts can be automatically inferred. For example, by
modeling that a ‘high priority call’ is a call made by a patient
that has a certain risk profile, the reasoner can automatically
decide which calls should be handled with higher priority.
Note that the fact that a patient has a risk profile can be
inferred based on the pathology and the history of the patient.
To make intelligent conclusions, the reasoner should be able
to handle highly expressive definitions in the ontology. We
opted for Web Ontology Language (OWL) reasoning, which
uses Description Logic (DL), as OWL is widely used and it
is a web standard.

However, currently, there is still a mismatch between ex-
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pressive reasoning and real-time requirements [1]. Expres-
sive reasoning techniques such as DL reasoning can have up
to NEXPTIME complexity [7], resulting in slow reasoning
times with growing datasets [8], [9]. In this paper, we present
a practical subset reasoning technique that combines expres-
sive reasoning and event-based requirements by extracting
and approximating a subset of data. The subset minimizes
that dataset to reason upon, speeding up the reasoning pro-
cess.

Many advances have been made in the Stream Reason-
ing domain [10], [11], [12] to combine data from multiple
streams with static background knowledge. Generated event
data produced by various sources can be considered as data
streams. To be able to process these unbounded streams of
data, stream reasoning techniques consider the data within
a defined time frame, i.e., a window. Expressive reasoning
platforms have mostly focused on the processing of static
data [13] or slowly changing data [14]. When these systems
try to process data streams, newly incoming data will pile
up, eventually crashing the system, since each item needs to
be processed one by one [15]. By using windows, multiple
data items can be processed simultaneously. However, a
problem that arises when using windows in combination with
expressive reasoning, is the possible inconsistency within
a window. For example, when an individual is a member
of two disjunct classes due to considering the data within
the window. However, the content of the window should
never be inconsistent, only the most recent statement should
be considered [16]. Handling these inconsistencies within a
window is still an open problem [16].

B. RELATED WORK

We now discuss the most prominent works in the literature
and their drawbacks.

Traditional OWL2 DL reasoner such as HermiT [13] and
Pellet [17] focus on the processing of static or very slow
changing data. They provide no mechanisms for the process-
ing of event data and are typically too slow to handle event
data.

PAGOdA [18] is a hybrid approach that combines a dat-
alog reasoner with an OWL2 reasoner. Most of the compu-
tations are executed by the fast datalog reasoner and only if
necessary the OWL2 reasoner computes the missing facts.
Although it is a very promising technique, in its current
state PAGOdA focuses on querying and does not allow the
adding and removal of facts which is necessary in a changing
environment. This means that the PAGOdA reasoner would
need to be restarted each time new data arrives. It is built for
static data and does not support reasoning over data streams.
PAGOdA uses RDFox [14] as its datalog reasoner. RDFox is
the fastest incremental OWL2 RL reasoner currently avail-
able. As we will discuss in Section III, OWL2 has three pro-
files that minimize the expressivity to increase the efficiency
of reasoning. RDFox is thus not as expressive as OWL2 DL
reasoning. Furthermore, as PAGOdA and RDFox focus more

on static domains, they do not provide any mechanisms to
process data streams, such as windowing or update policies.

TrOWL [19] offers a subset of OWL2 DL expressiveness
while maintaining tractable, by using language transforma-
tions. It supports stream reasoning by incrementally process-
ing the addition and removal of facts. As only a subset of
OWL2 DL is supported, TrOWL does not support nominals
or datatype reasoning.

Many RDF Stream Processing (RSP) techniques exist
[11], [10] that consider streams of RDF data within a pre-
defined window and process only the content within the
window. When new data arrives, or when time passes, the
window slides over the data stream and a new portion of
the data stream is processed. These techniques support the
integration with background data and support various stream-
ing operators such as aggregations. However, due to the high
velocity of data these systems need to process, the reasoning
capabilities are low. The most expressive RSP engine is
StreamQR [20], which supports the ELHIO logic, which
falls under the OWL2 EL fragment, one of the most expres-
sive logics currently used for query rewriting. As OWL2 EL
is another profile of OWL2 DL, it is less expressive.

Other techniques such as module extraction and ontology
partitioning focus on minimizing the ontology Terminologi-
cal Box (TBox). Module extraction techniques [21] allow to
extract a part of the TBox to speed up the reasoning process
in a specific case, e.g. to type check some specific classes.
While ontology partitioning techniques split the ontology
into smaller self-contained modules [22]. Both techniques
focus on minimizing the TBox but provide no solution
for growing Assertion Box (ABox)es. Anagnostopoulos et
al. [23] highlight the importance of approximate reasoning in
order to perform time-critical decision making. They utilize
probabilistics to approximate certain reasoning tasks, based
on the similarity with other situations, without dealing with
highly expressive ontologies. This implies that the results
might not always be correct. In our approximation approach,
we aim for correct answers achieved by approximating a
subset of data to perform the expressive reasoning upon.

C. OBJECTIVES & SOLUTION
To allow the design of time-critical systems within highly
dynamic domains, we set the following objectives:

1) Heterogeneous data: Since data typically needs to be
combined from various heterogeneous sources, we need
to be able to integrate this heterogeneous data.

2) Event data: Data is continuously produced, therefore
new data should be added to the system and old data
should be updated or removed.

3) Large knowledge bases: Many domains have large
knowledge bases that need to be combined with the
generated data, e.g. sensors typically only describe their
sensor readings and still need to be combined with the
sensor itself and the location of the sensor, etc.

4) Expressive reasoning : In order to correctly interpret
the domain, expressive reasoning is required to correctly

2 VOLUME 4, 2016



Bonte et al.: Subset Reasoning for Event-Based Systems

analyze the domain definitions.

To tackle these challenges, of performing expressive rea-
soning over event data, we propose an approximation tech-
nique that minimizes the dataset to reason upon, in order to
speed up the reasoning process in an event-based environ-
ment. To solve the windowing problem, we define various
update policies that describe how the most recent data in the
stream should be captured. As such, instead of a window, we
maintain a recent view on the stream and use this recent view
to compute our subset.

We show that our subset approach scales very well, even
with large amounts of data (i.e. instantiation data), making it
an ideal tool for time-critical systems that require expressive
reasoning.

D. PAPER ORGANIZATION

The remainder of this paper is structured as follows: Sec-
tion II introduces the nurse call use case used throughout
the paper. In Section III the background to understand the
remainder of the paper is explained. Section IV describes
the policies that allow to maintain a recent view on the
data stream. Section ?? explains the subset approximation
algorithm. While Section VI describes the implementation
details of the system. Section VII evaluates our technique by
comparing the execution time of the use case from Section II
and a benchmark to existing techniques and discusses the
results. We show that our technique is up to 10 times faster
for really small datasets and up to more than 1000 times faster
for larger datasets. Section VIII discusses how the results
should be interpreted and Section IX concludes the paper and
identifies interesting paths for future work.

II. USE CASE DESCRIPTION
In the remainder of the paper, we focus on an IoT nurse call
system to introduce and explain our approach. We note that
our approach is applicable for any event-based environment
requiring expressive reasoning.

The IoT plays a crucial role in providing optimal and
personalized care for patients. The advances in this field
allow patients to be easily monitored [24] and to localize the
necessary staff members [25]. However, to achieve truly per-
sonalized care, profile, context and domain information needs
to be considered. Most of this information is rather static,
e.g., the patient’s profile and pathology, the competences of
the nurses and the floor-plan of the hospital. Discrete streams
of events representing, e.g. patient’ calls, person location
updates, call status updates, need to be combined with the
static data to derive actionable insights. In this use case, we
consider a call assignment scenario, where the most suited
staff member at a particular moment should be assigned to a
patient call. The nurse selection procedure is made up out of a
rather large decision tree consisting of 36 leaves [4]. The tree
was constructed together with domain experts, i.e. nurses,
doctors and patients, and a company specialized in nurse call

systems (Televic Healthcare1). The selection procedure takes
into account, amongst others, the personal relation of the staff
members with the patients, the location of the staff members
and their competences. We consider the following scenario
within this paper, which typically occurs during the night,
consisting of the following steps:

1) Call Launched: A patient launches a call and the selec-
tion procedure is started to assign the most appropriate
nurse to the call. The nurse is notified of this assignment.

2) Call Redirect: The nurse is currently busy and indicates
that the call should be redirected. The selection algo-
rithm runs again to assign and notify another nurse.

3) Call Temporary Accept: The new nurse temporary
accepts the call. This is a temporary accept because the
call can only be completely accepted once the nurse is
with the patient. This allows easy re-assignments in case
of interruptions or delays.

4) Corridor: The nurse moves towards the room of the
patient and continuous location updates are registered
by the IoT system.

5) Patient Location: When the nurse arrives in the patient
room, a new location update is sent. Some lights in the
room automatically turn on at the appropriate low level,
since a staff member is present in the room.

6) Presence on: The nurse logs into the terminal in the
patient room. The call is now accepted and the correct
lights, depending on the procedure, turn on. For exam-
ple, for a medical procedure, the spotlights above the
bed turn on, while for an assistance procedure the mood
lighting is activated.

7) Presence off: The nurse inputs some additional admin-
istrative information about the procedure of the call on
the terminal and logs out. The call is now finished and
the procedure lights turn off.

8) Corridor: The nurse leaves the room. The location of
the nurse is updated and since no staff member is in the
room, all the lights turn off.

Since regulations stipulate that a nurse should be present
in the room within three or five minutes (depending on the
country) when a call has been made, the allowed decision
time should be limited to five seconds, to allow for plenty
of time for the nurse to move to the room. Therefore, the
data should be processed in a timely manner to meet these
real-time requirements. To represent the eHealth knowledge,
the ACCIO ontology2 is used, which has been constructed in
collaboration with domain experts. An elaborate description
can be found in Ongenae, et al. [4].

The decision tree of the selection procedure was translated
into SPARQL queries, that takes into account the back-
ground, profile and context information captured within the
ACCIO ontology.

1http://www.televic-healthcare.com/
2https://github.com/IBCNServices/Accio-Ontology/

VOLUME 4, 2016 3



Bonte et al.: Subset Reasoning for Event-Based Systems

III. BACKGROUND
This section introduces the necessary background on which
the remainder of this paper is built.

A. DESCRIPTION LOGICS
The popularity of OWL has led to the design of OWL2,
defining the foundations of OWL2 DL reasoning [26]. De-
scription Logics [27] are the logical-based formalisms on
which OWL2 DL has been built [28]. We introduce the
syntax of a simplified DL, explaining the basic notions to
understand the remainder of the paper. We refer the reader
to Horrocks et. al. [29] for a more thorough description of
the logic SROIQ (which is used within OWL2 DL) and its
semantics. DL defines concepts to represent the classes of
individuals and roles to represent binary relations between
the individuals. Concrete roles (or data properties) are roles
with datatype literals in the second argument.

DL languages contain concepts names A1, A2, ..., role
names P1, P2, ... and individual names a1, a2, .... A role R
is either a role name Pi, its inverse P−i or a complex role
R1 ◦ · · · ◦ Rn consisting of a chain of roles. Concepts C are
constructed from: two special primitive concepts ⊥ (bottom)
and > (top) or concept names and roles using the following
grammar:

C ::= Ai|>|⊥|¬C|C1 u C2|C1 t C2|∃R1.C1|∀R1.C1

Note that the two last concepts are called, respectively ex-
istential (∃) and universal (∀) quantifiers. More expressive
constructs such as qualified number restrictions are allowed
as well:

C ::=≥ nR.C1| ≤ nR.C1

Meaning that at least or at most a specific number n of
relations R should be present. Nominal support allows to
restrict to specific individuals instead of concepts:

C ::= ∃R.{a}|∃R.{a1, a2, ..an}

Where the latter can be seen as “one-of”. Data property
restrictions can restrict the values of data properties:

C ::= ∃R. ≥ n|∃R. ≤ n

A TBox T , is a finite set of concept (C) and role (R) inclusion
axioms of the form

C1 v C2 and R1 v R2

with C1, C2 concepts and R1, R2 roles. A concept equation
(C1 ≡ C2) denotes that both C1 and C2 include each other:

C1 v C2 and C2 v C1

An ABox A is a finite set of concept and role assertions of
the form

C(a) and R(a, b)

with C a concept, R a role and a and b individual names.
ind(A) denotes the set of individuals occurring in A. A
Knowledge base K = (T ,A) combines T and A.

We can now define the semantics using an interpretation
I. I is a pair (∆I , ·I) consisting of a non-empty domain
of interpretation ∆I and an interpretation function ·I . The
interpretation function assigns:
• an element aIi ∈ ∆I to each individual name ai,
• a subset AIi ⊆ ∆I to each concept name Ai,
• a binaray relation P Ii ⊆ ∆I×∆I to each role name Pi.

We can now use the interpretation function to define the
semantics of the above defined grammar:

(P−)I = {(v, u)|(u, v) ∈ P I},
>I = ∆I ,

⊥I = ∅,
(¬C)I = ∆I\CI ,

(C1 u C2)I = (C1)I ∩ (C2)I ,

(C1 t C2)I = (C1)I ∪ (C2)I ,

(∃R1.C1)I = {u|∃v ∈ CI ∧ (u, v) ∈ RI},
(∀R1.C1)I = {u|∀v ∈ CI ∧ (u, v) ∈ RI}.

We call M = K∞ the materialization of K = (T ,A),
i.e. all inferred axioms w.r.t. explicit individuals in K are
computed and explicitly stored. For example, based on the
knowledge defined in T , additional axioms regarding A can
be extracted.

OWL2 contains three profiles, each limiting the expressiv-
ity power in a different way, to ensure efficiency of reasoning:
• OWL2 RL: does not allow existential quantifiers on the

right-hand side of the concept inclusion, eliminating the
need to reason about individuals that are not explicitly
present in the knowledge base. Furthermore, it does not
allow quantified restriction, e.g. minimum, maximum
or exactly a specific number of quantified roles. This
profile is ideal to be executed on a rule-engine.

• OWL2 EL: mainly provides support for conjunctions
and existential quantifiers. This profile is ideal for rea-
soning over large TBoxes that do not contain, among
others, universal quantifiers, quantified restrictions or
inverse object properties.

• OWL2 QL: does not allow, among others, existential
quantifiers to a class expression or a data range on the
left-hand side of the concept inclusion. This makes the
profile ideal for query rewriting techniques.

Note that each of these profiles is a subset of OWL2 DL.
Expressive logics such as OWL2 DL require special tech-
niques to support their reasoning, such as the tableaux algo-
rithm [30], [31], i.e. a proof mechanism for first-order logic,
which is provided by reasoning systems [17], [13], [32], [33].

B. REASONING METHODS
Looking at the literature, three categories of reasoning meth-
ods can be distinguished:
• Reason at query time: These approaches perform the

reasoning while executing the query. The query evalu-
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FIGURE 1. Visualization of the flow of materialization, query rewriting and
reasoning at query time approaches.

ation itself is then performed under a certain entailment,
in order to incorporate the reasoning. The query eval-
uation can be formalized as eval(Q,K, E), with Q the
query that needs to be evaluated, K the ontology ABox
and TBox and E the entailment regime that defines the
expressivity of the reasoning during query evaluation.

• Materialization: Materialization approaches materialize
their data, such that queries can be executed without the
need for reasoning during query execution. The query
evaluation can be formalized as eval(Q,K∞, ∅), with
K∞ the materialization of K. The entailment regime
is ∅, denoting that there should be no reasoning while
evaluating the query.

• Query Rewriting: These approaches rewrite the pro-
vided queries based on the ontology TBox, such that
the query contains all the information from the on-
tology. The query evaluation can here be defined as
eval(Q′,K, ∅), with Q′ the rewritten query such that the
reasoning is contained within the query. The entailment
regime is here also ∅, thus no reasoning should be
executed while evaluating the query. We note that only
a subset of OWL2 DL can be rewritten.

Figure 1 visualizes the flow of the different reasoning
methods. We make a distinction between the loading of the
data at start-up, at the top, and the adding of event data
during runtime, at the bottom. The figure shows that, once
the event data has been added to the ontology at runtime,
the rewriting and materialization approaches don’t require
reasoning at query time. However, the materialization results
in computing all possible assertions in the knowledge base,
some might be irrelevant for the query answering. While the
query rewriting results typically in a very complex query and
only a small subset of OWL2 DL can be rewritten.

IV. UPDATE POLICIES
In an event-based environment, data is continuously pro-
duced and special techniques are necessary to capture the
current view on the data streams. We introduce the definition
of Update Policies that allow to define how the current
view should be constructed. The current view differs from
the window operator as it is updated based on the previous
current view, while the window is an operator that captures
the stream in processable chunks. We start with the definition
of a current view on a data stream:
Definition 4.1: Ax is a set of ABox axioms and S =
Ax1, Ax2, ..., Axn is a time varying sequence of axioms.
AxS(t) is a function that extracts a view at a specific time
instant from the Stream S. Axcurrent is a current view on
an axiom Stream S, it describes as a set of axioms how the
updates in the stream should be interpreted at the current
time.

We can now introduce the notion of an update policy:
Definition 4.2: An Update Policy Up is a function that
updates the view with the incoming axioms of the stream to
a current view:
Axcurrent(t) = Up(Axcurrent(t − 1), AxS(t)), with t the
latest time instant.
Let’s say we have a stream S of axiom sets Axi, i.e. S =
Ax1, Ax2, ..., Axn with i = 1..n time instances.

We define three basic update policies. Figure 2 visualizes
the differences between these policies based on different
axioms set in the data stream.

1) Latest: always takes the latest axiom set in the data
stream, similar to the Now operator that can be defined
for window functions in streams, namely:

UPLatest(Ax1, Ax2) = Ax2

2) Combine: merges the sets of axiom’s together.

UPCombine(Ax1, Ax2) = Ax1 ∪Ax2

3) Update: overwrites existing relations and merges new
ones.

UPUpdate(Ax1, Ax2) = (Ax1\Ax−(Ax1, Ax2))∪Ax2

with

Ax−(Ax1, Ax2) = {R(a, b) ∈ Ax1|∃R(a, c) ∈ Ax2∧b 6= c}

Note that more advanced policies are possible, however,
out of scope for this paper.

V. SUBSET REASONING
Now that we can maintain a view on the data stream accord-
ing to the defined policy updates, we introduce the concept of
subset reasoning as an approximation technique to efficiently
speed up the reasoning process. The technique calculates a
subset of ABox data from the knowledge base, based on
the new axioms in the data stream. The extracted subset
allows to efficiently calculate the materialization of the new
axioms. Note that this requires the knowledge base to be in a
materialized state.
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FIGURE 2. Visualization of resulting current views based on the different
update policies.

A. DEFINING SUBSET REASONING

Before we define how to extract the subset, we need to
identify how big the subset should be (similar to the Modal
depth [34]):

Definition 5.1: We define the Concept Depth as a recursive
function, starting from all axioms Ceq ∈ T with Ceq a
concept inclusion or concept equivalence and Ci concepts
and Ri roles:

depth(C1 v C2) = max(depth(C1), depth(C2))

depth(C1 ≡ C2) = max(depth(C1), depth(C2))

depth(Ci) = 0 with Ci a concept name
depth(C1 u C2) = max(depth(C1), depth(C2))

depth(C1 t C2) = max(depth(C1), depth(C2))

depth(∃R.C1) = depth(R) + depth(C1)

depth(∀R.C1) = depth(R) + depth(C1)

depth(R1o...oRn) = depth(R1) + ... + depth(Rn)

depth(Ri) = 1

The Concept depth thus calculates the number of relations
defined in a concept. We can now calculate the deepest
concept within the TBox:

Definition 5.2: We define the TBox Depth as:

depth(T ) = max({depth(C)|C ∈ T }).

The TBox depth will define how big the subset should be.

Example 5.1: We calculate the TBox depth based on the

following example TBox:

T = {
NormalCall ≡ Call u ∃callMadeBy.

∃hasRole.(Patient tResident)

CareCall ≡ NormalCall u ∃hasReason.CareReason

PriorityCall ≡ Call u ∃callMadeBy.

∃hasProfile.RiskProfile

Patient ≡ Role u ∃hasDetails.

∃isAdmittedTo.Hospital

Resident ≡ Role u ∃hasDetails.

∃isAdmittedTo.ResidentCareCenter

}

The depths for each of these concepts is respectively:

depth(NormalCall) = 2

depth(CareCall) = 1

depth(PriorityCall) = 2

depth(Patient) = 2

depth(Resident) = 2

The TBox depth is max({2, 1, 1, 2, 2}) = 2.
Before introducing the definition of a subset, we define the

collection of all outgoing relations as the function rout:
Definition 5.3: The outgoing relations of an individual i in a
knowledge base K is defined as:

rout(i,K) ={R(i, j)|R(i, j) ∈ A}

The types of the individuals that are linked through these
outgoing relations are defined through the function cout:

cout(i,K) = {C(j)|R(i, j) ∈ rout(i,K) ∧ C(j) ∈ A}

The combination of all the outgoing relations with the
types of the linked individuals is then defined as rcout:

rcout(i,K) = rout(i,K) ∪ cout(i,K)

We can now define how a subset for a set of ABox axioms
Ax can be calculated with respect to a materialized knowl-
edge base K∞. We denoted ind(Ax) as the collection of
individuals contained in Ax and depthmax the TBox depth.
Definition 5.4:

A subset Sub(Ax,K∞, depthmax) =
{Rout(i,K∞, depthmax)|i ∈ ind(Ax)} with

Rout(i,K, 0) =rcout(i,K),

Rout(i,K, depth) =rcout(i,K)

∪{Rout

(
i′,K, depth− 1)|i′ ∈ ind

(
rout(i,K)

)
}

So the subset method of an ABox Ax based on K∞ extracts
recursively all relations, individuals and their types linked to
the individuals in Ax that are also in K∞. The recursion is
dependent on the TBox depth. Note that to make the theory
work in practice two special cases need to be incorporated:
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• When in the latest step of the scenario (depth=0) there
are transitive relations, the recursion should continue to
follow these relations (and these relations only) until no
more of the transitive relations are found.

• In each step, we store the ABox relations that have
been followed before and make sure we do not follow
previously visited relations. This is to prevent that the
algorithm gets stuck in a loop.

These special cases were not included in the formalization in
order to maintain clarity.
Example 5.2: (cont’d) We extend the TBox from Example 5.1
with the following axioms:

T ′ = T ∪ {BehaviourRiskProfile v RiskProfile

MedicalRiskProfile v RiskProfile}

We introduce the following ABox:

A′ = {Person(p1), hasRole(p1, r1), Role(r1),

Hospital(h1), hasProfile(p1,m1),

MedicalRiskProfile(m1), Detail(d1)

hasDetails(r1, d1), isAdmittedTo(d1, h1),

...

P erson(p2), P erson(p3), P erson(p4),

hasRole(p2, r2), hasRole(pr, r3), hasrole(p4, r4),

StaffMember(r2), CareRole(r3),

StaffMember(r4)

}

Note that A′ contains more axioms (indicated by ‘...’), but
these were omitted for conciseness reasons. When we ma-
terialize the knowledge base, we can infer (among others)
that Patient(r1) and RiskProfile(m1). Consider now the
following update in the stream:

Ax = {Call(c1), callMadeBy(c1, p1)}

If we calculate the subset for Ax in function of T ′ and A′,
we obtain the following axioms:

Sub(Ax,K∞, 2)

= {Rout(c1,K∞, 2), Rout(p1,K∞, 2)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Rout(r1,K∞, 1), Rout(m1,K∞, 1)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Role(r1), hasDetails(r1, d1),

Rout(d1,K∞, 0), hasProfile(p1,m1),

MedicalProfile(m1), RiskProfile(m1)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Role(r1), hasDetails(r1, d1),

Detail(d1), hasProfile(p1,m1),

MedicalProfile(m1), RiskProfile(m1)}

FIGURE 3. Visualization of the example illustrating that subset technique can
extract a subset of data and still infer the types of the individuals in the event
data due to the materialization of the knowledge base. The circle visualizes
the data in the subset, the dotted rectangles depict the data necessary to infer
that c1 is a NormalCall and r1 is a Patient.

Which is a subset and still allows us to calculate the fact that
c1 is a NormalCall and a PriorityCall.
The example is visualized in Figure 3 where we can see that
we don’t need all information in the knowledge base to infer
the types of c1. To infer that the Call c1 is a NormalCall, we
need to know that r1 is a Patient. However, the subset does
not contain all the data to infer that r1 is a Patient. Since
we operate on a materialized knowledge base, we already
inferred in a previous step that r1 is, in fact, a Patient. Since
the inferred types are part of the subset, we can successfully
infer that c1 is a NormalCall. Since the knowledge base is
materialized, a smaller set of data can be extracted to infer
the types of the data in Ax.

B. SUBSET REASONING: A PRACTICAL APPROACH
TOWARDS EXPRESSIVE EVENT-BASED REASONING
The subsetting technique is very useful upon frequently
changing data. We define an axiom streaming dataset as
follows:
Definition 5.5: An axiom streaming dataset ADS is a set of
the form {(AS , Up), ...}with AS a stream of events described
as axioms and UP its update policy, as defined in Section IV.
In an event-based environment such as the IoT, there are
multiple streams to be considered since data from various
sources needs to be combined. The calculated subsets for
each of these streams should thus be combined with the
knowledge base to allow querying of the integrated streams.
The process of the various steps for one stream is depicted in
Figure 4. First, we calculate the new current view through
the selected policy update and based on the new view we
extract a subset of data from the materialized knowledge
base. The subset is then materialized and combined with the
materialized knowledge base in the Subset knowledge base.
The Subset knowledge base can then be queried.
Definition 5.6: A Subset Knowledge Base is the union of
the materialized knowledge base and the materialized axioms
sets from ADS: K∞ADS =

⋃
A∞S ∪ K∞ with A∞S =
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FIGURE 4. The different processing steps of the practical subset reasoning approach. With Ac the current view (Acurrent) on the stream AS .

M(Sub(UP (AScurrent, AS(t)),K∞, depth, T ))

This allows to combine the materialized views on the differ-
ent streams with the static data in the knowledge base. For
each AS we use a subset of K∞ to materialize AScurrent.
Due to the monotonicity property, K∞ does not need to
be updated when data is removed from AScurrent since
the materialization of AScurrent is maintained outside of
K∞. Additional information regarding K∞ can be inferred
in AScurrent but it does not inflict K∞ directly. Since the
union of K∞ and all the AScurrent ∈ ADS are used for
query answering, these results are taken into account. Note
that when AScurrent is updated, the previous materializa-
tion is removed and a new materialization based on the ex-
tracted subset is calculated. This methodology bypasses the
difficulties attached to removals in an incremental reasoning
approach [35], [36] (i.e. detecting which inferred facts should
be removed when removing data).

C. EXTENSION OF SUBSET REASONING

Since the subsetting technique is an approximation technique
it is not always complete. It is however always sound. The
technique focusses on the efficient materialization of the
new events, however, updating the knowledge base accord-
ing to the new events might sometimes be incomplete if
these updates fall outside of the subset. We first introduce
a pure fictional scenario to highlight the possible risks and
afterwards we present a solution. Note that in the practical
implementation of the nurse call system, we were never
confronted with these limitations. Figure 5 visualizes these
limitations. Let’s consider the following TBox consisting of
wards, patients and calls that might be at risk:

RiskWard ≡Ward t ∃hasPatient.RiskPatient

RiskPatient ≡ Patient t ∃madeCall.RiskCall

RiskCall ≡ Call t ∃hasStatus.RiskStatus

callMadeBy ≡ madeCall−

FIGURE 5. Visualization of the limitations of the subset technique when the
events update parts of the knowledge base outside the subset.

Say that the knowledge base consists of the following ABox:

Ward(w), Patient(p), hasPatient(w, p),

Call(c),madeCall(p, c), callMadeBy(c, p)

The stream that updates the call statuses AS produces the
following axioms that state that the call made by the patient
has a risk status:

Call(c), hasStatus(c, rs), RiskStatus(rs)

Since the TBox depth is only one in this example, we extract
the following subset:

Call(c), hasStatus(c, rs), RiskStatus(rs),

callMadeBy(c, p), Patient(p)

Upon materialization of the subset based on the introduced
TBox, we can infer that that call c is a RiskCall and that
patient p is a RiskPatient.

RiskCall(c), RiskPatient(p)
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However, since the ward w was not in the subset, we do not
infer that w is a RiskWard.

RiskWard(w)

As a solution to this problem, we can gradually increase
the subset in size when individuals at the edge of the subset
have changed type. With the edge of the subset, we denote
the individuals that are present in the subset but are not in
AS .

edge(AS ,K∞, d) = {c|c ∈ (ind(Sub(AS ,K∞, d))\ind(AS))}

The set of individuals that changed type in the edge of the
subset can be captured by the following function:

edgeChanges(AS ,K∞, d) =

{c|∃c ∈ edge(AS ,K∞, d) ∧ ∃C ∈ T
∧ C(c) ∈ Sub∞(AS ,K∞, d)

∧ C(c) /∈ Sub(AS ,K∞, d)}

With Sub∞ the materialization of the subset. In the
case that the changes Ac in the edge (i.e. Ac =
edgeChanges(AS ,K∞, depthmax)) is not empty, we extend
the subset by adding the changes Ac to the ABox we want to
calculate the subset upon:

Sub(AS ∪Ac,K∞, depthmax)

We keep increasing the subset ABox, with the changes
Ac, until there are no more individuals at the edge that
have changed type, i.e. until Ac = ∅. By also including
changed individuals in the edge in the calculation of the
subset, individuals that should be influenced by these changes
will also be correctly materialized.

Furthermore, when calculating the subset, we also take the
incoming relations rin and their types rcin into account in
this extension.

rin(i,K) ={R(j, i)|∃R ∈ T : R(j, i) ∈ A}
cin(i,K) ={C(j)|∃R(j, i) ∈ rin(i,K) : C(j) ∈ A}
rcin(i,K) =rin(i,K) ∪ cin(i,K)

When we redefine rcout used in the subset extraction func-
tion, then these relations are also taken into account:

rcout(i,K) = rout(i,K) ∪ cout(i,K) ∪ rcin(i,K)

Note that the incoming relations in the original subset ap-
proach are not necessary since there we only want to infer
the types of the newly added data and its closest relations.

In the example, Patient p became a RiskPatient and p was
in the edge of the subset. Therefore we add p to the arriving
data and calculate the subset on their union. This results in
the following subset:

Call(c), hasStatus(c, rs), RiskStatus(r, s),

callMadeBy(c, p), Patient(p),Ward(w), hasPatient(w, p)

This subset is sufficient to infer that w is a RiskWard. We
note that in most of our scenarios it is the knowledge base that

FIGURE 6. The different processing steps of the subset reasoning approach.

influences the arriving events and its nearest relations instead
of the other way around. Therefore, we propose the latter
solution as an optional configuration as it needs to verify the
types of the individuals at the edge and thus slightly slows
down the process.

VI. REALIZING SUBSET REASONING
In this section, we describe how we practically implemented
the subset reasoning approach3. Figure 6 visualizes the vari-
ous steps.

For simplicity, we first assume that different streams of ob-
servations can be distinguished from each other. For example,
in our use case, we have a location stream that transmits the
observations regarding the new locations of the personnel,
a call stream regarding new calls and their updates, a light
stream that captures the current status of lights and a presence
stream that indicates whether the personnel logs in on the
various devices. If these streams cannot be distinguished,
additional filtering, such as defined in Section VI-E, can
further split the streams up. The streams can be modeled as
OWLAPI4 axioms or Jena5 statements. Furthermore, in the
below explanation we assume that the background knowl-
edge is already materialized in a preprocessing step and the
queries are already defined, such that they can be continu-
ously executed. If this is not the case, we also provide the
mechanisms to materialize an ontology.

A. UPDATING
As each stream produces data, the stream updates are first
fed through their own policy updater that calculates the
current view on the stream according to the policies defined
in Section IV. This is visualized in Figure 6 as step 1. The
system maintains a current view for each stream and when
new data arrives the current view is updated according to the

3The implementation itself is available on github.com/pbonte/
SubsetReasoning

4http://owlapi.sourceforge.net/
5https://jena.apache.org/
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policy. In Example 5.2 we already showed an update in the
call stream.

AS = {Call(c1), callMadeBy(c1, p1)}

Since this is the beginning of a call, the current view will
be empty and the whole update will be considered the new
current view.

One can register a new stream by indicating the stream
name and the policy update for that stream. When adding
new data, the name of the stream should also be passed as
an argument. This allows to extract the correct current view
of the stream and update it according to the defined update
policy.

B. SUBSET EXTRACTION
Once the current view on the stream has been fixed, the subset
can be calculated from all the individuals in the current view
and the (materialized) background knowledge. This is done
according to the description in Section ?? and visualized in
Figure 6.2. We refer the reader to Example 5.2 for an example
of the extracted subset based on the above defined current
view.

C. MATERIALIZING SUBSET
Once the subset is extracted, the whole subset is materialized
according to the used ontology TBox (Figure 6.3). An exam-
ple of the materialization of the extracted subset can be found
in Example 5.2. The reasoning is performed with the Hermit
reasoner. However, other reasoners could easily be plugged
in.

D. NAMED GRAPH INSERTION
Each of the materialized subsets is then added as a named
graph to an RDF store. The background knowledge details
the default graph. Upon querying, the various graphs are
merged and the querying is done on the union of all the
graphs. We utilized the jena Dataset to store the various
graphs and to query them.

E. FINE GRAINED FILTERING
As one can imagine, the performance of the system strongly
depends on the size of the subset that needs to be ma-
terialized. It is possible that the arriving streams produce
observations that could be further split up. For example, in
our hospital setting, the location updates could come from
multiple wards, while it is only necessary to combine updates
from the same ward. Therefore we support finer-grained
filtering of the observations to split them up according to
some parameter, e.g. a ward in the hospital. This is done by
allowing additional SPARQL queries that select that param-
eter. To do this filtering, the stream observation needs to be
combined with the materialized background knowledge.
Example 6.1: To filter each location update according to
the ward it is produced in, we combine the produced data,
containing the observation, with the knowledge base and
execute the following query that selects the ward:

SELECT DISTINCT ? ward WHERE {
GRAPH : l o c a t i o n {? s ? p ? o}
? s c o n t e x t : h a s L o c a t i o n ? l o c .
? l o c c o n t e x t : h a s C e n t r e C o o r d i n a t e ? coord .
? coord c o n t e x t : h a s Z C o o r d i n a t e ? ward .
}

The ward level is then used as an additional identifier to select
the current view of the location stream for that specific ward.

F. DIFFERENCES TRADITIONAL REASONING
METHODS
Looking back at the reasoning methods introduced in Sec-
tion III-B, i.e. reasoning at query time, materialization and
query rewriting, Subset reasoning is clearly a materialization
approach. However, it differs in the way the materialization
is calculated and maintained. In Figure 1 we have seen that
data is typically just added to the ontology (step c), then
the knowledge base is materialized (step d) and then the
querying can be executed (step e). Our Subset reasoner takes
a different approach where the updates to the ontology are
stream specific and can overwrite and update data through
the use of the update policies. Thus step c of Figure 1 aligns
with Figure 6 step 1 The materialization of the runtime
data is also specific for each stream and utilizes the subset
extraction to minimize the data to reason upon. Thus step
d of Figure 1 aligns with both Figure 1 step 2 and step 3.
The querying itself requires an additional step, as first all the
materializations of all the streams need to be combined with
the materialized background knowledge. By extracting only
a subset of data, the reasoning process can be speed up.

G. SUBSET REASONING CONFIGURATION
The Subset reasoner can be configured utilizing the following
parameters:
• The ontology: The ontology used for the reasoning

process, this is typically the TBox.
• Static knowledge base: The static data that needs to be

combined with the event data. There is an additional
option to materialize this static data if this is not the
case.

• Data Streams: The data streams that will produce event
data.

• Update Policies: For each data stream, an update policy
can be defined.

• Queries: Multiple queries can be registered, allowing
the execute all the queries when new data arrives. There
is also the option to execute specific queries.

• Subset size: The size of the subset can be set manually
or can be automatically extracted from the registered
ontology.

When data arrives, it is added to the registered streams and
the assigned update policy will update the current view on
that stream. The subset calculation will extract the necessary
data and then the event data can be materialized. Once the
materializations are combined, the knowledge base can be
queried.
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VII. EVALUATION
This section evaluates both the performance of the proposed
approach and the completeness. The evaluation was con-
ducted on a 16 core Intel Xeon E5520 @ 2.27GHz CPU with
12GB of RAM running on Ubuntu 16.04.

A. EVALUATION SET-UP
To evaluate the performance and completeness of the pro-
posed approach, we evaluate our Subset approach in a real-
life use case (as described in Section II) in Section VII-B
and through an existing benchmark in Section VII-C. To
evaluate the performance of the system, in Section VII-B1
and VII-C1 we compare with reasoners with the same ex-
pressivity and for purely illustrative purposes we compare in
Section VII-B2 and VII-C2 with less expressive reasoners,
however, they are unable to infer all answers.

The reasoners with same expressivity consist of the Pellet
reasoner, the Stardog triple store6, and two versions of the
Hermit reasoner, one where we always materialize the whole
knowledge base with Hermit and then query it (further re-
ferred to as ‘hermit’) and one where the basic graph patterns
are evaluated inside the query engine with OWL 2 DL
reasoning [37] (further referred to as ‘owlbgp’).

The selected reasoners with a lesser expressivity are RD-
Fox, TrOWL and the jena incremental rule engine inferring
the fragment of the ontology that can be represented as
rules. The latter was incorporated because the C-SPARQL
RSP engine [10] allows the use of any kind of rules within
its query engine. We also incorporate the query rewriting
method from StreamQR, i.e. we rewrote the queries for
the ELHIO fragment of the ontology using the StreamQR
rewriting techniques (further referred to as ‘elhio’). We could
not incorporate StreamQR directly, as it does not support
static background data, such as the details regarding the staff
members, hospital layout, etc.

We note that the results of these reasoners are not com-
pletely comparable as the expressivity of these approaches
is lower than our Subset approach. These approaches could
not produce all required results in the evaluated scenarios.
In Section VII-B3 and VII-C3, we evaluate and discuss the
correctness of the approaches.

B. USE-CASE EVALUATION
We implemented the scenario from the use case introduced in
Section II. In each step of the scenario, an observation is sent
and multiple queries are executed to determine the correct
actions. To measure the scalability, we calculated how long
the reasoning and querying took for each step in the scenario
for a hospital ranging from 1 to 100 wards. We executed the
scenario 35 times for each number of wards, dropped the first
three and last 2 execution times and calculated the averages
over the remaining 30 samples.

Table 1 shows the different amounts of axioms used for
each number of wards and the complexity of the ontology.

6www.stardog.com
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FIGURE 7. Comparison of the performance of various reasoners, with OWL2
DL expressivity, for increasing ABox data in the real-life use case.

FIGURE 8. Performance of the Subset approach for increasing ABox data in
the real-life use case.

With 0 wards we denote the case where we only consider
the minimal set of individuals that allow to run the scenario,
namely three locations and three persons (one patient and two
staff members) each with their properties. This makes it the
smallest ABox the scenario can run on. Note that the TBox
depth of the ontology is three.

1) Performance Evaluation Comparable Reasoners
In Figure 7, we compare the execution time for the reasoners
with OWL2 DL expressivity and our Subset approach. Note
that the y-axis is in logarithmic scale. Furthermore, for the
other approaches we use the same update policies used in the
Subset approach, but update on the whole knowledge base.

It is clear that the other reasoners with the same ex-
pressivity do not scale very well in our scenario. As the
number of wards and thus the ABox data increases, all of the
approaches, except the Subset approach, become unusable
slow for real-time decision making.

Since it is hard to see the performance of the Subset
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TABLE 1. Summary of the ACCIO ontology for different number of wards.

#Wards: 0 1 10 25 50 75 100
Axioms 2169 2942 10643 19879 41438 63399 85094
Logical Axioms 1225 1835 7893 15151 32115 49396 66467
Individuals 88 250 1894 3871 8467 13147 17771
Classes 282
Object Properties 131
Data Properties 37
DL Expressivity SHOIQ(D)
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FIGURE 9. Comparison of the performance of various reasoners, with lower
expressivity, for increasing ABox data in the real-life use case. Note that these
lower expressive reasoner are not able execute the scenario correctly.

approach, we plot each step of the scenario for each number
of wards in Figure 8. We can clearly see that the size of the
ABox has a small influence on the execution time. This is
because the subset can efficiently extract the necessary data.
When the subset would be affected by an increase in data
that could be logically separated, e.g. the number of wards,
we can use a more fine-grained filtering, as described in
Section VI-E, to separate the data in the subsets.

Note that in a preprocessing step, we need to materialize
the static background knowledge for the Subset approach.
This can be very time consuming for larger knowledge bases
and is not taken into account in this comparison. However,
since it only needs to be done once and the static knowledge
typically does not change (often), it causes no real issues. In
our use case, the static data contains the various locations in
the hospital; the staff members and their capabilities; and the
patients and their pathologies. Note that when the patients
change too often, they can be modeled as a stream instead of
static data.

2) Performance Evaluation Non-Comparable Reasoners

Figure 9 details the performance evaluation for the
non-comparable reasoners. The less expressive reasoners
(TrOWL, RDFox, owl rl (jena)) are more performant than the
Subset approach. Even though TrOWL gets quickly caught
up by the Subset approach when the ABox increases in size.

TABLE 2. Correctness of the different approaches. The correctness is
calculated as the number of correct class assertions. The last column details
whether each engine was able to correctly run the scenario.

Engine Correctness Scenario Correct
Subset 100% yes
Rdfox 98.3% no
Jena OWL-RL 97.2% no
TrOWL 99.6% no
ELHIO 87.1% no

The OWL RL approaches are faster than the Subset approach,
which can be expected as they only infer a fragment of the
ontology. The fragment has been selected in such a way that
it can be efficiently computed. An interesting observation is
that rewriting of the queries based on an expressive ontol-
ogy results in queries with many unions (between 430 and
138158, with an average of 34276 unions). The execution of
these queries is very expensive due to the large number of
unions. Even though our Subset approach is slower, yet more
expressive, we see a similar trend in terms of scalability as
for the OWL2 RL reasoners.

We point out to the reader that the most important compar-
ison is to compare the Subset approach with the two hermit
approaches (hermit and owlbgp) since they use the same
reasoner. We chose to use Hermit within our subset reasoner
since it is the most complete. However, the technique is
reasoner independent. This means that the subset technique
can be ported to other reasoners as well.

3) Correctness Evaluation
Since the Subset approach (without the extension from Sec-
tion V-C) is an approximation technique, and we have in-
cluded less expressive reasoners, we now discuss the cor-
rectness of each approach. To calculate the correctness we
have run the scenario with the hermit reasoner and saved a
materialized snapshot of the knowledge base in each step of
the scenario. We view this as our baseline and compare for
each approach the percentage of class assertions that have
been correctly assigned to the individuals in the knowledge
base.

Table 2 shows the correctness of each of the approaches.
The last column indicates if the scenario was executed
correctly. Our Subset approach is correct in this scenario,
however none of the less expressive reasoners were able to
execute the scenario correctly, even though the correctness
level was already rather high. This is because the majority
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TABLE 3. OWL2 RL coverage of the IoT labeled and the most prominent
Smart Industry, Smart manufacturing, Pervasive Health and Social Media
ontologies in the Linked Open Vocabularies repository (lov.linkeddata.es).

Ontology Name OWL2 RL
Coverage

#subclass
def

The NASA Air Traffic Management Ontology 92.7% 263
Climate and Forecast (CF) standard
names parameter vocabulary 95.6% 405

Data Value Vocabulary (DaVe) 50% 6
Ontology Modeling for Intelligent
Domotic Environments 63.1% 2963

FIESTA-IoT Ontology 79.6% 598
Home Weather 49.2% 313
Iot-lite ontology 100% 11
The Machine-to-Machine Measurement (M3)
Lite Ontology 82.2% 544

MobiVoc: Open Mobility Vocabulary 100% 17
SAN (Semantic Actuator Network) 64.3% 42
SAREF: the Smart Appliances
REFerence ontology 76.2% 248

The SEAS Device ontology 58.3% 36
The SEAS Forecasting ontology 45.4% 11
The SEAS Time Ontology. 84.6% 13
Sensor, Observation, Sample, and Actuator
(SOSA) Ontology 100% 0

Semantic Sensor Network Ontology 68.8% 80
Semantic Sensor Network Ontology
(old version) 80.9% 89

VoCaLS: A Vocabulary and Catalog
for Linked Streams 100% 13

Reference Architectural Model
for Industry 4.0 (RAMI) 88.6% 35

Dem@Care Lab Ontology
for Dementia Assessment 65.7% 213

The Event Ontology 69.7% 76
The CARESSES Ontology for
Socially Assistive Robotics 53.5% 213

of concepts in the scenario do not always require expressive
reasoning, however, to facility correct decision making in
critical situation, e.g. correctly classify each call, expressive
reasoning is necessary. Even though the frequency for the ex-
pressive reasoning might seem low, it is necessary to enable
correct decision making as up to 40% of the scenario steps
really depend on the results that require expressive reasoning
(that cannot be inferred within the OWL2 RL fragment).
The correctness results in Table 2 should thus be interpreted
carefully as they indicate the correctness over the whole
knowledge base. Even a small lack of correct results can lead
to missing important events. This is clear for TrOWL, even
with a correctness of 99.6% the scenario is not able to execute
correctly.

In Table 3, we listed the OWL2 RL coverage for
the IoT labeled and the most prominent Smart Industry,
Smart Manufacturing, Pervasive Health and Social Me-
dia ontologies in the Linked Open Vocabularies repository
(lov.linkeddata.es)7. In the right column, the table shows the
number of subclass definitions that each ontology contains.
Note that a class equivalence can be seen as two subclass
definitions. The table shows that many of these ontologies
consist definitions that are not fully covered by the OWL2 RL

7We included all the ontologies that were accessible at the time of writing.

semantics. Even though the OWL2 RL reasoners are more
performant, many existing ontologies still require higher
expressive reasoning, such as OWL2 DL.

C. UOBM EVALUATION
The University Ontology Benchmark (UOBM) [38] is an
existing reasoning benchmark consisting of universities of
various sizes containing professors, assistant professors, un-
dergraduate students, students, courses, publication, etc. The
benchmark comes with four queries requiring expressive
reasoning:

• Q1: Retrieve all women students. UOBM defines a
woman college as: WomanCollege ≡ School ∧
∀hasStudent.Student∧∀hasStudent.(¬Man). Thus
as a school where the students are not of the gender
man. When a student is attending a woman college, the
reasoner can infer that the student is female as Man and
Women are defined as disjoint classes.

• Q2: Retrieve all people with many hobbies. UOBM
defines people with many hobbies as:
PeopleWithManyHobbies ≡ ≥ 3 like.>. They
thus should like at least three things.

• Q3: Retrieve all people who love sports. UOBM de-
fines people who like sports as: SportsLover ≡
∃like.Sports. This means that there should exist a sport
that the person likes.

• Q4: Retrieve all people with at least one hobby.
People with a hobby are defined in UOBM as:
PeopleWithHobby ≡ person∧ ≥ 1 like.>. This
means that the person should like at least one thing.

It is clear that the UOBM defines some complex concepts.
However, compared to the ACCIO ontology used in Sec-
tion VII-B, UOBM has a depth of one. UOBM is by default a
static benchmark, so we extended the benchmark such that
has a streaming characteristic8. This is done by allowing
students to join a college over the year. This means that
we extracted the generated students from the benchmark
and stream them together with the courses they take, the
college they attend, their interests and friends, etc. We have
evaluated the average performance of processing the stream
of student information over a university with 1, 2, 3, 4, 5
and 10 departments. Table 4 describes this in detail. As each
student typically changes friends, courses and interests over
the course of time, we have modeled each student and its
updates as a distinct stream.

1) Performance Evaluation Comparable Reasoners
In Figure 10, we compare the average time to process a new
student for the reasoners with OWL2 DL expressivity and
our Subset approach. This indicates the reasoning time and
the time to answer all four queries. Note that the y-axis is in
logarithmic scale. It is clear that the other approaches do not
scale well.

8The generator is available in the data folder on our Github page.
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TABLE 4. Summary of the UOBM ontology for different number of university departments.

#Departments 1 2 3 4 5 10
Axioms 12405 26490 38849 52486 63949 133809
Logical Axioms 11943 25871 38075 51545 62870 131888
Individuals 1158 3141 4461 5937 7082 14063
Classes 113
Object Properties 35
Data Properties 9
DL Expressivity SHOIN(D)
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FIGURE 10. Comparison of the performance of various reasoners, with
OWL2 DL expressivity, for increasing ABox data on the UOBM benchmark.
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FIGURE 11. Comparison of the performance of various reasoners, with lower
expressivity, for increasing ABox data on the UOBM benchmark.

2) Performance Evaluation non-Comparable Reasoners
In Figure 11 we show the comparison with reasoners with
lower expressivity. It is clear that they are typically faster than
our approach. However, as we will see in the completeness
evaluation, in Section VII-C3, these approaches are fast in
this scenario but are unable to infer a complete answer set.
We even see that the rewriting approach, i.e. elhio, becomes
slower as well due to the many unions in the rewritten
queries. Furthermore, our Subset approach is faster than
TrOWL.

3) Completeness Evaluation
Figure 12 shows the correctness of the approaches in the
UOBM scenario in terms of the completeness of the given
query answers. For each query, we evaluate the percentage
of correctly derived results. It is clear that only HermiT,
Pellet, OWLBGP and our Subset approach are able to provide
correct answers. TrOWL is unable to provide correct answers
to the first two queries, therefore it is not showing any results
in the graph. Note that this holds for the other reasoners
as well. If they could not answer the query at all, they are
not shown in the graph as they produce 0% correct results.
The other reasoners fail to make most of the derivations.
Even though these reasoners are fast, they are incomplete in
scenarios where expressive reasoning is required.

VIII. DISCUSSION
In this section, we discuss how our solutions tackles the set
objectives, how Subset reasoning compares to the related
work, how the evaluation results should be interpreted and the
drawbacks and future work directions for Subset reasoning.

A. OBJECTIVES DISCUSSION
Looking back at the Objectives set in Section I-C, we can
now discuss how our Subset reasoning approach tackles the
various objectives:

1) Heterogeneous data: Our Subset reasoner can combine
various heterogeneous sources by utilizing a common
semantic model, i.e., an ontology.

2) Event data: The Subset approach can handle the addi-
tion and removal of event data through the use of its
update policies that allows the system to have a clear
view on the current context. Furthermore, the Subset
approach utilizes an approximated extraction method to
minimize the data to reason upon, decreasing reasoning
time. Fast reasoning times are necessary in event-based
system such that the system stays reactive and real-time
decisions can be made.

3) Large knowledge bases: Many domains have large
knowledge bases that need to be combined with the
generated event data. However, reasoning over these
large knowledge bases in combination with the chang-
ing event data might become slow. The Subset reasoner
tackles this problem by exploiting the fact that the
large knowledge bases typically consist of static data
that does not change very often. Therefore, this data
is materialized and due to the monotonicity property,
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FIGURE 12. Correctness comparison UOBM evaluation for different reasoners.

TABLE 5. Comparisson of the related work to the Subset approach. (With W
= windowing and UP = update policies.)

Add/
Remove

Event
Data

Expressive
Reasoning

Large
KB View

Traditional
Reasoners x / x (OWL2 DL) / /

Pagoda / / x (OWL2 DL) x /
RDFox x / / (OWL2 RL) x /
TrOWL x x x (SHIQ) / /
RSP x x / (RDFS) x x (W)
StreamQR x x / (ELHIO) / x (W)
SubSet x x x (OWL2 DL) x x (UP)

adding data will not lead to the removal of facts in
the static data. The Subset reasoner extract data from
the materialized knowledge base in order to compose a
minimal subset to reason upon.

4) Expressive reasoning : Expressive reasoning is neces-
sary to interpret many complex domains. The Subset
approach supports OWL2 DL reasoning. It is able to
perform this highly expressive reasoning over event data
by computing a subset of data to reason upon.

B. RELATED WORK COMPARISON
Table 5 summarizes the related work and how they relate to
our Subset approach. As we have seen in the evaluation in
Section VII, traditional reasoners such as Pellet and Hermit
are very expressive, however, they have problems processing
event data in a timely fashion. They become very slow
when the data increases and do not have any mechanisms
to process event data besides adding and removing of data.
The Pagoda reasoner tries to solve the performance problem
by combining the Hermit reasoner with a less expressive
OWL2 RL reasoner. However, Pagoda cannot be used with
event data as it does not allow the addition and removal of
data. RDFox is the fasted OWL2 RL reasoner currently avail-
able. It is very performant within its OWL2 RL fragment,
however, as we have seen in Section VII-B3 and VII-C2,
many use cases and ontologies require expressive OWL2 DL
reasoning to correctly interpret the domain knowledge. Even
though RDFox allows efficient addition and removal of data,
it does not provide any mechanism such as windowing or
update policies to process the event data and keep a view

on the current context. TrOWL provides almost OWL2 DL
expressivity, however, in Section VII-C2 we saw that even
some unsupported constructions lead to incomplete answers.
Furthermore, in the evaluation we have seen that TrOWL
becomes rather slow when the background knowledge in-
creases. RSP engines provide all the mechanisms to handle
event data, however, due to their low expressivity, they cannot
interpret complex domains. Query rewriting techniques such
as provided by StreamQR can only inject a small part of
their expressivity in the query and tend to become slow when
the static data increases. Our Subset reasoner can perform
expressive reasoning over event data, in combination with
large knowledge bases by approximating a subset of data to
reason upon. It is the only approach that fulfills all the set
requirements.

C. EVALUATION DISCUSSION
In section VII-B1 we have shown that the Subset approach is
a good candidate to make expressive reasoners more scalable
and applicable in real-time scenarios were expressive reason-
ing is necessary. From section VII-B2 and VII-C2 it is clear
that OWL2 RL reasoners, which are less expressive, are more
efficient. However, as we have shown in Section VII-C3,
these techniques are incomplete when expressive reasoning
is required. Furthermore, in section VII-B3 we have shown
that only a small fragment of the IoT labeled ontologies are
completely covered by the OWL2 RL fragment. This implies
that ontology designers either do not take efficiency into con-
sideration when designing ontologies or ontology designers
feel that the OWL2 fragments are lacking expressivity to
model their domains.

We agree that some of the OWL2 DL definitions that can-
not be represented in OWL2 RL, such as quantified number
restrictions (e.g. there should be at exactly one person present
in a certain room), could (in some form) be represented as
standard existential quantifiers (e.g. there should be a person
present in a certain room). However, such adaptations should
be conducted very carefully as the semantics of the concepts
are changing.

Thus, as expressive ontologies are still being designed
and it is not trivial to convert expressive ontologies to their
lesser expressive variants, techniques to efficiently reason
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FIGURE 13. Complications of using windowing. The figure shows a typical
dependency between events in the scenario. As reasoning is involved, the
events need to be combined to infer the correct types that are used in the
queries. However simply combining them, as in the sliding window, results in
duplicate triggering queries (and thus duplicate actions). When the events are
in different windows, incorrect actions are taken because the inferred
information is missing.

upon expressive ontologies are still needed.

D. SUBSET REASONING LIMITATIONS & FUTURE
WORK DIRECTIONS

A first limitation of the subset approach is that the data
streams are handled separately, this means that if data from
stream A has influence on data from stream B, that this will
not be detected. This is because each stream is handled by
its own update policy. This can be bypassed by combining
various streams in the same update policy, however, this
will have a negative impact on the performance. A second
limitation is the fact that the update policies are currently not
time based. This means that one has to explicitly remove facts
in order to deprecate data. Time-based windows allow facts to
be removed after a certain period of time, something which is
not supported yet by our update policies. A third limitation is
that our approach currently extracts ABox data only and takes
the complete TBox each time into account, when performing
reasoning.

In future work, we wish to further extend the subset ap-
proach and provide mechanisms to detect influences between
streams. This would allow to efficiently process various
streams that have influences on each other. Furthermore, we
wish to further extend the update policies such that facts
can be automatically removed after a certain period of time.
This will eliminate the need to explicitly remove facts. This
would also allow us to integrate aggregation mechanisms,
as supported by RSP engines. We also wish to investigate
mechanisms to efficiently minimize the TBox utilized in the
reasoning process to further increase the reasoning perfor-
mance.

E. PROBLEMS OF USING WINDOWING
In this section, we describe the implications of using win-
dowing9, instead of the update policies, has on the scenario,
as visualized in Figure 13. Say we have two events (event
E1 and event E2), E1 can be inferred through reasoning
as a NormallCall, when adding the information described
in E2, that says that the call has a medical reason, to E1,
the call can now be inferred as a MedicalCall. These kinds
of dependencies occur throughout the use case. Different
queries are executed in a certain order on these events and
when one of the queries triggers, a certain action is executed.
When E1 arrives, describing a new call has been launched by
a certain patient, query Q1 that selects staff members for new
calls (status active) is executed and notifies the selected staff
member. This is step 1 (Call Launched) in the scenario. In
step 2 (Call Redirect) the staff member is busy and redirects
the call and indicates that the call has a medical reason. This
is described in E2. Normally, query Q2 should select a new
staff member for medical calls that have been redirected.

However, when using windowing, the dependencies be-
tween the events can be lost. Figure 13 shows both the
problems for both tumbling and sliding windows. When
using a tumbling window (Figure 13 a), Q1 is executed upon
E1 and as a result E2 is sent. However, in the next window
W2, the information regarding the call described in E1 is lost
and now it is unknown that the call was a NormalCall and
therefore Q2 will not be executed. Query Q3 that redirect any
kind of call will match and an incorrect action will be taken.
When using a sliding window (Figure 13 b), both events can
be comprised in the same window, however, as the call keeps
its initial status (active) query Q1 will trigger for a second
time and duplicate actions will be taken. This problem occurs
due to the lack of an update policy that should overwrite the
call status.

IX. CONCLUSION AND FUTURE WORK
In this paper, we presented a technique that allows to bridge
the gap between volatile data and expressive reasoning. Our
technique maintains a materialized view on the ontology
ABox and uses a subset approximation to efficiently update
the materialized view. To define how these updates should
happen, we introduced the notion of update policies. The sub-
setting enables a scalable system even with highly increasing
ABoxes.

In our future work, we will investigate the possibility to
perform aggregations, as supported by RSP, within the up-
date policies. Furthermore, we will investigate the integration
of module extraction techniques [21] to, besides minimizing
the ABox, minimize the used TBox within the reasoning
process. Our technique achieves a speed-up of up 10 times
for small ABoxes and more than 1000 for larger ones.

We show that the subsetting technique is a valid tool to
enable expressive reasoning in time-critical scenarios, allow-

9There exist various entailment regimes [1], we explain graph-level en-
tailment as it is currently the most commonly used.
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ing real-time systems to make complex decisions based on
expressive reasoning solutions.
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