
The Role of Semantic Technologies in Diagnostic and  

Decision Support for Service Systems  

 

 
Eleni Tsalapati 

Loughborough University 

E.Tsalapati@lboro.ac.uk 

Thomas W. Jackson 

Loughborough University 

T.W.Jackson@lboro.ac.uk 

 

William Johnson 

Loughborough University 

C.W.D.Johnson@lboro.ac.uk 

Lisa Jackson 

Loughborough University 

L.M.Jackson@lboro.ac.uk 

 

Andrey Vasilyev 

Loughborough University 

A.Vasilyev@lboro.ac.uk 

Andrew West 

Loughborough University 

A.A.West@lboro.ac.uk 

 

Lei Mao 

Loughborough University 

L.Mao@lboro.ac.uk 

 

Ben Davies 

Loughborough University 

B.Davies2@lboro.ac.uk 

 
 

 

Abstract 
 

In this research, we utilize semantic technology for 

robust early diagnosis and decision support. We 

present a light-weight platform that provides the end-

user with direct access to the data through an 

ontology, and enables detection of any forthcoming 

faults by considering the data only from the reliable 

sensors. Concurrently, it indicates the actual sources 

of the detected faults, enabling mitigation action to be 

taken. Our work is focused on systems that require 

only real-time data and a restricted part of the historic 

data, such as fuel cell stack systems. First, we present 

an upper-level ontology that captures the semantics of 

such monitored systems and then we present the 

structure of the platform. Next, we specialize on the 

fuel cell paradigm and we provide a detailed 

description of our platform’s functionality that can aid 

future servicing problem reporting applications. 

 

1. Introduction  

 
Numerous industrial applications require real-time 

continuous monitoring of their performance and early 

diagnosis of any forthcoming failures. Most of the 

current diagnostic tools are limited to providing 

warning of impending failures without any 

explanation, thus preventing any specific mitigating 

action. At the same time, few diagnostic tools take into 

consideration the reliability of the sensors being used. 

In this research we suggest that the scalability and the 

integrating nature of semantic web technologies can 

facilitate these tasks. 

We exploit the Ontology Based Data Access 

(OBDA) [1] technology for robust early diagnosis and 

decision support. OBDA enables the end-user direct 

access to the data through an ontology, which is a 

comprehensible semantic layer that constitutes a 

formal specification of the domain of interest. 

Roughly, ontologies constitute a formal representation 

of entities and of relationships between them that is 

both machine and human readable. This way, they can 

be processed by ontology reasoners. A great number of 

efficient OBDA reasoners are now available for this 

purpose; for example, PAGOdA [2], Ontop [3], and 

Hydrowl [4], but there are many more. 

We propose the System Monitoring lightweight 

platform based on the OBDA technology, which 

focuses on providing diagnostic mechanisms for 

unavoidable failures and providing alerts about any 

forthcoming failures and suggestions appropriate 

mitigation actions. Our approach has two main 

benefits; firstly, it provides the end-user with direct 

access to the data through the ontology; secondly, it 

enables detection of any forthcoming faults by 

considering only the data of the reliable sensors. At the 

same time, the indication of the actual sources of the 

detected faults enables the suggestion for a respective 

mitigation action. Our work is focused on systems 

operating under static conditions where their diagnosis 

requires only real-time data and a restricted part of the 

historical data. 
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The proposed platform is applied in the Proton 

Exchange Membrane (PEM) fuel cell paradigm. PEM 

fuel cells provide an electrochemical source of 

virtually zero-emission energy conversion and power 

generation [5]. The cell design can be adapted to suit a 

diverse range of devices, either individually or 

combined in fuel cell stacks, to generate power for 

vehicles, portable and stationary units. The commercial 

success of fuel cell technology is largely dependent on 

establishing its durability and reliability. A drawback 

to most of the current fuel cell diagnostic tools is that 

their functionality lacks any identification mechanisms 

of the causes underpinning the occurring failures. 

Data-driven approaches (e.g. [6], [7], [8]) can detect 

the faults, but they may not further isolate the faults 

unless enough test data obtained from various faults is 

available, while model-based methods (e.g. [9], [10], 

[11], [12]) require the development of the accurate 

model incorporating different fault effects with 

mathematical equations, which is usually extremely 

complex and time-consuming. 

After a brief introduction on the semantic 

technologies in Section 2, we describe in Section 3 the 

novel upper-level ontology System Monitoring 

ontology, which captures the basic knowledge related 

to system monitoring. In Section 4 we present the 

functionality of the System Monitoring platform. In 

Section 5 we focus on the PEM fuel cell paradigm. In 

particular, in Section 5.1 we present a brief 

introduction to the PEM fuel cell technology, in 

Section 5.2 the novel domain ontology Fuel Cell 

System Monitoring ontology is described. In Section 

5.2 the functionality of the System Diagnosis platform 

once implemented in the fuel cell paradigm is 

presented. Finally, in Section 6 we present some results 

of this work and in Section 7 we discuss the 

conclusions and future work. 

 

2. Preliminaries  

 
The primary component of the semantic technology 

is the semantic Knowledge Base (KB), which 

comprises two components: the Terminology Box 

(TBox, or simply ontology) and the Assertional Box 

(ABox). The structural elements of an ontology in the 

OWL 2 Web Ontology Language [13] are the (atomic) 

classes, the individuals, the object and datatype 

properties. The classes represent abstract groups, sets, 

or collections of objects, e.g. the concepts System, 

Sensor are classes. The individuals refer to the real-

world concrete objects, e.g. a specific system named 

system1. The object properties relate objects to objects. 

For instance, given a specific individual, e.g. system1 

of the System class and a specific individual sensor1 of 

the Sensor class, the property monitors(sensor1, 

system1) indicates that the sensor1 monitors the system 

system1. Finally, the datatype properties assign data to 

objects, for example the assertion hasValue(Voltage, 

23) states that the value of the Voltage is 23.  

To describe thoroughly the domain of interest, we 

can define in the TBox subclass axioms, subproperty 

axioms or general concept inclusion axioms (GCIs). 

The components of the subclass axioms are atomic 

classes. For instance, the “Actuator SubClassOf 

System” is a subclass axiom that indicates that every 

individual that belongs to the Actuator class belongs 

also to the System class. It is important to note that a 

subclass always inherits the properties of its 

superclasses. Subproperty axioms are defined in the 

same manner. GCIs include more complex class 

expressions, for instance the GCI (expressed in 

Manchester syntax [14]): 

 

System and(hasVoltage some LowVoltage)  

SubClassOf isInDegradationMode value flooding 
 

states that if a system has low voltage then it is in 

flooding mode. Depending on the complexity of the 

class expressions appearing in the GCI axioms, 

different profiles of the OWL 2 language are defined. 

Each profile has different expressiveness and enjoys 

different computational properties. In this paper we use 

the lightweight (PTime-complete [15]) OWL 2 EL 

profile [13]. 

Depending on the problem, different kinds of 

ontologies can be developed. Upper-level (or 

foundation) ontologies consist of general concepts that 

are common across different domains. This way, they 

facilitate the semantic interoperability among the 

domain-specific (or simply domain) ontologies, as the 

elements of the domain ontologies are specializations 

of the generic elements appearing in the upper-level 

ontology. 

Ontology Based Data Access (OBDA) is a key 

reasoning service of the new generation information 

systems. In the OBDA paradigm, an ontology defines 

in a high-level of abstraction the schema of data 

sources in terms familiar to the domain experts. The 

data sources are related to the ontology either via 

mappings, which are declarative specifications, similar 

to view definitions in databases, or via their 

RDFization, i.e. their conversion into ABox assertions. 

This way, the user can query the KB without an IT's 

expert intervention. Usually OBDA systems can 

support conjunctive queries (CQ). A CQ is an 

expression of the form Q(�⃗�)⃪ f(�⃗� , �⃗�), where f is a 

conjunction of function-free atoms, in which the 

predicate “Q” does not appear, containing only 

variables from �⃗�   or from �⃗� . An OBDA system 
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translates the queries and the ontology into the 

vocabulary of the data sources and then performs the 

actual query evaluation to a suitable query answering 

system. In this research, we use Hydrowl, which is one 

of the most efficient OBDA systems [4] and is partly 

based on GraphDB formerly known as OWLim [16]. 

OWLim performs the materialization technique, which 

provided the database and the ontology it computes all 

the implied assertions that can be inferred. 

 

3. The System Monitoring Ontology  

 
The purpose of the system monitoring ontology is to 

represent in a higher abstract level all the basic 

knowledge related to system monitoring. Thus, 

information about the monitored system, its 

components, the sensors monitoring the system, their 

outputs and their reliability must be represented in the 

ontology. Additionally, the ontology must contain 

terms related to its normal or abnormal operation, 

along with suggestions for mitigation action. 

One of the most popular upper ontologies for the 

semantic representation of sensors and the information 

surrounding them is the Semantic Sensor Network 

(SSN) ontology [17], which is developed by the W3C 

Semantics Sensor Networks Incubator Group. 

However, it is rather impractical for the lightweight 

platform that we propose, as it has high level of 

expressivity. A more lightweight version of the SSN 

ontology is the Sensor, Observation, Sample, and 

Actuator ontology [18], developed by the same group, 

which however is too simple to capture the knowledge 

required for our platform. We have developed the 

System Monitoring (SM) ontology, which is an upper 

level lightweight ontology that captures the basic 

features related to system monitoring. The structure of 

the SM ontology is inspired by the SSN ontology but it 

is of lower expressivity (OWL 2 EL).  

The SM ontology introduces a set of classes centred  

around the notions of System and State. We present a 

graphical representation of the SM ontology in Figure 

1. The arrows with solid line represent the SubClassOf 

(ISA) relationships and the dashed arrows the object 

property relations between the classes or the datatype 

properties. 

Classes. The core class of the ontology is the 

System, which has as subclasses the Actuator class, i.e. 

a device that performs a procedure that changes the 

state of the world and the Sensor class. All three 

classes are subclasses of the respective classes of the 

SSN ontology. A sensor can monitor either an actuator 

or an individual component of the actuator 

(ActuatorComponent). We suppose that both systems 

are in use, thus they are dynamic entities and as such 

can be described by a set of States. The instances of the 

class State are defined by the corresponding system 

and the time that is being monitored. For instance, the 

system “system1” is in state “system1@t1”, where “t1” 

is a specific time value. This way, a distinction 

between the various states of a specific system is 

accomplished, avoiding any inconsistencies. Also, at 

each state it has a specific output with a result value, 

which is stored in the class SystemOutput. 

Additionally, from the output values of the system a set 

Actuator

Component

isReliable

isInState
Mode

Condition

Scale

Range

SensorOutput

Actuator
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Calculated
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Figure 1 The System Monitoring Ontology 
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of values, useful for the system diagnosis can be 

calculated. The class CalculatedValue contains these 

values. It is, also, important to capture the Conditions 

under which a System is operating, as these may affect 

its performance. Examples of such conditions include 

the weather conditions or the number of times that the 

system has been in operation. The class Operation-

Range stores the maximum and minimum values that a 

system can operate under the specified conditions. This 

way, if the outputs of the sensors are not within these 

values a malfunction of the system can be derived. The 

class ScaleRange is used to store the thresholds with 

which the output values of the system or the calculated 

values are classified to very-high-high-medium-low to 

aid the early diagnosis of any forthcoming failure. The 

class Mode stores the different failing modes that the 

system is at every state. Given the mode a set of 

MitigationActions can be suggested for the particular 

system.  

Object Properties. The object properties that 

interlink the classes of the SM ontology are presented 

in Figure 1, except for the property hasSensorOutput, 

which is subproperty of the property hasOutput, with 

domain the class Sensor and range SensorOutput. 

Additionally, for every property R with domain a class 

C1 and range a class C2 a respective property R0 from 

C2 to C1 is defined.  For instance, for the property 

hasSensorOutput a property isOutputOfSensor is also 

defined. 

The property isCalculatedFrom that interlinks the 

concepts Sensor and CalculatedValue aids the reliable 

diagnosis of the system. This is achieved during 

prognostic process by taking into account only the 

calculated values that are calculated from reliable 

sensors.  

Datatype Properties. The property isReliable that 

appears in Figure 1 states whether a sensor is reliable 

or not. As the focus of this work is to construct an 

overall basic framework for system diagnosis, sensor 

reliability is defined herein as a Boolean; however 

further generalization to consider fuzzy variability can 

also be considered and constitutes future outlook for 

this platform. Also, the following datatype properties 

do not appear in Figure 1: The class State is equipped 

with the datatype property atTime. The classes 

SensorOutput and CalculatedValue have the properties 

hasValue, hasUnit, atTime, through which the raw or 

calculated data are stored for each monitored moment. 

The class OperationRange has the properties 

hasUpperValue and hasLowerValue that define the 

upper and lower values that the system operates under 

the specified conditions. Finally, the class ScaleRange 

has four different datatype properties:  

 hasLowThreshold(ScaleRange,xsd:float) 

 hasMediumThreshold(ScaleRange,xsd:float)  

 hasHighThreshold(ScaleRange,xsd:float)  

 hasVeryHighThreshold(ScaleRange,xsd:float) 

which are used to classify the output or the calculated 

values of the system. It is worth noting this 

classification process could be automatically 

performed be defining a set of SWRL rules [19], which 

enable the comparison of values, and using a reasoning 

that supports SWRL. However, SWRL rules introduce 

serious reasoning problems [20], especially when large 

datasets are included. Additionally, we regard that the 

threshold values is part of the knowledge that should 

be evident both for the engineer and the user when 

required. 

ABox Assertions. Given the specification of the 

monitored system and its sensors, a set of static data 

related to its healthy operation is stored. In particular, 

the ScaleRange and the OperationRange classes are 

populated by the domain expert. Also, the different 

modes of the system with the respective mitigation 

actions can be stored in the ontology as part of the 

static information. Finally, all sensors are initially 

defined as reliable. 

The SM ontology does not include any general 

inclusion axioms.  

 

4. The System Diagnosis Platform  
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Figure 2 The System Diagnosis Platform 
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In this section we describe the System Diagnosis 

Platform, which given a system or a set of systems that 

are being monitored by a set of sensors, the user is 

being: (i) informed in a predefined frequency about the 

overall performance of the system, (ii) alerted about 

any forthcoming failures with their explanations to 

allow mitigating action, (iii) provided with the 

explanations of any failures that could not be prevented 

and (iv) enabled to perform queries. 

In Figure 2 we illustrate the architecture of the 

platform. It takes as input the initial knowledge base 

KB0 that consists of the SM ontology specialized in the 

monitored system enriched with the static data 

(reliability of sensors, operation ranges, scale ranges) 

and the real-time stream of sensor data. Then, it 

performs the following steps: 

1. Window of Data. For a certain amount of time 

(predefined by the user) a set stream of data, i.e. a 

window of data, is used to check the reliability of 

the sensors.  

2. Sensor Reliability Checking. First, all necessary 

calculations are performed from the set of raw data 

that correspond to the predefined timeframe. Next, 

the results are compared with the respective 

operating range values which have already been 

stored in the ontology. If for a sensor these values 

are violated for a predefined number of times, then 

the ABox assertion (isReliable) that stores its 

reliability is transformed from “true” to “false”. 

Once a sensor is defined as unreliable then this 

information does not change. However, if a sensor 

is defined as reliable then it is continuously 

checked with respect to its reliability throughout 

the time of operation of the system. 

3. Knowledge Inference. The window of data is 

mapped to the ontology and is transformed to the 

ABoxstr, i.e. the streaming ABox. Also, for each 

monitored system systi and for each monitored 

time tj of the window of data the assertions 

State(systi@tj)) and isInState(systi, systi@tj) are 

added to the ABoxstr. The ABoxstr with the KB0 is 

then loaded to the reasoner from which all implied 

assertions are inferred. 

4. Alerting. A set of predefined conjunctive queries 

related to the healthy performance of the 

monitored system is automatically performed to 

the query answering system. If an abnormal 

behavior is noted, then the user is informed 

instantaneously about this malfunction and its 

causes in natural language by an alerting 

mechanism. 

5. Moving the Window of Data. The first line of the 

window of data is replaced with the stream of new 

real-time data. This way, a moving window of data 

of fixed size is formed in first-in-first-out manner. 

The platform proceeds by repeating the steps 2-5 

with the new data, until the system is stopped. It is 

important to note that at step 4 the user is alerted 

about some abnormal behavior of the system, only 

if this behavior has changed from the one in the 

previous state. 

Additionally, the user communicates with the 

knowledge-based system through the dashboard, in 

which a set of plots over the sensor outputs or the 

calculated values appears, indicating the real-time 

performance of the system through time. The user is 

also provided with a set of (semi-)predefined queries in 

natural language which are automatically transformed 

to conjunctive queries and performed to the reasoner. 

The answers of the reasoner are then converted into 

natural language.  

The size of the moving window of data determines 

the efficiency of the platform, as the biggest the size of 

the data the more inferences the reasoner will have to 

perform.  

 

5. The PEM Fuel Cell Paradigm  

 
Although a significant amount of research has been 

carried out on fault analysis within PEM fuel cells (e.g. 

[7]-[12], 0), the many components of a single fuel cell 

add to the complexity of understanding the root causes 

of fuel cell failure. Not least because the components 

are all subject to degradation over their operational 

lifecycle, sometimes making it harder to spot when 

expected degradation has spiraled into a fault. This 

complexity is increased when multiple fuel cells are 

combined into a stack. 

The reliability and resilience of an operational fuel 

cell stack are key factors in making it a commercial 

success. However, this requires a number of crucial 

improvements in the monitoring and diagnostic 

capabilities. In order to achieve this there needs to be 

an informed method of dealing with the vast amount of 

raw data that is produced by the sensors monitoring the 

cells, which can be enabled by the semantic technology 

techniques. 

After a short introduction to the PEM fuel cell 

technology, we describe the PEM fuel cell domain 

ontology which is mapped to the SM ontology and then 

we present the functionality of the platform for fuel 

cell diagnosis. 

 
5.1. The PEM Fuel Cell 

 
The core part of a PEM fuel cell consists of an ion 

conduction membrane, the electrolyte, bonded on each 

side by a porous electrode catalyst. These thin 

membrane electrode assemblies are usually bonded 
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together serially into a fuel cell stack [5]. A gas 

diffusion layer enables the reactants to pass across and 

interact with the electrodes. The stack can be seen as a 

distinct unit, with an outer anode electrode at one end 

and a cathode electrode at the other. The hydrogen fuel 

is fed into the anode end of the stack and the 

oxidization process produces electrons and protons. 

The former produces the output current of the cell, 

while the latter passes through the electrolyte 

membrane to the cathode. The protons and electrons 

combine with the oxygen through the electrolyte mem- 

 
Figure 3 The PEM Fuel Cell [22] 

 

brane to the cathode. The protons and electrons 

combine with the oxygen passed into the cathode to 

produce water and heat. 

Each of the components of the fuel cells in a stack 

has an expected level of degradation within a given 

operational mode. But this degradation can be 

accelerated and critical faults occur. In addition to this, 

there is often very little time between, for example, a 

cell output voltage plummeting and the cell 

catastrophically failing. A stack can carry a certain 

amount of individual cell underperformance, but there 

is inevitably a trigger point. The aim is to recognize a 

failing stack before it fails, and to then take any 

remedial action or to close it down. 

 

Table 1 Diagnostic rules base for PEM fuel cell 

water management issues [6] 

IF THEN 

Stack temperature is cold 

OR Cathode humidity is 

high 

Flooding is certain AND 

Dehydration is none 

Stack temperature is 

normal OR 

Cathode humidity is 

normal 

Flooding is null AND 

Dehydration is 

evidenced 

 

Stack temperature is hot 

OR Cathode humidity is 

low 

Flooding is null AND 

Dehydration is certain 

Stack voltage is normal 

OR Stack voltage is high 
Flooding is null 

Stack voltage is low Flooding is evidenced 

 

A fuel cell may degrade due to several reasons: 

membrane chemical breakdown, catalyst dissolution, 

carbon support corrosion, flooding and dehydration to 

name only few. Davies et al [6] have formed a 

knowledge rules base of the form IF-THEN statements, 

which we exploit in the next section for the formation 

of the ontology. Due to space limitations we present in 

Table 1 only the rules related to water management, as 

it is one of the crucial mechanisms for the successful 

running and health of a PEM fuel cell [19[23]. 

Dehydration is usually associated with the anode 

electrode and can lead to a drop in output current and 

in severe cases mechanical breakdown or a reduction 

of the cell life expectancy; but it can be remedied by 

humidifying the cell. Fuel cell flooding is associated 

with the cathode where excess water can block the gas 

diffusion layer and lead to gas starvation.  

In Table 1, a classification of both the sensor 

measurements and the degradation modes is presented. 

The classification of the sensor measurements is based 

on the operation of the sensors under normal 

conditions. The classification of the degradation modes 

expresses the level of agreement between the measured 

operating conditions and those necessary for a certain 

degradation. Hence, there is “null” dehydration 

(flooding) when the level of agreement is up to 15%. 

There is “evidenced” dehydration (flooding) when the 

level of agreement is up to 50% and “certain” when it 

is up to 90%. 

 
5.2 The PEM Fuel Cell Ontology  

 
In this section we describe the OWL 2 EL Fuel Cell 

System Monitoring (FCSM) ontology which 

constitutes a specialization of the SM ontology. To 

ensure the efficiency of the platform, we focus only on 

the representation of the basic components of a fuel 

cell system and of the diagnostic rules suggested by 

Davies et al [6]. 

In all, the FCSM ontology contains 75 classes, 20 

object and 10 datatype properties. Also, it contains 127 

subclass axioms and 15 GCIs. Due to space limitations 

we present only the elements relevant to water 

management issues. In Figure 4 we present this part of 

the FCSM ontology. The SM ontology is colored with 

grey and the specialized part of the FCSM which is 
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related to the fuel cell technology is colored with 

black.  

As it is shown in Figure 4, a fuel cell stack and a 

fuel cell system are regarded as Actuators and they 

consist of fuel cells, which have fuel cell components. 

The fuel cell components that are relevant to the water 

management issues are the outer anode and the outer 

cathode of the stack. Also, only the relevant humidity, 

temperature, and voltage sensors located to different 

parts (anode, cathode, etc.) of the fuel cell stack suffice 

to deduce if there is flooding or dehydration. Hence, 

these sensors have outputs (e.g. 

RHumiditySensorOutput), operating ranges, and scale 

ranges. Additionally, from the outputs of these sensors 

the value of the humidity of the outer cathode can be 

calculated, which also has a scale range.  Additionally, 

following the Davies et al. method, we have classified 

both the sensor outputs and the calculated values to 

low-medium-high. For instance, the class 

TemperatureSensorOutput is superclass of the classes:  

 LowTemperatureSensorOutput, 

 Normal TemperatureSensorOutput  

 HighTemperatureSensorOutput. 

The several degradation modes have been 

incorporated to the class Mode. In particular, the class 

Mode contains the individuals: flooding, dehydration, 

evidenced flooding and evidenced dehydration. 

The SM ontology also has been enriched by 

subclass axioms and GCIs. In order to take into 

account only the reliable sensors we have connected 

the sensor outputs and the calculated values with the 

respective sensors. For instance, the axiom: 

 

HumidityValue SubClassOf 

(isCalculatedFrom some RelativeHumiditySensor) and 

(isCalculatedFrom some TemperatureSensor) 

  

states that for the calculation of humidity value the 

relative humidity sensor and the temperature sensor 

were used. We have transformed the Table 1 rules to 

GCIs, by taking also under consideration the reliability 

of the sensors. 

 

The first rule is decomposed to the following two 

axioms: 

hasObservedSensorMeasurement some  

 (LowTemperatureSensorOutput and 

     (isOutputOfSensor some (TemperatureSensor and 

(isReliable value true))))  

SubClassOf indicates value flooding 

 

isDescribedByCalculatedValue some  

 (HighHumidityValue and  

      (isCalculatedFrom some  

         (RelativeHumiditySensor and  

              (monitors some StacksOuterCathode) and   

 (isReliable value true)))       

                                    and  

      (isCalculatedFrom some  

            (TemperatureSensor and  

               (monitors some StacksOuterCathode) and 

(isReliable value true))))  

SubClassOf indicates value flooding 

 

According to the first axiom, if a state has observed 

low temperature and the sensor that monitors the 

Actuator
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Figure 4 The Fuel Cell System Monitoring Ontology 
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temperature is reliable then the state indicates that 

there is flooding. According to the second axiom, if a 

state is described by high humidity, which is calculated 

from a reliable relative humidity sensor and a reliable 

temperature sensor both of them placed in the outer 

cathode of the stack, then this state indicates that there 

is flooding. The rest of the rules can be expressed in a 

similar way. 

 
5.3. PEM Fuel Cell System Diagnosis with the 

System Diagnosis Platform  

 
In this section we describe the functionality of the 

system diagnosis platform when it is used in the fuel 

cell paradigm.  

The input KB0 consists of the FCSM ontology and 

the static ABoxstc. The ABoxstc is populated by 

assertions on the specific fuel cell systems (e.g. 

FuelCellSystem(s1)), their components (e.g. 

FuelCellStack(stc1), FuelCell(fc1), FuelCell(fc2)) the 

sensors monitoring them (e.g. TempSensor(tsairInlet), 

TempSensor(tsstack)) and the relations among them (e.g. 

monitors(tsstack, st1)). Also, it contains the low and 

upper values of the operating values of the systems and 

the thresholds for the classification of the output values 

of the sensors or the calculated values as they are 

defined by the specifications of the particular fuel cell 

systems.  

Then, provided with the real-time data from the 

sensors the platform performs the steps 1-5 as 

described in Section 4. It is important to highlight that 

at step 1 besides the calculations performed (e.g. 

cathode humidity value), the sensor output and the 

calculated values are classified accordingly. In step 4, 

initially the  platform identifies the stacks that are in 

some degradation mode by performing the query: 

 

Q(x,y,z) ← FuellCellStack(x) and isInState(x,y) and 

 indicates(y,z)  

 

with which the kind of the failure of each stack stci at 

the state stck@tm will be returned. Then, for each 

degrading system according to the nature of the failure, 

e.g. flooding, evidenced flooding, etc., a set of 

different queries will be performed. Supposing that the 

first query returns that the fuel cell stack stck is at time 

tm in the state stck@tm that indicates flooding, then the 

following queries will be performed: 

 

Q(v,u) ← hasObservedSensorMeasurement(stck@tm,x)  

and (LowTemperatureSensorOutput(x) and 

(isOutputOfSensor(x,y) and  

(TemperatureSensor(y) and isReliable(y, true)))) 

and hasValue(x,v) and hasUnit(x,u) 

 

Q(v,u) ← isDescribedBy(stck@tm,x) and  

HighCathodeHumidityValue (x) and 

(isCalculatedFrom(x, y) and 

(RelativeHumiditySensor(y) and (isReliable(y, true)))       

                                    and  

(isCalculatedFrom(x, z) and (TemperatureSensor (z) 

and (isReliable(z, true)))   

and hasValue(x,v) and hasUnit(x,u) 

 

The first query will check if the flooding is due to low 

temperature and the second if it is due to high 

humidity, by taking into account the reliability of the 

sensors. In every case the system will return the values 

(v) and their units (u) of the parameters responsible for 

the failure mode. In this way, apart from indicating the 

type of the degradation mode, the system provides also 

the explanations for this condition. 

Finally, the user is also provided with a set of 

(semi-) predefined queries in natural language which 

are automatically translated to conjunctive queries and 

performed to the reasoner. Then, answers of the 

reasoner are transformed in natural language form. For 

example: 

 

Q1: What was the degradation mode of the stack stc1 at 

the 13th minute? 

A1: stc1 was flooded 

Q2: Why was stc1 flooded at the 13th minute? 

A2: Due to very low temperature (19 C) 

 

It is important to note though that the user can have 

access only to the part of the historic data that is within 

the moving window of data. 

 

6. Evaluation 

 
In this section we present a preliminary evaluation 

of System Diagnosis platform on the fuel cell 

paradigm. The evaluation is based on an early 

deployment of the platform. The evaluation was 

conducted on an Intel(R) Core (TM) PC running 

Windows 7 with a 3.20GHz processor and 8GB of 

RAM.  

For the experimental evaluation we used a fuel cell 

system that contains only one fuel cell stack with two 

fuel cells. The experiment was set up to result in the 

flooding of the fuel cell stack. Figure 5 shows the 

progression of the current (in Ampere) through time. 

The current version of the platform accepts in the 

input only the real-time data and not a window of data. 

Additionally, it does not check the sensors with respect 

to reliability, however by the results of the relative 

humidity sensors it was evident that they were 

unreliable (in many cases the sensors’ outputs 
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exceeded the 120%). Hence, only the rules independent 

from humidity were used for the diagnosis of the fuel 

cell system.  

 
Figure 5 Current progression through time (sec) 

 

As at each moment only a stream of real-time data 

was introduced to the platform the diagnosis was 

instantaneous. At the start-up (A-B segment) the non-

verbose mode platform displayed the following: 

 

ALERT! fuelCellStack1 is in [evidencedFlooding, 

flooding] mode. 

-ALERT! Low Voltage:  0.0V 

-ALERT! Low Temperature: 17.65C 

 

While the verbose mode outputted the following: 

 

Is some stack in some degradation mode?  

- Yes, fuelCellStack1: [evidencedFlooding, flooding] 

Is evidenced flooding due to voltage < 0.9V ? 

- Yes, fuelCellStack1 0.0 V  

Is flooding due to temperature < 20.0C ? 

- Yes, fuelCellStack1 17.65 C  

 

At the segments C-D, D-E, G-I, K-M, N-O there was 

no alert. At the segments E-G, I-K, M-N the non-

verbose mode of the platform displayed: 

 

ALERT! fuelCellStack1 is in [evidencedFlooding] 

mode. 

-ALERT! Low Voltage: 0.7V 

 

and the verbose mode displayed: 

 

Is some stack in some degradation mode?  

- Yes, fuelCellStack1: [evidencedFlooding] 

Is evidenced flooding due to voltage < 0.9V ? 

- Yes, fuelCellStack1 0.7 V  

 

It is worth noting that at the initial stages of the 

segment I-K there were some values just above the 

threshold of 0.9V so the low voltage alert was not 

triggered consistently until after the initial phase 

transition. This could be fixed if a part of the historic 

data was also used for diagnosis. Finally, a special 

mechanism is required to identify the start-up process 

in order to avoiding triggering any alarms during this 

phase. 

 

 

7. Conclusion-Future Work 

 
In this research we proposed an ontology based 

platform for early diagnosis for monitored systems. 

The main objective of this work is to provide a user-

friendly environment that will enable the identification 

of the trigger points that herald potential problems, 

deterioration and breakdown. Through this approach 

the system detects the fault and it also classifies it into 

a cause.  

Within the proposed framework we presented the 

System Diagnosis platform and we introduced two 

novel ontologies; the System Monitoring ontology and 

the Fuel Cell System Monitoring ontology. Our 

approach also takes into consideration the reliability of 

the sensors. We validated an early deployment of the 

platform by applying it to the fuel cell paradigm with 

real raw data.  

Although the proposed research framework is at a 

preliminary stage, the research findings have indicated 

the potential benefits of semantic technologies in their 

application to service analytics in the diagnostic 

processes within system monitoring domain. The 

semantic approach detailed in this paper has provided 

an alternative method, using a lightweight approach to 

improving the interpretation and understanding of 

basic service analytics by providing a semantic 

interpretation to the end user which will enable better 

mitigation intervention.   

As a next step we are working towards performing 

fuzzy reasoning techniques to better reflect sensor 

reliability, thus resulting in more accurate and realistic 

system diagnosis. Finally, we are also interested in the 

new challenges introduced after the evaluation of the 

preliminary deployment of the proposed system. As it 

was observed, apart from the real-time data, their total 

rate of change should also be taken under 

consideration. 
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