627 research outputs found

    The perception system of intelligent ground vehicles in all weather conditions: A systematic literature review

    Get PDF
    Perception is a vital part of driving. Every year, the loss in visibility due to snow, fog, and rain causes serious accidents worldwide. Therefore, it is important to be aware of the impact of weather conditions on perception performance while driving on highways and urban traffic in all weather conditions. The goal of this paper is to provide a survey of sensing technologies used to detect the surrounding environment and obstacles during driving maneuvers in different weather conditions. Firstly, some important historical milestones are presented. Secondly, the state-of-the-art automated driving applications (adaptive cruise control, pedestrian collision avoidance, etc.) are introduced with a focus on all-weather activity. Thirdly, the most involved sensor technologies (radar, lidar, ultrasonic, camera, and far-infrared) employed by automated driving applications are studied. Furthermore, the difference between the current and expected states of performance is determined by the use of spider charts. As a result, a fusion perspective is proposed that can fill gaps and increase the robustness of the perception system

    Automatic Analysis of People in Thermal Imagery

    Get PDF

    Using Prior Knowledge for Verification and Elimination of Stationary and Variable Objects in Real-time Images

    Get PDF
    With the evolving technologies in the autonomous vehicle industry, now it has become possible for automobile passengers to sit relaxed instead of driving the car. Technologies like object detection, object identification, and image segmentation have enabled an autonomous car to identify and detect an object on the road in order to drive safely. While an autonomous car drives by itself on the road, the types of objects surrounding the car can be dynamic (e.g., cars and pedestrians), stationary (e.g., buildings and benches), and variable (e.g., trees) depending on if the location or shape of an object changes or not. Different from the existing image-based approaches to detect and recognize objects in the scene, in this research 3D virtual world is employed to verify and eliminate stationary and variable objects to allow the autonomous car to focus on dynamic objects that may cause danger to its driving. This methodology takes advantage of prior knowledge of stationary and variable objects presented in a virtual city and verifies their existence in a real-time scene by matching keypoints between the virtual and real objects. In case of a stationary or variable object that does not exist in the virtual world due to incomplete pre-existing information, this method uses machine learning for object detection. Verified objects are then removed from the real-time image with a combined algorithm using contour detection and class activation map (CAM), which helps to enhance the efficiency and accuracy when recognizing moving objects

    Deep visible and thermal image fusion for enhanced pedestrian visibility

    Get PDF
    Reliable vision in challenging illumination conditions is one of the crucial requirements of future autonomous automotive systems. In the last decade, thermal cameras have become more easily accessible to a larger number of researchers. This has resulted in numerous studies which confirmed the benefits of the thermal cameras in limited visibility conditions. In this paper, we propose a learning-based method for visible and thermal image fusion that focuses on generating fused images with high visual similarity to regular truecolor (red-green-blue or RGB) images, while introducing new informative details in pedestrian regions. The goal is to create natural, intuitive images that would be more informative than a regular RGB camera to a human driver in challenging visibility conditions. The main novelty of this paper is the idea to rely on two types of objective functions for optimization: a similarity metric between the RGB input and the fused output to achieve natural image appearance; and an auxiliary pedestrian detection error to help defining relevant features of the human appearance and blending them into the output. We train a convolutional neural network using image samples from variable conditions (day and night) so that the network learns the appearance of humans in the different modalities and creates more robust results applicable in realistic situations. Our experiments show that the visibility of pedestrians is noticeably improved especially in dark regions and at night. Compared to existing methods we can better learn context and define fusion rules that focus on the pedestrian appearance, while that is not guaranteed with methods that focus on low-level image quality metrics

    All-weather object recognition using radar and infrared sensing

    Get PDF
    Autonomous cars are an emergent technology which has the capacity to change human lives. The current sensor systems which are most capable of perception are based on optical sensors. For example, deep neural networks show outstanding results in recognising objects when used to process data from cameras and Light Detection And Ranging (LiDAR) sensors. However these sensors perform poorly under adverse weather conditions such as rain, fog, and snow due to the sensor wavelengths. This thesis explores new sensing developments based on long wave polarised infrared (IR) imagery and imaging radar to recognise objects. First, we developed a methodology based on Stokes parameters using polarised infrared data to recognise vehicles using deep neural networks. Second, we explored the potential of using only the power spectrum captured by low-THz radar sensors to perform object recognition in a controlled scenario. This latter work is based on a data-driven approach together with the development of a data augmentation method based on attenuation, range and speckle noise. Last, we created a new large-scale dataset in the ”wild” with many different weather scenarios (sunny, overcast, night, fog, rain and snow) showing radar robustness to detect vehicles in adverse weather. High resolution radar and polarised IR imagery, combined with a deep learning approach, are shown as a potential alternative to current automotive sensing systems based on visible spectrum optical technology as they are more robust in severe weather and adverse light conditions.UK Engineering and Physical Research Council, grant reference EP/N012402/

    Visual Analysis in Traffic & Re-identification

    Get PDF

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Combined Learned and Classical Methods for Real-Time Visual Perception in Autonomous Driving

    Full text link
    Autonomy, robotics, and Artificial Intelligence (AI) are among the main defining themes of next-generation societies. Of the most important applications of said technologies is driving automation which spans from different Advanced Driver Assistance Systems (ADAS) to full self-driving vehicles. Driving automation is promising to reduce accidents, increase safety, and increase access to mobility for more people such as the elderly and the handicapped. However, one of the main challenges facing autonomous vehicles is robust perception which can enable safe interaction and decision making. With so many sensors to perceive the environment, each with its own capabilities and limitations, vision is by far one of the main sensing modalities. Cameras are cheap and can provide rich information of the observed scene. Therefore, this dissertation develops a set of visual perception algorithms with a focus on autonomous driving as the target application area. This dissertation starts by addressing the problem of real-time motion estimation of an agent using only the visual input from a camera attached to it, a problem known as visual odometry. The visual odometry algorithm can achieve low drift rates over long-traveled distances. This is made possible through the innovative local mapping approach used. This visual odometry algorithm was then combined with my multi-object detection and tracking system. The tracking system operates in a tracking-by-detection paradigm where an object detector based on convolution neural networks (CNNs) is used. Therefore, the combined system can detect and track other traffic participants both in image domain and in 3D world frame while simultaneously estimating vehicle motion. This is a necessary requirement for obstacle avoidance and safe navigation. Finally, the operational range of traditional monocular cameras was expanded with the capability to infer depth and thus replace stereo and RGB-D cameras. This is accomplished through a single-stream convolution neural network which can output both depth prediction and semantic segmentation. Semantic segmentation is the process of classifying each pixel in an image and is an important step toward scene understanding. Literature survey, algorithms descriptions, and comprehensive evaluations on real-world datasets are presented.Ph.D.College of Engineering & Computer ScienceUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/153989/1/Mohamed Aladem Final Dissertation.pdfDescription of Mohamed Aladem Final Dissertation.pdf : Dissertatio
    corecore