
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

9-24-2019

Using Prior Knowledge for Verification and Elimination of Using Prior Knowledge for Verification and Elimination of

Stationary and Variable Objects in Real-time Images Stationary and Variable Objects in Real-time Images

Foram Pravinkumar Patel
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Patel, Foram Pravinkumar, "Using Prior Knowledge for Verification and Elimination of Stationary and
Variable Objects in Real-time Images" (2019). Electronic Theses and Dissertations. 7831.
https://scholar.uwindsor.ca/etd/7831

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7831?utm_source=scholar.uwindsor.ca%2Fetd%2F7831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Using Prior Knowledge for Verification and Elimination of Stationary

and Variable Objects in Real-time Images

by

FORAM PRAVINKUMAR PATEL

A THESIS

Submitted to the Faculty of Graduate Studies

Through Computer Science

In Partial Fulfilment of the Requirements for

The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2019

© 2019 FORAM PRAVINKUMAR PATEL

Using Prior Knowledge for Verification and Elimination of Stationary

and Variable Objects in Real-time Images

by

FORAM PRAVINKUMAR PATEL

APPROVED BY:

__

M. Hlynka

Department of Mathematics and Statistics

__

A. Mukhopadhyay

School of Computer Science

__

X. Yuan, Advisor

School of Computer Science

September 24, 2019

iii

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights. Any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iv

Abstract

With the evolving technologies in the autonomous vehicle industry, now it has

become possible for automobile passengers to sit relaxed instead of driving the car.

Technologies like object detection, object identification, and image segmentation

have enabled an autonomous car to identify and detect an object on the road in order

to drive safely. While an autonomous car drives by itself on the road, the types of

objects surrounding the car can be dynamic (e.g., cars and pedestrians), stationary

(e.g., buildings and benches), and variable (e.g., trees) depending on if the location

or shape of an object changes or not. Different from the existing image-based

approaches to detect and recognize objects in the scene, in this research 3D virtual

world is employed to verify and eliminate stationary and variable objects to allow

the autonomous car to focus on dynamic objects that may cause danger to its driving.

This methodology takes advantage of prior knowledge of stationary and variable

objects presented in a virtual city and verifies their existence in a real-time scene by

matching keypoints between the virtual and real objects. In case of a stationary or

variable object that does not exist in the virtual world due to incomplete pre-existing

information, this method uses machine learning for object detection. Verified

objects are then removed from the real-time image with a combined algorithm using

contour detection and class activation map (CAM), which helps to enhance the

efficiency and accuracy when recognizing moving objects.

v

Dedication

It is my deepest gratefulness and sincere regard that I dedicate this thesis work to

my adored parents Mr. Pravin Patel and Mrs. Mittal Patel and the rest of my family

and friends.

vi

Acknowledgements

Throughout this thesis, I have received excellent support and guidance. Firstly, I

would like to express my sincere gratitude to my advisor, Dr. Xiaobu Yuan, for his

continuous support, motivation and immense knowledge. As a mentor, his direction

supported me all the time to learn something new and to complete this research. I

would like to thank my thesis committee members, Dr. Asish Mukhopadhyay and

Dr. Myron Hlynka for their meaningful remarks and recommendations.

I am grateful to my family, whose love, motivation and positive thoughts

strengthened me to reach closer to my ambition. They are the role models and the

source of my inspiration. Last but not the least, I would like to thank all the faculties

and staff of the School of Computer Science and my friends who encouraged me at

the University of Windsor.

vii

Table of Contents

Declaration of Originality ... ii

Abstract .. iv

Dedication ... v

Acknowledgements .. vi

List of Figures ... x

List of Abbreviations/Symbols .. xiii

List of Tables ... xiv

Chapter 1: Introduction ... 1

1.1 Overview .. 1

1.2 Google’s Self Driving Car .. 2

1.3 Need to aware of surroundings ... 3

1.4 Object Detection ... 4

1.5 Feature Detection and Selection ... 5

1.6 Object Elimination .. 5

Chapter 2: Literature Review .. 7

2.1 Object Detection ... 7

2.1.1 Machine Learning Approach .. 8

2.1.2 Deep Learning Approach ... 11

2.2 Feature Detection and Selection ... 15

2.3 Object Verification ... 18

2.4 Transfer Learning ... 20

2.5 Class Activation Map (CAM) Generation and Usage 22

2.6 Object Elimination .. 24

2.6.1 Instance Segmentation .. 24

2.6.2 Diminished Reality ... 27

2.7 Related Work .. 28

2.8 Thesis Statement ... 30

2.8.1 Problem Statement .. 30

2.8.2 Thesis Contribution .. 31

viii

Chapter 3: Proposed Approach ... 32

3.1 Motivation .. 32

3.2 Working of the Overall System .. 32

3.2.1 Working of Individual Modules ... 33

3.3 Proposed Methodology for Static and Variable Object Verification and

Object Elimination .. 36

3.3.1 Static and Variable Object Verification ... 36

3.3.1.1 Object detection module ... 37

3.3.1.2 Feature Detection module ... 37

3.3.1.3 Feature Selection module ... 38

3.3.1.4 Object Verification module .. 39

3.3.1.5 Object Verification algorithm ... 39

3.3.2 Static and Variable Object Elimination .. 41

3.3.2.1 Contour Detection Module ... 42

3.3.2.2 Generation of Class Activation Map (CAM) 42

3.3.2.3 Object Masking .. 43

3.3.2.4 Object Elimination algorithm ... 43

3.4 Time Complexity of the Proposed Approach 44

Chapter 4: Implementation and Experiments ... 45

4.1 Software Information .. 45

4.2 Construction of 3D Virtual World .. 45

4.3 Creation of Repository of Virtual World .. 46

4.4 Experiments and Results of Object Detection 47

4.4.1 Experiments and Results of Object Detection for Buildings 48

4.4.2 Experiments and Results of Object Detection for Tree 48

4.4.3 Experiments and Results of Object Detection for Street light 49

4.4.4 Experiments and Results of Object Detection for Bench 50

4.5 Experiments and Results of Object Verification 51

4.5.1 Centroid Detection of Real-time Static Object 51

4.5.2 Feature Detection Using FAST corner Detector of Real-time Object . 52

4.5.3 Calculation of the Distance of Real-time Object 52

4.5.4 Feature Selection in Real-time Image .. 52

4.5.5 Retrieving the Virtual Image and Keypoints .. 53

ix

4.5.6 Object Verification of Static Object Using Prior Knowledge 53

4.5.7 Increasing the Confidence Score Using Neighbour Object 54

4.6 Experiments and Results of Object Elimination 55

4.6.1 Results of Generation of Class Activation Map (CAM) 55

4.6.2 Results of Contour Detection ... 57

4.6.3 Results of Object Elimination Using Combined Approach 60

4.7 Results Comparison and Discussion .. 62

4.7.1 Advantages of the Proposed Approach .. 62

4.8 Limitations of the Proposed Approach ... 64

Chapter 5: Conclusion and Future Work ... 66

5.1 Conclusion .. 66

5.2 Future Work .. 67

References/Bibliography .. 68

Vita Auctoris.. 82

x

List of Figures

Figure 1: Google’s Self-Driving Car prototype .. 2

Figure 2: Google’s Autonomous Car driving on the road .. 4

Figure 3: Dynamic Object Detection .. 4

Figure 4: Detected features on a chessboard ... 5

Figure 5: Object Masking using Mask-R-CNN .. 6

Figure 6: Object Detection to identify different objects ... 7

Figure 7: Machine Learning algorithm workflow .. 8

Figure 8: Example of a CSVM network (Image source: Yakoub et al., [19]) 9

Figure 9: AdaBoost HOG detector applied on a test image (Image Source:

Arunmozhi et al., [24]).. 10

Figure 10: Deep Learning Approach Workflow ... 11

Figure 11: The architecture of R-CNN (Image source: Girshick et al., [49]) 12

Figure 12: The Architecture of Fast R-CNN (Image source: Girshick et al., [48]) 12

Figure 13: The architecture of Faster R-CNN (Image source: Ren et al., [47]) 13

Figure 14: Illustration of YOLO (Image source: Redmon et al., [40]) 14

Figure 15: object detection results (Image source: Tian et al., [42]) 15

Figure 16: Different types of detected features... 16

Figure 17: Feature Selection workflow... 16

Figure 18: Harris-Stephens Corner Detection (Image source: Haggui et al., [63]) 18

Figure 19: Image matching based on different corner detection methods. a Harris

method, b the method in [75] .. 18

Figure 20: Overall system overview of DCNN approach (Image source: Chen et

al., [78]) ... 19

Figure 21: Training the entire model Vs Transfer Learning 20

Figure 22: Three strategies for fine-tuning ... 21

Figure 23: Generated CAM for different breeds of dog using CNN 22

Figure 24: CCAM applied to localize common objects (Image source: Li et al.,

[108])... 23

Figure 25: Example of Instance segmentation .. 25

xi

Figure 26: Segmented results: a. initial contours and local region; b. Final evolved

contours; c. segmented result (Image source: Lu et al. [109]) 25

Figure 27: Mask R-CNN framework for instance segmentation (Image source: He

et al., [115]) ... 26

Figure 28: Concept of Diminished Reality ... 27

Figure 29: Diminished reality techniques: a. diminish, b. Seeing through, c.

replacing, d. inpainting (Image source: Mori et al., [12]) 28

Figure 30: Overall system architecture ... 33

Figure 31: Architecture of the proposed approach ... 36

Figure 32: Flowchart of object verification component ... 37

Figure 33: Pixel P selected as a corner point .. 38

Figure 34: Flowchart of object elimination component .. 41

Figure 35: Constructed 3D virtual World ... 46

Figure 36: Constructed 3D Objects... 46

Figure 37: Rendered 3D object ... 47

Figure 38: Extracted 3D features on rendered images .. 47

Figure 39: Detected Skyscraper, Street light, Tree in the real-time image 48

Figure 40: Detected Skyscraper, Tree in the real-time image 48

Figure 41: Detection of Tree in the image .. 49

Figure 42: Detected Trees, Skyscraper in the real-time image 49

Figure 43: Street light, Trees detected in the test image ... 50

Figure 44: Street light, Trees detected in the test image ... 50

Figure 45: Bench detected in the test image ... 51

Figure 46: Centroid Calculation.. 51

Figure 47: Detected centroid in the real-time image with coordinates 51

Figure 48: Detection of corner points using the FAST algorithm 52

Figure 49: Detected corner points on real-time image.. 52

Figure 50: Calculating the distance between keypoints and centroid 52

Figure 51: Selected top 8 keypoints for top-right (1st quadrant) 53

Figure 52: Plotted selected keypoints on the real-time image 53

Figure 53: Plotted selected keypoints on the virtual image 53

xii

Figure 54: Object verification result of real-time object .. 54

Figure 55: Selected keypoints of the virtual nearest static object (e.g. building) ... 54

Figure 56: Selected keypoints of the real-time nearest static object (e.g. building)

... 55

Figure 57: Verification result of neighbour stationary object (e.g. building) 55

Figure 58: Increased confidence score of a verified static object 55

Figure 59: Result of CAM Generation of Tree (left: input image, centre: generated

heatmap, right: heatmap superimposed on input image) .. 56

Figure 60: Result of CAM Generation of Street light (left: input image, centre:

generated heatmap, right: heatmap superimposed on input image) 57

Figure 61: Result of CAM Generation of Street light (left: input image, centre:

generated heatmap, right: heatmap superimposed on input image) 57

Figure 62: Result of Contour Detection of Trees .. 58

Figure 63: Result of Contour Detection of Street light ... 59

Figure 64: Result of Contour Detection of Bench .. 59

Figure 65: Result of Contour Detection of Buildings ... 60

Figure 66: Result of Object Elimination of Trees ... 60

Figure 67: Result of Object Elimination of Street light .. 61

Figure 68: Result of Object Elimination of Bench ... 61

Figure 69: Result of Object Elimination of Buildings .. 61

Figure 70: Result of the proposed algorithm .. 62

Figure 71: Person Detected in the poster using RetinaNet model 63

Figure 72: Reflection of car and person on the building detected as a dynamic

object ... 63

Figure 73: Detection of dynamic objects after object elimination 64

Figure 74: Generated CAM for trees without leaves .. 65

xiii

List of Abbreviations/Symbols

LiDAR Light Detection and Ranging

RADAR Radio Detection and Ranging

GPS Global Positioning System

3D 3-dimensional

2D 2-dimensional

CNN Convolutional Neural Network

ANN Artificial Neural Network

R-CNN Region Based Convolutional Neural

Network

YOLO You Only Load Once

ROI Region of Interest

FCN Fully Convolutional Network

SIFT Scale Invariant Feature Transformation

ORB Oriented FAST and Rotated BRIEF

BRIEF Binary Robust Independent Elementary

Features

SOA Service Oriented Architecture

SURF Speeded Up Robust Features

FAST Features from Accelerated Segment

Test

CAM Class Activation Map

VGG Visual Geometry Group

xiv

List of Tables

Table 1: Related Work ... 30

Table 2: Time complexity of the proposed algorithm .. 44

Table 3: List of software and tools used .. 45

1

Chapter 1: Introduction

1.1 Overview

With the aid of significant technologies and researches, now the vision of self-

driving car on the road has become a possibility to run on the road. It is not a jaw-

dropping concept as research in this direction has been carried out for years.

Seemingly within just a few years, autonomous cars have gone from science fiction

fantasy to road-bound reality [1]. Apart from many automobile giants like Tesla,

GMC, Uber, and Mercedes-Benz, there are many other technology corporations like

Google, Apple, IBM, and Intel that have infused billions of dollars in this research

and development to turn this arduous vision of a fully autonomous car into an

actuality. Nowadays, self-driving cars are being tested on the road, but they are far

away from being feasible [2]. The design of such an advanced machine involves

immense expertise to ensure smooth and safe driving.

While an autonomous car operates on the road, the knowledge of surroundings that

consist of various objects mainly differentiated according to the orientations and

movement should be taken into consideration. When a 3D virtual world is

constructed with representations of static and variable objects in the real world, it

helps the autonomous car to be familiar with the surroundings while driving. Darms

et al. [3] and Hu et al. [4] have described static objects as those that do not move

during the operation of the car. The list includes buildings and other roadside objects

like benches, trees, and light pole. Fu, Kun, et al. have used multiple class activation

map to extract discriminative parts of aircraft of different categories [5]. Verified

objects are masked out in the real-time images.

The new method of this thesis makes use of a constructed virtual environment that

works as prior knowledge to outperform various tasks such as object verification

and elimination. The existence of the real objects is verified by matching feature

points of physical objects with virtual objects. These verified objects are abolished

2

using the combined approach of contour detection and class activation map (CAM).

This research aims to use pre-existing information to verify and eliminate stationary

and variable objects from real-time scenes to allow an autonomous car to pay

attention to moving objects like pedestrians and cars in order to drive safely.

1.2 Google’s Self Driving Car

Many auto-giants companies like Tesla, Mercedes, Uber, Google, BMW, and Volvo

have already developed their semi-autonomous cars on the market. Zhao et al.

explained the key technology of a self-driving car [6]. Despite using exclusive

hardware, autonomous vehicles are still far from being fully automatic. Google has

started constructing a self-driving car – waymo almost ten years ago. In 2015,

Google provided "the world's first fully driverless ride on public roads" to a legally

blind friend of principal engineer Nathaniel Fairfield [7]. Figure 1 displays the

Google’s autonomous car. Much tech-savvy hardware is being used to improve

visibility, to measure the distance to other objects, and to fetch geolocation

information. Although some of the hardware are expensive, they are necessary as

these sensors assist in detecting objects for safe driving. The rotating roof-top

LiDAR is considered as the heart for object detection. The LiDAR is used to

measure the distance to other objects to build the 3D map in order to see obstacles.

The bumper-mounted radar is responsible for measuring the distance to vehicles in

front and behind the car. Rear-mounted aerial receives geolocation information from

GPS satellites, and ultrasonic sensors attached to one of the rear wheels monitors

the car’s movement. These devices are necessary for the safe operation of

autonomous cars.

Figure 1: Google’s Self-Driving Car prototype

3

1.3 Need to Aware of Surroundings

Situational awareness is the most essential key to safe driving. Drivers should be

conscious of their location and the surroundings to navigate the car at the desired

location [128]. The same objective has been applied for an autonomous vehicle to

function on the road by recognizing objects and obstacles. When an autonomous car

is running on the road, it must be responsive to the surroundings for safe moving.

Sensor technologies including GPS provide information about the surrounding

environment. These sensors gather data to narrate the change in the position and

orientation of the car. They constantly pass on the information about surroundings

like the position of pedestrians, and other objects near the car to the system in order

to navigate smoothly.

There are mainly three categories of objects a car may come in the contact while

driving:

▪ Stationary objects: Those objects that are static at the same location with the

same pose. (e.g. Buildings, Bench, Street light)

▪ Variable objects: Those objects that stay stable at the same place, but a pose

may vary (e.g. trees)

▪ Dynamic objects: Those object that may change the location and pose (e.g.

human, animal, car)

Among all objects, dynamic objects create more danger to a self-driving car. These

objects need to be detected. Darms et al. [3] and Hu et al. [4] have described dynamic

objects as those potentially move during the observation periods. Figure 2 shows

how an autonomous car observes the surroundings while driving with the aid of

sensors to function safely and smoothly.

4

Figure 2: Google’s Autonomous Car driving on the road

1.4 Object Detection

Sensors attached to the car are responsible to estimate distance and steer clear of

collision with obstacles. The nearby objects are identified using various machine

learning algorithms of object detection. Druzhkov et al. [8] published a survey of

deep learning techniques for object detection and image classification. A domain

shift framework based on image-style level and instance-level algorithm based on

Faster- RCNN has been used for object detection [9]. Object classification has been

performed using a fusion of CNN and light detection and ranging (LIDAR) for an

autonomous vehicle [10]. Figure 3 depicts the object detection task where dynamic

objects are located and displayed using bounding boxes with the respective class

label and probability score. The proposed approach detects roadside stationary (e.g.

buildings, street light) and variable (e.g. trees) objects using Faster-RCNN

technique. The model has been trained to detect an instance of an object in the real-

time scene.

Figure 3: Dynamic Object Detection

5

1.5 Feature Detection and Selection

Feature plays a significant role in various image-based applications. It can be

expounded as a vector to define an object or its accompaniment. Features are specific

structure in the image such as edges, corners, blobs, and points. Different feature

detection algorithms are Harris Corner detection, Shi-Tomasi Corner detector and

Good Feature Track, SIFT, SURF, FAST algorithm for corner detection, BRIEF,

and ORB. The survey of feature detection algorithm is presented by Li et al. [11].

The paper also presents mathematical models of algorithms. Performance

comparison of various algorithms is presented based on accuracy, speed, scale

invariance, and rotation invariance. Figure 4 shows the detected corner points using

Harris corner detection algorithm. The proposed approach detects corner keypoints

using feature detector and the most relevant feature points are selected using the

mathematical approach.

Figure 4: Detected features on a chessboard

1.6 Object Elimination

A part of a scene can be hidden as they were behind an invisible object using

masking technologies. Object elimination can be implemented for various tasks like

background removal, foreground subtraction, object detection, instance

segmentation. Multiple approaches to perform elimination include contour

detection, Mask-RCNN, diminished reality. A survey of different diminished reality

techniques has been published by Mori et al. [12]. Yang et al. [13] introduced a

contour detection framework using fully convolutional Encoder-Decoder Network

for object detection and masking. Figure 5 shows the objects that are masked using

6

Mask-RCNN algorithm. The proposed method uses a combined approach of contour

detection and class activation map for object elimination.

Figure 5: Object Masking using Mask-R-CNN

This research work is the primary approach for stationary (e.g. buildings, street light,

benches) and variable (e.g. Trees) object verification and object elimination in real-

time images giving the insights for an autonomous car to navigate smoothly on the

road. The proposed approach performs verification task by matching interest points

extracted from a real-world object with a virtual world object. Once the object is

verified successfully, the removal of static and variable objects in the real-time scene

is executed via the fusion method of contour detection and Class Activation Map

(CAM) to achieve more accuracy.

In this thesis, Chapter 2 entails a review of the previous work done on object

detection and object elimination for autonomous vehicles. It also caters to the

criterion techniques for the proposed approach. Chapter 3 describes the proposed

system of use of prior data for object verification and elimination in the real-time

scene in depth. Chapter 4 demonstrates a detailed explanation of the proposed

approach using experimental results and presents comparison with other related

work. Chapter 5 contains the conclusion of the thesis together with possible future

work.

7

Chapter 2: Literature Review

This chapter provides a survey of the relevant background of recent works in object

detection and object elimination using 2D and 3D images. It also covers use of prior

knowledge to help improving the performance of object verification and object

elimination.

2.1 Object Detection

Object detection is related to computer vision and image processing that locates

instances of objects of a certain class in still images and videos. Object detection has

many applications in computer vision area such as face detection, image retrieval,

and pedestrian recognition. Figure 6 below displays an illustration of object

detection algorithm to identify roadside objects (e.g. car, traffic light, truck) [14].

Zou et al. [15] discussed a survey of object detection in the last 20 years. This survey

covers milestone detectors in history, detection datasets, metrics, fundamental

building blocks of the recognition system, speed up techniques, and the recent state

of the art detection methods. It also reviews some important identification

applications, such as pedestrian detection, face detection, and text detection, etc.,

and makes an in-deep analysis of their challenges as well as technical improvements

in recent years.

Figure 6: Object Detection to identify different objects

Methods of object detection mainly fall into either Machine Learning-based

approaches or Deep Learning-based approaches.

8

2.1.1 Machine Learning Approach

In machine learning approaches, it is necessary to first define features using any one

method listed below. Then classification is performed on the detected features using

a technique such as Support Vector Machine (SVM), and Random Forest (RF) [69].

• Viola-Jones Object detection framework based on Haar features

• Scale-Invariant Feature Transform (SIFT)

• Histogram of Oriented Gradients (HOG) features

Erickson et al. [16] published a paper that uses machine learning for medical

imaging. They have also reviewed different classification such as Naïve Bayes,

Support Vector Machine, Neural Networks, k-Nearest Neighbours, Deep Learning,

and Decision Tree to select suitable features. Figure 7 below portrays the workflow

of general machine learning algorithms.

Figure 7: Machine Learning algorithm workflow

Lei et al. [17] analyzed the feature selection techniques for object-based

classification of unmanned aerial vehicle imagery. Their work specifically emphases

on assessing the effect of feature dimensionality and training the set size using SVM

and RF classifiers to achieve different feature selection methods, including the filter

method, wrappers, and embedded methods. Bakhshipour et al. [18] illustrated an

algorithm for weed detection based on their pattern by applying support vector

machine and artificial neural network. Their work also involves the use of shape

features such as Fourier descriptors and moment invariant features. The

classification has been carried out using SVM and ANN.

9

An approach of Convolutional SVM Network was applied for object detection in

UAV Imagery [19]. The CSVM network is based on several alternating

convolutional and reduction layers ended by a linear SVM classification layer. The

convolutional layers in CSVM rely on a set of linear SVMs as filter banks for feature

map generation. During the learning phase, the weights of the SVM filters are

estimated through a forward supervised learning strategy unlike the backpropagation

algorithm widely used in standard convolutional neural networks (CNNs) [19].

Figure 8 below illustrates the architecture of the Convolutional SVM algorithm.

Figure 8: Example of a CSVM network (Image source: Yakoub et al., [19])

Wei et al. [20] designed an approach for multi-vehicle detection by combining Haar

and HOG features. This algorithm makes full use of HOG characteristics and uses

its good descriptive ability to describe target vehicles whereas Harr features are

utilized to extract the prospect region of interest (ROI). Moreover, the obtained HOG

features from the ROI target area can be selected by applying the cascade structured

AdaBoost classifier features and target area classification. The precise target can be

further detected by a Support Vector Machine (SVM) [20]. Chee et al. [21] proposed

an algorithm for Pedestrian detection through the fusion of image gradient and

magnitude properties extracted using Histogram of Oriented Gradient (HOG) and

Histogram of Magnitude (HOM) features.

An automatic method for the recognition of individual oil palm trees using images

from unmanned aerial vehicles (UAVs) was developed by Wang et al. [22]. First,

using a support vector machine (SVM) classifier, UAVs images are categorized

between vegetation and non-vegetation. Then, a feature descriptor based on the

histogram of oriented gradient (HOG) has been designed for palm trees to extract

10

features for machine learning. Finally, SVM classifier has been trained and

optimized using the HOG features from positive (i.e., oil palm trees) and negative

samples (i.e., objects other than oil palm trees) [22]. An approach for object

detection and classification was published by Rashid et al. [23] that uses a merged

strategy of deep convolutional neural network and SIFT point features. Firstly, an

improved saliency method is implemented, and the point features are obtained.

Then, DCNN features are extracted from two deep CNN models like VGG and

AlexNet. Thereafter, Reyni entropy-controlled method is executed on DCNN

pooling and the SIFT point matrix for robust feature selection. Finally, the selected

robust features are fused in a matrix by a serial approach, that is later fed to ensemble

classifier for recognition [23]. An analysis of three commonly used strategies,

Histogram of Oriented Gradients (HOG), Haar-like features and Local Binary

Pattern (LBP) for object detection is investigated using a public dataset in [26].

Figure 9 below demonstrations the result of AdaBoost HOG detector on a test image.

A novel algorithm on a mobile system that can notify drivers about the possibility

of collision with pedestrians was developed [24]. The partial Haar transform and

HOG are fused for pedestrian detection.

Figure 9: AdaBoost HOG detector applied on a test image (Image Source:

Arunmozhi et al., [24])

Prasanna et al. [25] built an approach for human tracking system using joint Haar-

like and HOG features where Haar characteristics are used for the object’s structure

and the HOG features for the edge. A set of mixed features is developed with these

two features. Using Online Boosting, feature selection is performed to create a set

11

of robust features. Finally, with the help of SVM classifier, classification is

executed.

2.1.2 Deep Learning Approach

In the Deep Learning Approaches, the algorithms are capable of performing end-to-

end object localization task without defining any features and are based on

Convolutional Neural Network (CNN) [69]. Deep Learning approaches are as

follows:

• Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN)

• Single Shot MultiBox Detector (SSD)

• You Only Look Once (YOLO)

Brunetti et al. [27] published a survey on computer vision and object detection

methodologies for pedestrian detection and tracking. Panchpor et al. [29] and

Pouyanfar et al. [31] published a study on various object detection algorithms using

deep learning. Arnold et al. [28] reviewed a survey on 3D object detection methods

that utilize sensors and datasets for autonomous driving. 3D object identification

technique introduces a third dimension that reveals the object’s size and location

information useful for path planning, collision avoidance, and so on [28]. Liu et al.

[30] submitted a survey on advanced techniques for generic object detection.

Sindagiet al. [32] published a survey of the latest approaches of CNN for single

image-based crowd counting.

Figure 10: Deep Learning Approach Workflow

Girshick et al. [49] introduced an approach named R-CNN: Regions with CNN

features for accurate object detection and semantic segmentation. Figure 10

12

illustrates the workflow of deep learning approach. The input to this approach is test

image that locates the object using bounding boxes. Figure 11 shows the architecture

of R-CNN.

Figure 11: The architecture of R-CNN (Image source: Girshick et al., [49])

The algorithm uses a selective search to extract 2000 regions from the input image

that are wrapped into a square and fed into CNN to produce 4096-dimensional

feature vector. The CNN works as a feature extractor and the output dense layer

consists of the extracted features that are forwarded to SVM classifier to identify the

presence of an object within the bounding box. The problem with R-CNN is that it

takes 47 seconds to generate an output. Also, it requires much time for training as

2000 regions for each image need to be classified.

Girshick et al. [48] developed an enhanced approach of R-CNN, i.e., Fast R-CNN

algorithm. Fast R-CNN requires less time to generate an output than simple R-CNN.

The architecture of Fast R-CNN is shown in Figure 12.

Figure 12: The Architecture of Fast R-CNN (Image source: Girshick et al., [48])

According to Fast R-CNN algorithm, the input image is directly fed into CNN to

produce a convolutional feature map and by using them, the regions of proposals are

13

obtained. Then using ROI pooling layer, all the proposed regions are reshaped into

a fixed size to be fed into a fully connected layer. The corresponding class label of

the proposed region and offset value of the bounding box are predicted using soft-

max layer. The Fast R-CNN is faster than R-CNN and the convolution operation is

performed only once per image and feature map is generated from it.

Ren et al. [47] built an improved approach of Fast R-CNN called Faster R-CNN.

Figure 13 depicts the architecture of Faster R-CNN.

In Faster R-CNN, the input image is supplied to CNN to create a convolutional

feature map. Instead of using a selective search algorithm, a separate network is used

to predict the region proposals. The expected region proposals are reshaped into a

fixed size using ROI layer to classify the image within the proposed region and

estimate the offset values for the bounding boxes using soft-max layer.

Figure 13: The architecture of Faster R-CNN (Image source: Ren et al., [47])

Neumann et al. [44] published a fully annotated dataset including tracking

information for pedestrian detection and tracking at night. The scene is recorded

taking advantage of industry-standard camera including different sensors and

weather conditions. Sheng et al. [46] proposed an approach for vehicle area detection

and vehicle brand classification using RCNN, Faster R-CNN, AlexNet, ResNet,

VGGNet, and GoogLeNet.

Redmon et al. [40] designed YOLO (You Only Look Once) algorithm for object

detection. Figure 14 shows the illustration of YOLO algorithm.

14

Figure 14: Illustration of YOLO (Image source: Redmon et al., [40])

In YOLO, a single neural network predicts the corresponding class probability and

bounding box. First, the image is split into SxS grid where each grid cell predicts

only single object, containing m bounding box and for each bounding box, the class

probability and offset value are evaluated against a pre-set threshold value to locate

the object.

Verma et al. [33] illustrated an algorithm with a fusion of monocular camera and a

2D Lidar for vehicle detection using YOLO. Possatti et al. [34] proposed to integrate

the power of deep learning-based detection using YOLO with the prior maps utilized

by car platform IARA (Acronym for Intelligent Autonomous Robotic Automobile)

to recognize the relevant traffic lights of predefined routes. Mittal et al. [35]

explained the object detection and classification tasks using YOLO algorithm. Putra

et al. [36] developed an improved approach of YOLO for human and car recognition.

Wang et al. [37], Zhang et al. [38], and Zhang et al. [39] used SSD approach for

object detection. Chowdhury et al. [45] designed Faster R-CNN and SSD approach

for pedestrian intention detection.

Židek et al. [41] built a method for object detection using deep learning technique

trained by 3D virtual models. The CNN model is trained using 2D samples generated

automatically from the 3D virtual models. Loing et al. [43] designed a methodology

for localization without using the single real-time image by utilizing only 3D models

of the robot and object for training the network. Tian et al. [42] built a virtual dataset

15

named ParallelEye. Faster R-CNN and DPM networks are trained via fusing

ParallelEye virtual dataset with a real-time image dataset for object detection in real-

time view. Figure 15 shows the results of object detection using two different

models. Top row images are detected using a model purely trained on the real-time

images whereas bottom row objects are detected using a network, trained using

combined virtual and real-time scenes.

Figure 15: object detection results (Image source: Tian et al., [42])

2.2 Feature Detection and Selection

In computer vision and image processing, feature plays a vital role that can be

described as a prominent characteristic of an image. They are benefited to execute

certain tasks such as feature selection, feature matching, object recognition and so

on. Features represent the specific structure in the image such as edges, centroid,

blobs, and points. Berger et al. [72] explained the feature and the actual feature usage

in the industry.

Features are identified using detectors from the image. Feature detection is the

process of finding image features or keypoints of a given type at each pixel that are

somehow special in the image. Several detectors for features detection are as

follows:

• Harris corner detection

• Shi- Tomasi corner detection algorithm

• FAST (Features from Accelerated Segment Test)

• Laplacian of Gaussian

16

Figure 16: Different types of detected features

Feature extraction is the method of computing a descriptor from the pixel around

each interest point using feature descriptors such as SURF, HOG, and FREAK.

Feature starts from an initial set of measured data and builds derived values

(features) intended to be informative and non-redundant, facilitating the subsequent

learning and generalization steps, and in some cases leading to better human

interpretations. Feature extraction is related to dimensionality reduction [76].

In computer vision, feature selection is expounded as a process for creating the new

subset of essential features to enhance generalization by reducing overfitting, and

for dimensionality reduction. Common names for feature selection are variable

selection, attribute selection, or variable subset selection. Feature selection differs

to feature extraction by returning the subset of selected features, whereas feature

extraction defines new features from the function of the original features. Figure 17

portrays the workflow of the feature selection technique.

Figure 17: Feature Selection workflow

Feng et al. [73] designed a method for feature detection and matching using Harris

corner detection algorithm. Making use of Harris corner detection algorithm,

features are obtained. Rotation invariant Feature Descriptor (RFID) is used to

represent the feature point information. Wang et al. [50] reviewed the corner

17

detection algorithms proposed in the last four decades. Corner detection algorithms

can be divided into intensity-based, contour-based, and model-based methods.

Intensity-based frameworks are based on measuring local intensity variation of the

image. Contour-based methods identify corners by analyzing the shape of edge

contour. Model-based algorithms extract corners by fitting the local image into a

predefined model [50]. Karim et al. [51] presented a study on the comparison of

feature extraction techniques by combining SURF with FAST and BRISK, followed

by feature matching. Al-Rawabdeh et al. [53] submitted a review on the performance

of FAST-9 and FAST-12 as well as the Harris detector in terms of the repeatability

rate, completeness, and correctness under different threshold values for UAV object

localization. Hore et al. [55] analyzed the performance of SIFT and SURF feature

descriptors in different circumstances such as rotational effect, scaling effect,

illumination effect, and blurring effect to achieve object recognition. Kabir et al.

[64] presented a comparison of four feature detection methods for the modern and

old buildings, including Canny edge detection, Hough line transform, Find

Contours, and Harris Corner. A comparison of four feature detection approaches;

Harris, SURF, FAST, and FREAK, is published by Ghosh et al. [67] for image

mosaicing.

DeTone et al. [52] built a self-supervised approach for training feature detectors and

descriptors to make them suitable for a large number of multi-view geometry

problems. Gao et al. [56] developed a novel method utilizing shadows that

automatically extracts building samples and verifies buildings accurately to enhance

automation and accuracy. Liu et al. [59] presented an automatic methodology for

building area extraction from optical high-resolution imagery using the newly

developed morphological building index (MBI). The new FPGA (Field

Programmable Gate Array) architecture for reuse of sub-image data was introduced

in [54]. In the proposed architecture, a remainder-based approach is firstly designed

for reading the sub-image and a fusion of FAST and BRIEF (Binary Robust

Independent Elementary Features) descriptors is used for corner detection and

matching. Karami et al. [65] analyzed the performance of the SIFT matching

18

algorithm against various image distortions such as rotation, scaling, fisheye, and

motion distortion.

Zhao et al. [61] built a method to estimate the height of the building using both

corner points and roofline. Haggui et al. [63] developed an approach using Harris

corner detector for NUMA manycore recognition. Figure 18 shows the Harris corner

identification on NUMA manycore.

Figure 18: Harris-Stephens Corner Detection (Image source: Haggui et al., [63])

Wu et al. [57] proposed and implemented Deep Validation, a novel framework for

real-world error-inducing corner detection using DNN-based system. A novel

framework for corner detection and tracking for the real-time scene was presented

in [58]. Ghandour et al. [60] designed Building Detection with Shadow Verification

(BDSV) for building localization using the shadow, shape, and color features of

buildings. Hu et al. [62] illustrated a non-interactive approach based on binary

feature classification for building area recognition and building contours extraction

from aerial images.

Infrared image matching using SUSAN corner detection was introduced in [75].

Figure 19 displays the comparative result of the proposed approach in [75] with

Harris Corner Detection.

Figure 19: Image matching based on different corner detection methods. a Harris

method, b the method in [75]

19

2.3 Object Verification

Verification has been implemented primarily for fingerprint, iris, and face matching.

Chen et al. [78] proposed an approach for unconstrained face verification practicing

Deep CNN features, trained using the CASIAWebFace dataset and the performance

was evaluated on both IJB-A and LFW datasets. Figure 20 illustrates the overall

system architecture of the proposed DNN framework for face verification in [78].

Figure 20: Overall system overview of DCNN approach (Image source: Chen et

al., [78])

An approach for video-based unconstrained face verification and recognition was

discussed in [79]. Crosswhite et al. [80] proposed a template adaptation method for

face verification and identification. Their work also proved that it can be applied to

existing state-of-art methods for enriched performance. Zhang et al. [82] evaluated

a method for animal object detection and segmentation from wildlife monitoring

videos captured by motion-triggered cameras, called camera-traps. First, using

multilevel graph cut, animal object region proposals are generated in the

spatiotemporal domain. Then using developed a cross-frame temporal patch

verification method, these region proposals are determined if they are true animals

or background patches.

Hsu et al. [83] developed an architecture for vehicle verification between two

nonoverlapped views using sparse representation. Karami et al. [66] published a

survey of image matching technologies- SIFT, SURF, BRIEF, and ORB. Taira et al.

[84] built a system for indoor object localization that estimates the 6DoF camera

pose and validates a query image with respect to a 3D indoor map. Yuan et al. [85]

20

proposed an approach for retina verification based on Structural Similarity (SSIM)

to verify using similarity score. Kavitha et al. [86] designed an approach for a

secured voting system using face, iris, and fingerprint verification. Qin et al. [87]

suggested a deep learning-based segmentation methodology for finger-vein

verification by training CNN to extract the vein patterns from any image regions and

to estimate the probability of pixels to check if they belong to the vein or the

background. They also made use of FCN to recover missing finger vein shapes for

amended performance.

2.4 Transfer Learning

In machine learning, transfer learning is a method that makes use of knowledge

gained while solving one problem to apply it for a different but related problem. For

instance, knowledge obtained to recognize a cat can be applied for dog recognition.

Some widely used pre-trained models are:

• VGG

• InceptionV3

• ResNet5

Figure 21 below illustrates the difference between training the entire model and

using transfer learning.

Figure 21: Training the entire model Vs Transfer Learning

The pre-trained models are primarily trained on the large dataset and, for a new

similar dataset, the pre-trained model weights can be used for extracting the features.

At the time of applying the pre-trained model on the new dataset, the original

21

classifier of the model has been removed and new classifier has been added to

perform a defined task and later fine-tuned using any one of the following strategies:

1. Train the entire model: Use the architecture of the pre-trained model and

train it according to the dataset from scratch.

2. Train some layers and leave the others frozen: For the small dataset, freeze

more layers to prevent overfitting whereas for a large dataset, train more

layers.

3. Freeze the convolutional base: The convolutional layer is set in its original

form and its output is used for the classification task.

Figure 22 presents these 3 strategies of fine-tuning in a graphical way.

.

Figure 22: Three strategies for fine-tuning

Weiss et al. [97] reviewed the transfer learning methodology and its applications.

Huh et al. [96] proposed an approach where they used pre-trained CNN features on

various subsets of the ImageNet dataset and evaluated transfer performance on a

variety of standard vision tasks. Yuan et al. [91] presented a learning-based

framework for shadow removal using an online learning strategy and fine-tuned with

the automatically identified examples in the new videos. Wang et al. [94] developed

an architecture for ship detection via fusion of single shot multiBox detector (SSD)

and transfer learning. A system for end-to-end airplane detection in remote sensing

images using transfer learning approach is presented in [92]. Kapur et al. [90] used

transfer learning for object detection in real-time video. A deep learning-based

framework for detection and classification of breast cancer is proposed in [95].

22

Mohamed et al. [88] presented a work on applications of transfer learning for object

detection. Yabuki et al. [89] and Singh et al. [93] designed a method for object

detection using transfer learning based on CNN with feature extractor technique.

2.5 Class Activation Map (CAM) Generation and Usage

A Class Activation Map (CAM) is a technique for producing discriminative image

regions used by CNN to identify defined class in the input image. CAM allows us

to observe at which image regions CNN is looking and appropriate to a specific

class. Zhou et al [98] proposed a framework of re-using the trained classifier for

getting good localization of distinct class, without having bounding box coordinates

information. Figure 23 presents the generated class activation map for different

breeds of dog using CNN.

Figure 23: Generated CAM for different breeds of dog using CNN

CAM delivers certain assurance that the model has correctly learned the distinctive

features between multiple categories in the form of visualization. Moreover, it

conveys us to see what features are guiding the model’s decision to classify various

objects in the input image that are used by the model to make a prediction.

These means are pursued to generate class activation map:

1. The pre-trained network is used and most of its weights are freezed

2. The model is modified and fine-tuned to generate CAM output

3. Classifier is trained

4. The last convolutional layer is used to create CAM output

5. Generated CAM is displayed

23

To generate CAM, the network architecture is limited to have a global average

pooling layer after the last convolutional layer, followed by the dense layer. To get

this model structure, the network is modified and fine-tuned to get CAM.

In detail, the first building block for this layer is a convolutional layer that produces

an output shape of in terms of batch size, number of filters, width, height. The output

from the GAP layer is treated by the dense layer and softmax layer to assign a weight

to each of the categories that set the importance of each the convolutional layer

output. To generate CAM, output images from the convolutional layer are multiplied

by their assigned weights and added. By superimposing the class activation map on

input image allows us to identify the most essential image regions to the specific

category.

Kwaśniewska et al. [99] demonstrate a method of face detection from low-resolution

thermal images and the most relevant area is highlighted. Tang et al. [101] proposed

a deep discriminative map network for visual tracking. The system utilizes two

neural networks for positioning and size change estimation. Guo et al. [103]

developed a methodology to recognize human attributes without the detection of a

body part and the prior correspondence between body parts and attributes with the

help of CAM network. Li et al. [105] showed a framework for remote sensing image

scene classification using CAM. The attention map is generated using a pre-trained

network as priors for the classification task that are used as an explicit input to end-

to-end training for the first time, aiming to force the network to focus more on the

most appropriate parts. Li et al. [108] used CAM to localize common objects in an

input image. Figure 24 displays the result of produced CAM to locate common

objects.

Figure 24: CCAM applied to localize common objects (Image source: Li et al.,

[108])

24

Charuchinda et al. [106] introduced a technique to build an image classification

network using class activation map (CAM) to identify whether each sub-image

contains the class of interest. The output of the CAM is the filter response where

pixels with high probability are likely to belong to the class of interest. Vasu et al.

[107] made use of class activation map to obtain a view of deep network’s perception

of aerial imagery and identify salient local regions. Moreover, the concept of

transfer-learning is involved to train the model on a similar dataset. Fu et al. [13]

applied a methodology of multi-class activation map for recognition of aircraft in

the remote sensing images.

Pericherla et al. [100] designed an approach to reduce the L2 distance i.e., Euclidean

distance between produced adversarial images and the original images using class

activation map. Selvaraju et al. [102] introduced Grad-CAM model for class

discriminative localization from any CNN-based network without modification and

re-training and applied for image classification and captioning. Kumar et al. [104]

developed a method for visualization and to understand the decisions made by deep

neural networks (DNNs) for a given specific input.

2.6 Object Elimination

Object elimination is the process of masking or deleting an identified or verified

object from a scene. Masking is a technique of hiding a part or a part of an object as

if it were behind an invisible object. Object elimination can be implemented for

various tasks such as foreground extraction, background removal, object detection,

and instance segmentation. Approaches to implement object masking are as follows:

1. Contour detection-based masking

2. Mask-RCNN

3. Diminished Reality

The detail of each masking methodology is described in the following subsections.

2.6.1 Instance Segmentation

Instance segmentation can be defined as the identification of boundaries of the

known objects at the detailed pixel. In computer vision, instance segmentation is the

25

problem of detecting and delineating each distinct object of interest appearing in the

image. Instance segmentation can be achieved by various technologies like contour-

based and Mask R-CNN. Figure 25 depicts the result of instance segmentation in

the input image.

Figure 25: Example of Instance segmentation

Lu et al. [109] designed a method for lip segmentation. Lip segmentation is the initial

step for the lip-reading system. They proposed an active contour model-based lip

segmentation method that adopts local information. Figure 26 illustrates the result

of lip segmentation using contour detection.

Figure 26: Segmented results: a. initial contours and local region; b. Final

evolved contours; c. segmented result (Image source: Lu et al. [109])

Tesema et al. [110] introduced a methodology for human segmentation in still

images using Deep Contour-Aware Network (DCAN) which is a unified multi-task

deep learning framework combining the complementary object and contour

information simultaneously for better segmentation performance. Griffiths et al.

[111] presented an approach to improve public GIS building footprint labels using

Morphological Geodesic Active Contours (MorphGACs). Van den Brand et al.

26

[112] discussed a method for vehicle detection and segmentation in the context of

autonomous driving using fully convolutional network for semantic labeling and

estimating the boundary of each vehicle. CNN provides the area around the contours

that aids to separate the vehicle instance. Hayder et al. [113] introduced a distance

transform-based mask representation that allows prediction of instance

segmentations beyond the limits of initial bounding boxes. Chen et al. [81]

developed a framework for more accurate detection and segmentation of histology

images using deep contour-aware network. Yang et al. [13] suggested a deep

learning approach for contour detection using fully convolutional encoder-decoder

network. Li et al. [114] presented a novel method to borrow contour knowledge for

salient object detection.

Mask R-CNN is widely used for instance segmentation. Mask R-CNN locates each

pixel of the object in the image instead of the bounding boxes. He et al. [115]

introduced a novel framework for instance segmentation: Mask R-CNN. Figure 27

shows the framework of Mask R-CNN.

Figure 27: Mask R-CNN framework for instance segmentation (Image source: He

et al., [115])

When an input image is passed to the network, it gives the object bounding box,

classes, and masks on the detected object.

Mask R-CNN contains two stages: Firstly, it generates region proposals where there

might be an object based on the input image. Secondly, it predicts the class of the

object, refines the bounding box and applies a mask in the pixel level of the object

based on the first stage proposal.

27

Novotny et al. [116] developed an approach for segmenting unknown 3D objects in

real-time depth images using Mask R-CNN, trained on synthetic data. Liu et al.

[117] suggested an improved version of Mask R-CNN for instance segmentation by

applying the features from low levels. Yu et al. [118] built a model for fruit detection

where Mask R-CNN adopts Resnet50 backbone network that is merged with the

Feature Pyramid Network (FPN) architecture for feature extraction. For each feature

map, RPN was trained to create region proposals. After generating mask images of

ripe fruits using Mask R-CNN, a visual localization method for strawberry picking

points was performed. Johnson at al. [119] demonstrated that Mask R-CNN allows

highly effective and efficient segmentation of a wide range of microscopy images

under various conditions and different cells.

2.6.2 Diminished Reality

Diminished Reality (DR) is a technique to virtually remove, hide, and see-through

real objects from the real world. Diminished reality is the conceptual reverse of

Augmented Reality. AR allows us to augment, add virtual world as desired whereas

DR allows erasing physical content from the real-world scene. The real-time

application of diminished reality includes furniture shopping, film studio, city

planning, and interior designing. Figure 28 demonstrates the perception of DR by

removing the glasses in an input image.

Figure 28: Concept of Diminished Reality

Mori et al. [12] published a survey on diminished reality techniques that is beneficial

for virtually erase, hide an object from the real-time scene. They provided a concept

of DR technologies and procedures for implementation. DR is performed by

28

executing diminish, seeing through, replace, and inpainting technologies. Figure 29

illustrates the concept of diminished reality methods.

Kawai et al. [120] performed diminished reality using inpainting method for

background geometry removal with fewer constraints than the conventional ones.

Mori et al. [121] designed an approach for capturing and reproducing the real world

as desired using diminished reality.

Figure 29: Diminished reality techniques: a. diminish, b. Seeing through, c.

replacing, d. inpainting (Image source: Mori et al., [12])

Siltanen et al. [122] developed a novel framework for interior designing without

using prior information of textures, via inpainting method. Nakajima et al. [123]

introduced an approach for deleting an object using diminished reality.

2.7 Related Work

The below table 1 highlights correlated work done so far by researchers in the area

closely related to this thesis, including their contributions and scope of

improvements.

Research Paper Contributions Scope of

Improvement

Training and Testing

Object Detectors with

Virtual Images. Tian, Y.,

Presents an artificial way to

construct perceived image

datasets automatically with

precise annotation and

Generated virtual

images can be used

as prior data for

object verification

29

Li, X., Wang, K., & Wang,

F. Y. (2018)

trained DPM and Faster R-

CNN with real-time images

and virtual images for object

detection

without training any

object detectors

A new FPGA architecture

of FAST and BRIEF

algorithm for on-board

corner detection and

matching. Huang, J., Zhou,

G., Zhou, X., & Zhang, R.

(2018)

FAST and BRISK

descriptors are combined for

corner detection and

matching.

Corner matching

between real-time

image and virtual

image using the

proposed algorithm

is not described.

Unconstrained face

verification using deep cnn

features. Chen, J. C., Patel,

V. M., & Chellappa, R.

(2016, March)

Face verification is

performed using deep

convolutional features that is

trained using IARPA

dataset.

Training of the

model is required for

face verification that

increases the time.

Localizing Common

Objects Using Common

Component Activation

Map. Li, W., Jafari, O. H.,

& Rother, C. (2019)

Designed CCAM model to

localize common objects in

an image by treating CAM

as components to discover

common elements.

This approach

doesn’t perform

elimination by using

the most relevant

part generated by

CAM.

Lip segmentation using

localized active contour

model with automatic

initial contour. Lu, Y., &

Zhou, T. (2018)

Lip segmentation is

performed using an active

contour-based model.

Requires deep

learning model to

train to get contours

that is time-

consuming.

Semantic object selection

and detection for

Introduced a model for

diminished reality that

Training of the

model for target

30

diminished reality based

on SLAM with viewpoint

class. Nakajima, Y., Mori,

S., & Saito, H. (2017,

October).

automatically recognizes the

region to be removed,

without generating the 3D

model of the target object ad

by utilizing SLAM,

segmentation, and

recognition framework.

object detection is

mandatory. This

consumes more

computational

power.

Table 1: Related Work

2.8 Thesis Statement

2.8.1 Problem Statement

Literature survey clearly shows the need to detect dynamic objects accurately while

an autonomous car is driving in order to avoid collisions. According to a literature

survey, recent technologies use machine learning approaches for dynamic object

detection and tracking in real-time that results in training the model and requires

more computational sources. In some cases, the model detects an object that is not

going to move (e.g. a person in the poster) as a dynamic object and gives bounding

box as the trained models are image-based. This ends in consuming more power to

process that exceptional object as a dynamic one. A similar concept applies to a car

when a reflection of a car falls on the glass building, and object detection algorithm

treats that reflection as a dynamic object. The methodologies for object elimination

such as diminished reality, mask R-CNN uses machine learning and requires

training of the model to detect the object that needs to be removed.

The proposed approach of object verification and object elimination uses

constructed 3D virtual world as pre-existing knowledge. The proposed algorithm of

object verification and removal makes use of virtual world to verify physical

stationary (e.g. Buildings) and variable (e.g. Trees) in the real-time environment by

matching keypoints of virtual objects with physical objects without any training. The

proposed method of elimination uses a fusion of contour detection and class

activation map (CAM) to remove verified objects in the real-time image. The

31

removal of stationary and variable objects will improve the accuracy and efficiency

of the dynamic object algorithm.

2.8.2 Thesis Contribution

The major contribution of this thesis can be summarized as follows:

• Constructed 3D virtual model works as prior information for static (e.g.

Building) and variable (e.g. Trees) object verification and elimination in the

real-time scene in order to make dynamic objection algorithm efficient and

accurate.

• The proposed approach of object verification doesn’t require any machine

learning algorithm for training.

• The verified object can be used to geo-locate the self-driving car in a real-

time environment.

• For the objects having pre-existing data, the proposed fusion approach of

contour detection and class activation map (CAM) for object elimination

algorithm can be applied directly without any training.

• In case of objects without having prior knowledge, the model is trained using

transfer learning concept to generate CAM to perform object elimination.

• After applying the object removal algorithm to the real-time image, the

resulting image will be left with dynamic objects making an autonomous car

focus only on those objects that cause more danger. This makes the detection

method work faster.

32

Chapter 3: Proposed Approach

This chapter highlights the proposed approach of stationary (e.g. Buildings, Bench,

Street light) and variable (e.g. Trees) object verification and elimination with and

without using prior information. It also includes pre-processing steps such as object

detection and training the model. This chapter covers the architecture and flowcharts

of the proposed system including detailed methods to perform them. Moreover, this

chapter discusses the working of the overall system and linking of static and variable

object verification and elimination model with other modules.

3.1 Motivation

In recent years, significant research has been made in the field of autonomous

vehicle. Despite these advanced machine learning and computer vision technologies,

a fully autonomous car is still far from reality. Moreover, semi-autonomous cars

have been running on the road in the last couple of years for testing that involved

with some pedestrian fatalities. Recently, Uber and Tesla self-driving car caused two

deaths of level 3 and level 2 fatalities, that’s why this raised the safety concern [77].

In the proposed approach, a constructed 3D environment of a real place is used as

prior knowledge for static (e.g. building) and variable (e.g. trees) object verification

and removal.

3.1 Working of the Overall System

The overall system consists of six modules:

1. Construction of virtual 3D environment

2. Rendered images of real-time video

3. 3D feature and keypoint extraction

4. Removal of static and variable objects

5. Dynamic object recognition

6. Dynamic object detection

As shown in Figure 30, all these modules are interconnected with each other.

33

Figure 30: Overall system architecture

In Figure 30, the work shown in the blue-colored box is the contribution of this

research work. Its connection with all other modules is justified in different colored

boxes, represented using arrows.

The description of the overall system architecture is in depicted to Figure 30. The

overall system primarily deals with the construction of a virtual 3D environment

using OpenStreetMap data (VGI/crowdsourced) and the façade texture from Google

street view images. The virtual 3D city model contains stationary objects, such as

buildings, and some of the variable objects, such as trees. Apart from this, there is a

separate repository that contains extracted 3D features of rendered images of

stationary objects, such as buildings. The heatmap of real-time stationary objects is

generated using prior understanding and stored in the repository. The module

marked in the red-colored box in Figure 30 displays the real-time video that involves

image frames are passed as input to the system. The module shown in the yellow-

34

colored box is responsible for creating the repository. The virtual models are

rendered, features are extracted and stored in a repository The module marked in

blue is the stationary and variable object verification and elimination, where the

keypoints are first detected in the input image to verify the existence of that object

in the real world by matching the extracted keypoints of input image (red-colored

module) with the stored keypoints of the virtual model (yellow-colored box).

Matching the features of the virtual environment and real-time image confirms the

location of the car in the real-world that solves the problem of geo-localization of

the self-driving car. After verifying the physical object, elimination of static and

variable objects in the input image is carried out that provides more time for the

identification and prediction of dynamic objects such as human beings or animals

on the road, as those are the ones that create more danger to the navigation of the

car. The module marked in pink deals with the object recognition and pose

estimation of dynamic objects present in the real-time input image, such as cars, and

pedestrians. Additionally, this module tracks the recognized objects from multiple

frames of the video and calculates the speed of the dynamic object. This information

including recognized object and its pose estimation, speed and location are used to

update dynamic objects into the 3D virtual environment. The module marked in

green color updates information of the dynamic objects of real-world into the virtual

environment.

3.1.1 Working of Individual Modules

The modules that are directly associated with this thesis work are construction of 3D

virtual world, 3D interest points extraction and repository creation, dynamic object

detection. The virtual 3D city model and the real-time video are the input to the

overall system.

1. Construction of 3D Virtual World

Firstly, a virtual city is constructed using open source VGI data such as 2D

street views and satellite images. 3D structural files are extracted with 3D

structures of the buildings that are rendered, and the final 3D structure is

obtained with the geolocation information that is externally mapped on to

35

the model. Textures are mapped onto buildings in the 3D model by extracting

real-world images and georeferencing them. In this way, a virtual city with

stationary (e.g. buildings) and variable objects (e.g. trees) is formed. Later

this virtual city is updated with dynamic objects using real-time recognized

dynamic object details. The virtual city with 3D static, variable, and dynamic

object model information present in real-time road scenes is used by the self-

driving car to navigate safely by knowing the surroundings. This module is

marked using a light blue colored rectangle box in Figure 30.

2. Keypoint Extraction and Dataset Creation

Using a constructed 3D virtual environment, the repository is created to

perform static and variable object verification and elimination in the real-

time input. Initialy, individual 3D models are rendered and interest points

are extracted. In this research work, interest points refer to the corner points

of the object. The extracted keypoints are stored in the file that is the input

for object verification method. The heatmap is generated using structural

information of the building that is stored in the repository to execute object

elimination. After performing object elimination of real-time view, the

resulting image will contain dynamic objects to improve the efficiency and

accuracy of moving object detection algorithm. The module is presented in

a yellow-colored box in Figure 30.

3. Dynamic Object Recognition:

This module matches features of the dynamic objects in the input image with

the feature information of 3D object models stored in the repository to find

a suitable match of 3D model for each of the dynamic objects present in the

input image. After finding the corresponding 3D model from the repository,

a voting algorithm is used for the matching purpose, and to estimate the

confidence score that signifies the assurance of object identification. This

process improves the confidence of recognition and pose estimation of

dynamic objects in the input image. This module is shown in the pink-

colored box in Figure 30.

36

3.2 Proposed Methodology for Stationary and Variable Object Verification

and Object Elimination

The proposed system applies the use of constructed 3D virtual environment as prior

information for stationary (e.g. buildings, bench, street light) and variable (e.g. trees)

objects verification and elimination in the real-time scene. Figure 31 below

illustrates the architecture of the proposed methodology.

Figure 31: Architecture of the proposed approach

The proposed system includes two sub-modules that are as follows:

1. Object Verification

2. Object Elimination

3.2.1 Stationary and Variable Object Verification

Object verification is achieved by matching the interest points of the real-time world

with the virtual environment. For this research work, stationary objects are

buildings, bench, street light whereas variable object is tree, those are verified in the

37

real-time scene taken by the camera mounted on the top of an autonomous car. The

stationary object (building) having prior knowledge is passed to object verification

module, whereas in case of objects those are not present in the virtual world (bench,

trees, street light) are sent to elimination module after performing object detection

task. Figure 32 depicts the architecture of object verification module.

Figure 32: Flowchart of object verification component

3.2.1.1 Object Detection Module

Primarily, an object detection model is trained using Faster R-CNN algorithm

(discussed in section 2.1.2) on the custom dataset to detect buildings, trees and street

light in an input image. A real-time input image is fed into this trained network that

gives an output image containing a corresponding class label with its probability of

belonging to that class as well as bounding box around the detected instance with its

coordinates. Then, the information of bounding box coordinates is utilised to crop

that object from the input image. This cropped image is used by other module.

3.2.1.2 Feature Detection Module

For detected stationary objects (buildings), corner points define the shape of that

object. Extreme points are the most relevant interest points that describe the

38

building’s structure more efficiently. As discussed in section 2.2, many corner

detection algorithms are FAST (Feature from Accelerated Segment Test) detector,

Harris corner detector, and Shi-Tomasi corner detection. Among them, FAST is

commonly used as a corner detector because of its speed than the other methods that

is feasible for real-time scenarios [124].

In the FAST algorithm, from an input image, pixel P having an intensity Ip is selected

to be identified as a corner point or not. The appropriate threshold value is t. 16 pixels

circle is selected around that selected pixel. The pixel P is a corner if there exists a

set of n (chosen to be 12) contiguous pixels in the circle that are brighter than Ip + t

or darker than Ip – t. A high-speed test examines only the four pixels at 1, 9, 5 and

13 (First 1 and 9 are tested if they are too brighter or darker. If so, then checks 5 and

13). If P is a corner, then at least three of these must be brighter than Ip + t or darker

than Ip – t. If neither of these is the case, then P cannot be a corner. Figure 33 shows

pixel P is chosen as a corner.

Figure 33: Pixel P selected as a corner point

After applying the FAST algorithm to an input image, the corner points are detected

that are somehow special to define the structure of the building.

3.2.1.3 Feature Selection Module

Detected features in the real-time image are not efficient for the verification task

using virtual image interest points. Feature selection creates a subset of interest

points from the parent set; comprising of more significant, non-redundant points.

Extreme points are effective in order to portray the shape of the building. Normally,

corner points are the points that are far from the centroid of the shape. The same

39

perception has been used here to find the most meaningful corner points of arbitrary

shape.

The centroid of a shape is the arithmetic mean (i.e. the weighted average) of all the

points in a shape [125]. If a shape consists of n distinct points then the centre is,

C =
1

𝑛
∑ 𝑥𝑛

𝑖=1 i

In computer vision and image processing, image moment can be expressed as a

weighted average of image pixel intensities that is beneficial for finding specific

properties such as centroid, area, radius, etc.

Centroid (Cx, Cy) = (
𝑀10

𝑀00
 ,

𝑀01

𝑀00
), where M denotes the Moment

Once the object centroid is computed, the distance from the centroid to the detected

keypoints using FAST is calculated using Euclidean Distance. Many distance

functions are Euclidean, Manhattan, Cosine, Jaccard, etc. are mainly used for

distance calculation.

The Euclidean distance between two points x and y is the length of line segment

connecting them. Euclidean distance can be calculated by,

d(x,y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2

The interest points having maximum distance from centre to detected feature points

are selected using the four-quadrant method. For each quadrant, a stated number

(i.e., top 8 points) of top extreme points are selected to pass to the other module. In

this way, the most significant key points are selected for use.

3.2.1.4 Object Verification Algorithm

Algorithm: Object Verification of Static and Variable Objects

INPUT: Real-time image

OUTPUT: Verified object

40

Step 1: Real-time input image is passed to an object detection module for detection

of stationary and variable objects

Step 2: For stationary object having prior information go to step 3, otherwise go to

step 11

Step 3: Detect feature points using FAST corner detector

Step 4: Find the centroid of a detected object

Step 5: Calculate the Euclidean distance between centroid to all the detected features

of step 3

Step 6: Find the top 8 far points from the centroid for each quadrant

Step 7: Fetch the corresponding virtual rendered image from the repository. If a

virtual rendered image is not available, go to step 12.

Step 8: Verify the existence of an object in the real-world by matching the interest

point between real-time objects and virtual objects

Step 9: Calculate the confidence score

Step 10: If verified successfully, perform step 3 to step 9 for the nearest object in

real-time. For a successful match of neighbouring object, increase the

confidence score of the primary object and go to step 11. For an unsuccessful

match, go to step 11.

Step 11: Pass the verified object to object elimination module

Step 12: Exit. Check for the next object

3.2.1.5 Object Verification Module

Object verification is a technique to verify the existence of an object using prior

knowledge. The stationary object’s presence is verified by matching the selected

interest points of the physical environment with the feature points of the virtual

rendered image using some manually decided threshold value.

The confidence score is calculated on matched feature points, that is,

 confidence score =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠

For a valid confidence score, the object is considered as successfully verified.

Following this, the neighbouring object is matched with the appropriate virtual

41

image to improve the confidence score of the verified object. If the neighbour object

matches positively, the confidence score of the primary verified object is increased.

The verified object is then passed to the next module, Object elimination for further

process.

3.2.2 Stationary and Variable Object Elimination

Once the static and variable objects are verified successfully, they are fed into an

object removal module. The object masking is achieved by the fusion approach of

contour detection and Class Activation Map (CAM). In the proposed system,

contour detection is performed without using any deep neural network. The attention

map is generated using either CNN or available prior data of the virtual city model.

After performing stationary and variable object elimination in the real-time input

image, the resulting image contains dynamic objects. Figure 34 displays the

flowchart of the object elimination component.

Figure 34: Flowchart of object elimination component

42

3.2.2.1 Contour Detection Module

Contours are simple curves joining all the continuous points, having the same color

or intensity. Contours are useful for various tasks such as shape analysis, object

detection and recognition [126].

For this research, contours are computed from the detected edges. Edges are

obtained as points those are extrema of the image gradient. Once the edges are found

using a canny edge detection algorithm [127], contours are formed. Contours define

the boundary of an object in the image. The pixels within the boundary are

considered as an object segment. Only contours are not sufficient for an assurance

of the actual object as it detects some outliers of other objects near to the actual

object. To address this problem class activation map (CAM) is used.

3.2.2.2 Generation of Class Activation Map (CAM)

As discussed in section 2.5, CAM allows us to see at which image regions CNN is

looking and how relevant to a specific class in the form of visualization. The most

significant region of an object is highlighted, indicating the higher chances of having

the classified object’s part in the image. The generated CAM comprises pixel valued

probability value that can be utilized to set the threshold. For this thesis, stationary

objects are buildings, bench and street light whereas variable objects are trees.

There are three different scenarios for generating CAM:

1. With using prior information of the 3D model

2. Without using prior knowledge and using a pre-trained model

3. Without using 3D models of virtual city and by training the model

In the first scenario, pre-existing data of a static object (i.e., building) is available in

the virtual city to use. The information of structure is used to generate heatmap

without training the convolutional neural network. The created heatmap is stored in

the repository that is used for the masking process.

In case of a stationary object whose 3D model is not available (i.e., bench), a pre-

trained model is responsible for generating CAM. VGG16 model is trained on the

43

ImageNet dataset to classify 1000 different classes is used to create a visualization

map for benches.

In the third scenario, there is neither prior information in the constructed 3D world

nor a pre-trained model is present to generate an attention map. The convolutional

neural network is trained to produce an attention map. In machine learning, transfer

learning is the concept of using the gained knowledge for solving a similar problem

(as discussed in section 2.4). In transfer learning, there is no need to train the

convolutional model from scratch. For this research work, the concept of transfer

learning is used for training the network for producing the visualization map of

detected objects in the real-time scene. The model is trained using the ImageNet

dataset that produces attention map of an input image.

The created Class Activation Map (CAM) shows the most significant pixels of an

object as highlighted regions. Those pixels are having high chances of belonging to

the instance.

3.2.2.3 Object Masking

After detecting the contour points and class activation map of an object to be

eliminated, the fusion of both the approaches is applied to mask the object. The pixel

points that are within the object boundary and having pixel value in the heatmap

equal or greater the defined threshold are selected and eliminated.

After removing the stationary and variable objects from the real-time scene, the

resulting image contains dynamic objects that increase the efficiency of detection

algorithm.

3.2.2.4 Object Elimination Algorithm

Algorithm: Object Elimination of Static and Variable Objects

INPUT: an input image having an object to be masked

OUTPUT: an output image with the masked object

Step 1 Perform Contour detection of an input image

44

Step 2: Find the pixels that are within the boundary of an object

Step 3: An input image is passed to the trained CNN network to generate CAM. For

an object having prior knowledge, fetch the heatmap from the created

repository. If not, go to step 6

Step 4: Obtain the pixels from step 2 and having pixel values in heatmap greater

than the defined threshold

Step 5: Eliminate the selected pixels in the input image obtained from step 4

Step 6: Exit

3.3 Time Complexity of the Proposed Approach

The time complexity of an algorithm is calculated based on the programmatical

execution. The proposed algorithm verifies the existence of an object in the real-

time scene by matching interest points of the input images with the virtual rendered

images of 3D object models stored in the repository. As each keypoints (i) of the

input image are matched with the keypoints(j) of the virtual model’s rendered image

as well as the same matching is performed for the nearest object, therefore, the time

complexity for object verification task is calculated as O (i * j * 2).

The object elimination module starts with finding the pixels that are within the

contour boundary (i) and having pixel value greater than a defined threshold (j).

The time complexity for object removing task is calculated as O (i * j). Table 2

below shows the time complexity of the proposed algorithm.

Module Time Complexity Details

Object Verification O (i * j * 2) i = number of keypoints in the

real-time input image

j = number of keypoints in the

rendered images

Object Elimination O (i * j) i = number of keypoints in the

real-time input image

j = number of interest points in

the rendered images

Table 2: Time complexity of the proposed algorithm

45

Chapter 4: Implementation and Experiments

The proposed approach was implemented on Windows using the Python

programming language. During the implementation phase of this research work,

various Python and OpenCV libraries were used. The list of software and tools used

is given in the below Table 3.

4.1 Software Information

In order to implement the proposed approach, execution was carried out on the

Alienware 1.5.0 x64-based Desktop, with NVIDIA 8.1.940.0 and Intel 64 ~ 3192

MHz GPU. Some results are obtained using the Dell laptop with x64-based system

and Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz processor.

ITEM DETAILS

Operating System Windows

Language Python 3.6.5

IDE Jupyter Notebook, Anaconda Navigator

Python Libraries OpenCV, Scikit, Keras, Tensorflow,

Numpy, Pandas, Matplotlib, SciPy

Tools 3D Viewer

Table 3: List of software and tools used

4.2 Construction of 3D Virtual World

To employ the proposed approach of object verification and object elimination using

prior data, the 3D virtual world has been produced using open source/cloud VGI

data (2D street views and satellite images). This 3D environment comprises

stationary (e.g. Buildings), and variable (e.g. Trees) objects. Figure 35 and 36 below

displays an example of a constructed 3D virtual world.

The execution of the proposed framework is demonstrated using the real-time

location: King St S at Wills Way to King St S at William St E, Waterloo, ON.

46

The virtual world has been composed for the respective real-time region to be

utilized as prior knowledge and exploited to perform for various tasks like object

verification and object elimination of stationary and variable objects in the real-time

scenes.

Figure 35: Constructed 3D virtual World

Figure 36: Constructed 3D Objects

4.3 Creation of Repository of Virtual World

Initially, from the constructed virtual world, 3D objects are rendered. The 3D

interest points are extracted from rendered images. The rendered images and

extracted 3D features are stored in the repository that can be further practiced for

verification and to confirm the existence of that object in the real-time vision. Below

is the Figure 37 which shows the rendered image of the 3D virtual object and Figure

38 that illustrates the method of 3D keypoints extraction of the rendered image.

47

Figure 37: Rendered 3D object

Figure 38: Extracted 3D features on rendered images

4.4 Experiments and Results of Object Detection

As mentioned in section 3.2.1.1, the model is trained by applying Faster-RCNN

algorithm to recognize static (e.g. buildings, street light) and variable (e.g. tree)

objects in the real-time view.

The model has been trained using the Google OpenImage dataset for buildings, trees,

and street light detection. From 1000 images of each class, 800 was used for training

and 200 images for testing the network. The model is trained for 50 epochs with a

batch size of 1000. The resulting output of the detection algorithm is bounding box

with coordinates around the object, class label, and probability score.

These identified objects i.e., bounding boxes are cropped and individually treated to

execute object verification and object elimination methodologies.

48

4.4.1 Experiments and Results of Object Detection for Buildings

Figure 39 and Figure 40 depict the implementation result of object detection of

buildings with bounding box, class label and probability score.

hsbc_corner_1.JPG

Elapsed time = 20.260802030563354

[('Skyscraper', 90.63831567764282), (Street light,

80.7957112789154), ('Tree', 88.04613947868347)] [(50, 152, 101,

356), (101, 50, 763, 381), (814, 254, 966, 356)]

Figure 39: Detected Skyscraper, Street light, Tree in the real-time image

scotiabank_corner_2.JPG

Elapsed time = 18.652015686035156

[('Skyscraper', 86.19678020477295), ('Tree', 94.59443688392639)]

[(107, 26, 803, 401), (0, 0, 214, 535)]

Figure 40: Detected Skyscraper, Tree in the real-time image

4.4.2 Experiments and Results of Object Detection for Tree

Figure 41 and Figure 42 display the experimental outcome of object detection of

trees with bounding box, class label and probability value.

red_oak.jpg

Elapsed time = 16.516764640808105

49

[('Tree', 95.89992165565491), ('Tree', 88.04725408554077),

('Tree', 76.72315835952759)] [(0, 0, 265, 321), (227, 170, 340,

302), (0, 208, 37, 302)]

Figure 41: Detection of Tree in the image

real_canada_street_tree.jpg

Elapsed time = 17.315558671951294

[('Tree', 97.35758304595947), ('Tree', 87.55118250846863),

('Skyscraper', 96.16764783859253)] [(288, 0, 672, 512), (0, 224,

64, 288), (32, 0, 352, 352)]

Figure 42: Detected Trees, Skyscraper in the real-time image

4.4.3 Experiments and Results of Object Detection for Street light

Implementation result of static object (e.g. Street light) detection are shown in Figure

43 and Figure 44.

street_light_real.jpg

Elapsed time = 16.90429949760437

[('Street light', 97.33138084411621), ('Tree', 68.5300409793853

8), ('Tree', 62.40453124046326)] [(138, 0, 249, 608), (0, 581, 5

5, 636), (0, 581, 359, 636)]

50

Figure 43: Street light, Trees detected in the test image

street_light_trees.jpg

Elapsed time = 19.07902717590332

[('Tree', 85.15207767486572), ('Tree', 76.06753706932068), ('Tr

ee', 62.04541325569153), ('Tree', 57.062774896621704), ('Street

light', 66.56368374824524)] [(0, 358, 921, 921), (0, 0, 307, 40

9), (0, 1024, 102, 1126), (51, 1024, 153, 1075), (460, 102, 614

, 614)]

Figure 44: Street light, Trees detected in the test image

4.4.4 Experiments and Results of Object Detection for Bench

For Bench detection, Python library ImageAI [68] and pre-trained model RetinaNet

[68] is used. Figure 45 shows the result of bench detection in the test images.

51

Figure 45: Bench detected in the test image

4.5 Experiments and Results of Object Verification

The implementation results illustrate the outcome of proposed approach of static

(e.g. Buildings) and variable (e.g. Trees) object verification using prior information

(described in section 3.2.1).

4.5.1 Centroid Detection of Real-time Stationary Object

According to the mentioned algorithm in section 3.2.1, primarily, the centroid of the

stationary object (e.g. building) is estimated in the real-time cropped image.

Figure 46: Centroid Calculation

Figure 47: Detected centroid in the real-time image with coordinates

52

4.5.2 Feature Detection Using FAST Corner Detector of Real-Time Object

Next step is the use of OpenCV FAST feature detection algorithm that detects corner

points.

Figure 48: Detection of corner points using the FAST algorithm

Figure 49: Detected corner points on real-time image

4.5.3 Calculation of the Distance of Real-Time Object

Nextly, the detected corner points’ coordinates are stored in the file. The distance is

calculated for each interest points from the centroid which is stored in another file

for further use.

Figure 50: Calculating the distance between keypoints and centroid

4.5.4 Feature Selection in Real-Time Image

Using a four-quadrant approach, the top 8 feature points are selected those are far

from the centroid. This method is applied to each quadrant.

53

Figure 51: Selected top 8 keypoints for top-right (1st quadrant)

After selecting the top 8 keypoints for each quadrant, they are plotted on the real-

time cropped image as well as stored in the file for further use.

Figure 52: Plotted selected keypoints on the real-time image

4.5.5 Retrieving the Virtual Image and Keypoints

The proposed approach of keypoint selection is applied to virtual object feature

selection. Figure 53 shows the feature selection of the corresponding virtual

rendered image using the proposed approach.

Figure 53: Plotted selected keypoints on the virtual image

54

4.5.6 Object Verification of Stationary Object Using Prior Knowledge

As per the proposed approach, verification is carried out with the aid of the virtual

world and physical objects. Verification is performed by matching selected interest

points of real-time (Figure 52) with virtual (Figure 53) objects using a threshold

value. Figure 53 shows the results of the verification. If the confidence score of the

match is equal or greater than 70%, the object is considered as verified positively.

Figure 54: Object verification result of real-time object

4.5.7 Increasing the Confidence Score Using Neighbour Object

After verifying the real-time object successfully with the help of prior knowledge

and using some threshold value, the neighbouring object is used to increase the

confidence score of the verified object. The same procedure is applied for the

verification of neighbouring building. Figure 55 - 58 illustrates the result of

increasing the probability of verified object using neighbouring building. If the

neighbouring object is verified successfully, then 0.5 confidence score is added to

the main verified stationary object’s confidence score.

Figure 55: Selected keypoints of the virtual nearest static object (e.g. building)

55

Figure 56: Selected keypoints of the real-time nearest static object (e.g. building)

Figure 57: Verification result of neighbour stationary object (e.g. building)

Figure 58: Increased confidence score of a verified static object

4.6 Experiments and Results of Object Elimination

This section includes the implementation result of the proposed algorithm of static

(e.g. Buildings, Bench, Street light) and variable (e.g. Tree) object removal

explained in section 3.2.2.

4.6.1 Results of Generation of Class Activation Map (CAM)

According to the proposed technique as described in section 3.2.2, the model is

trained using Transfer Learning to generate Class Activation Map (CAM) for the

objects without having prior understanding, i.e., those are not present in the virtual

world. The model is trained using pre-trained top layers weights of VGG16 that is

trained on the ImageNet dataset for 1000 different classes. The proposed model is

trained using 1000 training images of each class (i.e., Tree, Street light) with 32

batch size. Figure 59 displays the execution output of CAM generation of Trees. The

result of CAM generation of Street light is shown in Figure 60.

56

Generation of heatmap:

heatmap = np.mean(conv_layer_output_value, axis=-1)

heatmap = np.maximum(heatmap, 0)

heatmap = heatmap/heatmap.max()

Figure 59: Result of CAM Generation of Tree (left: input image, centre: generated

heatmap, right: heatmap superimposed on input image)

57

Figure 60: Result of CAM Generation of Street light (left: input image, centre:

generated heatmap, right: heatmap superimposed on input image)

For CAM generation of Bench, pre-trained model VGG16 is used that is trained on

the ImageNet dataset for 1000 various classes. Figure 61 illustrates the result of

CAM generation of Bench.

Figure 61: Result of CAM Generation of Street light (left: input image, centre:

generated heatmap, right: heatmap superimposed on input image)

58

4.6.2 Results of Contour Detection

As per the described methodology in section 3.2.2.1, contours are detected on real-

time objects using canny edge detection algorithm. Figure 62 depicts the result of

the contour detection of Trees.

Figure 62: Result of Contour Detection of Trees

The results of contour detection of Street light is shown in Figure 63.

59

Figure 63: Result of Contour Detection of Street light

Figure 64 displays the result of the contour detection of Bench.

Figure 64: Result of Contour Detection of Bench

The output of contour detection of the building is displayed in the below Figure 65.

60

Figure 65: Result of Contour Detection of Buildings

4.6.3 Results of Object Elimination Using Combined Approach

As per the mentioned technique in section 3.3.2.3 for static and variable object

elimination, combined approach of Class Activation Map (CAM) (Figure 59-61)

and Contour Detection (Figure 62-65) is used. The points having equal or greater

value than defined threshold value and within the object boundary are selected and

masked out in the input image. Figure 66, 67, 68, 69 depict the result of object

elimination of Tree, Street light, Bench and Buildings, respectively.

Figure 66: Result of Object Elimination of Trees

61

Figure 67: Result of Object Elimination of Street light

Figure 68: Result of Object Elimination of Bench

Figure 69: Result of Object Elimination of Buildings

62

Figure 70 illustrates the final output of the proposed algorithm where static and

variable objects are masked out and dynamic objects are left in the input image.

Figure 70: Result of the proposed algorithm

4.7 Results Comparison and Discussion

4.7.1 Advantages of the Proposed Approach

Nair et al. [71] proposed an approach for moving object detection and human pose

estimation. The proposed method uses trained model RestinaNet [68] for dynamic

object detection in real-time images. This model detects a human in the poster as

well as the reflection of a person on the building that is time-consuming as it

processes that exceptional object as a dynamic object that is not going to move.

Figure 71 illustrates the person detected in the poster using RetinaNet model [68] in

the real-time image.

63

Figure 71: Person Detected in the poster using RetinaNet model

The RetinaNet model [68] also detects the reflection of the car and person as a

dynamic object that ends in utilizing more time for an object that will remain

stationary. Figure 72 depicts the outcome of object detection using RetinaNet model

[68]. The left image shows the detected object class with its probability, bounding

box coordinates, and execution time of the object detection algorithm on the test

image without masked objects and the right image depicts the outcome of object

detection algorithm. The object detection algorithm took 18.6 seconds to run on the

original real-time image without applying the proposed approach of object

elimination.

Figure 72: Reflection of car and person on the building detected as a dynamic

object

The proposed method in this research uses prior knowledge to verify and remove

the stationary (e.g. buildings) and variable (e.g. trees) objects in the real-time image.

After applying the proposed approach for masking the building as illustrated in

section 4.6.3, the unusual objects are eliminated in the image that allows moving

64

object detection algorithm works accurately and efficiently. Figure 73 illustrates the

result of moving object detection method after masking. The building is eliminated

in the image therefore, the car is not detected on the side of the buildings that makes

the dynamic object detection algorithm to perform efficiently. The execution time

of the object detection algorithm on the masked image is 15.8 seconds. The

implementation time of the proposed object elimination method is 548 milliseconds.

Figure 73: Detection of dynamic objects after object elimination

The proposed approach of object elimination gives a significant result for the

dynamic object detection algorithm. The removal of stationary and variable objects

in the real-time image allows the moving object detection method to perform more

efficiently and accurately.

4.8 Limitations of the Proposed Approach

The proposed technique uses a constructed 3D virtual world as prior knowledge to

verify the existence of static and variable objects in the real-time environment. This

method of verification and elimination is dependent on the virtual world that can not

be applied to the objects without having prior information.

For the objects that are not present in the virtual world, the machine learning

technique is required for training to generate CAM of that stationary and variable

object in the physical world. The description of that technique is explained in section

3.2.2.2 and illustrated in section 4.6.

65

As mentioned in section 4.6.1, the model trained using transfer learning is used to

produce a Class Activation Map (CAM) for elimination. The trained model is not

accurate for all types of trees as trees may change their shape according to the

weather. The proposed trained model to generate Class Activation Map (CAM) is

not accurate for trees without leaves. Figure 74 shows the result of the generated

Class Activation Map (CAM) for the tree with no leaves.

Figure 74: Generated CAM for trees without leaves

66

Chapter 5: Conclusion and Future Work

5.1 Conclusion

With the help of recent machine learning and computer vision techniques, many

leading automobile companies are stepping towards to build an autonomous car, i.e.,

a car drives by itself without any human inputs. In other words, software on the

wheels. The several benefits of a driverless car include less traffic, human comfort,

increased safety, time and space-saving. Despite using modern approaches, it is still

far away to become fully robotic. However, for the driverless-car to function with

negligence of accidents, it needs to be aware of surroundings including stationary

(e.g. buildings, street light, benches), variable (e.g. trees) and dynamic (e.g.

pedestrians, car) objects. The main objective of the proposed approach is to verify

and mask the stationary and variable objects in the real-time image using the virtual

world as prior data.

The constructed virtual 3D world assists an autonomous car to understand the

surroundings while moving on the street. Using this information, static and variable

objects are verified and removed by matching the feature points of the physical

world with a virtual world. For object removal, the fusion technique of contour

detection and Class Activation Map (CAM) is used. This allows an autonomous car

to focus on moving objects that adds a significant danger to drive.

Section 4.5 and 4.6 illustrates the results of the proposed method of stationary and

variable object verification and elimination, respectively. The results prove that the

proposed technique is capable for verifying the existing object in the real-time

environment by matching the extracted keypoints between the real-time and the

virtual object using some threshold. The method for object removal uses a combined

way of contour detection and Class Activation Map (CAM) for accurate results. The

elimination method of stationary and variable objects reduces the execution time of

dynamic object detection algorithm as well as improves the efficiency of the

67

algorithm. The saved time can be invested in moving object detection and prediction

algorithm to work faster and accurately in the real world.

5.2 Future Work

However, the proposed approach in this research of stationary and variable object

verification and removal illustrates reasonable results, there is a room for

improvement.

1. The proposed approach of training a model to generate Class Activation Map

(CAM) for trees can be enhanced by adding various types and shapes of the

trees according to weather to make it work more efficiently.

2. The proposed approach for verification and elimination of static and variable

objects can be applied to verify and remove street light and trees in the real-

time scene if prior information is available in the virtual world to use.

68

References/Bibliography

1. Milestones of self-driving car: https://www.digitaltrends.com/cars/history-

of-self-driving-cars-milestones/

2. https://www.wired.com/story/guide-self-driving-cars/

3. Darms, M., Rybski, P., & Urmson, C. (2008, June). Classification and

tracking of dynamic objects with multiple sensors for autonomous driving in

urban environments. In 2008 IEEE Intelligent Vehicles Symposium (pp.

1197-1202). IEEE.

4. Hu, X., Chen, L., Tang, B., Cao, D., & He, H. (2018). Dynamic path planning

for autonomous driving on various roads with avoidance of static and

moving obstacles. Mechanical Systems and Signal Processing, 100, 482-

500.

5. Fu, K., Dai, W., Zhang, Y., Wang, Z., Yan, M., & Sun, X. (2019). Multicam:

Multiple class activation mapping for aircraft recognition in remote sensing

images. Remote Sensing, 11(5), 544.

6. Zhao, J., Liang, B., & Chen, Q. (2018). The key technology toward the self-

driving car. International Journal of Intelligent Unmanned Systems, 6(1), 2-

20.

7. https://medium.com/waymo/scenes-from-the-street-

5bb77046d7ce#.tq11yyoqw

8. Druzhkov, P. N., & Kustikova, V. D. (2016). A survey of deep learning

methods and software tools for image classification and object detection.

Pattern Recognition and Image Analysis, 26(1), 9-15.

9. Chen, Y., Li, W., Sakaridis, C., Dai, D., & Van Gool, L. (2018). Domain

adaptive faster r-cnn for object detection in the wild. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 3339-

3348).

https://www.digitaltrends.com/cars/history-of-self-driving-cars-milestones/
https://www.digitaltrends.com/cars/history-of-self-driving-cars-milestones/
https://www.wired.com/story/guide-self-driving-cars/
https://medium.com/waymo/scenes-from-the-street-5bb77046d7ce#.tq11yyoqw
https://medium.com/waymo/scenes-from-the-street-5bb77046d7ce#.tq11yyoqw

69

10. Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., & Li, D. (2018). Object

classification using CNN-based fusion of vision and LIDAR in autonomous

vehicle environment. IEEE Transactions on Industrial Informatics, 14(9),

4224-4231.

11. Li, S. (2017, September). A review of feature detection and match algorithms

for localization and mapping. In IOP Conference Series: Materials Science

and Engineering (Vol. 231, No. 1, p. 012003). IOP Publishing.

12. Mori, S., Ikeda, S., & Saito, H. (2017). A survey of diminished reality:

Techniques for visually concealing, eliminating, and seeing through real

objects. IPSJ Transactions on Computer Vision and Applications, 9(1), 1-

14.

13. Yang, J., Price, B., Cohen, S., Lee, H., & Yang, M. H. (2016). Object contour

detection with a fully convolutional encoder-decoder network. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 193-202).

14. Object Detection : https://towardsdatascience.com/object-detection-using-

deep-learning-approaches-an-end-to-end-theoretical-perspective-

4ca27eee8a9a

15. Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object Detection in 20 Years: A

Survey. arXiv preprint arXiv:1905.05055.

16. Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine

learning for medical imaging. Radiographics, 37(2), 505-515.

17. Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., ... & Chen, D.

(2017). Evaluation of feature selection methods for object-based land cover

mapping of unmanned aerial vehicle imagery using random forest and

support vector machine classifiers. ISPRS International Journal of Geo-

Information, 6(2), 51.

18. Bakhshipour, A., & Jafari, A. (2018). Evaluation of support vector machine

and artificial neural networks in weed detection using shape features.

Computers and Electronics in Agriculture, 145, 153-160.

https://towardsdatascience.com/object-detection-using-deep-learning-approaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a
https://towardsdatascience.com/object-detection-using-deep-learning-approaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a
https://towardsdatascience.com/object-detection-using-deep-learning-approaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a

70

19. Bazi, Y., & Melgani, F. (2018). Convolutional SVM networks for object

detection in UAV imagery. Ieee transactions on geoscience and remote

sensing, 56(6), 3107-3118.

20. Wei, Y., Tian, Q., Guo, J., Huang, W., & Cao, J. (2019). Multi-vehicle

detection algorithm through combining Harr and HOG features.

Mathematics and Computers in Simulation, 155, 130-145.

21. Chee, K. W., & Teoh, S. S. (2019). Pedestrian Detection in Visual Images

Using Combination of HOG and HOM Features. In 10th International

Conference on Robotics, Vision, Signal Processing and Power Applications

(pp. 591-597). Springer, Singapore.

22. Wang, Y., Zhu, X., & Wu, B. (2019). Automatic detection of individual oil

palm trees from UAV images using HOG features and an SVM classifier.

International Journal of Remote Sensing, 40(19), 7356-7370.

23. Rashid, M., Khan, M. A., Sharif, M., Raza, M., Sarfraz, M. M., & Afza, F.

(2019). Object detection and classification: a joint selection and fusion

strategy of deep convolutional neural network and SIFT point features.

Multimedia Tools and Applications, 78(12), 15751-15777.

24. Mihçioğlu, M. E., & Alkar, A. Z. (2019). Improving pedestrian safety using

combined HOG and Haar partial detection in mobile systems. Traffic Injury

Prevention, 1-5.

25. Prasanna, D., & Prabhakar, M. (2018). An efficient human tracking system

using Haar-like and hog feature extraction. Cluster Computing, 1-8.

26. Arunmozhi, A., & Park, J. (2018, May). Comparison of HOG, LBP and

Haar-Like features for on-road vehicle detection. In 2018 IEEE International

Conference on Electro/Information Technology (EIT) (pp. 0362-0367).

IEEE.

27. Brunetti, A., Buongiorno, D., Trotta, G. F., & Bevilacqua, V. (2018).

Computer vision and deep learning techniques for pedestrian detection and

tracking: A survey. Neurocomputing, 300, 17-33.

28. Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., &

Mouzakitis, A. (2019). A survey on 3d object detection methods for

71

autonomous driving applications. IEEE Transactions on Intelligent

Transportation Systems.

29. Panchpor, A. A., Shue, S., & Conrad, J. M. (2018, January). A survey of

methods for mobile robot localization and mapping in dynamic indoor

environments. In 2018 Conference on Signal Processing And

Communication Engineering Systems (SPACES) (pp. 138-144). IEEE.

30. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen,

M. (2018). Deep learning for generic object detection: A survey. arXiv

preprint arXiv:1809.02165.

31. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., ... &

Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques,

and applications. ACM Computing Surveys (CSUR), 51(5), 92.

32. Sindagi, V. A., & Patel, V. M. (2018). A survey of recent advances in cnn-

based single image crowd counting and density estimation. Pattern

Recognition Letters, 107, 3-16.

33. Verma, S., Eng, Y. H., Kong, H. X., Andersen, H., Meghjani, M., Leong, W.

K., ... & Rus, D. (2018, May). Vehicle Detection, Tracking and Behavior

Analysis in Urban Driving Environments Using Road Context. In 2018 IEEE

International Conference on Robotics and Automation (ICRA) (pp. 1413-

1420). IEEE.

34. Possatti, L. C., Guidolini, R., Cardoso, V. B., Berriel, R. F., Paixão, T. M.,

Badue, C., ... & Oliveira-Santos, T. (2019). Traffic Light Recognition Using

Deep Learning and Prior Maps for Autonomous Cars. arXiv preprint

arXiv:1906.11886.

35. Mittal, N., & Kapoor, A. V. A. P. S. (2019). Object Detection and

Classification Using Yolo.

36. Putra, M. H., Yussof, Z. M., Lim, K. C., & Salim, S. I. (2018). Convolutional

neural network for person and car detection using yolo framework. Journal

of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-

7), 67-71.

72

37. Wang, X., Hua, X., Xiao, F., Li, Y., Hu, X., & Sun, P. (2018). Multi-Object

Detection in Traffic Scenes Based on Improved SSD. Electronics, 7(11),

302.

38. Zhang, S., Wen, L., Bian, X., Lei, Z., & Li, S. Z. (2018). Single-shot

refinement neural network for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (pp. 4203-4212).

39. Zhang, Z., Qiao, S., Xie, C., Shen, W., Wang, B., & Yuille, A. L. (2018).

Single-shot object detection with enriched semantics. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (pp. 5813-

5821).

40. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look

once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 779-788).

41. Židek, K., Lazorík, P., Piteľ, J., & Hošovský, A. (2019). An Automated

Training of Deep Learning Networks by 3D Virtual Models for Object

Recognition. Symmetry, 11(4), 496.

42. Tian, Y., Li, X., Wang, K., & Wang, F. Y. (2018). Training and testing object

detectors with virtual images. IEEE/CAA Journal of Automatica Sinica, 5(2),

539-546.

43. Loing, V., Marlet, R., & Aubry, M. (2018). Virtual training for a real

application: Accurate object-robot relative localization without calibration.

International Journal of Computer Vision, 126(9), 1045-1060.

44. Neumann, L., Karg, M., Zhang, S., Scharfenberger, C., Piegert, E., Mistr, S.,

... & Schiele, B. (2018, December). NightOwls: A pedestrians at night

dataset. In Asian Conference on Computer Vision (pp. 691-705). Springer,

Cham.

45. Chowdhury, D. R., Garg, P., & More, V. N. (2019, April). Pedestrian

Intention Detection Using Faster RCNN and SSD. In International

Conference on Advances in Computing and Data Sciences (pp. 431-439).

Springer, Singapore.

73

46. Sheng, M., Liu, C., Zhang, Q., Lou, L., & Zheng, Y. (2018, May). Vehicle

Detection and Classification Using Convolutional Neural Networks. In 2018

IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)

(pp. 581-587). IEEE.

47. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-

time object detection with region proposal networks. In Advances in neural

information processing systems (pp. 91-99).

48. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision (pp. 1440-1448).

49. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature

hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 580-587).

50. Wang, J., & Zhang, W. (2018, March). A Survey of Corner Detection

Methods. In 2018 2nd International Conference on Electrical Engineering

and Automation (ICEEA 2018). Atlantis Press.

51. Karim, S., Zhang, Y., Asif, M. R., & Ali, S. (2017). Comparative analysis of

feature extraction methods in satellite imagery. Journal of Applied Remote

Sensing, 11(4), 042618.

52. DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). Superpoint: Self-

supervised interest point detection and description. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops

(pp. 224-236).

53. Al-Rawabdeh, A., Almagbile, A., Aldayafleh, O., Zeitoun, M., &

Hazaymeh, K. (2019). Evaluating the Performance of Corner Detection

Approaches for Features Extraction from UAV Images.

54. Huang, J., Zhou, G., Zhou, X., & Zhang, R. (2018). A new FPGA

architecture of fast and BRIEF algorithm for on-board corner detection and

matching. Sensors, 18(4), 1014.

55. Hore, S., Chatterjee, S., Chakraborty, S., & Shaw, R. K. (2018). Analysis of

different feature description algorithm in object recognition. In Computer

74

Vision: Concepts, Methodologies, Tools, and Applications (pp. 601-635).

IGI Global.

56. Gao, X., Wang, M., Yang, Y., & Li, G. (2018). Building extraction from

RGB VHR images using shifted shadow algorithm. IEEE Access, 6, 22034-

22045.

57. Wu, W., Xu, H., Zhong, S., Lyu, M. R., & King, I. (2019, June). Deep

validation: Toward detecting real-world corner cases for deep neural

networks. In 2019 49th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN) (pp. 125-137). IEEE.

58. Alzugaray, I., & Chli, M. (2018). Asynchronous corner detection and

tracking for event cameras in real time. IEEE Robotics and Automation

Letters, 3(4), 3177-3184.

59. Liu, C., Huang, X., Chen, H., Yang, J., & Gong, J. (2018, July). Building

Area Extraction from High-Resoluton Satellite Imagery Based on

Morphological Building Index. In IGARSS 2018-2018 IEEE International

Geoscience and Remote Sensing Symposium (pp. 8201-8204). IEEE.

60. Ghandour, A., & Jezzini, A. (2018). Autonomous building detection using

edge properties and image color invariants. Buildings, 8(5), 65.

61. Zhao, Y., Qi, J., & Zhang, R. (2019, May). Cbhe: Corner-based building

height estimation for complex street scene images. In The World Wide Web

Conference (pp. 2436-2447). ACM.

62. Hu, Y., Hu, X., Li, P., & Ding, Y. (2018). Building detection from

orthophotos using binary feature classification. Multimedia Tools and

Applications, 77(3), 3339-3351.

63. Haggui, O., Tadonki, C., Lacassagne, L., Sayadi, F., & Ouni, B. (2018).

Harris corner detection on a NUMA manycore. Future Generation

Computer Systems, 88, 442-452.

64. Kabir, S. R., Akhtaruzzaman, M., & Haque, R. (2018). Performance

Analysis of Different Feature Detection Techniques for Modern and Old

Buildings. In RTA-CSIT (pp. 120-127).

75

65. Karami, E., Shehata, M., & Smith, A. (2017). Image Identification Using

SIFT Algorithm: Performance Analysis Against Different Image

Deformations. arXiv preprint arXiv:1710.02728.

66. Karami, E., Prasad, S., & Shehata, M. (2017). Image matching using SIFT,

SURF, BRIEF and ORB: performance comparison for distorted images.

arXiv preprint arXiv:1710.02726.

67. Ghosh, P., Pandey, A., & Pati, U. C. (2015). Comparison of different feature

detection techniques for image mosaicing. ACCENTS Transactions on

Image Processing and Computer Vision, 1(1), 1-7.

68. ImageAI Python: https://towardsdatascience.com/object-detection-with-10-

lines-of-code-d6cb4d86f606

69. Object Detection: https://en.wikipedia.org/wiki/Object_detection

70. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg,

A. C. (2016, October). Ssd: Single shot multibox detector. In European

conference on computer vision (pp. 21-37). Springer, Cham.

71. Nair, C. R. (2019). A Voting Algorithm for Dynamic Object Identification

and Pose Estimation.

72. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., ...

& Czarnecki, K. (2015, July). What is a feature?: a qualitative study of

features in industrial software product lines. In Proceedings of the 19th

International Conference on Software Product Line (pp. 16-25). ACM.

73. Feng, J., Ai, C., An, Z., Zhou, Z., & Shi, Y. (2019, July). A Feature Detection

and Matching Algorithm Based on Harris Algorithm. In 2019 International

Conference on Communications, Information System and Computer

Engineering (CISCE) (pp. 616-621). IEEE.

74. Liu, Y., Zhang, H., Guo, H., & Xiong, N. (2018). A FAST-BRISK Feature

Detector with Depth Information. Sensors, 18(11), 3908.

75. Chen, X., Liu, L., Song, J., Li, Y., & Zhang, Z. (2018). Corner detection and

matching for infrared image based on double ring mask and adaptive

SUSAN algorithm. Optical and Quantum Electronics, 50(4), 194.

76. Feature Extraction: https://en.wikipedia.org/wiki/Feature_extraction

https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606
https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Feature_extraction

76

77. List of self-driving car fatalities: https://en.wikipedia.org/wiki/List_of_self-

driving_car_fatalities

78. Chen, J. C., Patel, V. M., & Chellappa, R. (2016, March). Unconstrained

face verification using deep cnn features. In 2016 IEEE winter conference

on applications of computer vision (WACV) (pp. 1-9). IEEE.

79. Ranjan, R., Bansal, A., Xu, H., Sankaranarayanan, S., Chen, J. C., Castillo,

C. D., & Chellappa, R. (2018). Crystal loss and quality pooling for

unconstrained face verification and recognition. arXiv preprint

arXiv:1804.01159.

80. Crosswhite, N., Byrne, J., Stauffer, C., Parkhi, O., Cao, Q., & Zisserman, A.

(2018). Template adaptation for face verification and identification. Image

and Vision Computing, 79, 35-48.

81. Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., & Heng, P. A. (2017). DCAN:

Deep contour-aware networks for object instance segmentation from

histology images. Medical image analysis, 36, 135-146.

82. Zhang, Z., He, Z., Cao, G., & Cao, W. (2016). Animal detection from highly

cluttered natural scenes using spatiotemporal object region proposals and

patch verification. IEEE Transactions on Multimedia, 18(10), 2079-2092.

83. Hsu, S. C., Chang, I. C., & Huang, C. L. (2018). Vehicle verification between

two nonoverlapped views using sparse representation. Pattern Recognition,

81, 131-146.

84. Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., ...

& Torii, A. (2018). InLoc: Indoor visual localization with dense matching

and view synthesis. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 7199-7209).

85. Yuan, X., Gu, L., Chen, T., Elhoseny, M., & Wang, W. (2018, March). A

fast and accurate retina image verification method based on structure

similarity. In 2018 IEEE Fourth International Conference on Big Data

Computing Service and Applications (BigDataService) (pp. 181-185). IEEE.

86. Kavitha, S. N., Shahila, K., & Kumar, S. P. (2018, February). Biometrics

Secured Voting System with Finger Print, Face and Iris Verification. In 2018

77

Second International Conference on Computing Methodologies and

Communication (ICCMC) (pp. 743-746). IEEE.

87. Qin, H., & El-Yacoubi, M. A. (2017). Deep representation-based feature

extraction and recovering for finger-vein verification. IEEE Transactions on

Information Forensics and Security, 12(8), 1816-1829.

88. Mohamed, E., Sirlantzis, K., & Howells, G. (2019). Application of Transfer

Learning for Object Detection on Manually Collected Data.

89. Yabuki, N., Nishimura, N., & Fukuda, T. (2018, June). Automatic object

detection from digital images by deep learning with transfer learning. In

Workshop of the European Group for Intelligent Computing in Engineering

(pp. 3-15). Springer, Cham.

90. Kapur, P. (2018). Object Detection in Video Based on Transfer Learning

Using Convolution Neural Network (Doctoral dissertation).

91. Yuan, X., Li, D., Mohapatra, D., & Elhoseny, M. (2018). Automatic removal

of complex shadows from indoor videos using transfer learning and dynamic

thresholding. Computers & Electrical Engineering, 70, 813-825.

92. Chen, Z., Zhang, T., & Ouyang, C. (2018). End-to-end airplane detection

using transfer learning in remote sensing images. Remote Sensing, 10(1),

139.

93. Singh, H. (2019). Efficient Object Detection using Transfer

Learning (Doctoral dissertation).

94. Wang, Y., Wang, C., & Zhang, H. (2018). Combining a single shot multibox

detector with transfer learning for ship detection using sentinel-1 SAR

images. Remote sensing letters, 9(8), 780-788.

95. Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. C. (2019). A novel

deep learning based framework for the detection and classification of breast

cancer using transfer learning. Pattern Recognition Letters, 125, 1-6.

96. Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good

for transfer learning?. arXiv preprint arXiv:1608.08614.

97. Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer

learning. Journal of Big data, 3(1), 9.

78

98. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016).

Learning deep features for discriminative localization. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 2921-

2929).

99. Kwaśniewska, A., Rumiński, J., & Rad, P. (2017, July). Deep features class

activation map for thermal face detection and tracking. In 2017 10th

International Conference on Human System Interactions (HSI) (pp. 41-47).

IEEE.

100. Pericherla, S. R., Duvvuru, N., & Jayagopi, D. B. (2019, May). Improving

Adversarial Images Using Activation Maps. In 2019 IEEE 8th Joint

International Information Technology and Artificial Intelligence Conference

(ITAIC) (pp. 843-847). IEEE.

101. Tang, W., Liu, B., & Yu, N. (2017, September). Visual Tracking by Deep

Discriminative Map. In Pacific Rim Conference on Multimedia (pp. 733-

742). Springer, Cham.

102. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra,

D. (2017). Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the IEEE International Conference on

Computer Vision (pp. 618-626).

103. Guo, H., Fan, X., & Wang, S. (2017). Human attribute recognition by

refining attention heat map. Pattern Recognition Letters, 94, 38-45.

104. Kumar, D., Wong, A., & Taylor, G. W. (2017). Explaining the unexplained:

A class-enhanced attentive response (clear) approach to understanding deep

neural networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (pp. 36-44).

105. Li, J., Lin, D., Wang, Y., Xu, G., & Ding, C. (2019). Deep Discriminative

Representation Learning with Attention Map for Scene Classification. arXiv

preprint arXiv:1902.07967.

106. Charuchinda, P., Kasetkasem, T., Kumazawa, I., & Chanwimaluang, T.

(2019, March). On Building Detection Using the Class Activation Map: Case

Study on a Landsat8 Image. In 2019 10th International Conference of

79

Information and Communication Technology for Embedded Systems (IC-

ICTES) (pp. 1-4). IEEE.

107. Vasu, B., Rahman, F. U., & Savakis, A. (2018, June). Aerial-cam: Salient

structures and textures in network class activation maps of aerial imagery.

In 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing

Workshop (IVMSP) (pp. 1-5). IEEE.

108. Li, W., Jafari, O. H., & Rother, C. (2019). Localizing Common Objects

Using Common Component Activation Map. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops (pp.

28-31).

109. Lu, Y., & Zhou, T. (2018). Lip segmentation using localized active contour

model with automatic initial contour. Neural Computing and

Applications, 29(5), 1417-1424.

110. Tesema, F. B., Wu, H., & Zhu, W. (2018, March). Human Segmentation

with Deep Contour-Aware Network. In Proceedings of the 2018

International Conference on Computing and Artificial Intelligence (pp. 98-

103). ACM.

111. Griffiths, D., & Boehm, J. (2019). Improving public data for building

segmentation from Convolutional Neural Networks (CNNs) for fused

airborne lidar and image data using active contours. ISPRS Journal of

Photogrammetry and Remote Sensing, 154, 70-83.

112. van den Brand, J., Ochs, M., & Mester, R. (2016, November). Instance-level

segmentation of vehicles by deep contours. In Asian Conference on

Computer Vision (pp. 477-492). Springer, Cham.

113. Hayder, Z., He, X., & Salzmann, M. (2017). Boundary-aware instance

segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (pp. 5696-5704).

114. Li, X., Yang, F., Cheng, H., Liu, W., & Shen, D. (2018). Contour knowledge

transfer for salient object detection. In Proceedings of the European

Conference on Computer Vision (ECCV) (pp. 355-370).

80

115. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision (pp.

2961-2969).

116. Novotny, D., Albanie, S., Larlus, D., & Vedaldi, A. (2018). Semi-

convolutional operators for instance segmentation. In Proceedings of the

European Conference on Computer Vision (ECCV) (pp. 86-102).

117. Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network

for instance segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 8759-8768).

118. Yu, Y., Zhang, K., Yang, L., & Zhang, D. (2019). Fruit detection for

strawberry harvesting robot in non-structural environment based on Mask-

RCNN. Computers and Electronics in Agriculture, 163, 104846.

119. Johnson, J. W. (2018). Adapting mask-rcnn for automatic nucleus

segmentation. arXiv preprint arXiv:1805.00500.

120. Kawai, N., Sato, T., & Yokoya, N. (2015). Diminished reality based on

image inpainting considering background geometry. IEEE transactions on

visualization and computer graphics, 22(3), 1236-1247.

121. Mori, S., & Saito, H. (2018). An overview of augmented visualization:

observing the real world as desired. APSIPA Transactions on Signal and

Information Processing, 7.

122. Siltanen, S. (2017). Diminished reality for augmented reality interior

design. The Visual Computer, 33(2), 193-208.

123. Nakajima, Y., Mori, S., & Saito, H. (2017, October). Semantic object

selection and detection for diminished reality based on SLAM with

viewpoint class. In 2017 IEEE International Symposium on Mixed and

Augmented Reality (ISMAR-Adjunct) (pp. 338-343). IEEE.

124. FAST corner detection: https://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html

125. Centroid of blob: https://www.learnopencv.com/find-center-of-blob-

centroid-using-opencv-cpp-python/

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html
https://www.learnopencv.com/find-center-of-blob-centroid-using-opencv-cpp-python/
https://www.learnopencv.com/find-center-of-blob-centroid-using-opencv-cpp-python/

81

126. Contours:

https://docs.opencv.org/3.4.0/d4/d73/tutorial_py_contours_begin.html

127. Canny Edge detection: https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_can

ny.html

128. How Autonomous Vehicles Perceive and Navigate Their Surroundings:

https://velodynelidar.com/newsroom/title-how-autonomous-vehicles-

perceive-and-navigate-their-surroundings/

https://docs.opencv.org/3.4.0/d4/d73/tutorial_py_contours_begin.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
https://velodynelidar.com/newsroom/title-how-autonomous-vehicles-perceive-and-navigate-their-surroundings/
https://velodynelidar.com/newsroom/title-how-autonomous-vehicles-perceive-and-navigate-their-surroundings/

82

Vita Auctoris

NAME: Foram Pravinkumar Patel

PLACE OF BIRTH:

Ahmedabad, India

YEAR OF BIRTH:

1996

EDUCATION:

Bachelor of Engineering, 2013-2017

Kadi Sarva Vishwavidyalaya,

Gandhinagar, Gujarat, India

Master of Science in Computer Science, 2018-2019

University of Windsor, Windsor, ON

	Using Prior Knowledge for Verification and Elimination of Stationary and Variable Objects in Real-time Images
	Recommended Citation

	tmp.1573682764.pdf.A4Su2

