
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Multi-Sensor Simulation Environment for
Autonomous Cars

Rui Song1, Paul Horridge1, Simon Pemberton2, Jon Wetherall2, Simon Maskell1, Jason Ralph1

1 Dept. Electrical Engineering and Electronics University of Liverpool Liverpool, UK
{rui.song, p.horridge, s.maskell, jfralph}@liverpool.ac.uk

2 CGA Simulation, Liverpool, UK
simon_pemberton@yahoo.co.uk, jon@cgasimulation.com,

Abstract—This paper describes a multi-sensor simulation
environment. This environment is being used to develop
tracking methods to improve the accuracy of environmental
perception and obstacle detection for autonomous vehicles. The
system is being developed as part of a collaborative project
entitled: Artificial Learning Environment for Autonomous
Driving (ALEAD). The system currently incorporates a range of
different sensor models, such as camera, infrared (IR) camera
and LiDAR, with radar and GNSS-aided navigation systems to
be added at a later stage. Each sensor model has been developed
to be as realistic as possible – incorporating physical defects and
other artefacts found in real sensors. This paper describes the
environment, sensors and demonstrates the use of a Kalman
filter based tracking algorithm to fuse data to predict the
trajectories of dynamic obstacles. The multi-sensor tracking
system has been tested to track a ball bouncing in a 3D
environment constructed using Unity3D software.

Keywords—multi sensors, autonomous driving, visual
tracking, virtual environment

I. INTRODUCTION
The move towards autonomous vehicles offers a number of
potential benefits; by reducing the number of accidents caused
by inattentive drivers, decreasing traffic congestion, lowering
emissions, and improving mobility especially for elder and
disabled people [1, 2]. Companies such as Tesla and Volvo
are actively working on creating fully autonomous vehicles
that can plan routes, drive and navigate. This is a difficult
problem in carefully controlled environments, but – in the real
world – autonomous cars also need to be able to detect
unpredictable events and to react appropriately in all
circumstances, even when the sensor performance is degraded
due to environmental effects (weather, dirt, and possible
damage). Such unexpected events could include objects,
people or animals entering the roadway unexpectedly, or from
behind obstructions. For instance, a fatal crash happened when
the self-driving car failed to see a road separator [3]. The
ability to deal with real life problems is critical to the safe
operation of autonomous vehicles. However, because of the
cost and the risks of testing autonomous cars in a real
environment, it is common for companies to train algorithms
using simulations to improve the autonomy level of cars
before putting them into service on the road.

Traditionally, simulations have been developed by
importing sensor data that cars have collected in the real world
and then using this data to verify that the car's self-driving
software is capable of dealing with emergency situations
appropriately. For example, a vehicle's cameras can record
video of other cars on road and pedestrians crossing the street.
The recorded video can be used every time when updating the
self-driving software and prove that the software can still
detect targets correctly [4, 5].

In recent years, more advanced simulation tools are able to
build entire road networks [6, 7], where the autonomous car is
surrounded by many other vehicles, bicycles, pedestrians and
even animals. Developers can use these constructed virtual
worlds to test and retest various scenarios found in everyday
life and identify potential problems. In such a way, the
stability and robustness of the self-driving software can be
improved. Most automotive companies therefore spend most
of the time building the simulation environment to be as
realistic as possible. However, a highly detailed simulated
environment on its own does not provide a complete
representation of the real world. Accurate sensor models,
visual perception and intelligent guidance systems are also
important for sensing surroundings and to avoid collisions.
These models should include naturally occurring artefacts and
the limitations present in real physical sensors.

As shown in Fig 1, autonomous cars rely on multiple
sensors; including cameras, LiDAR, and radar. One of the

Fig. 1. Typical sensors on autonomous self-driving car

advantages of using multiple sensors is that it can improve the
robustness of the sensing system if one or more sensors
malfunction. Some recent work has demonstrated the
capabilities of using multiple sensors in 3D simulation
environments. [8] used 6 cameras to obtain sparse 3D maps
with a full 360o field of view for visual navigation and car
localization. [9] integrated cameras and a LiDAR sensor using
a mature and open-source simulator called Gazebo. Gazebo,
however is mostly supported on Linux and it is not well
designed for hybrid simulation. To address these challenges, a
unified system for automation and robotics simulator
(USARSim) has been gaining the interest of researchers, such
as in [10]. The disadvantage of USARSim is that it is not
suitable for real-time tests, especially when the 3D
environment is complex. Currently, most of the simulation
systems that have been developed have yet to be improved to
the point where they can be physically realistic. Firstly, the
environments need to be modelled to include dynamic
artefacts and the ‘dirt’ associated with the real world
(including physical dirt affecting sensor performance and
minor damage due to prolonged use). Secondly, sensors, such
as cameras and LiDARs, are required to run at a high-
frequency and have a high level of fidelity in a dense and harsh
environment. Thirdly, for industrial applications, a complete
integrated simulation system is required, including different
types sensing modelling and navigation algorithms. To
address these problems, the Artificial Learning Environment
for Autonomous Driving (ALEAD) project is working to train
vehicles by developing a hybrid 3D simulator based on
Unity3D and ROS. Real world inputs will be used to construct
an extensive simulation environment. Representative sensor
models for each of the key sensors shown in Fig.1 are being
integrated into the virtual environment; including GPS and
other satellite navigation systems.

In this paper, the initial design of the ALEAD project is
presented. A camera, LiDAR and IR camera have been
modelled as part of the multi-sensing system. To verify the
sensor modelling performance, a scene with a ball bouncing
in a street has been simulated in Unity3D. A tracking
algorithm has been developed and implemented to detect the
movement of the bouncing ball and to separate it from the
surrounding clutter. The paper is organized as follows. Section
II describes the details of the ALEAD project and the multi-
sensor system. Section III and IV explain the methods used in
the sensor simulations and ball tracking, respectively. Results
are shown and discussed in Section V. The paper is
summarized, and conclusions drawn in Section VI.

II. ALEAD PROJECT

A. Project Overview
ALEAD is a digital environment that provides autonomous
vehicles a virtual space to learn in and so saves money and
time for the companies developing those systems. The
ALEAD project is developing a simulation environment for
the development and testing of autonomous vehicles. It is
being based around industry standard software components,
including the Unity3D graphics engine, and is interfacing with
the Robot Operating System (ROS) [11] and autonomous car
models, including the Baidu Apollo [12] open driving
solution.

Existing computer game simulation technologies
developed by the industrial partner CGA are being applied to
autonomous vehicle training, using novel improvements on
existing simulations systems and applying these systems in a
new sector. By using artificial intelligence and machine
learning to train vehicles in an extensive simulation
environment designed with real world inputs and benefiting
from the integration of multiple sensors, ALEAD is
combining technologies to create a wholly new environment
which could have a significant impact on the time required to
get autonomous vehicles on the road. ALEAD focuses on the
merging fields of machine learning, virtual reality, augmented
reality in the context of realistic simulations of urban
environments.

ROS is an open-source framework designed to provide an
abstraction layer to complex robotic hardware and software
configurations. A variety of libraries and tools are available to
help software developers create robot applications and has
found wide use in both industry and academia. Moreover,
ROS can provide simultaneous operation between hardware
devices for actual autonomous vehicles. Unity3D [13] is a
more flexible and powerful development platform for creating
multiplatform 3D and 2D games and interactive experiences.
This game engine, which supports almost every platform, is
chosen to be the simulation server. By applying the
transmitting interface, a communication module and detailed
environment and sensor modelling techniques, the ROS and
Unity3D will be incorporated together for real-time
autonomous driving simulations.

The ALEAD project will significantly reduce the need for
live trials of autonomous vehicles. Using a large number of
parallel simulation/training environments, it will be possible
to train systems at a rate millions of times faster than running
live trials. It is also possible to train for exceptional weather
conditions such as fog or ice.

B. Sensor Suite
Current testing systems mainly use video information and

live trials. The key to simulating the environment in as
realistic way as possible will be the use of physically realistic
sensor models and environmental factors. The ALEAD
system is developing representative sensor models for each of
the key sensors that are likely to be present in future
autonomous vehicles, including short range Radar, IR/TV
cameras, LiDAR scanners, and GPS. The aim is to identify the
factors that determine or limit sensor performance, thereby
having an adverse effect on the robustness and safety of an
autonomous vehicle: including, precipitation and other
atmospheric effects, such as high humidity or fog, bright
sources of illumination, such as the sun being low in the sky
and reflections from buildings, erratic behavior from other
road users, debris in the road, and deliberate jamming of the
sensor data. The sensor modelling will make the training
physically realistic for computer vision, which operates very
differently from human perception.

• Image (Visible Band): A standard visible band camera
model, which uses the simple scene as a basis. The
angle of the field of view will be defined based on the
interface with the coverage of other sensors.

• Image (Infrared Band): A thermal image of the scene
based on the three-dimensional geometry of the scene,
and requires the objects within the scene to be labelled
with temperature information. Also requires some
indication of the atmospheric properties to derive path
radiance and attenuation properties.

• Lidar (Near Infrared Band): An active near visible
band sensor, which measures the time of flight of
pulsed light to build up a three-dimensional map of the
scene. The scanning processes will be presented while
vehicle is in motion and reflection of light from the
surfaces of objects in the scene.

• Radar (Short Range mmW or cmW radar): Simple
distance measuring device with relatively broad
beamwidth and short range. The modelling will be
stochastic/statistical in nature and will represent the
distribution of radar scatterers in the scene and their
statistical properties (standard Radar models).

• GPS/GNSS Satellite Navigation Systems: Basic radio
navigation system based on very low power satellite
signals. Requires WGS’84 Earth model information
for realistic satellite data, including an interface for live
GPS/GNSS feed or recorded satellite ephemeris data
(e.g. RINEX format).

• Weather effects: to include the effects of different
weather conditions on the car and the sensors, e.g. the
effect of fog and rain on visibility or ice on the road
affecting driving conditions.

III. SENSOR SIMULATION
In this paper, all hardware sensors mounted in the autonomous
car are modelled in the simulator, including the camera, IR
camera and LiDAR.

A. Camera
The main purpose of the camera is to detect any moving

target. As Unity3D is a game engine, the development of
camera sensor can be used directly from the original camera
of Unity3D. To accelerate processing, only objects near the
camera are rendered. In such a way, the output of the camera
only includes these rendered objects and objects out of range
are ignored. In the paper, one camera is mounted statically on
the top front of autonomous car. The field of view (FOV) of
the camera is set as 36o, and perspective projection is used.
Fig.2 shows the rendering of the camera model in a simulated
scene, where roads, houses, trees and street lamps are
included.

B. IR camera
The infrared scene is based on the 3D scene rendered for

the visible band camera, since the physical objects are the
same in each case. However, the scene also includes a
temperature map that allocates temperature profiles to the
different surfaces present in the visible band scene. The IR
camera model utilizes this temperature map and converts the
temperatures into thermal intensities/photon fluxes [14]. The
thermal radiation is propagated through an atmospheric model
(including attenuation and path radiance) and then detected
using a bespoke infrared camera model with properties
representative of a commercial infrared camera (pixel non-

uniformities, limited pixel resolution, dead/saturated pixels,
etc.) [15]. The position of the IR camera is set beside the
camera and the FOV is set as 40o [15]. Fig.3 shows the
temperature map and the corresponding IR image.

C. LiDAR
A commercial LiDAR sensor is simulated to ensure as

realistic a representation as possible. The Velodyne HDL-64E
[16], a vertical LiDAR sensor is used because it is the most
popular type used in self-driving cars [17]. To simulate this
type of LiDAR sensor, parameters such as number of lasers,
position of each individual laser and angle, and the rotational
speed should be considered. The specification of the Velodyne
HDL-64E and its parameters are listed in TABLE I.

In Unity3D, each laser can be represented by using ray-
casting. From the mathematical perspective, ray-casting is a
directional 3D vector, which checks for intersections with
other geometries. The coordinate of the intersected point will
be sent back. In such a way, the ray-casting can be considered
as a realistic representation of a laser. Note that, it requires to
create collider for each object built in the constructed scene.
Unity3D uses the physics engine to handle ray-casting.
Multiple ray-casts can be executed within a single physics
frame. In this way, it can provide simultaneous actions. Fig. 4
shows the LiDAR scanning in the scene.

TABLE I. LIDAR PARAMETERS

Parameter Value

Rotational speed 10 Hz

Number of lasers 64

Max distance 200 m

Angle between scan 0.9o

Vertical FOV 26.9o

Fig. 2. Rendering of the camera model in a constructed scene.

Fig. 3. Left: Rendering of the temperature map cooresponding to the FOV
of the IR camera. The colour changes from blue to yellow while
temperature increaes. Right: Rendering of the image output from the IR
camera.

IV. TRACKING ALGORITHM
After receiving the data from camera, IR camera LiDAR
respectively, a Kalman filter based algorithm is used to track
the trajectory of the dynamic obstacles. The object (or objects)
are detected in the respective fields of view using a frame
difference method – which will also generate some
background detections from static objects as the vehicle
moves forwards. Some, but not all, of these static objects can
be removed by registering the images before frame
differencing. However, some static background clutter can
also useful to distinguish moving objects as outliers in the
tracking system – i.e. the moving objects are those that have
significant differences to the static background. The
measurements associated with the detections from each frame
are then associated with existing tracks using a standard
nearest neighbor approach, or new tracks are created when
something has moved into the field of view. Once the
measurements have been associated, a standard Kalman filter
is used to update and predict the track motion.

A. Obstacle Detection
Before the tracking, the positions of moving obstacles are

detected from the measured data. For received camera and IR
image, the obstacles are detected by using the frame difference
method [18]. In this method, the area of moving obstacle (area
of significant difference) is enlarged first, and the center of the
obstacle (centroid position) is extracted thereafter.

The LiDAR scanning results are represented by point
clouds, where the world coordinates, spherical coordinates,
and laser number are recorded. When detecting the position of
obstacle, a multi-feature extraction method used in [19] is
applied to the plotting of the point clouds.

B. Track Association and Track Maintenance
Typically, for the results shown here, up to ten objects are

detected and tracked by the sensors, and only one of these is
in motion. The apparent motion of the other objects comes
from the forward motion of the car (assumed to be
approximately 10 meters/second for the examples shown
here). Each measurement is associated with a track based on
the simple Euclidean distance between the two, in the sensor
axes. For the low clutter examples considered in this paper,
this method is sufficiently robust to allow accurate object
tracking.

C. Obstacle Tracking
After detection and association, the measured positions of

the obstacles obtained from the sensors data are fused into the
tracking algorithm. A standard Kalman filter [20] has been

used in the results presented below. Several variants of the
standard particle (bootstrap) filter [21, 22] were also tested but
little benefit was found in using these rather than the Kalman
filter.

The state vector for this model contains position, velocity
and acceleration, and is given by,

𝑋 𝑡 = (𝑥 𝑣' 𝑎' 𝑦 𝑣* 𝑎* 𝑧 𝑣, 𝑎,). (1)

where the co-ordinates (𝑥, 𝑦, 𝑧) are in an earth-stabilized
reference frame centered on the vehicle (along (x) – across,
right (y) – down (z)). We use a standard linear kinematic
model with nearly-constant acceleration, and a standard
process noise model to allow for small variations in the actual
acceleration of the target. The linear kinematics are
represented by the matrix,

 𝐹 =
𝐹1×1 𝐼1×1 𝐼1×1
𝐼1×1 𝐹1×1 𝐼1×1
𝐼1×1 𝐼1×1 𝐹1×1

 (2)

where I3×3 is the 3´3 identity matrix and,

 F3×3=
1 Δt 1

2Δt2

0 1 Δt
0 0 1

 (3)

 𝑋 𝑡 + Δ𝑡 = 𝐹 ∙ 𝑋 𝑡 + 𝜈(𝑡) (4)

where ν(t) is an acceleration noise source (continuous Wiener
process acceleration model [20]) with a process noise
covariance given by,

 𝑄 =
𝑄1×1 01×1 01×1
01×1 𝑄1×1 01×1
01×1 01×1 𝑄1×1

 (5)

 𝑄1×1 =

:
;<=>

? :
@AB

C :
DAB

E

:
@AB

C :
EAB

E :
;AB

;

:
DAB

E :
;AB

; 𝑑𝑡
∙ 𝑆H (6)

where 01×1 is a 3×3 zero matrix, and 𝑆H is the power
spectral density of a continuous white noise process noise
representing the ‘jerk’ (time derivative of the target
acceleration).

 The measurements from the three sensors are represented
by periodic measurements of image position in the visible and
infrared bands, giving (y, z) information, and image location
and range for the LiDAR, providing (x, y, z) information. The
measurement frequency and measurement errors are dictated
by the corresponding fields of view of each sensor (horizontal
𝜃KLM,* and vertical 𝜃KLM,,) and corresponding numbers of
pixels (𝑁OP',* and 𝑁OP',,) when combined with the range to
the object, and the range accuracy in the case of the LiDAR.

 𝐻RPS,PT X =

UVWX,Y
Z[\],Y

tanab *
'
+ UVWX,Y

;

UVWX,c
Z[\],c

tanab − ,
'
+ UVWX,c

;

 (7)

 𝐻ePfgh X =

UVWX,Y
Z[\],Y

tanab *
'
+ UVWX,Y

;

UVWX,c
Z[\],c

tanab − ,
'
+ UVWX,c

;

𝑥i + 𝑦i+𝑧i

 (8)

Fig. 4. LiDAR sensor scanning in the scene, laser beams are
represented by red lines.

V. SIMULATION RESULTS
To test the proposed multi-sensor tracking system, an
animation of a ball bouncing in the street is created in the
scene. The true positions while the football is bouncing can be
directly retrieved from the transform function of the football
and sent to the tracking algorithm to calculate the trajectory.
The three sensors, camera, IR camera and LiDAR, generate
their measurements at their own operating frequency, namely
60 Hz, 20 Hz, and 10 Hz, respectively. All measurements
received at local coordinate system are converted into the car’s
global coordinate system.

The image captured from the camera and the detection of
the ball are represented in Fig. 5. The center position of the
ball is marked using a green box. Fig. 6 shows the detection
of the ball from the IR camera imaging results at

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 5. Detection of the bouncing ball, the center position of the ball is
captured by a green box.

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 6. Resulted IR images and detection of the bouncing ball, the
centroid position of the ball is captured by a green box and the point that
with the highest temperature are marked by red star.

(a)

 (b)

 (c)

 (d)

Fig. 7. LiDAR plotting of the point cloud. (a) LiDAR scanning results
of the entire scene with no appearance of the ball. (b), (c) and (d) detect
the ball, where the feature of the ball is shown in the enlarged window.
The colour changes from red to yellow and green as the distance
increases.

corresponding time as Fig. 5. As images from IR camera have
lower resolution than the camera images, the detected centers
of the ball deviate from Fig. 5.

The point clouds generated from the LiDAR simulation
are shown in Fig.7. Static obstacles, like street lamps are
featured as line shape. While the ball is featured as a circle.
Yellow points represent object near the car, while green points
represent object with distance further away from the car.

Fig. 8(a) shows example results for detections over a ten

second window of the simulation for one of the imaging
sensors (the 2D visible band camera). The detections include
structured static clutter and some random detections that
correspond to false alarms. The second figure, Fig. 8(b),
shows the tracks generated by the moving object and the
structured clutter, with the tracks being colored to show

clusters of similar structured clutter. The moving ball is
indicated in red and shown in more detail against the ground
truth trajectory in Fig. 8(c). The moving object can be found
quite simply from its motion against the majority of the
obstacles, since their motion is correlated with the forward
motion of the vehicle. By contrast, the moving ball appears as
an outlier with respect to the static background, and its motion
can be predicted to ascertain whether is crosses the path of the
vehicle. The intention would be to generate an alert to ensure
that the autonomous controller controlling the car slows down
and takes action to avoid a collision, although in such cases
additional higher-level processing may be required to consider
other risks.

Averaging the track errors, the expected performance of

the tracker can be predicted, as shown in Fig. 9. The root-
mean-squared (RMS) 3D tracking errors are shown, as an
average (in red) and for one example realization (in blue). The
averages are calculated with slight variations in the initial
conditions of the ball; including initial height, initial range,
initial speed, etc. The example realization shows the periodic
nature of the bouncing ball, which is particularly evident in
the velocity errors in Fig. 9(b). The averaged data shows some
residual evidence of the bouncing ball. This is due in part to
the relatively small variations in the initial conditions. The
other significant characteristics are the large initial errors,
which are due to the low update rate of the LiDAR sensor. The
obstacle’s range contains a large error until one or two LiDAR
measurements are available (approximately 0.1- 0.2 seconds).
Towards the end of the simulation, the tracking error increases
again, which is due to the obstacle being outside the field of

(a)

(b)

(c)

Fig. 8. Example Tracking Results, with static and random clutter: (a)
2D visible band camera detections vs time, (b) 3D tracks generated for
bouncing ball (red) and other static clutter objects (other colors), (c)
3D track for bouncing ball (red dotted line) shown against true
trajectory (blue solid line).

(a)

(b)
Fig. 9. Track Errors vs Time: (a) example RMS 3D position error for
one realization (blue dashed line) and average RMS 3D position error
(averaged over 2000 realizations, solid red line), (b) example RMS
speed error for one realization (blue dashed line) and average RMS
speed error (averaged over 2000 realizations, solid red line).

view of one or more of the passive sensors and the location
errors being dominated by the lower resolution of the LiDAR
and the process noise.

VI. CONCLUSIONS
A multi-sensor tracking system has been developed as an
initial realization of the ALEAD project to test the
performance of the simulated sensors. In the system, two
imaging sensors, camera and IR camera, and one LiDAR
sensor have been modelled and a Kalman filter has been
implemented to detect and track the moving obstacle (a
bouncing ball). The simulation results show that by fusing the
vision and LiDAR data, the tracking performance of the
moving obstacle has been improved and the trajectory has
been predicted successfully. As the simulations of the sensors
are configured to match the specifications of real systems and
are based on underlying physical models for the sensors, it
opens the potential for the application of these models to test
real autonomous driving systems.

In future work, the complexity of the simulated
environment will be increased by including other forms of
clutter (signs, mail boxes, and other road ‘furniture’), people
and other types of vehicle. Short range Radar sensors will be
simulated and integrated into the autonomous car, together
with GNSS-aided navigation systems. Duplicate sensors, such
as cameras will also be added to increase the total field of view
of the vision system. The aim will be to develop algorithms
that are agnostic to whether the source of sensor data is a real
physical system or a simulated sensor. Trade-studies will be
carried out to evaluate the performance of collision detection
with changes of the sensors. In addition, adverse weather
conditions, such as rain and fog, will be added to improve the
realism of the simulation and to challenge the sensor fusion
and obstacle tracking methods developed for this program.

ACKNOWLEDGMENTS
This is a collaborative work between University of Liverpool
and CGA Simulation as part of the Connected and
Autonomous Vehicle programme. It is funded by the Innovate
UK, with Grant No. 104274. The authors are also indebted to
Mr. Dave Griffiths and Mr Ben Mitchell for their work on
making the animations in the 3D scene and creating the
temperature map.

REFERENCES
[1] T. Litman, “Autonomous vehicle implementation predictions”,

Victoria, Canada: Victoria Transport Policy Institute; 2017 Feb 27.
[2] A. Hars, “Autonomous cars: The next revolution looms”, Inventivio

Innovation Briefs, vol. 1, no. 4, 2010.
[3] Opgal. (2019). Could thermal cameras prevent autonomous car

accidents?. [online] Available at:

https://www.opgal.com/blog/thermal-cameras/could-thermal-
cameras-help-prevent-the-next-fatal-autonomous-vehicle-crash/
[Accessed 25 Feb. 2019].

[4] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets”, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2174-2182.
2017.

[5] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “Moving obstacle
detection in highly dynamic scenes”, in 2009 IEEE International
Conference on Robotics and Automation, pp. 56-63. IEEE, 2009.

[6] M. Kehrer, J. Pitz, T. Rothermel, and H.C. Reuss, “Framework for
interactive testing and development of highly automated driving
functions”, in 18. Internationales Stuttgarter Symposium, pp. 659-669.
Springer Vieweg, Wiesbaden, 2018.

[7] M. Tideman, and M. Van Noort, , 2013, June. A simulation tool suite
for developing connected vehicle systems”, in 2013 IEEE Intelligent
Vehicles Symposium (IV), pp. 713-718. IEEE, 2013.

[8] C. Häne, L. Heng, G.H. Lee, F. Fraundorfer, P. Furgale, T. Sattler, and
M. Pollefeys, “3D visual perception for self-driving cars using a multi-
camera system: Calibration, mapping, localization, and obstacle
detection”, Image and Vision Computing, vol. 68, pp. 14-27, 2017.

[9] I. Shimchik, A. Sagitov, I. Afanasyev, F. Matsuno, and E. Magid, “Golf
cart prototype development and navigation simulation using ROS and
Gazebo”, in MATEC Web of Conferences, vol. 75, pp. 09005. EDP
Sciences, 2016.

[10] D. Miklić, T. Petrović, M. Čorić, Z. Pišković, and S. Bogdan, 2012,
May. A modular control system for warehouse automation-algorithms
and simulations in USARSim”, in 2012 IEEE International Conference
on Robotics and Automation, pp. 3449-3454. IEEE, 2012.

[11] A. Koubâa, Robot Operating System (ROS), Verlag: Springer, 2017.
[12] Apollo. [Online]. Available at: http://apollo.auto/. [Accessed: 23 Jan

2019].
[13] Unity3d. [Online]. Available at: https://unity3d.com/. [Accessed: 14

Mar 2019]
[14] E. J. Griffith, C. Mishra, J. F. Ralph, and S. Maskell, “A system for the

generation of synthetic Wide Area Aerial surveillance imagery”,
Simulation Modelling Practice and Theory vol.84, pp.286–308, 2018.

[15] A.S. Ahire, “Night vision system in BMW”, International Review of
Applied Engineering Research, vol.4, no. 1, pp.1-10, 2014.

[16] Velodyne Lidar Inc., HDL-64E User’s Manual. Velodyne Lidar Inc.
345 Digital Drive, Morgan Hill, CA95037, 2008.

[17] R. Bergelt, O. Khan, and W. Hardt, “Improving the intrinsic calibration
of a velodyne lidar sensor”, in 2017 IEEE SENSORS, pp. 1-3. IEEE,
2017.

[18] N. Singla, “Motion detection based on frame difference
method,” International Journal of Information & Computation
Technology, vol. 4, no. 15, pp.1559-1565, 2014.

[19] R. Huang, H. Liang, and J. Chen, “Lidar based dynamic obstacle
detection, tracking and recognition method for driverless cars”, Robot
vol. 38, no. 4, pp. 437-443, 2016.

[20] Y. Bar-Shalom, X.R. Li, and T. Kirubarajan, The Extended Kalman
Filter. In: Estimation with Applications to Tracking and Navigation.
John Wiley & Sons, pp.381-394, 2004.

[21] N. J. Gordon, D. J. Salmond, A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation” in IEE Proceedings
F (Radar and Signal Processing), vol. 140, no. 2, pp. 107-113, 1993.

[22] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian
tracking”, in IEEE Transactions on Signal Processing, vol. 50, no. 2,
pp. 174-188, Feb 2002.

