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Abstract—This paper describes a multi-sensor simulation 
environment. This environment is being used to develop 
tracking methods to improve the accuracy of environmental 
perception and obstacle detection for autonomous vehicles. The 
system is being developed as part of a collaborative project 
entitled: Artificial Learning Environment for Autonomous 
Driving (ALEAD). The system currently incorporates a range of 
different sensor models, such as camera, infrared (IR) camera 
and LiDAR, with radar and GNSS-aided navigation systems to 
be added at a later stage. Each sensor model has been developed 
to be as realistic as possible – incorporating physical defects and 
other artefacts found in real sensors. This paper describes the 
environment, sensors and demonstrates the use of a Kalman 
filter based tracking algorithm to fuse data to predict the 
trajectories of dynamic obstacles. The multi-sensor tracking 
system has been tested to track a ball bouncing in a 3D 
environment constructed using Unity3D software.   

Keywords—multi sensors, autonomous driving, visual 
tracking, virtual environment 

I. INTRODUCTION 
The move towards autonomous vehicles offers a number of 
potential benefits; by reducing the number of accidents caused 
by inattentive drivers, decreasing traffic congestion, lowering 
emissions, and improving mobility especially for elder and 
disabled people [1, 2]. Companies such as Tesla and Volvo 
are actively working on creating fully autonomous vehicles 
that can plan routes, drive and navigate. This is a difficult 
problem in carefully controlled environments, but – in the real 
world – autonomous cars also need to be able to detect 
unpredictable events and to react appropriately in all 
circumstances, even when the sensor performance is degraded 
due to environmental effects (weather, dirt, and possible 
damage). Such unexpected events could include objects, 
people or animals entering the roadway unexpectedly, or from 
behind obstructions. For instance, a fatal crash happened when 
the self-driving car failed to see a road separator [3]. The 
ability to deal with real life problems is critical to the safe 
operation of autonomous vehicles. However, because of the 
cost and the risks of testing autonomous cars in a real 
environment, it is common for companies to train algorithms 
using simulations to improve the autonomy level of cars 
before putting them into service on the road. 

Traditionally, simulations have been developed by 
importing sensor data that cars have collected in the real world 
and then using this data to verify that the car's self-driving 
software is capable of dealing with emergency situations 
appropriately. For example, a vehicle's cameras can record 
video of other cars on road and pedestrians crossing the street. 
The recorded video can be used every time when updating the 
self-driving software and prove that the software can still 
detect targets correctly [4, 5].  

In recent years, more advanced simulation tools are able to 
build entire road networks [6, 7], where the autonomous car is 
surrounded by many other vehicles, bicycles, pedestrians and 
even animals. Developers can use these constructed virtual 
worlds to test and retest various scenarios found in everyday 
life and identify potential problems. In such a way, the 
stability and robustness of the self-driving software can be 
improved. Most automotive companies therefore spend most 
of the time building the simulation environment to be as 
realistic as possible. However, a highly detailed simulated 
environment on its own does not provide a complete 
representation of the real world. Accurate sensor models, 
visual perception and intelligent guidance systems are also 
important for sensing surroundings and to avoid collisions. 
These models should include naturally occurring artefacts and 
the limitations present in real physical sensors.  

As shown in Fig 1, autonomous cars rely on multiple 
sensors; including cameras, LiDAR, and radar. One of the 

 
Fig. 1. Typical sensors on autonomous self-driving car 



advantages of using multiple sensors is that it can improve the 
robustness of the sensing system if one or more sensors 
malfunction. Some recent work has demonstrated the 
capabilities of using multiple sensors in 3D simulation 
environments. [8] used 6 cameras to obtain sparse 3D maps 
with a full 360o field of view for visual navigation and car 
localization. [9] integrated cameras and a LiDAR sensor using 
a mature and open-source simulator called Gazebo. Gazebo, 
however is mostly supported on Linux and it is not well 
designed for hybrid simulation. To address these challenges, a 
unified system for automation and robotics simulator 
(USARSim) has been gaining the interest of researchers, such 
as in [10]. The disadvantage of USARSim is that it is not 
suitable for real-time tests, especially when the 3D 
environment is complex. Currently, most of the simulation 
systems that have been developed have yet to be improved to 
the point where they can be physically realistic. Firstly, the 
environments need to be modelled to include dynamic 
artefacts and the ‘dirt’ associated with the real world 
(including physical dirt affecting sensor performance and 
minor damage due to prolonged use). Secondly, sensors, such 
as cameras and LiDARs, are required to run at a high-
frequency and have a high level of fidelity in a dense and harsh 
environment. Thirdly, for industrial applications, a complete 
integrated simulation system is required, including different 
types sensing modelling and navigation algorithms. To 
address these problems, the Artificial Learning Environment 
for Autonomous Driving (ALEAD) project is working to train 
vehicles by developing a hybrid 3D simulator based on 
Unity3D and ROS. Real world inputs will be used to construct 
an extensive simulation environment. Representative sensor 
models for each of the key sensors shown in Fig.1 are being 
integrated into the virtual environment; including GPS and 
other satellite navigation systems. 

In this paper, the initial design of the ALEAD project is 
presented. A camera, LiDAR and IR camera have been 
modelled as part of the multi-sensing system. To verify the 
sensor modelling performance, a scene with a ball bouncing 
in a street has been simulated in Unity3D. A tracking 
algorithm has been developed and implemented to detect the 
movement of the bouncing ball and to separate it from the 
surrounding clutter. The paper is organized as follows. Section 
II describes the details of the ALEAD project and the multi-
sensor system. Section III and IV explain the methods used in 
the sensor simulations and ball tracking, respectively. Results 
are shown and discussed in Section V. The paper is 
summarized, and conclusions drawn in Section VI.   

II. ALEAD PROJECT 

A. Project Overview 
ALEAD is a digital environment that provides autonomous 
vehicles a virtual space to learn in and so saves money and 
time for the companies developing those systems. The 
ALEAD project is developing a simulation environment for 
the development and testing of autonomous vehicles. It is 
being based around industry standard software components, 
including the Unity3D graphics engine, and is interfacing with 
the Robot Operating System (ROS) [11] and autonomous car 
models, including the Baidu Apollo [12] open driving 
solution. 

Existing computer game simulation technologies 
developed by the industrial partner CGA are being applied to 
autonomous vehicle training, using novel improvements on 
existing simulations systems and applying these systems in a 
new sector. By using artificial intelligence and machine 
learning to train vehicles in an extensive simulation 
environment designed with real world inputs and benefiting 
from the integration of multiple sensors, ALEAD is 
combining technologies to create a wholly new environment 
which could have a significant impact on the time required to 
get autonomous vehicles on the road. ALEAD focuses on the 
merging fields of machine learning, virtual reality, augmented 
reality in the context of realistic simulations of urban 
environments.  

ROS is an open-source framework designed to provide an 
abstraction layer to complex robotic hardware and software 
configurations. A variety of libraries and tools are available to 
help software developers create robot applications and has 
found wide use in both industry and academia. Moreover, 
ROS can provide simultaneous operation between hardware 
devices for actual autonomous vehicles. Unity3D [13] is a 
more flexible and powerful development platform for creating 
multiplatform 3D and 2D games and interactive experiences. 
This game engine, which supports almost every platform, is 
chosen to be the simulation server. By applying the 
transmitting interface, a communication module and detailed 
environment and sensor modelling techniques, the ROS and 
Unity3D will be incorporated together for real-time 
autonomous driving simulations. 

The ALEAD project will significantly reduce the need for 
live trials of autonomous vehicles. Using a large number of 
parallel simulation/training environments, it will be possible 
to train systems at a rate millions of times faster than running 
live trials. It is also possible to train for exceptional weather 
conditions such as fog or ice. 

B. Sensor Suite 
Current testing systems mainly use video information and 

live trials. The key to simulating the environment in as 
realistic way as possible will be the use of physically realistic 
sensor models and environmental factors. The ALEAD 
system is developing representative sensor models for each of 
the key sensors that are likely to be present in future 
autonomous vehicles, including short range Radar, IR/TV 
cameras, LiDAR scanners, and GPS. The aim is to identify the 
factors that determine or limit sensor performance, thereby 
having an adverse effect on the robustness and safety of an 
autonomous vehicle: including, precipitation and other 
atmospheric effects, such as high humidity or fog, bright 
sources of illumination, such as the sun being low in the sky 
and reflections from buildings, erratic behavior from other 
road users, debris in the road, and deliberate jamming of the 
sensor data. The sensor modelling will make the training 
physically realistic for computer vision, which operates very 
differently from human perception. 

• Image (Visible Band): A standard visible band camera 
model, which uses the simple scene as a basis. The 
angle of the field of view will be defined based on the 
interface with the coverage of other sensors. 



• Image (Infrared Band): A thermal image of the scene 
based on the three-dimensional geometry of the scene, 
and requires the objects within the scene to be labelled 
with temperature information. Also requires some 
indication of the atmospheric properties to derive path 
radiance and attenuation properties.  

• Lidar (Near Infrared Band): An active near visible 
band sensor, which measures the time of flight of 
pulsed light to build up a three-dimensional map of the 
scene. The scanning processes will be presented while 
vehicle is in motion and reflection of light from the 
surfaces of objects in the scene. 

• Radar (Short Range mmW or cmW radar): Simple 
distance measuring device with relatively broad 
beamwidth and short range. The modelling will be 
stochastic/statistical in nature and will represent the 
distribution of radar scatterers in the scene and their 
statistical properties (standard Radar models).  

• GPS/GNSS Satellite Navigation Systems: Basic radio 
navigation system based on very low power satellite 
signals. Requires WGS’84 Earth model information 
for realistic satellite data, including an interface for live 
GPS/GNSS feed or recorded satellite ephemeris data 
(e.g. RINEX format). 

• Weather effects: to include the effects of different 
weather conditions on the car and the sensors, e.g. the 
effect of fog and rain on visibility or ice on the road 
affecting driving conditions. 

III. SENSOR SIMULATION 
In this paper, all hardware sensors mounted in the autonomous 
car are modelled in the simulator, including the camera, IR 
camera and LiDAR. 

A. Camera 
The main purpose of the camera is to detect any moving 

target. As Unity3D is a game engine, the development of 
camera sensor can be used directly from the original camera 
of Unity3D. To accelerate processing, only objects near the 
camera are rendered. In such a way, the output of the camera 
only includes these rendered objects and objects out of range 
are ignored. In the paper, one camera is mounted statically on 
the top front of autonomous car. The field of view (FOV) of 
the camera is set as 36o, and perspective projection is used. 
Fig.2 shows the rendering of the camera model in a simulated 
scene, where roads, houses, trees and street lamps are 
included. 

B. IR camera 
The infrared scene is based on the 3D scene rendered for 

the visible band camera, since the physical objects are the 
same in each case. However, the scene also includes a 
temperature map that allocates temperature profiles to the 
different surfaces present in the visible band scene. The IR 
camera model utilizes this temperature map and converts the 
temperatures into thermal intensities/photon fluxes [14]. The 
thermal radiation is propagated through an atmospheric model 
(including attenuation and path radiance) and then detected 
using a bespoke infrared camera model with properties 
representative of a commercial infrared camera (pixel non-

uniformities, limited pixel resolution, dead/saturated pixels, 
etc.) [15]. The position of the IR camera is set beside the 
camera and the FOV is set as 40o [15]. Fig.3 shows the 
temperature map and the corresponding IR image. 

C. LiDAR 
A commercial LiDAR sensor is simulated to ensure as 

realistic a representation as possible. The Velodyne HDL-64E 
[16], a vertical LiDAR sensor is used because it is the most 
popular type used in self-driving cars [17]. To simulate this 
type of LiDAR sensor, parameters such as number of lasers, 
position of each individual laser and angle, and the rotational 
speed should be considered. The specification of the Velodyne 
HDL-64E and its parameters are listed in TABLE I.  

In Unity3D, each laser can be represented by using ray-
casting. From the mathematical perspective, ray-casting is a 
directional 3D vector, which checks for intersections with 
other geometries. The coordinate of the intersected point will 
be sent back. In such a way, the ray-casting can be considered 
as a realistic representation of a laser. Note that, it requires to 
create collider for each object built in the constructed scene. 
Unity3D uses the physics engine to handle ray-casting. 
Multiple ray-casts can be executed within a single physics 
frame. In this way, it can provide simultaneous actions. Fig. 4 
shows the LiDAR scanning in the scene. 

TABLE I.  LIDAR PARAMETERS 

Parameter Value 

Rotational speed 10 Hz 

Number of lasers 64 

Max distance 200 m 

Angle between scan 0.9o 

Vertical FOV 26.9o 

 

 
Fig. 2. Rendering of the camera model in a constructed scene. 

 
Fig. 3. Left: Rendering of the temperature map cooresponding to the FOV 
of the IR camera. The colour changes from blue to yellow while 
temperature increaes. Right: Rendering of the image output from the IR 
camera. 



 

IV. TRACKING ALGORITHM 
After receiving the data from camera, IR camera LiDAR 
respectively, a Kalman filter based algorithm is used to track 
the trajectory of the dynamic obstacles. The object (or objects) 
are detected in the respective fields of view using a frame 
difference method – which will also generate some 
background detections from static objects as the vehicle 
moves forwards. Some, but not all, of these static objects can 
be removed by registering the images before frame 
differencing. However, some static background clutter can 
also useful to distinguish moving objects as outliers in the 
tracking system – i.e. the moving objects are those that have 
significant differences to the static background. The 
measurements associated with the detections from each frame 
are then associated with existing tracks using a standard 
nearest neighbor approach, or new tracks are created when 
something has moved into the field of view. Once the 
measurements have been associated, a standard Kalman filter 
is used to update and predict the track motion. 

A. Obstacle Detection 
Before the tracking, the positions of moving obstacles are 

detected from the measured data. For received camera and IR 
image, the obstacles are detected by using the frame difference 
method [18]. In this method, the area of moving obstacle (area 
of significant difference) is enlarged first, and the center of the 
obstacle (centroid position) is extracted thereafter.  

The LiDAR scanning results are represented by point 
clouds, where the world coordinates, spherical coordinates, 
and laser number are recorded. When detecting the position of 
obstacle, a multi-feature extraction method used in [19] is 
applied to the plotting of the point clouds. 

B. Track Association and Track Maintenance 
Typically, for the results shown here, up to ten objects are 

detected and tracked by the sensors, and only one of these is 
in motion. The apparent motion of the other objects comes 
from the forward motion of the car (assumed to be 
approximately 10 meters/second for the examples shown 
here). Each measurement is associated with a track based on 
the simple Euclidean distance between the two, in the sensor 
axes. For the low clutter examples considered in this paper, 
this method is sufficiently robust to allow accurate object 
tracking.  

C. Obstacle Tracking 
After detection and association, the measured positions of 

the obstacles obtained from the sensors data are fused into the 
tracking algorithm. A standard Kalman filter [20] has been 

used in the results presented below. Several variants of the 
standard particle (bootstrap) filter [21, 22] were also tested but 
little benefit was found in using these rather than the Kalman 
filter.  

The state vector for this model contains position, velocity 
and acceleration, and is given by, 

𝑋 𝑡 = (𝑥 𝑣' 𝑎' 𝑦 𝑣* 𝑎* 𝑧 𝑣, 𝑎,). (1) 

where the co-ordinates (𝑥, 𝑦, 𝑧) are in an earth-stabilized 
reference frame centered on the vehicle (along (x) – across, 
right (y) – down (z)). We use a standard linear kinematic 
model with nearly-constant acceleration, and a standard 
process noise model to allow for small variations in the actual 
acceleration of the target. The linear kinematics are 
represented by the matrix, 

 𝐹 =
𝐹1×1 𝐼1×1 𝐼1×1
𝐼1×1 𝐹1×1 𝐼1×1
𝐼1×1 𝐼1×1 𝐹1×1

 (2) 

where I3×3 is the 3´3 identity matrix and, 

 F3×3=
1 Δt 1

2Δt2

0 1 Δt
0 0 1

 (3) 

 𝑋 𝑡 + Δ𝑡 = 𝐹 ∙ 𝑋 𝑡 + 𝜈(𝑡) (4) 

where ν(t) is an acceleration noise source (continuous Wiener 
process acceleration model [20]) with a process noise 
covariance given by, 

 𝑄 =
𝑄1×1 01×1 01×1
01×1 𝑄1×1 01×1
01×1 01×1 𝑄1×1

 (5) 
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where 01×1  is a 3×3  zero matrix, and 𝑆H is the power 
spectral density of a continuous white noise process noise 
representing the ‘jerk’ (time derivative of the target 
acceleration). 

 The measurements from the three sensors are represented 
by periodic measurements of image position in the visible and 
infrared bands, giving (y, z) information, and image location 
and range for the LiDAR, providing (x, y, z) information. The 
measurement frequency and measurement errors are dictated 
by the corresponding fields of view of each sensor (horizontal 
𝜃KLM,*  and vertical 𝜃KLM,, ) and corresponding numbers of 
pixels (𝑁OP',*  and 𝑁OP',,) when combined with the range to 
the object, and the range accuracy in the case of the LiDAR. 
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Fig. 4. LiDAR sensor scanning in the scene, laser beams are 
represented by red lines. 



 

 

 

V. SIMULATION RESULTS 
To test the proposed multi-sensor tracking system, an 
animation of a ball bouncing in the street is created in the 
scene. The true positions while the football is bouncing can be 
directly retrieved from the transform function of the football 
and sent to the tracking algorithm to calculate the trajectory. 
The three sensors, camera, IR camera and LiDAR, generate 
their measurements at their own operating frequency, namely 
60 Hz, 20 Hz, and 10 Hz, respectively. All measurements 
received at local coordinate system are converted into the car’s 
global coordinate system.   

The image captured from the camera and the detection of 
the ball are represented in Fig. 5. The center position of the 
ball is marked using a green box. Fig. 6 shows the detection 
of the ball from the IR camera imaging results at 

  
                        (a)                                                     (b)                             

  

                  (c)                                                      (d)  

  

                  (e)                                                      (f)  

Fig. 5. Detection of the bouncing ball, the center position of the ball is 
captured by a green box. 

  
                   (a)                                                    (b)  

  

                   (c)                                                    (d)  

  
                   (e)                                                     (f)  

Fig. 6. Resulted IR images and detection of the bouncing ball, the 
centroid position of the ball is captured by a green box and the point that 
with the highest temperature are marked by red star. 

 
(a)                                 

 
 (b)    

   
  (c)    

            
  (d)    

Fig. 7. LiDAR plotting of the point cloud. (a) LiDAR scanning results 
of the entire scene with no appearance of the ball. (b), (c) and (d) detect 
the ball, where the feature of the ball is shown in the enlarged window. 
The colour changes from red to yellow and green as the distance 
increases.  



corresponding time as Fig. 5. As images from IR camera have 
lower resolution than the camera images, the detected centers 
of the ball deviate from Fig. 5.  

The point clouds generated from the LiDAR simulation 
are shown in Fig.7. Static obstacles, like street lamps are 
featured as line shape. While the ball is featured as a circle. 
Yellow points represent object near the car, while green points 
represent object with distance further away from the car. 

 
Fig. 8(a) shows example results for detections over a ten 

second window of the simulation for one of the imaging 
sensors (the 2D visible band camera). The detections include 
structured static clutter and some random detections that 
correspond to false alarms.  The second figure, Fig. 8(b), 
shows the tracks generated by the moving object and the 
structured clutter, with the tracks being colored to show 

clusters of similar structured clutter. The moving ball is 
indicated in red and shown in more detail against the ground 
truth trajectory in Fig. 8(c). The moving object can be found 
quite simply from its motion against the majority of the 
obstacles, since their motion is correlated with the forward 
motion of the vehicle. By contrast, the moving ball appears as 
an outlier with respect to the static background, and its motion 
can be predicted to ascertain whether is crosses the path of the 
vehicle. The intention would be to generate an alert to ensure 
that the autonomous controller controlling the car slows down 
and takes action to avoid a collision, although in such cases 
additional higher-level processing may be required to consider 
other risks. 

 
Averaging the track errors, the expected performance of 

the tracker can be predicted, as shown in Fig. 9. The root-
mean-squared (RMS) 3D tracking errors are shown, as an 
average (in red) and for one example realization (in blue). The 
averages are calculated with slight variations in the initial 
conditions of the ball; including initial height, initial range, 
initial speed, etc. The example realization shows the periodic 
nature of the bouncing ball, which is particularly evident in 
the velocity errors in Fig. 9(b). The averaged data shows some 
residual evidence of the bouncing ball. This is due in part to 
the relatively small variations in the initial conditions. The 
other significant characteristics are the large initial errors, 
which are due to the low update rate of the LiDAR sensor. The 
obstacle’s range contains a large error until one or two LiDAR 
measurements are available (approximately 0.1- 0.2 seconds). 
Towards the end of the simulation, the tracking error increases 
again, which is due to the obstacle being outside the field of 

(a) 

  

(b) 

 
(c) 

Fig. 8. Example Tracking Results, with static and random clutter: (a) 
2D visible band camera detections vs time, (b) 3D tracks generated for 
bouncing ball (red) and other static clutter objects (other colors), (c) 
3D track for bouncing ball (red dotted line) shown against true 
trajectory (blue solid line).  

 
(a) 

 

(b) 
Fig. 9. Track Errors vs Time: (a) example RMS 3D position error for 
one realization (blue dashed line) and average RMS 3D position error 
(averaged over 2000 realizations, solid red line), (b) example RMS 
speed error for one realization (blue dashed line) and average RMS 
speed error (averaged over 2000 realizations, solid red line). 



view of one or more of the passive sensors and the location 
errors being dominated by the lower resolution of the LiDAR 
and the process noise. 

VI. CONCLUSIONS 
A multi-sensor tracking system has been developed as an 
initial realization of the ALEAD project to test the 
performance of the simulated sensors. In the system, two 
imaging sensors, camera and IR camera, and one LiDAR 
sensor have been modelled and a Kalman filter has been 
implemented to detect and track the moving obstacle (a 
bouncing ball). The simulation results show that by fusing the 
vision and LiDAR data, the tracking performance of the 
moving obstacle has been improved and the trajectory has 
been predicted successfully. As the simulations of the sensors 
are configured to match the specifications of real systems and 
are based on underlying physical models for the sensors, it 
opens the potential for the application of these models to test 
real autonomous driving systems.  

In future work, the complexity of the simulated 
environment will be increased by including other forms of 
clutter (signs, mail boxes, and other road ‘furniture’), people 
and other types of vehicle. Short range Radar sensors will be 
simulated and integrated into the autonomous car, together 
with GNSS-aided navigation systems. Duplicate sensors, such 
as cameras will also be added to increase the total field of view 
of the vision system. The aim will be to develop algorithms 
that are agnostic to whether the source of sensor data is a real 
physical system or a simulated sensor. Trade-studies will be 
carried out to evaluate the performance of collision detection 
with changes of the sensors. In addition, adverse weather 
conditions, such as rain and fog, will be added to improve the 
realism of the simulation and to challenge the sensor fusion 
and obstacle tracking methods developed for this program.  
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