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Abstract: Perception is a vital part of driving. Every year, the loss in visibility due to snow, fog,
and rain causes serious accidents worldwide. Therefore, it is important to be aware of the impact of
weather conditions on perception performance while driving on highways and urban traffic in all
weather conditions. The goal of this paper is to provide a survey of sensing technologies used to
detect the surrounding environment and obstacles during driving maneuvers in different weather
conditions. Firstly, some important historical milestones are presented. Secondly, the state-of-the-art
automated driving applications (adaptive cruise control, pedestrian collision avoidance, etc.) are
introduced with a focus on all-weather activity. Thirdly, the most involved sensor technologies (radar,
lidar, ultrasonic, camera, and far-infrared) employed by automated driving applications are studied.
Furthermore, the difference between the current and expected states of performance is determined by
the use of spider charts. As a result, a fusion perspective is proposed that can fill gaps and increase
the robustness of the perception system.

Keywords: autonomous vehicles; advanced driver assistance systems; infrared camera; lidar;
road safety; radar; sensor; sensor fusion; ultrasonic sensor; weather conditions

1. Introduction

According to the National Highway Traffic Safety Administration (NHTSA), human error is the key
explanation for serious road accidents, along with environmental factors such as weather conditions,
which are said to lead to accidents as well. On average, more than 6.4 million automobile accidents
are registered in the United States (US) annually, of which 1.561 million are weather related [1,2].
Most of these accidents occur on wet pavements (due to rain and snow), while just 3% of them
occur in the presence of fog. Similarly, the relationship between road accidents and adverse weather
conditions across Europe has been outlined in the COST Action TU0702 report [3]. To mitigate road car
accidents, the automation of many driving functions has been successfully implemented in most of the
new-generation commercial vehicles. To categorize these systems, the Society of Automobile Engineers
(SAE) has defined six levels of automation, ranging from 0 (zero automatic driving maneuver) to 5
(fully autonomous navigation). While the deployment of fully autonomous vehicles (level 5) is still
expected in a few years, the current commercial vehicles are equipped with the Advanced Driver
Assistance Systems (ADASs), which are usually classified between SAE autonomy level 2 and level
3 [4]. In brief, the ADASs use an environment perception module consisted of several sensors whose
objective is to provide relevant data necessary to interpret the surrounding scenes near the vehicle.
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In normal climatic conditions, the reliability and benefits of the ADASs have gained popularity and
confidence [5]. However, in adverse weather conditions, the experience of the driver is required to
compensate for the failure of the ADASs to appropriately perceive the surrounding environment,
which usually results in severe accidents. Despite the significant effect of weather conditions on
intelligent navigation perception systems, most of the review papers related to ADASs mainly focus
on the efficiency of algorithms without considering climatic conditions (such as snow, sleet, rain,
and fog). In fact, the capability of autonomously and robustly perceiving the surroundings in all
weather conditions has not been fairly taken into consideration. Moreover, most datasets focus on
urban traffic in perfect light, and clear weather conditions are often preferred for testing purposes (such
as daylight and sunny weather). Just 12 of the current 36 publicly accessible databases, such as AMUSE,
CCSAD, CMU, ESATS, Elektra, Heidelberg, JAAD, Oxford, Stixel, HCI, and TROM, are designed
to contribute to autonomous driving under adverse conditions (night fog and rain conditions) [6].
Only a few papers have addressed the sensors and their performance in severe weather conditions.
For instance, in [7], a global review of the state-of-the-art of automated vehicles is presented, including
an overview of the system architecture with a briefing on key functions, such as perception, localization,
planning, and control. In addition, emerging algorithms for addressing spatial information, semantic
information, and target motion tracking are presented. However, the study addresses the performance
of sensors under normal weather conditions but does not cover the impact of intemperate or changing
weather on the performance of the sensor, which is the gap to be discussed and filled. Similarly, in [8],
the review article considered one of the main functions of an autonomous vehicle, i.e., perception
systems, and addressed the role of sensors such as artificial cameras, radars and lidars in the perception
environment and their performance based on popular algorithms used in obtaining spatial and semantic
information of targets, along with the tracking of motion. In addition, the authors provided insight
into current university research centers, technology firms, and their participation in the development
of autonomous driving. However, this review article only provides very general information on the
impact of varying weather on perception sensors and only lidar performance issues were highlighted
in selected weather conditions. In [9], a systematic review of perception systems for sensing the
environment and a position estimating system with various sensors and a sensor fusion algorithm
is presented. In addition, insight into model-based simulators and the current state of regulations
around the world is presented. However, the challenges faced due to varying weather on perception
sensors are not highlighted. It is necessary to be aware of the impact of the weather on perception
when driving in all weather conditions on highways and urban transport. Improved detection in
severe weather conditions will help to solve sensing problems without any further efforts in algorithm
processing. Therefore, there is a need for a unifying study that combines state-of-the-art information
on the effect of weather on ADASs, as well as the related perception system.

Our contribution offers information which can fill the missing gap in articles [7–9], related to
surveys of sensing technologies and various weather impacts, on diverse sets of perception sensors
(such as radar, lidar, ultrasonic, camera, and far-infrared).

• Additionally, a 3D visualization of state-of-the-art sensing technologies is shown using a spider
chart, clarifying emerging trends and gaps in development. Based on the spider chart information,
sensor reliability challenges and gaps can be tackled in the efficient implementation of automated
driving in all weather conditions.

• Sensor fusion perspective is proposed, which involves several strategies and tasks, that will help
to facilitate active sensor toggling (switching). The active sensor toggling strategy helps in the
selection of sensors depending on the environment awareness context. Moreover, a potential
combination of sensors is proposed for selected driving safety applications for all weather drives.

The rest of the study is organized as follows: Section 2 explains the development of an intelligent
vehicle and its safety applications, focusing on the various usages of perception sensors in production.
Section 3 discusses some of the well-known safety applications of ADASs and semi-autonomous
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vehicles with a focus on their vulnerability to extreme weather conditions. Section 4 provides a
detailed overview of the sensors used in driver assistance applications, and this section highlights key
points of individual sensors, like the design of construction, working principle, strategies employed
by individual sensors in the perception of the environment, and the limitations of sensors in various
weather environments and, finally, the section ends with a demonstration of individual sensor
performance using a spider chart. Section 5 consists of a sensor fusion perspective for all-weather
navigation of vehicles. In this section, we highlight strategies and tasks at the time of fusing sensors
for robustness and end the section with a proposal which includes potential combinations of sensors
for various ADAS applications to enhance perception and eliminate functional variations. Section 6
outlines conclusions and discussions on today’s limitations in achieving complete autonomous drives.

2. Evolution of Intelligent Vehicle Technology

Before analyzing the sensors technologies and their capability of navigation in difficult weather
conditions, the time evolution of vehicle technology is explained. In this regard, three main phases
can be observed in the literature, accounting for (i) phase I that is related to a period between 1980
and 2003; (ii) phase II that is focused on a time interval between 2003 and 2008; and (iii) phase III that
started in 2008.

2.1. Phase I (1980 to 2003)

During this phase, the dynamic stability of vehicles was one of the focal points. Inertial sensors
incorporated into inertial measurement units (IMUs) combined with an odometer were often used
to improve the stability of the vehicle, particularly when the road had several curves, and this soon
led to driver assistance like anti-lock braking systems (ABSs), followed by traction control (TC) and
electronic stability (ECS) [10]. Mercedes has shown efficacy and importance for human life with the
combined ABS and ECS systems and the “Moose Test” has attracted public and official attention [11].
Nevertheless, safety concerns were limited to drivers and passengers, increasing concern about mobility
and the safety of human life in the surrounding area, which led the way to the development of external
sensors. In 1986, the European project PROMETHEUS [12] involving university research centers and
transport as well as automotive companies, carried out basic studies on autonomous features ranging
from collision prevention to cooperative driving to the environmental sustainability of vehicles. Within
this framework, several different approaches to an intelligent transport system have been designed,
implemented, and demonstrated. In 1995, the vision study laid the foundation for a research team
led by Ernst Dickmann, who used the Mercedes-Benz S-Class and embarked on a journey of 1590 km
from Munich (Germany) to Copenhagen (Denmark) and back, using jolting computer vision and
integrated memory microprocessors optimized for parallel processing to react in real time. The result
of the experiment marked the way for computer vision technology, where the vehicle, with high
speeds of more than 175 km/h and with minimal human intervention, was driven autonomously 95%
of the time. In the same year, in July 1995, Carnegie Mellon University’s NavLab5 traveled across
the country on a “No Hands Across America” tour in which the vehicle was instrumented with a
vision camera, GPS receiver gyroscope, and steering and wheel encoders. Moreover, neural networks
were used to control the steering wheel, while the throttle and brakes were human controlled [13].
Later, in 1996, the University of Parma launched its ARGO project, which completed more than
2000 km of autonomous driving on public roads, using a two-camera system for road follow-up,
platooning, and obstacle prevention [14]. Meanwhile, other technologies around the world have
made way in the market for various semi-autonomous vehicle applications. For example, to develop
car parking assistance systems, ultrasonic sensors were used to detect barriers in the surroundings.
Initially, these systems had merely a warning function to help prevent collisions when moving in
and out of parking spaces. Toyota introduced ultrasonic back sonar as a parking aid in the Toyota
Corona in 1982 and continued its success until 1988 [15]. Later, in 1998, the Mercedes-Benz adaptive
cruise control radar was introduced, and these features were initially only usable at speeds greater
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than 30 km/h [16]. Slowly, autonomous and semi-autonomous highway concepts emerged and
major projects were announced to explore dynamic stability and obstacle detection sensors such
as vision, radar, ultrasonic, differential GPS, and gyroscopes for road navigation. The navigation
tasks included lane keeping, departure warning, and automatic curve warning [17,18]. Most of
these projects were carried out in normal operating environments. The phase came to a halt with
the National Automated Highway System Consortium [19] on the demonstration of automated
driving functions and the discussion on seven specific topics related to automated vehicles: (i) driver
assistance for safety, (ii) vehicle-to-vehicle communication, (iii) vehicle-to-environment communication,
(iv) artificial intelligence and soft computing tools, (v) embedded high-performance hardware for
sensor data processing, (vi) standards and best practices for efficient communication, and (vii) traffic
analysis systems.

2.2. Phase II (2003 to 2008)

Several interesting projects were published in the second phase, such as the first Defense Advanced
Research Projects Agency (DARPA)Grand Challenge, the second DARPA Grand Challenge, and the
DARPA Urban Challenge [20,21]. These three projects and their corresponding competitions were
designed to accelerate the development of intelligent navigation and control by highlighting issues
such as off-road navigation, high-speed detection, and collision avoidance with surroundings (such
as pedestrians, cycles, traffic lights, and signs). Besides, complex urban driving scenarios such as
dense traffic and intersections were also addressed. The Grand Challenge has shown the potential
of lidar sensors to perceive the environment and to create 3D projections to manage the challenging
urban navigation environment. The Velodyne HDL64 [22], a 64-layer lidar, played a vital role for
both the winning and the runner-up teams. During the competition, vehicles had to navigate the real
environment independently for a long time (several hours). The winner of the Second Grand Challenge
(Stanley, Stanford Racing Team, Stanford University) equipped his Stanley vehicle with five lidar units,
a front camera, a GPS sensor, an IMU, wheel odometry, and two automotive radars. The winner of
the Urban Challenge (2007) (Boss, Carnegie Mellon University Team) with its Boss vehicle featured a
perception system made up of two video cameras, five radars, and 13 lidars (including a roof-mounted
unit of the novel Velodyne 64HDL). The success of the Grand Challenges highlighted some important
information, for example, the size of the sensors and their numbers increased significantly, leading to
an increase in data acquisition density, which resulted in several researchers studying different types of
fusion algorithms. Further data acquisition density studies have paved the way for the development
of advanced driving maneuvers such as lane keeping and collision prevention with warning systems
to help the driver avoid potential hazards. We also note that, although different challenges have been
addressed in the context of competitions in urban navigation, all of them have been faced with clear
weather conditions and no specific report has been provided on tests under varying climatic conditions.

2.3. Phase III (from 2008)

The third phase is a combination of driver assistance technology advancement and commercial
development. The DARPA Challenges have strengthened partnerships between car manufacturers
and the education sector and have mobilized several efforts to advance autonomous vehicles (AVs) in
the automotive industry. This has involved a collaboration between General Motors and Carnegie
Mellon University (Carnegie Mellon University), the Autonomous Driving Joint Research Lab, and a
partnership between Volkswagen and Stanford University (Stanford University). Google’s Driverless
Car initiative has introduced commercial research into autonomous cars from a university lab. In 2013,
a Mercedes-Benz S-Class vehicle [23] was produced by the Karlsruhe Institute of Technology/FZI
(Forschungszentrum Informatik) and Daimler R&D, which ran 100 km from Mannheim to Pforzheim
(Germany) completely autonomously in a project designed to enhance safety. The vehicle, which is
equipped with a single stereo vision system consisting of several new generations of long-range
and short-range radar sensors, followed the historic memorial road of Bertha Benz. Phase III has
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focused on issues like traffic automation, cooperative driving, and intelligent road infrastructure.
Among the major European Union initiatives, Highly Automated Vehicles for Intelligent Transport
(HAVEIT, 2008–2011) [24–26] has tackled numerous driver assistance applications, such as adaptive
cruise control, safety lane changing, and side monitoring. The sensor sets used in this project include a
radar network, laser scanners, and ultrasonic sensors with advanced machine learning techniques as
well as vehicle-to-vehicle communications systems (V2V). The results of this project developed safety
architecture software for the management of smart actuators and temporary autopilot system tasks for
urban traffic with data redundancy and led to successful green driving systems. Other platooning
initiatives were Safe Roads for the Environment (SARTE, 2009–2012) [27], VisLab Intercontinental
Autonomous Challenge (VIAC, 2010–2014) [28], the Grand Cooperative Driving Challenge, 2011 [29],
and the European Truck Platooning Challenge, 2016 [30,31], which were major projects aimed at creating
and testing some successful intersection driving strategies in cooperation. Global innovation, testing,
and deployment of AV technology called for the adoption of standard guidelines and regulations
to ensure a stable integration, which led to the introduction of SAE J3016 [4], which allows for six
degrees of autonomy from 0 to 5 in all-weather situations where the navigation tasks at level 0 are
managed by the driver and the computer at level 5. To respond to these regulations, the Google
driverless car project began in 2009 to create the most advanced driverless car (SAE autonomy level
5) that features a 64-beam lidar rotating rooftop, creating 3D images of objects that help the car see
distance and create images of objects within an impressive 200 m range. The camera mounted on the
windshield helps the car see objects right in front of it and to record information about road signs and
traffic lights. Four radars mounted on the front and rear bumpers of the car make it possible for the
car to be aware of the vehicles in front of and behind it and to keep passengers and other motorists
safe by avoiding bumps and crashes. To minimize the degree of uncertainty, GPS data are compared
to the sensor map data previously collected from the aerial, which is fixed at the rear of the car and
receives information on the exact location of the car and updates the internal map. An ultrasonic sensor
mounted on one of the rear wheels helps keep track of movements and warn the car about obstacles in
the rear. Usually, the ultrasonic sensors are used for parking assistance. Google researchers developed
an infrastructure that was successfully tested over 2 million km on real roads. This technology belongs
to the company Waymo [32]. Nissan’s Infiniti Q50 debuted in 2013 and became one of the company’s
most powerful autonomous cars and the first to use the virtual steering column. The model has
various features, such as lane changing, collision prevention, and cruise control, and is equipped
with cameras, radar, and other next-generation technology. The driver does not need to handle the
accelerator, brake, or steering wheel [33]. Tesla entered the course of automated driving in 2014 [34],
with all its vehicles equipped with a monocular camera and an automotive radar that enabled autopilot
level 2–3 functionality. In 2018, Mobileye, focusing on a vision-only approach to automated driving,
presented an automated Ford demo with only 12 small, fully automated mono-cameras [35]. Beside the
projects, there are many pilot projects in almost all G7 countries to improve the introduction rate of the
ultimate driverless vehicle. Moreover, the ADAS has achieved high technology readiness, and many
car manufacturers are now deploying this technology in their mass-market vehicles. Although several
key elements for automatic maneuvers have been successfully tested, the features are not fully covered
under all weather conditions. In the next section, we discuss the various applications of ADASs which
are currently available in the market and their limitations in performing in various weather conditions.

3. Automated Navigation Features in Difficult Weather Conditions

3.1. Forward Assistance

3.1.1. Adaptive Cruise Control (ACC)

The ACC system helps the driver to longitudinally control the vehicle dynamics [36]. The main
motivation for the ACC development is to relieve the driver from driving stress, distracting tasks,
human error due to constant monitoring of speed, and maintaining proper progress in irregular traffic.
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This ACC feature is a combination of the cruise control with collision avoidance control. The vehicle
speed is modulated based on the distance from the front vehicle (leading vehicle) [36–38], which is
mainly intended for highway environments. Mitsubishi and Toyota introduced the cruise control
function in Japan in 1996, based on lidar technologies [39]. Later, the ACC was expanded in Europe by
Mercedes-Benz in 1999, where it used radar technology combined with an automatic braking system.
Detecting other vehicles from a moving vehicle is a challenging task for smart vehicles in heavy traffic
and winter conditions (for example, snowfall and icy roads). Particularly, the feature must deal with
the vehicle skidding and sliding to avoid any collision when the road is wet, snowy, and icy. Indeed,
snowfall can accumulate in the sensor locations and reduce the sensor capability to correctly perceive its
surroundings. Additionally, the rainwater causes the oil and grease to rise to the top of the water on the
road and creates a slippery or icy road. The popular sensors for ACC applications include the visible
spectrum camera, the ultrasonic sensor, lidar, radar, and passive far-infrared cameras. The cameras can
be used to know the surroundings and target vehicles ahead. However, in rain and fog conditions,
sensing vehicles around and ahead becomes difficult as the lidar can send false obstacle detection
alerts. Ultrasonic sensors work well in close range due to low noise in the reflection of sound waves
from the targeted object. Radars are robust in all climatic conditions, however, due to their narrow
detection field of view, other existing vehicles in the lane of the host vehicle cannot be adequately
recognized, which may lead to a sudden collision. Passive far-infrared cameras can come in handy for
adverse weather conditions. Indeed, the sensors with robust algorithms and image learning can detect
obstacles accurately and robustly in most of the difficult climatic conditions due to their ability to see
through fog, rain, and even snow [40,41].

3.1.2. Forward Collision Avoidance (FCA)

Various studies (such as the European Collision Support Initiative) in connection with a forward
collision accident technology have demonstrated that many drivers do not brake or use the full braking
system capacity when facing road emergencies. This feature mainly relies on continuous monitoring
from different types of sensors like cameras, ultrasonic, radar, and lidar. FCA is intended to help
the driver to respond quickly and safely to any obstacle on the road. In challenging road conditions,
traction is even harder to control. According to ISO 15623 2013 [42,43], the minimum distance for
vehicle detection must be over 45 m. For a relative velocity of 20 m/s, azimuth lateral sensing with a
single sensor should be between 9◦ and 18◦ to recognize a vehicle as wide as 1.80 m. Furthermore,
it should have a sufficiently large vertical visual range (elevation) to detect a target with a height of
1.1 m. For normal weather conditions, most sensors (radar, lidar, and cameras) meet the standards,
but in more difficult environments (rain and snow with low visibility), sensors face challenges to detect
relevant objects. As discussed in the ACC application, lidar, camera, and ultrasonic sensor capabilities
are limited in bad weather conditions, while radar can still be more robust.

3.1.3. Road and Traffic Sign Recognition

Typically, road and traffic signs are either on the roadside or above the road. They give drivers
important information to guide, warn, or regulate their behavior to make driving safer and easier.
Road and traffic signs have special colors and symmetrical shapes, such as triangles, circles, octagons,
diamonds, and rectangles. A sign’s shape, color, and its related ideogram are designed to draw the
driver’s attention. Bad weather can decrease the visibility of traffic signs and an obstacle (such as
a pedestrian or another vehicle) can partially obscure road signs, which may cause drivers to miss
important road signs. Therefore, traffic and sign recognition technologies must be good at classifying
them, even in non-ideal conditions. Radar and ultrasonic sensors cannot recognize and classify
signboards. Lidar is good at mapping the surroundings, but it has a low color contrast and its elevation
angle is not good enough to recognize and classify signboards [44]. For this application, machine
learning with Complementary Metal Oxide Semiconductor (CMOS) cameras, have a good performance
with low-expense solutions. Traffic sign recognition algorithms usually have two steps of detection



Sensors 2020, 20, 6532 7 of 34

and classification [45,46]. At night, cameras go blind and depend only on car headlights. However,
this does not affect the performance since special paints are used on signboards make them bright at
night [47]. In heavy rain and snowfall, the camera can have trouble detecting the signboards due to
visibility issues. A passive far-infrared (FIR) camera works by evaluating an object’s thermal signature
and emissivity, and it cannot see colors in detail. However, using FIR, which can efficiently detect
and recognize signs from the background, in combination with a CMOS camera, can provide a hybrid
perception solution that is robust in difficult weather conditions.

3.1.4. Traffic Jam Assist (TJA)

Traffic jams are the main reasons for the development of the traffic jam assist (TJA) feature.
TJA utilizes functions of ACC and lane assist (see Section 3.2) to enable convenient and safe stop-and-go
driving. The TJA system responds to other vehicles by adjusting the safe distance and autonomously
handles steering in a lateral direction if any free space is detected [48]. If the vehicle with TJA
encounters a situation where there are too many nearby activities, such as frequent changes in adjacent
lanes, lots of obstacles, and unpredictable speeds of other vehicles, the driver receives a take-over
prompt [49]. TJA combines longitudinal and lateral direction monitoring to locate surrounding
vehicles. Information about both lane structures, such as markings and other vehicles in the immediate
environment, is needed to design the TJA function. This implies that sensors should be sufficiently
capable of locating immediate surroundings at a shorter distance to the host vehicle. Environmental
effects such as snow, rain, and fog have limited effects on sensor performance since the detection must
be performed in traffic in a small perimeter [48]. Various experiments have shown that although the
performance of sensors degrades at long ranges in different weather conditions, it is good for shorter
distances. Passive far-infrared cameras are computationally challenging for short ranges. Lidar can
effectively locate the surroundings. Ultrasonic sensors are very effective in short ranges with low noise.
They are also very cheap compared to other sensors. Their accuracy of detection may vary since their
waves are influenced by temperature due to the emitted heat of surrounding vehicles. Mid-range
radars are inexpensive and effective in detecting the surroundings. For the lateral direction, cameras
are a cost-effective solution for detecting lane markings and boundaries.

3.2. Lateral Assistance

3.2.1. Lane Departure Warning (LDW) and Lane Keeping Assistance (LKA)

Unintentional lane departures on highways lead to dangerous accidents, based on various accident
statistics [50]. To overcome this problem, lateral assistance (LA) has been developed. Lane departure
warning (LDW) and lane keeping assistance (LKA) are two popular features. LDW warns drivers
about deviation from the lane and LKA assists them with keeping the vehicle on track by controlling
and steering the vehicle. For LKA systems, it is important to know the vehicle position with respect
to the lane of travel. Lane detection and lane tracking are therefore critical tasks. Lane marks can
sometimes be difficult to recognize on various road types due to snow, other vehicles, and changes to
the road surface itself [51,52]. In all weather conditions, the lane sensing system should be capable of
determining every type of markings on roads so the position and the trajectory of a vehicle regarding
the lane can be reliably estimated. Since the detection of lanes does not require kinetic and shape
information, cameras and lidar are mostly used [53,54]. However, difficult weather conditions and low
visibility issues are still the major concerns that limit the performance of cameras.

3.2.2. Lane Change Assistance (LCA)/Blind Spot Monitoring (BSM)

Assisting drivers in changing lanes, where possible mistakes can be minimized, is the purpose of
the lane change assistance (LCA) system. In urban, rural, and highway roads, the monitoring of the
side lane traffic is very important for lane changing. Based on ISO standard 17387 [55], LCA tries to
accomplish blind spot detection (BSD) that focuses on the vehicle approaching from behind in the side
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lane. For LCA, it is important to provide the driver with information about the immediate vehicles
near the host vehicle. For blind spot monitoring, sensors with a medium range between 70 m and
100 m are used. Rear cameras can deliver information on the position of the vehicle approaching from
behind at the time of the departure. However, the operating range is influenced by climate conditions.
Passive far-infrared cameras and mid-range radar sensors can overcome weather conditions by robustly
detecting surrounding vehicles in all weather conditions. Nevertheless, the cone-shaped spectrum of
radar detection remains a difficult problem at bends [56]. In addition to radars, ultrasonic sensors can
be used as a backup.

4. Sensors

4.1. Overview

All the above features were designed to improve vehicle safety and rely deeply on sensor data.
Data accuracy from the sensors depends on environmental stimuli to perceive the surrounding
scene. Car sensors are classified as proprioceptive or exteroceptive. Proprioceptive sensors help
measure vehicle ego movement and dynamics. Some of the proprioceptive sensors are wheel speed
sensors, torque sensors, steering angle sensors, and IMUs. On the other hand, exteroceptive sensors
work by detecting obstacles, and recognizing the navigation scene and help gather information
from the surroundings and improve knowledge of the vehicle’s location. Exteroceptive sensors
are further categorized into passive and active sensors. Active sensors include ultrasonic, radar,
and lidar, which function by emitting energy in the form of electromagnetic waves or radiation and
measure return time to determine parameters such as distance and position. Instead of transmitting
external signals or disruptions, passive sensors (infrared cameras) receive electromagnetic waves
or radiation in the environment. Active sensors are preferred to passive ones, since they have less
trouble discriminating between useful data and irrelevant signals. Figure 1 shows a wide range of the
electromagnetic spectrum described by ISO 20473, including the wavelength of the following sensors:
CMOS camera, near-infrared sensors, lidar, thermal camera, radar, and ultrasonic sensor.
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Since different environmental stimuli can include any mixture of these wavelengths, the robustness
of perception can be improved by combining different sensors with nonoverlapping wavelength
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intervals. However, the wavelength is not the single dominant function, additional geometry (shape),
spatial resolution, and accuracy must be considered to overcome surrounding scene complexity and can
require advanced filters to eliminate disturbances and interference while perceiving. In the following
section, exteroceptive sensors responsible for environmental perception are addressed briefly and,
with findings from reviewed experimental tests, the individual sensors’ advantages and disadvantages,
along with their performance capabilities in different environments, are presented and the same is
demonstrated on a spider chart for visualization. All the criteria behind the spider chart aim to
demonstrate the state-of-the-art performance of individual sensors, compare their capabilities with
other sensors, and give an idea of individual limitations. The information used to construct spider
charts was obtained from manufacturers and the evaluation of experts’ key findings, and the related
references are cited in each section, describing the individual sensors. Criteria chosen for sensor
information are based on the ability of the sensor to obtain target spatial information (such as location,
velocity, range, and shape) and detect and recognize objects (pedestrians, cars, trees, and streetlights).
These criteria help to provide information such as sensor resolution and contrast. In the same way,
the individual sensor capacity to work in the precipitate and aerosol environment has been highlighted
with various experimental studies. The following criteria have been used in the visualization of the
spider charts, and Table 1 helps in reading and interpreting the spider chart.

Table 1. Indexes to interpret spider charts.

Criterion Indexes (i)

Range 0—None
1—Very low performance
2—Low
3—High
4—Very high performance

Resolution

Contrast

Weather

Cost

0—None
1—Very high cost
2—High cost
3—Low cost
4—Very low cost

Range: Information is gathered from various sensor manufacturers and used to describe the
performance of the sensors. For example, the ability of a sensor to detect any object over 100 m and
above is assumed to represent high performing sensor and is represented with Index 4 (i = 4) on the
spider charts to visualize this. However, if a sensor cannot detect objects at 100 m, the output of the
sensor is considered as low performing, indicated with Index 1 (i = 1). For ADAS safety driving
applications, range requirements may vary.

Resolution: Information on resolution is gathered from noted experimental studies,
whose references are cited under individual sensor performance reviews. A high performance
is considered for sensor if each measurement axis of the sensor can achieve a space resolution of less
than 10 cm (i = 4) or is considered a low performance sensor otherwise (i = 1). Mapping resolution
helps to estimate the sensors’ ability to provide information about the position, velocity, size, and shape
of the target.

Contrast: Information on contrast is gathered from noted experimental studies, whose references
are cited under individual sensor performance reviews. If the sensor can accurately identify an object
when the ambient contrast is small, then sensor performance is assumed to be high (i = 4). Furthermore,
if the sensor can reliably detect an object only when the ambient contrast is very high, then the sensor
is assumed to have low performance (i = 1). This differentiation helps in understanding the ability of
sensors to classify and track the target of interest.

Weather: If the sensors can reliably perform successful detection under harsh weather conditions,
it is assumed as a high-performance sensor (i = 4). Similarly, if sensor provides good detection only in
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clear weather conditions, then the sensor is assumed to have low performance (i = 1). The information
about the weather has been gathered based on noted experimental analysis and the related references
are cited under individual sensor performance reviews.

Cost: Details on the individual costs of the sensors were collected from various online sources.
For instance, we have a unit price of automotive ultrasonic sensors ranging from USD 16 to USD
40 [58,59] and of automotive radar ranging between USD 50 and USD 220, based on the application
for short–medium–long range [60]. The automotive lidar price ranges between USD 500 to USD
75,000, based on the design and configuration of lidar and, in 2020, Velodyne announced it would be
introducing a USD 100 lidar sensor applicable for use in cars [61,62]. The automotive mono-camera
price ranges between USD 100 and USD 1000 [63,64] and automotive thermal cameras cost around USD
700 to USD 3000 [65]. In order to visualize the sensors’ cost on a spider chart, we compared the actual
price with the ideal price, as shown in Table 2. The ideal price is proposed by authors and depends on
the actual price versus the acceptable price by considering the sensor design and complexity.

Table 2. Ideal price selection of sensors from the actual market price.

Sensors Actual Price Ideal Price

Ultrasonic sensors USD 16 to USD 40 USD 16 to USD 40
Automotive radar USD 50 to USD 220 USD 50 to USD 220
Automotive lidar USD 500 to USD 75,000 USD 100 to USD 10,000

Automotive mono-camera USD 100 to USD 1000 USD 100 to USD 700
Automotive thermal camera USD 700 to USD 3000 USD 100 to USD 1500

The following sub-section presents various sensor reviews, which highlights key points such
as market penetration, the working concepts and techniques of a specific sensor in environmental
perception, and the advantages and disadvantages of sensors under different weather conditions.

4.2. Radar

Market penetration: Radio detection and ranging (radar) provides smart vehicles with effective
safety procedures. This sensing technology started with Hertz and Hülsmeyer’s electromagnetic
wave reflection studies [66], and now has steadily improved from basic blind spot detectors and
cruise control systems to semi-autonomous obstacle detection and braking functions [16]. Bosch,
with its partnership with Infineon, is the dominant manufacturer of radar in the market. The other
big players are Continental, Autoliv, Delphi, Elesys, Hella, Fujistu Ten, Mitsubishi Electric, ZF-TRW,
SmartMicro, Denso, Valeo, Hitachi Automotive, Clarion, etc. Technical information on radar by various
manufacturers is presented in [67]. In Figure 2, an image of radars from Bosch is presented.
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Working principle: The vehicle radar setup includes a transmitter, an antenna, a receiver,
and a processing unit. The radar transmits electromagnetic waves produced by the transmitter in a
known direction. If an obstacle or surface intercepts waves, they are reflected to the receiver system.
The processing unit uses the captured signal to define target range, angle, and velocity. Based on
applications, automotive radar sensors are categorized as short-range radar (SRR) (up to 30 m),
medium-range radar (MRR), and long-range radar (LRR) (up to 250 m) [69–77]. Automotive radar
systems typically run between 24 GHz and 76 GHz portions of the electromagnetic spectrum. In [78],
an experimental distinction was made between 76 GHz operating with 4 GHz bandwidth and 24
GHz operating at 200 MHz bandwidth, with results concluding that low-bandwidth radars could not
distinguish between two distinct obstacles and would send the driver or autonomous vehicle incorrect
information. Many of today’s automotive radars are built on a frequency-modulated continuous wave
(FMCW), because it enables easy modulation, high average power, high bandwidth, and excellent range
resolution [79]. In the same reference [79], a brief review of the key developments in radar and signal
processing techniques applied to the estimation of significant target parameters, such as range, velocity,
and direction, are presented with mathematical illustrations. Thanks to extensive use in the automotive
industry for various applications and due to advances in signal processing by applying machine
learning, pattern recognition techniques, and robust algorithm developments [80], radar data now have
more knowledge of object dimension [81], object orientation, motion prediction [82], and classification
information [83–85].

Degradation of radar performance: Nonetheless, the radar performance in various weather
conditions is not as good as in clear weather. Influences of adverse climates, such as precipitate
and aerosol environments, on radar output were analyzed and it was concluded that precipitate
environments, such as rain, had the most impact, causing a reduced range of radar, and a similar effect
was found in the presence of wet snowfall. Experimental analysis in [86–88] supports the argument
which focuses on radar performance in the rain and provides details on attenuation and backscatter
effects responsible for the deterioration of radar performance in the rain. The attenuation effects that
lead to a decline of the radar range are higher at a higher frequency (about a 45–50 percent decrease
in the heavy and very heavy rainfall range), while backscatter effects in radar increase the noise in
the receiver. It is noted that noise is high at a low frequency and causes false-positive errors at the
receiver. Similarly, in [89], wet and dry snowfall impact on radar at 77 and 300 GHz frequencies was
studied. The findings concluded that attenuation due to snow contributed to a decreased range of
about 12~18.5 dB/km, and the study also noted that the attenuation varied greatly with snow water
content. In [90], a mathematical model is presented to test wet snowfall output; the analysis shows
that radar output has a similar effect on snowfall to that of rainfall. Although radar performance in
precipitate surroundings has been observed to degrade, the study in [91,92], compares radar, lidar,
and camera performances in simulated and real-world adverse climatic environments and concludes
that radar outperforms lidar and cameras under the influence of rain. In [93,94], the effect of aerosols
upon the transmission of radar signals has been investigated in controlled environments and mining
applications, and the results show that radar is not impacted by the presence of airborne particles,
such as dust and smoke because of its wavelengths, which are much larger than the characteristic
dimensions of dust. Although radar may be a great option for all weather conditions, signal interference
is still a matter of concern. More detailed information on radar interferences is presented in [95],
which discusses the interference impact on radar, its characteristics, and mitigation strategies. Based on
the review analysis, the advantages and disadvantages of radar are summarized and listed in Table 3.
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Table 3. List of advantages and disadvantages of perception sensors.

Sensor Advantages Disadvantages

Radar

• The sensor makes it possible to see for long distances ahead of the car in poor visibility
conditions, which can help avoid collisions.

• The sensor is small, lightweight, and affordable.
• The sensor requires less power than a lidar sensor since it has no moving parts.
• The sensor is more robust to failure compared to lidar.
• Radar is less expensive than lidar.

• The obtained images have low accuracy and resolution. Information on detected objects is limited (such as
neither precise shape nor color information).

• Increasing power may solve radar attenuation in a precipitate environment, but increasing power is not a viable
economic solution.

• The mutual interference of radar sensors is a growing issue.
• The azimuthal and elevation resolution of automotive radars is poor, and this makes the detailed mapping of

scenes and object classification difficult and error prone.
• The sensor cannot give a 3600 measurement of the surroundings.

Lidar

• The sensor can see long distances ahead of the car in good visibility conditions (neither
rain nor fog).

• The sensor can provide a full 3600 and 3D point clouds.
• The images have good accuracy and resolution.
• There are no significant interferences in multiple lidar sensors.

• Lidar is more expensive than radar and camera.
• Transmission is sparse (not dense), due to which small objects (like wires and bars) remain undetected.
• Due to oscillating components, mechanical maintenance is high.
• When detecting wet surfaces, lidar shows poor discrimination of contrast compared to dry surfaces.
• The sensor requires more power than a radar sensor.
• The sensor is influenced by varying climatic conditions.

Ultrasonic

• Ultrasonic sensors are useful for the detection of transparent objects and
non-metal objects.

• Not influenced by varying climatic conditions.
• Low in cost and small in dimensions.
• At short ranges, higher resolution can be expected.
• Unlike cameras, ultrasonic sensors overcome pedestrian occlusion problems.

• They are available for short-range distances only.
• Sensitive to temperatures and windy environments.
• Interference and reverberation are problematic when two ultrasonic sensors operate in two cars or are placed

close together.
• Noise from environments may interfere with measurements.

Camera

• Cameras maintain high resolution and color scales across the complete field of view.
They offer a colorful perspective of the environment that helps to analyze
the surroundings.

• Stereo cameras can provide a 3D geometry of objects.
• Cameras can robustly monitor and maintain information from surroundings over time.
• They are small in dimensions.
• Compared to lidar, they are cost-effective and easy to deploy on a vehicle.

• The camera data require a powerful computation system to extract useful data.
• The sensor is sensitive to heavy rain, fog, and snowfall, which reduces the capability of the computer system to

reliably interpret the surrounding scene.
• The distance to obstacle accuracy is limited.

Far-Infrared

• Far-infrared (FIR) camera images depend on the target temperature and radiated heat.
Therefore, light conditions and object surface features do not influence them.

• Compared to lidar, FIR sensors are cheaper and smaller.
• They have improved situational awareness at night.
• FIR sensing range can cover up to 200 m or more horizontally and detect possible

hazards ahead.
• They have a better vision through dust, fog, and snow compared to cameras.

• FIR camera data require demanding computation sources and robust algorithms to extract useful data.
• This sensor is expensive, compared to Charging Coupling Device (CCD) or the Complementary Metal Oxide

Semiconductor (CMOS) cameras.
• The resolution of the FIR camera is low in comparison to the visible camera and provides images in grayscale.

Due to this, fast-changing moments of objects are quite challenging to detect and classify in real time.
• Since FIR systems calculate based on temperature differences, it is often difficult to distinguish between specific

targets of interest in cold climate scenarios.
• Partial occlusion of the target causes classifiers to ignore the target (like a pedestrian standing behind a car or a

group of pedestrians overlapping each other). Solutions to overcome this problem have been studied and,
besides, they cannot provide information about the distance to obstacles.
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The spider chart for radar is presented in Figure 3, where the ideal radar feature is shown
with the blue bold curve, whereas the actual radar sensor output is shown with the red dashed line.
The difference between both curves represents the difference between the current and desired radar
sensor output.
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4.3. Lidar

Market penetration: Lidar is the abbreviation of light detection and ranging. Lidar was developed
in 1960 for the study of environmental measurements (atmospheric and oceanographic parameters) and
later was developed for topographical 3D mapping applications in the mid-1990s [96]. In 2005, lidar was
applied to vehicles to locate and avoid obstacles in the DARPA challenge [97]. Lidar commercial
manufacturing companies include Velodyne, Quanergy, Leddartech, Ibeo, etc. The technological
description of individual sensors is provided in [98]. In Figure 4, an image of an automotive lidar
is shown.
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Figure 4. Velodyne HDL 64 lidar [99].

Working principle: Just like radars use time of flight of radio wavelengths to collect target
information, photodiodes are used by lidar to transmit the light pulse to the target. The optical receiver
lens in the lidar system is used as a telescope for the processing of photodiode fragments of light photons.
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The collected reflections include 3D point clouds corresponding to the scanned environments and the
strength of the reflected laser energies provides information about the range, speed, and direction of
the target. Lidar manufacturers use two wavelengths: 905 nm and 1550 nm. The former is a common
option for automotive manufacturers due to its reliability, eye protection, and cost-effectiveness
with silicone detectors. In [100,101], an authoritative analysis on lidar, its waveform, and market
penetration strategies are discussed. Lidars provide a good physical description of the target and,
due to that, lidars have been used for target detection, tracking, and motion prediction., Filtering of
the ground and clustering of the target [102–105] are two methods widely used by lidar for object
detection, which provide the spatial information of the target. To classify and recognize objects (like
pedestrians, trees, or vehicles), lidars make use of techniques such as machine learning based on
object recognition [106–109], and additional methods such as global and local extraction of features to
help in providing the structure of the target. Lidar uses the Bayesian filtering framework and data
association methods for target tracking and motion prediction to provide information, such as velocity,
trajectory, and object positioning [110–112]. In contrast to radar-based multi-object tracking, in which
all detections are typically represented as points, lidar-based multi-tracking provides detection patterns
of targets and this property of lidar scanning causes users to opt for lidar.

Degradation of lidar performance: Lidar performance in extreme weather conditions is not
as strong as expected. Adverse weather conditions increase the transmission loss and decrease the
reflectivity of the target. Under the perception category (fog, snow, and rain), fog has been found to
have the greatest impact on the ability of lidar, due to its high expansion and backscattering properties,
which are greater than in weather conditions like snowfall and rain [113]. The challenge in fog conditions
is that many transmitted signals are lost, resulting in reduced power. Reduced power would alter the
signal-to-noise ratio of the lidar sensor and influence its detection threshold, which leads to degraded
perception performance. In [114], the depth of lidar performance in fog is studied and the observed
light is scattered by fog particles, which not only reduces the detection range dramatically, but also
leads to false detections. In the same study, the fog condition showed similar performance degradation
to the airborne environment. In [115–117], qualitative and quantitative experimental studies of the fog
effect on lidar in controlled environments outlined the loss of transmission phenomena leading to low
received laser power and low target visibility. Lidar scanner capacity testing has been carried out in
the northern part of Finland at Sodankylä Airport [118], where fog creates a special problem. Results
indicate that fog reduces the sensor range by 25%. In [119], the quantitative performance of lidar
with varying rain intensity, with the help of a mathematical model, is presented and the results show
that as rainfall intensity increases, the lidar cloud density is affected, increasing false-positive errors.
The same effect is presented in [120], where the authors’ analysis showed that the varying intensities,
size, and shape of raindrops drastically influence the attenuation rates of lidar. The effect of snow on
lidar performances, such as reflectivity and propagation through the snowy environment, is evaluated
in [121], using four lidars of different manufacturers. The results observed from this experiment
highlight that the receiving power levels generated by snowflakes or water droplets were high (due
to false-positive errors) and tended to overload the optical receiver chain. The lidar performances
are also altered by airborne particles, such as dust, which have greater characteristic wavelengths
than lidar. These particles prevent the sensor from imaging its surroundings, resulting in reduced
visibility and incomplete target information. In another work [122], the experiment outlines that the
dust particles in the air are very often detected by laser sensors and hide obstacles behind the cloud
of dust. To address these limitations, the use of lidars with a 1550 nm wavelength with a strong
propagation ability is suggested. However, this solution is of limited use, because of constraints such
as high cost and high energy usage. The loss of efficiency due to adverse environmental conditions
was examined in [123], and a comparison was made between lidars with wavelengths 905 nm and
1550 nm. The findings of [123] have also shown that lasers with a wavelength of 1550 nm have a much
higher water absorption compared to 905 nm lidar. Furthermore, due to the advantage of the higher
wavelength (1550 nm), higher power can be used for the transmission of lidar signals, which could
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result in an increased range of detection in adverse climatic conditions, while maintaining eye safety
regulations. The advantages and disadvantages of lidar are outlined in Table 3. The ideal lidar function
is shown in Figure 5, with the blue bold curve, while the current lidar sensor performance is shown
with the red dashed line. The difference between both curves reflects the gap between current and
desired lidar sensor performance.
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4.4. Ultrasonic Sensor

Market penetration: It is a very difficult task for drivers to track vehicles on the road, because
they cannot always be aware of the presence of all obstacles around the vehicle. The ultrasonic sensor
is popularly used to measure proximity to obstacles in a very short range and is widely used in areas
where distance- and occupancy-related detections are needed. For vehicle applications, the popular
uses of ultrasonic sensors include (1) low-speed car parking and (2) high-speed blind spot detection.
For example, in the consumer market, Tesla Motors dominates the use of ultrasonic sensors and has
already used ultrasonic sensors for some of its functions, such as Tesla’s advanced parking assistance
with the “Auto-park” and “Summon” features, which promote the self-driving of a vehicle with a
driver outside and the monitoring of a blind spot at high speed. The “Autopilot” and “Autosteer”
features monitor surroundings of the vehicle and stabilize vehicle heading accordingly [124]. As far
as parking sensors are concerned, more than half of the new vehicles in Europe and Asia have rear
parking sensors, so it is not surprising that the global market for car parking sensors is projected to
grow steadily over the next few years, with a compound annual growth rate of almost 24 percent
by 2020 [125]. Currently, Bosch is the principal manufacturer of ultrasonic sensors and the technical
specifications of the ultrasonic sensor are presented in [126]. In addition, an image of automotive
ultrasonic sensors is shown in Figure 6.

Working principle: The configuration of the ultrasonic sensor consists of a piezoelectric material
transducer, charged with an alternating electrical voltage, which causes fluctuation and short sound
wave bursts. This sound wave is transmitted to the target, which reflects the sound of the sensor. The
reflective sound echo of the sensor provides information on the distance, velocity, and angle of the
obstacle. Information such as the distance to the target can be calculated by the flight technique, the
speed can be estimated by the Doppler shifting process, and the target direction can be determined by
the strength of the reflected sound wave [127–129]. Ultrasound speed is easily influenced by factors
such as temperature, humidity, and wind, which cause the sound pressure to decay exponentially with
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the spread of sound over a distance, resulting in significant effects on the accuracy of the measurement
and complicating the study of ultrasound sensors, which is why it is important to check the temperature
and other transmission factors [130]. In addition to the speed of sound, the ultrasonic sensor accuracy
also depends heavily on the reflective characteristics of the target surface, such as curvature, terrain,
and design target material [131]. The ratio of humidity of the air is important for the determination of
the maximum range of sensors. Frequencies greater than 50 kHz will result in weaker echoes due to
the attenuation of airborne sounds, while the proportion of interference sounds at the receiver is higher
for frequencies lower than 40 kHz. Due to this limitation, ultrasonic sensors on vehicles typically
operate within a frequency band of between 40 and 50 kHz, which has been shown to be the best
trade-off between acoustic performance (sensitivity and range) and ambient noise resistance [131–134].
A brief review of the state-of-the-art ultrasonic sensor with wave propagation, atmospheric attenuation,
sound wave reflection, and target tracking, along with market penetration of ultrasonic sensors, is
presented in [135]. Most of the studies on ultrasonic sensor performance are presented in [136–147],
which focus on the ability of sound waves to detect, reflect, and track the target. Besides, sound wave
propagation in the presence of changing winds and temperatures, as well as several new designs to
enhance resolution, have been introduced. However, the results of all experiments show that good
resolution is achieved within a shorter timeframe and the target wave reflection is accurate and reliable.
The authors of [136–147], suggest the use of ultrasonic sensors for near-field perception based on their
experimental studies.
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Performance degradation of ultrasonic sensors: As the ultrasonic wave spreads through a
homogeneous gas such as air, absorption and dispersion combine to give the overall attenuation level.
Precipitation (fog, snow, and rain) and the presence of airborne particles have an insignificant effect on
sound waves, although precipitation clearly affects humidity and may also affect wind and temperature
gradients. Under normal circumstances, atmospheric absorption may be neglected, except where long
distances or very high frequencies are involved [148–150]. Although a low-cost, high-performance
ultrasonic sensor appears to be an appropriate choice for all-weather perception, it lacks safety and
can be easily spoofed. For example, in [151], ultrasonic sensor vulnerabilities and their impact on
performance have been exposed. The safety of the ultrasonic sensor, in [152] has also been analyzed
and the study outlines the reliability of ultrasonic sensors for future use. Based on the gathered
information, the current performance (red dashed lines) and desired performance (bold blue line)
of ultrasonic sensors are presented in Figure 7, and Table 3 highlights ultrasonic sensor advantages
and disadvantages.
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4.5. Vision-Based Systems

Market penetration: Human driving is primarily based on an analysis of the characteristics of
the surrounding vehicles, including obstacles and road signs. A camera provides a way to obtain
some of this information for automated operation. Almost all SAE degrees of autonomy greater than 1
use cameras. Cameras are the only kind of imaging equipment capable of seeing colors. In Figure 8,
a mono-camera from Mobileye is shown. Mobileye is a popular manufacturer currently leading
monovision with smart technology and technical specifications of the intelligent vision-based camera
can be found in [153].
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Figure 8. Intelligent mono-camera by Mobileye [154].

Working principle: The camera is a digital lens imagery system that works by collecting and
translating the image of an object into electrons on a pixel image sensor. Later, the camera capacitors
convert electrons into voltages, which are later converted into an electronic digital signal [155].
Two imaging sensors, the charging coupling device (CCD) and the complementary metal oxide
semiconductor device (CMOS-D), are typically used in real-time applications. Brief comparisons
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between the CCD and CMOS-D can be found in [155,156]. CCD cameras deliver excellent low-noise
performance but are expensive and, as an alternative, the CMOS-D has been developed to reduce
production costs and power consumption. Because of this advantage, the CMOS-D is widely preferred
for automotive applications in the related industry. Cameras, in conjunction with computer vision and
deep learning techniques, offer environmental information, such as detection of the target, their related
physical descriptions (like the position of moving targets, size, and shape) and semantic descriptions
(like recognizing and classifying trees, vehicles, traffic lights, and pedestrians). Camera information is
easy to understand, which makes it more popular than other sensors. Various configurations exist
in the camera and out of different configurations, monocular and stereo vision camera solutions are
a common choice for researchers. In monocular systems, only one camera is used to detect, track,
and measure longitudinal distances, based on landscape geometry. There is a downside to distance
measurement in the monocular camera, since the distance is measured by using the position of the
pixel in the vertical direction of the given image coordinates, which typically results in errors, due to
the lack of direct depth measurements for the captured images. Compared to monocular cameras,
stereo cameras with two cameras have an additional feature for measuring the distance between objects.
Using stereo-view-based methods, two cameras can estimate the 3D coordinates of an object. A brief
analysis of techniques for real-time obstacle detection and classification linked with various algorithms
using the stereo camera is presented in [157]. While stereo vision cameras are effective in target
detection and classification, they are more expensive than mono-cameras, and they also have problems
with calibration and computational complexity. One of the reasons why vision-based approaches
are favored in urban traffic is the identification of traffic lights. Traffic light detection methods in
cameras are based on image processing, machine learning, and map-based techniques. Within an
image-processing procedure, a single or multiple thresholding, filtering, and extraction operations
are performed on an image to obtain a particular result. A slight miscalculation can influence image
efficiency, which can be addressed by machine-based learning methods and processing algorithms.
Nonetheless, to achieve optimal output using machine learning methods, it is important to collect
massive training datasets and train the model for a significant amount of time. Map-based methods are
used to overcome this limitation [158]. In [159], an image processing method used by a vision system
for traffic light detection and recognition is presented, which involves image modifications like RGB to
Hue Saturation Value (HSV) conversion and filtering. Furthermore, the article [160], proposes a system
based on a fast convolutional neural network (CNN) based on the YOLOv2 network. This algorithm
can detect the location of a traffic sign and classify it according to its form. Deep learning approaches
are also provided in [161], which outperform image processing methods for the robust detection and
recognition of traffic lights.

Vision-based system performance degradation: While advanced methods have improved
recognition techniques, small variations in weather still influence camera measurements. The camera
is very sensitive when faced with adverse climatic conditions. A camera in an aerosol environment
experiences decreased visibility and contrast, and is unreliable in object recognition, and a camera
is not recommended for environmental detection and vehicle control tasks under foggy conditions,
as per [162]. In the same reference [162], a full description of the rain and fog interactions with a
camera is also provided. Camera sensors have an advantage over object detection and classification
and are important for automated safety systems. However, in [163], an indoor rain simulator was
used to systematically investigate the effects of rain on camera data and the results outline that the
performances of the camera sensors were mainly affected by decreased gradient magnitudes, resulting
in a shift in the location and size of the bounding boxes during the detection process, leading to a decline
in classification scores and resulting in uncertainty. Similarly, based on indoor experiments [164],
the authors experimentally researched the effects of rain and showed that raindrops lead to an increase
in the average intensity of the image and a decrease in contrast. The study presented in [165], develops
an approach to quantifying the vulnerabilities of the camera, based on empirical measurements and
the concluding results show that camera principal output loss occurs in lighting and precipitation,
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which is calculated to increase performance errors by 50 percent. The authors in [166], outlined that
rainfall is visible only in the near-field and has the characteristics of fog when far away. Besides,
the authors propose the need for post-processing methods to mitigate the impact of rain and fog.
For instance, a de-watering approach to enhance vision efficiency in rainfall is presented in [167].
We can hardly find studies which show the influence of snow and its interaction with the camera, due
to the lack of snow-based simulators. Yet snow effects the mechanical operation of the camera when
positioned outside the vehicle. For example, when there is moisture around the camera below the
freezing point, thin layers of ice will cover the camera lens and prevent the viewer from seeing any
movement, other than crystalline snow patterns. A similar effect was explained in [168], showing the
difficulty of using data generated by cameras for lane detection, due to external factors, such as frost or
droplets of moisture on the glass in front of cameras. If the camera is placed inside the windshield,
then falling snow with varied shapes makes it difficult to trace and eliminate it from image processing,
leading to image recognition problems of the target. Camera interaction with airborne particles was
examined in [93], under controlled environmental conditions. The experiment was to test the camera’s
perception performance in a controlled environment and the results highlight that the presence of
particles (smoke and dust) influence the camera’s image quality and the contrast, leading to poor object
classification. The advantages and limitations of the vision-based system are highlighted in Table 3.
In Figure 9, the performance of the vision-based system is plotted for visualization, where the dashed
red line presents the current state of the art.
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4.6. Far-Infrared Camera

Market penetration: Following major improvements in vehicle lighting over the years,
night driving and severe weather conditions are still difficult. According to the NHTSA statistics
(discussed in the Introduction), night driving accidents account for one-third of all road accidents,
and they account for half of the fatal accidents due to poor visibility [2]. Thermal imaging sensors
provide additional advantages for existing night driving visible cameras. The far-infrared (FIR) camera
is passive in design and consumes less energy than any other sensor. Currently, FLIR Systems is a
noted manufacturer in the thermal camera field and has presented a dataset online for detection and
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tracking performance. In Figure 10, a thermal camera from FLIR Systems is shown and its technical
specifications have been disclosed in [169].
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Working principle: All objects emit infrared at temperatures above absolute 0 degrees, and this
radiation increases with temperature. A long-infrared camera uses far-reaching infrared light waves to
detect variations in natural heat (thermal radiation) emitted by objects. This description is subsequently
translated into an image. The infrared spectrum varies between 0.8 µm and 1000 µm [171], and can be
classified into near-infrared (NIR) ranges from 0.8 µm to 2.5 µm, mid-infrared (MIR) ranges from 2.5 µm
to 25 µm, and far-infrared ranges from 25 µm to 1000 µm (also known as thermal infrared). A FIR
camera detector is a focal plane array (FPA) with a resolution ranging from 160 × 120 to 1024 × 1024
pixels of micrometer-sized pixels, made of different infrared wavelength-sensitive materials. The FPA
detector technology in infrared cameras is divided into thermal uncooled microbolometers and
quantum detectors. An uncooled microbolometer is a common type of thermal detector made of metal
or semiconductor materials and used more frequently in automotive applications. A brief overview of
the state of the art of FIR cameras, such as construction design, operation, attenuation, and limitations,
for interested audiences, can be found in [171]. For certain cases, because of the fundamental differences
between visual and infrared imaging, the techniques used to detect pedestrians in the visible spectrum
cannot be extended to infrared images, and other approaches must be used. In [172,173], fusion
between the thermal camera and regular visible camera for the detection task is presented and the same
comparison of detection techniques can be noted. In [174,175], thorough research on the detection
of pedestrians using an FIR camera was presented. In addition, various techniques and algorithms,
such as isolated ROI to extract targets from the image, followed by the classification of the extracted
target and tracking, were outlined. Similarly, in [176–189], thermal camera studies have been shown to
identify and track pedestrians, vehicles, and animals.

Performance reliability: In comparison to the visible spectrum, FIR spectrum cameras lack
a well-established public database and reliable benchmarking protocols for pedestrians, vehicle
detection, classification, and tracking, making it difficult to test algorithms with a variety of
well-known, typical automotive road scenes under various weather and lighting conditions. In general,
FIR cameras operating in different environments undergo two atmospheric effects, absorption and
dispersion. Atmospheric effects play critical role in preventing object radiation from entering the
sensor. In automotive applications, FIR cameras are used to scan short distances of approximately
200–250 m and this short-distance sensing is not much influenced by atmospheric effects, compared to
the aviation domain. In [190], a brief comparison in detection, classification, and recognition tasks in a
normal and closed fog chamber with various vision spectral bands, such as visible (RGB), near-infrared
(NIR), short-wave infrared (SWIR), and long-wave infrared (FIR), is presented and the results show
that FIR spectral bands have superior performance capability, compared to other spectral bands in
aerosol environments. Commercial manufacturers of thermal cameras claim that FIR thermal cameras
are not affected by precipitate and airborne particles (fog, rain, snow, and dust), due to fact that air
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acts as a high-pass filter above 7.5µm [41], and due to their ability to penetrate different atmospheric
conditions, they can be used to detect vehicles and obstacles robustly. The limitations and advantages
of FIR are summarized in Table 3. Based on the information gathered, the performance of FIR systems
is plotted on a spider chart in Figure 11, to visualize the performance gap.
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4.7. Emerging Technology

Due to the quality cost of trading, we limit our investigations to radar, lidar, cameras, and ultrasonic
sensors. We need more robust technologies that can overcome existing technology requirements and
perform multiple tasks with minimal problems in all weather conditions. In this sense, the European
DENSE project [115], intends to develop a new sensor subsystem, although the article only talks
about lidar sensor alternatives to the current state of the art, such as the use of a wavelength of
1550 nm instead of a wavelength of 905 nm to evaluate the performance in and of different climates.
Very promising results with the use of 1550 nm have been presented, and there is still a need to explore
studies that can improve sensor performance for robustness. In addition to lidar, studies on sub-camera
systems, such as gated SWIR cameras proposed as a replacement for scanning lidar systems in real
time, which handle back-scatter and provide dense depth at long ranges and reliable performance
in climatic conditions, have been studied in the DENSE project. Similarly, in the field of localization,
visual odometry [191], is a technology that is gaining popularity as a complementary GPS sensor in
autonomous vehicles. Under the radar, investigations have been carried out on the ground penetration
of signals that exhibit robustness in any road and weather condition [192].

5. Perspective on Sensor Fusion

Sensors are the key to the perception of the outside world in the automated driving system
and whose cooperation performance directly determines the safety of automated driving vehicles.
Some sensors may be redundant under some environmental conditions, and some may be
complementary, assisting in successful cooperation to ensure consistent and accurate obstacle detection.
Sensor fusion is the method of using multi-sensor information to calculate, recreate the environment,
and generate dynamic device responses, resulting in a consistent and accurate representation of the
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vehicle’s surroundings and position for safer navigation. The study presented in [193], discusses
the traditional limitations of sensor fusion and focuses on different strategies by demonstrating
the effectiveness of combining various sensors with a model. Moreover, the advantages that come
along with sensor fusion are highlighted therein. Sensor fusion architecture includes three different
levels: (1) sensor level, where two or more detectors are merged into one hardware; (2) task level,
where features are extracted and fused from each sensor; and (3) decision level, where the result is
calculated by combining individual decisions. These three techniques are successful on their own.
The result of a sensor fusion process is mostly a high-level representation and abstract with rich
knowledge of the environment for successful semantic analysis. In varying weather conditions, sensor
fusion is very vital. For instance, during heavy snowfall, detecting obstacles with lidar and cameras is
highly uncertain and the aid of radar, FIR thermal cameras, and ultrasonic sensors can be combined to
enhance the detection and multi-tracking of the target. However, to achieve most of the robustness
using data fusion, one must be cautious about two vital strategies for enhancing vehicle navigation
safely in all weather conditions, which are as follows:

• At the first stage, the fusion system must decide the features that make the navigation environment
different from normal navigation. Therefore, there should be a context-aware mechanism that
adapts the level of confidence of each piece of sensor information. When snow/rain is falling,
the context-aware mechanism can simply use the camera and the weather data to confirm such
an occurrence. Furthermore, a training process can be used to classify different weather-related
road contexts.

• At the second stage, fusion processing can be carried out to provide the most recent sensing
information and the corresponding level of confidence. Although the fusion concept can enhance
the capability of the automated navigation feature in all weather conditions, the overall processing
power can be considerable. Therefore, the fusion hardware and software architectures should be
deeply analyzed before further implementation steps.

Table 4 provides guidance on an appropriate combination of sensors for ADAS driving safety
applications (discussed in Section 3), which can greatly enhance the understanding of the robustness
for all weather conditions. Table 4 is organized with ADAS applications on the left and multiple
sensors across the top. In the following paragraph, we review sensor fusion strategies for driving safety
applications and the proposal to resolve current drawbacks by suggesting and combining sensors with
existing fusion techniques.

Table 4. A possible combination of sensors for all-weather navigation.

Application
Radar

Ultrasonic

Lidar Camera

Far-InfraredShort
Range

Medium
Range

Long
Range

Short
Range

Medium
Range

Long
Range

Monocular
Camera

Stereo
Camera

Adaptive Cruise
Control

√ √ √

Forward Collision
Avoidance

√ √ √ √ √ √

Road/Traffic Sign
Recognition

√ √ √ √

Traffic Jam Assist
√ √ √ √ √ √ √

Lane Departure and
Lane Keeping

Assistance

√ √ √ √

Blind Spot Monitoring
√ √ √ √ √ √ √

Parking Assistance
√ √ √ √ √ √ √

Adaptive cruise control (ACC)

Selecting appropriate sensors for adaptive cruise control (ACC) applications requires a sensor
that can remotely detect and track obstacles at a distance in all weather conditions. The host vehicle
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lookahead at a distance is the key factor in stabilizing the vehicle in the lane to implement the ACC.
A few sensor fusion methods are already available, used to collect long-range information in real time.
For instance, in [194], the fusion advantages of lidar and radar are used to achieve the precision of
spatial data like target velocity and distance to host vehicle. Work produces a real-time algorithm
that lets an autonomous car quickly follow other cars at different speeds while maintaining a safe
distance. In [195], a stereo camera and a far-infrared camera are analyzed and the results show that
far-infrared images have been able to detect vehicles at long ranges but lack target classification, when
compared to stereo vision. Fusing data from stereo and far-infrared cameras resulted in improved
performance, reducing false positives in vehicle detection at long ranges and enhancing overall system
performance. In [196], the optically passive far-infrared camera and optically active lidar was used in a
multi-sensor detection system for railways, which successfully installed a test system of up to 400 m
under normal conditions, ensuring long-distance safety at a speed of more than 120 km/h. Based on
the above analysis, we suggest a long-range radar sensor and far-infrared thermal cameras for ACC
systems, as both sensors have long-range capability and are minimally influenced by environmental
changes. Lidar has also been suggested, as it meets the range criteria in the ACC application and users
could select lidar for combination with other sensors, based upon sensitivity to varying climates and
cost constraints. The remaining sensors such as cameras, ultrasonic, etc., lack long-range detections
and are also influenced by the weather, which reduces their preference for use in ACC applications.

Forward collision avoidance (FCA), traffic jam assist (TJA), and blind spot monitoring
(BSM) systems

For FCA, TJA, and BSM driving safety applications, long-range target detection and classification
and motion tracking of targets are important requirements. The combination of lidar, vision, and radar
offers reasonable coverage, a better classification, and long- to short-range motion tracking of targets,
which enables the estimation of accurate distance and speed measurements of targets. Some of the
current integration methods for three common sensors are as follows: in [197], a multi-modal fusion
approach between radar and cameras is proposed. The proposed method is designed as a two-stage
object detection network which uses radar detection and camera image features to estimate distance
and to classify objects. The results of the experiment show that the proposed algorithm can accurately
estimate the distance for all detected objects with a mean absolute error of 2.65 for all images captured.
In [198], real-time experimental work is presented on the basis of cameras, lidar, and radar to achieve
a high degree of object identification, classification, and tracking, in four weather conditions (such
as cloudy and wet, bright day, night, rain and snow). The article demonstrated the efficiency of the
three capable sensors with four different combinations (camera + radar, camera + lidar, lidar + radar,
and radar + camera + lidar) based on a probabilistic algorithm. The results of the experiment show
that for a full sensor set (radar + camera + lidar), in cloudy and sunny weather, objects are tracked with
an accuracy of 98.5% and 99.8%, and the detected objects are classified with 87.5% accuracy. In night,
rainy, and snowy weather conditions, the experimental results show that objects are reliably tracked at
98.9% and 99.5% accuracy with a classification score reduced to 74.4%. In our proposition, if an FIR
thermal camera was used with a probabilistic algorithm proposed by the author in [198], with active
toggling (switching) of the camera for varying climates, this could have enhanced the classification
score in the experiment.

Road and traffic sign recognition (TSR):

For TSR safety applications, the classification and resolution of targets is an important factor.
Vision-based solutions have always been superior in classification and recognition techniques. In [199],
a robust technique to detect traffic lights during both day and night conditions and to measure the
distance between the approaching vehicle and the traffic light is measured using a Bayesian filter.
The results show that it was possible to detect traffic lights with 99.4% accuracy in the 10–115 m range.
In [200], real-time lidar laser reflectivity and mono-camera color features were combined to detect and
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classify traffic signals; the fusion resulted in 95.87% detection and 95.07% classification with average
computing accuracy. However, when faced with adverse weather, we can make use of an FIR thermal
camera as an alternative, which can also provide classification and recognition information, as seen
in [195].

Lane departure warning and lane keeping warning (LDW and LKW) safety systems

In LDW and LKW safety systems, a camera was used mainly as a means to distinguish between
road and lane markings and, because of developments in algorithms, lidar and radar have the ability to
search for clues in the environment related to the road and update tracking information. For instance,
in [201], radar, along with a mono-camera, was used to detect road barriers and calculate lateral
distance from the vehicle to the barrier, giving an estimate of vehicle position on the road. However,
accuracy could not be achieved but when the results were compared with lidar tracking performance,
it was concluded that radar was able to perform better even in the absence of lidar. Further studies on
the improvement of radar detection and tracking of surrounding clues can help achieve robustness for
various weather drives.

Parking assistance (PA) systems

In PA safety applications, obstacle detection and tracking at short distances are vital. In [202],
data fusion between lidar and cameras is presented, which makes use of the SLAM algorithm to
find parking spaces. The results of the experiment show the average recall and precision are 98%
and 97%, respectively. However, the experiment was limited to stationary obstacle detection and
rectangle parking slots. Similarly, in [203], an approach was presented to fuse cameras, ultrasonic
sensors, and odometers to find a vacancy in the parking lot. Ultrasonic sensors were used to detect
obstacles and later odometers and camera images were used for tracking obstacles and empty space
location. The proposed method achieved 96.3% recall and 93.4% precision for different parking types,
with a classification score of 97.5%. However, this approach is susceptible to weather change and the
authors believe that the influence of varying weather may cause results to differ. As an alternative,
if the system had short-range radar, this could boost the system robustness for all-weather parking.

6. Conclusions

This article has provided a comprehensive review of the sensor technologies for both
semi-autonomous and autonomous vehicles by considering the challenging issues related to their
robustness in all weather conditions. A general view of the popular features of advanced driver
assistance systems (ADASs) has been provided and the role of various sensors in these applications
has been discussed with the limitations of these features in adverse climates. The study has provided a
description of the advantages and disadvantages of the individual sensors, as well as their performance.
Besides, the sensitivity of the different characteristics of the sensors, such as range, resolution,
and speed detection in normal and difficult climatic conditions, has been discussed, and based
on these characteristics, the differences in performance between current and ideal sensors for all
weather conditions were mapped onto charts (known as spider charts). Our study has shown that the
performance and robustness of the vehicle perception system can be enhanced by combining different
sensors (such as cameras, radar, lidar, ultrasonic, and passive far-infrared cameras). For example,
radar and passive infrared cameras provide a very good and effective range to detect obstacles in all
weather conditions. However, lidar is not a widely favored sensor for the detection and tracking of
obstacles due to disadvantages, such as cost and poor performance in rain, fog, and snow. On the other
hand, cameras continue to play a key role in most automated navigation applications. The introduction
of radar and passive infrared cameras improves the vehicle vision system in order to detect and monitor
objects on the navigation scene. Nevertheless, the reliability of ADAS lateral features such as lane
departure warning and lane keeping assistance, which rely on the visual road markings, cannot be
easily improved under winter conditions. As a result, more studies are needed to solve this weakness.
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Nonetheless, when lateral driving assistance or parking assistance applications are carried out during
heavy rainfall and snowfall, ultrasonic sensors combined with short-range radar can enable the vision
system to succeed. Through identifying gaps in the research on semi-autonomous intelligent vehicles
and shortcomings in current sensor technologies, this paper has thoroughly investigated the capabilities
of current sensors for all weather drives. However, sensors and algorithms need to be made effective
and reliable for any situation, and some points have been overlooked as far as the analysis is concerned,
for example, the classification of bicycles, light poles, and pedestrians, which sometimes cause sensors
to be mistaken when perceiving and, besides, the response time for slow-moving pedestrians and
small animals or objects is of concern and, similarly, potholes and pitfalls that pose serious problems in
adverse climates need to be addressed.
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