64 research outputs found

    In-Situ Process Monitoring for Metal Additive Manufacturing (AM) Through Acoustic Technique

    Get PDF
    Additive Manufacturing (AM) is currently a widely used technology in different industries such as aerospace, medical, and consumer products. Previously it was mainly used for prototyping of the products, but now it is equally valuable for commercial product manufacturing. More profound understanding is still needed to track and identify defects during the AM process to ensure higher quality products with less material waste. Nondestructive testing becomes an essential form of testing for AM parts, where AE is one of the most used methods for in situ process monitoring. The Acoustic Emission (AE) approach has gained a reputation in nondestructive testing (NDT) as one of the most influential and proven techniques in numerous engineering fields. Material testing through Acoustic Emission (AE) has become one of the most popular techniques in AM because of its capability to detect defects and anomalies and monitor the progress of flaws. Various AE technique approaches have been under investigation for in-situ monitoring of AM products. The preliminary results from AE exploration show promising results which need further investigation on data analysis and signal processing. AE monitoring technique allows finding the defects during the fabrication process, so that failure of the AM can be prevented, or the process condition can be finely tuned to avoid significant damages or waste of materials. In this work, recorded AE data over the Direct Energy Deposition (DED) additive manufacturing process was analyzed by the Machine Learning (ML) algorithm to classify different build conditions. The feature extraction method is used to obtain the required data for further processing. Wavelet transformation of signals has been used to acquire the time-frequency spectrum of the AE signals for different process conditions, and image processing by Convolutional Neural Network (CNN) is used to identify the transformed spectrum of different build conditions. The identifiers in AE signals are correlated to the part quality by statistical methods. The results show a promising approach for quality evaluation and process monitoring in AM. In this work, the assessment of deposition properties at different process conditions is also done by optical microscope, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and nanoindentation technique

    A convolutional neural network (CNN) for defect detection of additively manufactured parts

    Get PDF
    “Additive manufacturing (AM) is a layer-by-layer deposition process to fabricate parts with complex geometries. The formation of defects within AM components is a major concern for critical structural and cyclic loading applications. Understanding the mechanisms of defect formation and identifying the defects play an important role in improving the product lifecycle. The convolutional neural network (CNN) has been demonstrated to be an effective deep learning tool for automated detection of defects for both conventional and AM processes. A network with optimized parameters including proper data processing and sampling can improve the performance of the architecture. In this study, for the detection of good deposition quality and defects such as lack of fusion, gas porosity, and cracks in a fusion-based AM process, a CNN architecture is presented comparing the classification report and evaluation of different architectural settings and obtaining the optimized result from them. Since data set preparation, visualization, and balancing are very important aspects in deep learning to improve the performance and accuracy of neural network architectures, exploratory data analysis was performed for data visualization and the up-sampling method was implemented to balance the data set for each class. By comparing the results for different architectures, the optimal CNN network was chosen for further investigation. To tune the hyperparameters and to achieve an optimized parameter set, a design of experiments was implemented to improve the performance of the network. The performance of the network with optimized parameters was compared with the results from the previous study. The overall accuracy ( \u3e 97%) for both training and testing the CNN network presented in this work transcends the current state of the art (92%) for AM defect detection”--Abstract, page iv

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    A review of ultrasonic sensing and machine learning methods to monitor industrial processes

    Get PDF
    Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor data to important process information. However, their implementation requires expertise to extract and select appropriate features from the sensor measurements as model inputs, select the type of machine learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on-line monitoring of industrial processes and other similar applications. The article first reviews the use of ultrasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and machine learning. We include literature from other sectors such as structural health monitoring. This review covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations for applying machine learning to the reviewed processes are made

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    A review on deep learning applications in prognostics and health management

    Get PDF
    Deep learning has attracted intense interest in Prognostics and Health Management (PHM), because of its enormous representing power, automated feature learning capability and best-in-class performance in solving complex problems. This paper surveys recent advancements in PHM methodologies using deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief introduction to several deep learning models, we review and analyze applications of fault detection, diagnosis and prognosis using deep learning. The survey validates the universal applicability of deep learning to various types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression layer to predict remaining useful life. The general framework suggests the possibility of transfer learning across PHM applications. The survey reveals some common properties and identifies the research gaps in each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the domain

    Approaches to Industry 4.0 implementation for electron beam quality assurance using BeamAssure

    Get PDF
    Electron beam welding (EBW) is a complex process used in manufacturing high-value components in the aerospace and nuclear industries. The Fourth Industrial Revolution is a fusion of advances in artificial intelligence, sensing techniques, data science, and other technologies to improve productivity and competitiveness in fast-growing markets. Although the EBW process can be monitored by characterisation of the electron beams before welding or using backscattered electron signals (BSE), the noise and lack of understanding of these signal patterns is a major obstacle to the development of a reliable, rapid and cost-effective process analysis and control methodology. In this thesis a controlled experiment was designed to be relevant to those industries and improve understanding of the relationship between beam and weld quality. The welding quality control starts before welding, continue throughout the welding process, and is completed with examination after welding. The same workflow was followed in this thesis, focusing on aforementioned QC stages, starting with beam probing experiments, followed by monitoring weld pool stability using high dynamic range camera and BSE signals, and ending with metallographic inspection on sections. The rapid development of computer vision methods brought an idea of classifying beam probing data before welding, which is first QC stage. Dataset of 3015 BeamAssure measurements was used in combination with deep learning, and various encoding methods such as Recurrence Plots (RP), Gramian Angular Fields (GAF), and Markov Transition Fields (MTF). The segmentation and classification results achieved a remarkable rate of 97.6% of accuracy in the classification task. This part of the work showed that use of time-series images enabled identification of the beam focus location before welding and providing recommended focus adjustment value. To replicate in-process QC step, titanium alloy (Ti-6Al-4V) plates were welded with a gap opened in a stepwise manner, to simulate gap defects and introduce weld pool instability. Experiments were conducted to monitor the weld pool stability with a HDR camera and BSE detector designed for the need of this experiment. Signal and image analysis revealed occurrence of the weld defects and their locations, which was reflected by last QC stage, metallographic inspection on sections. This final part of the work proved that whatever method is used for gap defects monitoring, those joint misalignments can be easily registered by both methods. More interestingly, BSE monitoring allowed porosity and humping detection, which shapes and location were projected onto the BSE signal amplitude. Presented three stage QC method can contribute to a better understanding of beam probing and BSE signals patterns, providing a promising approach for quality assurance in EBW and could lead to higher weld integrity by improved process monitoring

    Machine Learning for Camera-Based Monitoring of Laser Welding Processes

    Get PDF
    Der zunehmende Einsatz automatisierter Laserschweißprozesse stellt hohe Anforderungen an die Prozessüberwachung. Ziel ist es, eine hohe Fügequalität und eine frühestmögliche Fehlererkennung zu gewährleisten. Durch die Verwendung von Methoden des maschinellen Lernens können kostengünstigere und im Optimalfall bereits vorhandene Sensoren zur Überwachung des gesamten Prozesses eingesetzt werden. In dieser Arbeit werden Methoden aufgezeigt, die mit einer an der Fokussieroptik koaxial zum Laserstrahl integrierten Kamera eine Prozessüberwachung vor, während und nach dem Schweißprozess vornehmen. Zur Veranschaulichung der Methoden wird der Kontaktierungsprozess von Kupferdrähten zur Herstellung von Formspulenwicklungen verwendet. Die vorherige Prozessüberwachung umfasst eine durch ein faltendes neuronales Netz optimierte Bauteillagedetektion. Durch ei ne Formprüfung der detektierten Fügekomponenten können zudem vorverarbeitende Schritte überwacht und die Schweißung fehlerhafter Bauteile vermieden werden. Die prozessbegleitende Überwachung konzentriert sich auf die Erkennung von Spritzern, da diese als Indikator für einen instabilen Prozess dienen. Algorithmen des maschinellen Lernens führen eine semantische Segmentierung durch, die eine klare Unterscheidung zwischen Rauch, Prozesslicht und Materialauswurf ermöglicht. Die Qualitätsbewertung nach dem Prozess beinhaltet die Extraktion von Informationen über Größe und Form der Anbindungsfläche aus dem Kamerabild. Zudem wird ein Verfahren vorgeschlagen, welches anhand eines Kamerabildes mit Methoden des maschinellen Lernens die Höhendaten berechnet. Anhand der Höhenkarte wird eine regelbasierte Qualitätsbewertung der Schweißnähte durchgeführt. Bei allen Algorithmen wird die Integrierbarkeit in industrielle Prozesse berücksichtigt. Hierzu zählen unter anderem eine geringe Datengrundlage, eine begrenzte Inferenzhardware aus der industriellen Fertigung und die Akzeptanz beim Anwender
    corecore