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Abstract 9 

With recent advances in non-contact sensing technology such as cameras, unmanned aerial and 10 

ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent 11 

growth in deep learning-based condition assessment techniques of structural systems. These deep 12 

learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks 13 

are trained using a large number of datasets for various types of damage and anomaly detection 14 

and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to 15 

detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in 16 

developing autonomous SHM systems. In recent years, a broad range of CNN architectures has 17 

been developed by researchers to accommodate the extent of lighting and weather conditions, the 18 

quality of images, the amount of background and foreground noise, and multiclass damage in the 19 

structures. This paper presents a detailed literature review of existing CNN-based techniques in 20 

the context of infrastructure monitoring and maintenance. The review is categorized into multiple 21 

classes depending on the specific application and development of CNNs applied to data obtained 22 

from a wide range of structures. The challenges and limitations of the existing literature are 23 

discussed in detail at the end, followed by a brief conclusion on potential future research directions 24 

of CNN in structural condition assessment. 25 

Keywords: Structural health monitoring, artificial intelligence, deep learning, CNN, damage 26 

detection, anomaly detection, structural condition assessment. 27 
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Table 1. List of acronyms. 28 
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 42 

1. Introduction 43 

Structural health monitoring (SHM) offers emerging and powerful diagnostic tools for damage 44 

detection, maintenance, life-cycle cost reduction, and rapid disaster management for structures 45 

Acronym Description 

AdaBoost Adaptive Boosting 

AE Auto Encoder 

CNN Convolutional Neural Network 

DBN Deep Belief Network 

DBM Deep Boltzmann Machine 

DL Deep Learning  

FCN Fully Convolutional Network 

kNN k-nearest Neighbor 

ML Machine Learning  

NN Neural Network 

ReLU Rectified Linear Unit 

ResNet Residual Network 

R-CNN Regional Convolutional Neural Network 

RNN Recurrent Neural Networks 

ROC Receiver Operating Characteristic 

SHM Structural Health Monitoring 

SVM Support Vector Machine 

TL Transfer Learning 

VGG Visual Geometry Group 
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(Cawley 2018). Most of these techniques rely on dynamic measurements that require installation 46 

of contact sensors such as accelerometers, strain gauges, fiber optic sensors, and ultrasonic wave 47 

sensors, which have high installation costs. With the recent development of next-generation 48 

sensors (Sony et al. 2019; Dabous and Feroz 2020) such as digital and high-speed cameras, 49 

unmanned ground vehicles (UGVs), and mobile sensors, there has been a radical shift to non-50 

contact sensing techniques in SHM. They are easier to deploy, less labor-intensive, and more cost-51 

effective, enabling more reliable data acquisition from structures with high-resolution temporal 52 

and spatial information (Lattanzi and Miller 2017; Almasri et al. 2020). However, unlike 53 

traditional contact sensors, non-contact sensors yield images and videos that require significant 54 

advances in robotics, image processing, computer vision, and deep learning algorithms, where 55 

structural engineers still face several challenges. In recent years, the SHM researchers have 56 

explored artificial intelligence techniques to solve these challenges and successfully achieve novel 57 

autonomous and intelligent inspection strategies using the non-contact and robotic devices. This 58 

research not only accelerates monitoring and maintenance tasks for the infrastructure owners but 59 

also allows accurate early-stage defect detection to prevent any catastrophic structural failure in 60 

the future. Moreover, the research advancement in this area enables improved structural 61 

maintenance with minimal human errors, lower costs, and higher accuracy, providing an end-to-62 

end system to the infrastructure owners. This research has resulted in numerous publications in 63 

top-notch structural engineering journals. The main objective of this paper is to provide a 64 

systematic review of recent convolutional neural network (a subset of deep learning methods)-65 

based techniques that have been widely developed in the context of non-contact sensing-based 66 

SHM. 67 

A non-contact sensor such as a camera, where each pixel is effectively a sensor, can remotely 68 

collect a large amount of data from a structure. The challenge is then to interpret these images or 69 

videos for decision-making in SHM. Since the last decade, the SHM community has seen 70 

significant development in various image-processing algorithms that have enhanced the 71 

capabilities of non-contact sensors to undertake structural condition assessment. For example, 72 

Jahanshahi et al. (2009) reviewed various image processing techniques that were explored for the 73 

detection of missing or deformed members, cracks, and corrosion in various structures. A suite of 74 

image-based crack acquisition, processing, and interpretation techniques specifically for asphalt 75 

pavement was presented by Zakeri et al. (2017). Along similar lines, Koch et al. (2015) presented 76 



4 
 

a comprehensive summary of various image processing techniques that have been used to identify 77 

damage patterns in concrete bridges, tunnels, pipes, and pavement. Recently, Mohan and Poobal 78 

(2018) reviewed various image processing techniques for detecting cracks in concrete surfaces and 79 

concluded that the direction of the crack was crucial to the ability to detect and quantify the size 80 

of cracks.  81 

Overall, existing image processing methods extract features from images using various edges or 82 

boundary detection techniques such as the fast Haar transform, Canny filter, Sobel edge detector, 83 

morphological detectors, template matching, background subtraction, and texture recognition 84 

methods. However, these methods often result in ill-posed problems due to disturbances created 85 

by environmental conditions such as light, distortion, weather, shade, and occlusion in outdoor 86 

civil structures (Lee et al. 2014). The SHM community has recently focused on overcoming these 87 

challenges using various computer vision and artificial intelligence (AI) techniques due to their 88 

reduced sensitivity to external disturbances and feature selection. Salehi and Burgueno (2018) 89 

reviewed a suite of various artificial intelligence (AI) methods that have recently been used in 90 

structural engineering. The authors showed the recent trend of AI-assisted research towards pattern 91 

recognition and machine learning-based automated data-driven methods. The relative merits and 92 

drawbacks of various AI methods were discussed in the context of various structural engineering 93 

applications. This paper reviews CNN-based deep learning techniques with a specific focus on the 94 

implementation of non-contact sensor-based SHM. 95 

Although AI is a broad area of research covering various engineering disciplines, machine learning 96 

(ML) and deep learning (DL) techniques are the two most popular branches of AI that have been 97 

heavily explored in SHM research. ML algorithms are trained on a wide variety of data, and the 98 

accuracy of the algorithms improves with more data. The purpose of training is to optimize the 99 

error along the dimensions of the dataset using optimization functions such as a loss function or 100 

objective function and to obtain the best prediction results for test data. However, ML algorithms 101 

need features that are obtained from different image processing methods and are fed into different 102 

classifiers. Depending on the application, a suitable choice of features and classifiers is essential 103 

to identify anomalies from the images.  104 

Ying et al. (2013) reviewed various ML-based SHM algorithms for isolating structural damage to 105 

steel pipes from environmental factors. Recently, another review paper written by Feng and Feng 106 



5 
 

(2018) provided an intensive literature review of state-of-the-art computer vision techniques using 107 

vision-based displacement sensors that were implemented for SHM. Most of these methods were 108 

based on template matching algorithms that extracted displacement time-histories from videos and 109 

images. The authors discussed various challenges of displacement extraction from videos obtained 110 

from 2D and 3D measurements and from artificial or natural targets, as well as their real-time and 111 

preprocessing applications. In particular, Gomes et al. (2018) presented a comprehensive review 112 

of intelligent computational tools available for damage detection and system identification, with a 113 

specific emphasis on composite structures. More recently, state-of-the-art vision-based structural 114 

condition assessment techniques using computer vision and ML algorithms were reviewed by 115 

Spencer et al. (2019). The challenges associated with static and dynamic measurement techniques 116 

were discussed, along with future directions of automated and improved decision-making methods 117 

for SHM. Overall, it can be concluded from the literature that ML methods rely heavily on feature 118 

extraction, followed by the application of suitable classifiers. These methods can manage small 119 

anomaly datasets, but may not be adequate for full-scale civil structures such as buildings, bridges, 120 

dams, pipelines, and wind turbines where crack patterns are complex and irregular (Yao et al. 121 

2014).  122 

Unlike ML, DL-based AI methods automatically extract features and eliminate the need for 123 

manual feature extraction. Therefore, DL can differentiate among a large number of classes, and 124 

this capability has been recently explored for damage evaluation in structures. DL algorithms are 125 

based on vast sets of labeled data and require high computational performance and memory 126 

requirements. The term “deep” refers to the large number of layers that exist between the raw 127 

image input and the final classification output used in a network. Convolutional neural networks 128 

(CNNs), which are a popular class of DL methods, have been successfully used since their 129 

breakthrough in the 2012 ImageNet challenge due to their ability to extract features automatically. 130 

This has enabled automatic and optimized feature extraction to become part of the classifier 131 

learning process, which, however, does not compromise its optimality or the accuracy of crack 132 

identification. In particular, Bao et al. (2019) briefly reviewed improved SHM techniques that 133 

explored various data science, computer vision, DL, and ML methods. It was concluded that the 134 

application of DL, ML, and computer vision techniques made it possible to extract pertinent data 135 

from noisy measurement databases with damage signatures and to analyze them without requiring 136 

any predefined classifiers. Zhao et al. (2015) and Lei et al. (2020) summarized various ML and 137 



6 
 

DL techniques and their applications that are specific to machine health monitoring. It was 138 

concluded that DL techniques were the most effective because they are not restricted to specific 139 

machine types and involve minimal human intervention. Recently, Ye et al. (2019) provided a 140 

general survey and overview of various DL techniques in the context of SHM. Considering the 141 

intensity of CNN-based literature in the field of infrastructure monitoring, this paper is intended 142 

to provide a systematic review of standalone CNN-based literature that is specific to structural 143 

condition assessment. 144 

The key objectives of this review paper are as follows: 145 

1. To review CNN-specific papers that have been recently explored for structural condition 146 

assessment, with a specific focus on structural damage and anomaly detection. Similar to 147 

the condition monitoring of machines, there has been a significant trend towards using 148 

CNN to undertake local damage assessment and anomaly detection in large-scale civil 149 

structures. The primary objective of this paper is to conduct a detailed survey of emerging 150 

CNN-based SHM papers and to provide a comprehensive review of more than one hundred 151 

papers that have been recently published on this topic.  152 

2. To compare existing CNN-based solutions and best practices to address the challenges of 153 

infrastructure monitoring and maintenance, which would provide valuable opportunities 154 

and guidance to future engineers and researchers to adopt the most relevant CNN 155 

architecture depending on their applications. 156 

3. To provide a perspective on CNN-based methods in the domain of SHM that would 157 

facilitate valuable feature selection and anomaly detection methodologies in other areas of 158 

structural engineering and the broader field of civil engineering. 159 

4. To provide the key challenges of the current literature and identify the potential future 160 

research directions of the CNN-based research in structural condition assessment. 161 

This paper is structured as follows. A brief overview of various DL methods and CNN techniques 162 

is presented first. Next, the details of various CNN-based condition assessment techniques and 163 

their recent applications in structural condition assessment are presented. Different hybrid methods 164 

based on CNN are then presented, followed by key conclusions and discussions. 165 

 166 

 167 
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2. Preliminaries of Deep Learning Methods 168 

Non-contact sensing techniques (Sony et al. 2019; Dabous and Feroz 2020) and computer vision 169 

(Feng and Feng 2018; Spencer et al. 2019; Dick et al. 2019) have opened up a new era of next-170 

generation autonomous SHM and inspection of large-scale structures. These sensors result in 171 

images and videos, requiring AI techniques to analyze complex input-output relationships of the 172 

training data and develop predictive models. The trained predictive models are then used for 173 

damage classification, localization, and prediction from the new measurement data of a wide range 174 

of structures. The objective of this paper is to review CNN-based SHM papers that have been 175 

published in the specific context of structural condition assessment. A brief background on DL 176 

methods is presented next, followed by a detailed background on CNN techniques.  177 

DL algorithms have an adaptable nature similar to the human brain. These algorithms become 178 

more accurate as more training data are provided to them. DL models can simultaneously learn 179 

representation and decision rules from the data, like the biological organisms by which they are 180 

inspired. DL methods have multiple layers of non-linear transformations. For example, a raw 181 

image dataset that is fed through any DL architecture passes through several layers. Each layer, 182 

starting with the input layer, improves the identification of the dataset with subsequent layers, and 183 

eventually produces a classification or identification at the output layer (Lee et al. 2018). The most 184 

prominent aspect of DL is that these layers are not designed by engineers, but rather are learned 185 

from the data using a general-purpose learning procedure (LeCun et al. 2015). The advantage of 186 

DL is that it requires minimal user intervention, which has attracted various interdisciplinary 187 

researchers to use it for a wide range of applications such as object detection, classification, and 188 

segmentation.  189 

In the context of SHM, DL can be used for damage detection in three ways: (a) classification, i.e., 190 

labeling an image as damaged or undamaged, (b) localization, i.e., locating the regions where 191 

damage exists using bounding boxes and identifying their coordinates, (c) segmentation, i.e., 192 

segmenting the pixels of an image into damaged and undamaged pixels (e.g., labeling of all pixels). 193 

In the last few years, several methods have been developed, including, but not limited to, the audio 194 

signal, time-series, video, and natural language datasets. DL methods (Goodfellow et al. 2016) 195 

have several variants such as Auto Encoders (AEs), Deep Belief Networks (DBNs), Deep 196 
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Boltzmann Machines (DBMs), Recurrent Neural Networks (RNNs), and Convolutional Neural 197 

Networks (CNNs).  198 

The AE algorithm is used to learn data coding in an unsupervised manner to create a representation 199 

for a dataset by dimensionality reduction, ignoring the noise in the dataset (Vincent et al. 2008). 200 

DBN is a probabilistic generative model composed of multiple layers of stochastic and latent 201 

variables. If the number of units in the highest layer is small, DBN performs non-202 

linear dimensionality reduction and can learn short binary codes that enable very fast retrieval of 203 

datasets (Hinton et al. 2006). DBM is a type of binary pairwise Markov random field with multiple 204 

layers of hidden random variables. Similarly to DBN, DBM can learn a complex and abstract 205 

internal representation of the input dataset using a limited amount of labeled data (Salakhutdinov 206 

and Hinton 2009). RNNs are designed and tested for sequential data, typically for application in 207 

dynamic systems such as time-series or speech and language. RNNs are the deepest of all neural 208 

networks and can generate memories of arbitrary sequences of input patterns (Funahashi and 209 

Nakamura 1993). However, CNNs require less statistical and probabilistic expertise to run and to 210 

infer the dataset and results, which makes them a preferred choice for researchers in the SHM 211 

community. The next section presents a detailed background on CNN, followed by a systematic 212 

literature review of non-contact sensor-based SHM using CNN. 213 

3. Background on Convolutional Neural Networks 214 

CNN is the most popular variant of the DL network. The underlying architecture of CNN is 215 

comprised of three layers: (a) convolutional (feature extraction), (b) pooling (dimensionality 216 

reduction), and (c) fully-connected layer. The convolutional layer contains a finite number of 217 

filters (defined by the kernel or filter size) that convolves with the input data and identify a large 218 

number of relevant features from the input image. The pooling layer reduces the dimensions of the 219 

resulting features using a down-sampling operation, thereby minimizing the overall computational 220 

effort of the network. Depending on the data and the desired accuracy, the system is deepened by 221 

repeating the convolution-pooling sequences multiple times. In this way, more high dimensional 222 

features are extracted from the input data followed by one or several fully-connected layers that 223 

are used for classification. Various C++/Python-based frameworks and platforms (Pouyanfar et al. 224 

2018), including TensorFlow, PyTorch, Caffe, Theano, and Keras, are currently available to 225 

execute these tasks. 226 



9 
 

Combined with advances in GPUs and parallel computing, CNNs are a key technology underlying 227 

new developments in automated driving and facial recognition. CNNs are trained using a 228 

backpropagation algorithm, which combines the chain rule with the principles of dynamic 229 

programming. In a traditional neural network (NN), the full connections between the layers lead 230 

to time-intensive computations and overfitting of parameters (Abiodun et al. 2018). Unlike NN, a 231 

CNN convolves by using particular layers and avoids general multiplications, thereby keeping 232 

computations faster. CNN passes the input images through many deep layers (Gu et al. 2017; Yao 233 

et al. 2019) such as convolutional, pooling, and activation layers for feature extraction and 234 

performs classification using fully connected layers with a non-linear classifier (e.g., a Softmax 235 

classifier). CNN attempts to extract features by alternating and stacking convolutional kernels and 236 

pooling tasks. It tries to find features that best describe the input images with a varying number of 237 

deep layers. A rectified linear unit (ReLU) is often used as a non-linear activation function to 238 

introduce non-linearity in one or more of these layers on CNN. Auxiliary layers such as dropout 239 

layers are also used to prevent overfitting on CNN.  240 

Convolutional layers take an input image and convolve it with a filter or kernel, where the size of 241 

the kernel matrix is much smaller than the size of the input matrix. The matrix multiplication of 242 

convolutional layers reduces the number of weights, which reduces the variance of the model. 243 

Convolutions generate invariant local features; at a lower level, filters can be used to detect edges 244 

in the image, whereas at a higher level, they can detect more complex shapes and objects that are 245 

critical for classifying an image. A convolutional layer is a set of image filters with learnable 246 

weights and plays an important role in CNN as a feature extractor.  247 

On the other hand, pooling layers reduce the size of the layer while reducing the number of neurons 248 

in networks and extracting the most significant features with fixed-length over sliding windows of 249 

the raw input data. The reduction in the number of neurons is carried out by sliding a fixed window 250 

across a layer and choosing one value that effectively represents all the units captured by the 251 

window. Max-pooling and average-pooling are two common implementations of pooling. In max-252 

pooling, the representative value becomes the largest of all units in the window, whereas, in 253 

average-pooling, the representative value becomes the average of all units in the window. A max-254 

pooling layer is mostly used to down-sample the filtered weights from the convolutional layer, 255 

reducing computational costs and the probability of overfitting.  256 
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A fully connected layer has the shape of a flattened vector and plays an active role as a connector 257 

between the two-dimensional convolutional layer and the one-dimensional Softmax layer. The 258 

Softmax layer takes features from the fully connected layer, calculates the probabilities of each 259 

class using a normalized exponential function, and outputs the class with the highest probability 260 

as the classification result. By passing the images through various layers, a large number of 261 

parameters at various layers are optimally tuned and can extract salient features from the training 262 

images. In general, the training process varies from a few hours to a couple of days, depending on 263 

the network and hardware configurations, the training images, and the learning rate. 264 

Both ordinary NNs and CNNs are feedforward neural networks and are generally trained using 265 

backpropagation. The primary difference between NNs and CNNs is the difference in the layers 266 

they use to classify images. Figure 1 shows the schematics of a typical NN and CNN architecture. 267 

The NN uses hidden layers (denoted as h), whereas CNN uses convolutional (denoted as c) and 268 

pooling layers (denoted as p) along with input and output layers. The number of layers depends on 269 

the architecture, the data, and the performance required from the model. One of the most critical 270 

issues with NNs is overfitting. Large neural nets trained on relatively small datasets can over-fit 271 

the training data. Unlike NNs, CNNs are not prone to overfitting due to a reduction in weights and 272 

the number of neurons caused by the convolutional layer and pooling layer, respectively. The 273 

difference between NN and CNN can be understood using an example of an image. Consider an 274 

image of W * H * 3 (over three channels, red, blue, and green), where W and H denote the width 275 

and height of the image matrix, respectively. An ordinary NN will take the image as the input, pass 276 

it through fully connected layers and non-linearities, and finally output a vector of probabilities 277 

for each class. The fully connected layer is so named because each of the input neurons ni is 278 

connected to each output neuron no. If the number of input neurons is assumed to equal to the 279 

number of output neurons, the resulting number of weights becomes considerably large (ni * no). 280 

In the framework of image classification, it is computationally expensive to train such a network, 281 

and it also gives rise to high variance. CNNs are a neural network with a different architecture that 282 

significantly reduces the number of weights and, thereby, the variance of the model. 283 
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            284 

(a)                                                                   (b) 285 

Figure 1. Schematic of (a) a typical NN and (b) a typical CNN with convolutional and pooling 286 

layers. 287 

3.1 CNN Architectures  288 

LeNet (LeCun et al. 1998) was originally developed to classify low-resolution images such as 289 

handwritten alphanumeric characters. AlexNet (Krizhevsky et al. 2012), a popular ImageNet CNN 290 

model, was developed by researchers from the University of Toronto and used convolutional filters 291 

of varying sizes, where the first layer had 11*11 convolution filters. The authors were the first to 292 

use rectified linear units (ReLU). Several layers of convolution and max-pooling were used with 293 

around 60 million weights, and the model was trained on 2 GPUs. The Visual Geometry Group, 294 

VGGNet (Simonyan and Zisserman 2014), was developed by researchers from Oxford University 295 

and only used 3*3 convolutional filters. Conv-Conv-Conv-pool layers were stacked together, 296 

followed by fully connected layers at the end. This research showed how the depth of CNN 297 

influences the accuracy of image reconstruction.  298 

GoogleNet (Szegedy et al. 2014) was a deeper network, containing 22 layers with more 299 

computational efficiency, and did not have any fully connected layers. There were around 5 million 300 

parameters in the model. The network was composed of stacked sub-networks called inception 301 

modules. It had a naïve inception module that ran convolutional layers in parallel and concatenated 302 

the filters together. Moreover, it had a dimensionality reduction inception module that performed 303 

1*1 convolutions, thereby achieving dimensionality reduction. The reduction lowered the 304 

computational cost and made the network computationally efficient by stacking multiple inception 305 

modules together. ResNet (He et al. 2015) was deeper than GoogleNet with 152 layers, where each 306 

layer in the residual block was implemented as a 3*3 convolution.  307 
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The development of newer CNN architectures evidenced a trend towards using more and more 308 

layers (i.e., a deeper architecture). Using these architectures for structural damage classification is 309 

valid only if a large amount of damage data is available. Moreover, the issue of overfitting may 310 

arise, and the outcome of high-performing CNNs will not generalize the results for civil 311 

engineering applications. 312 

4. Review of CNN-Based SHM Literature 313 

Primarily originated for object recognition, 2D CNN algorithms were mostly explored for 2D 314 

images in various SHM applications to detect defects and anomalies autonomously. Moreover, for 315 

vibration-based SHM, the researchers attempted to reshape the vibration signal into images by 316 

transforming the signal in frequency and time-frequency (TF) domain and used the resulting TF 317 

maps as the images in 2D CNN. However, the images involve significant complexity in choosing 318 

a large number of labeled data and layers and are not suitable for real-time SHM applications using 319 

mobile or handheld devices. To alleviate this problem, 1D CNN was recently introduced such that 320 

a time-history of vibration signal can be directly fed into CNN, which requires simple array 321 

operations, thereby demanding a shallow architecture with a fewer number of hidden layers 322 

(Kiranyaz et al. 2019).  323 

Figure 2 shows a flowchart of the state-of-the-art CNN-based SHM literature that leads to 324 

significant advancement in this topic in the last few years. The schematic presents the two stages: 325 

data acquisition and condition assessment stage. The data acquisition stage is central to understand 326 

which type of data is apt for a particular structure. The data preparation precedes the data 327 

acquisition stage, depending on the classification or prediction task required from a specific 328 

application. Specific CNN architecture is selected next, followed by their further improvement 329 

using hyperparameter tuning. Once this step is accomplished, various infrastructure monitoring 330 

tasks are achieved in the last stage, demonstrating the novel contributions of the state-of-the-art 331 

CNN-based SHM techniques. A detailed systematic review of CNN-based SHM is organized by 332 

classifying the current literature into multiple classes, as illustrated below. 333 

 334 
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 335 

Figure 2. A schematic of the state-of-the-art CNN-based SHM operations. 336 

4.1 Bridge health monitoring 337 

The bridge infrastructure is critical for transportation and requires continuous monitoring. The 338 

critical components of any bridge that are prone to damage are used to acquire data in the form of 339 

an acceleration time-history, images, or continuous video streams. Deep learning methods such as 340 

CNN, FCN, or R-CNN are used to identify, classify, and quantify the damage. Guo et al. (2014) 341 

explored a sparse coding-based CNN algorithm with wireless sensors for efficient bridge SHM. 342 
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Sparse coding was used as an unsupervised layer for unlabelled data to learn high-level features 343 

from acceleration data. Various levels of damage cases were considered for a three-span bridge 344 

that was instrumented using wireless sensors. The proposed method was compared with other 345 

methods such as logistic regression and decision trees, and the proposed method was shown to 346 

outperform other methods with an accuracy of 98%. Gulgec et al. (2017) proposed a methodology 347 

for structural damage identification using CNN. Numerous undamaged and single-damaged 348 

samples of a steel gusset plate connection created in ABAQUS with varying uniformly distributed 349 

loads were developed to train, validate, and test the algorithm. Moreover, 50 network 350 

configurations with various hyper-parameters were tested over several epochs to determine the 351 

optimal CNN parameters.  352 

A multiscale CNN was developed by Narazaki et al. (2017) to extract damage to various bridge 353 

components from image-based data. Post-processing methodologies such as super-pixel averaging 354 

and conditional random field optimization were implemented to enhance the accuracy of the 355 

multiscale CNN. The proposed CNN network was developed from a ResNet made up of 22 layers 356 

that computed the Softmax probabilities corresponding to ten scene components. The pixel-wise 357 

accuracy was calculated to be only 78.94% for this methodology, suggesting a strong dependence 358 

on the quality of super-pixel segmentation with regards to the boundary segmentation of 359 

components. An ensemble framework combining a couple of sparse coding algorithms and a CNN 360 

was proposed by Fallahian et al. (2018) for structural damage assessment under varying 361 

temperature effects. Features extracted from the frequency response function of the measured data 362 

were fed into a CNN and a couple of sparse coding algorithms to develop the classifier. Stochastic 363 

gradient descent was used in CNN to assign weights, and a Softmax function as an activation 364 

function. The proposed method was validated using a numerical truss bridge and a full-scale 365 

bridge. However, there are various types of bridges, and for continuous and autonomous 366 

monitoring, the identification of various bridge types is critical along with that of multiple damage 367 

types.  368 

Zhao et al. (2018) explored CNN for maintenance and inspection of bridges. For bridge 369 

classification, an AlexNet-based CNN was trained first with more than 3800 images of various 370 

bridges. For recognition of bridge components, a ZF-Net-based faster R-CNN was trained with 371 

600 bridge images. To detect cracks, a GoogleNet-based CNN was trained with 60000 cracked 372 

and un-cracked images. Accuracies of 96.6% for bridge classification, 90.45% for bridge 373 
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component classification, and 99.36% for crack detection during testing were achieved. An image-374 

based approach was proposed by Liang (2018) for holistic post-disaster inspection of reinforced 375 

concrete bridges using a DL encompassing system level, a component level, and local damage 376 

detection. Algorithmically, the network was made up of a VGG-16 TL-based NN with Bayesian 377 

optimization for classification, a faster R-CNN for component detection, and a fully deep CNN for 378 

semantic damage segmentation. In a similar order, Kim et al. (2018) explored the application of 379 

regions with CNN (R-CNN)-based TL to identify cracks in a concrete bridge that were monitored 380 

using a UAV. Data containing 50000 images of 32×32 pixels from ImageNet and Cifar-10 were 381 

used to train and classify the data. Max pooling and ReLU layers were used along with the 382 

convolutional layer in a sliding window-based CNN. The total length and thickness of cracks were 383 

also computed using a planar marker and automatically visualized on the inspection map.  384 

Bao et al. (2019) presented computer-vision and DL-based structural anomaly detection to achieve 385 

automated SHM. Stacked AE and greedy layer-wise training techniques were used to train the DL 386 

networks. The acceleration data from a long-span bridge were first converted into images that were 387 

then transformed into grayscale image vectors for training a DNN considering six different 388 

anomalies such as missing, minor, outlier, square, drift, and trend data points. Recently, Xu et al. 389 

(2019) proposed fusion CNN for multilevel and multiscale damage identification in steel box 390 

girders without any prior assumptions of crack geometry. The proposed CNN architecture 391 

consisted of several layers of convolution, batch normalization, ReLU, max pooling, and Softmax, 392 

and was implemented using MatConvNet. Each image containing one or more cracks, handwriting, 393 

and background noise was acquired using a consumer-grade camera that was used for training and 394 

validation. The authors showed that fusion CNN worked better than general CNN, with an 395 

accuracy of 96.38%. However, its performance was limited to a specific object distance and the 396 

focal length of the camera.  397 

Recently, Ni et al. (2019) proposed a 1D CNN-based technique in combination with autoencoder 398 

data compression for anomaly detection in a long-span suspension bridge. An accuracy of 97.53% 399 

was achieved with a compression ratio of 0.1. Similarly, Azmi and Pekcan (2019) proposed a 400 

CNN-TL-based SHM technique for damage identification in highly compressed data. A four-story 401 

numerical quarter-scale IASC-ASCE SHM model was used for numerical verification, and the 402 

proposed model was also validated on experimental studies using the IASC-ASCE SHM 403 

benchmark building and the Qatar University Grandstand Simulator. A mean accuracy of 90-100% 404 
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was achieved using the proposed model. 1D CNN was also used in a further study by Zhang et al. 405 

(2019) to detect changes in stiffness and mass. Three structural assemblages, a T-shaped steel 406 

beam, a short steel girder bridge, and a long steel girder bridge, were used, and accuracies of 407 

99.79%, 99.36%, and 97.23% were achieved. 408 

4.2 Pavement condition monitoring 409 

Pavements are highly susceptible to damage due to high traffic and extreme weather conditions. 410 

The dataset usually consists of images acquired from a dashboard camera or a UAV. Cha et al. 411 

(2017) introduced a vision-based methodology for detecting cracks in concrete structures using 412 

CNN. Using nearly 40,000 images of damaged and undamaged concrete generated from various 413 

structures, CNN was tested and validated with more than 97% accuracy. Zhang et al. (2017) 414 

proposed a pixel-level CNN to detect cracks on 3D pavement surfaces. The proposed CNN, 415 

“CrackNet”, was made up of two fully connected layers, one convolutional layer, one 1 * 1 416 

convolution layer, and one output layer. This network was more efficient than traditional CNNs 417 

because of the absence of pooling layers that downsized the output of previous layers. An 418 

automated crack-length detection algorithm was proposed for pavement by Tong et al. (2017) 419 

using a deep CNN. A database of 8000 images of cracked and non-cracked pavement was 420 

generated for training, 500 of which were randomly selected to act as the test database. In addition, 421 

the images were converted to a grey-scale .bmp format so that k-means clustering analysis could 422 

be used to extract the length and shape of each pavement crack accurately. A five-layer-deep CNN 423 

achieved an accuracy of 94.35% with a mean squared error of 0.2377 cm for crack lengths between 424 

0 and 8 cm. In addition, it was concluded that image resolution and lighting conditions had minimal 425 

influence on the accuracy of the proposed crack detection method.  426 

Another pavement crack detection approach was investigated by Gopalakrishnan et al. (2017, 427 

2018) using TL-based deep CNN. By implementing a truncated VGG-16 deep CNN pre-trained 428 

on the ImageNet database, image vectors were extracted to train various classifiers to compare 429 

their performance for crack detection. Fan et al. (2018) proposed CNN to detect pavement cracks 430 

from images acquired by an iPhone from pavements in Beijing, China. Millions of monochromatic 431 

and RGB image patches were used. It was demonstrated that the proposed methodology had a 432 

precision of approximately 92%, which was better than traditional ML techniques such as local 433 

thresholding, CrackForest, Canny, minimal path selection, and free-form anisotropy. Similarly, 434 
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Maeda et al. (2018a,b) investigated the capabilities of CNN networks to detect road surface 435 

damage from smartphone images. A pavement image dataset of 9,053 images captured using a 436 

dashboard-mounted smartphone was annotated using 15,435 bounding boxes to distinguish 437 

various damage classes. By analyzing this dataset using two object detection methods, Single-Shot 438 

Multibox Detector (SSD) using Inception V2 and SSD using MobileNet, the robustness of these 439 

algorithms was investigated. Although the recall value of longitudinal construction joints and 440 

rutting, bumps, potholes, and separation was relatively low due to the small size of the training 441 

dataset, SSD MobileNet detected all damage classes with greater than 75% accuracy. 442 

Fan et al. (2019) developed a novel FCN with an adaptive thresholding technique for image-based 443 

detection of road cracks. Initially, the FCN classified the images as either positive or negative 444 

based on the presence of cracks. The positive images were segmented, and an adaptive threshold 445 

technique that minimized the within-cluster sum of squares was used to localize the defects. The 446 

study used 40,000 RGB images from training, validation, and testing. The proposed methodology 447 

exhibited a precision of 99.92% and 98.70% for classification and pixel-level determination of 448 

pavement cracks. In another study, Zhang et al. (2018) proposed a novel algorithm to classify 449 

sealed and unsealed cracks in asphalt pavement using a TL-based deep CNN. The proposed 450 

methodology consisted of three components: (a) the images were initially enhanced to eliminate 451 

imbalance from illumination, (b) the images were classified as cracks, sealed cracks, or 452 

background images by means of a TL-based DCNN, and (c) fast block-wise segmentation and 453 

tensor voting curve detection were used to locate and extract those pixels that were considered 454 

cracked or sealed. It was concluded that the proposed method showed superior performance in 455 

both the classification and detection of sealed and unsealed pavement cracks.  456 

Another DL algorithm was developed through TL for automated crack detection on concrete 457 

surfaces (Kim and Cho (2018)). Initially, a database of 50,000 images was created using the 458 

commercial scraper, “ScrapeBox”, and various data augmentation techniques. By means of TL, a 459 

modified network for multiple object detection, “AlexNet”, was used to train the proposed CNN 460 

classifier to identify uncracked pavement, cracks, and single or multiple edges or joints. By 461 

defining “crack-like” classes such as edges and joints, the number of false positives was 462 

significantly reduced.  463 

 464 
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4.3 Inspection of underground structures 465 

Underground structures such as sewer pipes and tunnels are inaccessible for inspection. The 466 

underground structures are monitored using videos in combination with deep learning techniques. 467 

Stentoumis et al. (2016) presented CNN-based vision techniques to reconstruct 3D cracks with the 468 

aid of a stereo matching and optimization scheme using data acquired from a tunnel by a DSLR 469 

camera. A multilevel perceptron CNN was used as a classifier. The proposed method was also 470 

compared with various ML techniques such as kNN and SVM. The proposed CNN was shown to 471 

outperform other methods, with an accuracy of 88.6%. Similarly, Cheng and Wang (2018) 472 

evaluated sewer pipe defects through images acquired from closed-circuit television using faster 473 

region-based CNN (faster R-CNN). The R-CNN architecture works based on a region proposal 474 

network that can generate region proposals with different aspect ratios and scales to differentiate 475 

foreground and background noise to localize an anomaly compared to the undamaged section of a 476 

region of 3000 images. Doulamis et al. (2018) proposed a combined CNN and fuzzy spectral 477 

clustering approach for real-time crack detection in tunnels. An autonomous robotic system 478 

consisting of a robotic vehicle and a robot arm was used to capture imagery along the tunnel. To 479 

analyze complex concrete tunnel images, CNN was first used to capture specific regions of 480 

damage, followed by fuzzy clustering to exploit the spatial and orientation coherence of the cracks. 481 

It was concluded that the accuracy of crack prediction was relatively low due to limited visibility 482 

in the tunnel.  483 

The capabilities of region-based FCN were explored by Xue and Li (2018) for shield tunnel lining 484 

defects. The proposed FCN consisted of a backbone convolutional layer and a pooling layer along 485 

with a Softmax layer and bounding box regression. A dataset containing a total of 4139 images of 486 

3000×3724 pixels each were acquired using a movable tunnel inspection system consisting of 487 

several CCD cameras and LEDs as a source of light. The proposed method outperformed AlexNet 488 

and GoogleNet and achieved an accuracy of 96% while performing both object detection and 489 

image classification. Recently, Feng et al. (2019) developed a TL based on the Inception-v3 DL 490 

algorithm to perform multiple damage type classification for hydro-junction infrastructure. The 491 

existing structure of the Inception-v3 algorithm was modified so that the final layer had five fully 492 

connected neurons to increase the accuracy of labeling each damage type. In another study (Kang 493 

et al. 2020), a basic pursuit-based background filtering algorithm was proposed to improve the 494 
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visibility of underground objects (e.g., cavities, manholes, and pipes), followed by DCNN using 495 

three-dimensional ground-penetrating radar data from urban roads in Korea. 496 

4.4 Building condition assessment 497 

Tall buildings and historical structures pose a challenge for manual inspection and require an 498 

accessible way for autonomous monitoring. Chaiyasarn et al. (2018) proposed an integrated 499 

algorithm combining CNN with classification models such as SVM and random forest for crack 500 

detection in historic structures. The data consisted of images from masonry structures containing 501 

cracks that were acquired using a digital camera and an unmanned aerial vehicle (UAV). It was 502 

shown that CNN with SVM outperformed conventional CNN based on the Softmax classifier. 503 

Similarly, Yuem et al. (2018) used CNN for image classification after post-event (e.g., earthquake, 504 

hurricane, tornado, or others) building reconnaissance. The dataset of 90000 colored structural 505 

images was used to train the network for scene classification and object detection. All the images 506 

were manually labeled using in-house annotation software before the CNN training phase.  507 

To classify various common types of building damage, Perez et al. (2019) explored the possibility 508 

of detecting common building defects caused by dampness, such as mold, deterioration, and 509 

staining through images using CNN. The proposed model was trained using the VGG-16 (ResNet-510 

50) CNN classifier, and class activation mapping was used for object localization. The CNN 511 

architecture contained five blocks of convolutional layers with max-pooling for feature extraction. 512 

The proposed methodology achieved an overall accuracy of 87.50% and classified multiclass 513 

defects using a small dataset. Recently, Jiang and Zhang (2019) used a wall-climbing unmanned 514 

aerial system (UAS) to acquire real-time video. The video data were then converted to 1330 crack 515 

images, and a CNN was trained. The images were transferred to an Android platform through a 516 

wireless data link. An accuracy of 94.48% was achieved using the proposed model.  517 

4.5 Multi-class structural monitoring 518 

Structures experience multiple types of damage, and identifying all of them at once is a faster 519 

approach to repair and maintenance. A vision-based multiscale pixel-wise deep CNN network was 520 

proposed by Hoskere et al. (2017) to detect six types of structural damage. The proposed 521 

methodology consisted of two parallel steps: (a) a damage classifier to separate each pixel into 522 

predefined classes and (b) a damage segmenter that distinguished damaged pixels from undamaged 523 
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ones. By implementing 1695 images of over 250 structures, the authors concluded that ResNet23 524 

and VGG-19 were the most accurate segmenter and classifier, with accuracies of 88.8% and 71.4%, 525 

respectively. Moreover, by combining the segmenter and classifier networks using Softmax 526 

thresholds, the accuracy across all classes was increased from 71.4% to 86.7%. Lin and Nie (2017) 527 

used a CNN with batch normalization to extract and localize structural damage in a simply 528 

supported Euler-Bernoulli beam. Numerical simulations were conducted with various damage 529 

locations and conditions to generate a dataset of 6,885 measurements. The proposed methodology 530 

was compared with a wavelet packet transform approach for both noiseless and noisy single- and 531 

multi-damage scenarios. Overall, CNN resulted in superior performance over the wavelet packet 532 

transform for single and multiple structural damage sites.  533 

Atha and Jahanshahi (2018) evaluated corrosion detection using three proposed CNN 534 

architectures, VGG-15, Corrosion5, and Corrosion7. A comparison is presented with the other two 535 

state-of-the-art CNN architectures, VGG-16, and ZF-Net. An approach containing non-536 

overlapping sliding windows was used to isolate the corroded region within each image. The 537 

authors investigated the performance of the proposed architecture under various sizes of sliding 538 

windows and color spaces. Using two specific properties of CNN (parameter sharing and local 539 

connectivity), Khodabandehlou et al. (2018) proposed a CNN method that used a reduced number 540 

of parameters, hence requiring limited training data for SHM. Behrouzi and Pantoza (2018) used 541 

a DL algorithm to identify damage patterns from tagged images of roadways and railways after 542 

large seismic events. The authors claimed that the proposed method correctly identified 92% of 543 

the roadway images, where 80% of railways were affected by the earthquake. Cha and Kang (2018) 544 

carried out damage identification by means of CNN using ultrasonic beacons by geo-tagging a 545 

video stream obtained from a UAV. A deep CNN with a sliding window was used as a DL 546 

architecture, with ReLU as an activation function and a Softmax function as a classifier.  547 

Similarly, Patterson et al. (2018) used DL techniques for seismic damage image classification and 548 

developed a user-friendly graphic user interface wrapper where AlexNet and ResNet were used in 549 

the pre-trained DL model. Pan et al. (2018) evaluated the efficacy of DBN using multiple restricted 550 

Boltzmann machines for structural condition assessment to enable timely decision-making for 551 

maintenance. A 1D CNN was proposed by Abdeljaber et al. (2018) for structural damage detection 552 

on an SHM benchmark dataset. Although CNNs are primarily used for 2D signals such as images 553 

and videos, the authors used the tanh activation function to learn from 1D raw acceleration data 554 
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and proposed an enhanced adaptive CNN to identify global structural damage in structures. Images 555 

acquired using smartphones and UAVs are viable and inexpensive options for acquiring damaged 556 

data from structures. Li and Zhao (2018) evaluated CNN for crack detection on a real concrete 557 

surface using cropped images taken from a smartphone. A CNN with binary outputs of the cracked 558 

or uncracked concrete surface was used to train GoogleNet. A total of 60000 images with 256 by 559 

256 pixels each were used to classify cracked concrete surfaces with an accuracy of 99.39%. An 560 

application called Crack Detector was developed and installed in a smartphone to detect cracks in 561 

real-time.  562 

Dorafshan et al. (2018a) explored the feasibility of using small off-the-shelf UAVs for inspection 563 

of concrete decks and buildings using CNNs. The proposed algorithm was first used to train the 564 

model using images acquired from a laboratory-scale bridge deck with a low-resolution camera 565 

and achieved an accuracy of 94.7%. The proposed CNN was then used to investigate a building 566 

by means of transfer learning (TL) using AlexNet with an accuracy of 97.1%. Moreover, Cha et al. 567 

(2018) proposed an improved visual inspection method using a faster region-based CNN. The 568 

proposed method provided robust detection of multi-surface damage types such as concrete cracks, 569 

medium and high corrosion of steel, bolt corrosion, and steel delamination using a variable 570 

bounding box and was shown to be more efficient than the authors’ previous work (Cha et al. 571 

2017). Moreover, this technique showed promising results for the autonomous detection of 572 

structural defects from quasi-real-time video data. On the other hand, Dorafshan et al. (2018b) 573 

provided an excellent database for autonomous detection of cracks ranging from 0.06 to 25 mm 574 

using CNN on a concrete surface. Spatial- and frequency-domain edge detection methodologies 575 

were compared by the same authors (Dorafshan et al. 2018c) using DCNN to detect cracks in 576 

concrete structures. It was concluded that AlexNet could detect smaller cracks (86%) more 577 

accurately than Laplacian-of-Gaussian (LoG). Moreover, the authors proposed a hybrid 578 

methodology that implemented a CNN to categorize images based on the presence of damage, 579 

after which those damaged images were further refined at the pixel level by the LoG edge detection 580 

technique. 581 

Hoskere et al. (2018) explored FCN with residual network architecture for automated post-582 

earthquake image classification. The FCN was capable of semantic segmentation and classification 583 

and was combined with a 3D mesh model of the structure for damage representation in building 584 

components. The dataset used to train the FCN included 1000 images of 288 by 288 pixels each 585 
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and was acquired from post-disaster reconnaissance surveys using a UAV. An accuracy of 91.1% 586 

was achieved for damage type identification along with information of structural and non-587 

structural components. Moreover, Rui et al. (2019) developed a two-stage CNN to detect and 588 

classify defects in narrow overlap welds. Time-series signals from eddy current testing of defective 589 

welds were initially converted to 2D diagrams using a continuous wavelet transform. Before the 590 

initial data transformation, the 2D diagrams were entered into a two-step CNN network that (a) 591 

identified the presence of defects using binary classification and (b) upon detecting defects, further 592 

classified them into five defect types. Although both single-step and two-step CNNs had similar 593 

accuracy of approximately 97%, the faster computational time of the two-step method made it 594 

more efficient.  595 

Recently, Deng et al. (2019) implemented a faster R-CNN to detect handwritten scripts and cracks 596 

in concrete surfaces. A modified 21-layer ZF-Net consisting of three neurons to classify 597 

background, cracks, and handwriting was trained using a 20% subset of the authors’ generated 598 

database of nearly 5000 sub-images. By investigating the influence of handwriting scripts on crack 599 

detection, it was concluded that including handwriting scripts as a unique background class 600 

significantly increased the accuracy of classifying cracks in concrete surfaces. Furthermore, 601 

comparing the proposed methodology with the DL algorithm, ‘You Only Look Once’ (YoLo) v2, 602 

showed superior performance, with significantly reduced percentages of false positives detected. 603 

Dung and Duc Anh (2019) proposed an FCN for segmented vision-based detection and density 604 

evaluation of surface cracks in concrete structures. TL was applied as the FCN encoder was based 605 

on the VGG-16 CNN model because this model showed superior performance to ResNet and 606 

Inception. Upon training and validation using 500 images, the FCN was shown to have a max F1 607 

score and average precision of approximately 90%.  608 

Li et al. (2019) proposed an FCN to detect four concrete damage classes: cracks, spalling, 609 

efflorescence, and holes, from an established smartphone-based image database. The development 610 

of the FCN algorithm was based on TL of weights and biases provided by DenseNet-121 for feature 611 

extraction. The algorithm was trained and validated using 2200 images. Compared to SegNet, the 612 

proposed methodology offered better performance in detecting various types of concrete damage. 613 

In another recent study, the authors (Mei and Gul 2020) used a depth-first search algorithm as a 614 

preprocessing tool to eliminate isolated pixels, followed by multilevel feature fusion and crack 615 

detection using images obtained from a smartphone. 616 
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4.6 Inspection of other large-scale structures 617 

Large-scale structures are challenging to monitor, and image-based monitoring techniques provide 618 

a powerful tool for effective structural monitoring. CNN was implemented to detect surface defects 619 

in rails from photometric stereo images acquired in a dark-field setup by Soukup and Huber-Mork 620 

(2014). The setup of various light sources at different oblique angles in the dark-field identified 621 

the location of cavities through a scattering of applied light. Comparing traditional model-based 622 

approaches to the trained CNN, the authors found a significant reduction in a detection error. 623 

Furthermore, regularization methods such as training data augmentation and unsupervised layer-624 

wise pre-training were shown to reduce the probability of overfitting due to the size of the available 625 

image dataset. Abdeljaber et al. (2017) proposed a nonparametric 1D CNN to extract structural 626 

damage from the time-histories of vibration-based responses. In this method, the acceleration at 627 

each sensor location was first divided into several frames, each containing a finite number of 628 

samples, and then each frame was normalized and fed into a CNN. The probability of damage was 629 

then computed to quantify the severity of damage and isolate the damage location. The proposed 630 

methodology showed efficient processing of the measured data compared to existing ML 631 

techniques, which required significant pre- and post-processing and feature extraction. A 632 

laboratory stadium developed in the Qatar University Grandstand Simulator was used to validate 633 

the accuracy of the proposed method.  634 

Pan et al. (2018) evaluated the efficacy of DBN using multiple restricted Boltzmann machines for 635 

structural health assessment to enable timely decision-making for maintenance. Lin et al. (2018) 636 

compared CNN with SVM for damage assessment in a three-story laboratory model and concluded 637 

that DL methods had less noise sensitivity than shallow learning methods. Chen and Jahanshahi 638 

(2018) proposed a CNN method with a naïve Bayes data fusion scheme to detect tiny cracks on 639 

metallic surfaces from video data for nuclear inspection applications. This methodology was 640 

distinct from previous CNNs because it collected image data from multiple video frames to 641 

improve crack localization while using a naïve Bayes decision process to reduce false negatives. 642 

Through testing and training of approximately 300,000 images extracted from video frames, it was 643 

concluded that this methodology achieved an accuracy of 98.3%, showing significant 644 

improvement compared to state-of-the-art ML algorithms. 645 
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Recently, Dick et al. (2019) investigated the use of DL algorithms to inspect critical electric utility 646 

infrastructure. Through TL on CNN, images of utility infrastructure from vehicular-mounted 647 

cameras were classified into five categories: highways, pine trees, fields, trucks, and power 648 

infrastructures. This technique provided automatic detection of vegetation, which was considered 649 

a major hazard to power infrastructure. Hoskere et al. (2019) proposed deep Bayesian NNs for 650 

damage localization in gates of navigation locks. In this proposed research, Monte Carlo dropout 651 

was used to increase the accuracy of the trained network and determine the sensitivity of measured 652 

strain to damage. Three CNN models were recently tested by Xu et al. (2019) to identify cracks in 653 

wind turbine blades. In another study (Zhang et al. 2020), the authors implemented a faster region-654 

based CNN to detect bolt loosening under different operating conditions such as measurement 655 

angle, lighting condition, and vibration condition. 656 

5. Improved CNN methods in SHM  657 

Depending on the complexity of damage and its location in large-scale structures, the SHM 658 

community recently implemented several advanced CNN architectures to train these complex 659 

models. Some of these newer architectures include fully convolutional networks (FCNs) and 660 

transfer learning (TL). 661 

5.1 Fully Convolutional Networks (FCNs) 662 

Yang et al. (2018) proposed a novel FCN for pixel-level crack detection. This method consisted 663 

of both down-sampling using a VGG16 network and up-sampling techniques, creating a robust 664 

model that could analyze multiscale images. Future improvements to increase performance for the 665 

detection of thin cracks, intersections, and border cracks were suggested to increase the accuracy 666 

of proposed networks to that of existing state-of-the-art DL algorithms. Hoskere et al. (2018) 667 

explored FCN with residual network architecture for automated post-earthquake image 668 

classification. The FCN was capable of semantic segmentation and classification and was 669 

combined with a 3D mesh model of the structure for damage representation in building 670 

components. The dataset used for training the FCN included 1000 images of 288 by 288 pixels 671 

each and was acquired from post-disaster reconnaissance surveys using a UAV.  672 

The capabilities of region-based FCN were explored by Xue and Li (2018) for shield tunnel lining 673 

defects. The proposed FCN consisted of a backbone convolutional layer, a pooling layer, a Softmax 674 
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layer, and bounding box regression. A dataset of 4139 images of 3000×3724 pixels each were 675 

acquired using a movable tunnel inspection system consisting of several CCD cameras and LEDs 676 

as a source of light. The proposed method outperformed AlexNet and GoogleNet and achieved an 677 

accuracy of 96% while performing both object detection and image classification. Dung and Duc 678 

Anh (2019) proposed an FCN for segmented vision-based detection and density evaluation of 679 

surface cracks in concrete structures. Fan et al. (2019) developed a novel FCN with an adaptive 680 

thresholding technique for image-based detection of road cracks. Initially, the FCN classified the 681 

images as either positive or negative based on the presence of cracks. These positive images were 682 

then segmented, and an adaptive threshold technique that minimized the within-cluster sum of 683 

squares was used to localize the defects.  684 

Li et al. (2019) proposed an FCN to detect four concrete damage classes: cracks, spalling, 685 

efflorescence, and holes, from an established smartphone-based image database. The development 686 

of the FCN algorithm was based on TL of weights and biases provided by DenseNet-121 for feature 687 

extraction. The algorithm was trained and validated using 2200 images. Compared to SegNet, the 688 

proposed methodology offered better performance in detecting various types of concrete damage. 689 

An FCN was developed by Rubio et al. (2019) to detect delamination and rebar exposure in 690 

reinforced concrete bridges. The authors considered a multi-labeled approach for the dataset in 691 

which different regions of the images were considered ground truth, uncertain, or penalized 692 

depending on the agreement of the various annotators that classified them. This methodology had 693 

a mean accuracy of 89.7% and 78.4% for delamination and rebar exposure, meaning that this 694 

model could be used as a step towards automating bridge inspection.  695 

5.2 CNN with Transfer Learning 696 

Feng et al. (2017) proposed an active learning algorithm for automatic detection and classification 697 

of cracks, deposits, and water leakage from concrete structures without requiring time-consuming 698 

labelling. The classification and detection of these defects were performed by a deep residual 699 

network (ResNet). Using the active learning network, the classifiers were continuously retrained 700 

with new annotated images, achieving a significant reduction in manual human-based image 701 

annotation and labeling. Using a positive-sampling technique, the authors obtained an accuracy of 702 

87.5% for 235,200 image patches. Another pavement crack detection approach was investigated 703 

by Gopalakrishnan et al. (2017, 2018) using TL-based deep CNN. By implementing a truncated 704 
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VGG-16 deep CNN pre-trained on the ImageNet database, image vectors were extracted to train 705 

various classifiers to compare their performance for crack detection. Kim et al. (2018) explored 706 

the application of regions with CNN (R-CNN)-based TL to identify cracks in a concrete bridge 707 

that was monitored using a UAV. Data containing 50000 images of 32×32 pixels each from 708 

ImageNet and Cifar-10 was used to train on the data, followed by classification. Max pooling and 709 

ReLU layers were used along with a convolutional layer in the sliding window-based CNN. The 710 

total length and thickness of cracks were also computed using a planar marker and were 711 

automatically visualized on an inspection map. 712 

In another recent study, Gao and Mosalam (2018) developed a Structural ImageNet to detect 713 

various types of post-disaster damage using a modified TL-based VGG-16 network. The 714 

robustness of detecting four pre-defined features: (1) component type, (2) spalling condition, (3) 715 

damage level, and (4) damage type was investigated using feature extraction and fine-tuning of the 716 

TL technique. Parametric studies were conducted to determine the optimal image size to reduce 717 

computational complexity while retaining valuable information. Moreover, complexities in the 718 

four-class damage-level features resulted in decreased accuracy (68%) and increased overfitting 719 

(23%), suggesting that this model may be a baseline for future research into Structural ImageNet. 720 

Zhang et al. (2018) proposed a novel algorithm to classify sealed and unsealed cracks in asphalt 721 

pavement using a TL-based deep CNN. The proposed methodology consisted of three components: 722 

(a) the images were initially enhanced to eliminate imbalance with illumination, (b) images were 723 

classified as unsealed cracks, sealed cracks, or background images by means of a TL-based DCNN, 724 

and (c) fast block-wise segmentation and tensor voting curve detection were used to locate and 725 

extract those pixels that were considered cracked or sealed. It was concluded that the proposed 726 

method showed superior performance for both the classification and detection of sealed and 727 

unsealed pavement cracks compared to other image processing methods. Another DL algorithm 728 

was developed through TL for the automated detection of cracks on a concrete surface (Kim and 729 

Cho 2018). Initially, a database of 50,000 images was created using the commercial scraper, 730 

“ScrapeBox”, and various data augmentation techniques. By means of TL, a modified network for 731 

multiple object detection, “AlexNet”, was used to train the proposed CNN classifier to identify 732 

non-cracks, cracks, and single or multiple edges or joints. By defining “crack-like” classes such as 733 

edges and joints, the number of false positives was significantly reduced.  734 
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Recently, Feng et al. (2019) developed a TL based on the Inception-v3 DL algorithm to detect 735 

multiple damage classifications for hydro-junction infrastructure. The existing structure of the 736 

Inception-v3 algorithm was modified so that the final layer had five fully connected neurons to 737 

increase the accuracy of labeling each damage type. Kim and Sim (2019) addressed the automation 738 

of operational modal analysis by developing a faster R-CNN for automated extraction of peaks 739 

from frequency-domain image data. Faster R-CNNs such as the VGGNet and ZF-Net implemented 740 

in this study used region proposal networks (RPNs) to generate rectangular object regions through 741 

the shared convolutional features of fast R-CNN networks. The network was trained using 15,596 742 

peaks extracted from a multiple-degree-of-freedom numerical model. Upon comparison with time 743 

domain-based methods for peak extraction, it was found that the proposed method had superior 744 

performance to F1 scores and computational time.  745 

6. Comprehensive Summary of the Reviewed Literature 746 

As shown in Sections 4-5, structural condition assessment involves major tasks such as system 747 

identification, damage identification, crack, and anomaly detection. The accuracy of these tasks 748 

strongly depends on sensor placement and presence of sensor faults, fluctuations in environmental 749 

and operational conditions, the suitability of appropriate features and feature extraction methods 750 

such as time-, frequency-, time-frequency methods (Qarib and Adeli 2016; Sadhu et al. 2019; 751 

Barbosh et al. 2020; Kankanamge et al. 2020), image processing (Mohan and Poobal 2018) and 752 

other ML techniques (Sun et al. 2020). Therefore, the conventional ML-based SHM strategies 753 

strongly rely on expert knowledge to design the most appropriate features for a given data of 754 

critical infrastructure. Unlike the traditional approaches, CNN undertakes similar tasks without 755 

requiring any feature selection stage. It relies on a large database of training data and builds a deep 756 

network with a suite of network and training parameters, implicitly performing both feature 757 

extraction and pattern classification. At one end, 1D CNN (Kiranyaz et al. 2020) uses structured 758 

information such as vibration or time-series data to perform global damage detection. On the other 759 

hand, 2D CNN has been explored to analyze unstructured data such as actual images or derived 760 

TF images (e.g., spectrograms or scalograms) of time-series to undertake local damage 761 

identification. Overall, CNN has achieved significant popularity in the SHM literature due to its 762 

requirement of having minimum knowledge of the best-suited features of a dataset. Table 2 finally 763 
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provides a summary of the literature reviewed in Sections 4 and 5 with a systematic presentation 764 

of the specific application and data used for structural condition assessment. 765 

Table 2: Summary of CNN-based structural condition assessment literature. 766 

Reference Application CNN architecture Specifics of data 

Bridge health monitoring 

Merits: 

1. A wide variety of data types includes sequential/time-series and visual-based images and videos, 

where both 1D and 2D CNNs have been equally effective. 

2. The application of CNNs enables the identification of both global and local structural damage.  

Drawbacks: 

1. The sparse coding algorithm is often needed as a preprocessor for feature extraction in 

combination with CNNs to overcome the challenge of data labeling. 

2. Vision-based data collection of independent bridge components is a challenging task; CNNs are 

used to train the classification based on scene segmentation and bridge component identification 

from a large-scale image.  

Guo et al. (2014) Global condition 

assessment 

Inclusion of sparse 

coding in CNN 

Acceleration time-histories 

Gulgec et al. (2017) Anomaly detection in 

steel gusset plate 

CNN Simulated strain 

measurements 

Narazaki et al. 

(2017) 

Global and component-

level damage assessment 

Multiscale CNN 

developed from a 

ResNet 

Images of scene 

components 

Fallalian et al. (2018) Global condition 

assessment 

Integration of 

coupled sparse 

coding in DNN 

Simulated and 

experimental acceleration 

data 

Zhao et al. (2018) Component-level damage 

assessment 

AlexNet, ZF-Net, 

and GoogleNet 

Cracked and un-cracked 

images 
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Liang (2018) Global and component-

level damage assessment 

VGG16, R-CNN, 

and fully deep CNN 

through semantic 

segmentation with 

Bayesian 

optimization 

Cracked and un-cracked 

images of reinforced 

concrete bridges  

Kim et al. (2018) Component-level damage 

assessment 

R-CNN-based TL   

(ImageNet and 

Cifar10) 

Images from UAV 

Bao et al. (2019) Anomaly detection  DNN-stacked AE 

and greedy layer-

wise training 

techniques 

Acceleration data 

Xu et al. (2019) Damage assessment in 

steel box girders 

FCNN implemented 

with MatConvNet 

Images acquired from a 

consumer-grade camera 

Rubio et al. (2019) Component-level damage 

assessment 

FCNs Images 

Ni et al. (2019) Anomaly detection with 

data compression  

1D CNN Acceleration data 

Azimi and Pekcan 

(2019) 

Damage identification  CNN with TL Acceleration data 

Zhang et al. (2019) Damage identification 

with changes in stiffness 

and mass 

1D CNN Acceleration data 

Pavement condition monitoring 
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Merits: 

1. The image datasets can be acquired under varying environmental conditions. The data acquired 

is suitable for multiclass problems (e.g., identification of cracks, their sizes, and locations). 

2. The crack length identification is carried out efficiently by increasing the subsampling between 

the convolution layers and creating a deep CNN. 

Drawbacks: 

1. In the presence of noise and complicated cracks, the CNNs are supplemented with additional 

preprocessing such as bilateral filtering and adaptive thresholding.  

2. The datasets often result in imbalance measurements. 

3. In case of similar crack identification, such as open crack and sealed crack under noise is tackled 

using a special treatment such as TL and tensor voting-based crack detection. 

Cha et al. (2017) Concrete surface CNN with sliding 

window technique 

Images from DSLR 

camera 

Zhang et al. (2017) Automated pavement 

crack detection 

CrackNet in the 

absence of pooling 

layer 

3D asphalt images 

Tong et al. (2017) Crack length detection  Deep CNN Cracked and un-cracked 

RGB images 

Gopalakrishnan et al. 

(2017,2018) 

Pavement defects VGG16, DCNN Images acquired using 

UAV 

Fan et al. (2018) Crack size estimation CNN Monochromatic and RGB 

images from iPhone 

Maeda et al. 

(2018a,b) 

Anomaly detection on the 

road surface 

CNN integrated with 

two object detection 

methods 

Images acquired from a 

dashboard-mounted 

smartphone in a vehicle 

Fan et al. (2019) Road inspection FCN with adaptive 

threshold technique 

RGB images 
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Zhang et al. (2018) Asphalt pavement TL-based deep CNN Images 

Kim and Cho (2018) Crack inspection in an 

onsite environment 

TL integrated with 

AlexNet 

Images and videos 

acquired from UAVs 

Inspection of underground structures 

Merits: 

1. Underground structures such as sewer and water pipes, tunnels, and heavy infrastructures such as 

hydropower dams are difficult to inspect due to their depth, and thickness using the traditional 

vibration-based SHM methods.  

2. For extremely large, inaccessible structures such as hydro structures, UAVs with real-time 

kinematic global positioning system can be used for data collection and defect identification. 

3. In the presence of sequential data such as radar data, CNNs perform better with de-noised signals.  

Drawbacks: 

1. Data acquisition from structures such as tunnels and sewer pipe require different approaches. For 

example, images from tunnels can be acquired using DSLR cameras and robotic vehicles; 

however, for sewer pipe, images are obtained from pre-installed closed-circuit cameras. 

2. CNNs are also required to be combined with unsupervised clustering to refine the detected crack 

regions from noisy images exploiting spatial and orientation coherency in the presence of 

inadequate lighting conditions. 

3. If the dataset is small, TL is applied for the enhancement of CNN damage classification 

performance. 

Stentoumis et al. 

(2016) 

Highway and railway 

tunnels 

CNN connected with 

multilevel 

perceptron to build a 

3D crack model 

Images from DSLR 

camera 

Cheng and Wang 

(2018) 

Sewer pipe defects Faster region-based 

CNN 

Images acquired from 

closed-circuit television 

Doulamis et al. 

(2018) 

Tunnel inspection CNN combined with 

fuzzy spectral 

clustering 

Images obtained from a 

robotic vehicle 
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Xue and Li (2018) Tunnel lining Region-based FCN 

with Softmax layer 

and bounding box 

regression 

Images from CCD camera 

Feng et al. (2019) Hydro infrastructure Inception-V3 and TL Images from a high-

definition camera 

Kang et al. (2020) Underground cavity 

detection 

CNN with a basic 

pursuit-based 

background 

algorithm 

3D ground penetration 

radar data 

Building condition assessment 

Merits: 

1. Buildings are tall spatial structures that require condition assessment on internal and external 

components. The evaluation of external components, e.g., assessment of post-disaster 

nonstructural damages, is now possible with vision-based CNN methods. The datasets can be 

easily acquired using an inexpensive digital handheld camera, smartphones, and UAVs. 

2. In many studies, apart from the crack or defect detection, the Class Activation Mapping layer is 

added to CNNs for object identification. The object localization is highly beneficial for the 

identification of damage in structural and nonstructural components. 

Drawbacks: 

1. CNNs are often reinforced with an additional 3D image stitching technique to analyze the 

structure in the 3D coordinate system.   

2. The training database is often not enough; CNNs are required to pre-trained on benchmark models 

such as VGG16 or CrackNet.  

Chaiyasarn et al. 

(2018) 

Global condition 

assessment in historical 

masonry structures 

CNN with SVM and 

random forest 

Images from digital 

camera and UAV 
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Yuem et al. (2018) Post-disaster building 

reconnaissance 

CNN with in-house 

automation software 

to label images 

Scene classification and 

object detection for 

damage classification 

Perez et al. (2019) Surface-level defects 

caused by mold, stain, and 

deterioration 

VGG16 and class 

activation mapping 

Images acquired using a 

mobile phone and hand-

held camera along with 

copyrighted images from 

Internet 

Jiang and Zhang  Crack detection CNN  Unmanned aerial system to 

acquire video and images 

Multi-class structural monitoring 

Merits: 

1. Offer autonomous monitoring systems and eliminate manual inspections that are time-

consuming, labor-intensive, subjective, and often unsafe. 

2. Allow rapid decision making for post-disaster damage assessment. 

3. The proposed techniques are mostly insensitive to the measurement noise. 

Drawbacks: 

1. Need further improvement to develop more robust multi-type damage classification techniques. 

2. Significantly more layers would be required to distinguish between different types of 

complexities in structures, damage conditions, and background effects. 

3. Few of these methods are heavily dependent on the results of the FE model as the real condition 

data are scarce. 

4. Proper labeling of multiclass damages is always a challenge. 

Hoskere et al. (2017) Post-earthquake 

multiclass structural 

inspection  

Multiscale pixel-

wise deep CNN 

Various images of concrete 

and steel surfaces 

Lin and Nie (2017) Numerical simulation 

using a simply supported 

beam 

CNN Time-series data 
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Atha and Jahashahi 

(2018) 

Corrosion detection on a 

metallic surface 

VGG15, Corrosion5, 

and Corrosion7 with 

non-overlapping 

sliding windows 

Colour images 

Khodabandehlou et 

al. (2018) 

Vibration-based condition 

assessment 

2D CNN Acceleration time-histories 

Behrouzi and 

Pantoza (2018) 

Post-earthquake 

inspection 

DL network Tagged images of 

roadways and railways 

Kang and Cha (2018) Structural inspection 

where using GPS is not 

feasible 

Deep CNN with 

sliding window 

Geo-tagging of a video 

stream from a UAV 

Patterson et al. 

(2018) 

Seismic damage 

classification 

AlexNet and RestNet GUI wrapper 

Abdeljaber et al. 

(2018) 

SHM benchmark data 1-D adaptive CNN 

with (hyperbolic 

tangent) tanh 

activation function  

Acceleration data 

Li and Zhao (2018) Concrete surface GoogleNet (an app, 

Crack Detector, was 

developed) 

Cropped images are taken 

from a smartphone 

Dorafshan et al. 

(2018) 

Component-level damage 

assessment in bridges and 

buildings 

TL and AlexNet 

DCNN 

Imaged from off-the-shelf 

UAV 

Cha et al. (2018) Multi-surface damages Faster-R-CNN Quasi-real-time video data 
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Dorafshan et al. 

(2018b, 2018c) 

Concrete surface CNN with LoG edge 

detection 

Benchmark database with 

cracks ranging from 0.06 

to 25 mm 

Yang et al. (2018) Pixel-level crack detection FCN via VGG16 Multiscale images 

Hoskere et al. (2018) Post-earthquake 

inspection 

FCN  Reconnaissance survey 

from a UAV 

Rui et al. (2019) Defective welds Wavelet-assisted 

CNN with binary 

classification 

Time-series data of eddy 

current 

Deng et al. (2019) Concrete surface Faster R-CNN, ZF-

Net, and YoLo v2 

Images with handwritten 

scripts and cracks 

Dung and Duc Anh 

(2019) 

Surface cracks in concrete 

structures 

VGG16 Images and video of crack 

data 

Li et al. (2019) Multiple concrete damage 

types 

DenseNet-121-based 

FCN 

Smartphone-based images 

Mei and Gul (2020) Pixel-level crack detection DNN with depth-

first search-based 

preprocessing 

Smartphone-based images 

Inspection of other large-scale structures 

Merits: 

1. Many algorithms showed robustness in different environmental conditions. 

Drawbacks: 

1. Noise interference could contaminate the data in large-scale structures; deeper neural networks 

could be used to solve this issue. 

2. A large number of training data is needed to achieve data convergence and prevent overfitting. 
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Soukoup and Huber-

Mork (2014) 

Metal surface of rails Unsupervised layer-

wise pre-training. 

Photometric stereo images 

Abdeljaber et al. 

(2017) 

Laboratory study  One-dimensional 

CNN 

Acceleration time-histories 

Feng et al. (2017) Less time-consuming 

labelling operation 

ResNet with active 

learning  

Image dataset 

Pan et al. (2018) Experimental study Deep Bayesian NN 

using multiple 

restricted Boltzmann 

machines 

Acceleration data 

Lin et al. (2018) Laboratory studies Comparison of CNN 

with SVM and other 

shallow learning 

methods 

Acceleration data 

Chen and Jahanshahi 

(2018) 

Nuclear power plant CNN with a naïve 

Bayes data fusion 

Video data 

Dick et al. (2019) Electrical utility 

infrastructure 

TL and CNN Images from a vehicle-

mounted camera 

Hoskere et al. (2019) Navigation infrastructure Deep Bayesian NN Finite element model-

based simulated data and 

measured strain data 

Xu et al. (2019) Wind turbine blade Three CNN models Images from UAVs 

Kim and Sim (2019) Operational modal 

analysis 

VGGNet and ZF-Net Frequency peaks from 

simulated data. 



37 
 

Zhang et al. (2020) Detection of bolt 

loosening using 

experimental study 

Region-based CNN Webcam data 

 767 

7. Challenges for CNN Implementation in Structural Condition Assessment 768 

With increasing computational capabilities in the era of big data, high-performance computing, 769 

parallel processing, and cloud computing, CNN techniques have witnessed significant 770 

developments in remote and autonomous SHM of critical civil infrastructure. 2D CNN has brought 771 

a radical shift in SHM using non-contact sensors and robotic devices. Whereas, 1D CNN, which 772 

is free of major matrix operations, has resulted in efficient classification and clustering of 773 

vibration-based SHM data, enabling its capabilities in low power real-time applications (e.g., 774 

smartphone or handheld device). The CNN techniques offer new advantages and opportunities that 775 

are systematically reviewed in this paper based on the ongoing research published in top-notch 776 

journals and conference papers. At one end, the state-of-the-art research offers remote and 777 

autonomous SHM systems for cost-effective and accurate structural inspection. On the other hand, 778 

it allows feature-free early-stage warning or post-disaster reconnaissance for the infrastructure 779 

owners and stakeholders, enhancing an end-to-end SHM system. However, the existing CNN-780 

based literature presents several challenges that must be addressed in the upcoming years before 781 

this approach can be positioned as a generalized strategy for monitoring and maintenance of a wide 782 

range of infrastructure. The identified real-world challenges are illustrated below: 783 

i) Data imbalance issue in large-scale infrastructure: CNN implicitly adopts a deep network 784 

depending on the complexity of the data. Unlike systems in other engineering domains, civil 785 

infrastructure is large in size and composed of decades of design life. Due to such size and life-786 

span, structural condition data obtained from limited sparse measurements have a wide variety of 787 

damage states (Sun et al. 2020), causing data imbalance issue in SHM. Although the researchers 788 

have proposed various data augmentation techniques to alleviate the over-fitting caused by the 789 

data imbalance, it remains a significant challenge to the SHM community (Gopalakrishnan et al. 790 

2017, 2018; Liang 2018; Kim et al. 2018; Zhang et al. 2018), unlike in other engineering domain. 791 
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Moreover, acquiring a large number of images with a wide variety of historical damage events 792 

forms another hindrance to developing a training database, which limits the applicability of CNN 793 

in structural condition assessment.  794 

ii) Data variety and lack of expandability in SHM: SHM data has a wide variety depending on 795 

the type of infrastructure and sensors, quality of the database and background noise, level of 796 

damage and sensor locations, presence of outlier and bias, environmental and operating conditions. 797 

Therefore, the existing literature of data-driven condition assessment approaches has primarily 798 

focussed on finding the most appropriate CNN architecture (Yuem et al. 2018) required for 799 

specific data of interest. For example, it may not be necessary that the training data of a steel and 800 

concrete bridge of the same length subjected to similar operational and environmental loads will 801 

have identical CNN architecture. The scalability and expandability of CNN architecture across 802 

various infrastructure is still a challenge. 803 

iii) Cost of implementation to the infrastructure owners: Depending on the complexity in the 804 

data and existing conditions of a critical infrastructure, a deep and complex network is often needed 805 

to train a large database of SHM data. Such implementation of network demands high-performance 806 

workstations, cloud computing, parallel processing, graphic processing units and massive storage. 807 

Therefore, CNN is associated with high operating costs to analyze big data of infrastructure 808 

monitoring and maintenance for the decision-makers.  809 

iv) Amplification of error in the network due to poorly measured data: False positives are 810 

often triggered due to varying image background caused by environmental effects (e.g., shadow, 811 

texture, light, rain, fog, and other adverse weather conditions), changes in color (e.g., material 812 

deterioration), and the presence of unwanted objects (e.g., debris, people, and vehicles). These 813 

noisy training data may lead to inaccurate damage detection in public infrastructures such as 814 

bridges, pavements, potholes, and pipelines (Azimi and Pekcan 2019; Kang et al. 2020). In 815 

particular, the impact of weather and lighting conditions, background noise, and the distance of 816 

the camera from the structures have still not been investigated in the context of multiclass crack 817 

detection.  818 

The false positives may be removed using the traditional image processing or time-series based 819 

anomaly detection techniques during the data preparation stage. Having a well-processed data will 820 

enable CNN to produce higher accuracy and precision-recall value. The SHM community has 821 
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advanced in the use of DL algorithms; however, data preparation and the amount of data usage 822 

without increasing the complexity of the network architecture is an open area of research. 823 

Moreover, the optimal network architecture and the configurations of input images and categories 824 

are still topics of active research in SHM.  825 

v) Multiclass damage detection as a black box operation: There is often a lack of robustness in 826 

detecting multiple damage types (e.g., identification of cracks due to fatigue, delamination, voids, 827 

spalling, corrosion, etc.), requiring CNN architecture to be significantly deep to classify various 828 

components (Khodabandehlou et al. 2019). Any data-driven CNN network involves a scientific 829 

selection of the structure of layers as well as an optimal number of layers (Sandler et al. 2019; Tan 830 

and Le 2019) to achieve the best accuracy without resulting in overfitting, which still forms a black 831 

box to the majority of the structural engineers and infrastructure owners. Apart from the system 832 

architecture, the black-box nature of neural networks or CNN per se appears due to the traditional 833 

interpretability of the results. The matrices used for most of the networks are the accuracy and 834 

ROC curves, however, in a situation like structural damage detection and localization, only 835 

accuracy as a measure of performance of the CNN model may lead to catastrophic failures. 836 

Considering “false-negative rate” along with accuracy will improve the damage diagnosis model 837 

and also remove any situation where the CNN model ignores the possibility of damage. Moreover, 838 

improved visualization techniques of layer-wise classification results will eliminate the black-box 839 

nature of CNN for complex SHM applications. 840 

 841 

8. Future Research Directions  842 

i) Next-generation infrastructure monitoring and maintenance using big data: Smart and 843 

autonomous monitoring systems of future urban cities will result in internet-of-things (IoT)-844 

enhanced big data for large-scale structures. This data will include either time-series measurements 845 

obtained from long-term embedded sensors within the structures or a large number of images 846 

obtained from sophisticated vision measurement systems such as drones and robots (Spencer et al. 847 

2019). Such big data will enable a large and wide range of databases for CNN methods for robust 848 

structural condition assessment, and eliminate data imbalance issue. 849 
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ii) Real-time CNN implementation for remote and autonomous SHM systems: 1D CNN 850 

(Kiranyaz et al. 2020) has shown capabilities of utilizing a shallow architecture for structured 851 

SHM data such as time-series (e.g., vibration measurement). This results in less computationally 852 

intensive tasks on CNN, which can be implemented in mobile or handheld devices that are low 853 

cost and low powered in nature. Future application of 1D CNN will enable real-time indirect SHM 854 

for bridges using smart-phones installed in passing vehicles. There is a need to develop efficient 855 

strategies to accelerate the training and validation process and reduce the cost of deployment of 856 

CNN algorithms in SHM. 857 

iii) Transfer learning-enabled efficient CNN using SHM data across various infrastructure: 858 

Improved CNN integrated with TL and Active Learning (Bull et al. 2018, 2019), and population-859 

based SHM technique (Worden et al. 2015) may offer attractive solutions where statistically 860 

similar datasets of identical structure can be leveraged to replace the requirement for large training 861 

datasets from existing structures. CNN methods trained in one domain may be transferred into 862 

other domains, especially when the previous domain lacks training data. TL is a new development 863 

that uses knowledge from a source domain to target a domain that might be related but different, 864 

making existing pre-trained models more useful in the context of limited available datasets and 865 

relaxing the prerequisite for larger training datasets. The primary use of TL in CNN would be to 866 

use the parameters in a well-trained model in the source domain and to assist in generating limited 867 

training datasets in the target domain. The application of TL has a promising future while using 868 

the well-established benchmarks models for training the model and feature extraction, and 869 

improving the fully-connected classification layer for damage diagnosis. 870 

iv) Field implementation: At present, there exist very few civil engineering image databases that 871 

have representative images of the damage to train the CNN architectures. Many images are 872 

obtained in a laboratory setting. Very few studies quantify the influence of measurement noise 873 

(wind, light, and angle) or mechanical vibrations from UAVs on the ability to capture damage 874 

using CNNs accurately. More controlled field measurements and shared case studies will allow 875 

SHM researchers to check the robustness and efficacy of the new algorithms. It is also expected 876 

that the SHM community will see a significant revolution of large databases in the near future that 877 

will allow the researchers to validate the new algorithms for a broad range of images. 878 
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v) Improved visualization of big SHM data: Building information modeling and mixed reality 879 

such as virtual reality and augmented reality has huge potential to allow structural engineers to 880 

manage and visualize long-term SHM data (Napolitano et al. 2018; Boddupalli et al. 2019, Singh 881 

and Sadhu 2020). These visualization tools integrated with the data storage capabilities of cloud 882 

computing, high-performance computing, and parallel processing will allow systematic 883 

interpretation of long-term SHM data. 884 

vi) Multidisciplinary research in SHM: Although CNN and its architectures stem from 885 

Computer Science and Data Analytics, domain expertise in structural engineering and SHM is still 886 

of paramount importance to select appropriate features and classes specific to any SHM 887 

applications. On the other hand, the selection of a suitable number of hidden layers (i.e., depth of 888 

the network), structure of the network, and various hyper-parameters such as the number of epochs, 889 

batch size, and iterations vary with the data and should be carefully selected by the AI experts. 890 

Therefore, multidisciplinary research amongst the researchers from structural engineering, 891 

computer science, and big data analytics will be essential to achieve optimal performance.  892 

vii) The potential use of video data in SHM: The majority of current approaches are limited to 893 

static images and do not apply to video data. Future research should be directed to acquiring high-894 

definition videos and processing them as a sequential dataset of static images using RNNs. 895 

Finally, figure 3 shows a summary of potential future research directions that will enhance the 896 

deployment of CNN in many SHM applications in upcoming years. Three critical components 897 

include balanced and real-time data collection and its visualization, development of laboratory and 898 

field measurements, and use of various forms of data type, such as time-series data and video data.  899 

 900 

 901 

 902 
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 903 

Figure 3. A schematic of the potential future research directions of CNN-based SHM research. 904 

 905 

9. Conclusions 906 

Civil Structures are composed of several material types, and often, therefore, subject to a wide 907 

range of damage categories. Such diversity applies to not only the majority of civil structures, but 908 

also railway infrastructure, pipelines, power generation plants, transmissions lines, and towers. 909 

Moreover, there is a prevalence among these structures to be highly susceptible to damages due to 910 

natural disasters and life-span fatigue due to ageing or normal operational conditions. Also, post-911 
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disaster inspections are often time-consuming, unsafe, and labour-intensive, making it difficult for 912 

human beings to accomplish these tasks efficiently. This paper systematically reviews the recent 913 

development of CNN-based SHM research that has been directed to solve these challenges. The 914 

state-of-the-art CNN-based architectures and newer SHM technologies have allowed the 915 

infrastructure owners to accurately and autonomously detect and localize multiple damage types 916 

in various structures using next-generation sensors such as cameras, drones and robots. In 917 

conclusion, future research will focus on developing the real-time implementation of CNN 918 

algorithms, open-source databases for civil structures, generalized application of CNN techniques 919 

using TL, and reducing classification imbalances that occur in large-scale infrastructure. 920 
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