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Abstract
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MSc. Engineering Physics

Data Analysis and Advanced Algorithms for Long-range Ultrasound Signal

Processing

by Ana Rita DIOGO

Ultrasonic guided wave testing (UGWT) is a non-destructive testing (NDT) technique

commonly used in structural health monitoring to perform wide-range inspection from

a single point, thus reducing the time and effort required for NDT. However, the multi-

modal and dispersive nature of guided waves makes the extraction of essential informa-

tion that leads to defect detection an extremely challenging task. The goal of this intern-

ship was to study some of these algorithms and proceed to their implementation and

evaluation to detect features and eventual defects in cylindrical structures.

An extensive study on various signal processing techniques was carried out as part

of the literature review to choose the algorithm to implement throughout the internship.

This review compared signal processing approaches to ultrasonic guided wave signals in

different geometries, resulting in a published article.

The Split Spectrum Processing method was implemented and applied to several sig-

nals to detect features. The filter bank parameters were studied to find the optimum val-

ues correlated to the pipe structure analysed, as well as the different recombination algo-

rithms. The ideal filter bank parameters were selected through a search brute force algo-

rithm and the best results were obtained for the polarity threshold and polarity threshold

with minimisation algorithms, in accordance with the literature.

Dispersive modes were first simulated to corroborate the method and results were

found to follow the initial ones in the implementation phase. To validate the technique

experimentally, several signals acquired through different techniques at frequencies of 60

kHz and 70 kHz, were propagated along a pipe structure containing features like welds
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and defects. The original signals were also reconstructed based on the results from the

recombination algorithms, having the best results been obtained again for the polarity

threshold and polarity threshold with minimisation, with SNR enhancement values of 37

dB and 35 dB, respectively. The improvement of choosing the best bank filter parameters,

testing on more field data under varied conditions, and flaws should be the main areas of

focus in future research on this topic, as well as the automation using machine learning

techniques in order to fit it to the signal being studied.

Keywords: ultrasonic guided wave testing, data science, data analysis, signal process-

ing, split spectrum processing.
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Análise de Dados E Algoritmos Avançados para Processamento de Sinais de

Ultrassons de Longo Alcance

por Ana Rita DIOGO

A testagem de ondas guiadas ultrassónicas (UGWT) é uma técnica de teste não des-

trutiva (NDT) geralmente usada em monitorização de integridade estrutural para realizar

inspeção de longo alcance a partir de um único ponto, reduzindo assim o tempo e esforço

necessário para NDT. No entanto, a natureza multimodal e dispersiva das ondas guiadas

torna a extração de informação essencial que leva à deteção de defeitos uma tarefa ex-

tremamente complicada. O objetivo deste estágio foi estudar alguns destes algoritmos e

proceder à sua implementação e avaliação para detetar caracterı́sticas e eventuais defeitos

em estruturas cilı́ndricas.

Foi realizado um estudo extensivo sobre várias técnicas de processamento de sinal

como parte da revisão de literatura para escolher o algoritmo a ser implementado ao

longo do estágio. Esta revisão comparou abordagens de processamento de sinal para

sinais de ondas guiadas por ultrassom em diferentes geometrias, resultando num artigo

publicado.

Foi implementado o método Split Spectrum Processing e aplicado a diversos sinais para

detetar caracterı́sticas. Os parâmetros do banco de filtros foram estudados a fim de encon-

trar os valores ótimos correlacionados com a tubagem analisada, bem como os diferentes

algoritmos de recombinação. Os parâmetros do banco de filtros ideais foram selecionados

por meio de um algoritmo de busca de força bruta e os melhores resultados foram obtidos

para os algoritmos polarity threshold e polarity threshold with minimisation, de acordo com a

literatura.

Os modos dispersivos foram inicialmente simulados para corroborar o método e os

resultados encontrados seguem os iniciais na fase de implementação. Para validar a
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técnica experimentalmente, vários sinais adquiridos através de diferentes técnicas nas

frequências de 60 kHz e 70 kHz, foram propagados ao longo de uma estrutura de tuba-

gem contendo caracterı́sticas como soldas e defeitos. Os sinais originais também foram

reconstruı́dos com base nos resultados dos algoritmos de recombinação, tendo os me-

lhores resultados sido obtidos novamente para o polarity threshold e polarity threshold with

minimisation, com valores de melhoria de SNR de 37 dB e 35 dB, respetivamente. A melho-

ria da escolha dos parâmetros ótimos do banco de filtros, testes em mais dados de campo

sob condições e falhas variadas devem ser as principais áreas de foco em trabalhos futu-

ros sobre este tema, assim como a automação utilizando técnicas de machine learning para

adequá-lo a o sinal estudado.

Palavras-chave: testagem de ondas guiadas ultrassónicas, ciência dos dados, análise

de dados, processamento de sinal, split spectrum processing.
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Chapter 1

Introduction

1.1 Context

Tanks, pressure vessels and pipelines are omnipresent infrastructures in the industry,

where they are used to store and transport products and raw materials to and from fac-

tories, and, in many cases, to distribution points and end customers. Over time, due

to material ageing, corrosion will reduce the original wall thickness of these structures,

which may compromise their reliable operation and even cause the collapse of the assets.

In addition to representing, in many cases, risk to the environment, health and integrity

of workers and surroundings populations; this type of situation can cause high economic

losses, directly due to unscheduled stops and indirectly due to supply failures. Thus,

within the scope of protection and optimisation of structural resilience of critical assets,

it is fundamental to carry out inspection of structural integrity to follow the evolution of

the structure condition during its ageing. In this context, ultrasonic guided waves test-

ing (UGWT) has shown capabilities of surveying large structural components for defects,

contrary to conventional Ultrasonic Testing (UT) based on punctual measurements, pro-

viding more comprehensive information about the integrity condition of the structure

under analysis [1] (Figure 1.1). Moreover, UT allows for the detection of both internal

and external flaws as well as the measurement of thickness and the detection of corrosion

or erosion. When there is a discontinuity (like a fracture), some of the delivered sound

energy is reflected in the cracked surface as waves that travel through the materials. The

wave signal is then converted by the transducer into an electrical signal that can be anal-

ysed.

1
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FIGURE 1.1: Representation of the conceptual difference between conventional ultrasonic
testing (left) and guided wave ultrasonic testing (right) [2]

Guided waves are elastic waves generated directly in the structure under analysis,

which propagate along its length, confined by the geometric limits of its walls. Hence,

they propagate through the structure and are reflected by variations in the wall cross-

section. The indications obtained may be related to geometric changes and variations in

thickness [1]. Using the arrival time of echoes and propagation velocity in the medium,

it is possible to determine the position of these changes. In turn, the amplitude of the

signals allows for the estimation of defect sizes [3]. Thus, this technique makes it pos-

sible to locate internal or external defects along an in-service pipe at distances of a few

tens of meters from a single excitation point. Moreover, it is possible to evaluate under-

ground and coated or isolated structures without the need to alter them, providing more

comprehensive information about the integrity condition of the structure under analysis.

Unlike conventional UT, there are an infinite number of guided wave modes that are

supported by a structure. Depending on the geometry of the structure, these modes fol-

low a certain classification. For plates, there are two families of modes: the Lamb waves

(Symmetric and Asymmetric) and the Shear Horizontal waves. On the other hand, for

cylindrical geometries, modes can be grouped into three families, namely the Torsional,

Longitudinal and Flexural modes. The acoustic properties of wave modes are a function

of the wall thickness, the material and the frequency. Predicting the properties of the

wave modes often relies on heavy mathematical modelling which is typically presented

in graphical plots called dispersion curves. Dispersion is the variation of phase and group

velocities of the ultrasonic guided signal and its propagation characteristics with the fre-

quency and thickness of the material. Thereby, the dispersion curves represent the veloc-

ities for each mode as a function of frequency. Most wave modes are dispersive, i.e., the

velocity varies with frequency. Dispersion causes the wave-packets to spread out in time
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as they propagate through a structure. Only Torsional and Shear Horizontal waves are

non-dispersive, and therefore are preferred for generation [4].

1.2 Problem statement

In UGWT, the generation and detection of these signals are done using a transducer me-

chanically coupled to the structure under analysis. There are three main technologies for

these transducers:

• Piezoelectric: transducers able to convert mechanical strain from electrical voltage

and vice versa. To create a variable electric field that operates on the material, this

device uses a piezoelectric material sandwiched between two electrodes. Due to its

characteristics, it compresses and relaxes based on how strong the applied electric

field is. Since an acoustic wave is formed in the ultrasound area, a structure can

transmit an acoustic wave there very well. This kind of device can be applied to a

variety of surfaces, but it needs good contact with the surface being studied. It does,

however, have certain limitations, like the efficiency decreasing with temperature,

the need for a coupling agent that is temperature sensitive, and the need for the best

coupling with the material to be studied.

• EMAT (Electromagnetic Acoustic Transducer): it uses the interaction between a

magnetic field and the properties of the material under study to generate or de-

tect acoustic waves. It is made up of a permanent magnet, a transducer substance,

and a coil where the alternating current is induced. Thus, the Lorentz force and

the magnetostrictive force appear within the sample as a result of the interaction

between the static magnetic field and the dynamic magnetic field. Depending on

the configuration, different kinds of ultrasonic waves can be produced. The main

benefit of this device is that it doesn’t need mechanical contact with the surface of

the material being studied (Figure 1.2).

• Magnetostrictive: utilises a specific kind of magnetic material in which an oscillating

magnetic field is applied to compress the atoms of the material together, causing a

periodic change in the material’s length and a high-frequency mechanical vibration

as a result. Due to their suitability for temperatures up to 600°C and the fact that

they can be used in contact or contactless approach with the material being studied,
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magnetostrictive transducers are typically used in the lower frequency ranges and

are frequently used in ultrasonic cleaners and ultrasonic machining applications.

Additionally, they have a signal one order of magnitude stronger than an EMAT.

FIGURE 1.2: Comparison between the piezoelectric transducer (left) and EMAT (right)
for generation of ultrasonic waves.

For instance, in pipes, the transducer is a collar consisting of an array of piezoelectric

elements where the elements are excited equally and simultaneously in order to generate

an axis-symmetric wave [3]. Alternatively, a 360º magnetostrictive ring transducer can

be used and, in this case, the axis-symmetric generation is ensured due to the symme-

try of the patch. In both cases, as stated before, the Torsional waves, in particular their

fundamental mode, are commonly used as excitation waves due to their properties. Nev-

ertheless, even generating non-dispersive waves with axial symmetry, the non-symmetric

nature of defects and some construction features of the structures will cause mode conver-

sion and give rise to dispersive signals. The presence of dispersive waves in the signals

is also seen as coherent noise. Coherent noise, as its name indicates, cannot be eliminated

by averaging as it is not random. On the other hand, as it coincides in frequency with the

signal of interest, it cannot be filtered using conventional filtering techniques. The piezo-

electric transducers acquire signals that suffer less from the effect of dispersion, so their

SNR is higher. However, this type of device presents limitations in terms of the distance

of inspection. This distance is much greater from magnetostrictive devices.

The multi-modal and dispersive nature of guided waves makes signal processing par-

ticularly challenging, which has been the subject of several studies over the years [5–7].

These techniques are necessary not only for the interpretation of the received ultrasonic
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signals but also for procedure automation, which improves non-destructive testing and

evaluation, along with the reliability and replicability of the process. Some of the issues

that stem from this involve the elimination of dispersive modes, mode separation and

defect identification, as well as their classification. To enhance and improve the detec-

tion and classification of defects, several methods have been employed to process the in-

put signal such as time-frequency representation (including the reassigned spectrogram

and the Wigner-Ville distribution), wavelet analysis, Hilbert-Huang transforms and cross-

correlation techniques [8–12].

1.3 Objectives

The internship has been developed at EQS Global, a company that provides specialised

services and digital solutions to help businesses manage their assets and operations, guar-

anteeing quality, compliance, improving reliability, performance and preventing incidents

from happening. The main goal is to apply advanced signal processing algorithms to

minimise the effect of dispersion and thus improve data analysis for UGWT using mag-

netostrictive transducers.

1.4 Scientific Contribution

The removal and separation of dispersive modes from a UGW signal have been subject to

various studies over the years and while progress has been made, there is still room for

improvement as new techniques are constantly being developed. To understand the prob-

lem at hand and determine the best approach in terms of signal processing techniques, an

extensive review of articles published in the last 20 years on signal processing of ultra-

sonic guided wave signals was carried out. The results of the study are presented in the

next chapter and resulted in a published article.

1.5 Report structure

The following report is divided into five chapters to assist its reading and present the in-

formation in a clear and organised manner. In this first chapter, an introduction to the

context of the project is provided, along with the motivation and problem statement. The

second chapter provides an overview of the current state of the art, in which the research
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is detailed, and signal processing techniques are reviewed according to their purpose and

geometry of the structure under analysis, describing the advantages and limitations of

each technique. The third chapter describes the methods used during the internship, out-

lining the complete process from conceptualisation to implementation. Results obtained

are discussed in the fourth chapter where they are critically analysed and interpreted,

as well as the optimisation of the methods. The final chapter provides conclusions and

suggestions for further work, followed by the bibliography.



Chapter 2

Literature Review

2.1 Searching methods

A systematic review was performed in the SCOPUS database using the following key-

words: ”signal processing” and ”ultrasonic guided wave testing”, yielding 251 unique re-

sults (Figure 2.1). Based on an analysis of the title and abstract, 177 works were excluded

for not meeting the following inclusion criteria: using signal processing algorithms and

being suitable for ultrasonic guided wave testing. Of the selected results, all conference

proceedings and book chapters were excluded, as well as 3 literature reviews, which are

detailed in the next sections. Further analysis of the body of text was done, leaving 51

full-text original studies which propose signal processing techniques and algorithms for

ultrasonic guided wave testing in metallic structures. The PRISMA diagram of the per-

formed systematic search can be seen below (Figure 2.2).

FIGURE 2.1: Articles with the keywords
”guided wave ultrasonic testing, signal
processing” published in the last 20

years.

FIGURE 2.2: PRISMA study flow dia-
gram of the performed systematic liter-

ature review.

7
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2.2 Signal processing techniques

As aforementioned, the processing of the guided wave signals resulting from the inter-

ference of the multiple modes supported by the structure under analysis, to gather infor-

mation about its integrity, is still an important challenge in UGWT. Over the last decade,

several techniques have been developed and tested for distinct purposes. Various articles

focus on filtering (removal) dispersive modes in order to improve the signal-to-noise ratio

(SNR) and consequently increase the sensitivity for defect detection [13–16]. Also, filter-

ing dispersive modes improves the accuracy of damage localisation by the increase of the

spatial resolution, as Moll et al. demonstrated by employing a time-varying inverse filter

to convert them into broad-band high-resolution signals [17]. However, removing these

modes can also imply the loss of relevant information: these modes carry relevant details

regarding the nature of the defects, for example, angular position and if it is external or

internal [18]. Thereby, the ability to separate modes rather than eliminate the dispersive

ones is quite appealing [7, 19]. Beyond signal enhancement and wave mode isolation,

the identification and localisation of the defects are also critical factors in UGWT. Dam-

age identification and classification have also been explored in several works [20–24], not

only to roughly locate them but also to assess their dimensions and to discern between

the types of defects. At last, a new tendency that has been expanding is the use of ma-

chine learning which, when combined with signal processing, allows for improved new

methods in terms of identification and classification of damage [25, 26]. It is important

to note the application of these signal processing techniques depends on the geometry of

the structure under analysis as well as their advantages and limitations. An overview is

presented in the next sections, where the main used techniques are described.

2.2.1 Pipes

Non-destructive testing and evaluation have become an important approach to reducing

losses and saving inspection time, specifically in pipelines, which are prevalent in all in-

dustries as part of transportation and distribution networks [27]. Pipes are usually mod-

elled as hollow cylinders, where axial propagation consists of Torsional and Longitudinal

modes. In these structures, three types of modes are admitted: Torsional mode T(0,m),

Longitudinal axisymmetric mode L(0,m) and Flexural asymmetrical mode F(n, m), where

n is the circumferential order, and m is a variable used to distinguish the modes of a given

order n [28]. Some of the most prominent issues that signal processing techniques aim
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to solve when it comes to the structural health of pipelines include the improvement of

signal-to-noise ratio through the cancellation of dispersive modes, isolation of modes and

imaging of defects, as well as the characterisation of symmetric and asymmetric defects.

As stated before, dispersive modes decrease the SNR and the spatial resolution; thus,

decreasing the sensitivity of the solution to detect defects and hindering the ability to

distinguish between defects close to each other or close to a construction feature of the

structure under analysis, such as welding and bolts. The elimination or filtering of these

specific modes is of great relevance in terms of signal processing, which can be achieved

with the use of methods such as dispersion compensation, compressed pulse analysis and

split spectrum processing. Adaptive filtering was first introduced by Widrow et al. as a

way to estimate signals distorted by noise or interference [29]. By making use of a pri-

mary input that contains the corrupted signal and a ”reference” input that contains noise

correlated to the latter, in which the reference input is adaptively filtered and subtracted

from the primary input. Mahal et al. proposed a new method to eliminate Flexural wave

modes, instead of extracting noise from the single time-domain signal by utilising adap-

tive filtering. This technique, as mentioned before, is often utilised as an adaptive noise

canceller and increases the SNR. Different adaption algorithms can be applied, but in this

specific case, the authors have employed leaky normalised least mean square (NLMS),

which is more suited for guided wave applications with time-varying noise because it

decreases the amplification of gradient noise and also provides a fast rate of convergence

(Figure 2.3).

FIGURE 2.3: Adaptive linear prediction filter algorithm for noise cancellation where the
red marked parameters are fixed [30].

The application of a leakage factor allows for a faster adaption of the filter weights
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to the existing noise of each iteration [30]. The optimal parameter selection is a trade-off

between maximum gain and stable amplification of the SNR of smaller defects.

Furthermore, other techniques that have conventionally been explored for UT can be

adapted to UGWT. Split spectrum processing was first applied with reference to surface

search radar operation [31], having later been adapted to ultrasonic testing [32]. This tech-

nique, also known as signal sub-band decomposition, consists of five major components.

First, the signal is to be converted from time-domain to frequency-domain, followed by

the implementation of a bank of band-pass filters that splits the signal into a set of sub-

bands at different centre frequencies. The results are then converted back to time-domain,

where each element is normalised by a weighting factor and finally assembled through a

recombination algorithm to yield the output filtered signal. The various frequency signals

in ultrasound are produced by dividing the frequency spectrum of the received signal,

rather than transmitting at different frequencies, as is the case in radar applications, and

are not correlated with each other. As a result, when these diverse frequency signals are

composited using various algorithms, the SNR can be improved. The success of this tech-

nique is however dependent on the selection of the filter bank parameters. Good results

have previously been achieved for UT testing, but the same values were not found to be

appropriate for UGWT, due to the existence of a combination of modes that operate in the

kHz range with different velocities [33]. Using a brute force search algorithm to manage

parameter selection, Pedram et al. made it possible to enhance the SNR and spatial reso-

lution of ultrasonic guided wave signals by removing dispersive wave modes, a method

which has since then been improved as a post-processing approach on coated pipes to

reduce the attenuation effects [34].

Mahal et al. introduced a novel statistical approach to identifying defect signals cor-

rupted by coherent noise by utilising the full potential of the tool-set array of conventional

guided waves inspection devices. This technique demonstrates the capability of detecting

defects utilising all of the individual transducers rather than a single signal obtained after

the general process. Three different methods were tested: the first, where the threshold

value is static and defined by the inspector, produced the worst results and in the sec-

ond the assigned threshold to each iteration is a percentage taken from the summation

of the amplitude of all of the transducers signals as the time-domain signal generated by

the normal propagation routine. In the third one, the number of transducers with the

same phase over the total number of transducers, subtracted by an offset determines the



2. LITERATURE REVIEW 11

percentage value, which yielded similar results to the second method, but the threshold

value can be set automatically, providing a great benefit in one-off inspections. This tech-

nique also allows the possibility of developing narrowband transducers, as opposed to

the currently used wideband transducers, which have a more focused transfer function

and stronger excitation power [35].

However essential increasing the SNR of a signal may be, it does have a downside,

since dispersive modes carry important information regarding the characteristics of exist-

ing damage. Preserving this type of information through the isolation and separation of

modes instead of its filtering becomes then an attractive approach. This can be achieved

through several methods, such as applying a wavelet transform (WT) which decomposes

a function into a set of wavelets, allowing the extraction of local spectral and temporal

information simultaneously [5, 20]. This concept was first developed by Haar, and since

then has been extensively studied [36]. Nevertheless, the improper selection of the mother

wavelet will significantly affect the usefulness of this method in extracting defect informa-

tion from the reflected signals. It has also been shown not to be suitable for the reduction

of coherent noise, as it removes the smaller amplitudes regardless of whether they are sig-

nal or noise, an issue also found in the application of cross-correlation techniques. Chen

J. further proposed the use of the tone-burst wavelet as the mother wavelet to denoise the

signal, which was found to be effective in extracting the defect-related signals and obtain-

ing better results when compared to the conventional Morlet wavelet, by comparing the

temporal waveforms of the normal pipe with those of the corroded pipe [37].

Matching pursuit is a technique often used to separate overlapped modes, that finds

the best match for a signal from an over-complete and redundant dictionary and has

the advantage of being applicable to any type of structure, given the proper dictionary.

Matching pursuit decomposition is commonly used to find discrete echoes in a signal, but

it can also be thought of as providing distinctive wavelets that reflect areas of the signal

where energy is concentrated in complex signals [38]. The main limitation of this method

comes down to the construction of the dictionaries, as it is difficult and time-consuming

to collect extensive data for that end. This technique has been combined with others to

enhance damage detection. A differential evolution algorithm has been employed to im-

prove parameter searching efficiency, and cross-term free time-frequency distribution is

achieved by superimposing the Wigner-Ville distribution of each matching atom decom-

posed [24]. The Gaussian modulated functions were chosen as matching atoms because
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their time-frequency characteristics match ultrasonic guided-wave signals effectively. The

effectiveness of parameter searches can be considerably improved by using the differen-

tial evolution technique, and flaws can be distinguished from echo signals using time-

frequency distribution characteristic comparison. The Wigner-Ville distribution function

was first proposed by Eugene Wigner when making calculations of the quantum correc-

tions to classical statistical mechanics and was later derived as a quadratic representation

of the local time-frequency energy of a signal by J. Ville [39]. Rostami J. et al. expanded

upon this by proposing sparse representation with dispersion based matching pursuit

(SDMP), which takes dispersion into account, increasing the sparsity of the final repre-

sentation [7]. This technique consists of a two-stage algorithm, designed with a dictio-

nary based on actual waves obtained from finite element simulations, to represent guided

wave signals with the maximum sparsity. In the first stage, a signal is approximated and

in the second, sparsity is further increased based on the frequency components of the ex-

citation signal. Thus, undesired components of guided wave signals are filtered and at the

end, a very clean signal with meaningfully decomposed components remains for further

analysis. This method can be extended to any plate-like structure made from different

materials such as plastic pipes, aluminum and composite plates, steel strands and rails,

on the condition that a new dictionary is designed with reference to the geometry of the

structure and its material.

To detect and determine the localisation of defects, Mahal H. et al. proposed a condition-

based comparison of the power spectrum achieved from a sliding moving window for

the received signal. The algorithm consists of several steps, the first being its initialisa-

tion, which initialises the excitation sequence to extract the necessary features for analy-

sis. Then the main loop uses the advancing window and carries out the pre- and post-

processing of the conditions. Finally, the spectrum of each iteration is compared with the

one achieved from the excitation sequence. In each iteration, the signal is normalised, and

its corresponding power spectrum is generated to detect the Torsional wave. However,

due to significant changes in the excitation sequences, it is not recommended to use this

algorithm with frequencies higher than 42 kHz [6].

With the growth of the machine learning field, new signal processing methods are be-

ing integrated with these algorithms. Artificial neural networks, for example, are very

appealing due to their ability of generalisation and for the characteristic of not requiring

any fault physical model. Cau et al. made use of traditional feed-forward multi-layer
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perceptron networks to obtain information on the size and location of notches. The study

employs Torsional waves as excitation waves and the finite element method has been

used to model pipes and defects to obtain several echoes containing damage information.

The obtained signals were then processed to reduce the dimension and extract relevant

features. Preliminary results show that the return time of the received signals is linearly

dependent on the defect position while independent of the entity of the fault, so the notch

position can therefore be determined with accuracy [25]. On the other hand, the correla-

tion between the variation in time-frequency spectra and the shift in predominant modes

with the spread of corrosion can be obtained from the deduction of the dispersion curves.

To track the mode conversions as corrosion progressed, a new time-frequency spectrum

was constructed. By employing the k-means clustering method, indices have been used

to quantify the change in signal intensity with the progress of corrosion along with a

modified S-transform. The subjectivity of contact type monitoring paradigms to contact

pressure is a common source of uncertainty. The proposed method addressed this issue by

processing signals time-frequency-based, with the key components based on propagating

modes rather than signal amplitudes [40].
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Author Year Technique Summary and results

Liu S. [5] 2021 Wavelet trans-

form (WT) and

empirical mode

decomposition

(EMD)

The decomposed signal in WT can better pre-

serve defect information and reduce the interfer-

ence of noise signals, but the signal processed by

the EMD is better than that of the WT.

Chen J.

[37]

2017 Tone-burst

wavelet

Results show that the location of the corroded ar-

eas of the pipes could be accurately detected us-

ing the calculated group velocity of the guided

wave. Comparing the temporal waveforms of

the normal pipe with those of the corrosion, flaws

were easily observed and detected.

Rostami

J. [7]

2017 Sparse Repre-

sentation with

Dispersion Based

Matching Pursuit

The SDMP with dispersive dictionary has greatly

enhanced the performance of matching pursuit

and guarantees the maximum sparsity. Although

the presented SDMP for signal interpretation ad-

dresses the inspection of steel pipes, it can be ap-

plied to any plate.

Mahal

H. [6]

2019 Sliding moving

window

Three different pipes with defects sizes of 4, 3 and

2% cross-sectional area (CSA) material loss were

evaluated. Results demonstrate the capability of

this algorithm in detecting Torsional waves with

low SNR without requiring any change in the ex-

citation sequence.

Pedram

S. [33]

2018 Split-spectrum

processing

Both techniques achieved the greatest SNR with-

out distorting the relative amplitudes of the sig-

nal of interest where an improvement of up to

38.9 dB was observed. SSP shows good poten-

tial to increase the inspection range from a single

test location as it significantly reduces the level of

coherent noise.

TABLE 2.1: Works found addressing signal processing techniques applied to pipes.
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Author Year Technique Summary and results

Pedram

S. [34]

2020 Split-spectrum

processing

SSP algorithm is shown to have great poten-

tial to decrease the background noise entirely by

minimising the effect of undesired wave modes

throughout the signal’s trace, whereas the tradi-

tional method was not able to do it. Good results

were obtained for coated pipes.

Mahal

H. [35]

2018 Axisymmetric

wave detection

algorithm

An axisymmetric wave detection algorithm was

designed, which was validated by laboratory tri-

als on real-pipe data with two defects on different

locations with varying CSA sizes.

Mahal

H. [30]

2019 Adaptive leaky

NLMS filter

The results demonstrated the capability of this al-

gorithm for enhancing the SNR of the defect. The

results proved that the model parameters can be

chosen using a finite element method model, but

it will not result in the maximum gain.

Majhi S.

[40]

2019 Modified S-

Transform

A novel time-frequency spectrum was developed

to monitor the mode conversions in relation to

the progress of corrosion. K-means clustering is

used to quantify the variation in signal strengths

with progress of corrosion. The proposed tech-

nique was able to obtain the variation in distri-

bution of spectral contribution from higher order

to lower order modes.

TABLE 2.1: continued.

2.2.2 Plate-like structures

The planar geometry of plates differs from cylindrical pipes, and thus different approaches

are required. Usually, planar based ultrasonic guided wave transducers are used for pres-

sure vessels, tank bottom plates and wall inspection. Guided waves in plates depend on

reflections from the upper and lower surfaces of the plates to travel long distances on the

plate parallel to these surfaces. The profile and the velocity of each guided wave mode in
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plates depend uniquely on their frequency and thickness of the structure; hence, thinner

plates may support guided waves with higher frequencies than thicker plates. There are

two families of wave modes for plates: the Lamb Waves and the Shear Horizontal (SH)

Waves. In the Lamb waves, the particle direction is parallel (longitudinal direction) to

the wave propagation direction and normal to the plate, and there are two different sub-

families of modes: symmetrical (S) and asymmetrical (A). For the SH modes, the particle

displacement is perpendicular to the wave propagation direction. The notation used for

these modes is An, Sn and SHn, where n represents the order of the mode.

In terms of filtering dispersive modes and improving SNR, techniques such as wavelet

transform based noise processing and compressed sensing methods can be employed.

Ianni et al. accomplished to minimise the number of scan point locations over the sur-

face of an inspected structure by using compressed sensing of full wave field data. This

method asserts that thanks to sparsity, a signal can be acquired and recovered from a lim-

ited number of linear measurements without loss of information, being the reconstruction

performance influenced at large by the choice of a suitable decomposition basis to exploit

such sparsity [41]. Furthermore, wavelet transforms have also been previously mentioned

and studied with the purpose of denoising, as Da et al. proposed two approaches to this

issue, based on time and wavenumber domains, allowing for a successful inverse recon-

struction of flaws by reflected signals with signal noise ratio as high as −5 dB [42].

When it comes to dispersion compensation, a MUSIC-based multichannel method was

employed by Zabbal et al. to extract dispersion curves from experimental data [43].

When compared to single vector decomposition techniques, this method enhances weak

modes and displays a low noise level and a high wavenumber resolution, allowing for

the characterisation of multi-layered structures of different materials. Xu et al. carried out

dispersion compensation as well for both single-mode and multi-mode guided waves by

utilising the dispersion curves of the guided wave modes in order to sparsely decompose

the recorded dispersive guided waves [44].

The use of estimation of signal parameters via rotation invariant technique (ESPRIT)

and particle optimisation algorithm has been employed by Chen et al., resulting in root

mean squared errors between the estimated and theoretical dispersion curves calculated

by the inversed model parameters for simulation, steel, aluminium and composite exper-

iments are: 0.027, 0.032, 0.033 and 0.102 rad/m [45]. The ESPRIT based dispersion curves

extraction strategy offers a sharp objective function in the parameter space, whereas the
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PSO optimiser can be implemented with ease and a few parameters need to be tuned. The

spatio-temporal sparse wavenumber analysis implemented by Sabeti et al. achieved good

results as well for the extraction of dispersion curves, with results indicating the possi-

bility of accurate reconstruction (correlation coefficient of around 0.9) for sampling rates

above 60% of the spatio-temporal Nyquist critical sampling rate. ST-SWA takes a tem-

porally and spatially under-sampled guided wave data matrix as input and retrieves the

sparse representation of the wave field in the frequency-wavenumber domain using the

two-dimensional model and two-dimensional sparse recovery techniques. The generated

representation can then be fed into a forward problem by the model to rebuild the original

fully sampled wave field [46]. The results indicate that as long as overfitting is avoided,

minor improvements in reconstruction accuracies can be observed at greater sparsities.

Time-frequency methods allow for an analysis of acoustic signals with multiple prop-

agation modes, as well as the measurement of group velocity dispersion. The disper-

sion of several Lamb modes over a wide frequency range can be calculated from a single

measurement by combining time-frequency analysis with a broadband acoustic excita-

tion source [9]. As opposed to the Wigner-Ville distribution, the smoothed Wigner-Ville

distribution offers a better representation of individual modes and can localise multi-

ple closely-spaced modes in both time and frequency [10]. Wu et al. was able to suc-

cessfully isolate guided wave modes with a signal decomposition algorithm, combining

Smoothed Pseudo Wigner-Ville distribution to obtain the time-frequency distribution and

Vold-Kalman filter order tracking to isolate modes. The location of defects can be obtained

by the decomposition results. First, the Smoothed Pseudo Wigner-Ville Distribution pro-

cesses the signal to get the corresponding time-frequency distribution, followed by the

extraction and separation of the different modes. The Vold Kalman Filter Order Tracking

is then applied to filter specific mode waveforms. A peak-track algorithm is then con-

ducted in the significant areas and finally, to minimise error, a corresponding filter is built

in time domain [19]. The technique can also be used in analogue NDT and NDE based on

ultrasonic guided waves.

As previously stated, mode separation is quite an appealing approach to signal pro-

cessing since it preserves the information contained in dispersive modes. Ratassepp et al.

was able to perform this with a technique based on the guided wave mode orthogonality,

used to separate the multi-modal signal into individual time-domain Lamb and SH mode
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components at the plate edge with successful results. In comparison to the standard spa-

tial fast Fourier transform, the orthogonality-relation-based technique reduces the num-

ber of monitoring points and eliminates the need for additional mode filtering operations

because obtaining the amplitudes of the modes is simple. Although the through-thickness

displacements and stress field components must be measured, the orthogonality-relation

at the plate edge is simplified because the stresses are null. As a result, only displacement

components must be measured at a plate edge, making the method practicable [47].

Identifying distances and depth of damage is also a prevalent topic, and recent studies

search to integrate machine learning to achieve better results. Rizvi et al. utilised an au-

toregressive model based on Burg’s maximum entropy method to modify the kernel of the

discrete Wigner-Ville distribution with an uncertainty of 5% [48]. The conventional Burg

algorithm determines the reflection coefficient by minimizing the backward and forward

prediction error of a single sequence or segment, but the Wael and Broersen algorithm is

highly efficient in estimating the prediction error of all the segments taken together, hence

a single model can be exploited for all the kernel sequences at a time. This model is more

robust and stable, less biased, and more computationally efficient. The proposed tech-

nique can also be applied to pipes. It is important to mention that the current study used

supervised machine learning to model the other dimensions of the crack. In a realistic

case, these parameters would be unknown and would significantly affect the damage sig-

nal. Artificial neural networks have also been employed, where features extracted are fed

to the network, enabling the classification of defects with a success rate > 75% [49]. De-

fect identification can also be done by using baseline methods, processing the signals and

extracting the time parameters of the wave packets in mode conversion signals [50–52].

Deep learning has also been employed for this end [53].

Another approach commonly implemented makes use of image reconstruction to iden-

tify defects in the structure under analysis. He et al. proposed a multi-mode damage

imaging technique which combines a reverse-time migration algorithm with a 3D wave

propagation simulator with the potential to simultaneously determine damage type, size

and location. Even though it wasn’t possible to obtain detailed information on different

modes, good results were achieved for damage location and defect size [54]. Furthermore,

a reconstruction algorithm for probabilistic inspection of damage (RAPID) was utilised

for tomography [55], with a more accurate quantitative visualisation obtained using the

dominant mode, identified through frequency shifting and short-time Fourier transform



2. LITERATURE REVIEW 19

[56]. Image constructed from the correlation coefficients between the scattering signal and

the atoms of the dictionary using a weighted sparse reconstruction-based anomaly imag-

ing method yield accurate weights [57]. By using the appropriate weights applied to the

objective function, the presented method can achieve anomaly imaging with fewer arte-

facts, making the success of this method limited to the selection of a suitable dictionary

(Figure 2.4).

FIGURE 2.4: The mode identification process of Lamb waves considering group velocity,
frequency, and superposition effect [56].

Zhang et al. developed a processing technique to separate modes to effectively re-

move the artefacts resulting from the multi-mode interference in the imaging process,

able to properly measure multi-site faults with geometry, size, and depth information.

Green’s function is used to back-propagate the scattering Lamb signals in the frequency-

domain, allowing the monitored area’s back-propagated acoustic field information to be

collected. A reverse-time migration method is then applied to reconstruct damage, by the

cross-correlation between the incident acoustic field and the back-propagated acoustic

field [58]. Numerical results show that mode separation pre-processing aids in effectively

removing artefacts caused by multi-mode interference in the imaging process. Full wave-

form inversion algorithm is also an interesting guided wave tomography method, which

makes use of a numerical forward model to predict the waveform of guided waves when

propagating through corrosion defects and an inverse model to reconstruct the thickness

map from the ultrasonic signals captured by transducers around the defect. Results by

Rao et al. show that it is affected by the shape of the defect [59]. The abrupt change in

the wall thickness has been shown to decrease the reconstruction error of small defects

compared to the smoothly varying thickness.
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Lugovtsova Y. et al. studied several wavenumber mapping techniques applied to

composite-overwrapped pressure vessels. The study proposes the pre-processing of the

wavefield so that only one mode at one frequency is left before wavenumber mapping,

followed by the application of instantaneous and local wavenumber techniques. This

method presents an excellent defect sensitivity and suitable defect quantification perfor-

mance. The main limitation of this approach is that it is not possible to quantify every

delamination between CFRP plies caused by the impact, as is the case for conventional

UT. Only some parts of the impact damage are visible in the wavenumber and thickness

maps. Another limitation is that the relation between wavenumber and effective thick-

ness is non-monotonous, due to the complexity of the layup of the composite plate used

in experiments and its anisotropy [60].

Wind turbines are often subject to guided wave testing since they are subjected to

significant mechanical loads, necessitating an appropriate maintenance strategy to en-

sure cost-effective power generation while minimising life cycle expenses. Several studies

have then been conducted where pattern recognition is carried out using techniques such

as supervised learning classifiers, Wigner-Ville distribution, and filtered signal by Hilbert

Transform [61, 62]. The approach taken by Arcos et al. filters the data set by wavelet

transform, and the dimension of the signal is reduced by feature extraction and selection,

followed by pattern recognition with supervised learning classifiers [63]. To note that al-

though good results have been achieved, the cost and time-consuming process to acquire

the necessary data for model training need to be taken into consideration when employ-

ing this method. Table 2.2 presents a summary of the techniques employed in plate-like

structures [64].



2. LITERATURE REVIEW 21

Author Year Technique Summary and results

Da Y.

[42]

2017 Wavelet trans-

form in time and

wavenumber

domains

Wavenumber-domain WT operation gives a bet-

ter denoising effect than direct time-domain WT

denoising. Using the former, one can perform

the inverse flaw reconstruction by reflected sig-

nals with a SNR as high as −5 dB.

Xu C.

[64]

2018 Dispersion

compensation

method based

on compressed

sensing

The method can compensate both single mode

and multi-mode dispersive guided waves effec-

tively, based on the accurate dispersion curves

and every dispersive wave packet to the wave-

form of the excitation as well, and achieve bet-

ter performance than the time-distance mapping

method.

Wu J.

[19]

2017 Smoothed

Pseudo Wigner-

Ville distribution

and Vold-Kalman

filter order track-

ing

The results of the simulation signal and the ex-

perimental signal reveal that the presented al-

gorithm succeeds in decomposing the multi-

component signal into mono components. Fur-

ther research needs to be done to validate the fea-

sibility of locating defects by the algorithm.

Chen Q.

[45]

2021 ESPRIT and POS

algorithms

The root mean squared errors between the es-

timated and theoretical dispersion curves calcu-

lated by the inversed model parameters for sim-

ulation, steel, aluminum and composite experi-

ments are: 0.027, 0.032, 0.033 and 0.102 rad/m.

Sabeti S.

[46]

2020 Spatio-temporal

sparse wavenum-

ber analysis

The results indicate the possibility of accurate

reconstruction (correlation coefficient of around

0.9) for sampling rates above 60% of the spatio-

temporal Nyquist critical sampling rate.

TABLE 2.2: Works found addressing signal processing techniques applied to plate-like
structures.
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Author Year Technique Summary and results

Rizvi S.

[48]

2021 Autoregressive

model to mod-

ify the discrete

Wigner-Ville dis-

tribution

The proposed method precisely estimated the

distance between two closely spaced notches in a

metallic plate from different simulated noisy sig-

nals with a maximum uncertainty of 5%.

Bagheri

A. [49]

2016 Artificial neural

network

The non-contact inspection system and the signal

processing technique enable the classification of

the plate health with a success rate ¿ 75 %.

Wang G.

[51]

2019 Matching pursuit

algorithm of Ga-

bor function

The first iterative compensation of the proposed

method can achieve compensation within the

temperature range greater than 7°C, and the com-

pensation within the temperature range greater

than 18◦C can be achieved after three iterations.

Jia H.

[50]

2020 Baseline-free

method based

on the mode

conversion and

the reciprocity

principle

In the case of 1.0 mm depth, which performed

strong ability of mode conversion, four obvious

wave packets were observed. The result shows

that the method could accurately localise both

defects.

Douglass

A. [52]

2018 Temperature

compensation

method based

on dynamic time

warping

For frequencies above 200 kHz and tempera-

ture differences above 25°C, the correlation coef-

ficients were consistently greater than 0.75 while

the scale transform showed correlation coeffi-

cients below 0.35. Correlation coefficients are

consistent above 0.75 while the scale transform’s

correlation coefficient dropped to 0.45 with as lit-

tle as 0.4 ms of data.

TABLE 2.2: continued.
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Author Year Technique Summary and results

He J. [54] 2019 Reverse-time

migration (RTM)

imaging

The algorithm was combined with a numeri-

cal simulator: the three-dimensional elastody-

namic finite integration technique (EFIT), in or-

der to provide multi-mode damage imaging.

The results represent the damage location and

size, but do not provide detailed information of

different modes.

Lee Y. [56] 2021 Reconstruction

algorithm for

probabilistic

inspection of

damage (RAPID)

Location possibility was confirmed through the

application of the anti-symmetric mode, and

that quantitative imaging was very difficult in

the bending stress dominant mode. The more

accurate quantitative visualisation of defects

was achieved when imaging was performed

through this mode.

Xu C. [57] 2019 Weighted sparse

reconstruction-

based anomaly

imaging method

Results for carbon fiber-reinforced polymer

(CFRP) plate with an additional mass show that

the weights constructed from the correlation

coefficients between the scattering signal and

the atoms of the dictionary are appropriate and

accurate.

Zhang H.

[58]

2018 Reverse time mi-

gration method

Numerical results demonstrate that the pre-

processing of mode separation helps to effec-

tively remove the artefacts resulting from the

multi-mode interference in the process.

Lugovtsova

Y. [60]

2021 Wavenumber

mapping

The approaches used deliver an accurate esti-

mate of the in-plane size of the large delami-

nation at the interface, but only a rough esti-

mate of its depth. The wavenumber mapping

techniques used can quantify every delamina-

tion between CFRP plies caused by the impact,

which is the case for conventional UT.

TABLE 2.2: continued.
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Author Year Technique Summary and results

Arcos

Jiménez

A. [63]

2019 Wavelet trans-

form and super-

vised learning

classifiers

Results show that the combination of the k-

nearest neighbours algorithm with the princi-

pal component analysis technique provides the

best results for the detection and diagnosis of

mud in the developed experiments. The classi-

fier that detects and identifies mud in all cases

is the ensemble subspace discriminant model

for E-1. Fuzzy k-nearest neighbours is the best

classifier for E-2.

Tiwari K.

[61]

2018 Wavelet trans-

form

The discrete wavelet transform along with am-

plitude detection technique was applied on ex-

perimental B-scans to locate and size the de-

fects with a significant accuracy: the percentage

error was less than 12%.

Gómez

Muñoz C.

[62]

2018 Wavelet trans-

forms

The envelope of the filtered signal by wavelet

transforms is done based on Hilbert Transform,

and the pattern recognition is achieved by au-

tocorrelations of the Hilbert transform. The ap-

proach detects the ISO 12494 cases of un-frozen,

frozen without ice, and frozen with ice in wind

turbines.

Tiwari K.

[65]

2017 Wavelet trans-

form, Hilbert-

Huang transform

The size of defects having diameters of 15 and

25 mm at -3 dB threshold level were measured

as 9 mm with a percentage error of 40%, and

34.5 mm with a percentage error of 38%. The

location of defects at the -3 dB threshold level

from the start point of scanning was also calcu-

lated as 29 mm (for the defect of 15 mm), with

a percentage error of 37.5%, and 405.5 mm (for

the defect of 25 mm) with an error of 2%.

TABLE 2.2: continued.
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2.2.3 Other geometries

Even though this review focuses on pipes and plate-like structures, it is important to point

out certain methods that have been developed to adapt to other elements and geometries

far more complex and thus, presenting a new set of challenges. For example, seven-

wire strands when considered individually, resemble a hollow cylinder, but altogether

the structure becomes complex and presents new complications.

In steel strands, He et al. utilised the lowest Longitudinal mode L(0, 1) as the excitation

mode so that the received signal could be denoised with multi-level discrete wavelet de-

composition and single branch reconstruction method [66]. Multi-level discrete wavelet

decomposition is based on wavelet analysis, which produces a group of organised de-

compositions. By iterating the decomposition process, a signal is broken down into many

lower-resolution components. To perform dispersion compensation, Legg et al. utilised

dispersion curve data to characterise the wave propagation using broadband Maximum

Length Sequence (MLS) excitation signal and spectrograms in overhead transmission ca-

bles [67]. Only the first set of echoes could be resolved without dispersion compensation,

whereas with dispersion compensation and some filtering, individual echoes could be

recognised for at least five sets of echoes from the end of the cable. While the study

used an ACSR cable, the method can be applied to increase the inspection range for other

structures, such as plates, pipes, and other types of cables. Ji et al. later applied singu-

lar value decomposition and support vector regression model to evaluate the stress level

in strands, employing the theoretical and finite element methods to solve the dispersion

curves of single wire and steel strands under various boundary conditions [68]. Despite

simulated and experimental results showing the effectiveness and potential of the pro-

posed technique, it is not always the best for visualisation. On the other hand, reliability

can be enhanced by adding more samples.

Due to the intricate nature of these structures, machine learning techniques have been

applied to further the interpretation of the signals. For example, by using a deep convolu-

tional neural network (DCNN) with a VGG-like architecture-based regression model for

detecting and estimating the looseness in bolted joints using a laser ultrasonic technique

[69]. First, the signals are measured at each impinging point and then performed the

imaging process to produce full-field ultrasonic data sets. These sets are then submitted

to signal processing techniques and a model evaluation process is utilised for choosing the

best performance. At last, the DCNN model is generated to estimate the looseness value
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of bolted joints. The ultrasonic receiver needs to be set up manually and can be applied

in the straight-line area only. For beams, Liew C. introduced a multi-layer perceptron

for pattern recognition, operating with one hidden layer of neurons and progressively

trained using a backpropagation algorithm with integration of a weight-range selection

(WRS) technique that was dependent on the test pattern to achieve good results for dam-

age location and depth [70].

Importance is also placed on methods that can monitor practical structures with arbi-

trary complexity. Recently, Ju et al. proposed a new nonlinear guided wave technique

to non-destructively determine the presence of microstructural defects in a large-area

structure with complex geometry. When the multi-mode guided waves diffusely prop-

agate through any physically-connected structure with arbitrarily complex geometry all

available guided wave modes in any interrogated zone of the structure are automatically

down-selected by the medium through attenuation, dispersion, or filtering. Such remain-

ing modes efficiently transfer energy, for example, to their second harmonic modes, when

they encounter micro-cracks even in the case of irregular geometries [71]. A summary of

the techniques employed in these different structures can be found in Table 2.3.

Author Year Technique Summary and results

He C.

[66]

2008 Multi-level dis-

crete wavelet

decomposition

and single branch

reconstruction

The Daubechies wavelet of order 40 is used as

the mother wavelet for the decomposition. This

wavelet denoise method improves the SNR.

Legg M.

[67]

2015 Dispersion curve

compensation

Attenuation and dispersion compensation were

then performed for a broadband Maximum

Length Sequence (MLS) excitation signal. It was

found that an increase in terms of SNR between 4

and 8 dB was observed relatively to the dispersed

signal. The main benefit was the increased abil-

ity to resolve the individual echoes from closely

spaced structures.

TABLE 2.3: Works found addressing signal processing techniques applied to other struc-
tures.
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Author Year Technique Summary and results

Ji Q. [68] 2021 Singular value

decomposition

and support vec-

tor regression

Results show that the fundamental mode disper-

sion curve offset on the high-frequency part and

cut-off frequency increases as the boundary con-

straints enhance, demonstrating the capability of

the proposed support vector regression method

for evaluating the stress level in the strands.

Tran D.

[69]

2020 Discrete convolu-

tional neural net-

work

The DCNN and wave propagation imaging pro-

duced the highest R2 score and lowest MSE score:

0.91 and 1.55, respectively.

Liew C.

[70]

2008 Series combined

network with the

integration of a

weight-range se-

lection

The system was able to achieve average predic-

tions accurate to 2.5 and 7.8% of the original

training range sizes for the damage location and

depth, while the WRS provided up to 13.9% im-

provement compared to equivalent conventional

neural networks.

Ju. T.

[71]

2022 Nonlinear re-

sponse of multi-

mode guided

wave ultrasonic

signals

Experimental results are consistent with nu-

merical simulations, indicating that the pro-

posed method can be implemented for semi-

quantitative detection or early warning indica-

tion of microstructural defects in complex, large-

area structures.

TABLE 2.3: continued.

2.3 Summary

Ultrasonic guided wave testing is a dominant field in structural health monitoring and

non-destructive testing, serving as an effective long-range inspection method. Nonethe-

less, the multi-modal and dispersive nature of guided waves makes signal processing a

particularly difficult task. This review aimed at presenting an overview of signal process-

ing techniques applied to guided waves. Numerical methods to improve the SNR, isolate
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and separate modes, and identify and classify defects were discussed in terms of effec-

tiveness and limitations, along with machine learning techniques that can be integrated,

which is an approach that shows promising results in the field. New lines of research

can be brought to light with the understanding of the aforementioned issues in terms of

ultrasonic guided waves. The solution seeks to improve the capacity of UGWT to detect

damage in all sorts of structures in a more informed and reliable manner.



Chapter 3

Split Spectrum Processing

3.1 Introduction

As previously stated, one of the most common issues signal processing techniques ap-

plied to UGWT aim to solve is to eliminate dispersive modes, thus increasing the spatial

resolution and enabling the detection of defects. Several methods can be employed to

this end, but the following section describes a specific technique that is commonly used,

due to its simplicity and low computational cost. This method has been widely studied

and has a long history in the field of NDT to reduce grain scatter. To reduce the effect of

dispersion, a few things can be done in terms of pre-processing, such as utilising short

pulses and axisymmetric wave modes for excitation. However, the interaction between

the signal and features found along the structure will result in mode conversion and thus

give rise to dispersive modes. These modes spread out in time and space, making signal

analysis and identification of certain defects a complex task. Another issue that emerges

is the fact that dispersion is one of the main sources of coherent noise, meaning noise that

is non-random and occupies the same bandwidth as the target signal. Therefore, con-

ventional filtering techniques such as low pass and high filters are ineffective in filtering

the signal. It is also important to note that these modes can contain relevant information

regarding defects present in the structure, so their removal is not ideal. However, mode

separation is quite difficult to achieve.

Dispersive modes are characterised by their frequency-dependent properties, such as

their group and phase velocity and when graphically represented are often referred to as

dispersion curves (Figure 3.1). The presence of these modes leads to overlaps of the signal

in the time domain and group delays. In pipes, the modes supported are Longitudinal

29
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L(0,m), Torsional T(0,m) and Flexural F(n,m), where n is the circumferential order and m

corresponds to the mode order. Torsional and Longitudinal modes are axisymmetric and

thus their circumferential order is 0. Flexural modes contrastingly can have three different

configurations in terms of circumferential order (Figure 3.2).

FIGURE 3.1: Group velocity dispersion curves for a 4 inches carbon steel pipe. The order
n of the flexural modes increases from left to right.

FIGURE 3.2: Selection of displacement shapes of guided wave modes in a 6-inch steel
pipe at 60 kHz [72].
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Split spectrum processing is a signal processing method that aims to increase the SNR

of a given input signal by reducing the coherent noise. It is worth noting that, as stated

above, it is not suppressed during the averaging and cannot eliminate by using conven-

tional filtering algorithms because it is at the same frequency band as the signal of interest.

It was first applied in radar applications having later been adapted to ultrasonic guided

wave testing. The method consists of splitting the input signal into various sub-bands

using a generated bank of band-pass filters followed by the recombination of those same

sub-bands. The input signal x(t) is converted from time-domain to frequency domain us-

ing the Fourier transform, thus obtaining the signal X( f ). A filter bank is then utilised to

split the signal into bands. To create the filter bank, it is necessary to select the bandwidth

of interest, which is then split into equally spaced band-pass filters at different centre

frequencies obtaining insights into the spatial distribution of energy in each band, result-

ing in a number of output signals Xn( f ) (n = 1, 2, ..., N) where N is the total number of

filters. These signals are then converted back to the time domain using inverse FFTs and

normalised by a weighting factor where each set of signals is divided by its maximum val-

ues in the time domain before the recombination algorithms are applied. Finally, they are

recombined through non-linear processing procedures to identify the areas of the signal

in which there is a significant contribution of energy present in all bands, such as aver-

aging, minimization and order statistic filters that differentiate target echoes from clutter.

(Figure 3.3).

FIGURE 3.3: Schematic diagram of the split spectrum processing technique.

The velocity of the different modes can be represented using dispersion curves as

a function of frequency. Dispersion experienced by the wavefront is dependent on fre-

quency, depending on the size, number and distribution of the scatterers of the material,

thus for dispersive modes, not all the frequencies will be reflected equally, a phenomenon
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called frequency diversity. Thereby, the presence of dispersive modes across the sub-

bands will vary as opposed to non-dispersive modes, which will stay constant. Split

spectrum processing explores the frequency diversity phenomenon. By filtering these

sub-bands, the algorithm removes the components that differ along the bandwidth. The

spectral power density of the received echo will only carry information on a few localised

bands when the wavefront collides with a reflector of size proportional to its wavelength.

The size and distribution of these reflectors are random, and so is the distribution of the

received power.

3.2 Selection of bank filter parameters

Following the conversion from time-domain to frequency-domain using the FFT, it is nec-

essary to divide the signal into the desired sub-bands. Thus, a bank filter must be de-

signed to achieve this end.

The parameter values of the filter bank were first studied by means of trial-and-error

for NDT applications as they were processed. This approach is, however, not practical

since inspection requires large sets of data to be constantly analysed. In conventional

ultrasonic applications, the SSP algorithm has been successfully employed due to ideal

parameter selection. Nonetheless, the parameter selection rules used for SSP of con-

ventional UT signals are unsuitable for signals used in UGWT due to the comparatively

long duration and narrow bandwidth. These signals also contain axisymmetric and non-

axisymmetric wave modes with different phase velocities. So, the proper selection of

optimum filter bank parameters is required to obtain adequate results.

Several factors contribute to this task, such as the number of bands N, the total op-

erating bandwidth for processing B and the bandwidth of each filter B f ilt, the overlap

between the bands, and the filter separation F and the filter type. The design of the bank

filter itself depends on the following parameters:

• Total operating bandwidth B: corresponds to the bandwidth in which the signals

from features are constant across its range, and the coherent noise varies. If the

bandwidth is too wide or too narrow, then at least one of the filter outputs will not

include the feature signal, and this may cause the feature to be lost in the process.
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• Filter separation F: the filter separation is the distance between sub-band filters

based on the parameter selection in SSP for conventional UT. According to the

literature, the optimum spectral splitting could be achieved using the frequency-

sampling theorem. The frequency-sampling theorem says that the spectrum of a

time-limited signal can be reconstructed from its sample points in the frequency

domain.

• Sub-band filter bandwidth Bfilt: corresponds to the width of each filter used in the

filter bank. Since the bandpass filter can reduce the temporal resolution of the signal

because reducing the bandwidth of a time-limited signal will increase its duration,

applying the SSP filter banks could lead to a reduction in temporal resolution if not

suitable, as the pulses that correspond to reflections from features spread out in time

and masks one another.

In conventional UT, the transmitted signal is usually an impulse function and, there-

fore, the bandwidth is limited by the frequency response of the transducers. As a result,

the processing bandwidth in conventional UT is often the frequency response of the ul-

trasonic transducers. These parameters are not independent, as changing one value will

require the other values to change. For instance, increasing the filter bandwidth would

signify a reduction in the number of filters or the value for filter separation.

The filter bank parameters must be chosen carefully since the method is highly sensi-

tive to the values selected. It also depends on how well the observations and statistical

data in each channel correlate.

The ideal values do not follow a linear trend, as was previously mentioned, and chang-

ing one value automatically changes the others. For example, while increasing the num-

ber of channels of band-pass filters increases the likelihood of detecting target echoes

against the undesirable microstructure scattering noise, there is only a limited number of

information-bearing frequency bands. So, increasing the number of channels may result

in many observations that only contribute to clutter echo information. In contrast, if the

channel bandwidth is too small, flaw echo information is concealed because of resolution

loss. Disproportionate frequency overlap between channels, on the other hand, results in

excessive correlation among the channels and limits the anticipated TCR improvement.

It is also found that for a large overlapping of bands, the signals are highly correlated,

and SNR is not improved, whereas narrow filters result in the loss of relevant information

to defect detection. Thus, the overlap chosen should minimise the correlation between
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FIGURE 3.4: Frequency band-pass filter bank parameters for SSP using the gaussian win-
dow function. B is the total bandwidth, F the filter separation and B f ilt the sub-band filter

bandwidth.

noise regions in adjacent sub-bands without losing information. To obtain an accurate

target detection it is ideal to develop a technique that offers minimal sensitivity to the

filter frequency coverage.

All these trade-offs need to be therefore considered when making the selection of the

bank filter parameters in practical use.

3.3 Recombination algorithms

Once each signal has been filtered and split into different frequency bands, all the result-

ing signals must be recombined to determine which part of the original signal stems from

a defect. For this end, several algorithms can be employed. Methods such as minimi-

sation, median and maximisation are referred to as order statistical methods, in which

sample values are arranged in ascending order. The use of these ordered variables and

their functions are the focus of the study of order statistics, and it can also be used to de-

scribe statistics that do not depend on the values themselves, but rather simply on their

ordering. Order statistics concepts have achieved successful results when applied to con-

ventional ultrasonic testing applications such as radar, sonar and image processing. If we
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added the sub-bands linearly, the original SNR would be restored. Because these meth-

ods are non-linear, it’s expected that the amplitude of a feature will increase, and the noise

will be reduced. The most common techniques used in the literature are described in more

detail below.

3.3.1 Minimisation

The output y[m] of each instance of time is the minimum of the absolute value of all sub-

bands:

yMIN [m] = min(|x1[m]|, ..., |xn[m]|) (3.1)

The minimisation algorithm reduces the noise as it varies across each sub-band. Since

the variation of noise is expected to be greater than the signal variance, this technique is

most effective when the noise level is low in comparison to the signal and when the target

echo information exists in all frequency bands. This method offers very little resolution

and often high SNR values cannot be reached.

3.3.2 Polarity threshold

Polarity threshold takes on the value of the input signal if all sub-band time samples xi[m]

are either positive or negative, otherwise the signal is zero:

yPT[m] =


x[m], if all xi[m] > 0

x[m], if all xi[m] < 0

0, otherwise

(3.2)

In this method, only the time samples where the polarity remains unchanged pass,

making it so that only time samples not affected by frequency are considered. As a down-

side, it requires a large number of sub-bands to achieve a significant gain in SNR.

3.3.3 Polarity threshold with minimisation

To further suppress noise effect, polarity threshold with minimisation combines the pre-

vious two methods by looking at the sub-bands in each sample time and if the samples

are all positive or all negative then the signal takes on the minimum value found in the

sub-bands, otherwise, the output is zero:



36
DATA ANALYSIS AND ADVANCED ALGORITHMS FOR LONG-RANGE ULTRASOUND

SIGNAL PROCESSING

yPTM[m] =


min(xi[m]), if all xi[m] > 0

min(xi[m]), if all xi[m] < 0

0, otherwise

(3.3)

This has the effect of only passing time samples where polarity is not affected by fre-

quency. Therefore, those parts of the signal that are highly frequency-dependent should

be removed. Reducing the noise level will considerably lower the signal amplitude in

some sub-bands and provide the lowest values for the PTM’s output, as this technique

loses effectiveness when the noise level exceeds the actual signal.

3.3.4 Scaled polarity threshold

Also called polarity threshold with probability scaling, by scaling the polarity threshold

algorithm it is possible to obtain a different recombination algorithm, in which the min-

imum amplitude is multiplied by a function of the number of filtered signals with the

same sign:

ySPT[m] =

(
p+ − p−

n

)n/2

× min(|x1[m]|, |x2[m]|, ..., |xn[m]|)× 4n (3.4)

The approach based on phase deviation is similar to the polarity threshold with scal-

ing, in which the phase refers to the polarity of the filtered signals.

3.3.5 Mean algorithm

The output of the mean algorithm, ymean is the summation of the mean of each of the N

sub-bands sample at that sample time:

ymean[m] =
1
N

N

∑
i=1

xi[m] (3.5)

This algorithm is more suitable for a signal with low levels of noise since the amplitude

decreases when the noise level is high.
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3.3.6 Normalisation

The normalisation technique takes the minimum of the absolute value from all bands,

previously normalised by the greatest value of each of them x̂i[m], for each moment in

time (distance):

x̂i[m] =
xi[m]

max(xi[m])
(3.6)

yNORM[m] = min(|x̂1[m]|, |x̂2[m]|, ..., |x̂n[m]|) (3.7)

This algorithm divides each channel output energy by their maximum, in order to

obtain true sensitivity to only each channel’s varying tuning frequencies, making this

measurement independent of the absolute magnitudes.

3.3.7 Frequency multiplication

This technique is relatively similar to the mean algorithm, taking the product of the time

samples from all bands:

yFM[m] = x1[m]× x2[m]× ... × xn[m] (3.8)

It provides good resolution and good results for SNR improvement when combined

with variable bandwidth filters, equally spaced and energy equalised, requiring fewer

sub-bands when the material has low dispersion. However, for a bank filter with constant

bandwidths, the result worsens.

3.4 Algorithm evaluation

The evaluations of each recombination algorithm and filter bank in terms of defect detec-

tion can be calculated through the signal-to-noise ratio, measured in dB:

SNR = 20 log
(

S
N

)
(3.9)

where S is the amplitude of the target signal and N the amplitude of the average

noise present in the location of the target signal. The improvement of the SNR can be

determined in regard to the SNR of the original signal and the SNR of the resulting filtered

output after the application of the different recombination algorithms:
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SNRenhanced = SNRoutput − SNRinput (3.10)

The resulting output should also be able to identify the position of the defects present

in the structure, as well as eliminate dispersive modes. The SNR improvement of each

algorithm with the suggested bank filter can then be compared to determine the best fit

for the processed signals.

3.5 Algorithm Implementation

In this section, each step of the implementation of the SSP algorithm is explained in more

detail. The program was written in Python, and it takes an input signal. An MOT (Mag-

netic Optical Transducer) is an ultrasonic-based screening technique that emits the ini-

tial impulse signal that propagates along the pipeline and the signal is received by a

Michelson Interferometer with fibre lengths of 1.5 m. These signals are then processed

and analysed. The algorithm generates the sub-bands and then employs the various SSP

recombination algorithms mentioned in section 3.3.

3.5.1 Pre-processing filtering of the input signal

The input signals studied contain some form of noise that can be filtered through con-

ventional methods. To accomplish this, the first step in the pre-processing stage consists

of filtering the signal using a Butterworth filter. A Butterworth filter is a processing filter

designed to have a frequency response that is as flat as possible in the passband. The filter

used is of second order, which decreases at -12 dB per octave. Figures 3.5 and 3.6 repre-

sent the original input signal and the filtered signal respectively. For the implementation

of this filter, the function used comes from a library authored by EQS.

The distance travelled by the signal can be obtained by dividing the time it takes to

reach the sensor by the average velocity of the signal. In this specific case, it corresponds

to a value of around 3420 ms−1. It’s important to point out that external factors such as

temperature and mode conversion inside the pipe lead to variations in the signal velocity,

which consequently may lead to eventual deviations from the accurate value. The velocity

variation will, in the end, affect the results for the position of a detected defect that can be

translated to a few centimetres. In the context of the inspection industry, this deviation

does not present much significance as a deviation in the order of meters.



3. SPLIT SPECTRUM PROCESSING 39

FIGURE 3.5: Ultrasonic guided wave input signal measured with a Michelson interfer-
ometer with a frequency of 70 Hz.

FIGURE 3.6: Filtered result signal with a second order Butterworth filter obtained from
the signal shown in Figure 3.5 for a length of 10 meters.

As it is possible to confirm in the graphs represented above (Figures 3.5 and 3.6), the

filtered signal presents a signal with a lower noise level, but the dispersive modes are still

present. This is due to reasons stated before, since the coherent noise occupied the same

bandwidth as the emission signal it is impossible to eliminate them through traditional

filtering techniques.

3.5.2 Fast Fourier Transform

The program then converts the signal from the time domain to the frequency domain us-

ing the Fast Fourier Transform. The Fast Fourier Transform computes the discrete Fourier

transform of a signal and the frequency domain is obtained by decomposing a sequence

of values into components of different frequencies. It is often used in applications such as



40
DATA ANALYSIS AND ADVANCED ALGORITHMS FOR LONG-RANGE ULTRASOUND

SIGNAL PROCESSING

digital recording, sampling, additive synthesis and pitch correction software. The signif-

icance of the FFT stems from the fact that it has made frequency domain work computa-

tionally as possible as temporal or spatial domain work. It can be defined as:

X(m) =
N−1

∑
n=0

x(n)e
−j2πmn

N (3.11)

The graphical representations of the FFT for both the original input signal and the

filtered signal correspond to the graphs below (Figures 3.5 and 3.6). The amplitudes have

been normalised to make their interpretation easier.

As expected, the input signal contains a range of frequencies around 10 kHz and 20

kHz that comprises noise derived from vibrations and other non-systematic sources of

error. The Butterworth filter takes the input signal and its sampling frequency and can

eliminate non-coherent noise. Coherent noise, however, as is the case for undesired dis-

persive modes, exists in the same bandwidth as the signal. The designed filter bank has

then to cover the whole bandwidth of the filtered signal to eliminate dispersive modes.

FIGURE 3.7: Fast Fourier transform of the input signal represented in figure 3.5.

The STFT (Short Time Fourier Transform) has also been represented for the input sig-

nal and the filtered signal, as done previously, in figures 3.9 and 3.10. This function allows

the sinusoidal frequency and phase content of local sections of a signal to be determined

as it changes over time. It is an important tool to verify the dispersive characteristic of the

signals. The colour bar on the side of the graphs represents the magnitude of the power

spectrum. The process for computing STFTs entails splitting a longer temporal signal

into equal-length shorter segments before separately performing the Fourier transform
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FIGURE 3.8: Fast Fourier transform of the input signal represented in figure 3.6.

on each of these shorter segments. In each shorter section, exposes the Fourier spectrum.

The changing spectra are then typically plotted on a spectrogram, which is a function of

time or distance. Besides the possibility of observing dispersive signals, its applications

include the location of frequencies of specific noises (especially when used with greater

frequency resolution) or to find frequencies which may be more or less resonant.

FIGURE 3.9: Short Time Fourier transform of the input signal represented in figure 3.5
between 2 and 4 m.

Having obtained the frequency spectrum, the next step is to move onto the division of

said spectrum in the sub-bands, described in detail in the next section.

3.5.3 Filter bank design

The main component of the Split Spectrum Processing technique lies in the design of the

filter bank that as the name indicates, splits the frequency spectrum of the input signal into

sub-bands that are then combined to generate an output that filters dispersive modes.
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FIGURE 3.10: Short Time Fourier transform of the input signal represented in figure 3.6
between 2 and 4 m.

In earlier works, the implementation of the filter bank is based on the use of sinc func-

tions in UT applications. However, in UGWT it’s common to utilise the Gaussian filter

instead, so some parameters obtain a greater value than expected. Most of the literature

consulted makes use of the Gaussian window. The only specific justification for the choice

of the Gaussian filter in any of the publications was its simplicity of implementation. The

Gaussian window is employed with the following equation:

w(x) = exp

(
−1

2

(
x − xc

σ

))2

(3.12)

σ =
FWHM

2
√

2 ln(2)
(3.13)

where xc is the center, σ the standard deviation and FWHM corresponds to the full width

at half maximum. The definition of these variables according to the filter bank are de-

scribed below.

To design an adequate filter bank, it is necessary for it to cover the total operating

bandwidth B, as it was explained in section 3.2. To generate the filter bank, a set of 3dB

cut-off frequencies for the Gaussian filters are applied so that the lower and higher cut-off

frequencies for each sub-band filters are calculated as:

fln =


fmin − F, n = 1

fln−1 + F, n = 2, 3, ...N
(3.14)
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fhn = fln + B f ilt, n = 1, 2, ...N (3.15)

where fln is the lower cut-off frequency and fhn is the higher cut-off frequency of filter n,

N is the number of filters, F is the filter separation and B f ilt is the sub-band filters. The

value of the lower cut-off frequency for the first sub-band has to cover the start point of

the signal, so it is defined as the difference between fmin and F.

FIGURE 3.11: Normalised Fast Fourier transform overlap with a filter bank of Gaussian
filter windows resulting from non-optimised parameters.

The selection of these values is based on the values often chosen for the implementa-

tion of the technique in conventional UT. So, these values need to be adjusted for UGWT.

This can be achieved through a brute-force search algorithm. In computer science, a brute-

force search algorithm or exhaustive search is a problem-solving technique that entails

methodically listing every possibility for the answer and determining whether each one

satisfies the problem’s statement. In this case, the optimum parameters can be determined

by choosing the set of parameters that eliminate dispersive modes and obtains the high-

est values for SNR enhancement whilst identifying the features and defects present in a

pipeline.

The parameters required to implement the SSP technique are the total operating band-

width for processing B, the filter separation F, the number of filters N, and the sub-band

filter bandwidth B f ilt. As stated previously, the variation in one of these parameters will

change the values of the others. To reduce the effect of dispersive modes and suppress

the dispersion effect in UGWT, narrowband waveforms are used in excitation signals.

This makes it so that the bandwidth of the transmitted signal can be used for SSP while

considering the frequency response of the transducers.
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To determine the ideal SSP parameters for the signal in question, the SSP parameters

were varied and applied, repeating the processing for all possible combinations to find the

set of parameters that provided the best performance. The values used for conventional

UT served as inspiration for the ranges of values used in the brute force search process,

which corresponds to the following:

• B between 84% and 100% in steps of 3%.

• B f ilt is B divided by values between 3 and 15 in steps of 2.

• F is defined as B f ilt divided by 1.5 and 6.5 in steps of 1.

This results in 255 different combinations of parameter values. Because the signals

studied propagate in the same pipe with known dispersion characteristics (in this case it

was used a 4 inches carbon steel pipe in which the dispersion curves behaviour is rep-

resented in figure 3.1), the SSP parameters can be determined in controlled conditions.

As mentioned before, the performance of each set is evaluated by measuring the SNR

of the output signals. All combinations were represented for different signals and cross-

referenced to obtain the optimum parameters. The best results were obtained when the

parameters were set as follows:

• 90% of the total operation frequency.

• A sub-band filter bandwidth that is equal to the total operating bandwidth divided

by 7.

• A filter separation that is equal to the sub-band filter bandwidth divided by 4.5.

These parameters were then applied to data acquired in different conditions for the

approach to be validated. The analysis of the experimental data obtained detailed in the

following section is done based on these parameters.

SSP parameters Optimum values

Total bandwidth B 90% of total energy

Filter bandwidth B f ilt B/7

Filter separation B f ilt/4.5

Number of filters N (B/F) + 1

TABLE 3.1: Optimum paramenters for the design of the filter bank for split spectrum
processing implementation.
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Since pipes made of the same material, structure and cross-sectional geometry pos-

sess the same guided wave characteristics, then the relative rates of dispersion between

the acceptable wave modes and the undesirable wave modes will be the same. From this,

it’s expected that if the ideal SSP parameters are determined for a pipe with specific char-

acteristics, then these same parameters can be successfully applied to pipes with similar

characteristics. This is quite useful in the industry since regulations make it so that manu-

factured pipelines are produced from a limited set of standards. Therefore, if the pipes are

similar, it’s not necessary to find the optimum parameters every time a pipe is inspected.

After the bank filter has been designed, the input signal can be filtered using each one

of the Gaussian bandpass filters in the frequency domain and multiplying them by the

Fourier transform. An example is illustrated in figure 3.12.

FIGURE 3.12: Normalised FFT overlaped with a gaussian filter. The window is multi-
plied by the FFT function, spliting the spectrum in a sub-band.

The selected sub-band is multiplied by the FFT function, thus splitting the spectrum,

resulting in a signal that is equal to the FTT representation in a given range of frequencies

and equal to zero otherwise. This process is repeated for all sub-bands present to obtain

an assortment of sub-bands that cover the whole spectrum, represented in figure 3.13.

3.5.4 Inverse Fast Fourier Transform

Once the set of sub-bands has been obtained, each band needs to be converted back to the

time-domain in order to be processed by the recombination algorithms. This can be done

through the application of the inverse FFT:

x(n) =
1
N

N−1

∑
m=0

X(m)e
j2πmn

N (3.16)
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FIGURE 3.13: Representation of all sub-bands obtained from the splitting performed by
the filter bank.

Each sub-band was first multiplied by the maximum of the signal’s FFT to denor-

malise the functions. Following this step, all of the bands were individually converted

from the frequency domain to the time domain. Each element is normalised by a weight-

ing factor where each set of signals is divided by its maximum values in the time do-

main. The representation of all bands is present in figure 3.14. Once this process is done,

the sub-bands can be recombined utilising different non-linear recombination algorithms

mentioned in section 3.3, to obtain an output signal. This output should identify the loca-

tions of all frequencies to determine which portion of the signal presents a real defect.

FIGURE 3.14: Inverse Fast Fourier transform of one of the sub-bands obtained from the
spectrum splitting.



3. SPLIT SPECTRUM PROCESSING 47

3.5.5 Recombined output signals

Having obtained the sub-bands in the time-domain, they can now be recombined using

the algorithms detailed in section 3.3.

The program was written in Python and takes as the input the set of sub-bands ob-

tained from each signal and recombines them non-linearly so that the location of the sig-

nal where the frequency remains unchanged can be detected. As shown in figure 3.15, the

outputs of all the SSP recombination algorithms exhibit some significant improvement in

terms of SNR values. The figure shows that the mean algorithm presents very little im-

provement. The best results are obtained for the polarity threshold and polarity threshold

with minimisation. The FM algorithm minimises the pipe’s end amplitude and removes

the reflection signal from the defects. This distortion results from the multiplication of

each sub-band’s frequency without taking into account the signal’s sign. The remaining

algorithms provide some enhancement, but the spatial resolution of the result compared

to polarity threshold and polarity threshold with minimisation algorithm are worse. The

results indicate that the unprocessed signal has a lower likelihood of correctly identifying

flaws since they are at a similar level to the background coherent noise created by the

presence of dispersive wave modes. The proposed SSP method, including PT and PTM,

on the other hand, eliminates the noise and just the defect’s reflection is left, with no signal

distortion. The improvement in SNR values is dependent on the level of input noise and

level of dispersion so for a signal with low values of noise and dispersion, the algorithm’s

performance will increase.

The implementation of the SSP technique was achieved, along with the design of the

filter bank and the selection of the parameters that maximise the SNR values of the signal.

In the next chapter, the results obtained are applied to a structure with known features to

accurately determine the precision and success of the algorithm.
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FIGURE 3.15: Results obtained for the a) minimisation, b) polarity threshold, c) polarity
threshold with minimisation, d) scaled polarity threshold, e) mean, f) normalisation and

g) frequency multiplication recombination algorithms.



Chapter 4

Results

4.1 Synthesization of dispersive signals

To first make sure the technique is viable and applicable to dispersive modes, the SSP

method will be applied to synthesised signals with dispersive modes present. To simulate

the propagation of the DWMs in time and space, the technique presented by Wilcox [14]

can be employed. The frequency and wavenumber of the input signal are modified dur-

ing the signal synthesis process, shifting the phase of the desired wave packet depending

on the frequency. The wave modes can be reconstructed in the time domain at any dis-

tance by knowing the waveform at one location, in this example the input signal at the

transmitting point, and the parameters of each wave mode’s dispersion [73]. This phase

shift depends on the phase velocity of the wave mode, which is a function of frequency

and a value that can be extracted from the information presented in figure 4.1. The Fourier

transform can then be used to represent the dispersive wave packet g(t) in the frequency

domain as follows:

G(ω) =
∫ ∞

−∞
g(t)ejωtdx (4.1)

where ω = 2π f is the angular frequency and f is the frequency. To find g(t) at a certain

distance x = d, a transfer function related to g(t) at x = 0 for dispersion of a single disper-

sive wave mode can be used. The following expression represents the transfer function in

question:

H(ω) = e
jω x

vphase(ω) (4.2)

49
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where vphase(ω) corresponds to the phase velocity of the given wave mode. The time

domain signal g(t) can then be calculated by employing the inverse FTT.

FIGURE 4.1: Phase velocity dispersion curves for a 4-inch steel pipe. The order n of the
flexural modes increases from left to right.

While all of the velocities of the flexural wave modes are frequency dependent, the

phase velocity of T(0, 1) is constant over the frequency bandwidth of interest. The order

of each mode m goes up to three in Flexural wave modes, whereas the circumferential

order can take various values. It should be noted that higher-order flexural wave modes

exist as well, but because they are more dispersive, the first six orders used here are harder

to eliminate.

A set of synthesised UGW signals is produced using the method previously men-

tioned. A 5-cycle Hann windowed sine pulse with a frequency of 60 kHz is shown in

figure 4.2, which is utilised as the excitation signal. The T(0,1) and its family of flexural

wave modes up to F. (6,2) is represented in figure 4.4 and finally, figure 4.5 depicts the

total of the aforementioned wave modes.
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FIGURE 4.2: Excitation signal for a fre-
quency of 60 kHz.

FIGURE 4.3: Frequency spectrum of the
signal in figure 4.2.

FIGURE 4.4: Synthesised UGW signals for dispersive Flexural F(1,2), F(2,2),...,F(6,2) wave
modes family in a 4-inch steel pipe.

FIGURE 4.5: Time domain synthesised received UGW signal resulting from the combina-
tion of the signals above.

Other wave modes present in the signal can be taken into consideration as noise for

approaches based on a single axisymmetric mode. The spatial resolution and SNR of

the target axisymmetric wave mode, T(0,1), are reduced by these dispersive modes. This

artificial UGW signal is used to examine the SSP method by contrasting the various SSP

recombination techniques.
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FIGURE 4.6: Results for the synthesised signals after applying the recombination algo-
rithms.

The outputs from each SSP recombination algorithm show a dominant wave that ar-

rives at the same time, but the amount of coherent noise resulting from the flexural wave

modes varies for each algorithm. For most of the methods, some increase in the SNR

can be observed. Figure 4.6 shows that the PT and PTM algorithms produce the maxi-

mum signal enhancement with the suggested parameters. In these situations, the spatial

resolution is also superior.

Additionally, the SNR increase is calculated using equation 3.10 in order to evaluate

the benefits demonstrated by the suggested technique, where S is the highest amplitude of

the defect’s reflection and N is the RMS value of the noise zone. The reference SNR value

of the signal before employing any of the coherent noise filtering techniques is 30 dB. The

SNR enhancement is obtained using equation 3.10. These values were all calculated for

each of the recombination techniques and can be found in table 4.1.

SSP recombination algorithms SNR enhancement (dB)

Minimisation 7.32

Polarity threshold 29.56

Polarity threshold with minimisation 22.83

Scaled polarity threshold 6.61

Mean 1.51

Normalisation 8.85

Frequency multiplication 11.73

TABLE 4.1: SNR enhancement values calculated for each recombination algorithm ap-
plied to synthesised signals.
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It is important to note that the SNR enhancement is dependent on the input noise

and dispersion levels and as a result, when the signal is less noisy or less dispersive, the

performance of the other methods will be enhanced.

4.2 Experimental validation

To corroborate the technique studied and implemented to eliminate dispersive modes

in UGWT signals and enhance the spatial resolution, the method has been applied to

several signals obtained from laboratory experiments. These include signals obtained

from the Pulse-echo technique and a Michelson interferometer of fibre with 1.5 m and 2

cm dimensions.

The pipe under study is a 4 inches diameter steel pipe of approximately 18 m in length

with a wall thickness of 6.04 mm. The pipe presents several characteristics such as defects,

welds and other features such as supports that affect the received signals. The location of

these elements is represented in figure 4.7 which also includes the position of the different

sensors used.

FIGURE 4.7: Illustration of the 4-inch steel pipe used for experimental validation, con-
taining the location of the sensors (red), welds (blue), defects (grey), and other features

(green).

To transmit the signal through the structure, a device called MOT (Magnetic Optical

Transducer) is utilised. It was developed by EQS Global to assess the integrity of large

areas in structures in service and consists of a transducer which combines the genera-

tion of ultrasound by magnetostriction, with the quasi-distributed detection by optical

fibre sensors, allowing the evaluation of up to 100 meters in length and 360°. A Michel-

son Interferometer is then used to receive the signal. To produce a T(0,1) wave mode,

the excitation pulse is transmitted along the pipe structure. The transducer (MOT) and

Michelson interferometer (M1) positions are shown in figure 4.7 and the sampling rate

was established at 2 MHz. As a result of their placement throughout the pipe’s length,

the received signal will include reflections from backwards propagation, making analysis

more difficult.
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Once the signals have been acquired, they will be processed following the procedure

detailed in the previous chapter and the SSP technique will be implemented to filter the

dispersive wave modes. Keeping in mind the results of the recombination algorithm, the

original signals will be reconstructed based on these results, as described in the section

below.

4.2.1 Signal reconstruction

Following the recombination, an attempt was made to reconstruct the original signal

based on the results obtained from the recombination algorithms since the SSP results

provide a representation of where in the signal the frequency remains constant, and not

an actual representation of the signal itself. Since the best results have been obtained con-

sidering the polarity threshold recombination algorithms, these are the results that will be

considered for the reconstruction.

The first attempt at signal reconstruction takes the results obtained from the recombi-

nation of sub-bands and eliminated the original signal where the results is null, leaving

the signal unaltered where it is different from zero. The reconstructed signal is repre-

sented in figure 4.8.

FIGURE 4.8: Representation of the reconstructed signal by eliminating the signal where
the SSP recombination algorithm output is zero.
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FIGURE 4.9: Zoom in figure of the signal represented in figure 4.8 between 2 m and 4 m.

The second attempt follows the first approach, but instead of eliminating the signal,

the originally received data is attenuated by a coefficient of 0.1 where the recombination

results are null. The reconstructed signal is represented in figure 4.10, providing an SNR

enhancement of 37.66 dB.

FIGURE 4.10: Representation of the reconstructed signal by attenuating the signal where
the SSP recombination algorithm output is zero.

FIGURE 4.11: Zoom in figure of the signal represented in figure 4.10 between 2 m and 4
m.
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The reconstructed signal obtained through the second method produces a result that

is more accurate in comparison to the original signal, while still eliminating dispersive

modes and highlighting the location of reflections resulting from defects, welds and other

features.

4.2.2 Signal analysis

Two separate signals have been acquired: one with the pulse-echo technique, which

presents very low dispersion levels and one with the Michelson interferometer which

is highly dispersive. The first one will be used as a reference signal when analysing the

defect locations and the performance of the SSP algorithm.

FIGURE 4.12: Results for recombination algorithms obtained from the pulse-echo tech-
nique signals for the left and right sides respectively.
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FIGURE 4.13: Results for recombination algorithms obtained from the Michelson inter-
ferometer technique signals for the left and right sides respectively.

In conformity with what was found in the previous section, the polarity threshold (PT)

and polarity threshold with minimisation (PTM) algorithms provide the best results in

terms of signal-to-noise enhancement and defect detection, resulting in an improvement

of 37.86 dB and 35.64 dB, respectively. The SNR improvement values were calculated

for the dispersive signals, meaning the ones acquired through the interferometer and the

results are presented in table 4.2. On the other hand, the reflection signal from the defect

has been eliminated by the FM algorithm, and therefore its SNR improvement cannot be

measured. This distortion results from multiplying each sub-frequency bands without

considering the signal’s sign. PTM and PT are selected as the best SSP recombination

algorithms for UGW data as a result.
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SSP recombination algorithms SNR enhancement (dB)

Minimisation 4.58

Polarity threshold 37.86

Polarity threshold with minimisation 35.64

Scaled polarity threshold 11.87

Mean 10.94

Normalisation 16.07

TABLE 4.2: SNR enhancement values calculated for each recombination algorithm ap-
plied to synthesised signals.

From the results obtained for the PT and PTM algorithms, the signal acquired were re-

constructed following the method expressed in the previous section. Figures 4.14, 4.15, 4.16

and 4.17 represent the original input unprocessed signal superimposed with its recon-

structed signal based on the result of the SSP recombination, as well as the location of the

pipe’s features. As the figures illustrates, there is often a shift from the signal’s reflection

and the true location of the defect or weld. This is due to mode conversion inside the

pipe structure, which alters the velocity at which the signal travels along the material. In

practical terms, although precision and accuracy are important and should be improved

in future works, a shift equivalent to a few centimetres does not affect detection signifi-

cantly.

The findings demonstrate that the unprocessed signal has a lower likelihood and de-

gree of confidence in detecting the flaws since they are at a comparable level to the back-

ground coherent noise created by the presence of dispersive wave modes. In contrast, the

suggested SSP approach, including PT and PTM recombination techniques, completely

remove the noise and only the defect’s reflection is left, with no artifacts or signal dis-

tortion. However, for defects of smaller cross-sectional area or location too close to other

features such as welds, detection is still hard to achieve.
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FIGURE 4.14: Input and reconstructed signal for the left side of the pulse-echo technique
including the location of the pipe features.

FIGURE 4.15: Input and reconstructed signal for the right side of the pulse-echo tech-
nique including the location of the pipe features.

The vertical dotted lines on the graphs (Figures 4.14, 4.15, 4.16, 4.17) represent the

locations of the defects, welds and other features present in the pipe structure. The emis-

sion signals can be propagated to either side of the emission point, left or right. However,

due to the effect of reflection, characteristics on the opposite side of the emission point can

still be captured by the signal, not only from the opposite side but reflected echoes from

the welds due to the multiple reflections. The grey lines correspond to the defects on the

same side as the direction of propagation and the red lines to defects on the opposite side.
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FIGURE 4.16: Input and reconstructed signal for the left side of the Michelson interfer-
ometer technique including the location of the pipe features.

FIGURE 4.17: Input and reconstructed signal for the right side of the Michelson interfer-
ometer technique including the location of the pipe features.

The results of the experimental and synthesised signals demonstrate that the degree

of coherent noise resulting from the existence of dispersive wave modes in ultrasonic

guided wave signals may be greatly reduced by applying the SSP method. The SNR and

spatial resolution of the signals can be significantly increased if coherent noise is properly

decreased, which is frequently a major limiting factor for defect identification.

When compared to results obtained in previous works, it’s important to mention that

the outcome of the recombination algorithms presents a slight distortion in contrast with

the original signal. On the other hand, the approach taken for the parameter selection for

implementation results in a higher number of filters than most works use. The signals

analysed throughout the internship were also obtained for longer distances (between 10

and 14 m as opposed to 2 and 6 m) and contained a higher number of defects, some very
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close to each other, which makes their analysis more complex and defect detection harder

to achieve.





Chapter 5

Conclusion

5.1 Conclusions

In the context of the health and integrity of industry infrastructure, ultrasonic guided

wave testing has been one of the main methods to perform surveillance and monitor-

ing and large structural components for defects. The detection of these faults is essential

since the failure of these structures can lead to high economic losses, both directly from

unforeseen stops and indirectly via supply problems. However, the dispersion present in

UGWT signals makes their analysis more complex and thus makes the detection of flaws

harder to achieve. The work developed throughout this internship has had the aim to

reduce the effect of dispersion and improvement of SNR in acquired signals by imple-

menting an advanced signal processing algorithm, to improve data analysis for UGWT

using magnetostrictive transducers.

To first learn about the topic, a state-of-the-art literature review was done, where dif-

ferent techniques for signal processing, applied to structures such as plates and pipes,

were compared to choose the best option in terms of advantages and complexity. The

technique chosen was Split Spectrum Processing, for its simplicity of implementation and

good results obtained in previous works for SNR improvement. The key issue with this

method is the choice of parameters for the bank filter, as the performance of the SSP al-

gorithm is highly sensitive to the variation of said parameters. By testing the SNR and

spatial resolution of the received signals, the brute force search algorithm was used to

identify the best values for these parameters. For the pipe structure and signals studied,

the optimum values obtained were B = 90% of the total operation frequency, B f ilt = B/7
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and F = B f ilt/4.5. If the structure or conditions change, the optimum parameters also

need to be changed.

The parameters were then defined through search brute force and comparing results

for different signals at different frequencies. The SSP method was applied to both synthe-

sised and experimental data. The proposed parameters have been tested for T(0,1) wave

mode and its flexural wave modes family up to F(6,2). Once the parameters had been

defined, the SSP method was applied to both synthesised and experimental data. The

proposed parameters have been tested for T(0,1) wave mode and its flexural wave modes

family up to F(6,2). For the synthesised signals, the best results were achieved for the PT

and PTM recombination algorithms, with SNR improvements of 29 dB and 23 dB. For the

experimental signals, the same recombination methods were found to provide the best

results, with values of SNR improvements of 38 dB and 36 dB, respectively. The experi-

mental findings supported the claim that the suggested approach significantly lowers the

level of dispersive wave mods in the UGWT signal response.

5.2 Future work

Further work on this subject should focus on the improvement of the selection of the op-

timum bank filter parameters and testing on more field data under various conditions

and defects. As explained throughout the report, the optimum parameters take on differ-

ent values depending on the material, geometry and dimensions of the structure under

inspection, due to the change of dispersion curves based on the characteristics of the struc-

ture. Even though the parameters can be reutilised for structures with similar properties,

the selection process is currently done through brute search force algorithm, which is ar-

duous and time consuming. The introduction of machine learning technology to optimise

and automise the selection process, therefore would greatly improve these methods and

make the implementation of this algorithm more efficient and straightforward. On the

other hand, it would be of great interest as well to reconstruct the signal of the dispersive

modes rather than eliminate them altogether to obtain more detailed information on the

integrity of the structure.
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