12 research outputs found

    On-line Ramsey numbers

    Get PDF
    Consider the following game between two players, Builder and Painter. Builder draws edges one at a time and Painter colours them, in either red or blue, as each appears. Builder's aim is to force Painter to draw a monochromatic copy of a fixed graph G. The minimum number of edges which Builder must draw, regardless of Painter's strategy, in order to guarantee that this happens is known as the on-line Ramsey number \tilde{r}(G) of G. Our main result, relating to the conjecture that \tilde{r}(K_t) = o(\binom{r(t)}{2}), is that there exists a constant c > 1 such that \tilde{r}(K_t) \leq c^{-t} \binom{r(t)}{2} for infinitely many values of t. We also prove a more specific upper bound for this number, showing that there exists a constant c such that \tilde{r}(K_t) \leq t^{-c \frac{\log t}{\log \log t}} 4^t. Finally, we prove a new upper bound for the on-line Ramsey number of the complete bipartite graph K_{t,t}.Comment: 11 page

    Bounds on the Game Transversal Number in Hypergraphs

    Get PDF
    Let H=(V,E)H = (V,E) be a hypergraph with vertex set VV and edge set EE of order \nH = |V| and size \mH = |E|. A transversal in HH is a subset of vertices in HH that has a nonempty intersection with every edge of HH. A vertex hits an edge if it belongs to that edge. The transversal game played on HH involves of two players, \emph{Edge-hitter} and \emph{Staller}, who take turns choosing a vertex from HH. Each vertex chosen must hit at least one edge not hit by the vertices previously chosen. The game ends when the set of vertices chosen becomes a transversal in HH. Edge-hitter wishes to minimize the number of vertices chosen in the game, while Staller wishes to maximize it. The \emph{game transversal number}, τg(H)\tau_g(H), of HH is the number of vertices chosen when Edge-hitter starts the game and both players play optimally. We compare the game transversal number of a hypergraph with its transversal number, and also present an important fact concerning the monotonicity of τg\tau_g, that we call the Transversal Continuation Principle. It is known that if HH is a hypergraph with all edges of size at least~22, and HH is not a 44-cycle, then \tau_g(H) \le \frac{4}{11}(\nH+\mH); and if HH is a (loopless) graph, then \tau_g(H) \le \frac{1}{3}(\nH + \mH + 1). We prove that if HH is a 33-uniform hypergraph, then \tau_g(H) \le \frac{5}{16}(\nH + \mH), and if HH is 44-uniform, then \tau_g(H) \le \frac{71}{252}(\nH + \mH).Comment: 23 pages

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Paired-Domination Game Played in Graphs\u3csup\u3e∗\u3c/sup\u3e

    Get PDF
    In this paper, we continue the study of the domination game in graphs introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979-991]. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph G by two players, named Dominator and Pairer. They alternately take turns choosing vertices of G such that each vertex chosen by Dominator dominates at least one vertex not dominated by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not previously chosen that is a neighbor of the vertex played by Dominator on his previous move. This process eventually produces a paired-dominating set of vertices of G; that is, a dominating set in G that induces a subgraph that contains a perfect matching. Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to maximize it. The game paired-domination number γgpr(G) of G is the number of vertices chosen when Dominator starts the game and both players play optimally. Let G be a graph on n vertices with minimum degree at least 2. We show that γgpr(G) ≤ 45 n, and this bound is tight. Further we show that if G is (C4, C5)-free, then γgpr(G) ≤ 43 n, where a graph is (C4, C5)-free if it has no induced 4-cycle or 5-cycle. If G is 2-connected and bipartite or if G is 2-connected and the sum of every two adjacent vertices in G is at least 5, then we show that γgpr(G) ≤ 34 n

    Trees with an On-Line Degree Ramsey Number of Four

    Get PDF
    On-line Ramsey theory studies a graph-building game between two players. The player called Builder builds edges one at a time, and the player called Painter paints each new edge red or blue after it is built. The graph constructed is called the background graph. Builder's goal is to cause the background graph to contain a monochromatic copy of a given goal graph, and Painter's goal is to prevent this. In the S[subscript k]-game variant of the typical game, the background graph is constrained to have maximum degree no greater than k. The on-line degree Ramsey number [˚over R][subscript Δ](G) of a graph G is the minimum k such that Builder wins an S[subscript k]-game in which G is the goal graph. Butterfield et al. previously determined all graphs G satisfying [˚ over R][subscript Δ](G)≤3. We provide a complete classification of trees T satisfying [˚ over R][subscript Δ](T)=4.National Science Foundation (U.S.) (Grant DMS-0754106)United States. National Security Agency (Grant H98230-06-1-0013

    Online Ramsey theory for a triangle on FF-free graphs

    Get PDF
    Given a class C\mathcal{C} of graphs and a fixed graph HH, the online Ramsey game for HH on C\mathcal C is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in C\mathcal C, and Painter colors the new edge either red or blue. Builder wins the game if Painter is forced to make a monochromatic copy of HH at some point in the game. Otherwise, Painter can avoid creating a monochromatic copy of HH forever, and we say Painter wins the game. We initiate the study of characterizing the graphs FF such that for a given graph HH, Painter wins the online Ramsey game for HH on FF-free graphs. We characterize all graphs FF such that Painter wins the online Ramsey game for C3C_3 on the class of FF-free graphs, except when FF is one particular graph. We also show that Painter wins the online Ramsey game for C3C_3 on the class of K4K_4-minor-free graphs, extending a result by Grytczuk, Ha{\l}uszczak, and Kierstead.Comment: 20 pages, 10 page

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n1/m1(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1o(1)1-o(1) for any p(n)=o(n1/m1(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Transversal game on hypergraphs and the 3/4-Conjecture on the total domination game

    Get PDF

    Recent developments in graph Ramsey theory

    Get PDF
    Given a graph H, the Ramsey number r(H) is the smallest natural number N such that any two-colouring of the edges of K_N contains a monochromatic copy of H. The existence of these numbers has been known since 1930 but their quantitative behaviour is still not well understood. Even so, there has been a great deal of recent progress on the study of Ramsey numbers and their variants, spurred on by the many advances across extremal combinatorics. In this survey, we will describe some of this progress
    corecore