4,933 research outputs found

    Cooperative Games with Bounded Dependency Degree

    Full text link
    Cooperative games provide a framework to study cooperation among self-interested agents. They offer a number of solution concepts describing how the outcome of the cooperation should be shared among the players. Unfortunately, computational problems associated with many of these solution concepts tend to be intractable---NP-hard or worse. In this paper, we incorporate complexity measures recently proposed by Feige and Izsak (2013), called dependency degree and supermodular degree, into the complexity analysis of cooperative games. We show that many computational problems for cooperative games become tractable for games whose dependency degree or supermodular degree are bounded. In particular, we prove that simple games admit efficient algorithms for various solution concepts when the supermodular degree is small; further, we show that computing the Shapley value is always in FPT with respect to the dependency degree. Finally, we note that, while determining the dependency among players is computationally hard, there are efficient algorithms for special classes of games.Comment: 10 pages, full version of accepted AAAI-18 pape

    Complexity of coalition structure generation

    Get PDF
    We revisit the coalition structure generation problem in which the goal is to partition the players into exhaustive and disjoint coalitions so as to maximize the social welfare. One of our key results is a general polynomial-time algorithm to solve the problem for all coalitional games provided that player types are known and the number of player types is bounded by a constant. As a corollary, we obtain a polynomial-time algorithm to compute an optimal partition for weighted voting games with a constant number of weight values and for coalitional skill games with a constant number of skills. We also consider well-studied and well-motivated coalitional games defined compactly on combinatorial domains. For these games, we characterize the complexity of computing an optimal coalition structure by presenting polynomial-time algorithms, approximation algorithms, or NP-hardness and inapproximability lower bounds.Comment: 17 page

    Complementary cooperation, minimal winning coalitions, and power indices

    Full text link
    We introduce a new simple game, which is referred to as the complementary weighted multiple majority game (C-WMMG for short). C-WMMG models a basic cooperation rule, the complementary cooperation rule, and can be taken as a sister model of the famous weighted majority game (WMG for short). In this paper, we concentrate on the two dimensional C-WMMG. An interesting property of this case is that there are at most n+1n+1 minimal winning coalitions (MWC for short), and they can be enumerated in time O(nlogn)O(n\log n), where nn is the number of players. This property guarantees that the two dimensional C-WMMG is more handleable than WMG. In particular, we prove that the main power indices, i.e. the Shapley-Shubik index, the Penrose-Banzhaf index, the Holler-Packel index, and the Deegan-Packel index, are all polynomially computable. To make a comparison with WMG, we know that it may have exponentially many MWCs, and none of the four power indices is polynomially computable (unless P=NP). Still for the two dimensional case, we show that local monotonicity holds for all of the four power indices. In WMG, this property is possessed by the Shapley-Shubik index and the Penrose-Banzhaf index, but not by the Holler-Packel index or the Deegan-Packel index. Since our model fits very well the cooperation and competition in team sports, we hope that it can be potentially applied in measuring the values of players in team sports, say help people give more objective ranking of NBA players and select MVPs, and consequently bring new insights into contest theory and the more general field of sports economics. It may also provide some interesting enlightenments into the design of non-additive voting mechanisms. Last but not least, the threshold version of C-WMMG is a generalization of WMG, and natural variants of it are closely related with the famous airport game and the stable marriage/roommates problem.Comment: 60 page

    Population Monotonic Path Schemes for Simple Games

    Get PDF
    A path scheme for a simple game is composed of a path, i.e., a sequence of coalitions that is formed during the coalition formation process and a scheme, i.e., a payoff vector for each coalition in the path.A path scheme is called population monotonic if a player's payoff does not decrease as the path coalition grows.In this study, we focus on Shapley path schemes of simple games in which for every path coalition the Shapley value of the associated subgame provides the allocation at hand.We show that a simple game allows for population monotonic Shapley path schemes if and only if the game is balanced.Moreover, the Shapley path scheme of a specific path is population monotonic if and only if the first winning coalition that is formed along the path contains every minimal winning coalition.Extensions of these results to other probabilistic values are discussed.cooperative games;simple games;population monotonic path schemes;coalition formation;probabilistic values

    A note on apportionment methods

    Get PDF
    This paper investigates the suitability of apportionment methods based on the idea of preserving the coalition function of the simple game represented by the populations of the states. The results show that an apportionment method which satisfies desirable properties such as population monotonicity, house monotonicity, etc., does not exist. A classification of simple voting games via winning coalitions is also given.apportionment methods, simple games, winning coalitions

    Agenda Control in Coalition Formation

    Get PDF
    Theoretical models of government formation in political science usually assume that the head of state is non-strategic. In this paper, we analyze the power of an agenda setter who chooses the order in which players are recognized to form coalitions in simple games. We characterize those sets of players which can be imposed in the equilibrium coalition and show that the only decisive structures where the agenda setter can impose the presence of any minimal winning coalition are apex games, where a large player forms a winning coalition with any of the small players.Agenda Control; Cabinet Formation; Simple Games
    corecore