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Abstract

This paper investigates the suitability of apportionment methods
based on the idea of preserving the coalition function of the simple
game represented by the populations of the states. The results show
that an apportionment method which satisfies desirable properties
such as population monotonicity, house monotonicity, etc., does not
exist. A classification of simple voting games via winning coalitions is
also given.
JEL Classification: C71, D72
Keywords: Apportionment Methods, Simple Games, Winning Coali-
tions.

1 Introduction

The apportionment problem is a well known problem in political science con-
cerned with determining how to divide a whole number of representatives or
delegates among given states, territories, groups, etc., according to their re-
spective sizes. The main goal of the theory is to assign a "fair" number of
seats (representatives, etc.) to each state, territory, etc., according to their
relative population (relative to the total population). Problems arise as the
apportionment must provide integer values for each state, territory, etc., and
the sum of the distributed seats must sum to some fixed number representing
the number of seats in parliament, in the committee, etc. Apportionment

∗The author is greatly indebted to Joachim Rosenmüller for his assistance with calcu-
lating examples and providing theoretical impetus as well as to Peter Sudhölter for his
assistance and for suggesting the idea to the author. Financial support from the German
Science Foundation (DFG) is gratefully acknowledged
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methods have been studied in detailed by a number of researchers, in particu-
lar by M.L. Balinksi and H.P. Young. The aforementioned authors developed
a number of results which culminated in the publishing of their book "Fair
Representation", ([1]). This work summarises the most significant results
based on their research up to 1982. This note is based on the ideas presented
in their book. In this note a new type of apportionment method is investi-
gated, as defined in section three. The idea behind the apportionment is that
the populations of the states define a simple majority game and the new ap-
portionment method is the method which preserves this game, when possible,
or is the "nearest" of all possible simple majority games with the total weight
of the states equalling the number of seats. The results concerning this new
apportionment method demonstrate the unsuitability of the method more
than anything. It is shown that the method does not satisfy many desirable
properties of apportionment methods (eg. House monotonicity, etc.). The
use of games to analyse apportionment methods, however, is not new, see for
example, ([2]). Before the new apportionment method is investigated a short
introduction and results relating to simple games and winning coalitions is
provided. This first section develops a theorem about the number of winning
coalitions in voting (simple) games.

2 Simple Games

Before the section on apportionment methods is introduced and the pertinent
definitions are expounded, results relating to winning coalitions and simple
games will be elucidated in this section. Simple games form the basis upon
which the ideas in the next section are based. To begin the analysis a few
definitions are requisite. First of all that of a n-person cooperative TU game.
An n-person cooperative TU game is a pair (N, v) where N is a finite subset
of the natural numbers (representing players) and v is a function, v : 2N → R,
satisfying v(∅) = 0. Within this setting a simple game is defined as follows.

Definition 2.1. A game (N, v) is a simple game if the coalition function v
only takes on the values 0 or 1.

Simple games have been used for numerous applications apart from purely
mathematical research. One of the felicitous areas of research with numerous
results is that of weighted majority games. In this section simple games
with a focus on weighted majority games will be analysed. To begin this
analysis, some notation and definitions are required to be able to present a
particularly informative representation of simple games. In particular, the
following definition will turn out to be quite befitting for future results.

Definition 2.2 (Winning Coalitions). A winning coalition is a coalition
S ⊆ N such that v(S) = 1. The set of winning coalitions will be denoted by
W . A minimal winning coalition is a coalition S ⊆ N such that

v(S) = 1 but v(T ) = 0 ∀ T $ S
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The set of minimal winning coalitions will be denoted by Wmin.

Using this notation a simple game (N, v) can also be written as (N, W ).
With this notation, it is also normal to impose the following condition on
simple games.

(2.1) If S ∈ W and S ⊆ T ⇒ T ∈ W

Equation (2.1) is normally referred to the monotonicity condition and is
imposed so that the winning coalitions correspond to what one would usually
expect of winning coalitions. If this assumption is used later on then it will
be explicitly stated and referred to as the monotonicity condition. By
imposing this condition one has the following result.

Lemma 2.3. Let G1 = (N, W1) and G2 = (N, W2) be two simple games
satisfying the monotonicity condition. Then Wmin

1 = Wmin
2 if and only if

W1 = W2.

Proof: For the if direction let Wmin
1 = Wmin

2 . Then for i = {1, 2} every
winning coalition T is such that there exists a S ∈ Wmin

i such that S ⊆ T .
As the game satisfies the monotonicity condition, T ∈ W1 and T ∈ W2. Now,
for the only if part of the lemma, assume that W1 = W2. It then follows from
the definition of W that Wmin

1 = Wmin
2 . q.e.d.

With regard to the structure and relationships between winning coalitions
the following three definitions are quite germane.

Definition 2.4. A simple game (N, W ) is said to be proper if for all

S ∈ W ⇒ N\S /∈ W.

It is called strong if
S /∈ W ⇒ N\S ∈ W.

Finally it is called weak if

(2.2) V :=
⋂
{S |S ∈ W} 6= ∅.

The set V is called the set of veto players. A game is called dictatorial if
there exists j ∈ N such that

S ∈ W ⇔ j ∈ S.

That is |V | = 1 and j ∈ V . With these concepts and ideas the definition of a
weighted majority game can be introduced. The following definition follows
that of, eg. B. Peleg ([4]).

Definition 2.5 (Weighted majority game). Let G = (N, W ) be a simple
game. G is a weighted majority game if there exists a quota µ > 0 and
weights w1 ≥ 0, . . . , wn ≥ 0, wj ∈ R for all j ∈ {1, . . . , n}, such that

S ∈ W ⇔ w(S) ≥ µ.

The (n + 1)-tuple, [ µ ; w1, . . . , wn], is called a representation of G and one
writes G = [ µ ; w1, . . . , wn].
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It will be assumed later on that all the wj actually satisfy wj ∈ N (N stands
for the natural numbers) and that the quota is defined by

(2.3) µ =

⌈
w(N) + 1

2

⌉
where the brackets stand for the the ceiling operator (that is the smallest in-
teger greater than or equal to w(N)+1

2
). If this is the case, that the wj ∈ N and

q are defined by equation (2.3), then the game will be called a voting game.
In voting games the numbers wj represent the ’votes’ that player j possesses.
To present the main result concerning the number of winning coalitions in
voting games a few results need to be presented which are requisite for its
proof.

Lemma 2.6. Let G = (N, W ) be a weighted majority game. If µ > w(N)
2

then G is proper.

Proof: If µ > w(N)
2

then there cannot exist a coalition S such that w(S) ≥ µ
and w(N\S) ≥ µ. As otherwise

w(N) = w(S) + w(N\S) ≥ 2µ > w(N).

q.e.d.

Corollary 2.7. All voting games are proper.

The following Lemma is also important.

Lemma 2.8. Let G = (N, W ) be a weighted majority game satisfying µ >
w(N)

2
then G is strong if and only if there does not exist S such that

w(S) = w(N\S).

Proof: First of all assume that there exists a coalition S such that

w(S) = w(N\S).

Then if w(S) ≥ µ the game is no longer proper contradicting Lemma (2.6)
and if w(S) < µ then the game is not strong. If the game is strong then
w(S) < µ implies that w(N\S) ≥ µ and if w(S) ≥ µ then as the game is
proper w(N\S) < µ. Hence in both cases w(S) 6= w(N\S). q.e.d.

Finally the following is a corollary of Lemma (2.8).

Corollary 2.9. Let G = (N, W ) be a voting game. If w(N) is odd then G
is strong.

Proof: If w(N) is odd then there cannot exist a coalition S with

w(S) = w(N\S).

Hence by Lemma (2.8) G is strong. q.e.d.

Before the main result in this section can be presented the following result
is necessary.
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Lemma 2.10. Let G = (N, W ) be a strong and proper simple game with
|N | = n. Then |W | = 2n−1.

Proof: This result follows from the fact that either a set S is in W or its
compliment hence half of the 2n subsets of N are winning. q.e.d.

The following result is then the main result in this section concerning voting
games.

Theorem 2.11. Let G = (N, W ) be a voting game with |N | = n. Then
|W | = 2n−1 if and only if G is strong.

Proof: The only if direction follows from Lemma (2.10) and Corollary (2.7).
So the if direction will now be proven. Assume that the game is not strong.
This implies that the w(N) is even by Corollary (2.9) and that there is a
coalition S with w(S) = µ − 1 and w(N\S) = µ − 1 by Lemma (2.8). Now
consider the game G′ = (N, W ′) where one adds 1 to wj for a player j ∈ S.
Note that in this new game G′, µ′ = µ. In G′ one has that S ∈ W ′. In
addition, by Corollary (2.9), the game G′ is strong as w(N) is odd. Hence
|W ′| = 2n−1. As well, for all T ∈ W one has that T ∈ W ′ however there
exists a S with S ∈ W ′ such that S /∈ W . Hence

|W | < |W ′| = 2n−1.

q.e.d.

This result also holds for weighted majority games with µ > w(N)
2

and not
just for voting games. The reason is because such weighted majority games
are proper and hence the maximum number of winning coalitions is 2n−1.
This is realised if and only if the game is strong. In such a case one speaks of
a zero sum game because it then follows for all S ⊆ N that v(S)+v(N\S) =
v(N) = 1. In the next section on apportionment methods it is the voting
games such as those investigated in this section that form the focus of the
analysis.

3 Apportionment methods

In this section the idea of an apportionment method will be introduced.
Afterwards results relating to a specific apportionment method will be pre-
sented. As was mentioned in the last section, voting games form the basis of
the investigation to be presented here and hence before the main definitions
regarding apportionment methods are given the notation regarding voting
games needs to explained. So given a vector m ∈ Nn the game represented
by m is the voting game G = (N, W ) (with |N | = n as usual) defined by
G = [ µ ; m1, . . . ,mn] whereby

µ =

⌈
m(N) + 1

2

⌉
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(as usual m(N) =
∑n

i=1 mi). To demonstrate that a game G = (N, W )
is represented via a integer vector m the notation vm

µ will be used. Hence
such a game G = (N, W ) will be identified with the coalition function vm

q

arising from the weighted majority game G = [ µ ; m1, . . . ,mn], so that the
two notations will be used interchangeably. As all the games in this section
are voting games the subscript µ will not be necessary and hence as long as
there is no chance of confusion it will be omitted.

The definition of an apportionment is as follows.

Definition 3.1. An apportionment (also called an apportionment method)
is a mapping

H : Nn × N −→ Nn.

This mapping represents the situation where there are n states (or parties)
with populations (or sizes) in N. An apportionment is a way of assigning seats
within a parliament in accordance with the population (size) proportions.
The rule by which one apportions the seats is the mapping H. The first
component in the mapping H is a vector representing the population (party)
sizes in the states. The second component represents the size of parliament
(house size), that is the number of seats, h, to be distributed amongst the
states. The mapping H provides at least one vector in Nn, given a vector of
populations, g, and a house size h, as an apportionment. Hence the notation
H(g, h)(N) can be applied in the normal fashion, as above, for H(g, h). One
should note that an apportionment mapping may generate more than one
vector as a solution. Therefore the notation a ∈ H(g, h) will be used when
discussing the apportionment(s) that the mapping H defines. If only the
mapping H is referred to in a particular sentence and not a ∈ H(g, h) then
this will imply that all apportionments arising via the mapping H are meant.

In the following, properties of a new apportionment method based on the
number of winning coalitions of voting games will be investigated. Firstly,
however, a general property to be satisfied by all apportionment methods
ensuring that all possible seats are distributed is encapsulated by the next
definition.

Definition 3.2. An apportionment method preserves the house if it sat-
isfies

H(g, h)(N) = h, (g ∈ Nn, h ∈ N).

It will always be assumed that the apportionment method under question
preserves the house. This is a fundamental requirement of any apportionment
method. The second definition forms the basis of the investigation in this
section.

Definition 3.3. An apportionment method preserves the coalition func-
tion if for all a ∈ H(g, h) it satisfies

va
α = vg

β
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where, as usual,

(3.1) α :=

⌈
H(g, h)(N) + 1

2

⌉
and β :=

⌈
g(N) + 1

2

⌉
.

In the following the subscripts α and β will be omitted. The question that
will be investigated in this section can now be outlined. Given a population
vector g and the game it represents vg, then for a given house size h, what is
the apportionment method that preserves the coalition function when pos-
sible and when not, provides the "closest" voting game to the given voting
game vg? What is meant by "closest" will be explained shortly, however the
basic intuitive idea is clear. The goal is to find an apportionment method
that preserves the power proportions in the voting game represented by popu-
lation vector g according to either the winning coalitions or minimal winning
coalitions.

To specify what was meant by closest in the previous paragraph one needs to
be able to talk about the distance between voting games. The normal math-
ematical procedure for determining the distance between two mathematical
objects is to define a metric on the set of objects under consideration. The
following definition will be used to provide a metric to measure the distance
between voting games.

Definition 3.4. Let A and B be two finite sets and define

d(A, B) := |A\B|+ |B\A|.

Lemma 3.5. d(A, B) is a metric, that is d(A, B) satisfies the following three
properties:
i) d(A, B) = 0 if and only if A = B
ii) d(A, B) = d(B, A)
iii) d(A, B) ≤ d(A, C) + d(C, B) for all finite sets A, B and C.

Proof: First of all for i) if d(A, B) = 0 then it follows that

|A\B|+ |B\A| = 0.

Hence |A\B| = 0 and |B\A| = 0. This then implies that A = B. If A = B
then it follows straightaway that d(A, B) = 0. For ii)

d(A, B) := |A\B|+ |B\A| = |B\A|+ |A\B| = d(B, A).

Finally iii) will now be proven. So let A, B and C be finite sets and so one
has to show that

(3.2) |A\B|+ |B\A| ≤ |A\C|+ |C\A|+ |C\B|+ |B\C|.

First of all the left hand side of equation (3.2) can be written as

|A|+ |B| − 2|A ∩B|.
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Whereas the right hand side can be written as

|A|+ |C| − 2|A ∩ C|+ |B|+ |C| − 2|B ∩ C|.

Hence it must just be shown that

−2|A ∩B| ≤ 2|C| − 2|A ∩ C| − 2|B ∩ C|

or that
2|A ∩B| ≥ 2|A ∩ C|+ 2|B ∩ C| − 2|C|.

Reformulating this once more it becomes equivalent to

(3.3) |A ∩B|+ |C| ≥ |A ∩ C|+ |B ∩ C|.

Now one always has the following equality between two finite sets A and B,

(3.4) |A|+ |B| = |A ∩B|+ |A ∪B|.

Using equation (3.4) one can write the right hand side of equation (3.3) as

(3.5) |(A∩C)∪(B∩C)|+ |A∩C∩B∩C| = |(A∩C)∪(B∩C)|+ |A∩B∩C|.

However the claim now follows because in equation (3.5)

|A ∩B| ≥ |A ∩B ∩ C|

and
|C| ≥ |(A ∩ C) ∪ (B ∩ C)|.

Hence the distance d(A, B) is a metric. q.e.d.

This metric can be applied to simple games as follows.

Definition 3.6. Let G1 = (N1, W1) and G2 = (N2, W2) be two simple games
then define

dW (G1, G2) := |W1\W2|+ |W2\W1|.

This metric can now be used to "measure" the distance between two vot-
ing games. Also important to note is that using winning coalitions in the
definition is not essential. One could also take minimal winning coalitions
and define the following metric. This metric would be equivalent (in the
sense that for given g, Mv(dmin(v, vg)) = Mv(dW (v, vg)), see the following
definitions)in the case that the games are monotonic (see Lemma (2.3)).

Definition 3.7. Let G1 = (N1, W1) and G2 = (N2, W2) be two simple games
with corresponding minimal winning coalitions Wmin

1 and Wmin
2 then define

dmin(G1, G2) := |Wmin
1 \Wmin

2 |+ |Wmin
2 \Wmin

1 |.

Interesting results, not just relating to voting games, can be proven using
the metric dW (G1, G2). The following Lemma is an example thereof and
describes the distance between arbitrary strong and proper simple games.
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Lemma 3.8. Let G1 = (N1, W1) and G2 = (N2, W2) be two proper and strong
simple games with N1 = N2 := N . Then dW (G1, G2) is even.

Proof: First of all let S ∈ W1 however S /∈ W2. As the game is strong this
then implies that N\S ∈ W2. As the game is proper N\S /∈ W1 and hence
for each set S ∈ W1 such that S /∈ W2 there exists a N\S ∈ W2 such that
N\S /∈ W1 and vice versa. This implies that there exists a bijection between
the S ∈ W1\W2 and the T ∈ W2\W1 and hence that

(3.6) dW (G1, G2) := 2|W1\W2| = 2|W2\W1|

q.e.d.

Although the previous Lemma will not be used in the following, it demon-
strates a useful application of the metric dW .

In the following an apportionment method which minimises the distance be-
tween voting games will be discussed. As was mentioned at the beginning the
goal of this section is to investigate properties of an apportionment method
that, for a given house size h, preserves the coalition function when possible.
If that is not possible then the method should minimise the distance, with
respect to the metric dW or dmin, to the original game vg, for a given pop-
ulation vector g. Therefore the definition of the apportionment method in
question could be described by the following. To define the apportionment
method a few definitions are required. In the following let V be the set of
voting games. For a general function f define the following two sets.

mv(f) := min
v∈V

f(v).

Mv(f) := {v̂ | f(v̂) = mv(f)}.
Now by letting f = dmin(v, vg) for v ∈ V, one has the set

Mv(dmin(v, vg)) := {v̂ | (v̂, vg) = mv(dmin(v, vg))}.

Definition 3.9. The σ method is the set of vectors H(g, h) defined by the
following equation.

H(g, h) := {m ∈ Nn | vm ∈ Mv(dmin(v, vg))}

The reasons for taking dmin instead of dW are the following. First of all the
use of dmin allows for simpler calculations as there are less minimal winning
coalitions that winning coalitions. Secondly in a parliament it is the minimal
winning coalitions that determine which party gains the control over the
parliament. Coalitions that are already winning would never invite new
superfluous members to join the coalition because they would then have to
share their power with the new otiose members. This would reduce the power
and influence of all members in the original coalition. This implies that the
coalitions of interest are the minimal winning coalitions.

However due to the following result, for the current case of voting games it
is equivalent (that is they generate the same set of apportionments H(g, h))
if one uses the metric dmin or dW (see Lemma (2.3)).
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Lemma 3.10. Voting games are monotonic

Proof: The result is clear because if given a set of weights w ∈ Nn and
S ⊆ N satisfying w(S) ≥ µ then for all T ⊆ N satisfying S ⊆ T it follows
that w(T ) ≥ w(S) ≥ µ. q.e.d.

Another possibility for the above is to consider the l1 metric instead of the
dmin metric. It is defined as follows.

Definition 3.11. Let (N, v) and (N, w) be two cooperative TU games. Then
the l1 distance between the two games (N, v) and (N, w) is defined as follows.

l1(v, w) :=
∑
S⊆N

|v(S)− w(S)|.

However as the following result demonstrates they provide the same results.

Proposition 3.12. Let (N, v) be a voting game and g a population vector.
Let

HM(g, h) := {m ∈ Nn | vm ∈ Mv(dmin(v, vg))}

and
HL(g, h) := {m ∈ Nn | vm ∈ Mv(l

1(v, vg))}.

Then HM(g, h) = HL(g, h).

Proof: Assume per absurdum that there exists an m ∈ HM(g, h) such
that m /∈ HL(g, h). First of all, all m ∈ HM(g, h) are such that the game
generated by m has the same set of winning coalitions and hence the same
set of coalitions S ⊆ N such that vm(S) = 1. Hence it follows that if one
of the m is not in HL(g, h) then none of the m ∈ HM(g, h) are in HL(g, h).
However for all of the m ∈ HM(g, h) the number of coalitions S such that
vg(S) = 1 and vm(S) = 0 and vice versa is a minimum as the vectors of the
set Mv(dmin(v, vg)) minimise the number of winning coalitions in vm not in
vg and vice versa. This implies that for all n ∈ HL(g, h) and m ∈ HM(g, h)

l1(vg, vm) ≤ l1(vg, vn).

This, however, implies that m ∈ HL(g, h) a contradiction. Hence HL(g, h) =
HM(g, h). q.e.d.

The previous result is useful as it is often simpler to program with the l1

metric than the dmin metric when calculating examples.

The σ method will now be discussed, in particular its suitability for applica-
tions to apportionment problems. Although an exact apportionment method
will not be given, properties of the σ method will be discussed here. Without
giving an exact apportionment method that guarantees the closest game for
a given h does, however, leave a level of freedom in the voting game chosen
as the σ apportionment. This freedom of choice will be important, in partic-
ular, when discussing house monotonicity. This also means that by applying



? Section 3: Apportionment methods ? 11

certain criteria one could select one of the σ method’s apportionments based
on certain desirable criteria. This possibility will be examined at the end of
this section.

In order to discuss the suitability of the σ method general properties of
apportionment methods need to introduced. The first is usually referred to
as house monotonicity and arose in connection with the so called "Alabama
paradox". An apportionment method displays the "Alabama paradox" when
it does not fulfill house monotonicity.

Definition 3.13. An apportionment method H is called house monotone
if it always satisfies

h ≥ h′ ⇒ H(g, h) ≥ H(g, h′), (g ∈ Nn, h, h′ ∈ N).

Were an apportionment method not to satisfy house monotonicity then it
would mean that when the size of parliament increases, then, counterintu-
itively, one or more states could lose seats. Such an occurrence would make
no sense what so ever and in the words of Balinski and Young, ([1]), on p.42
in their authoritative book on the subject of apportionments, Fair Represen-
tations,

"No apportionment method is reasonable that gives some state fewer seats
when there are more seats to go around".

Hence the requirement that an apportionment method fulfills house mono-
tonicity is essential. The problem is, however, that the σ method is not
necessarily house monotone. An example demonstrating this is the follow-
ing.

Example 3.14. Let g be the following population vector

g := (16, 14, 20, 21, 21, 25).

Then g provides the following representation for a voting game vg

[ 59 ; 16, 14, 20, 21, 21, 25].

Now consider the case when the size of the house is h = 46. Then an
apportionment a satisfying

Wmin
wa = Wmin

vg

is the following
a = (4, 4, 7, 9, 9, 13).

Note that this is one of numerous voting games, w, with the weights summing
to 46 that satisfy

Wmin
w = Wmin

vg .

If one considers the case h = 47 then one has as a possible apportionment a
satisfying

Wmin
va = Wmin

vg
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the following
a = (3, 3, 8, 10, 10, 13).

This example demonstrates that the σ method does not necessarily satisfy
house monotonicity.

Although in the previous example the two chosen apportionments were two
from numerous possibilities, an important fact is that for h = 46 there does
not exist an apportionment H that assigns to player one and two a value of
three that then also satisfies

Wmin
va = Wmin

vg ,

unlike the case for h = 47.

A second important property for apportionment methods is that they are
population monotone. The exact definition of population monotonicity is
as follows. Before the definition is given a notion utilised in the definition
needs to be explained. Let a ∈ H(g, h) and a′ ∈ H(g, h), then a′i can be
substituted for ai in a means that when one replaces ai with a′i in a then it
follows that the new apportionment a* ∈ H(g, h).

Definition 3.15. An apportionment method H is population monotone, if
for any two population vectors g, g′ > 0 and a ∈ H(g, h), a′ ∈ H(g′, h′) it
follows that

g′i′

g′j′
≥ gi

gj

implies


a′i′ ≥ ai or a′j′ ≤ aj

or
g′

i′
g′

j′
= gi

gj
and a′i′ , a

′
j′

can be substituted for ai, aj in a.

The following Corollary is proven in ([1]).

Corollary 3.16. If an apportionment method is population monotone then
it is house monotone

This result then implies that the σ method is not necessarily population
monotone. An example demonstrating this is the following.

Example 3.17. Consider the following games v and w generated by the
population vectors

g := (3, 3, 3, 3, 13) and g′ := (2, 3, 3, 3, 10).

v := [ 13 ; 3, 3, 3, 3, 13] and w := [ 11 ; 2, 3, 3, 3, 10].

Now consider the case that h = 7. Then an apportionment a satisfying

Wmin
v = Wmin

va
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is the following
a = (0, 1, 1, 1, 4)

and hence could be suggested as the σ method’s apportionment. An appor-
tionment a′ satisfying

Wmin
w = Wmin

wa′

is the following
a′ = (1, 1, 1, 1, 3).

However one sees that
10

2
>

13

3

and hence the σ method’s apportionment does not satisfy population mono-
tonicity.

In the words of Balinski and Young, ([1]), p. 68

"No method can be considered acceptable for either proportional represen-
tation or federal systems that forces one state to give up seats to another
that has become proportionally smaller, i.e. that suffers from the population
paradox [i.e. is not population monotone]"

Unfortunately this is another blow for the σ method. The fact that the σ
method is not population monotone and displays the "Alabama paradox"
are two strong arguments as to why one should not consider it as a serious
apportionment method. However the σ method also displays another deficit
known as the new states paradox (in other words, it does not satisfy unifor-
mity, see ([1])). This occurs under the following situation. Say a new state
(or player), j, enters the game with a population of say gj. One adds to h
the nearest integer to

(3.7)
gj

g(N ′)
h

(where N ′ is the new population with player j) to create a new house size
h′. If the method is not to display the new states paradox, with this new
state, and the corresponding increase in h to h′, the original states should
be distributed the same allotments (with the new state receiving h′ − h)
under the apportionment method as if the new state was not there. This
requirement represents a type of stability amongst the players. It is clear
that if a new state/player comes and receives his fair share of seats defined
by the nearest integer to the expression in equation (3.7), then there should
be no need to redistribute seats amongst the states. Balinski and Young term
this property uniformity and demonstrate the following result (the reader is
referred to ([1]) for an exact definition of uniformity).

Proposition 3.18. Every apportionment method which is uniform is house
monotone.
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Hence the σ method cannot be uniform as the following example demon-
strates.

Example 3.19. Consider the following voting games representing the fol-
lowing population vectors

g := (1, 1, 4, 7) and g′ := (1, 1, 4, 6, 7).

v := [ 7 ; 1, 1, 4, 7] and w := [ 10 ; 1, 1, 4, 6, 7].

Then for h = 9 one would have one of the following games as the σ method’s
apportionment for the game defined by v.

z = (1, 1, 2, 5) or z = (1, 1, 1, 6).

However when one now adds a new state as in the game w and also in
proportion adds 3 to h, so that h = 12, then one has that the σ method’s
apportionment should be

z′ = (1, 1, 3, 3, 4).

In this case both players 3 and 4, in the original game defined by g or g′,
have exchanged one seat, demonstrating that the σ method also suffers from
the new states paradox.

Balinski and Young, ([1]), describe the logic behind why an apportionment
method should not demonstrate the new states paradox, p. 44,

"If an estate is divided up fairly among heirs, then there should be no reason
for them to want to trade afterwards. Anyone should be able to compare his
share with anyone else and remain satisfied."

Finally it is of interest to see if the σ method at least satisfies what is known
as quota.

Definition 3.20. Define the vector x as follows

xi =
gi

g(N)
h

for a population vector g and house size h. Then an apportionment method
H satisfies quota if for all a ∈ H(g, h)

bxic ≤ ai ≤ dxie

where bxic stands for the largest integer smaller than or equal to xi and dxie
the smallest integer greater than or equal to xi.

Unfortunately the σ method also does not satisfy quota as the following
example demonstrates.
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Example 3.21. Consider the following voting game generated by the pop-
ulation vector g := (2, 2, 2, 3),

v := [ 5 ; 2, 2, 2, 3].

Consider the case when h = 6 then the σ method would recommend the
following vector a as its unique apportionment satisfying Wmin

v = Wmin
wa

a = (1, 1, 1, 3).

However for player 4,
g4

g(N)
h = 2

and hence the σ method does not satisfy quota.

The fact that the σ method also does not satisfy quota is not truly a major
deficit in the apportionment method. Most methods applied today do not
satisfy quota. However, as a trade off, they satisfy population monotonicity
or house monotonicity or other important properties. The fact that the σ
method does not satisfy quota and does not satisfy population monotonicity
or house monotonicity and hence also falls victim to the new states paradox
is however a major inadequacy in the apportionment method. This would
suggest that a method such as the σ method could not be taken seriously as
an apportionment method to be applied in reality.

As nearness (minimising the distance) to the original population game does
not guarantee desirable properties such as population monotonicity and house
monotonicity one could take a class of apportionment methods that first of all
fulfill certain properties and then ask, which of these apportionment methods
are nearest (with respect to dmin) to the original voting game. However one
needs to be careful when selecting axioms. As is shown in ([1]) for certain
desirable values of the house size, h, and the number of states s, there does
not exist an apportionment method that satisfies both quota and population
monotonicity (see page 129 in ([1]) for more details). As well in ([1]), Balinski
and Young show that there is one unique method that satisfies both quota
and house monotonicity. Hence the only remaining cases to consider con-
cerning the previously mentioned properties are the apportionment methods
that satisfy house monotonicity or population monotonicity. Then one could
investigate if from this class of apportionment methods if there is a single one
that is nearest (i.e. is closest, with respect to the metric dmin) to the original
population game. However before this case can be analysed the definition of
a divisor method needs to be given.

Definition 3.22. Let p be a population vector with s entries. An apportion-
ment method H is a divisor method if for a given α ∈ [0, 1] one can select
a λ ∈ R such that λ satisfies the following equation

s∑
i=1

⌊pi

λ
+ α

⌋
= h,
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and the entries xi of the vector(s) x resulting from the apportionment method
H satisfy ⌊pi

λ
+ α

⌋
= xi.

In the case of ties between entries xi for a seat (and by giving each state a
seat would result in the sum of all entries in x being greater than h) then
one requires a tie breaking rule. Hence there exists a divisor method for each
value of α.

In the traditional apportionment nomenclature the method whereby α = 0
is known as the method of Jefferson, the method whereby α = 0.5 is
known as the method of Webster, as well as numerous other names for
other values of α. Due to the earlier critic on methods that did not satisfy
population monotonicity it is desirable to develop apportionment methods
that satisfy population monotonicity. In ([1]) the authors classify all such
apportionment methods via the following theorem.

Theorem 3.23. An apportionment method is population monotone if and
only if it is a divisor method.

Hence what one is then looking for is a divisor method that minimises the
distance between the original voting game and the apportioned voting game.
However there exists no one divisor method as the following example demon-
strates.

Example 3.24. Let g be the following population vector

g := (35, 27, 19, 12, 11, 9).

Then g provides the following representation for a voting game vg

[ 57 ; 35, 27, 19, 12, 11, 9].

Now consider the case when the size of the house is h = 21. Then Jefferson’s
apportionment method supplies the following vector (λ = 90

19
)

j := (7, 5, 4, 2, 2, 1)

and Webster’s method apportions the following vector (λ = 220
41

)

w := (6, 5, 4, 2, 2, 2).

As can be seen by calculating the minimal winning coalitions

dmin(vg, vj) > dmin(vg, vw).

Hence Webster’s method preserves the coalition function better than Jeffer-
son’s method in this example. However for an example showing that the
other direction can also occur consider the following example. Let g be the
following population vector

g := (2, 2, 2, 5).
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Then g provides the following representation for a voting game vg

[ 6 ; 2, 2, 2, 5].

Now consider the case when the size of the house is h = 4. Then Jefferson’s
apportionment method generates the following vector (or one where the first
three players share two seats according to some tie breaking rule, this however
does not effect the calculation for dmin(vg, vj)) (λ = 11

5
)

j := (0, 1, 1, 2)

and Webster’s method apportions the following vector (λ = 11
4
)

w := (1, 1, 1, 1).

As can be seen by calculating the minimal winning coalitions

dmin(vg, vj) < dmin(vg, vw),

Jefferson’s method is closer to the original voting game.

Finally as it has been shown that their is no one unique divisor method that
is always closest to the σ method’s apportionments, a final possibility is to
also consider the σ method’s apportionment that is closest to the proportions

(3.8)
gj

g(N)
h.

The idea of finding a solution nearest to the proportions, and hence one that
satisfies quota, is very intuitive. The proportions represent what each state
should receive were it possible to exactly allocate these proportions. Hence
methods that are nearest to the proportions are very intuitive and possess a
very desirable property. One of the well-known methods that grants such an
apportionment is the Hare (also known as the Hamilton) procedure. However
the Hare method also lacks desideratum of apportionment methods. The
method fulfills neither house monotonicity nor population monotonicity. The
idea of the coming investigation is to combine the Hare procedure with the
σ method and to see if one can create a new apportionment method fulfilling
some of the aforementioned desideratum. However as will be shown, this new
method not only does not amend the problems with the Hare method but
also fails to satisfy quota.

Again in the following no specific algorithm will be given to calculate the
new method, however properties of the new method will be, nevertheless,
investigated. Let Hσ(g, h) be the σ apportionment method as defined earlier.
Then the σ-Hare method is defined as follows.

Definition 3.25. The σ-Hare method is the set of apportionments m ∈
Hσ(g, h) so that∑

j∈N

|mj −
gj

g(N)
h| ≤

∑
j∈N

|nj −
gj

g(N)
h| ∀ n ∈ Hσ(g, h)
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The properties of the σ-Hare method will now be investigated via a number
of examples. First of all it will be demonstrated that the method does not
satisfy house monotonicity. This has important consequences and means in
particular that the method is not population monotone and also demonstrates
the new states paradox (proposition (3.18)). The numbers chosen for the
following example are due to ([1]).

Example 3.26. Let g be the following population vector

g := (501, 394, 156, 149).

Then for h = 11 the σ-Hare method has as its unique apportionment

m := (5, 4, 1, 1).

However for h = 12 the σ-Hare method has as its unique apportionment

n := (5, 3, 2, 2).

This demonstrates that the method is not house monotone.

Finally an example will be given showing that the method also does not
satisfy quota. This is a serious problem as it was exactly this desideratum
that led to the definition of the σ-Hare method and hence it cannot be
seriously considered.

Example 3.27. Let g be the following population vector

g := (1, 2, 6, 7, 10, 13, 18).

Then for h = 22 the σ-Hare method has as its unique apportionment

m := (0, 0, 2, 3, 5, 5, 7).

However the proportions for h = 22 are

(0.38, 0.77, 2.3, 2.7, 3.86, 5.01, 6.95).

Hence the σ-Hare method does not fulfill quota.

As the general case did not provide any results which led to the justification
of the σ-Hare method, a special case will now be investigated. The reason
for this is due to the desirability of both the preservation of the coalition
function and an apportionment which is near to the proportions. In the
following, a special class of games is given for which there always exists a
σ apportionment which stays within quota. To do this the definition of a
homogeneous game need to be introduced.

Definition 3.28. Let (N, v) be a voting game generated by m and W the
set of winning coalitions. Then (N, v) is homogeneous if for all T ∈ W there
exists S ⊆ T such that m(S) = µm, whereby µm =

⌈
m(N)+1

2

⌉
.
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From here on it will be assumed, w.l.o.g., that the voting games in question
do not contain dummy players (a dummy player is a player j such that j is
not contained in any minimum winning coalitions). Also the players will be
arranged in decreasing order within the vector m which generates the given
voting game. In ([3]) (Proof of Theorem 4.13, p. 77) a method is given by
which one can generate a homogenous representation of a zero sum voting
game given the smallest (non dummy) player. It implies, inter alia, that for
the smallest player (i.e. the last in the vector m), player n, that all other
players j ∈ {1, . . . , n − 1} can be written as a positive integer multiple of
player n. That is

mj = k(j)mn

for some k(j) ∈ N. Then the main result is as follows and assumes that all
games in question are zero sum.

Proposition 3.29. Let g be a population vector generating a homogenous
game vg. If h is a house number such that there exists a vector m generating
a homogenous game vm with

Wmin
vg = Wmin

vm

and
µg

gn

=
µm

mn

then there exists a σ apportionment that satisfies quota.

Proof:
1stSTEP :
First of all as m satisfies,

Wmin
vg = Wmin

vm

and m(N) = h it follows that m is a σ apportionment. So it just remains
to be shown that m fulfills quota. As was stated above all gj and mj can be
written as gj = k′(j)gn and mj = k(j)mn. Due to the condition

µg

gn

=
µm

mn

it follows that for all S ∈ Wmin
vg = Wmin

vm that∑
i∈S

k′(i)gn = µg

and ∑
i∈S

k(i)mn = µm

hence

(3.9)
∑
i∈S

k(i) =
∑
i∈S

k′(i).
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It will now be shown, via induction, that k′(j) = k(j) for all j ∈ {1, . . . , n}.
So for j = n it follows as k′(n) = 1 = k(n). So assume that it holds true for
all n ≥ j ≥ l + 1. Let T be a minimal winning coalition containing l + 1 and
consider S = (T ∪ l)\l+1. Then there exists a subset R ⊆ {l+1, . . . , n} such
that S\R is minimal winning for both vg and vm (as l is not a dummy, and
via Theorem 4.13, ([3]), it follows that the difference between the weights of
the players l and l + 1 is equal to a sum of players j with j ≥ l + 1). Now as
k′(j) = k(j) for all j ∈ {l + 1, . . . , n}, from induction, it follows that∑

i∈S\(R∪l)

k(i) =
∑

i∈S\(R∪l)

k′(i).

Now assume, per absurdum, that k′(l) > k(l). Then it follows that∑
i∈S\R

k(i) <
∑

i∈S\R

k′(i).

which contradicts equation (3.9). The case k′(l) < k(l) is handled identically
and hence k′(l) = k(l) for all l ∈ {1, . . . , n}.
2ndSTEP :
Now g(N) = K ′gn and m(N) = Kmn for some K ′, K ∈ N. As k′(l) = k(l)
for all l ∈ {1, . . . , n} it follows that K ′ = K. It will now be shown that m
fulfills quota. To that end assume the contrary for mn, that is

mn >

⌈
gnh

g(N)

⌉
this implies that (using K ′ = K)

m(N) >
∑
i∈N

k(i)

⌈
gnh

g(N)

⌉
≥

∑
i∈N

⌈
k(i)gnh

g(N)

⌉
=

⌈
K ′gnh

g(N)

⌉
= h.

This contradicts the fact that m(N) = h. A similar argument shows that

mn <

⌊
gnh

g(N)

⌋
also cannot hold. Therefore⌈

gnh

g(N)

⌉
≥ mn ≥

⌊
gnh

g(N)

⌋
Now mn must be equal to one of these two numbers so first of all let⌈

gnh

g(N)

⌉
= mn.

Then it follows for all j ∈ {1, . . . , n} that

mj = k(j)

⌈
gnh

g(N)

⌉
≥

⌈
k(j)

gnh

g(N)

⌉
.
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However one has

m(N) =
∑
i∈N

k(i)

⌈
gnh

g(N)

⌉
≥

∑
i∈N

⌈
k(i)gnh

g(N)

⌉
=

⌈
k′(i)gnh

g(N)

⌉
= h = m(N).

Hence it follows for all j ∈ {1, . . . , n} that

mj =

⌈
k(j)gnh

g(N)

⌉
=

⌈
k′(j)gnh

g(N)

⌉
=

⌈
gjh

g(N)

⌉
.

This implies that m fulfills quota for all j. The other case⌊
gnh

g(N)

⌋
= mn

is treated similarly. Hence in both cases m fulfills quota. q.e.d.

The author conjectures that the condition
µg

gn

=
µm

mn

utilised in the previous proposition is not necessary. Finally a simple example
demonstrating the applicability of the proposition is presented.
Example 3.30. Let g be the following population vector

g := (4, 2, 2, 2)

and for h = 5, let m be the following apportionment

m := (2, 1, 1, 1).

Then it follows that
Wmin

vg = Wmin
vm

and
µg

gn

=
µm

mn

and both games are homogenous. Hence for h = 5 there is an apportionment
which preserves the coalition function and satisfies quota.
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