2,266 research outputs found

    On the limits of DTN monitoring

    Get PDF
    Compared to wired networks, Delay/Disruption Tolerant Networks (DTN) are challenging to monitor due to their lack of infrastructure and the absence of end-to-end paths. This work studies the feasibility, limits and convergence of monitoring such DTNs. More specifically, we focus on the efficient monitoring of intercontact time distribution (ICT) between DTN participants. Our contribution is two-fold. First we propose two schemes to sample data using monitors deployed within the DTN. In particular, we sample and estimate the ICT distribution. Second, we evaluate this scheme over both simulated DTN networks and real DTN traces. Our initial results show that (i) there is a high correlation between the quality of sampling and the sampled mobility type, and (ii) the number and placement of monitors impact the estimation of the ICT distribution of the whole DTN

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    Considering Pigeons for Carrying Delay Tolerant Networking based Internet traffic in Developing Countries

    Get PDF
    There are many regions in the developing world that suffer from poor infrastructure and lack of connection to the Internet and Public Switched Telephone Networks (PSTN). Delay Tolerant Networking (DTN) is a technology that has been advocated for providing store-and-forward network connectivity in these regions over the past few years. DTN often relies on human mobility in one form or another to support transportation of DTN data. This presents a socio-technical problem related to organizing how the data should be transported. In some situations the demand for DTN traffic can exceed that which is possible to support with human mobility, so alternative mechanisms are needed. In this paper we propose using live carrier pigeons (columba livia) to transport DTN data. Carrier pigeons have been used for transporting packets of information for a long time, but have not yet been seriously considered for transporting DTN traffic. We provide arguements that this mode of DTN data transport provides promise, and should receive attention from research and development projects. We provide an overview of pigeon characteristics to analyze the feasibility of using them for data transport, and present simulations of a DTN network that utilizes pigeon transport in order to provide an initial investigation into expected performance characteristics

    The medical science DMZ: a network design pattern for data-intensive medical science

    Get PDF
    Abstract: Objective We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet-filter firewalls, network intrusion-detection systems. Results We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. Discussion The exponentially increasing amounts of “omics” data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research “Big Data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements

    Enhancing AIS to Improve Whale-Ship Collision Avoidance and Maritime Security

    Get PDF
    Whale-ship strikes are of growing worldwide concern due to the steady growth of commercial shipping. Improving the current situation involves the creation of a communication capability allowing whale position information to be estimated and exchanged among vessels and other observation assets. An early example of such a system has been implemented for the shipping lane approaches to the harbor of Boston, Massachusetts where ship traffic transits areas of the Stellwagen Bank National Marine Sanctuary frequently used by whales. It uses the Automated Identification Systems (AIS) technology, currently required for larger vessels but becoming more common in all classes of vessels. However, we believe the default mode of AIS operation will be inadequate to meet the long-term needs of whale-ship collision avoidance, and will likewise fall short of meeting other current and future marine safety and security communication needs. This paper explores the emerging safety and security needs for vessel communications, and considers the consequences of a communication framework supporting asynchronous messaging that can be used to enhance the basic AIS capability. The options we analyze can be pursued within the AIS standardization process, or independently developed with attention to compatibility with existing AIS systems. Examples are discussed for minimizing ship interactions with Humpback Whales and endangered North Atlantic Right Whales on the east coast, and North Pacific Right Whales, Bowhead Whales, Humpback Whales, Blue Whales and Beluga Whales in west coast, Alaskan and Hawaiian waters

    Evaluating Mobility Pattern Space Routing for DTNs

    Full text link
    Because a delay tolerant network (DTN) can often be partitioned, the problem of routing is very challenging. However, routing benefits considerably if one can take advantage of knowledge concerning node mobility. This paper addresses this problem with a generic algorithm based on the use of a high-dimensional Euclidean space, that we call MobySpace, constructed upon nodes' mobility patterns. We provide here an analysis and the large scale evaluation of this routing scheme in the context of ambient networking by replaying real mobility traces. The specific MobySpace evaluated is based on the frequency of visit of nodes for each possible location. We show that the MobySpace can achieve good performance compared to that of the other algorithms we implemented, especially when we perform routing on the nodes that have a high connection time. We determine that the degree of homogeneity of mobility patterns of nodes has a high impact on routing. And finally, we study the ability of nodes to learn their own mobility patterns.Comment: IEEE INFOCOM 2006 preprin

    The Quest for a Killer App for Opportunistic and Delay Tolerant Networks (Invited Paper)

    Get PDF
    Delay Tolerant Networking (DTN) has attracted a lot of attention from the research community in recent years. Much work have been done regarding network architectures and algorithms for routing and forwarding in such networks. At the same time as many show enthusiasm for this exciting new research area there are also many sceptics, who question the usefulness of research in this area. In the past, we have seen other research areas become over-hyped and later die out as there was no killer app for them that made them useful in real scenarios. Real deployments of DTN systems have so far mostly been limited to a few niche scenarios, where they have been done as proof-of-concept field tests in research projects. In this paper, we embark upon a quest to find out what characterizes a potential killer applications for DTNs. Are there applications and situations where DTNs provide services that could not be achieved otherwise, or have potential to do it in a better way than other techniques? Further, we highlight some of the main challenges that needs to be solved to realize these applications and make DTNs a part of the mainstream network landscape

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    Using Delay Tolerant Networks as a Backbone for Low-cost Smart Cities

    Full text link
    Rapid urbanization burdens city infrastructure and creates the need for local governments to maximize the usage of resources to serve its citizens. Smart city projects aim to alleviate the urbanization problem by deploying a vast amount of Internet-of-things (IoT) devices to monitor and manage environmental conditions and infrastructure. However, smart city projects can be extremely expensive to deploy and manage. A significant portion of the expense is a result of providing Internet connectivity via 5G or WiFi to IoT devices. This paper proposes the use of delay tolerant networks (DTNs) as a backbone for smart city communication; enabling developing communities to become smart cities at a fraction of the cost. A model is introduced to aid policy makers in designing and evaluating the expected performance of such networks. Preliminary results are presented based on a public transit network data-set from Chapel Hill, North Carolina. Finally, innovative ways of improving network performance in a low-cost smart city is discussed.Comment: 3 pages, accepted to IEEE SmartComp 201

    Srs2 Disassembles Rad51 Filaments by a Protein-Protein Interaction Triggering ATP Turnover and Dissociation of Rad51 from DNA

    Get PDF
    Rad51 is a DNA recombinase functioning in the repair of DNA double-strand breaks and the generation of genetic diversity by homologous recombination (HR). In the presence of ATP, Rad51 self-assembles into an extended polymer on single-stranded DNA to catalyze strand exchange. Inappropriate HR causes genomic instability, and it is normally prevented by remodeling enzymes that antagonize the activities of Rad51 nucleoprotein filaments. In yeast, the Srs2 helicase/translocase suppresses HR by clearing Rad51 polymers from single-stranded DNA. We have examined the mechanism of disassembly of Rad51 nucleoprotein filaments by Srs2 and find that a physical interaction between Rad51 and the C-terminal region of Srs2 triggers ATP hydrolysis within the Rad51 filament, causing Rad51 to dissociate from DNA. This allosteric mechanism explains the biological specialization of Srs2 as a DNA motor protein that antagonizes HR
    corecore